Exploring the development of high school students’ computational
problem-solving strategies by utilizing three-dimensional (3D)

virtual worlds

A dissertation
submitted to the Department of Product and Systems Design Engineering,
School of Engineering of
University of the Aegean
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Nikolaos Pellas

2019

Declaration of authorship

I am the exclusive author of the doctoral thesis titled "Exploring the development of high school students'
computational problem-solving strategies by using three-dimensional (3D) virtual worlds". This Ph.D.
thesis is original and was written exclusively in order to be submitted at the Department of Product and
Systems Design Engineering, School of Engineering of the University of the Aegean in partial fulfillment
of the requirements for the degree of Doctor of Philosophy. Every help that | had to prepare it is accurately
recognized and stated. I have exactly mentioned all sources, data or ideas based on others” works or ideas,
even if their inclusion in the present thesis were indirect or paraphrased. Generally, during the writing
process of my Ph.D. thesis, | have strictly abided by the law and what it is defined as intellectual property
and I have fully complied with the provisions of the law on personal data protection and the principles of
academic ethics.

Nikolaos Pellas

Ynev0vvny ofjloon

«Eijuo1r 0 amokAslotikog ovyypapéos e vrofinbsiooc Aidaxropixnc Arazpific pe titho «Exploring the
development of high school students’ computational problem-solving strategies by utilizing three-
dimensional (3D) virtual worlds». H cvykexpiuévny Aidaxtopixn Arazpify eivor mpwtotonn kot ekmoviiOnke
OTOKAELoTIKG, Yiow TV omokTnon Tov Aidoktopikod oimdouaros tov Tunuaros Muyyovikwv Zyedioaong
Lpoioviwv kot Zvotnudtwv. Kabe fonbeia, v omoio giyo yio tny mpoeToLLacio te, avoyvwmpiletor mAnpwg
KOl OVOQEPETaL ETOKPIPAS oty epyooia. Emiong, emaxpifag avapépw oty Epyaoio. TIG THYES, TIG OTOIES
XPNOYOTOINOO, KOl UVIJUOVED® ETWVOUO, TO, OEOOUEVO, 1] TIG 106EC TOV OTOTEAODV TPOIOV TVEDUOTIKHG
1010KTNOLOG GAA®Y, QKON Kol €AV 1] COUTEPIANWNH TOLS OTHY Tapovoa epyocio vEHple Euueon N
rwapagpaouévy. Levikotepa, Peforwve ot kard v exmovnon ¢ Aidaxtopixic Atazpifns éxw tnproel
OTOPEYKAITO, 000, 0 VOUOS 0pilel mepl OLAVONTIKNG LOIOKTHOIOS KOl £ OOUUOPYwBsl TARpwS e o
TPOPAETOUEVA. GTO VOO TEEPT TEPOTTOTIOS TPOTWTIKMY OEOOUEVMY Kol TiG apyés Axadnuaixng Asovroloyiog».

Nuwcoraog [TEAA oG

Dedicated to the memory of my beloved father

SUPERVISING COMMITTEE
1. Dr. Spyridon Vosinakis, Associate Professor, Department of Product and Systems Design Engineering,

University of the Aegean (Main supervisor)

2. Dr. Panayiotis Koutsabasis, Assistant Professor, Department of Product and Systems Design

Engineering, University of the Aegean

3. Dr. Konstantinos Tsolakidis, Professor (Emeritus), Department of Primary Education, University of the

Aegean

EXAMINATION COMMITTEE

1)

2)

3)

4)

5)

6)

7)

Dr. Spyridon Vosinakis, Associate Professor, Department of Product and Systems Design
Engineering, University of the Aegean

Dr. Panayiotis Koutsabasis, Assistant Professor, Department of Product and Systems Design
Engineering, University of the Aegean

Dr. Konstantinos Tsolakidis, Professor (Emeritus), Department of Primary Education, University
of the Aegean

Dr. Thomas Spyrou, Assistant Professor, Department of Product and Systems Design Engineering,
University of the Aegean

Dr. Stavros Dimitriadis, Associate Professor, Department of Informatics, Aristotle University of
Thessaloniki

Dr. Georgios Fesakis, Associate Professor, Department of Preschool Education Sciences and
Educational Design, University of the Aegean

Dr. Georgios Palaigeorgiou, Assistant Professor, Department of Primary Education, University of
Western Macedonia

ABSTRACT

Over the last few years, the term of computational thinking (CT) has been increasingly presented in
many K-12 curricula around the world and specifically in computer programming courses. Programming
tasks can profoundly support the CT instruction and demonstration of computational competencies
encompassing a wide range of cognitive thinking skills, such as problem-solving, critical thinking, logical
reasoning, and creativity. To this notion, students can learn on how to use such skills to develop their
thinking strategies so as to solve logically and methodically problems using CT and its computational core
concepts related to abstraction, algorithm, automation, decomposition, debugging and generalization.

Game-based learning (GBL) has the potential to enable new forms of teaching and transform the
learning experience through various simulated real-world problems in order to foster CT among school-age
students (boys and girls). GBL approaches supported by interactive environments have long been discussed
as remarkable and appropriate so that integrate CT instruction inside K-12 programming courses. Two are
the most indicative platforms: (a) visual programming environments (\VPEs) and (b) three-dimensional (3D)
virtual worlds (VWSs) combined with visual programming tools. In this perspective, students can apply their
computational problem-solving strategies with approaches that include tasks associated either with
exercises to design games (game making) or with exercises to play games (game playing). Gaming via
VPEs and 3D VWs can greatly fulfill students’ learning needs and experiences since various learning tasks
correspond to an imitation of an operation of a process or a system consisted of specific simulated problem-
solving situations of the real world. Thus, a worth noting GBL approach is the use of simulation games
(SGs). A SG is a gaming environment that can permit users to participate actively in having specific task
information to learn by doing within interactive and simulated problem-solving contexts.

However, it is still unclear how SGs created in interactive environments can affect boys and girls in
order to support CT instruction, thus applying their computational problem-solving strategies in terms of
proposing their solution plans. Therefore, the research hypothesis is whether the combination of the most
significant design features and characteristics of a 3D VW, like the realistic simulated representational
fidelity of OpenSim combined with tools of visual programming such as a palette with code blocks that
offers a more user-friendly way for coding tasks or the utilization of a VVPE such as Scratch for the creation
of SG can assist boys and girls to gain a greater understanding of CT and complete a process from the
analysis of problem-solving tasks to the formulation of solutions into code. In such a process, the
measurement of students’ learning performance requires the assessment not only of the formulation and
manipulation of a problem’s subparts using core concepts and skills related to CT, but also testing and
debugging the correctness of any proposed solution with design patterns through control flow blocks from

a visual palette which can be integrated by playing and programming specific visual objects inside a SG.

The aim of this thesis is to propose a computer game called “Robot Vacuum Cleaner” (RVC)
simulator to support CT instruction and investigate its appropriateness and effects on high school students’
learning performance by assessing their computational problem-solving strategies (i.e. computational
design, computational practices, and computational performance). The proposed SG was created in
OpenSim with S4SL and in Scratch to support the development and demonstration of boys’ and girls’ skills
related to CT with a view of understanding how to use effectively specific programming constructs in
several simulated problem-solving learning tasks. Reaching the following three objectives will create a
pathway to address the main research question. The first is to propose a theoretical design framework called
“PIVB: Programming for Interactive Visual Behavior ” with specific design guidelines and criteria for the
creation of a SG that can be designed in order to support CT instruction and the development of students’
computational problem-solving strategies. The second is to observe and identify any usability issues by
measuring the learning experience and perceptions of fifteen (n=15) high school students regarding the use
of the RVC simulator created in OpenSim. The third is to investigate if the proposed SG that is created in
OpensSim or in Scratch can greatly influence students to develop and support their computational problem-
solving strategies. For this reason, a quasi-experimental study is conducted to compare and analyze the way
that boys and girls design their computational problem-solving solution plans and practices with the purpose
to measure their learning performance. A total of fifty (n=50) high school students participated voluntarily
and were divided into a control group (n=25) and an experimental (n=25) group that used Scratch and
OpenSim combined with visual programming, respectively.

The findings from the preliminary study revealed students’ positive acceptance and use of OpenSim
with S4SL to foster their computational problem-solving practices and user experience. The findings from
the quasi-experimental study indicated substantial differences in students’ learning performance. Mean
scores on post-questionnaires from the experimental group revealed improvements higher than the control
group in two aspects. First, participants from the former group created more complete computational
instructions with rules to be specified and delivered the learning goals than those from the latter. Second,
participants who used OpenSim with S4SL proposed and applied more correct computational concepts for
problem-solving tasks and practices into code than their counterparts who used Scratch. A set of design
guidelines and recommendations are also referred. First, features and elements of OpenSim supported
students to map out in-game subparts of the main problem greater to explore and understand the
consequences arising from their achievements made into the RVC simulator, due to the appropriate
feedback given on their actions. Second, the representational fidelity of elements and features in relation to
the player’s awareness allowed each one to study multiple traces threads so as to consider several alternative
choices that could be taken seriously into account for spotting and solving subparts of the main problem

using skills related to CT such as problem-solving, algorithmic thinking, critical thinking and creativity.

INEPIAHYH

H sc0ymyn 611 apyéc TG EMGTIUNG TOV DTOAOYICTMOV KOl TOV TPOYPOUUOTIGHOD OTOTEAOVV EVal
OVOTOGTOOTO KOUUATL TV TPOYPOUUAT®OV OTovd®dV NG devtepofdliiag ekmaidevong o€ mayKOGULo
KAMpoko. AVTiKEinevo TV UAONUOTOV TANPOPOPIKNIG KOl GUYKEKPIUEVO TOV TPOYPOUUATICUOD €ival 1
avamtuén deE10TNTOV YVOOTIKNG OKEYTG TOV LadNTdV, 0Tm¢ 1 enilvon TpoPfAnudtoy, 1 Aoyikn okéyn Kot
n onuovpywkdémra. Ot pobntéc kaAovvior va Avcovv Aoyikd Kot pebodoroywkd mpoPAnupota
YPNOLOTOLDOVTOG OEUEMDOELS £VVOLES TOV TPOYPAUUOTIGLOD, OGS vl 1) KOTAVONGT VO TPOPANLOTOC
K01 1 KATATUNOT TOV G€ HKPOTEPO KOUUATIO, 1| 0AyOplOKT oKEWYT], O QVTOUATIGUAC, 1] ATOCOUALATOOT
(debugging), ka1 n yevikevon pog TpoTevopeVNG ADoNG 68 HOPEOT KOIKAL.

Tnv tekevtaio dekaetia, N voAoyloTikn okéyn (YX) amotehel Evav ETGTNHOVIKO OpO 0 0Toi0g et
KePOIoEL TNV TPOoOoYN €VOG HEYAAOL LEPOVG TOV EPELVNTAOV Kol Kadnyntov oto medio Tov OeTikdv
EMOTNUOV Kot Waitepa Tov mpoypappotiopod. H Y etvor pia dwadwkacio eniivong mpofAnudtov mov
enupénel otov GvBpmmo vo okeptel pe éva dopnpévo Tpdmo oKEYNG Kol Vo akoAovBel cuykekpluéva
pnupoto Pdon oG otpatnyiking mov oxedidlel Kot LAOTOEL GE HOPOT KMOOIKO Yoo TNV EMIALON
npoPAnuatov. H epapuoyn otpatnyikadv eniivong npofinudrov pe Baon v Y oyetiletan oyt poévo pe
T xpNon SeEI0TATOV YVOOTIKNAG GKEYNS Y10l VO GYESIOGTOVY KoL VO avarttuyBoOv ¢ Tpoypdppata wov Oa
VAOTOLOVV TOVG KOVOVEG TMV TPOTEWVOUEVOV GYESUGTIKAOV AVGEMY (VTOAOYIOTIKOG GYESIAGIOC), OAAL
oyetileTon kot pe tn ophn ypfon Oepewdmdv SoUDY TPOYPUUUOTIGHOD, OTMOC EXAOYNC, akoAovBiog 1/Kot
eMAvAANYNS (VTOAOYIOTIKY TPOKTIKA) YO TNV EQOUPUOYY OVTOV TOV AVcE®V. Bacikdc oTOXELON oG
Tétolog Oldkooiog &ivol vor EKTEAECTODV KOL VO TOPOLGLOCTOOV Ol OOOOTIKOTEPEG KoL
OTOTELECUATIKOTEPEC GYEOIOOTIKEC AVCELS GE LOPPT KMOWKE, (VTTOAOYIGTIKN EidOGN).

H mouyvidokevipikn mpocéyyion pabnong pe t xpnon (Yynowkov) Sodpactikav meptBailoviov
éxel e&elyOel paydaio ta TeElevTaia ypovia. Me Ty eppdvion kot gupeia a&lomoinomn TV NAEKTPOVIKOV
Ty VOOV, £xovv KaToPAn0el moAlég Tpoomaleie Yoo TNV avartuén S100pacTIKOV TEPPOALOVI®OV GTA
omoia Bo pumopovoe vo evompoTmOel eXTAdEVTIKO TEPIEYOUEVO KOl DMKO HE OpaoTNPLOTNTEG OOV Ol
ovppetéyovteg o pobaivovv mailovrag. Ta niextpovikd moyvidlo PmwopodV Vol IKAVOTOUGoVY € Eval
apKeTd peydro Babuod tig pabnolokég avaykeg Kot TIC EUTEIPIES AYOPLOV KOl KOPITGIMV LKPOTEPNG NAKIOG.
YUYKEKPYEVD, TO NAEKTPOVIKA Totyvidlo LTopovV Vo LTOSTNPIEOVY TNV AVATTVEN YVOCTIKGOV O£E10THTOV
oKEYNG TV HoONTOV péca amd OlpOPETIKEG OpOCTNPIOTNTEG KOl TNV ovAfeon CLYKEKPUEVAOV
KoONKOVIOV YyloL TNV EMIALGT TPOCOUOIOUEVOV TPOPANUATOV TOL TPAYHOTIKOD KOGHOL HEGO Oamd
dadpacTiKég Aettovpyiec/dladikacieg TOL VAOTOIOVVTAL GE VO YNPLOKO GUGTI|LLA.

Mo 1dwitepa a&loonUeimTn ToyVIBOKEVIPIKN TPOCEYYIoT Habnong eivat pe Ty ¥prion Toyvidiov
npocopoinong. Qg mayvidt mpocouoioong opiletar &va (Yneuokd) TePPAAAOV OV EMITPENEL GTOVG

YPNOTEG VO GUUUETEYOVV EVEPYO EXOVTOC GUYKEKPLUEVEG TATPOPOPIES GYETIKA LUE TIG SPUAGTNPLOTITEG TOVS

7

péco og €va Ynoako mePPAAAOV Yo Vo GIOKTGOLV YVMGES PACT) GUYKEKPUEVOV EVEPYEIDV TTOV
EKTEAOVV GE OOPUCTIKEG EPOPUOYES OOV UTOPOVV VO TPOGOUO®BOVV TPOPANUATE TNG TPOYLOTIKNG
Long. H avantuén moyvididv tpocopoinong yiveral 0Ao Kat mo StadedopEvn onpepa LEGo amd Ty xpnon
VTOAOYIGTIKOV GLOTNUATOV Kol Kupimg péca amd Ty xpnomn odpactik®v mepBaAloviav To omoin
TEPIAALPAVOLV SLULPOPETIKA GYEOLAGTIKE YOPAKTNPIOTIKA Kol GTOLYElD GTO Ypapiko mePBEAlov Slemapng.
[Swaitepa n oyedioon ToyVIdIOV TPOCOUOINONG GE OO UATO TPOYPOLUATIGHOD OTOTEAEL piat Sladikacio
omo¥ 10 mePPariov Ba Tpémel va wbel Tovg ¥PNoTEC TNV EMIAVOT TPOPANUATOV KOl TOVG EMITPETEL VO
&xovv éva Pabud erevbepiog otV oKkéyn T0VG 660 APopd To TMG Ba uTopoLGAY VO XpNoLoTomBodv TTo
OTTOTELECUOTIKA OgUeEMDOELG EVVOLEG KOt SOUES TOV TPOYPUULOTIGLOD Y10, TV EXiAvoT TpoPAnudatov. Mg
Baon avtd 10 okemTIKO, ol uabnTég Oo TPEMEL v EYovv TNV SLVATOTNTO VO EPUPUOGOVY CGTPATIYIKEG
emilvong mpoPAnudtev pe facn tnv YX gite H€CH OGKNGEDV Y10 TOV GYESOGUO S1UOPUCTIKDV TOLYVIOIDV
(game making), eite péocw 0OKNCE®V GTIS OMOIEC UTOPOVV VO TPOYPUUUATIGOVV OVTIKEIUEVA €VOG
TOLYVISIO0 GTO OTOI0 TIG TEPIGGOTEPES POPES TPOGOUOIDOVETOL EVOL TPAYLOTIKO TpOPAN e, (game playing).
Ot TAQTQOPUES TOV YPNOLLOTOIOVVTIOL GE WeYOA0 Pabud yuo TIC avAYKEC GYESGUOD TOLYVIOIDV
TPOCOUOIMOTG LLE TNV YPT|ON VITOAOYLISTH etvar o1 e€1g dvo: (o) TO TEPPAAAOVTA OTTTIKOV TPOYPUUUATIGLOD
(ITOIT) ko (B) ot Tpiodidotaror (3D) ewovikoi kocuor (EK). Ta TTOIT eivan dwdpaoctikd mepidriovia
OV EMTPENMOVV GTOVG YPNOTEG VO KATACKELALOLV Toyvidd 1 16TOpiec UE OvTIKEipeve Ta omoio
YPNOUYLOTO|GOVV KOl TPOYPOUHOTILOVV TIG EVEPYEIEG TOVS YPTCLUOTOLDVTOG IO YNOWKN TOAETO TOL
TEPIAAUPAVEL KOUUATIO EYYPOU®V PUTAOK KMOOKO BOCIK®Y SOUDV TPOYPUUUOTIGHOD.

Ao v dAAn pepid, ot 3D EK egivon tpocopoimpéve teptBailovia 6T 0noio o1 Yp1oTeEG LTOPOLV
Vo, SNULOVPYHCOVY «OVOPOTOHOPPIKES) YNelakés ovtotnteg (avatars). Me v a&omoinon tov 3D EK,
dtveton n duvatdTa aAANAETIOpaoTG LETAED TOV XPNOTOV, 1 EEEPELVNON YDPWV KOl O TPOYPOUUATICHOG
YEDUETPIKDV OVTIKEIPLEVOV TOL «KOGLLOLY, YPNCLUOTOLDVING GUYYPOVES LOPPES EMKOWVMOVIOG, OTMG M
OWAlDL 0€ €VO GUYKEKPLUEVO XDPO N 1| CUVEPYOTIKN GYESINOT AVTIKEWEVMVY, GAAG KOl TNV acOyYpovn
popen, 6mmw¢ to unfvopo oe dAlovg ypnoteg (IM). Adym g enéktaong tov EK oe Siogpopetikd
EKTTOLOEVTIKA TAOIG10, EYEL TOPOVCLUGTEL EVO CNUOVTIKO KOUUATL EPEVVAG GTNV EMIGTN LT TOV VITOAOYIGTMV.
ATd TIG O GNUAVTIKEC IOV YiveTal 0A0EvVa Kol o avTidnmeo eivae 1 alonoinomn tov 3D EK og pobntéc
uKpOTEPNG MAKIOG GE SPOPETIKG UAOAUOTO TOL OVOAVTIKOD TPOYPAUUOTOC KOl GUYKEKPLUEVO, TOV
npoypoupatiopnov. H ypnon g morétog tov Scratch4SL (S4SL) amoterei éva aldhoyo epyaieio mov
TPOGPEPEL GTOVE YPNOTEG £VOL O PIAKO KOl ATAOVGTEPO TPOTO TPOYPULLOATICHOD OVTIKEILEV®V EVTOC TOV
EK. H moAéta ovt) mepthouPavel ypagikd UTAOK KOOI, Yo, Vo amo@evydel n expdbnon N 1
amouUvVNULOVEDOT| oG YAmooog Tpoypaupaticpod tov 3D EK mov Oempeitor o moAdvmlok.

Qo1660, LEYPL KoL ONUEPQ BV EIVOL YVOOTO €4V £va TOYViIOlL TPOCOHOIMONG UTOPEL Vo EMNPEACEL

Tovg HobnTég (aydplo Kor To KOpITole) ™G TPOG TNV aVATTLEN Kol EQUPUOYY GTPOTNYIKOV €TIAVLGNG

npoPAnuatov mov oyetiCovion pe v YX mov mepthopfdvovv tnv viomoinon g dadkociog Hog
YVOGTIKNG dtepyociag okéyng omd v katavonon evog TpoPAHOTOS MG TNV EKPPUOT] GYEOOTIKMVY
Aboewv og pope1| KdoKa. g €K ToVTOV, 1 EPELVNTIKY VITOBEST] TOL avadveTOL glvar €6V 0 CLVOVAGUOC
TOV GNUOVTIKOTEP®V GYESLOCTIKMY YOPOUKTNPIOTIKAOV KOl TOV YOPAKTNPICTIKOV oV Tpocpépovial o 3D
EK, 6mwc 1 peahotikn miotot o avanopdctachs oto OpenSim 6g cuvdvacud pe to S4SL oe oyéon pe
éva I[1OI1 6mwg tov Scratch yio T dnuovpyio Tov wayvid100 TPpocouoimong, Bo uropovoe va fondnoet Ta
ayOp1O KoL TO KOPITO1e VO ATOKTIGOVV UEYOADTEPT KOTAVOT|GN TNG XPNoNS oe&lottav Y Kot avamtuéng
oTPATNYIK®V eMiAvong tpoPAnudtev. To tpotevopevo oty vidl Tpocopoinong Teplapfaverl Eva ynelokod
POUTTOT KaBAPIGHOD, TO 07010 B0l ATOTELEGEL TO AVTIKEILEVO TNG TEWPAUATIKNG OEIOAGYNOTG KOl AVAALGNG
TOV JE0OUEVAOV VIO TNV €£aYYN GNUAVTIKOV GUUTEPUCUATOV GYETIKA HE TNV poabncilokn emidoorn. H
alohdynon Bo aeopd TIC oTtpatnyikég emilvong mpofAnudteov tov uodntov ue Pacn v YZ
(VTOAOYIOTIKOL GYEOIOGOT, VTOAOYIGTIKEG TPOKTIKEG KOL VTOAOYIOTIKEG EMOOGEIS) 7OV OEV EYOLV
depeuvn el emapkdg PEYPL GNUEPO ATTO GYETIKESG £pEVVEC TG d1eBvovg BipAtoypapiag.

Baon ¢ mopamdve mpofAnuatikig mov datumdinke, n enitevén Tov akoAov®mV TPLOV GTOXWOV
KPIVETOL G amapaiTnTn Yo VoL EMPEPEL TNV EMITEVEN TOV PaGKOV 6KOTOV NG £pguvag. O TPMTOG GTOYOG
elvar n oyxedloon kor avamruén tov dwov mepPaiiovtog mpocopoimong 1o omoio mephapPdvet
OpaocTNPOTNTEG UE JPOPETIKE emineda oTOdKNG dvoKoAiag o KAbe miota ¢ mpog v emilvon
TPOPANUATOV Kot TNV ETLTVYN EMITELEN GLYKEKPLUEVDV pabnclakdy otdymv. H dnpiovpyio tov moyvidod
npocopoinong Paciotnke oty aflomoinon gvog mpotevopevov miarciov oyedioong pe titho «/1402"
Hpoypoppatiouss vy diadpaotiky Oruxny Zoumepipopd», 10 0molo TEPAOUPAVEL GUYKEKPIUEVES
KateLBuvTpLeg TPOdIOYPAPES TEPTYPAPOVTOS TAPAAANAA TO. PACIKA YOPAKTNPIOTIKA KOl GTOLYElD TOL
umopobv vo. vmootpiovv v avantuén g YX tov pobntov o pafnpote mpoypoppaTicpov.
AopPdavoviog vmoyn TG TPOTEWOUEVEG OYEONOTIKEG TPOOIAYpaPES, Onuovpyndnke éva moyvidt
npocopoinong og dvo mhotedpueg (ITOIT kot 3D EK). Ot maikteg kaAovvratl vo fondncovy pio yovaiko,
peyaAnc niiog pe coPapd Kivntikd TpofAnuote Tpoypappnatiloviog Kol eleiyovTag amodoTIKoDE Kot
OTOTELECUATIKOVG oAyopiOuove o€ éva ynolokd poumot, €16l MGTE Vo Umopécel va Kivnbei kot vo
KkaOapicel S10POoPETIKOVE YHPOVS TMV SMUATIOV EVOG UEYAAOV OTLTION.

O 0e0TEPOC GTOYOC ElvaL 1| TAPOTNPNON KOl O EVTOTIGUOC THAVAOY TPOPANUATOV 1/Kal SUVATOTNTOV
EVOC TPOTOTLTTOV T VIS0 TPOGOUOIMGNE TO omoio dnuiovpyRdnke oto OpenSim a&lonorwvrag to S4SL
Yo TV €XIAVGT VITOAOYIGTIKGV TPOoPANHateVY. ['o Tov Adyo awtod, kpidnke amapoitnm 1 die&aywmyn pog
TPOKOTOUPKTIKNG LEAETNG aKOAOLOMVTOG Lol LELKT Lebodoroyia Epevvag Yia, T LETPTON TG EUTEIPILOG KO
TOV AVTIAYE®Y GLUVOAIKE dekomévte (N=15) pabntdv youvaciov. ATo to EuPHUATE OO TNV OVIADGT TOL
KOO TG TaAETog Tov SASL pavepmBnke OtTL o1 pobnTéC KaTOPO®GAV VAL TAPOVCIAGOVY GYEOUOTIKEG

Aboelg péoa amd TV oOVOEST] dOPMV EMAOYNG Kol EMAVAANYNG e UETAPANTEG TOV GUVOLACTNKOV LE

capeic odnyiec, Oeiyvovtag €tol OTL UMOPOVV VO EKTEAECOVLV OOJOTIKOVS KOl OTOTEAEGUOTIKOVG
alyopBpovc.

O 1pitog otdY0g elvan M dtepedvnion G emidpacNg €vOG TOLVIOOD TPOGOUOIMGNG, TO 0moio
onpovpyndnke oto OpenSim pe to S4SL kot 6to Scratch, otny pabnotoxr enidoon ayopudv Kot KOPLToLdY
IMvpvaciov. ['a tov Adyo avtd, d1e€yon Lo olovel TEPOUATIKY LEAETT Y10 TV GUYKPLTIKY OOTIUNGN TNG
emidoong ewoomévie pobntov (N=25) piag mepapatikng opddag, n onoia ypnoonoincs to OpenSim pe
10 S4SL xou pog opddag eréyyov pe tov idto apbud (n=25), n omoia a&lomoinoce to Scratch ywo v
a&loldynon g opfng EKPpacnC Kol EKTEAESNS TMV AVCEMY TTOL TPOTEIVOVTOL G TPELG AEoveg: (o) otnv
TEPLYPOPT] KOl OTOV KOOOPIGUO UE COPNVEW TOV KOVOVOV, GUUTEPIPOPOV 1 KOTAGTACEMYV TOL
oLVOLALOVTOL WG EVTOAEC/ 001 YiEC SOUMY TPOYPUUUATIGHOV HE PVOIKN YADGGO Kol GE LOpPR aAyopifuov
(vevookmdwka), (B) omv evdeyxouevn Peitioon ™C EKPPOCNC VTOAOYIOTIK®Y TPOKTIKOV, ONAadn
OYEOLOOTIKMY AMDGEMV KOl TPOTHTT®V 7OV TPOTEIVOVTOL KOl (Y) GTIV S1EPEVVNGN TOL UAONGLOKOD KEPSOLG.

Ta amoteléopata g Epevvag 615UV OTLVTNPYOV CNUAVTIKES SLOPOPEC GTNV EMIO00T) TV UadNTOV
NG TEPOAUOTIKAG OMAd0S GE OVTIOGTOAN UE TOLG HOONTEC TG opada eAéyyov, O10TL QavnKe OTL
KkatopOmcav og apretd peyaro Paduo: (o) va katavoncovy yopotalikd KaAvtépa ta PacikdTepa LEPT TOV
TpoPANpaTog oV Empeme Vo aviiueTonicovy péco oto OpenSim o&lomoidvrog de&10TNTEG AOYIKNG
GLALOYIOTIKNG KOl KPUTIKNG OKEWYNG Y10 TV KOADTEPT] SLUVATY] OPYAVMGT] Kol EKTEAECT] TMV GYEOLUGTIKMV
Aboewv, (B) vo eKppAcovY GE LOPPT WYEVOOKMOLKO, KOl ETELTA VO EPAPHOGOVV MO OTOSOTIKOTEPEG KoL
OTOTEAECUATIKEG OYESOOTIKEG ADoELS KAvovTag Atyotepa AaBn kot t€Aog (y) va emtiyovv peyohOTePO
poafnolakd KEPSOg MG TPOG TOV TPOGOIoPIGHO de&loTNT®V Tov GyetilovTat pe v Y, 10 onoio KupdvOnke
o€ Suhdo1o 1060010 (41%) £vavTl TOV GLUEETEXOVTOV OV Yproiponoincay to Scratch (20%).

YuvBéTovTog To EvpNUOTO TV HEAETAOV OV O1eENxOncay, 000 EKTUIOEVTIKEG GUVETELEG TPOKVTTOVV.
[IpdTov, To fUciKd YOPAKTNPLOTIKA KOl GTOXEID TG EMPAVELNG SEMAPNG PN OTT TOL LTOGTNPilovToLl amTd
10 OpenSim fondncav Tovg PabNTES TN TEPAUATIKNG OUAOOS VO AvOyVOPICOVY Kol VO, YOPTOYPUPHGOVY
O gVukoAd Pootkd onueio. tov TpoPANUaTOog. AVTO domICTOONKE Kol péca amd TNV EQUPUOYN
OYEOLOOTIKDY AVGE®MV TOGO GE HOPPN WYELSOKMOIKO OGO KOl KMOKO, 7OV TPOTEWVAV, Ol ONOIEG
nepAdupavay Atydtepa AdOn o€ oyfon pe tovg pabntég mov ypnolwomoincav to Scratch. O pabntéc mov
ypnopomoinocav tov EK koatavéncsav KaAdTEPQ TIG GUVETELEC TOV EMAOYMY TOVE, AOY® TNG KOTAAANANG
avaTpPoEodOTNONG oL EAdPav. AgDTEPOV, 1| PECAICTIKY OVOTOPACTACT] GTOLEI®Y TOV TOLYVIOIOD TOL
dnovpyndnke oto OpenSim oe chykpion pe to Scratch Bondnoe oe peyakvtepo Pabud v diepedvnon
Kot emiAven mpoPAnudtov. Avtd amodeiydnke 1060 PACT TOV EVOALOKTIKOV ETIAOYDV GE GYEOOOCTIKEG
AboEg yioo TNV emiAvon TV PBactkOTEPOV UEPOV TOV KVUPLOV TPOPANUATOS TOV TPOTAONKAY OO TOVG
pabntég, 6060 Kot Baon g LETpnong Tev SeEI0THTOV Tov Bepovvtal OepeMMOEIS Yia TV KATavOnoT TG

Y, 60mwg 1 enilvon TpoPANUaTov, 1 adyoplOuikn okéyn, 1 KPITIKT GKEYT KOl 1] dNUI0VPYIKOTNTA.

10

ACKNOWLEDGMENTS

My Ph.D. study was an extraordinary experience in my daily life. Besides the scientific knowledge
that it unquestionably has provided to me, it as well as expanded my personal research concerns and
strengthen my logical reasoning, critical and creative thinking skills. For these reasons, | would like to
express my deepest thankfulness to a small but significant number of people who contributed to the
successful completion of my dissertation. It would not have been possible without the constant guidance,
support, and encouragement of a number of people, such as my Ph.D. dissertation committee and my family.

First, I would like to thank my supervisor, Dr. Spyridon Vosinakis for giving me the opportunity to
work with him and being a continuous source of inspiration with his support, encouragement, insightful
comments and constructive criticism. | would also like to thank the other two members of my dissertation
committee, Dr. Panayiotis Koutsabasis and Dr. Konstantinos Tsolakidis for their time, advice, guidance,
suggestions, and stimulating discussions.

Second, I would like to express my heartfelt gratitude to students and chief administrative officers of
all high schools in Syros, where | conducted the empirical study for this dissertation. In particular, | would
like to thank the three Computer Science teachers who allowed me to conduct my research studies inside
and outside their classrooms, for their time, cooperation, support, and useful suggestions. | am also grateful
to all the administrative and technical staff of the Department of Product and Systems Design Engineering
for everything they have done all these years in their own way to support and complete my research.

Last but not least, | would be forever grateful to my family for their unconditional love and support
throughout my life. I would like to thank my parents, Aikaterini and Stamkos, and my brother Themistocles
for their unwavering patience, being my most tireless advisors. My family was, in my entire life, always a
source of constant support and patiently seeing me through the daily ups and downs during my Ph.D.

journey. Thank you for believing in me and teaching me to believe in myself.

11

TABLE OF CONTENTS

(O T 1o (=l T 1) oo [Tex 4 o] o ISP 19
1.0, BACKGIOUNT ...ttt bbbt bbb b s et s e bbbt b e nn e 19
1.2, IVIOTIVALION. ...ttt et bbbt b bbb e bttt e b e e bt b e st ettt n s 22
1.3. Research aim and ODJECHIVESc.vciiiiiie et sre et e be s reeneesee e 24
1.4, IMBENOAOIOGY ...ttt 25
1.5. The contribution Of thiS thESIS..........ciiiiiiiee e 26
1.6, TRESIS STFUCTUIE ...ttt bbbttt b bbbt et et e b e bt et e s bt nn b e e 27
Chapter 2: Computer SCIENCE BAUCATIONcvoiiiiiiiiieiie e 30
2.1, COMPUEET SCIBNMCE ...tttk sttt bbbttt b bbb bt et et e e et b e bbb b e n s 30
2.2. COMPULET PrOGIAMIMINGcuveiteireeieiteeeeste st esrestesseesresteeseesaesteetesteessestesseessesteassesbesteessesseessestesseessessens 32
R I T Ly [T aTo R (o o] (0T | -1 o ISP 35
2.4. Problem-solving strategies in ProgrammiNgccoeiererrerrerieeeienesesesre e nnenes 36
2.5. Computational thinNKiNG ..o s 38
2.6. Computational problem-SOIVING SIFAtEOYciviieiiiieie e s see e 41
2.7. International policy reports about computational thinKingccoceiriniiiiiiee e 44
2.8, GENUET ISSUBS ...tttk etttk b kbbbt b et s b e bbbt bbb et et et e bttt b ettt n s 46
Chapter 3: Instructional approaches and educational environmMeNts...........cccccevveeeve v cicnecre e, 49
3.1, INSLruCtional APPIOACKHESc.icieieie ettt st et e s be b e s besbe e besbeeseesbesreeseenreans 49
3.2, LOGO ENVITONMENTS. ... eteeiieiieetiesiesteeseestesteestestesseestesseeseesseaseessesseaseessesseessessesssesseassessesseessessesseessessenns 53
3.3. Contemporary educational ENVIFONMENTSc.ccueiiiieiieiecee ettt sre e sre e sre e 55
3.3.1. Tangible ProgramIMing.........cccvciiiii ittt s be e et e s be e b e s besbeesbesbeeseesresreenresrens 57
3.3.1.1. Advantages and diSAAVANTAGES.ccvereieiririiiterieste ettt bttt enes 59
3.3.2. Educational robotiCS in PrOgrammMINgcoueeiirirerierieieieieesie sttt ss e nee s nenes 60
3.3.2.1. Advantages and diSAdVANTAGES.cceiieiiiieiiieireite e ste et re et esbe e e s reste e besbeeteesbesaeesresrens 63
3.3.3. Visual programming eNVIFONMENTS.ouiiiiieieeteee st eee e e et ste e see st eeseesteeneesreeseeneesreeneeneens 64
3.3.3.1. Advantages and diSAAVANTAGES.ccvevereiriiiiiteriesie ettt sttt se e 69
3.3.4. Three-dimensional Virtual WOITASccooiiiiio e 71
3.3.4.1. Advantages and diSAdVANTAGES.cceiieiireiierieeieee st ee e ste et et eeseeete e eesreeseeneesreeneeneens 75
3.4. The use of three-dimensional virtual worlds in programming COUISES..........ccooeeiiriinieneneneniesieseenns 78
Chapter 4: Game-based learning to support computational thinking............cccceoeviiiiiiniininen 81
4.1, GamME-DASEA TEAIMINGoiieiiiieii et ettt sttt e te et e tesaeere e be e st e steeaeeeesaeeneenaennean 81
4.2. Design features to foster computational thinking through game-based learning............cccccoocveeieneen 85
4.3. Learning to program through game making..........cccooiiririiinineicee s 88

4.3.1. Game-making 1earning appProaches.........oovouiiiiiiii i e 88

4.3.2. Drawbacks and diffICUITIES.oiiiieiiciee et nne s 90
4.4. Learning to program through game Playing.........ccceoieririneieneieeeses s 92
4.4.1. Game-playing 1earning appProaches.........ccvoviii it 92
4.4.2. Drawbacks and diffiCUITIES.coiiiiiiii b 94
4.5. Addressing gender inequalities in programming using interactive environments.............cccocveeerennenn 95
4.6. Recent trends and ChallENQEScooiiiii s 98
4.7. Computer simulation games to support computational thinKingcccocoveiiiiiiiccne e, 103
Chapter 5: PIVB - A proposed theoretical design frameworK.............ccocooeiiiiiiiiiiiiineeens 106
TN I . 11 o] - -SSP 106
5.2. Computer game design FrAMEWOIKSccuoiiiiiieie et st sre e 111
TR B 1= To [I (=T ol] o] RO 113
5.4. Design prinCiples and gUIABTINESccooviiiiiiiisiise e 117
5.5. Essential components and deSign CHLEMIAc.cveiieeeieie et sreene 122
Chapter 6: The Robot Vacuum Cleaner (RVC) SImUIatorcccocv i 128
8.1, GAME ESTON. ...ttt bbb bbb st b Rt bbb bbb e Rt bbb e n e 128
6.2. GAMEPIAY OVEIVIBW ...ttt bbbttt bbbt e et b ettt b b n e 131
6.2.1. Learning goals and SCENAIIO.........ccueiuiiiiieeieieeie et e et sr et steste e e sreereesbesreeseesraeneesreenes 131
6.2.2. User interface design features and €leMENEScccviiiiiieiiieiie e 133
6.2.3. Description of activities and learning Challenges............cooeiiiiiiiiii e 135
6.2.4. GAME MECNANICS ...ttt be b et e e seeneebessesbeseenteneeneas 142
Chapter 7: EXPerimental eSIgN........cccvoiiiiiiieiiie ettt s te et sbe et sreesresre e e e sreenes 145
7.1. RAtiONAIE @NU PUIPOSEeiiiiiictiiteete sttt bbb ettt ettt st ben e 145
7.2. Research methodology of the preliminary StUAYcccooeieiiiiiieeee e 148
T 11410 LTSRS RPN 148
O (001 o [0 (- S PS 148
7.2.3. Instrumentation and data ANATYSISeveviiriiirie i 151
B Lt | | PSS 152
T B 1o U] (oo PSS 155
T I [T 4T LSS 157
7.3. Research methodology of the quasi-experimental STUAYccocvviiirineninic s 158
R ST g I a0 Y=V o =P S 159
7.3.2. EXPErMENTAl SETUP. ... eiuieiiieiitiieiste sttt bbbttt b et b 163
TR R (0010 [0 (< S PSS 165
T34 INSEIUMBITS ...ttt ettt ettt et sh e s bt e s ae e e et e e bt e b e e b e e sb et eb b e e mb e et e e ebe e naeenaeesaneanns 166

R BT | r- I 0T 1Y LSS PSS 169

G BT T U SRR 173
R T I 1o U] (oo OSSP 190
7.3.8. LIMITALIONS ...ttt bbbttt bbbt et e bt bt b st b sn b e nne s 192
Chapter 8: Educational implications for theory and practicec.ccooevvvieevie i cicse e 193
Chapter 9: CONCIUSIONS ...ttt b b e et b e n e nen e 199
] (=] =] 0TSSP 204
N o] 01 g o [T = OSSP 218
Appendix A: The questionnaire of the preliminary StUAY ..o 218
Appendix B: The interview questionnaire of the preliminary Studycccccoceieneieiiieinieeee 221
Appendix C: Demographics questionnaire for partiCipantsc.cocevveveiieie s 222
Appendix D: The questionnaire about students’ difficulties in programming...........cccceveverieerieeriveniennne. 224
Appendix E: The pre-and-post questionnaire about the students’ determination of skills related to

compUEAtioNal TNINKING ..ottt 226
Appendix F: The interview questionnaire of the quasi-experimental StUdYc.ccccovveviiiiie i, 228
Appendix G: The worksheet about the learning activities using ScratChcccccevviiviiiic e, 229
Appendix H: The worksheet about the learning activities using OpenSim with Scratch4SL................... 234

14

LIST OF TABLES

Table 2-1: Knowledge and abilities gained by using computational thinking...........cccccooviiininnencnnne. 40
Table 3-1: Advantages and disadvantages of tangible programmingccocvvieieneieieinisneseeeenes 60
Table 3-2: Advantages and disadvantages of educational roDOtICS............ccooririiiieieicc 64
Table 3-3: Advantages and disadvantages of visual programmingccccooeereneneneneneiesesesese s 71
Table 3-4: Advantages and disadvantages of 3D virtual WOrlds.............ccccoveieiiiiciiiincicccc e 77

Table 4-1: A summary of results from previous studies which have tried to address gender inequalities . 97
Table 4-2: Recent trends and challenges in game design to support computational thinking instruction 101

Table 4-3: A summary of results from previous studies which have utilized simulation games to support
computational thinKiNG INSIFUCTIONceoiiiiiic et re e e sreens 104

Table 6-1: Similarities and differences of the game interface design created in OpenSim and Scratch... 150
Table 7-1: Description of activities associated with game playing in the preliminary study 150
Table 7-2: Short comments on how the proposed simulation game contributing to the learning effectiveness,
learning procedure, and USEI EXPEIIENCEciiiieireieeieste et estesteesteste e e e srestaetesbeessesbesaeessesteassesaesteensesses 152

Table 7-3: In-game activities associated with operational characteristics and skills related to computational

LT L1 T 1L SRS 165
Table 7-4: Error analysis FUDIIC CIItEITA........cccviieii e st sre e 169
Table 7-5: EXAMPIe MOGEI ANSWET.........cciiieiecice ettt sttt sreebe et sre e e re e 171
Table 7-6: Example of students’ answers and gradescveiererieiiiiiiniie e 171

Table 7-7: Statistical results of computational problem-solving strategies from the experimental group 180
Table 7-8: Statistical results of computational problem-solving strategies from the control group......... 181
Table 7-9: Descriptive analysis and Wilcoxon signed-rank tests of skills related to computational thinking
SPIIE DY GBINUET ... bbb bbbt b bbbttt e b 188

15

LIST OF FIGURES

Figure 1-1: DiSSErtation SIIUCLUIEcoiiiiiriirei ettt b e sr e nn e 29
Figure 2-1: A workflow of the control algorithm and the program to turn on the light of a lamp light bulb

.. 33
Figure 2-2: Fundamental programming constructs and examples using a visual language.............c.c..c.... 34
Figure 2-3: A cognitive thinking process using computational thinking...........cccccecevviiiie i, 39
Figure 2-4: A process that provides the development of a computational problem-solving strategy 43
Figure 3-1: The "turtle” LOGO (Papert, 1980)c.ciiveiieiiiierieieiie s seesieste e ste e sre e sae e sre e enesne e 54
Figure 3-2: A collection of wooden tangible programming blocks using Tern (Horn et al., 2007) 58

Figure 3-3: A collection of natural tangible programming blocks with electronic supplies using AlgoBlock

(SUZUKI & KA, 1993)ciiiieiieiieie ettt st e ettt e et e e e st e s te et esbeete e besae e besbeetesbeeteentesreeneenre e 58
Figure 3-4: Components of a robotic Bee-Bot (Kabatova et al., 2012)ccccovviveveiiiie v, 61
Figure 3-5: A LEGO Mindstorms programming environment (Kim & Jeon, 2007)cccoceevveveveeinennenn, 62
Figure 3-6: An EV3 Lego Mindstorms robot (Chetty, 2015)ccccccoieiieiiiiciece e 63
Figure 3-7: A screenshot of a game created in SCratCh...........cooeieiiiiiiiiii e 67
Figure 3-8: A screenshot of a game created in AQENICUDES.coveiiiiiiiiise e 68
Figure 3-9: A screenshot of a game created iN ALICEcooviiiiiiieie e 69
Figure 3-10: An educational region inside SECONT Lifeccooiiiiiiiiiiiiirs e 74
Figure 3-11: A region for creating a house prototype inside OPeNSIMccovieiireiiiinise e 75
Figure 4-1: Components OF & COMPUEET QAIME.......cuiiiiiiiereite ettt nnesn e 83
Figure 4-2: A specific example of interaction among game mMecChaniCscccovvrereiviniininene e 84
Figure 5-1: The illustration of the proposed framewWOorK ... 121
Figure 5-2: The alignment of game components and design Crteria...........ccoouererereieieninenese e 125

Figure 6-1: A SG design map constructed by following the game guidelines and principles of the PIVB
L LAY o] o SO PRRTRTRT 130

Figure 6-2: The graphical user interface of the RVC simulator created in OpenSim with Scratch4SL ... 134

Figure 6-3: The graphical user interface of the RVC simulator created in Scratch ..o 135
Figure 6-4: The in-game stages created in Scratch and OpenSim with Scratch4SL..........c..ccoocviviienne. 140
Figure 6-5: An illustration of the in-game learning process in the cinema roomcccocoeveveiviiennne 142
Figure 6-6: The four different design patterns as solutions to a computational problem 144
Figure 7-1: A girl proposes a solution via Scratch4SL for the first stage inside the RVC simulator 149

Figure 7-2: A boy proposes a solution via Scratch4SL for the second stage inside the RVC simulator .. 149

16

Figure 7-3: Horizontal stacked bar chart of top/bottom-2-boxes of users’ responses about the learning
BT ECTIVENESS. ...t bbbt 153

Figure 7-4: Horizontal stacked bar chart of top/bottom-2-boxes of users’ responses about the learning

Q10 Lot [0 USSR 154
Figure 7-5: Horizontal stacked bar chart of top/bottom-2-boxes of responses about user experience 155
Figure 7-6: A boy from the control group plays the RVC simulator using Scratchc.ccocverennennne. 161
Figure 7-7: A girl from the control group plays the RVC simulator using Scratch.............c.ccocevenennennee. 161
Figure 7-8: A girl from the experimental group plays the RVC simulator using OpenSim 162
Figure 7-9: A boy from the experimental group plays the RVC simulator using OpenSim..................... 162
Figure 7-10: The quasi-experimental ProCEAUIE.............cuiiiiiiieieieie e 162
Figure 7-11: Box plot about grades of the experimental group and control groupcc.cceevvvrerieriennen. 174
Figure 7-12: Box plots about grades of each group by gender ... 175
Figure 7-13: Measures of understanding each computational CONCEPL...........coevrverreieiniiniiniinseieee 176
Figure 7-14: Types of correct and incorrect of computational concepts using an error analysis rubric ... 177
Figure 7-15: Types of errors in creating pseudocodes/algorithms.........c.ccccevveveiieiie i 178
Figure 7-16: Types of errors in applying COUB........ccooiiiiiiiie e 178
Figure 7-17: Computational concepts which are used from boys in the control groupcccccceevevvenane. 183
Figure 7-18: Computational concepts which are used from girls in the control group.........cccccceevevvennane. 184
Figure 7-19: Computational concepts which are used from boys in the experimental group................... 184
Figure 7-20: Computational concepts which are used from girls in the experimental group 184
Figure 7-21: Determining computational thinking skills of participants from the control group............. 186
Figure 7-22: Determining computational thinking skills of participants from the control group............. 186

Figure 8-1: A revised design map constructed by following the game guidelines and principles of the PIVB

framework ..

17

2D
3D
CG
CT
EG
GBL
GUI
IM

LE

LP

L$
LSL
OpenSim
OSVWs
PC
SG
SL
S4SL
SVWs
UXx
VW

LIST OF ABBREVIATIONS

Two-dimensional
Three-dimensional
Control group
Computational thinking
Experimental group
Game-based learning
Graphical user interface
Instant message

Learning effectiveness
Learning procedure
Linden dollar

Linden scripting language
OpenSimulator

Open source virtual worlds
Personal computer
Simulation game

Second Life

Scratch4SL

Social virtual worlds
User experience

Virtual world

18

Chapter 1: Introduction

The first chapter provides a brief introduction to the background, the motivation with the problem
statement, the methodology, the twofold research aim, and finally the contribution of this thesis. It
is focused on the use of game-based learning, and specifically on game-making and game-playing
approaches to support the teaching of cognitive tasks involved in computational thinking through
computer programming courses. It also states to the empirical evidence from previous studies so as
to verify how computer simulation games created via interactive environments, such as visual
programming environments and 3D virtual worlds can become effective tools for high school
students to impart theoretical and applied knowledge and assist them to overcome problems related

to programming.
1.1. Background

Learning computer programming is an indispensable part of Computer science (CS) in K-12
education. Computer programming (or programming) is the process that allows someone to transform a
high-level/abstract solution plan of a problem into a syntactically accurate set of instructions expressed in
a formal language and evaluate its execution by a computing device (Lahtinen, 2005; Robins et al., 2003).
One of the most significant objectives in programming courses is to foster students’ rigorous thought
process using skills such as algorithmic thinking, logical reasoning and coding so as to understand how to
use correctly a set of rules with the precise expression for the formal structure of programming languages
in problem-solving situations (Bocconi et al., 2016). By using such skills combined with the appropriate
knowledge on how to use algorithms and programming constructs, students can learn how to plan and apply
their problem-solving strategies to real-world problems (Tucker et al., 2003).

However, various studies indicate that learning computer programming is not without difficulties.
Most students in K-12 education face difficulties about how to design and apply their problem-solving
strategies. They need to propose and then apply their solution plans which are associated with two
interrelated aspects (Dagdilelis et al., 2004; Webb et al., 2017): a) the decomposition of a problem into
smaller subparts to analyze its given facts, and b) the formulation of algorithms to specify a series of steps
so that test solutions with syntactically correct programs. The former comprises students’ difficulties with
abstract concepts in understanding the main problem and in expressing specific steps for decomposing it
into simpler and manageable parts to design their solution plans. The latter includes the subdivision of a
program into smaller pieces for each subpart of a problem, and the comprehension on hypothetical error
situations that make to realize the correctness of their solution plans by testing the consequence of executing

specific computer instructions (Qian & Lehman, 2017). Thence, they struggle to understand how to align

19

correctly the appropriate programming constructs with problem-solving strategies and tend to spend more
time on mastering syntax and/or semantics of a programming language to various problems (Grover et al.,
2015; Koorsee et al., 2015).

Over the last ten years, the term of computational thinking (CT) has gained much attention in
programming courses. It is a problem-solving process that can allow humans to think how to use
fundamental programming concepts and constructs in order to solve real-world problems (Bienkowski et
al., 2015; Lye & Koh, 2014). CT has received considerable attention because it permits humans to use
cognitive thinking skills and concepts which are related to programming (Barr & Stephenson, 2011,
Witherspoon et al., 2017). There is common agreement that students mostly inside school context can also
learn how to think logically and methodologically using CT in order to formulate their own strategies for
developing and applying their solution plans to real-world problems, rather than focusing strictly on a
technical activity for improving their computer literacy or coding skills (European Commission, 2016;
Grover & Pea, 2013). Generally, with the development of CT, students place more emphasis on developing
a set of cognitive thinking skills such as problem-solving, critical, and abstract thinking to decompose a
problem into smaller subparts. This process can assist them to propose solutions with a sequence of
instructions to each component so as to automate by expressing solution(s) in such a way that a computer
can effectively carry out (Kalelioglu et al., 2016). Therefore, CT constitutes an ideal way for students to
evaluate the correctness of their thinking solution plans into programs that can be executed by using only
precise instructions and programming constructs.

More specifically, CT is regarded as one of the most indicative cognitive problem-solving processes
for designing computing systems. Students can learn how to use skills related to CT in the direction of
planning their own strategies for solving problems and transforming accurately their solution plans into
syntactically correct instructions (Bocconi et al., 2016). The use of CT skills for proposing solutions to a
problem is based on a computational problem-solving strategy and is associated with three interrelated
processes (Chao, 2016; Liu et al. 2011): a) computational design is the use of logical and abstract thinking
skills for the formulation and design of solution plans, b) computational practice is the expression of
fundamental programming constructs, like selection, sequence or iteration for the implementation of
solution plans, and lastly c) computational performance is the identification of the most efficient and
effective solution plans into code that can be proposed to several problem-solving tasks.

Game-based learning (GBL) has been widely exploited in various learning subjects or domains. It is
defined as a learning approach in which students can use computer games in order to practice or gain
knowledge inside (or not) school contexts (Killi, 2005; Yusoff et al., 2018). The widespread utilization of
GBL has today paved the way for a new level of students’ engagement giving new opportunities to learn

by making or by playing their own games (Dickey et al., 2005). With the emergence of digital games, many

20

efforts have been undertaken to develop digital environments in order to integrate educational content and
materials into games so as to increase students’ participation (Maloney, 2008). Gaming can greatly fulfill
students’ learning needs and experiences by supporting various learning tasks which correspond to an
imitation of an operation of a process or a system consisted of specific simulated problem-solving situations
of the real world. Thus, a remarkable GBL approach is the use of simulation games (SGs). A SG is a gaming
environment that can permit users to participate actively in having specific task information to learn by
doing within interactive and simulated problem-solving contexts (Garris et al., 2002).

The CT instruction through programming courses using GBL approaches is of great importance for
many educators and scholars in recent years. In such programming tasks, students try to analyze simulated
problems or situations and take the most appropriate decisions to propose their solution plans using skills
related to logical and algorithmic thinking prior to the writing of a program so as to choose the most
appropriate programming constructs to execute those plans (Adler & Kim, 2017; Davies, 2008). One of the
most remarkable approaches to support GBL is the use of SGs. A SG created in interactive environments
can fulfill the requirements in programming courses since it can present embodied problem-based contexts
fostering students’ problem-solving abilities to experience within a scientific discovery process in order to
interact with digital elements and objects (Werner et al., 2014). This may lead students to learn how to think
before starting to program by integrating interactions and rules inside objects/elements to develop and
observe game situations in order to generalize those tasks later (Brennan & Resnick, 2012; Liu et al., 2017).
Such tasks come in contrast to the most common exercises, in which students tend to formulate and write
correctly instructions combined with programming constructs to observe the consequences of executing
those constructs or to use certain constructs corresponding simply to specific problem-solving contexts.

The growing popularity of GBL in K-12 programming courses has given students the chance to use
interactive environments so as to impart theoretical and applied knowledge for learning how to program
using skills related to CT following two problem-solving approaches: (a) “game making” with tasks and/or
exercises to design a game (Brennan & Resnick, 2012; Howland & Good, 2015) or (b) “game playing” with
tasks and/or exercises by playing a game (Liu et al., 2017; Witherspoon et al., 2017). The most well-known
platforms that students can use to create and/or play interactive games are as follows: (a) visual
programming environments (VPEs), and (b) three-dimensional (3D) virtual worlds (VWSs). A VPE is an
interactive environment that allows users to construct programs and visualizations graphically using a
palette with colored code blocks. A 3D VW is a computer-based simulated environment in which users can
create avatars (digital figures which look like as humans’ representations) to interact and explore with
various visual objects or elements and participate to a wide range of problem-solving activities using remote
synchronous communication, such as VolP calls and asynchronous communication, such as instant

messages and gestures (Topu et al., 2018). Also, the use of Scratch4SL (S4SL), as a visual palette offers a

21

more simper and user-friendly way for programming to avoid someone the complexity of a 3D VW’s
programming language to integrate behavior into visual objects/elements (Rosenbaum, 2008).

To date, there is good evidence that the use of interactive environments can significantly influence
students in coding tasks but leaves open the discussion whether a computer game can support them to
develop a more general understanding and using computational concepts to learn how to program (Denner
et al., 2012; Howland & Good, 2015; Werner et al., 2015). For this reason, a game playing programming
approach using a SG created in interactive environments is a notable option that needs further study (Hsu
etal., 2018; Lye & Koh, 2014; Witherspoon et al., 2017). Therefore, the focus of this thesis is to investigate
if a SG interface and elements created in 3D VWs and in VPES can affect students’ learning performance
by assessing their computational problem-solving strategies (i.e. computational design, computational

practices, and computational performance) for teaching and learning programming.

1.2. Motivation

During the last decade, several literature reviews on the field of CT in K-12 curricula have come to
the statement that there is still an open discussion about the effect of computer games to support CT
instruction. In their review analysis, Grover and Pea (2013) have unveiled the need to develop and use
computer simulated problem-solving tasks using SGs either by developing new interactive environments
or by combining already known design features and characteristics of the most well-known interactive
environments. Additionally, Kafai and Burke (2015) have recommended the connection of features and
characteristics of serious gaming movement over a computer simulation game that can be created in VPEs
or in 3D VWSs which can provide to software game designers considerable opportunities to design and
propose a new one with simulated problem-solving tasks relevant to students’ needs and demands. In their
literature review report, Lye and Koh (2014) have also mentioned the need to propose directions towards a
constructivist (thinking-doing) problem-solving learning approaches using SGs to support the
demonstration of skills related to CT and programming. This statement is still intensifying more due to the
lack of design frameworks and requirements for the creation of a computer game that can assist the
development of students’ computational problem-solving strategies (Grover et al., 2015; Hsu et al., 2018;
Lye & Koh, 2014). First, it is appropriate to propose a theoretical framework and investigate if and what
design features and characteristics either from VPEs or 3D VWs can facilitate the creation of a SG to
support the development of students’ computational problem-solving strategies.

Second, previous studies (Chao, 2016; Liu et al., 2017; Witherspoon et al. 2017) have argued on what
students (boys and girls) can finally learn by playing SGs in programming courses. Due to the lack of
conclusive findings, further empirical evidence about the impact of a game playing approach using SGs on

students’ learning performance is needed. Moreover, there is little evidence on what they finally learn using

22

skills and strategies related to CT in problem-solving contexts. In particular, there is still today not identified
any study to investigate if there are any significant differences on students’ pre-and-post learning outcomes
based on their computational problem-solving strategies by playing a SG created in VPEs and 3D VWs due
to the technological characteristics that make such a game to have different user interface design features
and elements (Good & Howland, 2016). The most significant is the intuitive modality consisting of two
elements. The first is the realistic simulated representational fidelity that a 3D VW offers by displaying a
digital environment in three-dimensions. The second is the sense of presence when user’s experience with
the feeling of “being there” and the view of changes in objects’ motion can lead to a greater perception and
subjective sense of being within specific digital contexts (Dalgarno & Lee, 2010). Both elements can assist
users to program and predict any possible instructions/movements by programming and integrating
behaviors into objects. Such a process allows the observation and execution of their solution plans so as to
assess the consequent results of those instructions in problem-solving contexts which are resembled
similarly as those to the real world.

In addition to the above, recommendations for engaging boys and specifically girls provide a rationale
on the use of interactive environments for playing computer games that strive to bridge the gender “gap”
that exists in programming courses (Garneli et al., 2015; Grover & Pea, 2013). The rapid proliferation and
utilization of interactive environments for CT instruction through GBL approaches have been significantly
influenced not only the motivation and participation, mostly high school students with different gender, but
also their learning performance (Carbonaro et al., 2010; Good & Howland, 2016). So far, recent studies
have provided evidence regarding the code tracing analysis that boys and girls created using SGs focusing
on: (a) game programming competencies through simulations and video-games construction via Scratch
(Garneli & Chorianopoulos, 2017), (b) computational practices which are applied by using specific
programming constructs so that make simulation-based applications or produce virtual exhibits via Scratch
(Mouza et al., 2016), and (c) game creation by defining the interactions among players’ characters and/or
game objects that exhibited on their programming skills via Stagecast Creator (Denner et al., 2012).

However, less attention has been given to understand firstly whether a SG for game playing can affect
boys and girls to develop their computational problem-solving strategies, and secondly, if it can support
them to apply their computational practices. This process may lead from problem formulation to solution
expression in practice (Chao, 2016; Liu et al., 2011; Lye & Koh, 2014). For such an effort, previous studies
(Garneli & Chorianopoulos, 2017; Jakos & Verber, 2016) have stressed the need for conducting
comparative studies to assess students’ computational strategies by investigating the effects of computer
games in simulated problem-solving tasks created in interactive environments so that analyze the way of
developing and applying their solution plans into code. Other studies (Girvan et al., 2013; Kafai & Burke,
2015) have pointed out that future works need to investigate the effects of a SG created both in 3D VWs,

23

and VPES on students’ learning performance conductive to be clarified how appropriate are the attributes
of each platform for developing and transforming into workable algorithms their solutions plans in an effort
to understand what they finally learn.

According to the above, the main hypothesis is if the combination of the most significant design
features and characteristics of a 3D VW such as the representation fidelity of OpenSim with S4SL for the
creation of SG can support boys and girls to gain a greater understanding of CT more than if such a game
is created in a VPE such as Scratch. In such a process, the assessment of students’ learning performance
requires not only the formulation and manipulation of a problem into smaller subparts with skills related to
CT but also testing and debugging the correctness of solution plans to a problem by integrating with specific
design patterns using control flow blocks from a visual palette inside visual objects in order to propose,
express and apply their solution plans. Therefore, a twofold research challenge is arising. The first focuses
on what SG features and elements can be utilized for the development of a theoretical design framework
since there was not identified from the related literature specific design guidelines and recommendations
for the development of a SG created in VPEs and in 3D VWSs to support CT instruction. The second focuses
on whether such a SG can support boys and girls to practice their solution plans so as to investigate the
correctness of their decisions that includes a process from problem formulation to solution expression into

code by expressing and applying their computational problem-solving strategies.

1.3. Research aim and objectives

The aim of this thesis is twofold. The first is to propose a theoretical design framework for the
development and creation of a SG to support CT instruction with simulated real-world problem-solving
tasks. The second is to investigate and analyze the effects of a SG on high school students’ learning
performance in programming courses. The proposed SG is created in OpenSim and Scratch for supporting
boys and girls to demonstrate skills related to CT and understand the appropriateness of using specific
programming constructs to simulated problem-solving learning tasks. Such a SG will be subject to an
experimental evaluation and analysis, in order to provide the empirical evidence regarding students’
learning performance by assessing their computational problem-solving strategies (i.e. computational
design, computational practices, and computational performance). Thence, reaching the following three
objectives will create a pathway to address the above research aim:

a) to develop a problem-solving environment so as to propose a SG that can be created in VPEs and
3D VWs by articulating a theoretical design framework with specific design guidelines and

features.

24

b) to identify any potential problems and benefits regarding the use of a SG prototype created in
OpenSim with S4SL to support CT instruction by measuring students’ learning experience and first
perceptions.

c) to investigate if a SG created in OpenSim with S4SL or in Scratch can affect the learning
performance of students (boys and girls) to gain a greater understanding on the use of skills related
to CT for developing, applying and transforming their solution plans into code by comparing their

computational problem-solving strategies.

1.4. Methodology

Having identified the main hypothesis and the pathway to answer it, a research methodology to
achieve the three objectives is planned and analyzed. To achieve the first objective, two steps required to
be done: a) to identify the difficulties and problems on what boys and girls can understand in regard to
learning how to program based on related works, and b) to explore the differences and similarities from
previous studies which have tried to measure the effects of using interactive environments on the learning
performance of boys and girls. Accordingly, the current thesis has to investigate the main hypothesis from
two perspectives. From an instructional game design perspective, to achieve the first objective, a theoretical
game playing framework with specific design guidelines and recommendations is proposed to inform and
elaborate a design rationale on how a SG can be designed in order to support CT instruction and the
development of students” computational problem-solving strategies in respect of gender equality.

From a methodological research design perspective, due to the lack of studies assessing a game
playing framework, this thesis seeks: a) to test a prototype SG following the design guidelines of the
proposed theoretical framework by conducting a preliminary and an experimental study, and b) to observe
how and what features and characteristics of a SG can significantly support students’ learning outcomes in
programming courses. Thence, to achieve the second objective, a mixed-methods preliminary study is
conducted in order to investigate if the use of a SG created in OpenSim with S4SL can support the
development of students’ computational problem-solving practices into code. Such a study can give initial
evidence to discuss the potential reasons for using the proposed SG in order to identify any potential
problems or any design and usability issues.

To achieve the third objective, a total of fifty (n=50) high school students who participated in this
study divided into a control group (n=25) and an experimental (n=25) group that used Scratch and OpenSim
with the S4SL palette, respectively with a view to supporting and applying their solution plans into code
for the same problem-solving tasks. Consequently, such a study can give empirical evidence about the
effects of the proposed SG by analyzing boys’ and girls’ problem-solving strategies focusing on:

a) computational design to express their solution plans for all subparts of the main problem,

25

b) computational practices to apply those plans into the code, and finally, ¢) computational
performance to measure students’ learning performance by identifying the most effective and efficient

design patterns.

1.5. The contribution of this thesis

This thesis findings advances the knowledge about the use of interactive environments to support CT
instruction through programming courses and provides several contributions. From a theoretical-
instructional perspective, this thesis may be of great interest to instructional designers and educators who
want to design or select to apply their programming courses through (in-)formal blended instructional
formats (in-class and supplementary online) via SGs so that can foster students’ computational problem-
solving strategies. Therefore, a design framework with specific guidelines and features to support CT
instruction is proposed by designing and developing a SG via VPEs and 3D VWs (Pellas & Vosinakis,
2017a).

From an instructional-practical design perspective, results of the main experimental study provide
empirical evidence and valuable information on how and if the use of a SG created in two interactive
environments can affect students’ learning performance by applying their computational problem-solving
strategies. The results from the preliminary study (Pellas & Vosinakis, 2017b) and the quasi-experimental
study (Pellas & Vosinakis, 2018) can give insights into the appropriateness of a SG and suggestions on how
it can support students to learn how to think and practice their computational problem-solving strategies.
This thesis contributes to the field of CT in the K-12 curriculum by:

e articulating how a theoretical design framework with specific guidelines and features can be used
for the development and creation of a SG in VPEs and 3D VWs to support students through game
playing modes. The use of the proposed SG is focused on the support that students can have in
order to develop skills related to CT and to apply their computational problem-solving strategies;

e proposing an instructive guided approach for learning how to program inside conventional school
computer lab (formal) and through extracurricular activities (informal) outside it (online). An
analysis of instructional tasks is outlined focusing on how in-game elements should be mapped to
skills related to CT in the direction of helping students to use their problem-solving, logical and
abstract skills for the analysis of their solution plans to subparts of a simulated real-world problem;

e testing a 3D prototype SG created in OpenSim with S4SL to investigate if it can increase the
learning experience of fifteen (n=15) high school students in a preliminary mixed-methods study
that is conducted in blended instructional formats (face-to-face and supplementary online);

e comparing the learning effect of a SG created in OpenSim with S4SL and Scratch through a quasi-

experimental study with a larger sample of students (n=50) in order to measure their learning

26

performance and outcomes by assessing their computational design, computational practices and
computational performance; and lastly,

e generating educational implications for theory and practice related to design guidelines combined
with specific features building upon the experience gained by subsequent design and evaluation on
how a game playing approach via a SG can support students to develop and apply effectively their

computational problem-solving strategies.

1.6. Thesis structure

This section aims to provide an outline of this thesis and the relation between the chapters is depicted
in Figure 1-1 below. The current thesis consists of nine chapters. These are the following:

Chapter 1, which is the current chapter, introduces the background and rationale, the motivation, the
research aims, objectives, main research questions and the contribution of the present thesis.

Chapter 2 presents the literature review issues related to Computer Science and specifically computer
programming. It gives a pathway on how essential can become new directions of thinking and learning
programming which are reflecting through the use of CT as a problem-solving process that has integrated
into many curriculums across the globe. This chapter also provides some crucial gender challenges and
issues about students’ participation in programming courses.

Chapter 3 identifies the instructional approaches and educational environments which are widely
utilized in programming courses. It gives emphasis to several noteworthy educational technologies and
learning approaches such as educational robotics and interactive environments including platforms such as
VPEs and three-dimensional (3D) VWs.

Chapter 4 addresses the basic characteristic of GBL and particularly the educational potentials of
using games in educational settings focused on the use of VPEs and 3D VWSs which can support CT
instruction in computer programming courses. It also gives information about the related works which have
focused on game making and game playing and whether specific user interface design features of games
can foster students’ skills related to CT.

Chapter 5 describes a theoretical design framework called “PIVB: Programming for Interactive
Visual Behavior . It offers the main design rationale, design decisions and design criteria regarding the use
of a game playing framework that has been proposed to guide the design and development of a SG to
support CT instruction.

Chapter 6 designates the game design and gameplay overview of a SG called “Robot vacuum
cleaner” (RVC) simulator that is created via Scratch and OpenSim with the visual palette of S4SL so as to
support students develop and apply their computational problem-solving strategies in instructive guided

settings (formal and informal).

27

Chapter 7 demonstrates the experimental design and data from the statistical analyses resulted in two
studies. The first aims to examine the effects of using the first prototype RVC simulator created via
OpenSim with S4SL on teaching and learning how to program high school students (boys and girls). A
preliminary mixed methods study is conducted to provide results about the learning effectiveness, the
learning procedure, and user experience. The second aims to describe a quasi-experimental study in order
to investigate and present results based on students’ design patterns which are proposed and applied for
solving the same simulated real-solving environment created as a SG in OpenSim with S4SL and in Scratch,
and after that to compare their learning performance.

Chapter 8 gives an overview of the overall discussion and implications for practice and design. This
chapter presents a view in regard to the future directions of this work focused on aspects that can improve
the current state of the proposed SG and the aspects which can facilitate the acquisition of further
implications for design and practice concerning CT instruction in programming courses.

Chapter 9 concludes this dissertation thesis. It summarizes major findings based on the previous
chapters, consequences from limitations of both studies, and lastly, it offers conclusions that will lead to
the appropriateness of the proposed SG to support CT instruction through high school programming

courses.

28

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

* Alignment between programming and computational thinking
*Problem statement and research aims of this thesis

« Difficulties and misconceptions in learning computer
programming
»Gender challenges and issues

J

«Potential benefits of using visual programming languages and 3D

virtual worlds

» Computer simulation games to support programming courses
«Related works on learning how to program following instructive)
guided game making and game playing approaches
*Difficulties in measuring students’ computational problem-
solving strategies)
- .- . - -y - - \
+Design decisions and a rationale to utilize a simulation game
« Description of the proposed simulation game to support CT
instruction
J
»Gameplay overview of the Robot VVacuum Cleaner (RVC)
simulator
+Design principles and guidelines
J
«Preliminary study: Learning effectiveness and user experience)
*Quasi-experimental study: Effects of the RVC simulator created
in OpenSim with S4SL and Scratch to assess students’ learning
performance)
~
*Overall discussion
»Educational implications for theory and practice
Y,
R
* Conclusions
* Future work
Y,

Figure 1-1: Dissertation structure

29

Chapter 2: Computer Science education

This chapter presents literature review issues related to Computer Science, computer programming
and CT. It gives a pathway based on the related works which have identified how essential can
become new directions of thinking and learning programming reflected by using CT as a problem-
solving process that has been currently integrated as a significant term into many curriculums
across the globe. More specifically, the current chapter defines distinctive characteristics upon CT
with its cognitive abilities and analyses the major distinctions between problem-solving strategies
in programming and computational problem-solving strategies. It also discusses the reasons why
there is a dearth of evidence in the literature to support serious games as educational tools for those
students who want to learn how programming constructs work properly for solving real-world
simulated problems. Lastly, the current chapter investigates the main reasons why students with
different gender (boys and girls) find programming difficult to learn, discussing the importance

why CT can contribute more in depth to coding.

2.1. Computer Science

Computer Science (CS) is one of the fastest growing formal scientific disciplines. CS scientists learn
how to design, develop and use the computing technology. More specifically, the main purpose of CS is to
investigate, identify, and finally propose the theoretical foundations, the nature of data structures,
algorithms and computations (Rapaport, 2005). Computer scientists use methodologies from both formal
and applied sciences with a particular kind of mathematically based techniques in favor of specifying,
designing, developing, and verifying software and hardware systems. CS includes the systematic study of
the feasibility, structure, expression, and mechanism of processes (or algorithms) such as are processing,
storage, communication and access to (big) data. Main domains of study contain artificial intelligence,
computer systems and networks, human-computer interaction, vision and graphics, programming
languages, software engineering, and theory of computing (Denning, 2000).

The advantages in technology and society due to the rapid proliferation of CS have brought several
benefits on humans’ daily life. CS is not just important for people who want careers related to technology,
but it is also important for those who want to be well-educated in a modern society with advanced demands
and needs (Sentance & Csizmadia, 2017). For this reason, CS has been integrated into many curricula across
the globe due to the impact of cutting-edge technologies and devices which are existed in everyday life of
students with multiple aspects, especially for those at a younger age (Tuomi et al., 2017). A significant
aspect is to acquire the appropriate cognitive thinking skills in order to solve (real-world) problems that all

people face daily. This aspect requires the study of designing, developing, and analyzing software and

30

hardware that can be used for solving a variety of problems ranging from business to scientific contexts. In
this perspective, students need to learn what CS and its core components can offer. Also, another important
aspect is to investigate how CS and its core components can be utilized in real-life and its importance as a
learning discipline that can entirely assist humans to solve problems in practice (Hamlen et al., 2018).

Programming as a learning subject is one of the most significant core components of CS that can
fulfill the above aspects. An important objective in programming courses is to foster students’ rigorous
thinking using skills such as algorithmic thinking, logical reasoning and coding so that understand how to
use correctly a set of rules with the precise expression for the formal structure of programming languages
in problem-solving situations (Bocconi et al., 2016). To succeed in such an effort, students need to have the
opportunity to develop a wide range of both cognitive thinking skills and use fundamental concepts of CS.
Moreover, it is worthy for students to use a set of the following cognitive thinking skills (Fluck et al., 2016;
Qian & Lehman, 2017):

a) problem-solving which are reflected on understanding a problem and its subparts, drawing up a
plan with specific instructions in order to develop a strategy to solve it, and

b) higher-order which are referred to the analysis and data synthesis, formulation of conditions and
relationships in order to express and communicate a solution plan on how a problem can be solved
and evaluate its accuracy.

The above-mentioned skills are essential in a cognitive thinking process because all those skills are
associated with students’ understanding on how to use correctly algorithms to solve problems following a
set of specify steps that can be applied with the appropriate use of programming concepts and constructs
(Tucker et al., 2003). Therefore, students in CS and specifically in programming courses must have the
appropriate knowledge about programming languages and theory of computing so as to develop and analyze
their solution plans to problems. This process makes students able to design solutions in favor of verifying
the correctness of their thinking solution plans through coding. A suggestive way to achieve this objective
is when programmers (novices and experts) learn how to understand the main problem and its subparts,
formulate a solution in a structured form (algorithm or pseudocode), and then transform a proposed
algorithm into a source code of a programming language. This approach can allow students to think before
starting to code, rather than focusing only on a strictly technical activity to enhance their technological

literacy or programming skills (Robins et al., 2003).

31

2.2. Computer programming

Programming is a significant learning subject in CS and even more to every major technological
development in recent times. The importance of student knowledge related to computer competencies and
specifically of programming has been to a great extent recognized by many curricula across the globe (Fluck
et al., 2016; Webb et al., 2017). Computer programming (or programming/coding) is the process of
planning, developing and applying various a set of various instructions that enable a computing
device/machine to perform certain tasks with the purpose to solve problems and provide a way of interaction
between humans and computers. The instructions and commands combined with specific constructs and
concepts that can be written in a programming language are considered as computer programs and can be
used by computers or computing devices to operate and execute those certain tasks (European Schoolnet,
2015).

Algorithms and programming concepts are two of the most distinctive terms that someone needs to
know in order to learn how to code. The total of instructions and commands which are given to a computing
device are firstly expressed as algorithms. The algorithms combined with the operating rules and
programming constructs can give deterministic pre-set results that a computing device executes (Tucker et
al., 2003). Thus, algorithms are like the recipes that everyone has to follow in his/her everyday life, such as
in a doctor's prescription. To this notion a set of specific properties that need to be provided in any
algorithm. Accordingly, algorithms to be potentially transformed into workable programs should entail the
following (Kirkwood, 2000; Koorsee et al., 2015):

a) an algorithmic plan with specific (step-by-step) instructions in order to be achieved a proposed
solution;

b) an effective solution that gives the desired result to finite time;

c) an efficient solution that reaches the best result in a possible way with the less possible use of
programming constructs and commands;

d) a series of programming commands and constructs which are applicable and repetitive in order to
be executed as many times as possible in similar cases;

e) expression of certain instructions and programming constructs/concepts in order to be transformed
as programs of a programming language and to be executed by a computing machine.

To understand better the appropriateness of algorithms and programs, Figure 2-1 shows a
diagrammatic workflow that depicts an algorithm (on the left side) and program (on the right side) to turn

on the light using a lamp light bulb that exists into a computing device.

32

I* flowchart
turn on a LED when the button A is pressed
turn it off when the button B is not pressed

Is the LED light bulb plugged | Tnsert the LED light bulb |

in the electrical outlet? == | in the electrical outlet int pinButton = 5; /ithe pin where the button is connected
\ J int LED = 3; //the pin where the LED is connected
l void setup() {
pinMode(pinButton, INPUT); //set the button pin as INPUT

pinMode(LED, OUTPUT); //set the LED pin as OUTPUT

| Is the LED light bulb in |)
the right the electrical | \ The LED light bulb works

outlet? |) void loop() {
\ . . int stateButton = digitalRead(pinButton); //read the state of the button
l if(stateButton == 1) { //if is pressed
digitalWrite(LED, ON); //write 1 or ON to led pin
‘ } else { //if not pressed
= = Press “1” for ON digitalWrite(LED, OFF); /iwrite 0 or OFF to led pin
Change the LED light | }

Press “0” for OFF)

Figure 2-1: A workflow of the control algorithm and the program to turn on the light of a lamp light bulb

machi

To be considered as workable plans and to be executed certain algorithms accurately by a computing
ne, a set of fundamental programming constructs and concepts need to be known. The most important

are the following (Burke, 2012; Robins et al., 2003):

a)

b)

“Sequence ” is a series of individual steps and comprises a set of commands placed one beneath the
other. Programmers can use a sequence of commands in order to solve problems where the order
of execution regarding a set of actions is given. It contains a number of actions, but no actions can
be omitted in the sequence. The sequence can be combined with other constructs and variables. In
this programming construct belongs the following commands:
i. Input values in variables.

ii. Output values in a unit.

iii. Assign a value to a variable.
“Selection ” is to a large extent utilized in problems where it is necessary for programmers to make
some decisions related to specific criteria, which may be different for each instance of a problem.
The selection process involves checking a condition with two possible values (true or false) and
then a decision to execute a command depending on the condition. It is distinguished mostly in the
following two formats. The first is the “simple” selection (“if...else”). If the condition is true, then
it is true, as many commands/instructions are executed within. If the condition is false, the
command is executed immediately after the end of the selection. Otherwise, the commands that are
underneath are executed differently. The second is the “nesting” selection (“if...else...if.... else”).
It is the execution of two different codes to investigate if a statement inside a program is executed
as true or false. It is also possible to have a choice which includes more than two possibilities. Such

a statement refers to the “nesting” “if...else” statement. Using “nesting” selection, programmers

33

can check the correctness of a program with multiple tests by executing different codes for more
than two conditions.
c) “Iteration (or repetition/loop) ” is the execution of the same sequence of commands and constructs
multiple times when the condition is true either for more than one time or when the commands of
a condition are pre-defined. The logic of iterative procedures is regarded as essential when a
sequence of commands is executed as a set of cases that have something in common and it must be
performed more than once. An iteration is always controlled by a condition that determines the
output from it. Repeat commands are the loop of repetition. This programming construct is
expressed in three forms, implemented with the following commands:
i. “As long as ... Repeat” is a process where the repeat check is done at the beginning.
ii. “Begin repeat...Until to...”” is a process where the repeat check is done at the end.
iii. “For... From...Until...” is a process where the number of repetitions is known.
In Figure 2-2 below are presented the three examples of fundamental programming constructs using

a visual language via Scratch which are widely utilized for the creation of computer programs.

sayforeses

ITteration

Selection

Figure 2-2: Fundamental programming constructs and examples using a visual language

Another significant point of view is that programmers need to demonstrate a number of skills. In
particular, code comprehension, code generation, and debugging are three of the most important (Ring et
al., 2008; Tucker et al., 2003). First, code comprehension includes specific programming constructs which
are used into a program for proposing a solution to a problem. It pertains to the arrangement of constructs
and concepts of a programming language into well-formed programs and ensures that someone knows why
certain programming constructs are used in programs (Robins et al., 2003).

Second, code generation is the first step and it is more abstract than programming knowledge (de
Raadt, 2007). Such a process refers in two aspects (Dalton & Goodrum, 1991; Davies, 1993):

34

a) to the design and implementation of semantic knowledge is the understanding of basic
programming concepts and constructs that are being used in a computer program and

b) to the syntax of a programming language in which are used specific constructs and rules into a
program.

Third, the debugging process is related to a specific instance of troubleshooting in a general problem-
solving process. A general set of steps that need to be done as a process that entails the identification of a
problem, its isolation, and the recognition of what each programming construct that is being utilized may
cause in such a problem to confirm its correction and appropriateness (Ring et al., 2008).

2.3. Learning to program

During the last fifty years, learning to program (or programming) is one of the fundamental skills for
children to learn in K-12 education. Programming courses in school-age contexts have offered several
potentials on how students can think before start coding (Papert, 1980). It is expected that students will
know fundamental programming concepts and will try to develop skills related to higher-order and
algorithmic to solve problems (Webb et al., 2016). Specifically, students at a younger age (12-16 years old),
can start to learn how to program using fundamental programming constructs (Tuomi et al., 2017).

To be successful the first introduction of students in programming without prerequisites, a variety of
activities based on specific learning tasks need to be provided. The overall goal is to get students acquainted
with programming and solution plans for solving real-world (or computational) problems with specific
challenges expected by their learning outcomes and achievements. Some of the most crucial outcomes are
the following (Robins et al., 2003; Qian & Lehman, 2017):

a) analyze and explain the behavior of simple (or complex) programs involving the fundamental
programming constructs;

b) apply the techniques to break a program into smaller pieces (decomposition) in order to give an
answer to each subpart of a problem after that with programming,

c) design, implement, test, and debug a program in which can be integrated fundamental programming
constructs;

d) modify and/or expand (smaller or larger) programs using conditional or iterative control
programming constructs;

e) choose the most appropriate programming constructs (e.g. conditional, sequence, iteration) for each
part of a given problem, and,;

f) describe and present how workable is an algorithm and/or code can solve a given problem.

Students in programming courses can also learn to describe algorithms as pseudocodes and written

in natural language is indicated as an easier way to formulate subparts of a problem before applying into

35

code their solutions. Such a process can assist students to propose algorithmic solutions expressed in various
formats and use synonymous/analogical terms for the same programming constructs and concepts which
they want to use, such as for example, “repeat” or “for” so as to express repetition (de Raat et al., 2006;
Myers et al., 2004). Such a process can assist students to go a step forward to surface features of the syntax
complexity and think how those constructs are expressed in a more “natural way” as existed in their daily
life (Grover et al., 2015). For example, the description of an algorithm as pseudocode in natural language
is referred as a means between algorithms and programs that can deepen knowledge acquisition regarding
computing concepts in contrast to superficial syntactical details about a specific programming language
(Davies, 2008; Good & Howland, 2016).

The assessment of students’ learning performance is one of the most important issues in computer
programming courses because until today there are appeared various ways to be measured their outcomes
and achievements. One way of assessing of students’ learning performance is to check errors or
combinations of programming constructs which are used on their final programs (Chao, 2016; Kalelioglu
et al., 2014; Liu et al., 2013). Nonetheless, such an assessment gives an incomplete picture about how
students can try to understand and utilize properly their algorithmic and cognitive thinking skills (Grover
et al., 2015; 2017; Lye & Koh, 2014). Another indicative one is the way of understanding how correct is
expressed as a solution plan based on student’s rigorous cognitive thinking to describe specific constructs
and commands that can be used with a logical sequence of steps. A solution plan can be first formed as
pseudocode before starting to code it properly (de Raat et al., 2009; Robins et al., 2003). Such a process
encompasses students’ decisions ranging from the problem formulation to the solution expression by
transforming pseudocode into workable plans and algorithms (Liu et al., 2017; Pane et al., 2001). Other
researchers (Howland & Good, 2015; Myers et al., 2004) have argued that CS instructors need to encourage
students to use pseudocode, as a step-by-step logical reasoning process so that express a solution before
start coding. In such an effort, students as novices can bridge the “gap” between the theories of knowing
“why use” and “why need” to execute into code precise rules, instructions, commands or concepts and/or

limitations combined with programming constructs.

2.4. Problem-solving strategies in programming

A problem-solving strategy in programming is related to the design and development of solution
plans to real-world problems in practice. It refers to a number of specific instructions which can be
combined with fundamental programming constructs, such as sequence, selection or iteration for executing
and assessing the consequent results of those instructions (Koenemann & Robertson, 1991). It also relates

to the way that someone thinks how to plan and design a solution in order not only to use but also to know

36

how and why s/-he needs to use and apply any programming construct or concept in computer programming
(de Raadt, 2006; Robins et al., 2003).

Recently, there is a common conviction that two specific problem-solving strategies are usually
noticed. In particular, two of the most useful composition strategies associated with programming in
practice and can be typically utilized into solution plans (Chao, 2016; Soloway, 1986):

o the “abutment” that describes a method of gluing two programming plans together in order to
create a sequencing process for the transformation of sub-goals into code.

o the “nesting” that represents a method of combination between one programming plans into
another by permitting a strategy that has a different structure from the previous one.

Both strategies are considered appropriate for solving real-world problems through programming and
thus such strategies can also support the formulation of a problem to achieve someone algorithmic sub-
goals. The composition of programming plans which can benefit programmers and specifically novices to
learn different ways of designing and implementing their solution plans (Chao, 2016; Luxton-Reilly et al.,
2018). Related works (Ismail et al., 2010; Ring et al., 2008) have argued that planning a problem-solving
strategy facilitates programmers not only to decompose a problem into a set of intermediate subparts but
also lead them to use the most appropriate programming constructs for proposing a solution.

The development of problem-solving examples is an indicative way for someone to utilize his/her
proposed strategies in programming courses inside well-designed tasks so that solve certain tasks with
specific steps using fundamental programming constructs and concepts. Problems at the sub-algorithmic
level are the most indicative for several learning tasks in programming courses (Ring et al., 2008). To give
answers in any problem-solving example, students need to learn first of all how to decompose a problem
and identify its (sub-)parts properly. Decomposition is the process of dividing a problem into component
parts in order to become more manageable. It is a process that helps someone to organize and manage large
or more complex projects (Koorsse et al., 2015; Webb et al., 1986).

Several notable ways have been proposed to understand and evaluate how students try to develop and
apply a problem-solving strategy in programming using algorithms and workable programs. To this notion,
students are asked to identify the main problem and to state its subparts in an effort to formulate an
algorithm by specifying a series of steps on how to solve each one’s sub-goals with a programming language
(Robins et al., 2003). Therefore, a twofold substantive way to understand and evaluate how students try to
develop a problem-solving strategy encompasses the following two aspects (Kiesmiiller, 2009):

a) the proposed solution that is recognized more easily by describing an algorithm with its specific
steps in a logical order combined with specific constructs using pseudocode or simply expressions

written to a natural language.

37

b) the execution of proposed algorithmic instructions that is necessary to be applied as an attempt to

transform a proposed solution into the source code of a programming language.

2.5. Computational thinking

Computational thinking (CT) is a term that has been much discussed in the past years in CS and
specifically in programming. Papert (1980) was the first who proposed the research on CT with
programming for young students using LOGO programming projects. In 2006, Wing has actually redefined
and reformed the term of CT. She argued that it is a method for “solving problems, designing systems and
understanding human behavior, by drawing on the concepts fundamental to computer science” (Wing,
2006, p. 33). Also, there has been an ongoing discussion in the research community about the definition of
CT, and its relationship with other types of analytical competencies, such as mathematical, algorithmic and
engineering thinking. For example, Denning (2009) has defined CT as “thinking with many levels of
abstractions, use of mathematics to develop algorithms, and examining how well a solution scales across
different sizes of problems” (p. 28). Additionally, Fletcher and Lu (2009) have stated that CT is not about
thinking like a computer, but it is about “developing the full set of mental tools necessary to effectively use
computing to solve complex human problems” (p. 260).

A substantial body of literature (Grover & Pea, 2013; Lye & Koh, 2014) and a significant number of
policy reports (ACM Education Policy Committee, 2014; Bienkowski et al., 2015) came to the conclusion
that CT is a problem-solving process that allows humans to think about how to use fundamental
programming concepts and constructs in order to solve real-world problems. CT comprises the following
three stages (Kalelioglu et al., 2016; Korkmaz et al., 2017):

a) solution execution and evaluation of a strategy to propose a solution (computational problem-
solving strategy).
b) decomposition and formulation of the main problem (abstraction),

c) description and expression of a solution (automation), and

38

Computational
problem- Abstraction

solving strategy

-

Automation

Figure 2-3: A cognitive thinking process using computational thinking

Figure 2-3 above depicts a cognitive thinking process using CT. Within the first stage is the
computational problem-solving strategy that refers to two aspects. The first is a cognitive thinking process
for the analysis of steps for decomposing and formulating subparts of a problem using critical, logical and
abstract thinking skills. The second is the implementation of proposed solution plans that expressed and
applied as programs so as to debug and understand the correctness of such a thinking process (Grover &
Pea, 2013; Liu et al., 2011).

In the second stage, abstraction refers to the ability that someone has to decide what details of a
problem are important to keep, and what details can be ignored when solving it by keeping only the most
necessary ones (Selby, 2015).

In the third stage, automation is associated with algorithmic thinking. It is the ability to approach a
problem by breaking it into smaller and solvable parts before formulating a specific set of steps to solve
them properly. In the context of CS, algorithmic thinking and thus programming is a technical process that
involves the use of constructs and concepts such as sequences, conditionals, and iterations (loops). In this
perspective, students can understand how CT becomes a thinking problem-solving process before starting
to code using fundamental concepts and constructs programming (Lye & Koh, 2014; Grover & Pea, 2013).

A summary of the most significant abilities that human can develop in such a process is presented in
Table 2-1 below.

39

Table 2-1: Knowledge and abilities gained by using computational thinking

Three stages of a cognitive thinking Abilities

process related to CT

Computational problem-solving - Decompose a problem to smaller parts

strategy - Analyze specific steps for subdividing and formulating all

subparts of the main problem

- Propose a solution plan using critical, logical and abstract
thinking skills

- Examine the correctness and appropriateness of thinking
solution plans using programming

Abstraction - Identify the main problem and its subparts
- Keep important details and information
Automation - Formulate a thinking solution to a workable algorithm

- Use fundamental programming concepts and constructs

Despite the different definitions, potentials, and benefits of CT in several domains of humans’ daily
life, its main substance is clear because such a process is focused more on the development and use of a
wide range of cognitive thinking skills for problem-solving. CT is considered as a problem-solving method
that requires the use of logical thinking with concepts fundamental to computing in favor of
conceptualizing, developing abstractions and designing systems (Hsu et al., 2018; Kalelioglu et al., 2016;
Korkmaz et al., 2017). It includes a cognitive thinking process related to the formulation of problems and
solutions that needs to be presented in a form that can be applied by an information processing agent (Wing,
2011).

To be achieved the above cognitive method from someone who wants to know how to start thinking
logically and methodologically in a cognitive-mental process, it is required the development and the use of
thinking skills, such as problem-solving and higher-order thinking. The latter can be further analyzed into
critical thinking and logical reasoning. These skills are combined with creativity can lead to algorithmic
solutions for real-world problems (Korkmaz et al., 2017). For example, students need to develop higher-
order thinking skills like critical thinking, logical reasoning, and creativity with CS core concepts, such as
decomposition, data analysis or events that may occur as a cause of this problem by clearly articulating the
steps leading to a solution. Skills related to CT can assist humans to a great extent (Davies, 2008; Kalelioglu
et al., 2014; Wing, 2011):

a) to develop logical reasoning on how to solve problems, regardless the utilization of programming
languages, as they try to use such skills to a variety of problems that encountered in different
domains of science, such as Formal Sciences or Engineering.

b) toanalyze a problem methodologically by decomposing it in specific steps in order to give solutions
to its piece using more effectively and efficiently programming constructs and concepts,

c) to propose a solution to more complex or larger problems by applying different solutions and

developing design patterns as solutions for similar problems that can be delivered, and

40

d) to use and evaluate the appropriateness of computational tools so as to apply solutions to problems

using concepts and constructs related to CS and programming.

2.6. Computational problem-solving strategy

A computational problem-solving strategy is the most important process of CT. It refers to the
execution of programming constructs and reflects on the evaluation of the correctness of a solution into
workable plans and algorithms. It encompasses the core concepts of CT related to abstraction, algorithm,
automation, decomposition, debugging and generalization which are utilized by someone to understand the
main CT concepts for proposing solutions to a problem requiring (Bienkowski et al., 2015; Davies, 2008):

a) the subdivision of a problem into manageable parts (decomposition),

b) the development of instructions to solve problems with specific tasks (abstraction),

c) the recognition of algorithmic solution plans as design patterns which can be applied into code
(algorithm design), and

d) the way that a thinking solution can be generalized as a solution plan with certain design patterns
(computer programs) to similar problem-solving tasks (pattern recognition).

However, there are appeared major distinctions between a problem-solving strategy in programming
and a computational problem-solving strategy. The former is focused on program comprehension and
modification of (large) programs which is a complex problem-solving process but not on what types of
problems can be solved with those programs. Koenemann and Robertson (1991) have discussed how
programming constructs are generated properly to operate the functionality of code that can be (re-)used to
build any new or revised hypotheses during the comprehension process. Such a process requires the
demonstration of code commands mainly in a “top-down” approach of comprehension in order to be
used/revised any missing or failing operation for directly relevant code units that have to be copy-edited to
similar/relevant cases. To achieve such a process, specifically high school students as novices usually
follow a “trial and error” process to start learning how to program (Luxton-Reilly et al., 2018). For
example, they usually try to find the correct way using different processes which are not always giving the
appropriate answers to any specific problem that they have to face in order to apply their solution plans.
Thus, programmers sometimes aimlessly provide different possibilities one-by-one and many times if their
workable programs cannot “fit”, they abandon any other reasonable effort to identify and understand what
and how using programming can solve problems. The consequence is that programmers in such cases
provide less attention to decompose a problem and identify its subparts, thus trying to reuse any solution
plan faulty in similar problem-solving conditions without known why and if those commands and constructs

are the most appropriate to apply their solution plans (Kiesmiller, 2009).

41

The latter includes the core concepts and concepts related to CT, giving a set of thinking steps which
requires a process starting from problem formulation to solution expression to real-world problems. More
specifically, it is regarded as a “bottom-up” process including the following two perspectives (Hsu et al.,
2018; Chao, 2016; Davies, 2008):

a) the use of cognitive thinking skills as problem-solving, critical, and abstract thinking to decompose
a problem into smaller subparts before starting to code their solution plans by trying to think with
different levels of abstractions which will not contain any unnecessary information, and then trying
to combine their practical skills in mathematics combined with algorithmic thinking (computational
design).

b) the use of fundamental programming constructs, not thinking like computers but using
programming language of computers to know and utilize its major components like selection,
sequence or iteration (computational practices) so that can be applied any solution plans in an effort
to be performed the most efficient and effective programs (computational performance). This
means that programmers should know what constructs can be utilized to solve a problem and not
just adopting and changing any particular programming constructs of their (previous/relevant)
solution plans using “trial and error” methods.

The development of students’ computational problem-solving strategies for applying programming
knowledge correctly when formulating a solution to a real-world (computational) problem is one of the
most crucial topics in contemporary CS courses (Tuomi et al. 2017). More specifically, the process of
applying a computational problem-solving strategy is related to the analysis of designing, planning and
debugging a proposed solution that is regarded as a perfect way to evaluate the correctness of a thinking
process (Bienkowski et al., 2015). Such strategies are focused on a specific domain since novices need to
decompose a problem, to analyze given facts, such as input and output to express specific steps/instructions
and apply a workable plan as a program for solving it (Webb et al., 1986). A computational problem-solving
strategy can also help programmers to organize the data gathered in order to rationalize a proposed solution
efficiently for each subpart of a problem by investigating analytically specific issues that are associated
with algorithms (Fluck et al., 2016; Webb et al., 2017). In particular, Figure 2-4 depicts the development
process of a computational problem-solving strategy where programmers require to have cognitive thinking
and programming skills in order to apply their solution plans following a set of specific steps (CSTA &
ISTE, 2011; Grover & Pea, 2013):

e Decomposing and understanding the subparts of a given problem in order to formulate and decide
which programming constructs of a workable program can be used as the most appropriate to each
part in terms of proposing a solution.

e Producing algorithmic solution plans for proposing a solution to each subpart of the main problem.

42

e Transforming the main algorithm into code of programming (formal) language that can understand
a computing device.

e Testing and debugging a program to evaluate someone the correctness of his/her innate thinking
solution into code is required.

e Proposing and generating a solution plan depends on its applicability and operability as a workable
program that can be applied in similar problem-solving tasks.

incersindgte || - Producing || T ko
subparts of the main 9 lans code (design
problem P patterns)
|
N
Testing and Proposing and
debugging any -

solution plan as a >| generalizing the

program final solution plans

Figure 2-4: A process that provides the development of a computational problem-solving strategy

Within school-age instructional contexts, a computational problem-solving strategy in relation to
programming is of particular importance on students’ learning performance as it reveals:

a) a rationale that someone has to describe, express and apply his/her solution plans into workable
plans and algorithms (Bachu & Bernard, 2014; Davies, 2008),

b) alignment between a thinking process for solving a problem (solution plan) and a coding process
that includes “know how” the syntax and semantics of a programming language in order to apply
such a plan (Brennan & Resnick, 2012; Liu et al., 2011); and

c) away of using and writing what are the same code parts of a program for larger or more complex
problems can be utilized, similarly as those from other subparts (Grover et al., 2015; Repenning et
al., 2010). Thus, students can more easily suggest and compare their proposed design patterns
which can be utilized in similar problems without interpreting a line-by-line coding process of a
“top-down” approach (Denner et al., 2012; Werner et al., 2014).

In addition to the above, the creation and execution of a program based on a computational problem-
solving strategy can assist CS instructors to assess the applicability and correctness of such a process and

measure properly their learning performance (Bienkowski et al., 2015; Grover et al., 2015; Liu et al., 2017).

43

Previous research efforts (Repenning et al., 2015; Werner et al., 2015) and literature reviews (Grover &
Pea, 2013; Kafai & Burke, 2015, Lye & Koh, 2014) have argued that a computational problem-solving
strategy paves a pathway of recognizing the prerequisites in a broad range of analytical and logical ways of
human’s thinking on how to solve problems finding the most efficient and effective ways in order to apply
solutions. Consequently, students should try to formulate their plans and goal constructs based on their
computational problem-solving strategies that need to be applied through programming (de Raat, 2007;
Robins et al., 2003).

2.7. International policy reports about computational thinking

The widespread deployment of Information and communication technology (ICT) resources has
generally contributed to the rapid proliferation of CT. The rapid growth of the educational and scientific
community seeks to investigate different ways of promoting CT, and thus extensive and large-scale projects
by a significant body of policy reports have given much information about this topic and its impact on
educational contexts. First of all, the National Research Council (NRC) has organized two workshops to
address the confusion about the definition of CT by bringing together educators and scholars from a broad
range of disciplines in 2010 and 2011. In the first workshop, participants discussed the nature of CT and its
cognitive parts with several implications in education (NRC, 2010, p. viii). The same report suggested the
following:

a) students need to learn thinking strategies such as CT as they study a discipline,

b) teachers and curricula need to provide the appropriate guidelines in order to apply students’
computational problem-solving strategies, and lastly

c) the CT integration needs to have an appropriate instructional guidance that can enable students to
learn how to use skills and concepts related to computational problem-solving strategies.

In 2011, the second workshop was focused on the exploration of the pedagogical aspects of
computational thinking in the context of K-12 education (NRC, 2011). The results revealed that CT is a
problem-solving process that is pervasive to all STEM (Science, Technology, Engineering, and
Mathematics) disciplines. It is also suggestive for someone to learn and recognize its applications or to start
thinking using CT across other scientific domains (NRC, 2011).

An exemplary attempt has been covered by specific pedagogical principles from Computing at School
S0 as to investigate “what is” CT and which of its cognitive subjects are really necessary for CS (CAS,
2014). CAS is a task force from the United Kingdom. This report investigates the possible reasons that
students do not participate in CS and programming courses for proposing several ways to motivate them
further. For CAS, CT is a problem-solving process beyond computing itself. It is regarded as the process

of recognizing aspects of computation that requires the use of techniques relevant to computing in order to

44

understand and rationalize about the appropriateness of natural, social, artificial systems and other processes
to solve several real-world problems. CAS supports the opinion that students need to learn thinking
strategies to solve logically and methodically problems with computational concepts such as abstraction,
algorithm, automation, decomposition, debugging and generalization so as to be applied their strategies
with fundamental programming concepts (CAS, 2014).

Beyond the publication of several policy reports in regard to the nature of CT, other reports have also
tried to propose learning tasks which can assist students to think logically and methodologically using CT.
A notable report is the “CS Unplugged project” (Bell et al., 2008) for the creation of low-cost scenarios. It
is proposed by Canterbury University. The purpose is the development and implementation of low-cost
programs that can attract educators’ and scholars’ interest and specifically those who struggle to have access
to ICT (Information and Communication Technologies) resources. Specifically, the “CS Unplugged
project” aimed at teaching skills and concepts related to CT using programming constructs (such as
combined numbers and writing of algorithms) without having a personal computer (PC), and thus students
should try to use pseudocode for solving problems (Bell et al., 2008). CS instructors try to introduce students
who basically do not have a background in programming to CT through concepts such as debugging, binary
numbers, algorithms, and data compression with board games and puzzles. All tasks are applied through a
“programming-free” way with a view of giving students the opportunity to think about algorithms which
can solve problems without worrying about the syntax details of the source code of any particular
programming language (Taub et al., 2012). In their article, Bell et al. (2008) have described activities and
competitions by playing with physical objects such as cards, pen, and paper showing students how to think
through active and kinesthetic learning tasks like being computer scientists. The “CS Unplugged project”
is recommended by the ACM K-12 curriculum and has been translated into 12 languages.

From 2009 until today, the “CS Unplugged project” has widely gained CS educators’ and scholars’
attention. Well-established initiatives (Rodriguez et al., 2017; Sentence & Csizmadiam, 2017; Taub et al.,
2012) have reported several potentials using “CS Unplugged project” tasks with activities to become funny
and engaging for novices. The “CS Unplugged project” is an encouraging and motivating approach for
students to learn how to use CS competencies, computing skills and concepts (such as binary numbers and
search algorithms) which can assist the development of skills related to CT (Grover et al., 2015).
Nonetheless, other studies have the opposite view. For example, Howland and Good (2015) have referred
the difficulties to be demonstrated tasks from the “CS Unplugged project” since such tasks demand wider
and long-term goals to develop skills related to CT. While such activities are suggested to exposure
effectively students in motivating tasks on CS topics, there is not much information on how students’
learning performance is measured as a process that requires the correctness of their thinking solution plans

to workable programs without applying them into code. The results from Taub et al.’s (2012) study using

45

“Unplugged” tasks have shown that only some growth in students’ perceptions about CS was achieved
without providing any further evidence. Many studies have suggested some good kinesthetic practices and
tasks related to computing tasks without the use of computing devices, albeit there are appeared several
limitations. The use of “CS Unplugged project” is really promising for younger students to learning how
to think “computationally”, but much work needs to be made, as it is observed a lack of studies which can
present their findings from qualitative and/or quantitative data extracted by younger students’ creations,
specifically in regard to their computational understanding to more general concepts of their daily life
(Sentence & Csizmadiam, 2017).

In Europe and beyond, the number of projects has received rapid growth, along with increasingly
widespread interest in understanding the nature of CT. As described earlier, all the above reports have
emphasized the importance that is given regarding students’ computational competencies. In this
perspective, the focus was in solving different problems, the development of cognitive thinking skills, the
representation, and organization of the data, the algorithmic approach for solving its parts, and thus the
generalization of solutions based on CT. Based on the above reports, the important role of CT and its
contribution to 21%-century skills has emerged as a problem-solving process that can assist students to think
before start coding.

2.8. Gender issues

Educators and researchers have already considered gender equality in programming courses as an
important topic that cannot start to be investigated only at the university level but from lower one, such as
those at the primary and secondary (Howland & Good, 2015; Lockwood et al., 2017). Even though, closing
the gender “gap” in CT education for a significant number of policy reports remains a crucial issue (Bocconi
et al., 2016). Existing research has been conducted that showed the existence of gender differences in CS
with many statements about this topic to be made in Europe and the United States of America (Volkel et
al., 2018). Gender issues come across as important since a majority of boys seemed to participate more in
CS and programming courses or in a professional field than girls do. Consequently, boys in school contexts
perform usually better in CS compared to girls (Kong et al., 2018; Moorman & Johnson, 2003).

A substantial body of research studies has tried to explain gender differences by providing certain
stereotypes which tend to create a negative impact specifically on girls’ learning performance. Culp (1998)
have provided a feminist theoretical perspective, including stereotypical gender roles, differences in
outdoor recreation opportunities, family expectations, access, and physical and environmental factors. Lack
of broad support is another factor that can be crucial that can support girls further through outdoor programs
to prevent such constraints. Also, Graham and Latulipe (2003) have analyzed the stereotypes of CS courses

which arising in early in high school. In particular, CS is regarded as a boring subject, devoid of interesting

46

applications and it is more appropriate to “geeks”. The authors have identified two main reasons influencing
such a stereotype. The first is that many times girls cannot understand how to use correctly computers in
real-world applications that will benefit their daily life. The second is that many girls would like to avoid
being “geeks with a monitor tan” stereotype that is not productive and thus influencing negatively their
efforts to use for example computers to learn how to program. Another study by Anderson et al. (2008) has
pointed out that specifically, high school girls perceive advanced computing subjects as boring and
irrelevant, and often express a strong aversion to computers. Therefore, an unmistakable issue is that
“gender-neutral” tasks can allow someone to categorize “computationally talented” students with specific
gender-biased mostly to be focused on males who were at the risk of hiding other female talents in
programming courses (Roman-Gonzalez et al., 2017).

Several policy reports and studies have tended to present the main reasons affecting students’
participation in programming courses. In specific, the “She Figures 2015” report (2016) has presented
some interesting points of view about gender issues. The same report mentioned that across Europe just
21% of CS graduates are few with female gender to stay careers in CS and specifically in programming
courses. Such a choice is influenced by females’ early experience such as those in school, parental influence
and a wider lack of female role models in CS. A second policy report comes from the European Commission
(2016). It states the importance of using interactive environments for the introduction of important topics
in regard to the integration of CT in programming courses which can influence positively students’
engagement and motivation. Nonetheless, the European Commission’s (2016) report has also referred that
boys’ and girls’ participation may vary due to their different gender, social background, and age. For this
reason, the same report has mentioned alternative ways to introduce students generally in CS and more
specifically in programming. For instance, gaming tasks can become noteworthy to both engage students
in programming activities and teach them fundamental concepts of CS. According to the European
Commission’s report, perceptions and practices about learning how to use fundamental programming
constructs, concepts, and rules to get high school boys and girls close to computing education can be
achieved in two ways. The first is to increase the interest and creativity of students about computing by
developing and programming interactive games (or stories) following game-making approaches. The
second is to introduce students in programming with computational concepts and skills in simulated
problem-solving contexts, following game-playing approaches.

Persistent concerns about the underrepresentation of girls in programming courses, particularly in
light of the encouraging elimination of the gender “gap” is still today considered as a problematic situation,
even if learning conditions are included inside game-based learning contexts. Specifically, in secondary
education, game-based learning approaches need to be aligned with students’ preferences and habits taking

under confirmation the gender equality. Gender equality is usually referred in order to avoid CS instructors

47

the discrimination arising from the impression that boys and girls may have about what games or
applications are suited more to one than to another (Howland & Good, 2015). Previous studies (Good &
Howland, 2016; Werner et al., 2015) have many times presented various reasons preventing girls’
participation in programming courses. For instance, Steiner et al. (2009) have noticed that games for
learning tasks are considered appropriate and appealing for both boys and girls. In Carter’s (2006) study,
where the data gathered from students’ perceptions, it was found that CS and programming courses were
boring more for girls in contrast to boys, who often perceive the subject as an exciting area, largely due to
their passion in playing computer games. Lack of girls’ interest and participation come from an overall
negative attitude towards using computers and lack of confidence with software or interactive environments
are the most indicative reasons for this situation (Denner et al., 2012).

In recent years, a renewed interest is appeared in regard to the creation of learning tasks which can
guarantee gender equality to be avoided possible gender biases. Gender equality in learning activities can
increase to a large extent student’s participation by avoiding any possible biases against females pursuing
in learning computer programming as resulted by their low interest and performance (Kafai & Burke, 2015;
Liu etal., 2013; Mouza et al., 2016). Programming environments are generally intended to ensure learning
for all students regardless of gender (Kafai & Burke, 2015). Nonetheless, there are relatively few examples
of research which compares the use of games by boys and girls in order to investigate the way of how and
what they finally learn in computer programming. For example, special focus on the early years has been
given on boys’ and girls’ engagement and participation by creating interactive and game-based

environments (Costa & Miranda, 2016; Kafai & Burke, 2015).

48

Chapter 3: Instructional approaches and educational environments

The present chapter aims to address a critical overview regarding the use of interactive
environments in high school programming courses which are greatly mentioned by the relevant
literature. It gives information about the most indicative instructional approaches which have been
widely followed in programming during the last twenty years. It also presents a discussion about
the advantages and disadvantages on the utilization of interactive environments which are to a large
extent followed game-based learning approaches and provides several ways on how such
approaches seemed to support CT instruction. More emphasis is given to the analysis of related
studies which have utilized LOGO, tangible, and interactive environments, including VPEs and 3D
VWs.

3.1. Instructional approaches

Many curricula around the globe have recognized the importance of programming courses in K-12
education. Teaching computer programming assists students to acquire analytical and logical thinking that
can lead to the development of methodological skills making them able to solve simple, complex or larger
problems (Webb et al., 2017). Usually, students participate in tasks that are applied inside a programming
environment in order to start thinking methodologically and logically using algorithmic thinking skills
(problem analysis, algorithm design, structured thinking, stringency of expression) for proposing solutions
to simulated real-world problems (Lahtinen et al., 2005).

Nowadays, two are the well-identified teaching approaches which are broadly proposed in
programming courses from many national school curricula (Lindberg et al., 2018):

a) to learn specific programming languages as a practice-based approach and its main objective which
contains the structure, vocabulary, and rules in coding tasks; and

b) to learn how to use programming in problem-solving situations. In such a problem-solving
approach, the schedule of students’ solution plans is treated as a cognitive activity using their
cognitive thinking skills.

Teaching how to use programming in problem-solving situations is the most common-in-use
approach in school contexts where students need firstly to develop analytical, logical and methodological
thinking skills in order to solve real-world problems which are simulated into programming environments.
A “conventional” (traditional) teaching approach is the presentation of fundamental programming concepts
and constructs of a programming language such as Python, Java etc.). More emphasis is placed on the
syntax of a particular language and the presentation of one or more programming languages in which

lessons are supported sequentially, such as for example initial presentation of concepts, variables, and

49

constructs that students need to know on how to use (Oddie et al., 2010). This instructional approach leads
students to think in a “tight context” about the use of a programming language considering that solving a
problem using a computer is mainly related to the process of coding correctly constructs and instructions
of a programming language to apply a solution (Robins et al., 2003).

However, prior studies (Dagdilelis et al., 2004; Ismail et al., 2010) have shown that traditional
instructional methods do not usually facilitate students as novices to learn how to think before starting to
code. According to Vahldick et al. (2014), “conventional” instructional learning approaches can often lead
students to use in a wrong way their programs as they study differently a broad variety of scientific fields,
in which other skills are required. For instance, this is to some extent regular, because in most courses,
students need to understand the learning material by simply attending to all courses, by memorizing specific
learning material or just by reading a text. In contrast to any other course, programming requires not only
cognitive thinking skills but also programming knowledge about the semantics and syntax of a
programming language that should be applied to real-world problems (Ismail et al., 2010). As a result,
students many times tend to spend less time on the development of problem-solving strategies for applying
programming knowledge to solve problems and more on mastering syntax and semantics of a programming
language (Koorsse et al., 2015). Therefore, programming seems to become a purely technically-centered
process for translating mental representations of problems and solutions into code.

There are many views pointed out that conventional approaches are not quite educationally relevant
technology-supported since the main focus inside classrooms is mainly based on the instructions that give
a CS teacher, and students are the passive receivers of those instructions. To this notion, a substantial body
of recent literature (Dagdilelis et al., 2004; Robins et al., 20003; Xinogalos et al., 2015) has converged on
some of the most important problems that novices usually face in programming. These are the following:

a) the general purpose languages have a large number of commands and are quite complex,

b) astrong attention is paid on learning a programming language itself (syntax and/or semantics). This
prevents students from developing problem-solving skills and using properly concepts and
constructs of a programming language to apply their solution plans into code,

c) the knowledge acquisition cannot fulfill the requirements that students require in order to apply this
new knowledge for solving problems when they try to use some of the appropriate programming
constructs and concepts executed by a computing device,

d) the most traditional approaches are relatively appropriate only for general-purpose programming
in which students need to observe and learn how to apply the execution process, albeit in several
times lacking to monitor any result of each command or programming construct, and

e) the specific guidelines to solve small problems do not require learning of a large subset command

of programming languages and the development of major programs. Thus, students spend their

50

time learning how to code when they participate in simple or without purpose tasks without

properly understand the use of programming for solving real-world problems.

The weaknesses of “conventional” instructional approaches in programming courses have led CS

teachers to look for new methods in order to eliminate the above problems and to improve their teaching

processes. For example, Ben-Ari (2001) has noticed that programming learning problems can be addressed

by converting introductory courses into a playful and enjoyable process. In this direction, to have funny

and enjoyable moments all students can learn computer programming, a variety of teaching approaches

have been proposed, using various programming tools and technologies. All these approaches focus on the

achievement of learning objectives, either in terms of understanding the concepts/constructs or in terms of

designing/developing programs, where students engage and participate in tasks corresponding to problems

which are significant for them and/or relevant to their needs and demands. The most important are the

following:

a)

b)

The “black box” instructional approach (Haberman & Kolikant, 2001) familiarizes students with
new concepts when conducting activities in computer laboratories in order to participate in all
courses. Activities include two parts. At the first, students are asked to run simple programs which
they do not know the code and function (“black boxes™), start a “conversation” with a computer,
and then answer a series of questions related to “computer dialogue”. At the second, students learn
how to code and answer questions about the commands/constructs that they have used.
Nevertheless, such an approach can lead students to the inefficient process of memorizing and
executing continuously of using the same programming constructs or referring to small exercises
focused on school textbooks’ core aspects for learning computer programming. This process allows
students to learn how to apply their code only for a specific number of problem-solving contexts,
and thus “know how” to use better a small number of programming concepts (Singh & Ribeiro,
2016).

The “discovery” instructional approach takes place inside a computer laboratory, in which students
in several tasks are initially invited to read small programs, to answer questions about its function
to apply constructs and concepts to predict, for example, movements of objects, by integrating
“behavior” using programming constructs so that compare and control their responses by running
such programs. If their predictions do not correspond to the actual results, the CS instructor can ask
students to explain/substantiate their answers reasonably (Baldwin, 1996).

The “pair-programming” is an instructional approach focused on collaborative learning. Two
people work together to design and apply their own programs. One member plays the role of a
“driver” and controls the pencil/ mouse/keyboard in the development of the program. The second

member is the “observer” who constantly controls the work of the "driver" by asking questions,

51

exploring alternatives, observing shortcomings, and applying for programs. The CS instructor
always sets the learning context for the two roles and ensures that they are kept the roles of the
"driver" and the "observer" inside the predefined learning contexts in order to ensure a substantial
contribution rising from both roles (Webb & Rosson, 2013).
d) The “learning-by-doing” is an instructional approach based on Constructivism. Constructivism as
a learning theory has changed the “conventional” way for knowledge acquisition that is not
transmitted but it can be built from anyone personally (Papert, 1980). In his work, Papert expands
Piaget's ideas on constructivism by promoting the view that learning is more effective when
students are activated by building and programming objects that are meaningful to them while
enhancing their social interdependence-actions (Kafai & Burke, 2015). Lye and Koh (2014) have
argued that both learning approaches following Constructivism can assist each student to build
knowledge by interacting with his/her environment that is fully compatible to support with his/her
ideas. The same authors have also stated that problem-based learning is a constructivist educational
approach can allow any for flexible adaptation of guidance without further explicit guidance.
While the extensive use of several learning approaches is widely proposed in programming courses
to trigger students’ attention, it is arguable if such approaches alone can satisfy their expectations. Beyond
the successful utilization of different learning approaches, such an integration in regular school settings
alone cannot automatically lead to its successful use in learning or create a good climate in order to increase
not only students’ motivation but also their learning performance. In addition, as the ability of users to be
processed information is expanding quickly, their thought process is also increasing quickly. To overcome
any potential constraints that are identified, a considerable number of previous studies (Costa & Miranda,
2016; Koorsee et al., 2015; Lye & Koh, 2014) have tried to integrate simulated problem-solving tasks with
the abovementioned learning approaches as more valuable for students’ motivation and participation. CS
instructors need to find out alternative ways that may not only engage students to participate in
programming courses but also assist them to utilize elements and features from a programming environment
in order to gather information so that apply their thinking solution plans. There is a common belief that
digital or physical environments are regarded as “platforms” in which are performed most in simulated real-
world problem-solving situations and can lead students to view computers as “tools” for problem-solving
situations. Students usually await recognition of their efforts through (gaming) practice-based tasks, which
is given as feedback and encourage them to continue in even more difficult procedures. Accordingly,
educational technologies can become useful tools for the active participation of students following
“learning-by-doing ” approaches in align with the development of cognitive thinking and programming
skills that students need to gain rather than “traditional” lectures in which they become passive receivers of
CS teachers’ instructions (Kafai & Burke, 2015).

52

3.2. LOGO environments

The LOGO language is regarded as a powerful “tool” for the development of algorithmic thinking
and the visualization of algorithms, especially for students in compulsory education (Papert, 1996). The
most important feature of a LOGO language that differentiates it from all other programming languages is
its orientation as a “tool” for analyzing the processes of students’ thinking before starting to learn how to
code. The ability to visualize the execution of a program provided by LOGO can help students to understand
the operation of programming and to facilitate a debugging process for applying a program (Papert, 1980).

Teaching programming to younger students can be traced back to 1960 with the LOGO programming
language to be firstly written in 1968. LOGO language ‘designed to provide a conceptual foundation for
teaching mathematical and logical ways of thinking in terms of programming ideas and activities”’
(Feurzeig & Papert, 2011, p. 487) and it was first introduced for teaching mathematics. In his book titled
“Mindstorms: Children, computers and powerful ideas’’, Papert (1980) has suggested the use of
exploratory constructivist instructional guided contexts for teaching LOGO. The LOGO language allows
someone to develop new "words", using new commands, which are incorporated into the existing
vocabulary of a language known as “procedures”. The “procedures” are developed by using primitive
commands and constructs, helping students to create and/or edit a small number of rules which are
considered as logical and geometric conceptual microworlds with elementary visual forms that are projected
as simple game-like or game-based exercises. Students learn how to use several fundamental concepts of
programming by checking the correctness of programming constructs, which are utilized by integrating
behaviors inside objects, like those of a “turtle” or a robot as Figure 3-1 depicts. They need to develop step-
by-step programs, execute each part of their code and track the execution result of each command. The
"turtle” LOGO is a ground robot that is programmed and guided to make different spatial movements
(Maddux & Rhoda, 1984). The turtle is an “object-to-think-with” that provides the entry point for its
movement. It seems like being a geometric shape depending on the position and the direction that each user

can program it properly in order to be moved (Papert, 1980).

53

Figure 3-1: The "turtle” LOGO (Papert, 1980)

During the last twenty years, various programming environments have been developed by using
LOGO language. MicroWorlds is a version of the Logo programming language and presents a visual-rich
multimedia environment. It provides a minimalist graphical environment that allows the student to develop
a step-by-step process of programming commands and constructs and software visualization techniques for
the execution of those commands and constructs. MicroWorlds is based on physical or digital metaphors
and concrete actors (objects) that are depicted during a program’s execution (Papert, 1980). Students have
opportunities to explore a cognitive subject with a view of developing a high-level of cognitive skills that
can be transferred to diverse situations (Pardamean & Honni, 2001). Students can create and program their
projects which are formed as animations, simulations, or geometric designs. An extension is MicroWorld
EX that can be connected with Internet webpages and can be integrated with Excel spreadsheets.

Another significant point of view is the features and elements that a MicroWorld includes. The user
interface design features are the simple, stimulating, and adaptable environment, thus allowing students to
develop their own microworlds by controlling and programming each element. MicroWorlds is truly
regarded as constructivist educational technologies which facilitate student to develop skills related to
problem-solving and critical thinking and learning trends which are needed through a process that demands
exploration, repetition, programming, and assessment of correctness regarding the appropriate use of
fundamental programming and concepts. Recently, in their review study, Xinogalos et al. (2015) have
noticed that numerous research papers have previously proposed MicroWorlds so as to teach students at a

younger age how the use of fundamental programming concepts and constructs, such as sequence, selection,

54

and iterative. The results from the same review revealed the positive acceptance of MicroWorld as an
instructional approach with improved learning outcomes and achievements.
The above instructional approaches have been generally provided in programming courses so that

students can achieve the following learning objectives (Lye & Koh, 2014; Papert, 1980):

a) design problem-solving activities and organize them in smaller and simpler components before

start coding,

b) experiment with commands and constructs in order to gain confidence in programming,

c) create programs to apply programming constructs and concepts in the right order,

d) evaluate programs to assess the correctness of its proper function,

e) debug and correct errors in order to (re-)construct their proposed programs, and

f) develop applications with scenarios that can be integrated into simulated contexts.

3.3. Contemporary educational environments

Problem-solving tasks in programming courses require someone to use his/her cognitive thinking
process in order to develop a specific strategy and solve properly each of its tasks. This comes in contrast
to what happens with cognitive activities that require knowledge or individual skills acquired within
repetitive practical training (e.g., reading or listening skills). When students learn how to program with
some language such as using LOGO-like environments to accomplish a goal, they need to get an object that
is usually the main “object-to-think-with ” in order to program its behavior and predict its movements within
specific spatial contexts. For example, through a maze, what matters, beyond from the end result or the
correct use of programming constructs itself, is the experience (Grover & Pea, 2013). Such an experience
leads to the development of the required problem-solving strategies, idea design, and correctness by testing
and diagnosing errors of code to solve a problem. This may increase students’ confidence in their own
judgment, improve their self-efficacy and provide efficiently their anticipated outcomes (Koorsee et al.,
2015).

The rapid growth of digital products in the global market has made companies move a step forward
to fill the demand for educational content into programming courses. Moreover, creating and programming
such projects/products offer features for assessing students’ progress, thus facilitating CS instructors
efficiently organize a learning environment (Tuomi et al., 2017). Many of these products have “ready-
made” tools for teachers or students to utilize and develop their own creations for content production.
Specifically, novices have to learn how to give rigorous and well-structured solutions to problems in case
of applying these solution plans into workable plans and algorithms. Nonetheless, in many cases, they learn
wrongly the commands of a programming language with names alongside their appropriate use that is

confusing and usually not easy to remember. For instance, a programming language with very strict syntax

55

can often cause shortcomings on what finally programming is and under which circumstances can be used
in problem-solving situations (Webb et al., 2017). To address such problems, programming environments
are focused on the design, development, and implementation of programming languages to specific
algorithmic problems that are suitable for educational purposes. Thence, the most noticeable characteristics
of educational programming environments which can support specific requirements and provide learning
contexts are those which can assist students (Kafai & Burke, 2015; Lye & Koh, 2014):
e to explore the programming environment by interacting with it, and then by utilizing tools which
can provide tasks inside it with a variety of immediacy features.
e to support algorithmic thinking and programming of specific programming constructs to build
programs with a small number of concepts having a simple syntax and semantics.
e to develop visualization elements and features, making it easier for users to track dynamic, hidden,
and internal processes that take place when running a program.

A significant number of educational environments and platforms has been developed in order to
facilitate students’ engagement and participation in programming courses. These environments allow
students to understand the interaction of humans with computers by programming elements and objects that
exist inside them. Programming environments mainly for those who do not have a strong background in
programming (called “novices”) are relatively easy to use and allow early experiences to focus on designing
and creating solution plans so that solve problems than on mastering syntax of programming languages.
Due to the different user interface design features and elements, three are the major categories that must be
referred. The first category is tangible environments which include embedded code cubes blocks with
electronic devices or power supplies and those which do not need electronic power such as wooden
programming blocks.

The second includes educational robotics. The term “robot” is used quite broadly and may include
articulated robots, mobile robots or autonomous vehicles of any scale. Usually, students learn how to
program a robot, understand its interface and units (sensors, educational or industrial robotic machines) in
order to maintain it. In addition, the educational robots come with simulation software, which enables
students to practice both with a virtual robot and its simulated environment. The most well-known are Lego
Mindstorm NXT and Lego WeDo robotics.

The third category entails interactive (digital/graphical) environments which have computer-
supported media interface responding to users’ actions and allowing them to communicate with a
computing device so that create various simulated applications/tasks. Various forms of interactions are
included such as video, animations, and simulations. Users have various elements and features to create
something meaningful in a training interface that encompasses specific mechanisms that are easily

manipulated and controlled using a keyboard and a mouse. Users have opportunities to manipulate and

56

program visual representations inside a digital environment displayed in two-dimensions (2D) or in three-
dimensions (3D), in which can be achieved certain learning goals based on the exploration, analysis, and
operation of programming tasks for simulated problem-solving situations. Two are the most distinctive
platforms that interactive environments can be separated. The first includes visual programming
environments such as Scratch, Alice, and AgentSheets. The second contains 3D virtual worlds such as
OpenSimulator and Second Life. 3D VWSs may not be created for educational purposes per se; however,
such platforms have the potential to be regarded as candidate for various disciplines and domains including

those of CS and programming.

3.3.1. Tangible programming

A relatively recent approach to facilitate students to learn how to code is tangible programming.
Tangible programming environments have user interfaces in which users can interact with digital
information through a physical environment. Tangible interfaces can reduce the cognitive load needed for
someone to learn how a system works so as to not pay so much attention to learning how to program itself
(Marshall, 2007). More specifically, tangible programming is a form of language that does not necessarily
require from someone to use a keyboard, mouse or computer, but the use and layout of physical objects,
such as cubes and puzzles (Smith, 2007). Tangible programming makes programming an activity that is
accessible to the hands and minds of students by making it more direct and less abstract. By combining
computer programming and interaction, tangible programming allows students to manipulate physical code
blocks directly, which makes learning and teaching programming more appealing (Sapounidis &
Dimitriadis, 2013).

Two are the main categories of tangible programming. The first includes tangible programming
blocks which are inexpensive and durable cubes with no embedded electronics or power supplies. An
apparent paradigm is the use of familiar objects (wooden cubes) to transform an unfamiliar and potentially
intimidating activity like computer programming into an enjoyable and playful experience. For example,
Tern is a tangible programming language for middle school and late elementary school students. Figure 3-
2 below depicts Tern that is consisted of wooden blocks shaped like jigsaw puzzle pieces. Students can
connect wooden blocks to form physical computer programs, which include action commands, loops,

branches, and subroutines (Horn et al., 2007).

57

Figure 3-2: A collection of wooden tangible programming blocks using Tern (Horn et al., 2007)

The second category encompasses tangible cube blocks which integrate embedded electronic devices
or power supplies. A suggestive paradigm is AlgoBlock (Suzuki & Kato, 1993). It is tangible programming
that includes a collection of physical cubes that can be linked together to form a program using electronic
supplies (Figure 3-3). These cubes are then linked in a way that a computer can run each program that is

created since each one corresponds similarly to the LOGO commands (Sapounidis & Dimitriadis, 2013).

Figure 3-3: A collection of natural tangible programming blocks with electronic supplies using
AlgoBlock (Suzuki & Kato, 1993)

58

3.3.1.1. Advantages and disadvantages

Most tangible systems have been designed and proposed for children in order to connect activities
with the physical world. Tangible programming has a number of advantages. First, the attractiveness of the
natural interface shows a trend toward a physical interface that is haptic. This feature may allow the use of
tangible exploratory activities, in which users can gain greater experimental knowledge through instructive-
guided approaches. A set of programming constructs is provided using cube codes having natural user
interfaces that require kinesthetic interaction with those cubes which can be enriched in natural spaces
(Sapounidis & Dimitriadis, 2013).

Second, tangible interfaces provide richer learning experiences so as to increase reflection and
understanding in regard to students’ actions in specific spatial contexts. For example, tangible programming
blocks can be combined with material properties such as size, weight, texture, and temperature in order to
help students to learn how to use programming knowledge to other areas such as physics, mathematics or
chemistry (Marshall, 2007).

Third, the innovative tasks that can be achieved using tangible interfaces create a real-world
programming environment in which everyday objects are converted into both input and output devices at
the same time and can display any information. Appropriate representations on the interface may be proved
as useful to reduce the complexity of problems and provide an easier way to decompose a program
(Schneider et al., 2011).

Fourth, the tangible interfaces can support collaboration among students (face-to-face). In a
collaborative learning activity using tangible programming blocks, students can increase their visibility in
the work of other peers, and they can easily exchange ideas or opinions about their solution plans. Students
can also watch kinesthetic gestures (e.g. hands, eyes) of other peers, thus achieving a richer collaboration
within specific spatial school contexts (Suzuki & Kato, 1993).

However, tangible interfaces have also a number of disadvantages. The main reason for these
disadvantages appears to be lack of systems with different features, the high cost, and construction of such
systems that hosted only in research centers or in a small amount in school laboratories (Horn & Jacob,
2006). In spite of various studies that have proposed several tangible systems, there is a lack of tangible
programming tools, and thus the international literature has referred several restrictions. The most indicative
are the following (Suzuki & Kato, 1993; Xie et al., 2008; Zuckerman et al., 2005):

o several tangible systems do not have a sufficient number of commands and parameters that may
restrict students’ learning on how to use programming constructs sufficiently.
o the lack of real-time control prevents the smooth interaction between the programmer and the

program itself.

59

e some tangible systems are not easy to move or moving its units can cause unusable learning
conditions in actual school classrooms.

e some physical properties, such as shape or temperature can provide advantages to tangible systems
programming; however, such properties have not yet been investigated.

e the storage and reuse of tangible code blocks are not supported in any system.

A brief summary of the advantages and disadvantages is presented in Table 3-1 below:

Table 3-1: Advantages and disadvantages of tangible programming

Tangible programming
Advantages + Attractiveness of natural interfaces
+ Richer learning experiences so as to increase students’ reflection in specific spatial
contexts
+ Creation of real-world programming environments in which everyday objects are
utilized as input and output devices
+ Student collaboration
Disadvantages - Lack of systems with different features, high cost, and construction of toolkits that
hosted only in research centers or in a small amount in school laboratories
- Lack of a sufficient number of commands and parameters
- Lack of real-time control prevents the smooth interaction between the programmer and
the program itself
- School or laboratory conditions sometimes prevent the movement of units of a tangible
programming environment
- Lack of objects’ manipulation supporting only the use of specific conditions and
concepts in programming tasks

3.3.2. Educational robotics in programming

Educational school contexts have today provided new instructional approaches which can rely on
innovative actions and demands of students using educational tools. Educational robotics is a rapidly
expanding industry at all levels of education worldwide that can be used in different STEM concepts. The
use of robotics in programming courses is an innovative learning approach. It combines elements of basic
sciences (physics, engineering), new information technologies (software development, artificial
intelligence) and the study of the interaction between humans and robots. Robotics are widely used for
observation, analysis, modeling, and control of various physical processes (Miglino et al., 1999).

Educational robotics is a broad term that refers to a collection of activities in specific instructional
programs with educational resources having physical robot models. Such an instructional program generally
includes the following:

a) the physical/natural section that includes objects made from simpler units (e.g. cubes, bricks) for
processing of information, with an additional connectivity, suitable motors and sensors in order to

learn someone how to program, and

60

b) the graphical section in which are included a physical object (robot) can be programmed and its
inputs for the information transmitted by the sensors (e.g. ambient or ambient sound information)
light and drives out motors to give motion-behavior.

Within such contexts, students are engaged in tasks which require the design and construction of
robots to involve actively them in learning programming in order to develop skills related to problem-
solving, logical reasoning, and tasks to support collaborative learning tasks for the following two reasons
(Afari & Khine, 2017; Detsikas & Alimisis, 2011):

a) to gain knowledge regarding the use of robots that contain specific units and toolkits for learning
how to use fundamental programming concepts and constructs in a physical environment for
experimentation, and

b) todevelop logical and critical thinking in collaborative, innovative and project-based learning tasks
for the active participation of students.

With the creation of integrated robotics packages in combination with suitable programming
environments, the integration of robotics into schools has gained much attention (Klassner & Anderson,
2003). Two relevant technologies that have been designed to assist students’ participation in programming
courses. These are Lego Mindstorms and Pico-Crickets kits created by the MIT's Media Lab (Resnick et al,
1996). In addition, Carnegie Mellon University and Lego worked together to design educational tools that
promote mathematical and programming skills. Today, a lot of high and primary schools use Mindstorms
and other robots, beyond NXT, are essential to introduce control concepts. Lego Mindstorms are designed
for activities that require the completion of a project with the goal of solving a problem (Klassher &
Anderson, 2003). The main Lego Mindstorms educational systems are:

1. WeDo: It is an educational robot with a complete set of instructions and Kits that allows students
to design, construct simple models on their computer, download the program on their model, and confirm
its operation using a robot. LEGO WeDo offers a simpler robotic kit than LEGO Mindstorms (Figure 3-4),
it is less costly and cannot produce an autonomous robot since the robot’s functions required to be attached
to a computer with a USB cable. This kit is being produced since 2008 and utilized mostly from primary
schools (Kabatova et al., 2012).

61

Figure 3-4: Components of a robotic Bee-Bot (Kabatova et al., 2012)

2. NXT: Itis an educational robot for learning the basic principles of programming for young students
aged 8 years and over (Figure 3-5). It combines the basic principles of robotics with colorful blocks and
programming principles and they all form a fun educational process. Its software has a drag and drops
physical interface and a graphical programming environment making any application accessible to all

(novices and experts) programmers (Kim & Jeon, 2007).

IR O
Output Ports [
LCD Screen i.? ;

' USB 2.0 Port

o ——ap [}

Bluetooth
Communication

Nxy

Input Ports

Figure 3-5: A LEGO Mindstorms programming environment (Kim & Jeon, 2007)

One of the most distinctive functions is the compass sensor. It presents an additional sensor for Lego
Mindstorms NXT construction set. The digital compass operates with 1° azimuth accuracy, representing
values from 0° to 359°, which enables its own definition of the four cardinal points for a room to any
direction. The color sensor. In other words, this is an optical sensor making the color detection of the scan
surface much easier. The sensor is able to distinguish six colors (red, blue, green, yellow, red and white)
marking them with numbers or selected color range. The Ultrasonic sensor is based on the sonar principle
and serves for distance measurement in 0-250 cm or 0-100 inches range with + 3 cm accuracy. The accuracy
is influenced by the size, surface, material, and the shape of the object which reflects the wave motion back
to the sensor (Bickford, 2011).

3. EV3: It is an educational robot and it contains a package with specific robotic kits that is proposed
for classroom use. It allows students to build, plan and test their own solutions to real problems with robotic

technology. It includes the EV3 Intelligent Brick, which is a small computer that enables users to control

62

the motor and collect data from sensors (Figure 3-6). Bluetooth and Wi-Fi communication for data
collection and schedules with specific instructions about the robot’s movements are also provided. This
type of robot is used to collect, view, analyze and manage data from sensors and observe data in interactive

graphs. Students are encouraged to think so as to express creative solutions to problems, and then apply to

observe the consequences of those instructions for the robot’s movements (Chatty, 2015).

i

Figure 3-6: An EV3 Lego Mindstorms robot (Chetty, 2015)

3.3.2.1. Advantages and disadvantages

There is a common belief among educators and CS teachers’ circles that the use of computer-
controlled models is becoming important “tools” for teaching programming (Barnes, 2002). Engaging
students with "smart" robotic constructions, such as Lego Mindstorms, which are similar LOGO (“object-
to-think-with ”) turtle can change the way that students think and learn before starting to code. Therefore, a
learning approach using educational robotics have advantages.

First, it offers students the opportunity to understand programming methods, but also to acquire
knowledge through practice-based tasks as being real scientists (Kabatova et al., 2012).

Second, students within these contexts observe, assume, apply, and verify several hypotheses based
on programming constructs and concepts that utilize robots in specific spatial contexts (Klassner &
Anderson, 2003).

Third, it provides an easy way to debug code. Natural models of robots offer direct feedback to
students about the effectiveness of their programs. This may possibly assist students gradually to give more
effective and precise instructions based on their solution plans (Chetty, 2015).

Despite the above advantages, several are also the disadvantages arising from the use of educational
robotics. These are the following (Hamrick & Hensel, 2013; Kabatova et al., 2012; Kantor et al., 1996):

63

o the localization issues since it is sometimes observed uncertainty in sensing and actuation that
impose several difficulties to provide the robot’s pose accurately.

o the physical limitations of toolkits and units which are utilized. The movements of a physical robot
model are not always accurate. This inaccuracy is caused due both to the environment, in which a
physical model (robot) is controlled and operated, in addition to the difficulty in programming
correctly its right movements on it. For example, two engines that control two different wheels are
unlikely to produce exactly the same result, so the model deviates to a spatial context. Even a
reasonably correct program may not bring the desired results due to external factors such as friction.

o the time constraints that really exist. Loading the program to the processor includes a process of
“translation - load — execution” of the program that is more time-consuming than a digital
simulator.

o the cost of robots or units and kits are sometimes high enough for educational sectors and schools,
in contrary to other digital environments which are free of charge.

A brief summary of the advantages and disadvantages of educational robotics is presented in Table
3-2 below:

Table 3-2: Advantages and disadvantages of educational robotics

Educational robotics
Advantages + Attractiveness of a natural robotic interface
+ Rich learning experiences so as to increase students’ reflection through practice-based
tasks
+ A variety of learning outcomes based on the observation, assumption, and verification
of several hypotheses which can be applied using programming constructs and concepts

Disadvantages - Localization issues cause uncertainty and difficulty to provide the robot’s pose
accurately in specific spatial contexts

- Physical limitations of toolkits and units cause an inaccuracy to control a robot’s
movements for a long period of time

- Loading the program to the processor includes a process of “translation - load —
execution” that is more time-consuming

3.3.3. Visual programming environments

Visual programming environments (VPESs) are interactive environments that provide visual elements
and objects which can be manipulated and programmed with a limited set of simple or nested programming
constructs and commands coupled with metaphors to aid to a problem description (Maloney et al., 2008).
Additionally, VPEs attempt to introduce users to object-oriented programming by simulating actual
computer-supported tasks. Users start becoming software designers and they start learning how to program
by providing a visual overview of their progress inside “window-based” digital-oriented environments
(Resnick et al., 2009).

64

With the rapid and extensive proliferation of VPEs, programmers (novices and experts) seemed to
have a positive picture in regard to their first introduction to computation and programming. VPESs are the
most worthwhile options for computer programming because of the user-friendly graphical design interface
various features, elements and a visual palette that contains colored code blocks to provide programming
constructs, easily accessible for beginners and advanced developers, or even for CS instructors without the
appropriate background in programming (Maloney et al., 2008). Students can program one or more sprites
(i.e. iconic characters) on a stage (scene background) using a palette of programming blocks and the result
is usually formed to the creation of interactive animations, games, or artistic expressions. By using a visual
palette in which are available fundamental programming constructs, users can construct scripts by dragging-
and-dropping the language blocks. This palette provides visual feedback showing the execution of scripts
for users to comprehend how they work (Koorsse et al., 2015). Colored code blocks in a visual palette are
resembled as jigsaw puzzle pieces with specific logical instructions (control flow blocks nesting) to avoid
syntax errors (Chao, 2016; Werner et al., 2015). Users try to understand how to use programming solutions
by integrating behavior to predict movements or program expressions for tracking characters or objects in
a visual and/or animated environment. Such a process can support their understanding of programming
knowledge and assist them to develop and use programming skills (Garneli et al., 2015). To this notion,
users are focused on a problem-solving process than in syntax complexity and propose solutions as design
patterns.

Notable results from past efforts (Mouza et al., 2016; Repenning et al., 2015) have advocated that
visualization of programming constructs can support students’ understanding on abstract concepts and
make programming courses more interesting and applicable. VPEs are widely being utilized in
programming for the following two reasons. First, programmers and specifical novices can develop and
code using colored blocks a program using a visual palette. Such a process gives feedback to users so as to
understand and correct (debug) optically and/or acoustically errors into code. Second, users can develop
interactive games or stories that support their self-study understanding on how to use programming
constructs and commands properly (Myers et al., 2004). Therefore, the most noteworthy features of VPEs
are the applicability and visualization of algorithmic control flow (code tracing) can provide more insights
into the behavioral patterns and design strategies of code blocks exhibited by programmers.

Although the manipulation can be successfully achieved by using visual elements from a menu in
which users can configure or construct a program to develop an executable solution through code blocks
from a visual palette, logical errors may still exist (Brennan & Resnick, 2012; Denner et al., 2012). While
various studies (Repenning et al., 2015; Werner et al., 2015) have reported the increased satisfaction and
motivation of students in learning how to program, other studies have mentioned that the results from the

use of specific constructs which may not differentiate from their own previous or other peers projects can

65

cause misunderstandings about the appropriate use of VPESs for programming courses (Grover et al., 2013;
Koorsse et al., 2015). In this perspective, it may be imperative to mention that a VPE to become successful
in its use and assist users to learn how to program requires supplementary explanations/instructions from
CS teachers (Webb & Rosson, 2013).

The use of VPESs has today shown considerable promise in languages which aim to give specifically
novice programmers a good first introduction in computing literacy and mainly in coding. Also, a
significant number of VPEs have been proposed for programming courses. During the last decade, literature
reviews in this educational field (Lye & Koh, 2014; Vhaldick et al., 2014) have proposed VPEs for
programming courses, such as Scratch, Alice, Kodu, and Greenfoot and Web-based simulation authoring
tools such as Agentsheets and Agentcubes. Nevertheless, due to the on-growing number of VPEs, it is
imperative to refer only those which have been mostly utilized in the majority of research studies, have
similarly user interface design features and furthermore are acceptable (or well-documented) by many

curricula around the globe.
Scratch

The first and most well-known VPE is Scratch?. It is a VPE developed to allow programmers to
manipulate and program visual elements in a window-based “stage” to create different interactive tasks,
media sources and stories (Maloney et al., 2008), with a primary audience to be between the ages of 8 to
16 years old. Scratch is a visual programming language designed by the MIT Media Lab and released in
2005. The user interface design features and elements of Scratch include a visual palette, on the left side,
with different colored blocks with programming constructs on the right side to a “window-based” stage that
can be programmed into different sprites (Resnick et al., 2009). By using a visual palette, users can drag
and drop graphical blocks in order to compose simple or nesting code blocks with variables and/or to create
more complicated programming constructs in favor of developing and programming at the beginning
interactive games or storytelling. Code blocks are designed in order to be combined together so that assist
users to create programs with logical reasoning and the code’s shape to be considered as appropriate for the
good operation of these programs. For instance, an "If...else” block will fit with a set of commands and
cause without unlimited execution of these commands. For this reason, Scratch’s visual palette with code
building blocks has widely been recognized as really useful “tool” to the initial introduction of students to
programming (Maloney et al., 2010). Nonetheless, it allows the creation of more complex programs by

embedding code blocks from a visual palette in a digital environment that includes “sprites” (i.e. iconic

1 http://scratch.mit.edu

66

http://scratch.mit.edu/

characters) on a “stage” (scene background) with built-in graphics creation and sound editing capabilities
(Figure 3-7).

Figure 3-7: A screenshot of a game created in Scratch

Scratch is currently the most popular VPE and it is used worldwide by many high schools. It helps
users learn to think creatively, synthesize logical steps of an algorithm stacked on a palette with colorful
jigsaw pieces, and/or collaborate for designing their own interactive stories, games, and cartoons, raising
from common standards of previous creations (Maloney et al., 2008). In specific, Scratch supports
programmers, and especially novices to create animated stories, multimedia presentations, games,
simulations and other interactive projects (Xinogalos et al., 2015). Such creations and works can then be
shared in an online community that has more than 27 million registered users and their projects? accessible

free to other users.
AgentCubes

The second most well-known VPE is AgentCubes®. It is a VPE that allows users to create their own
games and agent-based simulations and upload their creations on the Web through a user-friendly interface
following a drag and drop process (Repenning et al., 2010). It is an end-user game making and simulation
prototyping tool for building a domain-oriented dynamic and visual environment that can help users to

create 3D games or simulations (Figure 3-8).

2 See Scratch’s statistics were retrieved 4/12/2017 from https://scratch.mit.edu/statistics/.
3 https://www.agentcubesonline.com

67

https://scratch.mit.edu/statistics/
https://www.agentcubesonline.com/

Aganm Word | + [tewei 1 B s HEDIR TR GBI C Oew a0

{4

SeSHng Anmaton tine 19 0.00 seconds

| —_— -

Figure 3-8: A screenshot of a game created in Agentcubes*

Interactive agent-based simulations can help students to understand new ideas, test theories, and
explore complex processes in various scientific fields. Each agent contains a depiction of how it looks, and
what behaviors covered by a set of rules that dictate its action when the game is running based on a variety
of communication modalities such as animation, sound, and speech. Using AgentSheets, students can
develop and create games based on the concepts of information technology, logic, and algorithmic thinking
(Repenning et al., 2015). The simulation toolset includes the following parts (Repenning & loannidou,
2006):

a) the gallery where all agents and their shapes are presented,

b) the digital world where the simulation or game unfolds,

c) an inflatable icons editor for the creation of 3D objects,

d) the rule-based agent behaviors that are defined using a 3D visual agent in which each user can
integrate specific conditions, and

e) the actions.

Alice

The third well-referred VPE is Alice®. It is a programming environment that is designed to assist the
student to learn how to program through the construction of 3D visual objects. It is recognized as the most
well-known VPE for storytelling and 3D animations (Cooper et al., 2003). Alice (or Alice 3, a newer
version) is a digital programming environment in which scripts are composed by code blocks with snippets

4 Figure 3-8 was retrieved 23 May 2017 from http://www.agentsheets.com/agentcubes/index.html
5 http://www.alice.org

68

http://www.agentsheets.com/agentcubes/index.html
http://www.alice.org/

of pseudocode. Alice supports object-oriented programming since it provides a visual palette with code
blocks, in which users can transfer to a window-based stage their program tiles to a word processor and
customize them if it is necessary (Werner et al., 2015). Once a program has been built, it runs as a 3D

animation which allows users to quickly see if the program is correctly executed with the desired behavior
or not (Figure 3-9).

handle style: & 8 = :;!A!
(efat ROtson Move Resite
| use stap B Seap detain

I - KGR iRroperties/Ranel)

| ome shees ¥ | .

Atmosphere Color = Wws Coor 00, 00541, 0
Above Light Color = WHTE
Below Light Color = (lllews Coor 0095, 00 0.0
Fog Density = 0.17
» Object Markers (0)
¥ Camera Markers (0)
- -

W L et

Ouadreped classes Sicherer classes Swanmer classes Transport clas

Browse Gallery By Class Hierarchy

| at casses [v

Figure 3-9: A screenshot of a game created in Alice®

Alice also gives a very tight loop of visual feedback since it is very clear the way that all characters
in the environment behaved (or not) according to the program that is integrated and produced as animation.
It can be used by students from high school (usually 11 years old and older) to the university level, as it can
support the development of logically meaningful programs by developing and programming storytelling
expressions. It also gives to novices a list of predefined events in a digital world, the lower right-hand
window, the core processor and, in the small middle-sized 3D window-based digital environment, which
hosts storytelling tasks if the code is executed correctly (Kelleher et al., 2007).

3.3.3.1. Advantages and disadvantages

The utilization of VPEs still today remains as an alternative and worthwhile option for learning
computer programming because of the easy to use graphical user interface (GUI) design features and
elements alongside with a visual palette that includes colored code blocks (Maloney et al., 2008). Interactive
environments provide many visualization techniques, such as the integration of behavior where someone
can copy and paste code blocks into visual elements without worrying about the code syntax as with the

use of general-purpose languages (Vahldick et al., 2014). This makes such programming environments

6 Figure 3-9 was retrieved 23 May 2017 from https://www.alice.org/wp-content/uploads/2017/04/Scene-Editor-Overview.pdf

69

https://www.alice.org/wp-content/uploads/2017/04/Scene-Editor-Overview.pdf

accessible to all programmers or even to those CS instructors who have not got an advanced background in
programming. VPESs such as Alice (Dann et al., 2000), Agentsheets/AgentCubes (Repenning et al., 2010),
Scratch (Resnick et al., 2009) are widely utilized to be formed and created with fully fledged integrated
development of visually-rich contexts, thus providing digital contexts for the development of interactive
games, digital artifacts, animations and storytelling expressions.

VPEs offer to users the opportunity to practice and to understand fundamental programming
constructs and concepts, with some of the most distinguished characteristics and features that provide
various advantages.

First, problem-solving and strategy analysis with code’s execution indicate that users should not
create solutions depending on its operability when planning a solution in an effort to transform their
knowledge from an algorithm described from a natural language into code. VPEs assist users to apply a
program solution using a visual palette with code blocks. All programming constructs and commands are
described as small phrases of codes and commands can be selected and executed as a program (Koorsse et
al., 2015).

Second, the execution of code blocks can assist users to learn how to trace a program and evaluate
the consequent results of the chosen constructs and commands variables at different points when are
integrated into digital elements in a window-based stage (Repenning et al., 2010).

Third, code comprehension can improve the abilities of reading and understanding code blocks
adequately with a purpose to find and fix errors (debugging). Such a process facilitates especially novices
to understand common algorithms or programming constructs in order to adapt and utilize different
problems, i.e. “know how” to solve similar problems (Dann et al., 2000). The error messages can allow
users to fix code errors and debug their program by giving visual feedback if the code blocks are not
resembled correctly without having a logical and operational order (Brennan & Resnick, 2012).

However, a wide range of previous studies has also mentioned some disadvantages. These are the
following (Brennan & Resnick, 2012; Howland & Good, 2015; Repenning et al., 2010):

o the use of visual languages are a good starting point especially for novices to learn how to use
fundamental programming constructs and to engage in coding tasks. Nevertheless, user interface
design features and elements of visual programming environments have not been designed to
encourage the development of a more general understanding in regard to even more complex
computational problems.

o the user interface design features and elements are easy to use, but students alone tend to create and

program interactive games or artifacts that are simple and without purpose.

70

e the users require not only the instructor’s support but also features and tools which can assist them
not only understand the visualized problem and its subparts but also to create workable plans and
programs in an effort that leads from a problem’s description to its solution.

o the iterative use of creating artifacts and projects using specific programming constructs or design
patterns (code blocks) which can be found on the Internet in order to be used for the same or similar
projects. As a result, they may be merely played or create artifacts, games and projects only by
using code blocks in the trial-and-error process rather than thinking before practicing and assessing
the correctness of their thinking solution plans into code.

While results from previous studies have shown a general improvement on students’ engagement and
participation, the use of visual languages as coding assistance tools, specifically for creating games, artistic
expressions or animations, does not alone improve students’ learning performance in long-term use (Grover
et al., 2015; Koorsee et al., 2015). Scholars may not have the appropriate experience to know all potentials
and capabilities of VPES so as to provide as many as possible different learning tasks which may have an
impact on the effectiveness of Scratch to assist students’ understanding about the use of programming
concepts to a larger extent (Vahldick et al., 2014). For all those reasons, it is really arguable if students
alone can fully understand the cognitive aspects of using coding in several tasks without guidance and have
a programming experience that may reflect on their overall learning performance (Howland & Good, 2015).

A brief summary of the advantages and disadvantages is presented in Table 3-3 below:

Table 3-3: Advantages and disadvantages of visual programming

Visual programming
Advantages + Problem-solving and strategy analysis with code’s execution is easier using a visual
palette with colored code blocks
+ Execution of code blocks without worrying about code syntax issues
+ Easy code blocks comprehension and organization
+ Debug with visual feedback if all code blocks are (or not) in a logical order
Disadvantages - Easy coding tasks are usually focused more on novices’ creations which are sometimes
are simple or without purpose
- Lack of features and tools that may assist further a visualized problem and its parts
- Use of specific programming constructs or design patterns (combination of code blocks)
similar to those that can be found on the Internet or from previous similar projects

3.3.4. Three-dimensional virtual worlds

The use of 3D virtual worlds (or 3D VWs) is increasingly becoming a potential task of the modern
global culture and in fact, there is a common conviction that is provided as another social phenomenon
(Schroeder, 2008). A 3D VW is a computer-based simulated environment that is accessible by many users
who can create a personal avatar (digital figure which are alike as a humans’ representation) so as to interact

and explore its features using various visual objects, participate in activities, and communicate with other

71

(or not) peers (Bell, 2008; Girvan, 2018). It can also offer a sense of realistic representation of problem-

solving situations due to the high representational fidelity that some in-world objects have. Users can

provide solutions in simulated problems that resembled as those of a real-world and track their errors

optically or acoustically in a specific grid (spatialized) in order to understand better the consequences of

their actions during the execution time (Esteves et al., 2011).

3D VWs can assist users to participate in various learning disciplines/domains due to their inherent

features that make such platforms to differentiate from others. These are the following:

The sense of (co-)presence that most users can “feel” when they are immersed in a virtual grid
allows their co-existence in a common virtual environment to (re-) construct metaphorical
representations (metaphors) with other avatars to exchange and/or apply their ideas without spatial-
temporal physical (or digital) constraints (Dalgarno & Lee, 2010).

The different types of communication using verbal (VolP) calls or non-verbal channels (e.g.
gestures or facial expressions that compose each user’s emotional state, IM and chat text). These
tools can facilitate interaction among users in a common virtual environment. It is important to be
referred that communication is spatialized available only in the specific grid where avatars are
online permitting them to communicate freely with others to understand the effects of a learning
situation in a collaborative climate (Esteves et al., 2011).

The embodiment representations of users as cyber entities (avatars) can allow efficient interaction
with other peers in a common 3D virtual environment (grid). At the same time, users can also use
representational functions or artifacts with high fidelity (Okutsu et al., 2013).

The expressiveness of animated and interactive 3D graphical representations of users (avatars) or
virtual places (grids) can be used for the presentation of interactive concepts that are difficult to
comprehend in digital or textual forms. With virtual metaphors, users are able to construct
meaningful artifacts or projects within a persistent 3D environment. Such an environment continues
to exist and develop even if no avatar to interact with it (Girvan et al., 2018).

The real-time simulation using interactive visual objects and their combinations that are created as
artifacts for the implementation of different learning scenarios. Students can create and use their
own tools or artifacts in experiential and problem-solving learning activities. The creation of 3D
simulations and microworlds can enhance knowledge representation of the explored domain (Rico
etal., 2011).

Beyond the above, two remarkable features of 3D VWSs which differentiate them from other

interactive environments are as follows. The first is navigation and it is achieved using two types of

navigation techniques: joystick-based input devices and steering metaphors based on movements of the

user's body as an avatar in order to walk, speak and fly inside a 3D VW. A second, equally important for

72

enhancing interactivity, is the opportunity that a user has to manipulate the visual objects and integrate
behaviors to those all those objects by simply clicking on them, moving them or rotating them to one, two
or three dimensions (Rico et al., 2011). In other cases, users are simultaneously connected to a “world” in
which they can communicate via chat text or voice call. Nonetheless, contrary to other social media
platforms, conversation and chatting in 3D VWs is only spatialized. Beyond the projection of a visually-
rich environment with content and objects that mimic those of a real-world, 3D VWs give the possibility
of viewing and exploring even abstract or hypothetical constructs by taking advantage of intuitive, natural
modality contexts for user-interaction tasks. Users can observe and explore in an intuitive way even data
that do not come from the real world. Visual elements and objects for scientific purposes are presented in
a 3D window-based virtual environment with user interface features and elements, constructs or processes
to be visualized using the appropriate metaphors, complex systems or processes in simpler forms, and/or
even in a hypothetical version (Dalgarno & Lee, 2010).

Instructional designers, scholars, and educators need to consider the utilization of the inherent
technological capabilities of 3D VWs as important for creating and programming learning platforms for
different subjects through (in-) formal instructional contexts. 3D VWSs can be utilized with respect of
facilitating practice-based learning exercises which can lead to the development of enhanced spatial
knowledge representation of an explored domain, because they are well suited to such physical simulations
permitting the full physical behavior of objects that are modeled, without restriction (Howland & Good,
2015; Robertson, 2012). In their review, Dalgarno and Lee (2010) have already noticed several educational
affordances using 3D VWSs, such as the formation of spatial knowledge representations that support learning
tasks, greater opportunities for experiential learning, increased motivation/engagement, and improved

contextualization of learning.

Categorization of three-dimensional virtual worlds

A great number of different 3D VWs have been developed and utilized not only for the socialization
or collaboration among users who are spatially separated (or not) across the globe but also for educational
purposes in different learning subjects and/or domains. Two are the categories of 3D VWs that can be
separated according to their technological capabilities, characteristics, and features. The first category is
social virtual worlds (SVWSs). In SVWs, users can co-exist in multiple 3D persistent environments without
having specific purposes, but with an easy production of progressive or interactive storytelling expressions
and imaginary (or not) game-based environments or on the part of upgrading their avatars’ appearance. The
most well-known virtual world is Second Life’ (SL) and it is created in 2003 by Linden Lab. SL is the most

widely known 3D VW with more than 700 educational institutions to have a grid inside it (Linden Lab,

7 https://secondlife.com/

73

https://secondlife.com/

2011). Companies and universities have already used SL to test ideas and products, organize workshops,
seminars, lessons, staff recruitment, and advertisements (Warburton, 2009). For many years, universities
(e.g. the Open University of the UK and Ohio University) and organizations (e.g. ISTE and New Media
Consortium) have utilized SL as an alternative learning platform for online or blended learning courses,

like course lectures, design-based activities or experimental problem-based tasks (Figure 3-10).

Figure 3-10: An educational region inside Second Life

Linden Lab and its founder Rosedale Philip have imagined the development of a 3D VW, in which
users can interact, play, work, and/or communicate. Each user can change the size, shape, color, texture of
the objects and give them physical properties (e.g. elasticity, gravity, movement). In addition, the Linden
Scripting Language (LSL) is used to deliver greater interactivity either among objects or among avatars
with in-world objects. Users can also place their objects only in a specific grid, or others’ objects from
different grids if they have the appropriate rights by the owners. Nevertheless, there are some limitations,
such as maintenance cost, and/or support, allocation of functional or learning resources with the appropriate
management of student activities which may prevent some educators and scholars to use 3D VWSs as
learning platforms (Dalgarno & Lee, 2010).

The second category is the 3D open source VWs (OSVWs). Users can become administrators
(owners) of a “world” having access to the open-ended core of programming language that is provided in
different server modes (networked or standalone) in order to develop their own virtual environments (grids).
OpenSimulator® (OpenSim) is the most popular 3D OSVW. It appears in 2007, and it has the same features
and characteristics with SL, allowing users to interact with their avatars using a-/synchronous

communication tools. OpenSim is a 3D server-based platform, open source, and free of charge. It is also

8 http://opensimulator.org/wiki/Main Page

74

http://opensimulator.org/wiki/Main_Page

interactive, visually-rich having a persistent environment accessible simultaneously by many (distributed
spatial or not) users. OpenSim is written in C and is based on Microsoft.NET. Users can create one or more
grids of virtual land and allow even other authorized users to manipulate and configure in-world objects
and elements (Rico et al., 2011). In addition, since the source code of the OpenSim server is “open” and
relatively easy to modify its programming scripting language, users can make the necessary changes,

depending on their needs and demands (Figure 3-11).

Figure 3-11: A region for creating a house prototype inside OpenSim

To “upload” a 3D OSVW, users need to have an Internet connection to download a client-viewer and
to create a standalone virtual environment to “run” it in a personal server or locally in a user’s personal
computer hard disk, so as to have the control over it as administrators. Also, beyond the server’s main
program itself that is available for download on its official webpage, there are some distributions that give
extra functionality and several preinstalled items, allowing a direct installation of a server with minimum

possible configuration, such as Diva®, Sim-On-A-Stick®®, and New World Studio®*.

3.3.4.1. Advantages and disadvantages

Among various platforms that have been used in the past, such as Learning Management Systems
(LMS) or Massive Open Online Courses (MOOCs) for various learning disciplines and domains, 3D VW,
such as Second Life, OpenSim have been considered as also appropriate platforms which can affect
positively students’ motivation and participation. The participation inside 3D VWs is a powerful magnet

for spatially (or not) distributed users, giving them incentives for socialization and collaboration due to the

% http://metaverseink.com/Downloads.html
10 http://simonastick.com/
1 http://www.hypergridbusiness.com/tag/new-world-studio/

75

http://metaverseink.com/Downloads.html
http://simonastick.com/
http://www.hypergridbusiness.com/tag/new-world-studio/

technological capabilities and instructional affordances that offer in blended or (fully) online instructional

formats. According to Dalgarno and Lee (2010), 3D VWs have various “affordances” that represent the

theoretical learning benefits. This term was mostly preferred over ‘benefits’ or ‘advantages’ in favor of

referring learning tasks, activities, theoretical underpinnings or pedagogical strategies supported by 3D

VWs and labeled as “educational potential”. Thus, 3D VWSs can provide various potential advantages from

both instructional-educational and technological-operational perspective. The most worth noting that need
to be denoted are the following (Dalgarno & Lee, 2010; Girvan et al., 2018; Topu et al., 2018; Okutsu et
al., 2013):

to develop and program realistic situations using a 3D simulation environment using a wide range
of several constructions with built-in tools and geometric objects. More specifically, visual objects
(primitives) of a 3D VW are similar as those of a real-world and obey in certain rules such as laws
of physics which are already existed from the system or can be integrated using programming to
configure them properly;

to manipulate rules of the spatial proximity of visual objects and elements with high
representational fidelity for various teaching and learning subjects. Therefore, users should specify
rules governing on how objects need to manipulate and create with other visual entities (avatars)
or other similar objects artifacts in order to be achieved several tasks, such as simulation, artificial
intelligence (Al), animation, modeling of natural laws to impart plausible behavior inside a 3D
environment;

to interact and/or move visual objects/elements by integrating behavior using a 3D VW’s own
programming language or handle those objects/elements using a keyboard and a mouse. Users
(spatially distributed or not) can also communicate with a—/synchronous communication channels
with other avatars through different instructional formats in blended (face-to-face and online) or
fully online settings, in order to be improved students’ learning achievements and outcomes;

to (co-)construct, (co-)manipulate and examine in-world metaphorical representations, artifacts or
primitives to design practice-based a knowledge domain. Users have also the ability to access and
experiment with simulation-based learning tasks, without having significant technological literacy
background. Learning content and design standards for a wide variety of learning subjects can
become more realistic and encouraging to relevant standards through implications for theory and
practice related to scientific domains, by following, trial-and-error, inquiry-based or problem-based

learning approaches.

Despite the growing interest in the use of 3D VWs, several studies have also noticed some

disadvantages. From a technological and functional perspective, 3D VWSs have also high demands on

computer hardware requirements and on the processing power, particularly to the graphics subsystem and

76

random-access memory (RAM). Also, due to the fact that 3D VWs were not designed for educational
purposes, the difficulty of creating learning materials and teaching environments is an issue that should be
taken into serious account from instructional designers and scholars. For example, and first of all, the
procedure for purchasing a virtual grid (island) in SL is sometimes complex, and time-consuming. The
computer equipment must possess the required technical features so that the environment can work
properly. Second, the development process for the multimedia objects takes a long time, and sometimes
users may lose or cannot control their personal objects/data when the SL’s servers crash (Coban et al.,
2015). Concerning the platforms that require fees, certain problems will likely be experienced during the
purchasing process. Nevertheless, there are many websites available that someone can download and
customize visual objects or elements according to their needs and interests. In such a case, users can also
upload/download visual objects from other grids if they have the appropriate rights or pay money to use
ready-made items from the SL Marketplace*?.

In the case of a 3D OSVW, the maintenance cost of a computer server for the development of such a
VW may also prevent the use of this technology. The technical features that someone needs from a server
can cause data loss. If some computers have inefficient technical features or even if the server is installed
in a computer with low specs, the 3D OSVW will have several “freezing” problems. In this perspective, the
deleted visual objects and elements are also difficult to be retrieved inside a 3D open-source “world” (Coban
etal., 2015).

A brief summary of the advantages and disadvantages is presented in Table 3-4 below:

Table 3-4: Advantages and disadvantages of 3D virtual worlds

3D VWs
Advantages + Simulated realistic problem-solving situations/tasks
+ Geometric objects and primitives for the development and programming of realistically
simulated constructions
+ Interaction of users with visual objects/elements that have realistic simulated
representational fidelity
+ Spatialized communication among other avatars using a—/synchronous channels can
support blended (face-to-face and online) or fully online instructional formats
+ Collaborative construction and manipulation of 3D visual objects in a common and
persistent environment
Disadvantages - High demands on computer hardware requirements in the graphics subsystem and RAM
- The development process for the multimedia objects takes a long time
- The maintenance cost is sometimes high
- Servers that host a 3D environment have crashed and “freezing” issues

From a research methodology and instructional perspective, while many studies have suggested

methodologies or educational models, there is lack of comparative studies to investigate the effectiveness

12 https://marketplace.secondlife.com

77

https://marketplace.secondlife.com/

of 3D VWs in contrast to other platforms (MOOCs or LMS) with the purpose to present substantial evidence
about the learning outcomes in several learning subjects and disciplines. According to the literature review
of Hew and Cheung (2014), there is an ever-increasing use of innovative applications in the educational
process and their integration into curricula. Additionally, there is an imperative need for conducting
empirical studies with respect to explore the effects on learning subjects and disciplines that can ultimately

gain by using VWs as technological means (Warburton, 2009).

3.4. The use of three-dimensional virtual worlds in programming courses

3D VWs have become very popular for the development of various applications from interactive
games to simulations with high representational fidelity. In this perspective, 3D VWs have been widely
utilized in different learning subjects of STEM education and specifically in programming courses. To
increase students’ engagement and participation, several educators and scholars have proposed their
instructional approaches using 3D VWSs. For example, Lim and Edirisinghe (2007) have presented results
from a pilot project exploring the use of SL for CS and programming through GBL tasks. The results
indicated an increased level of student engagement without previous experience, evidence of peer teaching
among avatars. Nonetheless, elements and tools inside SL such as notecards were an ineffective medium to
provide instructions, and thus further explorations and evaluations will be necessary to evaluate the
effectiveness of meeting the learning outcomes.

Rico et al. (2011) have utilized OpenSim for teaching introductory programming to high-school
students to measure their subjective experience when they used the V-LeaF environment. In their initial
empirical evaluation, Rico et al. (2011) have observed that there exists a students’ interest to interact with
a 3D VW. OpenSim assisted students to have higher levels of attention, and interest in learning
programming. Students had a feeling that learning the (scripting) programming language of OpenSim was
more interesting by interacting with visual objects and by collaborating with other avatars.

Esteves et al. (2011) have conducted action research to analyze if teaching and learning computer
programming could be developed within SL. Results supported the appropriateness of SL as a potential
platform for educational purposes in teaching/learning computer programming. The main results are the
identification of problems hindering the CS instructor’s intervention in SL and the detection of solutions
for those problems that were found effective to the success to use SL. However, some students who already
had contact with programming and specifically with the C language have presented many faults to
understand the basic programming concepts in LSL.

In their study of Jakos and Verber (2016) have investigated the effectiveness of using educational
games for learning basic programming skills by developing a 3D game via OpenSim called ‘‘Aladdin and

his flying carpet’’. The results have demonstrated that most 6"-grade students achieved all the learning

78

objectives. While students have achieved the biggest progress in ‘‘complete a program’” objective, the less
was observed with the tasks where ‘‘create a program’’ and ‘‘divide a problem’’ objectives. Lastly, there
was no significant difference observed in the results between girls and boys using OpenSim.

3D VWs as platforms for the implementation of learning scenarios in programming courses have
gained the researchers’ interest. Also, some other positive learning outcomes according to previous studies
highlighted several potential benefits. These are the following (Esteves et al., 2011; Rico et al., 2011):

a) high representation fidelity of visual objects and elements can improve the simulated problem-
solving contexts corresponding to real-world problems;

b) better-understanding use and analysis of programming constructs in collaborative tasks;

c) communication with remote a/-synchronous tools among students with their peers or among
students with the CS instructor can give prompt feedback to their in-world actions, and fix errors
into code; and

d) active participation of students in creating and programming visual tools that can help the
implementation of interactive experimentations.

In addition to the above, several are the most noticeable characteristics to support further
programming courses. First, self-evaluation and reflection upon students’ cognitive thinking process are
achieved visually or acoustically either by integrating behaviors in visual objects or by creating artifacts to
link abstract-concept formation to a more concrete game experience (Esteves et al., 2011). Second, students
can find more challenging a “‘divide and conquer” problem to achieve the learning objectives in a 3D
environment due to a variety of metaphors that can be developed and programmed (Jakos & Verber, 2016).
Third, participation in tasks is accessible to all users giving CS instructors opportunities to evaluate their
computing skills and competencies during the learning process or providing feedback using a/-synchronous
communication tools (Lim & Edirisinghe, 2007).

By taking advantage of 3D VWs, users can improve their cognitive thinking skills through engaging
game-based learning tasks (Jakos & Verber, 2016; Rico et al., 2011). Even if the creation of interactive
games in 3D VWs is still promising, there is no additional information on how students try to write and
execute correctly the code in order to integrate programming constructs as behaviors in visual objects by
using 3D VWs’ own scripting language, which is similar to C. Dickey (2005) has already noticed that the
built-in tools of 3D VWs can create a high-floor hurdle (“steep learning curve”) that school-age students
need to overcome. This situation cannot facilitate students’ engagement in problem-based tasks and
eliminate possible obstacles to understanding the correct use of programming constructs. Notwithstanding
the general acceptance of 3D VWs in different learning subjects/domains, students’ first-time entry has

become the most crucial parameter that might hinder their participation and engagement.

79

To be addressed the above issue in the most popular 3D VWs, such as OpenSim and Second Life,
Scratch for Second Life (aka S4SL) was designed and created by Rosenbaum (2008) in order to facilitate
students to write syntactically correct code and integrate behaviors into visual objects. It is an easy way for
users to integrate new behaviors into virtual objects (primitives) and predict their interactions inside a 3D
VW. S4SL (version 0.1) is a visual palette outside of a 3D VW, in which graphical blocks are snapped
together to create a program. Eric Rosenbaum with the Scratch team and the creator of S4SL modified an
internal build of Scratch (version 1.1). It comprises a visual palette with control flow statements and
command blocks, similar to Scratch’s palette, in place of being proposed the design patterns without
financial cost (Rosenbaum, 2008). The simple approach to “copy-and-paste” programming constructs can
help users to transfer colored code blocks of different colored as graphical puzzles that include loops,
conditional, motion or behavior into virtual objects’ notecards to integrate and incorporate those behaviors
and interactions. The combination of the S4SL visual palette with a 3D VW can determine a wide range of
high-ceiling/visually-rich applications to be enhanced users’ technological literacy that can lead to the
active production of dynamic interactions or behaviors in geometric solid objects or complex shapes
(artifacts). Thereupon, the use of a 3D VW like OpenSim with S4SL may satisfy the triplet of “low-
floor/high-ceiling/wide-walls” and it can become really useful for the reduction of the “steep learning
curve” that is created when students are involved in complex learning tasks via a 3D VW (Girvan et al.,
2013).

80

Chapter 4: Game-based learning to support computational thinking

This chapter presents the basic characteristic of game-based learning in educational settings
generally, and more specifically the potentials of using games created via VPEs and 3D VWSs in
programming courses. The analysis is focused on the use of game-making and game-playing
approaches which can support CT instructional contexts. This chapter also gives information about
the related works which have identified drawbacks and difficulties from previous works which have
followed either game-making or game-playing approaches. In particular, it gives a pathway to be
recognized which user interface design features and elements of games can foster students’
cognitive thinking skills related to CT in order to inform educators and game developers how to
design and develop simulation games (SGs) using interactive environments. To this notion, this
chapter informs how SGs can adequately address gender inequalities and influence boys’ and girls’

learning performance.

4.1. Game-based learning

The utilization of computer games in different instructional formats known as game-based learning
(GBL) is becoming a recognizable term inside school contexts (Maloney, 2008). GBL is a learning
approach in which students can use computer games in order to practice or gain knowledge inside (or not)
school contexts (Killi, 2005). “Play” is a significant facet of GBL because through it people learn how to
connect with and/or interpret their physical and social worlds (Gee, 2007). Many efforts have been
undertaken to develop digital environments in order to integrate educational content and materials into
games so as to increase students’ participation (Maloney, 2008). GBL in many learning subjects can greatly
improve students’ engagement and participation. Such an approach can also provide teachers with instant
feedback and tools that can support or even improve learning conditions through (in-) formal instructional
settings (Papastergiou, 2009).

With the emergence of digital games in 1970, various efforts have tried to integrate educational
content into computer games (Bodrova & Leong, 2003). A computer game is an emulation and a subtractive
version of a real or imagined world that has well-defined rules, targets, and limits in which players can
interact by playing. Following specific rules and instructions of a game, players can acquire knowledge
with appropriate guidance from the instructor (Squire, 2003). Computer games can be used as “bait” for
learning, vehicles for content, “tools” for engagement, and evaluation of users’ strategies for gaining
knowledge (Steinkuehler & Squire, 2014). Computer games have provided significant effects on computer-
assisted instruction and students' attitudes on knowledge acquisition in different scientific domains and

disciplines. As more schools and educational sectors have brought computers into classrooms, computers

81

games have become an easy way to assist teachers and scholars to participate most students and more those
who are getting bored in lectures or traditional instructional approaches which are related to any teacher’s
instructions.

Computer games cannot only bring to users the opportunity to learn through enjoyable and playable
settings with clear goals but also provide immediate feedback to their actions affecting their performance
if specific goals are properly achieved (Dickey, 2005). Immediate feedback is also prominent in good
formative assessment processes (Sitzmann, 2011). For instance, it is hard for instructors to give constructive
feedback and a set of plans for their lessons to incorporate probing questions and subsequent players’
actions. For this reason, when in-game feedback is integrated to a game, it can assist instructors to take
information about students’ performance and progress when they can achieve specific learning goals (Garris
et al., 2002). Computer games can also assist players to think systemically and consider the relationships
instead of isolated events or visual elements because within a game they can apply and adapt knowledge
into various situations (Gee, 2007). In this point of view, players need to think how to accomplish specific
in-game activities/missions and give answers to simulated problem-solving tasks with specific learning
goals through discovery problem-solving activities without spatiotemporal constraints to overcome
challenges that may have in a real-world (Garris et al., 2002; Papastergiou, 2009).

However, the use of computer games alone cannot give reasonable solutions to any problem that
teachers face today. In-game learning purposes and goals which are reflected on virtual characters’ abilities
and opportunities need to be announced from instructors in order to understand what problem-solving tasks
each player will face avoiding any possible constraints or difficulties (Gee, 2007). GBL brings to light
another aspect of learning, where players are encouraged to explore which in-game elements and objects
pave a pathway to gain knowledge. Such a finding can promote the construction of knowledge as a process,
in which players interact inside a digital environment to identify and gather information from visual learning
materials/elements so that propose solutions to problem-solving activities (Ke, 2009). Students in K-12
education when playing games can gain a variety of skills that are essential for their careers in the
professional sector, their personal development, and their well-being. There are appeared many examples
of games as indispensable “tools” for conventional (or not) instructional formats. Furthermore, a wide range
of skills such as critical thinking and problem-solving, communication and information management and
interpersonal and self-management players can gain by playing games (Partnership for 21st-century skills,
2009). Therefore, computer games can greatly fulfill students’ learning needs and experiences by
supporting various learning tasks which correspond to an imitation of operation, a process or a system
consisted of specific simulated problem-solving situations of the real world.

To integrate GBL approaches and thus computer games successfully inside (or not) school contexts,

students need to have opportunities that allow them to be educated and entertained within playable contexts.

82

Various design features and elements need to be referred and integrated into gameplay for certain game
mechanics which determine the overall characteristics of the game itself. “Gameplay” and “game
mechanics” are two terms that play a key role in a game and on how well it can satisfy users’ preferences,
needs, and expectations. According to Salen and Zimmerman (2004), “gameplay” is the process in which
players interact through a (computer) game. It entails specific patterns defined through game rules,
instructions, and challenges that players need to overcome in order to achieve specific learning goals. The
same authors have pointed out that playing a game requires from someone to know:
a) what s-/he needs to do inside a game in order to win by achieving specific objectives or what s/-he
loses if cannot achieve those objectives properly, and
b) what visual elements that help her/his actions to play and have an immersive game experience, such
as mystery, challenge, anticipated outcomes and game features. This comes in align with in-game
components or objects which can assist players to consider for which purposes a game is developed
and created, such as the use of a visual palette for learning how to program in order to interact and
respond to her/his actions.

From a design perspective, gameplay is developed to reveal constituent “game mechanics” (Salen &
Zimmerman, 2004). “Game mechanics” are designed to support each player’s interactivity through several
in-game activities. In other words, game mechanisms are the “black boxes” which may (or not) be visible
in the game; however, such mechanisms can allow the interaction among in-game elements and players
(Alessi & Trollip, 2001). Also, players need to understand in-game interactions among all elements and
objects, which are capable of receiving inputs and reacting to events made by producing outputs arising
from game mechanisms (Fabricatore, 2007). To this notion, players need to be focused on specific objects
or elements that they have to deal with in order to identify interactions that can happen inside a computer

game (Figure 4-1).

Challenges
Gameplay
Computer Actions
game
Game
mechanics RS

Figure 4-1: Components of a computer game

To understand the use of in-game mechanics through a concrete example, below it is presented a case

in which a player when pressing a button, the light will turn on. Assume that a player is required to walk

83

inside a dark room and s-/he needs to push a specific button in order to see what it is inside. A

comprehensive schematic representation of in-game mechanics to turn on this room’s light is formulated in

Figure 4-2.
ﬁ
1: See the red 2: Trigger the 3: Press the 4; The light
the dark room

Figure 4-2: A specific example of interaction among game mechanics

A wide range of characteristics corresponding to the gameplay in computer games have to do with

an effort to support new types of instruction is summarized as follows (Alessi & Trollip, 2001; Prensky,
2007; Squire, 2011):

Learning objectives: Educational games are designed to have specific purposes and learning goals
for one or more (interdisciplinary) learning subjects.

Specific instructions and rules: A clear set of rules that can facilitate the player's interaction with
the game is necessary in order to avoid misconceptions about its use for (educational) purposes.
Interactivity: The active role of players and the achievement of specific in-game goals are depended
solely on a player’s decisions and actions. Without the active participation of each player, the
concept of the game cannot exist.

Feedback: The game should have rewarding mechanisms for a correct decision and “punishment”
for a wrong one. In this demand, players will be able to distinguish successful from failed actions
and concentrate to succeed properly specific goals of the game.

Challenge: Every challenge has to do with uncertainty on specific goal achievements, hidden
information, and multiple levels of difficulty. The degree of challenges should be proportional to

the level and potential of players which support (or not) directly their actions.

Computer games can also become candidate platforms due to integrated technological and functional

features that can be useful in education. Some of the most important benefits which have been well-
documented are the following (de Freitas & Oliver, 2006; Dondi & Moretti, 2007):

Manipulation of in-game’s spatial or time conditions and/or digital character’s awareness according
to user needs and interests.
Simulation of real or imaginary situations with (or not) rules or behaviors that resemble (or not)

those of reality.

84

o Definition of specific goals and actions with specific results that are visually or acoustically defined
as positive or negative in regard to each player’s actions.

e The total cost of simulating or assimilating a learning situation that is applied in a digital
environment is lower than it is required with human resources in the real world.

To have the appropriate learning conditions inside a computer game, it is necessary to provide a game
with a wide range of tasks with deep level of interactivity so that to be engaged easily players on solving
certain learning goals with tasks and test how the outcomes inside the game are generated based on their
decisions and actions (Squire, 2003). Significant works in the domain of GBL (e.g. lacovides et al., 2014;
Prensky, 2004; Gee, 2007) have stated the importance in regard to the contextualization of gaming focused
on the quality of gameplay, when it is explicitly designed to support learning. To summarize, designing
learning tasks in computer games requires a multi-dimensional approach in which students need to develop

cognitive thinking and practical skills so that improve their learning outcomes.

4.2. Design features to foster computational thinking through game-based learning

GBL approaches are widely utilized in various scientific theoretical to applied subjects/domains. The
integration of GBL in formal disciplines such as programming courses has gained much attention for many
educators and scholars in recent years. More specifically, previous efforts have proposed the use of GBL
approaches to foster CT instruction through programming courses (Werner et al., 2014; Witherspoon et al.,
2017). For example, a computer game can fulfill the requirements in programming, since it presents
embodied problem-based contexts which can foster students’ problem-solving abilities to experience within
a scientific discovery process interacting with digital elements and objects (Repenning et al., 2010). In such
a learning situation, students need to analyze a problem or a situation and take decisions using skills related
to logical and algorithmic thinking for solving problems prior to the writing of a program so as to choose
the most appropriate programming constructs for proposing and executing their own solution plans
(Brennan & Resnick, 2012). This process may lead students to learn how to think before starting to program
by integrating interactions and rules inside objects/elements so that develop and observe game situations
and generalize those tasks later. Such learning approaches come in contrast to the most common exercises,
in which students tend to formulate and write correctly instructions combined with programming constructs
in order to observe the consequences of executing those constructs or use certain constructs corresponding
simply to specific problem-solving contexts (Liu et al., 2017; Theodoropoulos et al., 2016).

Various GBL approaches have been proposed by using interactive environments during the last
decade not only to foster the development of fundamental of CS concepts but also to influence students’
computational practices for solving simulated real-world problems (Grover & Pea, 2013). Newfangled CS

curriculums worldwide (ACM Education Policy Committee, 2014; Tuomi et al., 2017) and previous efforts

85

(Garneli et al., 2015; Grover et al., 2015) have indicated GBL approaches as more appropriate to fulfill
students’ learning needs and experiences, either with exercises for learning how to program by creating a
game (game making) or by playing a game (game playing). Firstly, “game making” aimed at facilitating
students to develop skills related to CT by following a scaffolding instruction so as to design and create
playable game-based applications with specific storylines and challenges. Programming in such an
approach is introduced as part of a wide-ranging activity, in which students are involved by making all in-
game contexts from characters design to game mechanics programming (Brennan & Resnick, 2012; Mouza
et al., 2016). Secondly, “game playing” aimed at assisting students to develop skills related to CT in a
specific game playing context. Programming is getting introduced as part of limited-ranging activities, in
which users are involved only by playing activities having a specific character that needs to make substantial
progress when specific constructs and instructions of a programming language are used to achieve specific
goals (Webb & Rosson, 2013; Witherspoon et al., 2017).

It is of great importance to mention that an interactive environment needs to provide simulated real-
world contexts where students can inherently their abstract thinking with logical reasoning and formalize
their thoughts into code through gameplay. In this perspective, students need to initially conceptualize a
process of using their skills related to CT in gameplay modes to concretize logically abstract concepts
without considering any in-game unnecessary information to describe and apply their strategies for
simulated problem-solving tasks (Kafai & Burke, 2015). Students as players in GBL contexts are
encouraged to take part in activities which can assist them to gain knowledge with a more general
understanding about the use of computational concepts so as to articulate skills related to CT and applying
their computational problem-solving strategies (Chao, 2016; Werner et al., 2015). In addition, they use
games as “tools” in order to explain their approaches on how to solve simulated (real-world) problems.

User interface design features play an important role in game-based learning and instruction. In
particular, prior studies (Grover & Pea, 2013; Lye & Koh, 2014) have reported that user interface design
features and elements can help K-12 students to understand computational concepts with the visualization
of 2D or 3D output so that solve simulated problem-solving tasks logically and methodologically using CT.
Additionally, there is a need for appropriate means such as visual tools and user interface design features
and/or elements combined with programming tools, such as a visual palette with code blocks that can be
used in order to be applied users’ computational problem-solving strategies into programs. Such features
are significant for testing and debugging those computational problem-solving strategies in an effort to have
visual feedback about the correctness of their programs. Other studies (Liu et al., 2017; Witherspoon et al.,
2017) have argued that a proposed interactive environment to support programmers needs to provide user

interface design features and elements in which creating and/or playing a game-based learning situation can

86

be closed on what they can understand in a simulated problem-solving situation by taking advantage of
intuitive, natural modality contexts for user-interaction tasks.

Many interactive environments from VPEs or 3D VWs have been extensively utilized in
programming courses using various features/characteristics with visual tools to foster and support CT
instruction (Grover & Pea, 2013; Lye & Koh, 2014). On the one side, VPEs provide several features to
support and foster CT in K-12 education. The graphical code blocks have shown considerable promise in
programming languages syntax, aimed at giving students a first introduction to coding tasks. To this notion,
users are focused more on a problem-solving process than in syntax complexity. The applicability and
visualization of algorithmic control flow (code tracing) can facilitate the organization and documentation
of code blocks. Thus, users can write, trace their code, find logical errors into their code, turn back to fix
issues and observe the consequences of their constructs and commands either in a stage screen by
integrating behavior into visual elements or when code blocks are not allowed by the system (visual palette)
to be combined together.

On the other side, 3D VWs which have a significant number of characteristics and features to support
and foster CT in K-12 education. A 3D VW offers a realistic representation of a virtual environment, in
which users can provide solutions to simulated problems, tracking their errors visually and acoustically in
order to understand better the consequences of their actions at the execution time (Esteves et al. 2011). 3D
VWs can be appropriate for the creation of interactive learning activities allowing users (Dalgarno & Lee
2010; Good et al. 2008):

a) to construct problem-solving contexts using content creation tools and practice competencies;

b) to identify the spatial association of visual objects’ rules so that provide prompt feedback on users’
actions in high representational fidelity virtual contexts; and

c) to understand metaphorical representations (metaphors) of their ideas without spatial-temporal
physical constraints through embodied actions, like view control, navigation or object
manipulation.

User interface design features which can lead to the improvement of users’ learning experience
through game playing in 3D VWs than in VVPEs should consider the following two significant issues. The
first is the “flow” state. It describes a state of enjoyment and psychological immersion referring to the
optimal experience through in-game challenges without matter the challenges that someone will face in
order to succeed in specific goals when s/-he is fully immersed through challenging and engaging activities
(Csikszentmihalyi, 1991). The second is the sense of “presence” that refers to a human’s feeling when s-
/he is somewhere else than truly is his/her location by taking part in computer-generated activities (Topu et
al. 2018). The intuitive modality of a 3D VW offers a realistic display of a digital environment displayed

in three-dimensions to provide visual objects and elements with high representational fidelity and a view

87

of changes on elements/objects’ motion. This feature can lead to a greater perception and subjective sense
of being each user in a place (sense of presence). Also, the immediacy of controlling events and
objects/elements in a 3D environment can assist in-world interaction among users and objects. Both
representational fidelity and immediacy of control can allow users to interact and predict behaviors by
integrating a 3D VW’s programming language into elements/objects for solving problems to execute and
assess the consequent results of those instructions/commands in problem-solving contexts which are

resembled as those in a real world (Dalgarno & Lee, 2010).
4.3. Learning to program through game making

4.3.1. Game-making learning approaches

The increasingly ubiquitous and frequent use of instructive guided game-making approaches using
interactive environments in order to assist students’ learning to think and practice “computationally” has
been largely extended and documented by previous studies (Good & Howland, 2016; Lye & Koh, 2014;
Werner et al., 2015). Within specific school contexts, the role of CS instructors is also very important in
the learning process since students need to learn how to program in an effort to demonstrate their
computational competencies and skills related to CT following game making approaches. This means that
another factor which can impact negatively students’ performance is the way of using an interactive
environment under specific instructional conditions (Mouza et al., 2016). In order to understand the use of
CS concepts with CT instruction through programming courses, users need to have the appropriate CS
teacher’s guidance, otherwise, they may find it hard even to participate (Grover et al., 2015). In this
perspective, students are almost invariably intimidated and frustrated in game making because they may
find difficult to program and present entirely a computer game without being experts or without the
substantial assistance from other experts or CS instructors (Koorsee et al, 2015; Howland & Good, 2015).

Various learning activities following instructive guided game-making approaches have not only
significantly influenced the motivation and involvement, particularly younger students in K-12 education
(primary and secondary) to participate in programming courses, but also their learning performance.
Indicative results from previous studies with regard to students’ learning performance have provided
significant evidence. More specifically, a game making approach aims to facilitate students to develop skills
related to CT in programming courses by following a scaffolding instruction so as to design and create
playable game-based applications with specific storylines and challenges. Programming in such an
approach is introduced as part of a wide-ranging activity, in which students firstly are involved by choosing
from several pre-defined elements, role-playing characters backgrounds, and objects to design and create

interactive-playable games. Secondly, students need to specify in-game core mechanics in order to start

88

programming via visual palettes comprised colored code blocks like a puzzle’s pieces and integrate
interactions among any chosen objects and elements. Several examples have extensively utilized VPEs.

The first most indicative is the use of Alice. Werner et al. (2012) have reviewed student-created
games to identify the CS concepts that are accessible, by counting the frequency of inclusion and successful
execution of programming constructs which students have utilized for their game creations. Students
needed to learn how to program using specific programming constructs by creating in-game challenges via
Alice. The same authors have also found that students’ learning performance to be at a higher level by
measuring game comprehension tasks which were simpler and lower on more complex to debug and present
their programs. The results from the same study have shown that many games created by middle school
students exhibited successful uses of high-level CS concepts such as student-created abstractions,
concurrent execution, and event handlers. To this end, Werner et al. (2012) have explored at the students’
games for evidence about the appropriateness of programming design patterns (i.e., combinations of
programming constructs) which integrated inside game mechanics. The same authors have identified a
number of non-contiguous sequences in programming constructs over the presentation of students’ game
creations in Alice indicating lack of high abstraction levels. These findings provide a major difference on
what students would like to create from the final creations as executed by the programming constructs that
were necessary to apply in-game mechanics and patterns for games that want to develop (Werner et al.,
2012).

The second indicative VPE is the use of Scratch. Mouza et al. (2016) have examined how equitable
pedagogical practices can be applied in the design of computing programs and how students’ participation
via Scratch following game-making approaches can influence them to learn better how to program. Students
seemed to use CS concepts, computational practices, and attitudes toward computing with the use of certain
CS concepts, such as loops, conditionals or data within or across objects to present more advanced
computational in-game concepts. Further, the majority of students were able to exhibit good computational
practices associated with code organization and documentation and to develop user-friendly programs with
smooth functionality. The results, however, indicated that most students utilized certain CS concepts, such
as loops, more than others, such as conditionals and data. Even fewer students utilized parallelism within
or across objects or more advanced concepts associated with operators.

Another game-making approach is the combination of Massive Open Online Courses (MOOCs) with
Scratch. The focus of Grover et al.’s (2015) study was to create and test programming courses for middle
school. As “Foundations for Advancing Computational Thinking” (FACT) titled all courses which were
aimed at preparing and motivating school students of secondary education for future engagement with
algorithmic problem-solving using Stanford’s OpenEdX MOOC platform in blended in-class for game-

making instruction. By assessing students’ final projects, it appeared that the FACT courses helped them

89

to build a substantial understanding beyond the revealed basic algorithmic flow of control in computational
solutions. Nonetheless, Grover et al. (2015) have identified that students had difficulties in proposing
algorithms as pseudocode in "semi-English" language and transform those algorithms into workable
consisted of the most appropriate programming constructs, such as loops, in an effort to apply their
computational problem-solving practices.

All the above game making approaches are instructive guided by one or more CS instructors.
Instructive guided game-making approaches can support the representation and visualization of problems
require predefined scenarios. In game making approaches, CS instructors can measure the students’ learning
performance by taking under serious consideration the following three aspects: a) the operability and
adequacy of programming constructs which are generated (or not) properly inside design patterns and if
such patterns are (re-)used extensively to be programmed other in-game objects or elements, b) the
frequency of applying problem-solving strategies which include how many times students repeat and reuse
(or not) programming constructs and instructions, and c) the description and appropriateness of integrating
interactions using design patterns into objects or elements and what is produced in their final creations.

There is good evidence that many instructive guided game-making approaches discussed above can
offer a way for novice programmers to engage in coding tasks. Nonetheless, other studies (e.g. Denner et
al., 2012; Howland & Good, 2015) have argued that visual programming may not be designed to encourage
the development of a more general understanding about the appropriateness of using computational
concepts in various problem-solving learning situations. Even though it is syntactically easier learning how
to code by combining programs via a block-based palette, the conceptual difficulties in understanding and
using code blocks such as variables and loops may still exist for solving simulated problems (Mouza et al.,
2016). Thus, the evidence is somewhat tenuous in terms of the sheer number of studies which have the
tendency to focus exclusively on the assessment of how correct design patterns are “running” based on a
code tracing analysis. Despite the fact that students seemed to participate in engaging tasks to master how
to code correctly a variety of programming concepts using only a visual palette with naturally-express
phrases (or words) to apply code blocks so as to avoid programming with a general-purpose language, it
cannot be guaranteed that they have learned the correct way how to think and practice correctly

computational concepts (Grover et al., 2015; Howland & Good, 2015).

4.3.2. Drawbacks and difficulties

Notwithstanding the foregoing potentials and benefits of using VPEs that have been described from
the above-mentioned analysis of prior works, several imminent difficulties to overcome and understand
what students finally learn with the integration of CT as a cognitive thinking process in programming

courses requires to have its own answer. In this respect, there is a dearth of recent evidence on whether

90

VPEs can engage students in a way of thinking how to solve simulated problem-solving tasks and prepare
them for more advanced programming activities. In this perspective, the utilization of interactive
environments has become a target of negative criticism from a growing body of literature for two reasons.

First, “Use—Modify—Create” approaches are focused on code block commands to be sequentially and
syntactically correct coding tasks, in which students get to use only certain CS concepts, such as loops,
more than others, conditionals and data by remixing or adding new code blocks to already existed inside
previous design patterns (Brennan & Resnick, 2012; Mouza et al., 2016). Nevertheless, with a specific
solution resulting from the use of frequently similar and/or commands/instructions with programming
constructs and data representation, students tend to create games that sometimes seemed to be similar to
others. Computational practices, therefore, cannot guarantee why students start using specific instructions
and programming constructs to solve problems.

Second, “Do-It-Yourself” as project-based (“bottom-up”) learning approaches are the most common-
in-use for learning computer programming. Several studies have presented results where students tend to
create and use ambiguous “trial and error” approaches to create their own computer games, either by
copying and pasting code blocks of other projects or by adopting only some programming constructs from
other design patterns, rather than creating patterns arising from a thinking before coding process which can
be considered as proposed solutions to problems (Grover et al., 2015; Werner et al., 2012). Nonetheless,
even when code blocks are correctly written and executed by synthesizing and/or copying-pasting parts
from the use of specific programming constructs, which are mainly observed by creating design solutions
of code blocks are sometimes related to the incomplete or non-project parts from the online system of
Scratch, such as the repeating or sequence programming constructs, then students mostly may provide
insufficient game applications. The results from game-making approaches regarding CT instruction through
programming courses seemed to become a process in which students can:

a) develop superficial knowledge that includes a limited understanding of the code’s purpose and fail
to apply their problem-solving strategies for proposing solutions to a problem. It seemed that they
cannot understand the main problem and its subparts in order to use and execute correctly specific
programming constructs to solve each one of those parts (Brennan & Resnick, 2012);

b) understand how to use CT skills into a cognitive thinking process in which they cannot apply their
thinking solution plans for solving a problem into the code to create in-game mechanics which is
needed during game playing. Therefore, students fail to inherently conceptualize their cognitive
thinking process in playable modes and concretize logically abstract concepts (Werner et al., 2012);

c) use only algorithm instruction by starting and ending with the construction of pseudocode or

flowcharts as “vehicles” in programming courses to create algorithms, students can comprehend

91

programming logic at a low level, and they fail to transfer this knowledge to other (general-purpose)
programming languages (Grover et al., 2015).

From the above analysis, the main concern is whether students can develop skills related to CT to
solve a problem when they also try to comprehend source code that implies in a “programming as activity’’
perspective. Furthermore, it is arguable if a set of skills related to problem-solving, logical and abstract
thinking are associated with a more general understanding of computational concepts and practices.
Therefore, students need to learn how to utilize innovative technological devices, acquire skills related to
CT in order to understand how to think before start coding and how to combine proper cognitive thinking

strategies using interactive environments.
4.4. Learning to program through game playing

4.4.1. Game-playing learning approaches

An alternative learning approach that gains ground in recent years is learning computer programming
by playing computer games. Computer games are also appropriate for instructive guided game playing
approaches in programming courses. Playing games can support CT instruction through problem-solving
tasks ranging from tightly constrained to “drill and practice” (Liu et al., 2017) to more open-ended
simulations (Lye & Koh, 2014). A game playing approach can become another option that can support
students to describe and practice their solution plans arising from their intuitive understanding of events in
different gameplay settings in favor of debugging and understanding the correctness of their thinking about
solution plans into code (Liu et al., 2017). It aims to facilitate students to develop skills related to CT in
specific game playing contexts which are exclusively pre-defined by game developers or CS instructors,
and many times such games are related to the most well-known (see for example “Minecraft” or “Angry
Birds”) that students tend to play in their daily life. Programming is getting introduced as part of limited-
ranging activities, in which students as players can learn how to program by playing specific in-game tasks
having specific characters, roles and goals in order to achieve certain goals by making substantial progress
when specific programming constructs and instructions.

During the last five years, many scholars and education researchers have admitted that students can
develop a variety of skills related to CT by playing games using VPEs, prototypes and web platforms.

Webb and Rosson (2013) have utilized semi-structured projects that could be modified with code
blocks errors via Scratch and Alice to introduce and support interaction among students and visual
objects/elements with CT concepts, including problem-solving, abstraction and basic computational
vocabulary. The findings from the same study have suggested that learning tasks in which scaffolding
instruction followed by using Scratch created an effective way to convey CT concepts and skills in a short

amount of time while serving as a funny and engaging learning activity. The same authors identified

92

considerable success on students’ overall problem-solving process by testing and debugging their workable
programs. Nevertheless, there was the only one study and it was not found any other related study to utilize
VPEs.

“Code.org” (or “Hour of Code) is a nationwide initiative by the CS Education Week. It was created
to introduce millions of students to one hour of using computers for learning computer programming with
more than 154.145 events to be successfully made'®. This website has also gained educators’ and
researchers’ interest. Theodoropoulos et al.’s (2016) study aimed at assessing the learning effectiveness and
motivational appeal of digital games for learning fundamental programming concepts, involving high
school students who have used games from the “Hour of Code” website. The same study investigated
students’ attitudes from gaming activities to reveal the quality of their learning experience based on
correlation analysis of their profiles with a twofold purpose. The first was to identify potential differences
in computer games that can promote algorithmic thinking and basic programming skills. The second was
to be measured students’ performance by investigating possible correlations with their cognitive styles and
any possible biases arising from the use of specific games. The results have suggested that specific games
utilization is an affecting factor that might produce different results regarding students’ preferences. For
example, some students might be better at puzzle games, whereas others might prefer adventure games.

In another study, Roman-Gonzalez et al. (2017) have suggested that skills related to CT by playing
games from the “Hour of Code” website assisted students’ learning in different coding tasks through logical
and visual-spatial problems including those for solving mazes or designing geometric patterns. Thus, in
their study, the same authors aimed at promoting and validating a new instrument called “Computational
Thinking Test” for measuring CT, and additionally the same authors have tried to give evidence in regard
to the correlations between skills related to CT, including other well-established psychological constructs
related to students’ cognitive abilities. The use of games from “Hour of Code” seemed to assist high school
students to understand several computational competencies. Nevertheless, the same authors have raised
concerns since such a process indicated clear biases on the development and use of specific cognitive
thinking skills, thus on what students tried to solve by playing games in specific problem-solving tasks.
Almost all those tasks were focused only on modeling scientific simulations and algorithmic composition
of code blocks which are integrated into visual elements.

In game playing approaches, CS instructors can measure the students’ learning performance by taking
under serious consideration the following two aspects:

a) the operability and adequacy of programming constructs which are generated (or not) properly

inside design patterns and if such patterns are (re-)used extensively by using programming

13 https://csedweek.org/

93

https://csedweek.org/

constructs and instructions in order to integrate behaviors inside visual characters having specific
in-game goals other in-game objects or elements, and
b) the frequency of problem-solving strategies which include and repeat (or not) only specific

programming constructs and instructions.

4.4.2. Drawbacks and difficulties

By following game playing approaches through semi-finished or simple pre-defined concepts of well-
known games using VPEs or “Hour of Code ™*, students can play computer games that promote algorithmic
thinking and basic knowledge about programming. Although in recent years the growth of CS curricula at
online venues such as “Khan Academy™” and “Hour of Code” is being extended, their success for the
development of deeper, transferable CT skills is yet to be empirically validated, and so far, lacking rigorous
assessments (Grover et al., 2015). Playing with artistic expression tasks to learn how to think and practice
“computationally” using well-known interactive games is remaining a respectable starting point that can
enhance students’ technological literacy. For instance, in “Hour of Code”, students try learning how to
program and understand the use of CT principles within the context of experiments using simulation models
from real-world phenomena, like “StarLogo Nova” (agent-based modeling paradigms) and within well-
known computer games, like “Minecraft” or “Angry Birds .

However, other researchers have the opposite view. In particular, previous studies (Roman-Gonzalez
et al., 2017; Theodoropoulos et al., 2016) have pointed out the following negative critics in regard to the
“Hour of Code” website:

a) it hosts games that do not fruitfully support all possible programming phases, but only specific
ones, such as problem-posing, coding, debugging, and pre-defined selected solutions without the
choice of proposing alternative solutions.

b) it causes possible biases, especially for design solution-thinking with skills related to CT that can
be restricted due to the pre-defined tasks which are accomplished by using specific coding design
patterns.

c) it cannot largely encourage students to develop higher-order thinking skills that can be
conceptualized as a set of cognitive thinking and abstract reasoning in order to generalize
adequately alternative solutions to problems. If students cannot understand and clarify problem-
solving thinking on how to apply computational rules and programming constructs into the code,
they may not properly use and express relevant basic computational concepts correctly to propose

their solutions to a problem encountered.

14 www.code.org
15 hitp://www.khanacademy.org

94

http://www.code.org/
http://www.khanacademy.org/

4.5. Addressing gender inequalities in programming using interactive environments

Over the last ten years, addressing gender inequalities in programming courses, especially in school-
age contexts, has gained considerable interest (Grover & Pea, 2013; Kafai & Burke, 2015). Persistent
concerns about the underrepresentation of girls arising also from the use of interactive environments,
particularly in the light of the encouraging elimination of the gender “gap” (Howland & Good, 2015;
Werner et al., 2015). Especially, lack of interest and participation of girls cause usually their overall
negative attitude towards learning computer programming (Cohoon & Aspray, 2006; Denner et al., 2012).

To engage all students in learning activities, an interactive environment needs to include a set of tools
that can allow boys and girls to create or play through problem-solving tasks, in which they are engaged to
learn how to use specific CT concepts including procedural, data abstraction, logical thinking, and
debugging (Grover & Pea, 2013). Various studies have paid attention on how to use interactive
environments and visual tools regularly for novices in favor of learning how to program as an effort to
bridge the gender “gap” in computing education. Over the last years, the field of CS that is related to CT
integration has already utilized various interactive environments which contain different user interface
elements and features. Users can start learning how to program using a visual palette to drag and drop code
blocks by playing (or by creating) which can be integrated inside visual objects of an interactive “world”
(Maloney et al., 2008; Resnick et al., 2009).

A variety of previous studies (Howland & Good, 2015; Mouza et al., 2016) have suggested some
learning approaches which can promote students to a greater understanding of CT in furtherance of avoiding
possible gender biases, and gradually to encourage their interest in more advancing programming
languages. On the one side, the experience with interactive environments to support CT instruction in
programming courses has significantly influenced not only boys’ and girls’ motivation and participation
but also the experience with interactive environments but also their learning performance through game-
making approaches. In their study, Kelleher et al. (2007) have found that girls could learn how to use
fundamental programming constructs with Storytelling Alice easier than for boys since storytelling as an
instructional approach for girls seemed to be more appealing.

Denner et al. (2012) have focused on girls’ computer competencies in programming through game
making. The alignment of storytelling and game design for the description of the correct use of
programming concepts is an important issue that can also influence girls’ participation. The results indicated
moderate levels of complex programming activities when girls have created games using Stagecast Creator.
Nevertheless, the same authors have found that girls have enhanced easier their computing skills due to
their better perceptions about computers as supporting tools, but with moderate levels to use or compose

the programming constructs.

95

Howland and Good (2015) have described the design and assessment of Flip, a visual programming
language aimed at helping middle school boys and girls to develop skills related to CT by creating their
own 3D role-playing games using Neverwinter Nights 2, in which players explore a large fantasy world and
take part in dramatic interactive stories. Specifically, a majority of girls were able to use Flip palette for
writing small programs and provide pseudocodes for storytelling creations and integration of code through
visual in-game behaviors to their visual creations at a larger extent than boys did. Thus, girls seemed to
write more complex scripts than did boys showing greater learning gains relative to the boys. Nonetheless,
even if girls succeed to write pseudocodes greater, the findings indicated a relatively small number of
conditional statements that were used in regard to the correctness of the proposed coding scripts which
cannot convince CS teachers about a broader understanding of CT and support their progress.

On the other side, the experience with interactive environments to support CT instruction in
programming courses has significantly influenced boys’ and girls’ learning performance through the game-
playing approaches. For example, Webb and Rosson (2013) have evaluated a set of computing activities
that illustrated in Alice, Scratch or Lego RCX and required by applying CT concepts, such as problem-
solving to finish some semi-structured tasks. All tasks seemed to be engaging and motivating for girls as
working on their own for computation problem analysis and solution expression. In the same study, girls
learned and reused successfully better computational concepts through fading scaffolding tasks such as
problem decomposition and mapping into computational solution steps than boys. The same authors have
paid certain attention to tasks that novices can become overwhelmed if asked to start from scratch when
using a computing tool for the first time; starting from a working example that may offer several
opportunities to explore and build confidence in design thinking and programming skills usage.

Roman-Gonzalez et al. (2017) have intended to provide an instrument for the measurement of skills
related to CT and give evidence through association of CT with key related psychological constructs using
“Hour of Code”. The same authors argued that the projection of logical and visual-spatial problems, such
as solving mazes or designing geometric shapes can assist the development of CT. Also, it appears a greater
spatial ability of boys with higher values in the computational complexity of scripts written as algorithmic
solutions which applied into more correct programs than girls had through in-game tasks including mentally
logical and visual-spatial problems. The results supported the opinion that CT is associated with general
mental and cognitive aptitudes, such as inductive reasoning, spatial and verbal abilities. This corroborates
that spatialized problem-solving activities are a remarkable option for the conceptualization of skills related
to CT.

Many interactive environments have provided supportive features and elements assisting students to
create their own artifacts and link abstract-concept formation to a more concrete game experience for

measuring boys’ and girls’ learning performance. Nonetheless, project content analysis through artifacts

96

reflected as a means of assessing CT but it quickly revealed limitations. More specifically, existing works
have mostly focused on the assessment of students’ final creations in order to understand how they tried to
develop and use skills related to CT from problem formulation to solution expression (Howland & Good,
2015). Such an effort refers to a code analysis of design patterns based on the applicability and visualization
of control flow (code tracing) created by (simple or nested) programming constructs (Denner et al. 2012).
As shown by analyzing previous studies, the measurement of students’ learning performance was based on
design patterns and game mechanics which were created by combining specific programming constructs to
understand if those patterns (or mechanics) that have a rationale to be included in gameplay modes (Kelleher
et al., 2007). The game mechanics include specific rules for actions, behaviors, and control mechanisms
that can be available to each player in order to provide specific actions when each one needs to take and
program his/her decisions for specific gameplay modes (Werner et al., 2014). Even if developing and
programming gameplay using correctly programs, and this is proved through a code tracing analysis;

however, it is arguable whether the use of programming constructs can also cause (or not) abnormal

program execution for problem-solving tasks (Webb & Rosson, 2013).

A brief summary of results and general outcomes from the above-mentioned studies are presented

below in Table 4-1.

Table 4-1: A summary of results from previous studies which have tried to address gender inequalities

Studies following game
making approaches

Programming
environment

Results

General outcomes

Kelleher et al. (2007)

Storytelling Alice

Girls performed better in
learning how to program
with storytelling tasks
than boys.

Denner et al. (2012)

Stagecast Creator

Girls have enhanced
easier their computing
skills but also achieved
moderate levels of
complex programming in
game making activities.

Howland and Good
(2015)

Flip palette combined
with Neverwinter Nights
2

Girls have written more
complex scripts than did
boys showing to have
greater learning gains
relative to the boys.

+ Visual palette can assist
boys and girls to learn how
to program

+ Game-making activities
motivate and engage boys
and girls.

- Previous studies were
focused on project content
analysis of students’ final
creations.

- Less attention was given
on what finally students learn
in computer programming
following game making
approaches.

Studies following game
playing approaches

Programming
environment

Results

General outcomes

Webb and Rosson
(2013)

Alice, Scratch or Lego
RCX

Girls learned and reused
successfully better
computational concepts
in simulated problem-
solving tasks.

Roman-Gonzalez et al.
(2017)

Games in “Hour of
Code”

Boys had more great
spatial ability with
higher values in the

+ Game playing approaches
can lead students to develop
and use skills related to CT
from problem formulation to
solution expression.

+ VPEs are also utilized to
be manipulated into

97

computational simulated and game-based

complexity of scripts problem-solving contexts.
written as algorithmic - A limited number of works
solutions which applied have tried to investigate

into correct programs gender inequalities through
than girls through game playing.

mentally logical and - Lack of evidence to be
visuospatial problems. investigated how interactive

environments can support
students to think about how
to use more advanced
programming activities in
problem-solving tasks.

Concerning all the above, a growing interest is still today existed on how girls and boys learn
computer programming following GBL approaches. Several works were conducted in order to measure
students’ learning performance based on the implementation of coding tasks and specifically on the code
tracing analysis through game making. Nonetheless, there is a lack of recent evidence on whether interactive
environments can engage students in a way of thinking more advanced programming activities by
understanding why specific programming constructs need to be utilized in specific problem-solving tasks.
Recent studies (Denner et al., 2012; Howland & Good, 2015) have already advocated that programming is
motivating for boys and girls either through game making or game playing (Webb & Rosson, 2013; Roman-
Gonzalez et al., 2017) to eliminate any potential gender inequalities; however, few have presented findings
on what they finally learn. In other words, there are widespread concerns over the lack of computational
understanding and its effects in solving problems, specifically of girls in programming and how to address
this imbalance needs further investigation. Foremost, there is not yet identified any study to investigate
whether the use of interactive environments by playing to learn how to program has an impact on boys’ and

girls’ learning performance.

4.6. Recent trends and challenges

The widespread acceptance of GBL in programming courses to support CT instruction is inevitably
reliable and well-founded by using interactive environments. As described in previous sections, a
substantial amount of interactive games has been proposed by following game making approaches, ranging
from simple simulated problem-solving learning tasks in developing and programming adventure games
(Denner et al., 2012), role-playing creations (Howland & Good, 2015), albeit less studies have followed
game playing approaches focused on problem-solving tasks through maze games (Roman-Gonzalez et al.,
2017) or simulations such as feeding a fish (Webb & Rosson, 2013). Computer games and specifically
simulation games (SGs) have received great attention and rapid growth so as to assist users to become more
active in several tasks because they can connect adequately theory and practice in a knowledge acquisition

process. In specific, users can develop problem-solving and computing skills in CS courses, because they

98

can develop and apply their strategies as solution plans (Lye & Koh, 2014). Likewise, in regard to the
integration of CT into programming courses and specifically in K-12 education, previous studies (Fluck et
al., 2016; Webb et al., 2017) have stressed to the importance of establishing visual or/and symbolic
representations which can be used to introduce and explain computational concepts related to abstraction,
algorithm, automation, decomposition, debugging and generalization. Without using one of the appropriate
forms of notation, students at the age of 13-16 years-old may really strive to develop cognitive abilities for
spotting and solving problems (Kalelioglu et al., 2014; Mouza et al., 2016).

The integration of GBL in programming courses for CT instruction has been extensively utilized in
K-12 education providing many good learning tasks. Cooper et al. (2003), for instance, have noted that
although students may originally be attracted in programming due to their previous experience with
computer games and multimedia applications, they can quickly be discouraged as they may find extremely
difficult and time-consuming to create their own. In this perspective, students may pay more attention to
design games aesthetically, without having to learn how to transform specific algorithmic steps into the
source code. In their meta-review, Costa and Miranda (2016) have provided serious evidence to overcome
some of these problems and facilitate the learning process in programming learning at an initial stage. The
same authors disclosed that students should first acquire the programming’s logic of a programming
language and after that its syntax. This relies on understanding the creation of a game and “know how” S0
as to solve a problem that students face (Cooper, 2010; Kafai et al., 2014). Also, the superficial use of
learning practices such as those reflected on “drill and practice” through game making approaches can lead
to insufficient computational practices, where players tend to experiment with actions with no reflection on
learning, but simply experimenting and programming artifacts until their scores can be improved (Brennan
& Resnick, 2012). Such a process requires only on “trial and error” coding tasks, thus it cannot impact
students’ learning performance (Denner et al., 2012; Garneli & Chorianopoulos, 2017). For instance, an
easy or a simple game using only “drill and practice ” can assist them at an initial problem-solving learning
stage to practice without worrying about the syntax complexity. Nonetheless, even in this case, they may
struggle to rationalize and apply similar code blocks for more complex or larger problem-solving tasks with
logical reasoning in order to propose a solution (Hong & Liu, 2003; Liu et al., 2017).

To overcome the aforementioned design challenges, there is a broad agreement arising in which it is
converged on the game playing in order to prevent students from creating games without specific purposes
or with very simple problem-solving tasks for CT instruction in programming courses. During the last four
years, prior efforts have been appeared to suggest the creation of interactive environments following design
features and guidelines. Furthermore, prior literature reviews (Burke & Kafai, 2015; Lye & Koh, 2014)
have argued that computational problem-solving strategies require the development and connection of skills

related to CT combined with programming skills for presenting design patterns as solutions to a problem.

99

In specific, Lye and Koh (2014) have proposed a constructivist (thinking-doing) problem-solving learning
approach through game playing, including the use of a simulated (authentic) real-world problem, the
adoption of information processing strategies, the scaffolding of the program construction with the
instructor’s feedback to more complex activities S0 that assist students’ reflection. In their review, Kafai
and Burke (2015) have suggested the connection of serious gaming opportunities, like the well-known game
SimCity with the newly released Scratch 2.0, where students will both know how playing a game can
contribute to a better understanding of a simulated problem-solving situation and propose a solution through
programming. Key features that can enhance a more in-depth learning process to explore with a high-level
of freedom, possible prediction of actions, analysis, and testing of any ideas/hypothesis based on the
abstract and analytical reasoning in an effort of planning and applying solutions based on their problem-
solving strategies (Good et al., 2008). Thence, educators need to propose the appropriate learning conditions
through interactive environments for having all students able to define clear and unambiguous instructions
for carrying out a process by developing skills related to CT and the expression of a solution into code
(Good et al., 2010).

Many learning tasks arise from the idea of “low floor, high ceiling” through simulated problem-
solving tasks using interactive environments. It is one of the most important issues which have been widely
utilized for the creation of environments to foster CT (Lye & Koh, 2014). Using such principles means that
students learn program and mostly novices try to create workable but easy to create programs (low floor),
and tools which can be used in order to assist them leverage such tools to create more advanced programs
(high ceiling) (Maloney et al., 2008; Repenning et al., 2010). Previous studies have disclosed that to become
effective and promote the development and use of CT an interactive environment, it needs to provide
various tools where students must have a low threshold and high ceiling tools that can support gender
equality. For example, proposed activities to foster CT are those of abstracting the data information,
integrating pertinent behaviours into visual agents, and applying rules or instructions need to be combined
with programming constructs so that evaluate the consequences of those instructions and constructs via
modeling and simulations (Kafai & Burke, 2015; Repenning et al., 2015). Other studies have argued that
computer simulations need to support gender equality. For instance, discovery learning tasks are more
preferable rather than tasks focusing on the creation and programming of a specific storyline that characters
are included or other fast-paced actions with conditions that demand to fight with other digital characters
(Robertson, 2012). An indicative example will be a game when players have specific roles, storyline,
simulated problem-solving tasks, and goals with the right toolset to produce different coding tasks in well-
designed instructional contexts. Within these contexts, boys and girls can easier master abstract
computational concepts, construct meaningful computational artifacts and apply their solution plans
(Carbonaro et al., 2010; Good et al., 2010; Grover et al., 2015).

100

In spite the growing popularity of CT into computing curriculums for promoting many 21% century
competencies in K-12, GBL approaches related to game making and game playing are still recommended
as noticeable approaches which have been utilized for CT instruction among school contexts. Literature
reviews in the field of CT instruction (Grover & Pea, 2013; Lye & Koh, 2014) and previous studies
(Repenning et al., 2010; Werner et al., 2015) have suggested that GBL activities can be developed through
the demonstration of computational competencies such as conditional logic, iterative and parallel thinking,
and/or data abstraction. Although recent research has recognized the appropriateness of using interactive
environments, others have an opposite view. For example, previous works which have already utilized
VPEs, such as Scratch (Grover & Pea, 2015), Alice (Kelleher et al., 2007) or AgentCubes (Repenning et
al., 2010) have supported the opinion that such environments are lacking appropriate means to provide
abstract functionality into functions and procedures including a design scaffold for teachers and students to
transparently map out and observe subparts of problem with a view of encouraging the development of a
more general understanding of computational concepts and express more properly a solution plan.
Accordingly, a substantial body of relevant literature reviews about teaching CT through computer
programming courses (Burke & Kafai, 2015; Grover & Pea, 2013; Lye & Koh, 2014) have come to the
statement that there is an overt “gap” concerning either the creation and use of alternative platforms or the
combination of already known tools for game-playing tasks in such an interactive environment with the
purpose to assist computational understanding and learning in this research area for students in K-12
education. For this reason, previous works (Repenning et al., 2015; Hsu et al., 2018) have admitted that the
development of new interactive game-based environments not only influence the “flow” experience in
learning processes built expressly to foster CT among school-age children, but also to develop and use
cognitive thinking skills such as problem-solving, abstract, logical reasoning and programming.

A brief summary of game design trends and challenge is provided in Table 4-2 below.

Table 4-2: Recent trends and challenges in game design to support computational thinking instruction

Issues related to Related works Trends

CT instruction

Challenges

Learning approaches

Carbonaro et al.,
2010;

Good et al., 2010;
Grover et al., 2015;
Repenning et al.,
2015

a) Avoid difficult and time-
consuming creations.

b) Evade “drill and practice”
approaches through simplified
and gamified tasks.

c) Dodge any “trial and error”

coding tasks.

a) Connect theory and practice
in a knowledge acquisition
process to develop problem-
solving and coding skills.

b) Establish visual or/and
symbolic representations to
assist students explaining their
computational concepts.

c) Support students’
understanding on using skills
related to CT through
instructive guided approaches

101

each simulated problem-
solving tasks.

Learning tasks

Grover & Pea, 2013;
Repenning et al.,
2010;

Kafai et al., 2014;
Witherspoon et al.,
2017

a) Offer in-depth learning tasks
to explore all users with a high-
level of freedom, to predict their
in-game actions, to analyze and
test their ideas/hypothesis.

b) Require well-defined
problem-solving tasks.

c) Execute programming
commands and workable
programs in “low floor, high
ceiling” simulated problem-
solving tasks.

a) Provide game playing
conditions for the development
and connection of skills related
to CT combined with
programming skills.

b) Present different design
patterns as solutions to each
subpart of the main problem.
c) Achieve in-game goals with
the right toolset to produce
different coding tasks.

User interface
design

Burke & Kafai,
2015;

Liu et al., 2017;
Lye & Koh, 2014;
Webb & Rosson,
2013

a) Provide in-game visual
objects/elements which assist
users to abstract the data
information.

b) Design game where players
have specific roles, storyline,
simulated problem-solving
tasks.

c) Develop programming tasks
into game-based environments
to foster the students’ flow state
to enhance their learning
experience.

d) Allow students to apply rules
or instructions combined with
programming constructs to
integrate pertinent behaviours
into visual agents using
programming tools like a visual
palette with code blocks.

a) Simulated (authentic) real-
world problem connection of
serious gaming opportunities.
b) The creation of SGs using
VPEs or other platforms which
can provide problem-solving
tasks with realistic simulated
representational fidelity.

¢) Analyze the demonstration
of core concepts by observing
realistic simulated objects and
elements in order to program
finally design patterns to apply
any proposed solution.

In addition to the above, the lack of theoretical design frameworks is revealed in regard to the correct
use of specific requirements and guidelines for the creation of a computer game, and specifically for SGs
in order to support CT instruction through programming courses (Lye & Koh, 2014). Without having
specific design guidelines, instructional technologists, scholars and educational designers cannot be
informed on how a SG should be designed to enhance the learning experience and to assist players to link
abstract concepts with more concrete game experience (Grover & Pea, 2013). Many educators and
researchers (Chao, 2016; Liu et al., 2011; Witherspoon et al.,, 2017) have asserted that students’
computational problem-solving strategies can be applied via SGs; thus, influencing to a large extent their
learning performance. This means that students need to practice more effectively CT concepts such as
abstraction, logic reasoning and algorithmic thinking in a simulated real-world context (Grover et al., 2015;
Liu et al., 2017). Therefore, an interactive environment needs to foster CT and support the development of
SGs having all those design features and elements which can increase students’ engagement in pursuit of

explaining and proposing their solution plans for simulated problem-solving situations.

102

4.7. Computer simulation games to support computational thinking

GBL in programming can provide engaging exercises/tasks in which players can participate and
facilitate their flow experience, regardless of gender or socio-cognitive background (Liu et al., 2011). An
indicative example of games that can facilitate players’ flow experience is the utilization of SGs. Generally,
SGs are increasingly being applied to foster higher-level abilities in educational contexts, as they may
facilitate an active learning experience. A SG covers a wide range of simulated real-world activities in
which students can participate in various learning tasks, such as training, analysis or prediction of in-game
conditions. Users have specific roles and well-defined responsibilities or constraints in simulated (real-
world) activities can create a visual-rich and engaging digital-oriented environment (Garris et al., 2002).

More specifically, the use of a SG in programming courses can present embodied problem situations
fostering students’ problem-solving ability, and thus experience to learn how to use fundamental
programming constructs within a scientific discovery process (Liu et al., 2011). It encompasses several
embodied simulated real-world problem-solving situations that foster students’ abstract thinking and logic
ability, when they are in “flow " state since they are more likely to demonstrate in-depth learning experience
when applying their own computational problem-solving strategies. Players can study through several
exercises in learning-by-example perspectives and develop skills, such as higher-order, analytical reasoning
and problem-solving (Liu et al., 2017). Also, players can address problems arising from specific problem-
solving situations and trying to recognize the consequences of their decisions by using several programming
constructs in order to propose solution plans to several problem-solving situations (Witherspoon et al.,
2017).

Simulation prototype games created in VPEs and 3D environments have gained an increased
momentum, especially in high school programming courses. Following game-making approaches, several
studies have controversial results about students’ learning performance. For example, in their study,
Brennan and Resnick (2012) have assessed students’ performance based on strategies followed to create
interactive games using Scratch. In particular, programming interactive media, such as the creation of
simulations about virtual countries, with the player’s making decisions to support and control trigonometry
in physics simulations were utilized for the development of CT.

Repenning et al. (2015) have proposed a strategy that gives opportunities for students to design and
program STEM simulations by leveraging CT skills acquired from game design simulations using
AgentSheets and AgentCubes. The same authors have supported the opinion that the use of interactive
environments beyond programming is also to explain the idea of CT into gameplay. Their findings indicated
that students’ learning abilities and problem-solving skills can be extended and transformed to the next

level of problem domains; that is ranging from SG’s formation to its sufficient implementation.

103

Garneli and Chorianopoulos (2017) have conducted an empirical study to investigate CT skills
development and student motivation under two diverse approaches. Two middle school student groups were
taught computer programming in two different ways; one group represented certain physics concepts by
creating a simulation, while the other group copied the same physics concepts on a video game using
Scratch. The results from their study unveiled that a video-game construction approach could be challenging
since students had a higher performance creating “realistic” digital applications based on advanced
graphics, sounds, and user interfaces for learning coding and science concepts.

Recent research on learning computer programming showed that an active and constructive process
through the creation of 3D game prototypes can become more effective when it comes to problems in
simulated real-world contexts. To this notion, studies have reported that problem-solving, game-based,
activity-led exploratory learning tasks can support a student’s analytical and logical reasoning thinking
skills. For example, in their paper, Liu et al. (2017) have presented debugging exercises to middle school
students and analyzed problem-solving behaviors that integrated into visual elements/robots of a 3D
prototype game called “BOTS”. The same authors have identified behaviors in relation to problem-solving
stages and correlated these behaviors with the student prior programming experience and performance.
Nonetheless, learning how to program by playing games and debugging programs are two of the most
significant issues that require a deeper understanding for problem-solving than writing extensively so many
lines of code. The results indicated that problem-solving behaviors were significantly correlated with
students’ self-explanation quality, a number of code edits, and prior programming experience.

Witherspoon et al. (2017) have conducted a study to evaluate the effectiveness of a programming
curriculum for developing knowledge and skills related to CT using 3D visual robotics. This curriculum is
designed to scaffold the use of technologies such as graphical programming languages and 3D virtual
robotic simulations to produce optimal conditions for developing skills related to CT. The visual robotics
was related to significant gains in pre- to post-test scores, with larger gains for students who participate in
a scaffolding programming approach, within the context of virtual robotics. The simulations supported the
development of generalizable CT concepts and skills that are associated with the increased problem-solving
performance of students.

A brief summary of results and general outcomes from the above-mentioned studies which have

utilized SGs is presented below in Table 4-3.

Table 4-3: A summary of results from previous studies which have utilized simulation games to support

computational thinking instruction

Studies following game Programming Learning tasks General outcomes for
making approaches environment designing a SG to support
CT instruction

104

Brennan and Resnick
(2012)

Scratch

Designing and
programming several
interactive media such as
the creation of
simulations.

Repenning et al. (2015)

AgentSheets and
AgentCubes

Designing and
programming SGs (e.g. a
town with traffic etc.).

Garneli and
Chorianopoulos (2017)

Scratch and simulations

Designing and
programming the
function of a basic
electric circuit by
creating a simulation and
by creating a video game
in which players need to
achieve specific scores in
order to win.

Studies following game
playing approaches

Programming
environment

Learning tasks

Liuetal. (2017)

BOTS (3D prototype)

Programming and
integrating behaviors in
relation to a 3D robot’s
movements in problem-
solving stages using
students’ programming
experience and
performance (debugging
eXercises).

Witherspoon et al.
(2017)

Games in “Hour of
Code”

Programming and
integrating behaviors of
3D virtual robotic
simulations to produce
optimal conditions for
developing skills related
to CT.

a) SGs need to not provide
superficial gameplay and
problem-solving contexts
very easy and without
purpose.

b) When students are in the
“flow” state via SGs, they are
more likely to demonstrate
in-depth learning on how to
apply computational
problem-solving strategies.
¢) With the use of SGs,
students can utilize their
skills related to analytical
reasoning and critical
thinking.

d) Well-designed learning
tasks can assist students not
only in spotting and solving a
problem but also on applying
efficient and effective
problem-solving design
patterns.

Based on the above, the use of SGs can benefit players when interacting with in-game virtual elements
which are not so simple but not also so difficult, and thus without having superficial gameplay. Within
these contexts, learning is arising from users’ active participation and engagement through interactive and
immersive tasks in simulated problem-solving contexts. In general, students are able to learn by
participating in simulated problem-solving learning situations and activities in a “constructivist” approach
through instructive guided examples, scaffolding instruction, and reflection to their actions (Brennan &
Resnick, 2012; Lye & Koh, 2014; Witherspoon et al., 2017). In specific, when students are in “flow” via a
SG, they are more likely to demonstrate in-depth learning on how to apply computational problem-solving
strategies such as analytical reasoning and learning-by-example. Therefore, there is a need to have a better
understanding about the effects of SGs on students’ problem-solving strategies not only in spotting and
solving a problem but also on applying efficient and effective problem-solving design patterns (Liu et al.,
2017; Repenning et al., 2015).

105

Chapter 5: PIVB - A proposed theoretical design framework

This chapter outlines widely referenced serious game design frameworks in terms of choosing,
rationalizing and using the most appropriate one for the development of a SG to support CT
instruction in programming courses. Since less are today known about how game playing can be
associated with the development of CT and how fundamental programming concepts are supported,
this chapter gives main reasons of using a SG to support the development of students’
computational problem-solving strategies. Such a design framework derives mainly carried out on
related works, thus aiming at addressing the “gap” identified by suggesting several promising
features from the use of contemporary interactive environments which can support the development
of a SG. Additional information is provided regarding the development of game playing conditions
of a SG prototype with its architecture and illustrations in regard to its functionalities. The threefold
purpose of this chapter is: (a) to propose a theoretical design framework called “PIVB:
Programming for Interactive Visual Behavior” for the development of a SG; (b) to suggest design
decisions made and criteria with design guidelines considered to understand someone how a SG
can benefit students to think “computationally” in order to express and apply a logical way of
thinking to a solution using fundamental programming constructs; and (c) to describe a design
rationale on how in-game elements/features should be mapped in the direction of assisting students
to use their problem-solving, logical and abstract skills so that solve real-world simulated

(computational) problems.

5.1. Rationale

A theoretical framework provides a general representation of relationships among distinctive
characteristics and key concepts which are resulted by previous theories and models. It can assist
researchers to explore a phenomenon permitting them to intellectually transit from simply describing with
a view of giving specific guidance with a set of principles that embodies a specific direction by which a
chosen research approach for a topic will have to be undertaken (Rocco & Plakhotnik, 2009). Within such
a context, a theoretical design framework for programming courses needs to include the following four
steps:

a) the analysis of problem statement in relation to the determination of the learning objectives that
programming courses require to be achieved,

b) the design principles and guidelines which can outline the development of a game prototype,

106

c)

d)

the utilization of elements and features selected in a design process to make the necessary
modifications that considers students’ pre-existing knowledge as well as their needs or demands,
and

the implementation and prototyping process based on the in-game learning goals that someone can
achieve using the learning content and the capabilities that such a game is developed in order to

respond to the requirements of programming courses.

Up until now, a significant number of previous studies have widely proposed several game-making

approaches for the development of games in which students start learning how to program their gameplay

and core mechanics (Brennan & Resnick, 2012; Repenning et al., 2015; Werner et al., 2012). Particularly

interesting are the results from those studies which have presented design frameworks associated with the

correlation of cognitive thinking CT skills and programming relevant to game design and simulations. The

increased interest to explore alternative ways in which design-based learning activities can have an impact

and particularly in programming interactive media applications to support CT instruction have been broadly

proposed. Assessing learning through game design is thoughtfully elaborated by several related works. To

this notion, several frameworks were based on a strategic analysis description focused on how to correct

students have tried to program their games creations. The most indicative are the following:

a)

b)

The “three-dimensional framework ” is presented by Brennan and Resnick (2012) in order to assist
students to articulate a design framework concerning computational concepts, practices, and
perspectives via Scratch. This framework aimed at describing the processes of construction, and
thinking design practices based on gaming creations of middle school students so that give CS
instructors the opportunity to assess the development of CT.

The “fairy performance assessment” is proposed by Werner et al. (2012) in order to present
students a way to perform well on a thinking design process via Alice. Such a framework was
created to assess if students tried to understand their own narrative framework of stories by
underlying their own programs and to elaborate on how accurate the existing programs are
combined with instructions as design patterns. Students’ thinking design process is related with the
way that they do this correctly articulate their main narrative framework of a storyline associated
with the correct place of instructions within a sequence of instructions (workable algorithms).

The “scalable game design” is suggested by Repenning et al. (2015) in order to provide a
theoretical framework to be conceptualized students’ object interactions related to CT design
patterns via AgentCubes. Such a framework allowed students to dissect game descriptions and to
articulate CT patterns they found how to apply. Each CT design pattern that was applied would not

only describe the phenomenon of simulations that students need to describe but such a simulation

107

need also to include the appropriate programming constructs combined with instructions to be
clearly identified how those patterns could be operationalized properly

To all the above studies, a project content analysis through artifacts is reflected more as a means to
develop and evaluate skills related to CT through programming. Furthermore, all these previous studies
have developed and suggested their own CT framework arising from their findings using different
programming environments and learning activities in which students were usually the main software
designers of their interactive games. For this reason, code documentation, information, and organization of
programming constructs which can be integrated into the gameplay of students’ creations seemed to be
critical parts of learning. Such a process requires from students to think in a computational way so as to
modify parts and features of interactive games on future use understanding their good code operation to
their similar (or not) game-making creations.

However, game-making frameworks have quickly revealed several limitations about the
appropriateness of games since there is a dearth of evidence on what specific features and elements should
be integrated and how such features can be provided in a theoretical design framework (Grover & Pea,
2013; Lye & Koh, 2014). Computer game programming for CT integration especially for compulsory
education through the game making interactive design applications has received considerable attention over
the past five years, albeit there is little agreement on how students have properly tried to use their skills
related to CT and programming concepts to encompass them inside their creations. Game-making
approaches are entirely product-oriented, and thus there is provided less evidence in regard to the design
process or design decisions taken by developing and programming different game projects, game mechanics
and anything about what and why particular computational practices have been employed (Werner et al.,
2014). For instance, students try to comprehend source code that implies in a “programming as activity”’
perspective, rather than a set of combined problem solving, logical and abstract thinking skills, which can
be associated with programming constructs in order to be solved computational problems. By tracing code
through exhibits with correct output for presenting functionality and readability of code commands and
constructs correct sequentially or syntactically, students are focused explicitly on the declarative aspects of
programming knowledge without perspectives on providing specific guidelines or features which seemed
to assist them in designing and programming computer games (Denner et al., 2012).

Beyond the aforementioned difficulties, the lack of information on how a game is created and what
components or design criteria are necessary to be taken under serious consideration on its design and
development may have additionally an impact on the assessment of students” computational understanding
based only on their final creations/concepts (Repenning et al., 2015; Werner et al., 2012). In other words,
it is unclear what students as game developers of interactive applications inside games were able to do on

their own (as opposed by getting help from other people or other projects), the extent to which they have

108

tried to understand the concepts that they utilized to complete their creations which many times are
associated with particular code blocks usage, and lastly if they were able to articulate his/her computational
problem-solving strategies (Brennan & Resnick, 2012; Werner et al., 2014). Thus, even less agreement
about what problem-solving strategies can be properly applied into the code for assessing students’ learning
performance and which of those strategies are associated with the development of games in which users
can think and practice “computationally”.

Due to the surge of game-making approaches as the most “mainstream”, an alternative and certainly
less explored to support CT instruction is learning how to program through game playing. In specific,
existing works either by using VPEs (e.g. Garneli & Chorianopoulos, 2017; Repenning et al., 2015; Webb
& Rosson, 2013) or 3D prototype games (e.g. Liu et al, 2017; Witherspoon et al., 2017) have connoted that
students’ learning performance is associated with problem-solving patterns and behaviors integrated into
visual elements in which students try to develop and apply their computational problem-solving strategies.
In their meta-synthesis review about game-making learning approaches, Denner et al. (2019) have
advocated that are existed conflicting findings from previous studies which cannot provide any serious
evidence in regard to their generalizability. More specifically, the generalizability of findings is limited
because of lacking data to investigate whether any potential benefits can be extended within school
contexts. Also, a lack of data is revealed which cannot thoroughly indicate more properly the conclusions
about game mechanics using different programming knowledge in order to be more useful for students to
learn how to use CT skills before starting to code. The same authors have provided two important reasons.
The first is a lack of studies to describe instructional conditions and means with no conclusions that can be
drawn about the benefits of game making approaches. The second is the lack of additional detail about the
methods and procedures made in K-12 education that indicated by few studies’ findings.

A substantial number of previous studies (Chao 2016; Kafai & Burke, 2015; Werner et al., 2015) has
suggested that skills related to CT and programming can be transferable using computer games. Literature
reviews in the field of CT for K-12 curriculum have also come to the statement that it is still unclear the
effect of computer games and more specifically of SGs to support CT instruction in programming courses
(Burke & Kafai, 2015; Lye & Koh, 2014). This statement is still intensifying more due to the lack of design
frameworks and requirements for the creation of a SG. Lack of essential guidelines, characteristics, and
features that a theoretical design framework for the development and creation of a SG may prevent game
educators and developers to justify their claims whether a computer game has (or not) an impact on
students’ learning performance and outcomes (Grover et al., 2015; Lye & Koh, 2014). Moreover, previous
reviews in the field of CT instruction through programming courses have come to the statement that a
computer game needs to be developed by using a theoretical framework having specific design guidelines

and criteria in order to assist students develop and demonstrate a wide range of CT skills related to cognitive

109

thinking and programming. In their review analysis, Grover and Pea (2013) have mentioned that a
theoretical design framework needs to be proposed in order to inform computer game designers, educators
and scholars on how to develop and program computer simulated problem-solving tasks using SGs either
by using new interactive environments or by combining already known design features and characteristics
of the most well-known interactive environments. Also, Lye and Koh (2014) have noticed the need to
propose directions towards the use of a “constructivist” framework for the creation of a SG to support the
demonstration of skills related to CT and programming.

In addition to the above, prior works in the field of CT instruction (Howland & Good, 2015; Liu et
al., 2017; Witherspoon et al., 2017) have concluded that there has been relatively little research showing
how a game playing framework can be associated with the alignment of skills related to CT and fundamental
programming concepts and constructs in an effort to support the expression and implementation of students’
computational problem-solving strategies. Consequently, there is a need to have a better understanding
about the effects of SGs on students’ problem-solving strategies not only in spotting and solving a problem
but also in applying efficient and effective their problem-solving design patterns (Liu et al., 2017;
Repenning et al., 2015). For this reason, it is appropriate to propose a theoretical framework with specific
design features and characteristics which can facilitate the creation of a SG and support the development
of students” computational problem-solving strategies to contribute to the field of CT integration through
game playing in programming courses.

To address the aforementioned “gap”, the current chapter suggests a theoretical design framework
called “PIVB: Programming for Interactive Visual Behavior” in order to propose and present specific
design guidelines and criteria for the development of a SG. Such a SG can include several simulated real-
world activities with various learning purposes, such as training, analysis or prediction either of specific
digital objects or in-game conditions that students can handle and/or manipulate using fundamental
programming constructs. A proposed SG can become an effective “tool” for learning computer
programming as it can support how fundamental programming constructs can be associated with skills
related to CT and more importantly to be presented as a valuable solution for game playing approaches.
Therefore, the twofold purpose of this chapter is:

a) to describe a theoretical design framework with specific characteristics and guidelines that can be
utilized for the development of a problem-solving environment displayed via a SG.

b) toelaborate a design rationale on how in-game user design features and elements need to be mapped
in the direction of helping students to use their problem-solving, logical and abstract skills for the
analysis of subparts of a simulated (real-world) problem.

The proposed theoretical design framework can inform instructional technologists or educators and

game software developers on how design features and elements should be used in order to support and

110

assist players to link abstract concepts with the concrete game-based learning experience. Such an effort

can give a better understanding of the impact of SGs in programming courses and CT instruction.

5.2. Computer game design frameworks

During the last ten years, a significant number of theoretical design frameworks for the development
of computer games to support different learning subjects have been proposed. The most suggestive and
well-documented are briefly presented as follows. First, Garris et al. (2002) have developed an instructional
game-based model that illustrates how players can be engaged when they play SGs. Players need to make
judgments based on evaluations and modification of their behavior within a game cycle that is resulted
inside gameplay that continues to exist within a repeated “judgments — behavior — feedback ” cycle, as they
can observe and manipulate in-game conditions. Such a process is achieved by separating instructional
content from the game characteristics.

Second, Kiili (2005) has provided a framework in favor of connecting gameplay with empirical
learning, thus having a relationship with the Kolb’s cycle called the “experiential gaming framework”. His
framework emphasizes the importance of examining flow experience before its final design and creation of
an educational game. The focus was on the challenges responding to the player's skills based on the
feedback that they can receive, and the sense of controlling in-game events, having specific contexts with
clear and achievable goals. This model describes learning as a circular process through direct experience in
a digital environment that someone can play and practice.

Third, de Freitas and Oliver (2006) have proposed a four-dimensional framework that entails
pedagogical considerations, learner specifications, context and model of representation for helping
instructors and educators to evaluate the potential of games within different instructional formats focused
on four dimensions. The first is the context in which learning by playing tasks take place. The second is
learner or learner group taking under consideration their learning background, styles and preferences. The
third is the internal representational world — or “diegesis”, including the mode of presentation, the
interactivity, the levels of immersion and fidelity to practice players’ tasks using serious games and
simulations. The fourth is the process of learning that promotes players’ reflection upon methods, theories,
and models are used to support learning practice. This framework is considered as an extended methodology
that could be used to evaluate computer games and their appropriateness for learning purposes.

Fourth, Good and Robertson (2006) have presented “CARSS ”, a framework for carrying out learner-
centered design with children. It is used to suggest design intelligent and “non-intelligent” learning
environments alike specifying the initial parameters and constraints of the project in such a way so that
someone can determine the level of child involvement which may be more suitable. It attempts to provide

a fully inclusive design framework comprises five components: context, activities, roles, stakeholders, and

111

skills. It also offers a comprehensive set of issues to consider when planning to use a child-centered design
approach in a fully-fledged participatory design approach.

Fifth, Ryan and Siegel (2009) have analyzed the process of embodied learning by observing the
phenomenon of a breakdown in players’ use of video games for examining gameplay. The “Breakdowns
of Interaction” framework is focused on the implications gained from the player’s experience when they
usually fail to apply strategies, and reasons are only focused on missing characteristics that a gaming
environment may have and thus not assisting them to take on several decision-making steps. The four-part
framework is constituted by dimensions, such as perceiving the environment, developing a strategy, taking
action, and meaning-making. In particular, the same authors present four main dimensions of breakdown,
though they do not make a point of indicating which those are that can impact interaction or illusion.

All the above frameworks have paid their attention either on the emergence of specific
elements/features that a game needs to have or in the different aspects of educational design. What really
seems to be lacking is an educational approach to game design in regard to key game principles, design
criteria and educational goals that a game can provide within educational contexts since only proposing
game guidelines cannot alone lead to use most of such frameworks to design and create instructional game
prototypes. For example, de Freitas’s and Oliver’s (2006) framework has given more systematic effort to
deepen the balance between game design and target education; however, it cannot support instructors to
identify which type of games would be applicable for specific learning objectives (Robertson & Howell,
2008). Regarding the use of the “experiential gaming framework ”, Kiili (2005) has noticed that it does not
provide a means for a whole game design project but only it links educational theory and game design.
Additionally, “Breakdowns of Interaction” framework (Ryan & Siegel, 2009) has been implied to the most
breakdowns stem from interaction issues which can lead to further breakdowns in illusion; however, it is
not clear why some breakdowns end up affecting involvement and others do not (lacovides et al., 2014).
Another significant point of view is that frameworks such as the “CARSS ” (Good & Robertson, 2006) have
addressed several constraints about their appropriate use for game design since many times game designers
at a younger age may not on their own develop and create computer games or may not always be possible
to have enough time and budget to develop their games properly. Furthermore, Robertson and Howell
(2008) have relied on having game designers the appropriate background for the development of computer
games following some of the above frameworks. This issue may prevent some other instructors and
designers in identifying and proposing which games would be applicable to different learning
subjects/domains and how to create such educational games.

Despite the fact that previous efforts provide guidance and assist the work of game designers, most
of the above design frameworks are focused on theoretical underpinnings with general principles which

have not been widely well-founded and have not provided any empirical evidence to investigate their

112

appropriate use in specific learning subjects. Thus, a lack of a clear demonstration of how to produce
motivational and pedagogically effective games is arising (Good & Robertson, 2006; Robertson & Howell,
2008). Although there are many other serious game models in the literature, research in GBL often reference
the Garris et al.’s (2002) framework as an ideal one to show how the development and creation of
educational SGs can assist students’ participation as a way to illustrate their learning outcomes. It is an
instructional game-based model focus specifically on the development of SGs and it still remains as the
most widely referenced and accepted work in the literature. In addition, the vision of creating a SG such as
the popular SimCity to support CT instruction that Kafai and Burke (2015) comes in align with the game
design framework proposed by Garris et al. (2012), as a quite instructive and appropriate example of an
environment for someone who wants to learn by playing in simulated problem-solving tasks.

According to all the above, Garris et al.’s (2002) framework can be considered as appropriate since
its design principles and features behind the development of problem-solving tasks can make game
designers think about how players can try:

a) to identify learning objectives for the main problem, handle its subparts and propose a solution;

b) torecognize a way of understanding how they to think before start coding based on their judgments
and behaviors, and

c) to achieve specific learning objectives that may support students’ outcomes that need to plan in
order to solve sub-tasks of a simulated problem using cognitive thinking skills, such as critical and
logical thinking.

For this reason, an attempt is proposed by outlining and describing on how design guidelines with

specific features should be reflected on Garris et al.’s (2002) framework in order to manipulate another a

theoretical design one that can be more essential for the development of a SG supporting the CT instruction.

5.3. Design decisions

Over the last few years, various computer games and specifically SGs have been developed following
game-making approaches in programming courses, but limited evidence is provided in regard to which
characteristics and features are the most important for any potential improvement on students’ learning
performance (Garneli & Chorianopoulos, 2017; Werner et al., 2015; Witherspoon et al., 2017). SGs can
provide more engaging tasks for the introduction of students inside a digital environment for knowledge
acquisition with the appropriate functions that can be familiar to players. It is important to mention that
delivering and organizing any learning material into in-game stages, is a process that accommodates
students’ needs and meets their demands (Garris et al., 2002). Providing students with specific problem-
solving learning tasks inside a SG can be crucial to support also informal (in-class) or informal (outside the

class) instructional approaches. Students can use of SGs for learning how to think “computationally” and

113

practice into code their solution plans in simulated problem-solving (real-world) tasks (Chao, 2016; Liu et
al., 2017).

A set of important features and design decisions that game designers should consider for the
development of SGs to be included the following (Garris et al., 2002; Prensky, 2007):

e the association of learning objectives with in-game goals in order to provide all players with the
anticipated outcomes.

o the relevant learning materials can assist players to achieve in-game learning goals and increase (if
it is possible) their learning performance.

e aspecific scenario with specific learning goals needs to include visual characters/elements that all
users can choose in order to achieve in-game goals.

o the awards and punishments to all in-game tasks need to be based exclusively on players’ outcomes
and achievements so as to accomplish specific learning goals.

Regarding the requirements to support CT instruction, since SGs are increasingly utilized in
programming courses, knowing how game designers can take design decisions to develop such computer
games is becoming one of the most imperative issues. Thus, it is beneficial to propose a theoretical game-
based framework for CT instruction, with the purpose of considering (Kafai & Burke, 2015; Liu et al.,
2011):

e what are the game characteristics that need to be integrated to support students’ engagement and
participation;

e under what instructional contexts students need to have the instructor’s assistance when playing a
computer game in favor of recognizing if they really tried to develop and use skills related to CT,;
and

e how students can develop and/or use skills related to CT so as to solve simulated (real-world)
problems built into workable plans and algorithms with precise instructions.

In addition to the above, there are specific requirements and design decisions that imply on
understanding why and how certain design decisions with specific game principles can add several
prominent learning conditions to support CT instruction. Thus, it is first of all necessary to investigate how
principles should be mapped to design a SG that can facilitate flow learning experience through problem-
solving in-game tasks. To this notion, the development of a SG should support players not only to
understand the syntax and semantics of a programming language but also to observe and recognize its
effects and consequences for solving (real-world) problems (Davies, 2008). Therefore, the following three
design decisions need to be taken into consideration:

1) Decomposition and formulation of the main problem (abstraction): Decomposing and formulating

a solution to a problem are associated with “abstract conceptualization”. Abstract conceptualization

114

2)

is everything that makes sense inside (digital) environments including an understanding of the
relationships between events and humans made without unnecessary information. For example, if
students can understand how to use learning material (e.g. objects, elements or programming tools)
in order to achieve a learning objective, then it is recognized that such an environment integrates
successfully the appropriate materials to extend what they have already know about a learning topic
and what they can gain if achieve certain learning in-game goals (Garris et al., 2002). It is the first
decision that designers should consider since it is crucial the use of a SG can allow students to
conceptualize their actions. Such a process can be supported either verbally, e.g., by trying to
formulate a question such as “How can I solve this problem using in-game elements to work for
this effort? ” and/or visually, e.g., by analyzing their innate thinking solution plans as diagrammatic
representations or in texts written in natural language (pseudocodes) in place of identifying the in-
game objects’ behaviors or relationships between users and in-game elements. Two are the most
appropriate characteristics that can support “abstract conceptualization” and assist students to
achieve their cognitive thinking process that leads from the problem formulation to solution
expression. The first is visual thinking so that students can organize their thoughts, describe object
interactions and improve their ability not only to think but also to communicate them (Lye & Koh,
2014; Repenning et al., 2017). The second is the use of spatial metaphors which can support critical
thinking and problem-solving skills, giving to all users the opportunity to organize information
visually (Repenning et al., 2017; Roman-Gonzalez et al., 2017);

Description and expression of a solution (automation): The second design decision refers to the
expression of solution plans that include the alignment between (correct) computational rules and
concepts with programming constructs. To be considered as successful and assist students such an
effort, an understanding of in-game events and their association with the entire storyline, concepts,
elements and goals with logical reasoning is required in order to use and communicate their solution
plans more effectively. An example is on how students propose a solution based on their natural
perceptions and if its rules/concepts related to programming (e.g., “if an element moves...then...")
can be transferred into code using programming constructs to observe the consequences of those
instructions. Players need to focus on in-game visualized behaviors that are created correctly by
programming code blocks consisted of motion commands (command blocks) and programming
constructs (control flow blocks) that can be integrated into objects by composing programming
constructs as design patterns in order to propose executive solutions to a problem. For this reason,
previous studies (Good & Howland, 2016; Grover et al., 2015) have addressed several syntactic

challenges of end-user programming. To know how to apply solution plans into the code, students

115

3)

need both to understand the syntax and semantics of programming concepts into executable
programs (programming knowledge);

Execution and evaluation of design patterns (computational problem-solving strategy analysis):
The third decision is reflected in the assessment of how to correct students’ problem-solving
thinking strategies can become. It is worth noting to evaluate whether such strategies can be
transferred with the expression of unambiguous instructions for solving problems in natural
language or diagrammatic representations into workable plans and programs using fundamental
programming constructs (Grover et al., 2015; Lye & Koh, 2014). To assess the correctness of
students’ thinking strategies into the code, a SG needs to be designed in order to support a
scaffolding instructional approach. Therefore, from the students’ side, each stage with different
levels of difficulty needs to have the appropriate elements and integrated materials so as to support
them thinking before starting to practice into code their solution plans using programming
constructs as design patterns. From the instructor’s side, a SG needs to have simulated problem-
solving tasks to evaluate the appropriateness of those patterns as essential for solving problems and
examine so that correct (or if it is not necessary to not make any actions) students’ solution plans
to ensure their appropriateness (Repenning et al., 2010). For example, if the CS instructor can
provide explicit educational instructions and extra feedback on the composition of programming
plans with visualized program tracking in gameplay mechanisms, students can more deeply
understand how nested control flow blocks work and what the subsequent effects of the chosen
actions are (Werner et al., 2014).

According to the above, the following three-goal examples are regarded as appropriate to design and

create a SG for students to articulate and transfer their thinking solutions into workable plans and
algorithms:
a) Integration of the learning material within the game: A way of formalizing knowledge in simulated

b)

problem-solving contexts during gameplay with a more natural intuitive modality for user
interaction within a game is imperative. The representational fidelity of in-game visual metaphors
that can be projected can infer and predetermine a game designer to specify algorithmic rules
corresponding to specific movements that are the most appropriate to be done by each player
(Witherspoon et al., 2017). For example, the visual metaphors of geometric shapes can support
students to learn how to program with tasks related to the conceptualization of algorithmic rules
through logical reasoning in align with programming constructs that can be projected in simulated
(real-world) problem-solving contexts (Papert, 1980; Roman-Gonzalez et al., 2017).

Transfer from tacit to concrete thoughts using computational concepts: Understanding of game

events and having the ability to describe events can be a good starting point that would allow

116

to sup

students to be engaged with basic computational concepts (Good & Howland, 2016). For instance,
evidence from previous works (Chao, 2016; Grover & Pea, 2013; Werner et al., 2015) has
mentioned that students need to understand first of all conceptually what problem(s) they will solve
using a computer game in order to propose and present their solution plans. Students may be able
to transfer and use a game’s user interface design features into their own contexts by recognizing
that problem-solving within such contexts is regarded as an activity that can be meaningfully and
seriously approached in a playful attitude. Therefore, in-game activities should allow users to
describe the learning situation in which they attend and explicitly link their actions during gameplay
with the development of skills and concepts related to CT. The reflective observation of the
concrete experience assimilates abstract conceptualization without remaining tacit so as to facilitate
students’ understanding or how and why can use specific computational concepts and constructs in
two ways (Brennan & Resnick, 2012; Repenning et al., 2010):
i. by decomposing abstract representations of the main problem to articulate a way in an
effort of formalizing tacit knowledge within specific and reliable contexts, and
ii. by conceptualizing abstract logical thinking during gameplay to invent and formulate an
idea or a concept so as to provide design patterns for testing and debugging a solution plan.
Transform students’ concrete thoughts into formal logic and analysis of a solution into code: The
student’s progress through in-game activities requires the concreteness of solutions by transforming
a cognitive thinking process for solving a problem into code. For example, a SG can provide an
intuitive-natural modality on its GUI design features and elements for user-interaction tasks (Liu
et al., 2017; Witherspoon et al., 2017). Thus, in association with the above, users can articulate and
transfer from tacit thinking to more concrete that can be transformed into the code so as to develop
and apply their computational problem-solving practices (Mouza et al., 2016; Werner et al., 2014).
A suggestive way to support such a process is the use of a visual palette such as those of Scratch
or S4SL which can eliminate split attention of code syntax and users can focus on goals of solutions
that are applied as results of computational problem-solving practices (design patterns that can

include code blocks).

5.4. Design principles and guidelines

The current sub-section provides information regarding the design process of the proposed PIVB

theoretical design framework focusing on CT instruction through computer programming (Pellas &

Vosinakis, 2017a). An important step that needs to be realized is the establishment of a SG’s infrastructure,

port such an effort. It is essential to initiate the design of the game by studying its characteristics and

features that need to be instantiated following specific design guidelines from an instructional game

117

framework. Garris et al.’s (2002) framework are suggested as one of the most appropriate to be explicitly
illustrated a SG’s design features and/or elements for active learning processes. It emphasizes both players’
motivation and process aspects which are associated with skill-based learning outcomes providing several
motivating and challenging goals. Garris et al. (2002) have also proposed the use of SGs which can present
embodied problem situations fostering players’ problem-solving ability and thus provide conditions to
experience within a scientific discovery process. Players are engaged in simulated (real-world) tasks with
features that include rules and strategies allowing the exploration of a game environment for achieving
specific goals and protecting them from the more severe consequences of mistakes (Garris et al., 2002).
Such a SG can promote in-depth learning on users’ actions while they can interact with its elements and
objects through problem-solving tasks.

Garris et al. (2002) have tried to categorize specific game characteristics to support such a SG, such
as fantasy, rules/goals, sensory stimuli, challenge, mystery, and control. The same authors have also
proposed specific design principles for the conceptualization of design guidelines in SGs. In this line, based
on the game cycle of the input — process — output game model, the following principles are presented below:

a) the user’s motivation and persistent engagement (P1)

b) the clear and challenging goals (P2)

c) the system’s feedback on user’s actions (P3)

d) the scaffolding process (P4)

e) the debriefing process based on students’ skill-based learning outcomes (P5).

An indicative way to support CT instruction using a SG is by extending the instructional game
framework of Garris et al. (2002) so as to propose a theoretical design framework with specific design
guidelines and features/elements that can assist students in developing and using skills related to CT. The
design guidelines that are proposed by Pellas and Vosinakis (2017a) are the following.

e 1 guideline (G1): Motivating students to participate in active learning tasks- While every

computer game can be motivating per se, there should be existed several subparts of the main
problem with clear and challenging tasks through interactive game-based conditions. Players need
to achieve specific in-game goals in order to start analyzing, creating, applying and evaluating
(debugging) their proposed solutions. Such a process will allow them more properly to think
logically and critically about the analysis and expression of solutions to a problem (P1);

e 2" guideline (G2): Simulating an authentic problem- The simulation of an authentic problem

should be available for exploration when players start to play a game. Data visualization and
representation need to support the operation of learning activities in which players can participate.
If players are engaged and involved in several tasks knowing what precisely have to do, and they

will also devote more time to actively pursuing to other challenging activities (P2);

118

e 3" guideline (G3): System’s feedback on user’s actions- A SG should not only simulate a real-

world problem that may be encountered in players’ everyday life, but it should also provide prompt
feedback during the run-time of their actions, visually and/or acoustically. Such a process will assist
players to conceptualize better their problem-solving strategies into a concrete game learning
experience (P3);

e 4™ guideline (G4): Facilitating the development of computational problem-solving strategies

through a scaffolding process- A game may allow students to develop their problem-solving
strategies into programs. In other words, before finalizing a solution into the code, players need to
think about how to program by combining relevant subprograms together and how all its
components corresponding properly to each of the given simulated problem-solving tasks. For
example, through a game-playing approach, students need to know how to integrate behaviors into
objects by programming with the purpose of having interactivity with each other. In such a fading
scaffolding teaching approach, CS instructors should demonstrate how such subprograms can be
constructed. Even if frustrating tasks by playing a game are observed, the CS instructor needs to
guide the students by prompting them with questions on their problem-solving processes further
when they play such a game (e.g., “what is the main reason of putting that command there?) (P4);

e 5" qguideline (G5): Applying design patterns to propose an answer for a problem question- Players’

embodied experiences/ideas need to be simulated through actions that are performed on the
subparts of the main problem. Assisting players to understand how to transfer of behaviors in
different objects is considered as a crucial process to recognize how these actions will (or not) solve
a problem. In this perspective, they need to propose design patterns to execute their thinking
solution plans into code by applying their own programs using programming constructs (e.g.,
repetition or selection). Such an approach can foster computational practices and perspectives
because students need to think about how to use properly fundamental programming constructs
and/or instructions to present programs and observe the consequences of those constructs and
instructions inside the SG (P5).

Figure 5-1 illustrates the proposed framework and game guidelines, which can be designed as an
integral part of game characteristics to support the design guidelines (G1-G5) that have been described
above. According to Garris et al. (2002), the use of the following SG elements can support CT instruction:

a) Fantasy: A SG should offer visual metaphors from real-world processes that permit users to have
experience of a process/system with phenomena or tasks which sometimes cannot be done in real-
world settings. For example, students having specific roles can learn how to program by integrating
behavior in visual objects responding to events or issues and actuate controlling of such objects

without having spatial-temporal constraints or payments about technical equipment.

119

b)

d)

specif

Rules/Goals: The rules describe goal structures of the SG. A game designer should predetermine
specific game mechanics that would help users who lag while playing a game; it could include
bonus/subsidies or for their poor performance to have a scoreboard with punishments. If players
can understand and specify in-game rules, they may use and express relevant basic computational
concepts correctly to propose their solution plans.
Challenges: A SG should include several stages which can have progressive difficulty levels,
multiple goals, and appropriate information to ensure certain learning outcomes. Performance
feedback and score-keeping game features can allow players to track progress toward desired goals.
A challenging task is created by issues, like time pressure and opponent play in order to understand
under which conditions players can win (or lose) points and take some awards. Players need to
collect information from in-game digital objects/elements in order to understand what is correct to
do or what is not. Using challenging tasks inside a SG, CS instructors need to assist students to use
their virtual characters and then start to apply their computational practices using design patterns
which are aligned with the pre-defined game rules and features.
Mystery: Simulations that incorporate these features become more game-like and allow players to
explore in-game events/conditions. For example, in a game-based environment, players need to be
engaged in specific simulated tasks having user design features and elements, such as role-playing
and scoring that are not presented in real-world tasks.
Control: A sense of freedom using objects and elements inside a SG can allow players to
select/refine their problem-solving strategies, manage their activities, and make decisions that can
directly affect their outcomes and/or achievements. Such a sense, beyond the players’ engagement
in each learning task, gives the ability to explore, recognize the problem space, and propose
alternative solutions.
Sensory stimuli: A computer SG should include sound effects, visual objects with representational
fidelity, and media sources. Such an environment should not distract the stability of players’
sensations and perceptions, but it should also allow the user to have a more reliable experience. A
certain example is how a train can pass over a railway that may require the integration of behaviors
by programming the former in order to understand some simulated phenomena, such as gravity,
imitating its correct instructions/movements as in the reality.

According to all the above, the proposed theoretical design framework for game playing is developed

ically for designing SGs that can be associated with specific learning tasks to support CT instruction.

Figure 5-1 shows how players are engaged in in-game tasks, which will generate their desire to be engaged
through attractive learning scenarios, such as role-playing (Stage 1). All those tasks will assist students to

develop computational problem-solving strategies and will be able to produce a set of learning outcomes

120

in several learning tasks (Stage 2). The learning objectives will be achieved and evaluated if the in-game

experience can support CT instruction (Stage 3). It is important to mention that players need to increase

their cognitive thinking skills if in problem-solving tasks can provide “abstract conceptualization”

comprised visual thinking and visual metaphors so as to provide their solution plans to each stage which

can be different on their levels of difficulty, when they have a progress inside the game (Stage 4). In this

demand, segmented four stages (S1-S4) are aligned with the proposed game design guidelines (G1-G5).

The first stage (S1) is aligned with the 1 and 2" guidelines and the second stage (S2) with the 4™ guideline.
The third stage (S3) is related to the 5" guideline. Also, the fourth stage (S4) is aligned to the 3" guideline

for the system’s feedback cycle.

Learning content

1. Follow a fading scaffolding
instructional process

Game characteristics

2. Express a thinking
solution plan in a natural

language
3. Analyze the computational

problem-solving strategy

computational problem-solving
process inside a simulation game

1. Fantasy
2. Rules
3. Goals
4. Sensory stimuli
F 5. Challenge
e 6. Mystery
7. Control
e
d
b
a -
c 1. Formulate the subparis of the 1. Stndent engagement and
problem P ation .
k 2. Debug a selution plan created e ;g;a::ﬂﬁd;i
into code colving and logical thinking
3. Assess student’s achievemenits @ 3. Design a solution plan
b
The development of 3 Gm

Player

¥
L

F
£
/ﬁ’/ H": o

User
judgement

B
\
A %

JO =D =D~T —

User o) System
behavior feedback

Figure 5-1: The illustration of the proposed framework

To summarize, a SG prototype to support CT instruction is composed of the following parts:

121

a) the simulation of a real-world problem-solving situation and functionalities in fading scaffolding
processes for supporting users’ roles (students and instructor),

b) the visual metaphors that players can conceptualize into algorithmic rules that may assist them to
think logically and methodologically using CT before start programming their solution plans for
each subpart of a problem, and

c) the use of a programming “tool” to eliminate split attention in code syntax, focusing on users’
solutions that applied as results of their computational problem-solving strategies.

Based on all the above, a theoretical design framework is presented for learning how to program
constructs related to CT through game playing. Further to this, this chapter establishes the premise that a
SG can be designed to encourage players to think “computationally” from problem formulation to solution
expression through specific problem-solving tasks. The proposed theoretical design framework with
specific guidelines and principles is based not only on the operational level of abstraction and skill
acquisition of skills related to CT but also on the appropriate use of fundamental programming constructs.
The mentioned issues may improve the learning process in the following two aspects:

a) by using visualization or animation so that assist students to understand only the most important
information (abstraction), and

b) by exposing students to playable conditions that allow the exploration of in-game objects/elements
which have specific core mechanics so as to propose workable algorithms, and then execute those

instructions and constructs into code (automation).

5.5. Essential components and design criteria

A wide range of studies has already proposed several design principles and characteristics for the
development of a computer game using interactive environments that can support CT instruction. In
specific, past efforts (Good & Howland, 2016; Repenning et al., 2017; Werner et al., 2014) have suggested
a variety of design features and elements fostering CT skills development with visual thinking and
supporting problem formulation in applications, such as evocative spatial metaphors (e.g., geometric
shapes) which are offered to be an alternative and worth noting option for boys and girls inside game-
playing contexts. To be considered as appropriate an interactive environment, it needs, first of all, to have
some essential components that can assist visual thinking for information processing in order to be provided
a better understanding of knowledge acquisition that is reflected from a problem’s description to solution
expression (Repenning et al., 2015). An apparent example is the use of a mind map tool that includes several
geometric visual objects (Papert, 1980). Players, in this vein, are able to organize information inside visual
contexts which can be more easily recognized. Thus, they can start thinking through a visual process arising

by a sequence of steps about how visual elements and objects with the intension to be programmed properly

122

by following specific instructions (Kafai & Burke, 2015). Such a process is associated with “abstract
conceptualization” and game mechanisms of a SG, including visual elements, interaction among objects
with players, and rules that provided in align with specific goals considered as essential features (Garris et
al., 2002). The use of visual objects and elements can be considered as essential in such a conceptualization
approach to support CT instruction. For instance, prior works (Kafai & Burke, 2015; Lye & Koh, 2014)
have advocated that such characteristics and features can assist players to have more concrete experience
through spatial abstractions, which can predominately pave a pathway from problem formulation to solution
expression. Such components are expected to support spatial reasoning, due to the fact that players need to
understand the logical relations among visual objects/elements so as to use inductive and abstract reasoning
thinking (Ambrosio et al., 2014; Roman-Gonzalez et al., 2017).

Another significant point of view can be the use of “abstract simulations”. An abstract simulation is
related to the visual objects/elements and a variety of abstract icons (e.g., numerical domains or dots) which
are integrated inside a game. It can be used to eliminate the complexity of any unnecessary information
from the gaming system and can assist players to understand any projected relationships in order to succeed
an active experimentation through a more concrete experience (Garris et al., 2002). Abstract simulations
can assist players to understand the concepts by taking advantage of the formation of spatial knowledge
representations which can support problem-solving learning tasks. For example, Roman-Gonzalez et al.
(2017) have also pointed out that visual-spatial abilities can be enhanced through various activities when
students (boys and girls) can try to give commands/instructions and/or observe visually the consequences
of their actions (outcomes). In such a game, instructional game designers need to consider as essential two
things. The first is the spatial orientation that involves in-game contexts related to 2D or 3D
objects/elements which can be visible to players. The rotation of mental representations is determined using
visual objects or images from certain viewing angles (Ha & Fang, 2018). To this notion, spatial navigation
and exploration on how features elements/objects are integrated inside a game by considering the player’s
awareness need to be provided in two aspects:

a) by providing visual clues for spatial navigation around a digital environment with specific game
objectives, and

b) by giving to each player several opportunities to be engaged through in-game activities with a view
to carrying out a set of quests and explore interesting areas so as to gather information for solving
certain tasks.

From a theoretical and design perspective, it is imperative for instructional and game designers, firstly
to answer a specific question: “How can a SG meet the design criteria that involve a wide set exercises in
order to acquire knowledge and skills related to CT?”. While most SGs seemed to be motivating and

interesting for each player, one important topic is how to apply their knowledge inside the game and how

123

they can gain knowledge using their cognitive thinking skills. Four design criteria (C1-C4) that are

important in meeting the aforementioned components and requirements are indicated below and depicted

in Figure 5-2:

a)

b)

d)

Learning content: The development of a SG needs to address important concepts or content related

to computational problems separated in several stages with different levels of difficulty. Logical
reasoning of players’ actions needs to be assisted by in-game elements and objects. Also,
unambiguous instructions from the CS instructor can be also important than a collection of random
events without meaning. The interaction with in-game visual elements facilitating players to receive
feedback about the consequences of choices that they have made (C1).

Gender equality: The development of in-game mechanics (e.g. colors or images) needs to fit on the

socio-cognitive level of all players regardless of gender. Players need also to have the chance to
choose their own visual representation inside the game and they should know exactly at the
beginning and before start playing their specific roles inside it. Additionally, trace balancing among
guests and goals to all in-game stages need to be connected from simple to more complicated tasks,
in which each player needs to navigate inside it, and explore objects/elements so as to achieve
certain learning goals to each stage properly without causing any gender biases (C2).

User interface design features and elements: The user design features and elements need to support

a specific storyline and assist players to understand the spatial navigation inside a SG. Free
exploration and accessibility to each stage should have the appropriate features and elements which
may motivate players. Players’ actions need to be aligned with learning outcomes in order to be
accomplished certain in-game goals using specific tools. For example, the user interface features
and elements can assist players not only to observe a problem-solving environment and its subparts
but also to have a tool for programming their solution plans (C3).

Awards and punishment conditions: The in-game awards and punishments need to be based only

on the demonstration of skill-based learning outcomes so players can understand how to achieve
specific learning objectives. The alignment of in-game goals with the learning objectives can assist
players to consider a clear indication about what they need to accomplish to receive awards or
punishments in case of avoiding or not being able to complete the in-game goals. Within such an
effort can be accessed effectively the knowledge gained from each game task in specific time-
limited tasks based on students’ skill-based learning outcomes in order to receive awards or

punishments (C4).

124

Awards and
punishment
conditions

Design User design
Gender criteriaand features a%d

equality essential elements
components

Learning
content

Figure 5-2: The alignment of game components and design criteria

From a practical and implementation perspective, considering that computational problem-solving
strategies of boys and girls require the use of skills related to CT and programming for solving real-world
simulated problem-solving tasks, it is crucial to suggest specific design requirements and tools that can
assist students to apply their problem-solving strategies. For example, the analysis from results of previous
literature reviews (Grover & Pea, 2013; Kafai & Burke, 2015; Lye & Koh, 2014) has recommended the
development and use of simulated problem-solving tasks using SGs. More specifically, the analysis of the
literature review from Grover and Pea (2013) has suggested the development and use computer simulated
problem-solving tasks using SGs either by developing new interactive environments or by combining
already known design features and characteristics of the most well-known interactive environments. Also,
in their review study, Lye and Koh (2014) have proposed design guidelines and directions towards a
constructivist (thinking-doing) problem-solving learning approaches in a SG created either in VPES or in
3D VWs. Additionally, Kafai and Burke (2015) have recommended the connection of serious gaming
opportunities in a simulated “world” that can be created in interactive environments, such as SimCity or
Scratch to design and propose a hew one in which can be created simulated problem-solving tasks that can
be relevant to the needs and demands of boys and girls. Thus, it is appropriate to investigate if the design
features and characteristics either from the category of VPEs or 3D VWSs can facilitate the creation of a
computer game to support the development of students’ computational problem-solving strategies. Thence,
it is crucial to propose a SG that can be created using interactive environments with specific design
requirements and guidelines to support the demonstration of skills related to CT and programming in which

gender equality is perceived to all learning stages. Such a process can allow educators and scholars to

125

understand better the effect of a computer game on gender equality in programming courses and on the
possible improvement (or not) on their learning performance.

To date, many games created by using interactive environments either from the category of VPES or
3D VWSs have been extensively developed for programming courses. Due to a wide range of
features/characteristics and tools, both platforms are indicated as the most relevant to foster CT instruction
(Grover & Pea, 2013; Lye & Koh, 2014). On the one side, VPEs provide several features to support and
foster CT in K-12 education. In particular, Scratch can be the most relevant and reliable VPE for the
development of interactive games based on related literature. For instance, Koorsee et al. (2015) have tried
to determine the impact of a programming assistance tools such as RoboMind, Scratch, and B# on IT scholar
understanding of programming concepts and perception of the difficulty of learning how to program.
Findings have indicated that Scratch was easy to use, influencing to a large extent the effectiveness of
students’ understanding of how to use properly fundamental programming concepts and constructs. Webb
and Rosson (2013) have also utilized Scratch for fully fledged integrated development to create scaffolding
game playing learning tasks. It seemed that students’ learning was focused on key aspects of problem-
solving, game testing and debugging their own programs. From a gamer’s design perspective, all VPEs
have one crucial limitation that Scratch does not have. In most programming environments, all code blocks
can be observed from the users and this may not assist so ease in thinking before coding. Nevertheless,
there is a notable option that Scratch has than other VVPEs, since game designers can program and upload a
game without other users/players have the permission to download, play, modify it or even explore the code
inside the visual elements and objects. Owing to the positive perspectives and perceptions of gender
equality to support CT instruction with good computational practices resulted from previous studies (Mouza
et al., 2016; Webb & Rosson, 2013), there is another reason for choosing Scratch as the most appropriate
VPEs to satisfy the purposes of this thesis.

On the other side, 3D VWs provide a significant number of characteristics and features to support
and foster CT in K-12 education. A 3D VW offers a realistic representation of a virtual environment, in
which users can provide solutions to simulated problems, tracking their errors visually and auditory to
understand better the consequences of their actions during the execution time (Esteves et al. 2011).
Nonetheless, taking under consideration the little evidence in regard to the use of 3D VWs’ own
programming language which is similar to C, thus it provides several difficulties to be utilized by boys and
girls at a younger age, it is imperative to identify further tools that may impact positively their engagement
and participation in coding tasks. Particularly interesting to meet the design guidelines can be the
combination of the S4SL palette with a 3D VW, such as OpenSim for the following reasons (Pellas &
Vosinakis, 2017b):

126

a) the emphasis on the design of algorithmic problem-solving activities by avoiding syntax errors
from LSL;

b) the tools that students can use to create, edit and syntax multiple artifacts via S4SL and a-
/synchronous communication tools in OpenSim to coordinate the learning procedure;

c) the direct feedback based on their actions in a 3D environment by copying and pasting the code
blocks using the visual palette from S4SL as design patterns to an object’s notecard to integrate
behaviors and/or predict movements/instructions; and

d) the S4SL’s palette has similar instruction commands and programming constructs in colored code
blocks similar as those of Scratch. The S4SL’s palette is frequently being used by students in high
schools to university novices in programming. Such a feature can help students’ motivation and
participation in programming.

Based on the above, the development of a SG using either Scratch or OpenSim need to have a
substantial number of different stages that have progressive difficulty levels, multiple goals, and appropriate
information to ensure certain learning outcomes inside simulated problem-solving tasks that can support
students to think and practice “computationally”. It is expected that students regardless of their gender to
express and apply efficiently and effectively their solution plans using a logical way of thinking and use

some of the most appropriate programming constructs to apply their plans.

127

Chapter 6: The Robot Vacuum Cleaner (RVC) simulator

The current chapter introduces the implementation of the proposed theoretical design framework
that is specifically designed to assist high school students’ learning on how to use computer
programming constructs to solve simulated problem-solving tasks while also developing skills
related to CT. It designates the game design and gameplay overview of a SG called “Robot vacuum
cleaner” (RVC) simulator following the design decisions and design criteria from PIVB design
framework created in Scratch and OpenSim combined with the visual palette of Scratch4SL so as
to support students develop and apply their computational problem-solving strategies in instructive
guided settings (formal and informal). It highlights a detailed game design mapping to align a set
of specific guidelines from the PIVB design framework with the essential components and
elements. Thus, the most prominent alignment between design guidelines and criteria to draw a
rationale with the purpose of giving an answer to describe the RVC simulator design are presented
including gameplay overview (scenario, game mechanics and tasks), user interface design features
and elements that can help students to learn how to think and practice “computationally” by playing
such a game.

6.1. Game design

Game design is one of the most important issues that game developers need first of all to consider. It
is the description of a game’s process about the way it works, its features and components such as
conceptual, functional, or artistic, and how someone can transmit any information to build it properly using
such a game (Adams, 2009). The PIVB framework includes design guidelines and concepts that need to be
represented within a SG to support CT instruction through programming courses. A significant number of
guidelines and features that need to be presented are of great interest for those instructional and game
designers who have not a strong socio-cognitive or programming background. For this reason, the current
section highlights a detailed game design mapping to align a proposed set of specific guidelines from the
PIVB framework with the essential components and design criteria which are finally utilized in order to be
created a SG. Therefore, the most prominent alignment between design guidelines and criteria to draw a
pathway with the purpose of giving an answer to the research “gap” that described in the previous chapter
are depicted in Figure 6-1 and presented more analytically below:

e G1: Motivating students to participate in active learning tasks. Players’ motivation and persistent
engagement (P1) will come from the exploration and identification of a problem from the real world
and it may have some contemporary aspects since students live in such an era. For this reason, a

computer SG needs to have a scenario, features, and elements which may reflect on students’ real

128

life. At this point of view, the learning content (C1) needs to provide in-game visual objects and
elements that all players can use in order to gain information. All those objects and elements need
to be integrated inside the game and provide to a player some unambiguous information in relation
to the main scenario. A suggestive scenario that can have an impact on students’ life regarding, for
example, their assistance and solidarity that they can give to other people. As a result, many
learning scenarios can support a proposed game concept. One of the most indicative is the students’
assignment having a specific role in which they may try to program a computing machine created
via interactive environments so that solve realistic simulated problem-solving tasks.

G2: Simulating an authentic problem. The clear and challenging goals (P2) of a gaming system
need to allow players choosing a male or a female virtual representation and provide various
learning materials material that cannot cause gender biases (C2). First of all, students need to
observe and use visual objects/elements which are really crucial for them to get any information
that is required to complete in-game learning tasks and goals. Second, since a game scenario
contains several events and actions using a game environment project those events and actions,
thence designing such a game should provide visually appealing objects. It is hypothesized that if
students try to propose a solution for simulated real-world tasks, they should be also able to give
them specific commands and constructs without being so ambiguous. In this perspective, the
learning goals are also important and need to be mentioned. The learning material inside the game
is represented through in-game elements and indicated as a part of many CS curricula around the
globe to be focused on the following two key aspects. The first is the analysis of proposed solutions
to a problem in a text form using algorithms or pseudocodes in natural language. The second is the
implementation of students’ computational problem-solving strategies that lead from problem
formulation to solution expression into the code so that students can be able to apply their solution
plans.

G3: System’s feedback on the user’s actions. The system’s feedback on the user’s actions (P3) is
associated with the user interface design features and elements (C3). Since a SG needs to provide
problem-solving tasks reflected on simulated real-life events, the feedback that players may receive
should be predefined and prompt according to their actions inside the game. For this reason, all
visual objects and elements need to provide visual and auditory feedback on each players’ actions
in order to be easier understandable how correct (or not) they try to approach each subpart of the
main problem.

G4: Facilitating the development of computational problem-solving strategies through a
scaffolding process. The scaffolding process (P4) refers to an instructional game that contains

several stages with different levels of difficulty. This means that students need first to start with an

129

exercise that is included inside each stage from the easy to a more advanced in order to solve a
diversity of problem-solving tasks. Such an effort may assist them to start thinking how easy parts
of a solution for some subparts of a problem can be combined or can be extended in order to provide
a more concise later.

G5: Applying design patterns to propose an answer to a problem question. The debriefing process
is based on students’ skill-based learning outcomes (P5) which are reflected on awards or
punishments concerning to the solutions that they can propose (C4). In this perspective, players
cannot use ambiguous code blocks but only those which may give a solution in practice about each
task of the problem. Players need to apply their solution plans as subparts of a program according
to the given instructions and detect logically any potential errors by executing programming

commands and constructs into their programs. For instance, the use of a visual palette can be

proposed in an effort to avoid code complexity and focus more on problem-solving.

Design

Game design Design

Instructional

guidelines principles criteria perspectives
G1: Motivating P1: User’s (G1)
students to Decomposing

participate in active

motivation and
persistent

sub-parts of the

main problem

learning tasks engagement
G2: Simu]ati.ng an -
N) (G2)
authentic problem P2: Clea..r and Formulating
challenging goals sub-parts of the
main problem

G3: System’s P3: System’s (G3)

Y 5 Devels mnd
actions abstractions
‘G4: Facilitating the G4
development of P4: Scaffolding User interface Expressing
computational [process ‘ - algorithmic
problem-solving dem features design solutions
strategies through a and elements
scaffolding process

(G5)
. Generating the
G35: Applying appropriateness of

design patterns to
propose an answer
for a problem

P5: Debriefing

process based on ‘ ‘
students’ skill- based

learning outcomes

the most effective

and efficient
design patterns

Figure 6-1: A design map constructed by following the game guidelines and principles of the PIVB

framework

130

According to the proposed framework and design guidelines by Pellas and Vosinakis (2017a), the
RVC simulator has the following characteristics:
a) the simulation of authentic problem situation and functionalities in fading scaffolding processes to
support users’ roles (students and instructor),
b) the visual metaphors of Scratch and OpenSim related to innate CT skills and conceptualize them
into algorithmic rules through abstract thinking logic, and last but not least
c) the use of programming tools which can eliminate the split attention in code syntax assisting to this
vein players to be focused on their solutions that applied as results of computational problem-
solving strategies.
By using the proposed SG following such design guidelines, players can consider how specific
actions will (or not) solve a problem. Thus, they can have the opportunity to understand the appropriate use
of fundamental programming constructs by liaising to those constructs constantly with the appropriate

computational problem-solving strategies to transform their innate thinking solutions into code.
6.2. Gameplay overview

6.2.1. Learning goals and scenario

The “Robot vacuum cleaner” (RVC) simulator is an interactive problem-solving environment that
visualizes a simulation process in which players need to steer one visual object (a vacuum robot cleaner).
The main learning goal that students need to complete is to program correctly a simulated vacuum robot in
order to clean some rooms in a big house, by investigating and applying the most viable routes. Players
need to think before start coding for expressing and applying the most efficient and effective solution plans
using fundamental programming constructs and instructions. Inside a big house, 8 rooms are existed to
determine all in-game stages. Players need to explore the entire house and then decide which of those rooms
would like to play, having the role of embedded software engineers. For each room, players need to map
out spatial orientation and layout of each room that is different from the others and they must program a
RVC in order to clean the only the 4 chosen rooms. Each room has different levels of difficulties. This
means that they start initially with stages (rooms) that have less evocative spatial metaphors of basic
geometric shapes (e.g., triangle, square, and hexagon) so as to identify and apply a solution plan into code
as pathfinding in a logical problem. If players have progress, they need to continue programming the RVC
so that clean the other rooms which have more complicated geometric metaphors, and until completing all
the chosen one, then the game can be terminated in the last stage. The main algorithmic problem that is
projected inside the proposed SG comes in align with pathfinding is the “visual plotting” that refers to a
computer application in which players need to identify and apply the shortest route between two or more

points. Such an approach is useful in a more practical variant on problem-solving a mind trap maze.

131

The learning materials inside the RVC are represented through in-game elements and objects which
are relevant to the needs and demands of high school students as indicate with specific instructions given
by many CS curricula around the globe, focusing on the following two key aspects (Webb et al., 2017;
Tuomi et al., 2017):

a) the analysis of expressed solutions to all problem-solving in-game tasks in a text form using
algorithms or pseudocodes written in natural language, and

b) the implementation of students’ computational problem-solving strategies that lead from problem
formulation to solution expression into the code so that they can be able to apply their solution
plans for problem-solving simulated tasks using fundamental programming constructs.

To all in-game tasks, specific guidelines from the Greek curricula were taken under serious
consideration. Both in the Greek curriculum (Hellenic Pedagogical Institute 2003; Teaching Guidance from
the Greek Ministry of Education, Research and Religious Affairs, 2017) and the Greek school book
(Arapoglou et al., 2003) have been referred specific learning objectives that need to be completed inside
school contexts regarding the way that computer programming needs to be taught and thus all those were
considered as essential for the creation of the proposed SG. In particular, the learning goals that lead to the
expected outcomes can be achieved by familiarizing students with specific elements and features regarding
the use of interactive environments in order to solve various problem-solving tasks in simulated real-world
contexts. Another point of view is that the researchers and/or the CS instructor(s) need to inform students
at the beginning of a teaching intervention about how to use the proposed SG in order to achieve the
following learning goals:

a) toinvestigate how a RVC needs to be moved into a house, taking into account the spatial layout of
each room in which existed several simulated problem-solving contexts between the furniture and
other house objects are provided:;

b) to propose a solution with logical reasoning by expressing specific steps based on a computational
problem-solving strategy and exploit different forms of constructs and commands such as
REPEAT, "From ... until ..." or "Until...repeat", SELECTION ("If ... then™ or "If" then "else™) or
the SEQUENCE in order to apply into code to each in-game task;

c) to explain the appropriateness of using specific programming constructs in order to propose
solutions as design patterns that can be integrated as behaviors into the RVC so as to predict its
control movements without causing damages inside the house.

The RVC simulator has a specific scenario. Having the role of embedded software engineers, players
should assist an old woman with special needs who moves only with her wheelchair and struggles to clean
all rooms of her house by programming correctly an autonomous RVC. House furniture and objects in

square floors are seen as evocative spatial metaphors of basic geometric shapes (e.g., triangle, square, and

132

hexagon) so as to assist students to think and practice “computationally” following an abstract
conceptualization approach as an effort to understand better a visualized problem-solving environment
alongside with a pathfinding in a logical problem. Abstract spatial representations of geometric shapes that
are created by three visual objects (a table and six small chairs) and were extensively used inside the SG,
such as a triangle, for example, to prevent hitting a table, players need to determine arithmetic computation
between chairs and table distance. More specifically, each side’s square floor has side Sm in OpenSim (or
140 steps for a movement that executed inside Scratch) and/-or calculate degrees of turning correctly (e.g.,
90° for square or 45° for equilateral triangle) to traverse the RVC in specific cleaning pathways down from
the table, without dropping all books from the table (see Figure 6-2). Players need to take advantage of the
environment’s spatial layout comprising all of the rules for performing arithmetic computations for the
distance of the robot between their virtual representation and house furniture. The RVC can move and clean
each room that differentiates in spatial geometry layout, in terms of division among house furniture or
objects and succeeds to this notion player who first need to calculate and determine arithmetically the
distances between objects in each room differently without causing hits or damages. This process is
becoming more compelling as players need to apply their computational strategies in practice so as to
present the shortest path between the present location and the goal location of the robot by integrating

behavior inside it.

6.2.2. User interface design features and elements

The design and creation of the RVC simulator were tried to be as similar as possible in both platforms
(OpenSim with S4SL and Scratch). On the one side, the user interface design features and elements of the
proposed SG constitute from a window-based environment as a 3D simulation via OpenSim and S4SL, a
visual palette that was “outside” from OpenSim to program behaviors which need to be integrated inside
the RVC (see Figure 6-2). Following are the main elements of this game created via OpenSim and S4SL.:

e The “client viewer” where the entire game is displayed allowing users to dictate when the script is
executed properly.

e The “notecard of RVC” as a visual object where the script for determining a cleaning path that
needs to be followed by integrating specific code blocks inside it. The notecard contains specific
instructions and programming constructs that are applied in the visual palette of S4SL, and then
each player can copy and paste those instructions and constructs inside the RVC’s notecard to run
it inside OpenSim.

e The “S4SL” palette outside the client viewer. It is a visual palette contains the colored blocks used

to create the design patterns (right side). Users can select a variety of blocks that are displayed in

133

different colors and provide programming constructs, instructions/movement, numbers, and
variables similar as those that exist in the visual palette of Scratch (left side of the palette).

0 e ke i * |

Pin Comprnn power be Pawn B ooy

Figure 6-2: The graphical user interface of the RVC simulator created in OpenSim with Scratch4SL

On the other side, for the development of the proposed SG in Scratch, the following features and
elements for the development of the RVC simulator required:

e Scratch includes both a visual palette and a “window-based” stage. The former contains several
sprites (icons) that can be used by someone who wants to integrate behavior by programming them
and using design patterns (right side). Users can select a variety of blocks that are displayed in
different colors and provide programming constructs, instructions/movement, numbers and
variables (left side of the palette).

o The “Stage” is where the entire game is displayed and allow users to dictate where each script can
be executed.

e The “Sprite” of the RVC contains the script that players can integrate for determining and
programming a cleaning path using the visual palette that can be visualized in Scratch’s stage.

Figure 6-3 depicts a combination of “iteration” (repeat) code blocks inside Scratch. Once a player
completes his/her design pattern, the visual object starts to run the main script. That is reflected only if there
are more blocks underneath the under the “when I receive...” block in a script, they will run whether the
condition placed in the ‘If...Then’ block is true or not. Boolean blocks can be also used to make more

complex checks on conditions.

134

& Scratch 2 Offline Editor = o X

GEERIE © rlev Edity Tips About Lt HHO

Scripts | Costumes | Sounds

R || [l Looks [controt
N || I souna [l sensing
I ren Jl operators
I pata [vore Blocks

Complex room

q
a
(o]

when right srrow

move €D steps
X: -222

| e
-

nter
alide €) secs to x: €FD) v: @Y

Sprites New sprite: @ / &5 €3

:

I

2 bf{:(dg:ps costume1 Sofa Sprite24 Books BDUAKS2
G/an

-
Sofa2 Books3 Projectiled Portalt Sprite1

% Q| 0| 0| 0 o i

Streek

Hahmo2 Hahmo3 Hahmo4 HahmoS

[l x position
00 @ @ =
Hahmo8 Hahmo7 Projectile2 Projectile3 Portal2 =] m

Q0 0m -

Portal3 Portalé. Portals 3dcloset Hahmog. QA=Q

Figure 6-3: The graphical user interface of the RVC simulator created in Scratch

As it is depicted in Figure 6-3, there are also three types of Boolean blocks: The “or” block, the “and
block (+)” and “pick a random”. Boolean blocks can be used in each design pattern as a standard condition
block can be placed by adding one or more condition blocks, so that they can return a value of true or false
that can be checked. Several are the notable code blocks which need to be referred. The event blocks are
used to determine when a script will be triggered, such as a block titled “when I clicked” or “when space
pressed”. All design patterns can be saved in the visual palette as instruction cards (or scripts) until it has

been given an event.

6.2.3. Description of activities and learning challenges

The RVC simulator gives various kinds of visual feedback to help players comprehend if the
computer instructions are correct in order to help the RVC’s movements and change the states of the
graphical objects (checkpoints) to gather the gray dust dots from the grids inside the house (see Figure 6-
4). It also provides feedback on students’ performance for solving computational problems in terms of the
number of dust dots inside each grid that is cleaned, and the number of visualized instruction blocks used.
The assembly of code blocks includes a drag-and-drop process present a chunk of computer instructions
and programming constructs that can be used to help players to plan a solution by subdividing it into smaller
parts. To accomplish all learning goals of the RVC simulator, players need to apply their computational
strategies in practice beneficial to present the shortest path between the present location and the goal

135

location of the robot by integrating behavior from S4SL to OpenSim or in Scratch. Specifically, they need

to execute and propose a solution as a set of design patterns by combining programming constructs

(sequence, if/else statement or loop) and instruction/movement commands. Nevertheless, there are several

distinctive similarities and differences which need to be identified. These are tabulated in Table 6-1 below.

Table 6-1: Similarities and differences of the game interface design created in OpenSim and Scratch

Issues

Similarities

Differences

Learning tasks

Problem-solving tasks to support
CT instruction and evaluation of
students’ learning performance

OpenSim: It gives a sense of presence
on players’ experience as avatars with
the feeling of “being there”. A 3D VW
allows players to view all objects’
motion to a greater perception and
subjective sense of being within a
realistic simulated digital context.
Scratch: It gives flat drawings where
players can view all in-game objects
and elements in 2D sprites (images).

User interface design features

6 in-game stages (3 stages to play
and another 1 for learning how to
play)

OpenSim: In-game stages have
realistic simulated representational
fidelity that is displayed in a 3D digital
persistent environment, where players
can explore and observe everything
inside it. A 3D RVC simulator
portrays a visual realism.

Scratch: In-game stages were
separated and displayed as 2D sprites
and are opened only when players
choose them.

Functionality and playability

The RVC simulator’s
operationality

OpenSim: a) Viewing and exploring
in-game stages and element/objects in
OpenSim is achieved by taking
advantage of intuitive, natural
modality contexts for user-interaction
tasks (length, width, height-x, y, z-
axes).

b) Movements in a 3D RVC simulator
requires the exploration in a 3D world,
in which players can move closer and
deeper into realistic settings.

Scratch: a) Viewing and exploring in-
game stages and every feature/object
were taken with a panoramic view
using 2D sprites for user-interaction
tasks.

b) Movements to a 2D RVC simulator
restrict each player’s movements to a
flat plane, but it includes various
directions (length, width-x, y-axes).

Programming tasks

The programming tool is
displayed as a visual palette and
has the same fundamental
programming constructs

OpenSim: The visual palette is
outside OpenSim.

Scratch: The visual palette is
integrated inside Scratch’s
environment.

136

The description of in-game activities is also worth noting. The RVC simulator drives players to
analyze, visualize and practice the correct use of computer programming constructs for achieving in-game
learning goals. The conceptual integrity of the proposed SG is based on the use of skills related to CT from
the game experience and not on teaching any general-purpose programming language. The RVC simulator
is not designed to improve any operational refinement that assists students to describe their actions in terms
of expressing pseudocodes, but it needs every solution plan to be applied with skills and strategies that are
acquired from the game-experience to be transferred into programs. Such a SG is also concerned about
scaffolding instructional approach as the whole idea behind constructing solution plans is to make each
student think and practice “computationally”. Furthermore, the proposed SG does not focus on a specific
gender, and players do not need to have any programming knowledge to play the game. RVC is designed
to respect gender equality and expertise neutral of high school students. Firstly, the proposed SG is not
gender-oriented because its theme is a RVC that needs to be programmed correctly to clean all rooms, in
which players should program and visualize several and alternative cleaning pathways. Secondly, players
do not need to have prior or extensive experience in programming knowledge to play the game. Since a
specific role is assigned to each player, a number of steps in order to complete his/her strategy need to make
the following:

a) to explore any of the chosen rooms separately to identify drawbacks between visual objects and
furniture creating visual and abstract simulation content,

b) to plan specific movements to pass all checkpoints the vacuum robot for optimum performance

c) to propose the shortest cleaning path in reasonable time, and locate any further points that should
be avoided so as to clean all dusty dots the floor, without hit any object or furniture,

d) to program the shortest cleaning route that can be proposed for each room individually in order not
to turn off the robot due to battery consumption after that cannot last up to one-hour time, and last
but not least

e) each player needs to describe and apply algorithms that can calculate the most efficient and
effective routes as cleaning paths.

All in all, 6 rooms designed with learning tasks lasted each for about 40 minutes. For each one,
players were free to propose different solutions based on their design patterns as there was not a pre-defined
one. They had the chance to choose and solve problems with only 4 rooms, with 1 to be chosen from each
stage. Only the 3 chosen rooms counted for their final grades. The bedroom or the drawing room are
developed to be chosen for introductory activities in order to learn players how to use some tools and
another one room that each player could exclude.

Figure 6-4 depicts all in-game stages created in Scratch on the left side and stages created in OpenSim

are on the right side. A presupposition is to use the same programming method and constructs (i.e., simple

137

or nested iteration, sequence or selection) at first stages including the bedroom (1.1.) and the drawing room
(1.2.) to propose a solution for the other 3 chosen rooms (stages) only once more. This means that for the
other two, players need to propose a combination of programming methods or nested with numbers and/or
variables. When participants decide which of the 3 rooms from the three stages wanted to play, they had
the chance to use one different method that can be combined with a proposed programming method in order
to gain higher grades, e.g., a combination of selection (if...else) and/or iteration with a sequence of
commands.

Except for the above two rooms, the rest four have different levels of difficulty. For example, the
second stage includes the billiard room (2.1.) and cinema room (2.2.) have a medium level of difficulty due
to a fewer number of objects and house furniture that is provided, in which players can use either one or a
combination of more programming methods.

In another example, the relaxing room (3.1.) and sitting room (3.2.) are included in the third stage.
Both have a higher level of difficulty, as at least optically house furniture and objects were significantly
more than in other stages and this feature could assist (or not) players to create different the geometric

shapes for cleaning pathways, and thence more programming methods need to be combined.

138

2.1. The billiard room

139

3.1. The relaxing room

3.2. The sitting room

Figure 6-4: The in-game stages created in Scratch and OpenSim with Scratch4SL

Learning challenges through the RVC simulator’s gameplay require the analysis on how to plan a
solution for a cleaning path problem. Players need to articulate a solution aimed at creating algorithms with
logical and precise instructions and finally applying their solution plans for subparts of the main problem

into code. Firstly, they need to navigate, determine movement positions and describe the best cleaning path

140

that an autonomous RVC can demonstrate in sufficient time. They need to subdivide the main spatial
problem-solving task into smaller parts, apprehend hypothetical error situations for retrieving visual
feedback for their actions inside OpenSim or Scratch. After that, they need to debug their cognitive thinking
process by testing and figuring out possible misconceptions in computational practices through coding.
To identify and present a proposed solution by explaining a step-by-step solution before its execution,
the core gameplay mechanics, basic rules, and functions of the RVC simulator were announced to all
participants with specific instructions in hard copies (see Appendices H and G). The direct feedback is
based on a player’s actions by copying and pasting the code blocks from the palette of code blocks as design
patterns to an object’s note card that is integrated into a visual element created either in Scratch as a sprite
or in OpenSim as a visual object. Players need to consider that the robot should not be moved for more than
10m, because for each square floor, it has to move 5m (or 140 steps for Scratch) distance in length and
width from the owner in order to be controlled by a mobile smartphone. Stopping the RVC to pick up the
dust only for 2 seconds for better cleaning is also needed. An indicative example is depicted in Figure 6-5.
For example, a boy using Scratch and a girl using OpenSim with S4SL faced the same simulated problem-
solving tasks. Both were needed to explore what movements the RVC should make in a cleaning pathway
to be applied correctly their solution plans into code. The boy proposed an alternative solution that looks
like being a square root spiral. In other words, he pointed out the center of each square to make the robot
spiral movements based on the given instructions that need to be encoded. When the robot is moved under
the table (root), the boy needed to use the same design patterns with iteration and commands blocks in
relation to numbers or variables by changing its rotation spatially and correctly the RVC’s movements to

clean each room.

141

Figure 6-5: An illustration of the in-game learning process in the cinema room

The final scores encouraged a level of competition among players to be submitted in a high score list,
when they succeed all in-game goals from the chosen rooms. Such an approach leads to a non-compulsory
competition among those players who want to compete with each other and thus provides a limited
interaction among players. As the competition in the game designed to respect any gender and expertise
equality, since players had the chance to announce if they want (or not) to submit their scores to the final

list and stay anonymous.

6.2.4. Game mechanics

Several core mechanisms are integrated inside the RVC simulator determining the pre-defined rules
that are designed for the interaction of players with the game system, thus providing gameplay. First, six
checkpoints inside each room allow the “mapping” process and allow players to start from such a point in
case of hitting any house object. Also, each player had the chance to place another 3 checkpoints in order
to visualize better his/her proposed cleaning pathway. If the robot is programmed correctly to pass above
them, then the total time is not counted until the final solution is finished without losing the RVC battery’s
energy. Moreover, whenever the robot is programmed to pass and clean all dusty dots (gray signs) off the
floor, it gains energy, giving grades to its battery life (award). Another import issue is to stop the robot for
2 seconds in order to clean each gray spot. Otherwise, penalty scores are excited every time that each player

142

applies his/her computational practices and hit an in-house visual object, losing for such an action 0.5 grade
(punishment).

Second, for each of the 8-gray dust dots to every stage can give 0.5 grade which were visualized as a
text message with the number ““1” and a sound is played too. Therefore, each player can gain 12 grades at
most from the 3 stages, since only 1 room was for practice. If gathering all dots with the smallest possible
number of code blocks by applying efficient and effective programs that can be integrated inside the RVC
to be cleaned each room based on resilient planning, execution time and fewer hits on the house furniture
or objects, then such a player is declared as the winner.

Third, there are some in-game awards and punishments which are given. For instance, a good
computational performance grade is announced when correct instructions and constructs in design patterns
are integrated inside the robot, whilst in this SG, sketching geometric shapes have similar behavior patterns
to the robot’s movements as cleaning pathways inside a room. A bad one is provided if a player uses
constructs and commands in which the robot’s movement include only “zigzag” movements that may be
correct. Additionally, the time to be finished and code blocks will be much more. Such an example is given
in Figure 6-6 that presents the visual palette of Scratch with 4 different design patterns as solutions to a
computational problem inside the big house. Condition blocks’ check is provided if a given condition is
true or false. For example, the condition shown in Figure 6-6 can be changed with the first code block
checking if a statement of motion is taken to move it appropriately without hitting some objects or if a
distance to the owner is larger than a proposed one. Second, the control blocks allow users to make more
complex scripts that react to the player's choices and the current state of the proposed SG and introduce

computational concepts that are likely to be of wider use.

143

" turn) € degrees
e =) -

P P —

Figure 6-6: The four different design patterns as solutions to a computational problem

To sum up, the RVC simulator is developed to encourage players to think and practice
“computationally”, in an environment with simulated real-world problem-solving tasks in which they need
to utilize CS programming concepts and constructs taught based on the guidelines that almost all CS
curricula for high school programming courses have been across the globe proposed. By way of illustration
a SG, a RVC simulator is developed. It is focused not only on the operational level of abstraction and skill
acquisition related to CT, but also it gives to all students who have different gender and programming
background to contextualize and use properly fundamental programming constructs (i.e. programming
sequence, functions, decision making, loops) so as to apply their solution plan into the proposed SG.

144

Chapter 7: Experimental design

This chapter demonstrates the experimental design and data from the statistical analyses resulted
by conducting two studies. It aims to present the effects of using the RVC simulator on teaching
and learning computer programming. The effects of the RVC simulator are assessed through a
preliminary and a quasi-experimental study. The former aims to examine the effects of using the
first prototype RVC simulator created in OpenSim with S4SL to support CT instruction. It presents
the first usage of RVC simulator and how well the proposed SG operates, to determine any
problems and possible weaknesses that need to be solved by assessing the learning effectiveness,
the learning procedure, and user experience of fifteen (n=15) high school students. The latter
presents evidence about how the proposed SG could assist boys and girls to gain a greater
understanding on skills related to CT for developing, implementing and transforming their solution
plans into code in regard to their learning performance by assessing their computational problem-
solving strategies (i.e. computational design, computational practices, and computational
performance). A total of fifty (n=50) high school students who volunteered to participate in this
second study divided into a control group (n=25) and an experimental (n=25) group using Scratch
and OpenSim combined with the Scratch4SL palette, respectively.

7.1. Rationale and purpose

In recent times, education scholars, CS teachers, and researchers are increasingly turning to the use
of interactive environments in order to identify and intervene with students at risk of underperformance or
discontinuation in programming courses. Prior works following GBL approaches were focused either on
the measurement of boys’ and girls’ engagement and participation using interactive environments (Costa
& Miranda, 2016; Lye & Koh, 2014) or in the aspects of analyzing executive solutions built from the
combination of blocks consisted of simple or nested programming constructs as design patterns in terms of
using correct (or not) syntax or semantics of a programming language (Brennan & Resnick, 2012; Howland
& Good, 2015; Werner et al., 2015). Literature in the field of CT instruction through programming courses
(Denner et al., 2012; Mouza et al., 2016; Werner et al., 2015) has also advocated that measuring
computational problem-solving strategies of students with different gender by applying integrated
behaviors in visual elements using a SG can profoundly influence their learning performance.

Although recent studies (Kalelioglu et al., 2014; Mouza et al., 2016; Witherspoon, 2017) have
provided empirical evidence on how students can develop and program their games using skills related CT
s0 as to apply their solution plans into code through creative computing or artistic expression tasks, limited

research demonstrated how a SG’s features and elements can support CT instruction. Given the advances

145

in research about K-12 programming courses for CT instruction and in particular those that incorporate
GBL approaches, a considerable limitation is the small number of empirical studies which have tested the
appropriateness and the effects of SGs on students’ learning performance in overall (Chao, 2016; Howland
& Good, 2015; Liu et al., 2011; Liu et al., 2017). With that in mind, a substantial body of literature reviews
has come to the statement that there is a “gap” concerning the creation and use of new interactive
environments (Grover & Pea, 2013; Lye & Koh, 2014) or the combination of already known “tools” for
game playing tasks (Kafai & Burke, 2015). Besides the widespread interest to use several interactive games,
there was no evidence if a SG created either in VPEs or in 3D VWs which differ on user design features
and elements can affect students’ learning performance by solving simulated real-world problems.

To fill the above-mentioned research “gap”, this thesis seeks to investigate whether a SG interface
and elements created in OpenSim that has a more natural intuitive modality for user-interaction tasks than
Scratch can significantly affect students’ learning performance by assessing their computational problem-
solving strategies (i.e. computational design, computational practices, and computational performance) to
the same simulated real-world problem-solving situations. Having explained the rationale of proposing
specific guidelines, characteristics and features of the RVC simulator and the reasons why it is designed,
thereby a research approach and design needs to answer this thesis’s hypothesis. In other words, it is
required to assess whether or not such a game can offer an educationally effective solution for high school
students on how to use fundamental programming constructs by thinking and applying their solution plans
using skills related to CT. A suggestive way to give answers in such a hypothesis can be the use of the
proposed SG gameplay created by combining the visual palette of S4SL to prevent programming syntax
complexity and the realistic simulated representational fidelity of a 3D VW like OpenSim or by using
Scratch’s features and elements so that support greatly the development of students’ computational
problem-solving strategies. Therefore, two research questions (RQ) are arising:

RQ1: Can the RVC simulator created in two interactive environments with different GUI features
and elements support the development of students’ computational problem-solving strategies?

RQ2: Are there any significant differences in students’ learning performance resulting from the
description and expression of computational concepts and constructs into the code for proposing solutions
to several simulated problem-solving tasks via the RVC simulator?

The present chapter describes the main research design method divided into a twofold experimental
setup. Due to a lack of studies assessing a game playing framework, this thesis’ experimental setup seeks:

a) to test a prototype SG so that support CT instruction through programming courses following the
design guidelines of the PIVB theoretical framework by conducting a preliminary and an

experimental study, and

146

b) to observe how and what features and characteristics of the RVC simulator can greatly support
students’ efforts in programming courses in order to develop and apply their computational
problem-solving strategies.

To achieve the first objective, a mixed-methods preliminary study is conducted in order to investigate
if the RVC simulator can support the development of students” computational problem-solving practices
into code. Based on previous studies (Rubin & Chisnell, 2008; Tullis & Albert, 2013), a sample consisted
of five and more participants are suited to detect the most important system issues since almost 80% of the
usability deficiencies of a first prototype will be exposed by such a number of participants. In this
preliminary study, students were familiar with technological and interactive environments and games, but
they have not got any prior experience with other similar prototypes like the RVC simulator. Such a study
can give initial evidence to discuss the potential reasons for using the proposed SG created in OpenSim
with S4SL to identify any potential problems and then improve any design and/or usability issues by
measuring learning experience and first perceptions of a total of fifteen (n=15) high school students (Pellas
& Vosinakis, 2017b).

To achieve the second objective, in an effort to widen and generalize a more efficient way to foster
computational problem-solving strategies of students, a quasi-experimental study is also conducted. The
main purpose is to investigate if the RVC simulator can affect the learning performance of boys and girls
in order to gain a greater understanding on the use of skills related to CT for developing, applying and
transforming their solution plans into code by comparing and identifying any similarities or differences on
the implementation of boys’ and girls’ solution plans. Therefore, in the experimental setup, a total of fifty
(n=50) high school students who participated voluntarily in this study divided into a control group (n=25)
and an experimental (n=25) group that used Scratch and OpenSim with the S4SL palette, respectively in
favor of supporting and applying their solution plans into code for the same problem-solving tasks using
the RVC simulator (Pellas & Vosinakis, 2018). Thence, an empirical study is conducted to analyze boys’
and girls’ computational problem-solving strategies focused on:

a) computational design to express their solution plans in natural language for all subparts of the main
problem,

b) computational practices to apply those plans into code as design patterns, and finally,

C) computational performance to measure students’ learning performance and outcomes by
identifying the most effective and efficient design patterns which have been applied.

The assessment of students’ learning performance requires not only the formulation and manipulation
of a problem with skills related to CT, but also testing and debugging such a solution’s correctness to a
problem with design patterns integrated in visual programming elements e.g., the use of control flow blocks

from a visual palette to propose and program solution plans. To measure any improvement in overall

147

rule/instruction specification ability, the mean scores of the worksheets from the two groups, an error
analysis rubric is used in the direction of analyzing students’ answers in response to the RQ1. An error
analysis rubric was compromised to all in-game activities related to each one of the CT instruction through
several sessions described in Table 7-3 (see p.154) including examples of various thinking processes. The
use of such a rubric is imperative for the description of a solution by writing short sentences in natural
language (CT 1-4), then into algorithms/pseudocodes (CT5), and finally into code as design patterns (CT6).
In addition, using descriptive statistics in regard to the accurate description and implementation of
computational problem-solving strategies comparing students’ computational design solution plans, as
computational practices that are transformed into code using the visual palette of Scratch or S4SL. The
main purpose is to be measured and to be identified students’ computational performance by assessing the
most efficient and effective design solutions. Also, self-reported students’ answers regarding the effects of
the RVC simulator focused on pre-and-post CTS questionnaires and post-tests in the direction of
determining how they used skills related to CT in response to the RQ2.

7.2. Research methodology of the preliminary study

7.2.1. Sample

The sample comprised of 7 girls (Mag: 13.87, SD: 1.13) and 8 boys (Mage: 14.74, SD: 1.15)
volunteered to participate from the local schools. All participants were recruited to attend after-school
sessions. Also, participants were novices and all of them had previous experience with Scratch (100%). In
regard to personal information about the sample, all participants had a personal computer (100%), albeit
only two of them (13%) have also utilized in their free time other platforms to learn how to program by
playing games via “Hour of Code”. Almost all have pointed out that Informatics and specifically
programming courses are significant for their professional development (80%).

When all participants were selected, the main researcher contacted to their teachers and parents in
order to obtain the necessary consent from both the student and the legal guardians (or parents) for the data

collection.

7.2.2. Procedure

The preliminary study was conducted in an intensive 2-week period with 6 sessions (see Table 7-1).
The first 4 sessions lasted 4 hours in face-to-face and the other 2 lasted 2 hours in supplementary online
during the spring trimester 2017. In the RVC simulator, students tried to visualize their efforts by

programming and integrating instructions combined with programming contexts inside the visual object of

148

the robot vacuum cleaner in order to predict its movements and proposed the most efficient and effective
cleaning pathways (routes). Figure 7-1 and Figure 7-2 show students’ efforts through blended instruction.

Figure 7-1: A girl proposes a solution via Scratch4SL for the first stage inside the RVC simulator

Figure 7-2: A boy proposes a solution via Scratch4SL for the second stage inside the RVC simulator

Table 7-1 outlines a process about how students can develop their skills in gameplay using CT skills
so that support computational problem-solving development through in-game settings. This table also
validates how cognitive thinking skills (e.g. logical or abstract thinking etc.) related to CT can be developed
in the game playing modes in dwelling on problem-solving tasks, understanding problems, and formulating

solution plans into code. The instructional approach was made according to the operational definition that

149

CSTA and ISTE (2011) that can be utilized for the development of the most essential skills related of CT
in align with the proposed game design principles (G1-G5).

Table 7-1: Description of activities associated with game playing in the preliminary study

Sessions

Learning tasks associated with
CT concepts and CT skill
definition (CSTA & ISTE, 2011)

In-game tasks and objectives

1t session: Presenting the
learning objectives and goals of
the RVC simulator so as to use
its functions.

Think about what the main problem
is and its which elements.

Students need to explore and utilize
further all features in each in-game
stage to propose are required to

know in order to propose a solution.

Decomposing subparts of the main
problem: Try to break into smaller
pieces the main problem and describe
what steps required to solve it properly.
Possible solutions are seen as workable
algorithms at the beginning a natural
language/pseudocode writing in a text
form (G1).

2" session: Familiarizing
students with the use of
fundamental programming
concepts.

Link abstract thinking concepts
through concrete game
experience.

Problem identification and
decomposition into a collection of
intermediate sub-goals.

Formulating subparts of the main
problem that is visualized in the
game: Analyze alternative pathways
which are followed. Students need to
understand how the robot can move
between other visual objects inside
OpenSim (G2).

3" session: Learning how to
program using fundamental
programming constructs such
as sequence, iteration, and
selection combined with
several variables and the basic
arithmetic operators using the
S4SL palette.

a) Abstraction and data
representation as steps to create
algorithms.

b) Design and implement a solution
to all sub-goals of the main
problem.

Developing and using abstractions:
Designate the movements of an object,
by exploring the spatial layout of each
stage based on objects/elements. Try to
transmit a solution into the code for the
object’s movements and observe the
results during the run-time. Two are the
most prominent questions that need to
be answered:

(i) Can be applied correctly a solution
that is expressed in natural language
based on the proposed instructions and
rules?

(ii) Is it easy to transform a solution
plan into the code to observe how the
programming constructs are integrated
and executed correctly into visual
elements? (G3)

4™ session: Expressing
proposed solution plans using
programming constructs by
creating reusable subprograms.

Automation requires practice in the
run-time mode the proposed steps
using programming constructs and
specific instructions.

Expressing algorithmic design
solutions: Develop step-by-step
instructions that need to be followed for
solving each of the subparts of in-game
problems. Students need to express as
pseudocode any potential solution
using small pieces of
instructions/movements and
programming constructs (G4).

5t session: Applying students’
solution plans into the code and
integrate the most appropriate
constructs combined with

Testing and debugging processes:
Create efficient and repeatable
design patterns as workable
algorithms.

Recognizing and defining the
correctness of solution plans:
Students need to apply the entire
solution plan according to the given

150

specific into the in-game visual instructions and detect any potential
objects (RVC). errors (debug) logically by executing
programming commands and
constructs blocks via S4SL (G5).

6™ session: Examining Simulation and parallelization: | Generating the appropriateness of
students’ solution plans (code Problem generation and pattern | the most effective and efficient design
tracing analysis) by identifying | generalization. patterns: The instructor needs to

the most effective and efficient examine by benchmarking the proposed
design patterns so as to design patterns. What differences can
announce the winner(s). be observed for scoring better in the

game according to the proposed design
patterns? Discuss with other peers and
with the CS instructor (G5).

An instructor was attended to all sessions in the conventional computer laboratory and in OpenSim.
Initially, even before the beginning of this study, the instructor needed to establish and ensure students’
access in OpenSim and S4SL., in both computer laboratory and online courses, with the purpose of resolving
any technical issues and allow them to participate seamlessly, like doing their homework. Therefore, the
instructor has also the responsibility:

a) to attend all courses (face-to-face and/or supplementary online) and assist students’ efforts in
several coding tasks,

b) to give the appropriate feedback for the compilation or execution of any detected errors into code
to syntax correctly their solution plans, and

C) to access on users’ actions, either online via Open Sim or offline so that provide a general
understanding of how students start thinking about solving sub-goals of the problem before starting

to code.

7.2.3. Instrumentation and data analysis

A mixed-methods study was followed for assessing the experiential dimensions in the current
preliminary study in favor of validating further its results. At the end of this experiment, quantitative data
were gathered through close-ended self-reporting questionnaire responses of participants (Bargas-Avila &
Hornbzk, 2011) given the option of writing short comments (Table 7), whilst maintaining their anonymity
and confidentiality (see Appendix A, p. 219). Their answers analyzed according to the guidelines for user
experience studies (Tullis & Albert, 2013). Supplementary, qualitative data were collected through open-
ended interview questions to understand students’ enchantment and engagement using the RV C simulator
(see Appendix B, p. 222).

To assess the user experience, this study followed the research considerations by Bargas-Avila and
Hornbak (2011) who identified several aspects of experiential dimensions that should be utilized. All

statements in this work are expressed and rated simply on a 5-point Likert scale (strongly disagree-1 to

151

strongly agree-5). The items about the procedure for measuring student learning experience was based on
16 questions, translated to Greek and separated in three subparts: learning effectiveness (LE), learning
procedure (LP) and user experience (UX). Subparts about students’ learning outcomes and experiences
concerned with issues that are ubiquitous in respective work. More specifically, all identified aspects
(aesthetics of interaction engagement, usability, usefulness, visual appeal) related to user experience
(Bargas-Avila & Hornbak, 2011). Cronbach’s alpha () of the main questionnaire was 0.835, reflecting on
a reasonable internal consistency of the variables to describe students’ expectations. More specifically, data
were analyzed using:

a) guidelines for usability metrics so as to evaluate the user experience (Tullis & Albert, 2013),
including each user’s response to the top-2-boxes (positive responses) or the bottom-2-boxes
(negative responses),

b) probing questions from the instructor provided feedback by posing questions to each participant
when s/he seemed to get confused helping them find an adequate direction to propose a solution,
and

c) code tracing analysis via S4SL palette, the instructor evaluated the applicability of algorithmic
control flow to identify whether the adoption of selection control flow blocks and the exploitation

of nesting composition among programming constructs were achieved.

7.2.4. Results

Regarding the participants’ background based on demographics information, almost more than half
percent (55%) of them found really important their participation in CS courses with reasoning and learning
capabilities to be the implementation of various tasks using programming environments. Most of them
(60%) had previous experience with Scratch. Some of them (20%) answered that they knew about SGs,
such as “The Sims” or “Minecraft” and some others (33%) who had utilized them.

Table 7-2: Short comments on how the proposed simulation game contributing to the learning
effectiveness, learning procedure, and user experience

Learning (a) Roleplay (b) Exploration (c) Learning (d) Chat or voice (e) Visual feedback
effectiveness |scenario and problem objectives communication [n=1, 7%)]
(LE) [n=8, 54%)] description [n=2, 13%)] [n=2, 13%)]
[n=2, 13%)]
Learning (a) OpenSim (b) Instructor’s (c) Game context (d) Understanding |(e) In-game visual
procedure and S4SL feedback [n=2, 10%)] of user control in elements
(LP) [n=5, 40%] [n=4, 30%] the game [n=2, 10%)]
[n=2, 10%)]

User (a) The game |(b) In-game (c) Interactivity (d) The 3D (e) The
experience |setting (RVC, 5 |problem with visual objects |graphical user anthropomorphic
(UX) rooms, visual |recognition [n=3, 20%)] interface avatar

objects, etc.) accuracy [n=3, [n=2, 15%)] [n=2, 15%)]

[n=5, 30%)] 20%]

152

The vast majority of participants reported on several points of view about the RVC simulator. In
Figure 7-3, the top-2-box scores include responses to the two most favorable response options, i.e. ranking
percentage based on their answers was e.g., from 87% (13 out of 15 students) about expressing and applying
their solutions to 67% (10 out of 15 students) about decomposing in subparts the main problem. Slightly
more than half of them (54%) referred that roleplay scenario and problem description contributing to LE
(Table 7-2).

A student reported that “some facts in the game are really represented well. This helped me not only
to rationalize my decisions by applying and explaining my solution but also to know why | used some
programming constructs without only proposing “zigzag ” movements as cleaning pathways ”. Another one
said that “S4SL helped me to apply a proposed solution, as I visually saw the results of the code inside
OpenSim”.

In contrast, other users could not easily recognize the interaction between elements inside the house
(Visual feedback: 7%) and one of them complained that “I struggled sometimes to understand if the robot
collided with house furniture or objects, when I was applied for my program”, albeit in the end their
preference than Scratch or Alice was referred. The use of communication tools to succeed the learning
objectives was mentioned less by a few users (13%), maybe due to the instructor’s feedback in face-to-face
tasks.

Learning effectiveness
1. Decompose subparts of the main problem Q 5 10
2. Understand the use of programming constructs 0 3 12
3. Think before start coding - 2 12
4. Apply a step-by-step solution via Scratch4SL - 2 11

5. Debug my solution plan - 1 13

0 2 4 6 8 10 12 14 16

m Negative (1:Strongly Disagree, 2:Disagree) Neutral (3:Neutral) Positive (4:Agree, 5:Strongly agree)

Figure 7-3: Horizontal stacked bar chart of top/bottom-2-boxes of users’ responses about the learning
effectiveness

153

In terms of LP, again many participants were at the top-2-box scores. The ranking percentage based
on their answers was e.g., from 73% (11 out of 15 students) on understanding instructor’s feedback to 53%
(8 out of 15 students) for the effective communication and successful implementation of design patterns for
proposing solutions to each subpart of the main problem (Figure 7-4). Others reported on several points of
view in regard to the SG that contributed to the LP (Table 2) with the most notable to be the combination
of OpenSim with S4SL (40%). After the game context, understanding of in-game user control and visual
elements follow with 10% to each. The combination of OpenSim and S4SL was necessary for integrating
behavior inside the robot to follow a cleaning path and getting responses of its movement, in an effort of
proposing and applying visually solutions through design patterns.

The phase of programming to visualize a proposed solution was referred by others as an important
feature, especially because it enables them to assess their thinking process: “The S4SL palette enabled me
to write correctly the code, while I was previously described and proposed a solution in natural language”.
Another one participant referred that “the instructor guided my practices and he helped me with the code

responses in order to be applied my solution plans ”.

Learning procedure

1. Communicate my solution plan using specific instructions -
and programming constructs

2. Express my solution as an algorithm - 3 9
3. Understand the instructor’s feedback 0 4 11
4. Explain reasons of using specific programming constructs - 4 9

5. Apply my solution plan with design patterns . 6 8

0 2 4 6 8 10 12 14 16

m Negative (1:Strongly Disagree, 2:Disagree) Neutral (3:Neutral) Positive (4:Agree, 5:Strongly agree)
Figure 7-4: Horizontal stacked bar chart of top/bottom-2-boxes of users’ responses about the learning
procedure

With respect to the UX, most participants were at the top-2-box scores (Figure 7-5). For instance, the
top-2-box score is 67% (10 out of 15 students) of students who felt engaged with the VRC simulator rating

it favorably compared to their counterparts who have an opposite opinion according to a bottom-2-score of

154

13% (2 out of 15 students). Participants reported on several aspects of the SG, which contributed to positive
user experience (Table 2) with the highest to be the game setting (30%).

The anthropomorphic avatar representation and the 3D GUI follow with 15%. A representative
answer reported that “It was a motivating setup of playing in-game tasks”. Other one said, “In past,
sometimes | did not have the opportunity to present my code and speak of why | used some programming

constructs”.

User experience

1. OpenSim was easy to use 0 3 12
2.Scratch4SL was easy to use Q 3 12
3. OpenSir_n and Scratch4SL assist the understanding of § 4 1
learning how to use programming constructs
4. The use of avatars was helpful [l 1 13
5.The RVC simulator had engaging tasks [Bl 3 10
6. The RVC simulator was visually appealling 0 1 14

0 2 4 6 8 10 12 14 16

m Negative (1:Strongly Disagree, 2:Disagree) Neutral (3:Neutral) Positive (4:Agree, 5:Strongly agree)

Figure 7-5: Horizontal stacked bar chart of top/bottom-2-boxes of responses about user experience

Negative aspects of the UX were also reported about interactivity among visual objects (15%), like
“When the robot stroked a table or a sofa, sometimes I did not recognize the error message, maybe because
of the poor quality of graphics”. Few users struggled to log into OpenSim, said that “/ was observed slow
loading times in my entrance” at the beginning or others did not copy and paste correctly the code into the
notecard of RVC.

7.2.5. Discussion

The main purpose of this preliminary study was to investigate the effectiveness of a 3D SG to
programming high school course settings. The RVC simulator provides affordances with instructive guided
support through informal blended instruction to CT teaching. Furthermore, it enables the free
experimentation and reflection of students in a concrete problem-solving space by exploring and expressing

solutions through design patterns. Their answers revealed the positive acceptance of how instruction using

155

S4SL and OpenSim engaged them in innovative and interactive learning situations since they had very
satisfactory performance and user experience. Findings of this preliminary study unveiled that a great
number of students found the proposed 3D SG interesting, fascinating and relevant to their previous
experience with other SGs, like “The Sims” or “Minecraft”. Without so highly advanced, but with simple
design patterns to be nested and presented as final solutions, students appeared not having any difficulties
in producing some good computational problem-solving practices. Based on code tracing analysis, the
applicability of selection control flow blocks and the exploitation of nesting composition among
programming constructs, for instance, such as mastering if/else conditionals with numbers using S4SL,
students were able to propose well-defined solutions and learning outcomes that could be easily visualized
in OpenSim. Consistent with Howland’s and Good’s (2015) study findings, a block-based palette is
regarded as a reliable tool for high school students to avoid syntax errors in programming and trigger more
in problem-solving via 3D roleplay games by expressing and applying more succinct and precise rules with
instructions in combination with programming constructs.

On the other side, contrary to the results of past efforts (Brennan & Resnick, 2012; Mouza et al.,
2016), students of this study using a 3D SG seemed to have reasonable efforts by answering why they used
specific programming constructs and/or instructions in computational practices, dodging the vague syntax
of programming constructs and commands. Such a process can give valuable answers for assessing how
students try to think and practice computationally before starting to code. This can also give evidence of a
deeper understanding of the description of a cognitive thinking process to the comprehension and
production of coded solutions.

Despite the small number of participants in this preliminary study, their answers from the close-ended
guestionnaire, interviews and code analysis can give important educational aspects. Therefore, as regards
the LE:

a) The learning outcomes have been achieved with particularly encouraging evidence arising from the
code tracing analysis via S4SL.

b) A few students seemed to face problems or report issues or report any issues according to the
technological requirements of the SG created by using OpenSim and especially as regards their
attempt to complete all in-game stages.

c) Any particular difficulty in compiling and applying their solution plans into code did not prevent
all participants to complete successfully their activities required within specific time frames.

With regard to the LP:

a) The spatial presence of objects/elements in three-dimensions using OpenSim assisted participants

to separate and explore easier all subparts within problem-solving context existed in each stage.

156

b)

a)

b)

d)

Nonet

a)

b)

c)

a)

The natural-intuitive modality for user-interaction simulation tasks helped participants both to
better analyze the components of a computational problem and propose effective solution plans to
be applied their design patterns.

Regarding the UX:
The participants’ satisfaction with the user interface features and overall enjoyment of the activity
was at a high-level. It seemed that was positively associated with their engagement to learn by
playing the RVC simulator and the technical characteristics (e.g., audio-motion quality and 3D
visual in-game objects and elements).
The participants’ navigation inside OpenSim was ease using a/-synchronous communication tools
which are associated with the use of a keyboard and a mouse to play with and code;
Camera and object handling for the integration of visual behavior via coding was not considered as
difficult, although some participants at the beginning have only mentioned in their comments that
they were having some minor difficulties using specific tools;
Participants considered the presence of the main researcher as important, while in most cases they
did not consider it necessary in online supplementary instructional formats.

In addition to the above, in online programming courses, participants were satisfied by the natural-

intuitive modality for user-interaction simulation tasks inside OpenSim, but they did not find any

possibilities of verbal communication except in case of communicating with the main researcher.

heless, they found helpful both verbal and non-verbal communication tools to communicate with the

instructor.

This preliminary study’s findings may be of interest to instructional designers who want to take in

advance a 3D SG and design (in-) formal introductory programming courses in blended instruction to foster

students’ computational problem-solving practices. The utilization of the proposed SG made students able:

to think critically and logically so as to organize code blocks design patterns and execute programs
for a simulated real-world problem,

to understand easily all evocative spatial metaphors from the different spatial layout that room has
inside OpenSim, referring from almost all of the different computational practices in coding, and
to succeed learning outcomes and achievements which have affected positively their overall

performance in order to apply easily their thinking solution plans into code.

7.2.6. Limitations

The current preliminary study has the following four limitations:

The sample size of participants was too small (n=15).

157

b) The 6 time-intensive teaching intervention was completed in informal settings (after-school)
sessions and into realistic school context conditions.

€) The researcher’s feedback on participants’ actions inside OpenSim, especially in the online sessions
was daily.

d) All participants had personal computers and laptops which supported even the most advanced
requirements for gaming. Therefore, any technical problems did not prevent any of them to attend

to all sessions of this teaching intervention.

7.3. Research methodology of the quasi-experimental study

A mixed method study employed was an embedded approach with an experimental design. In this
study, a quasi-experimental design was followed as a research method, with intervention and comparison
groups to be tested their learning performance with pre-and-post-questionnaires and post-tests including
worksheets and error analysis rubrics with specific criteria. Since a mixed methods approach was chosen,
both quantitative and qualitative measures are employed in the present study, in addition with a semi-
structured interview and a think-aloud protocol to be gathered data (Cohen et al., 2011). This approach was
used as the majority of empirical studies following GBL approaches solely presented results from a
guantitative approach. Therefore, as in their review, Lye and Koh (2014) have suggested that further studies
need to give a more comprehensive picture of the topic and provide insights from the combination of
guantitative and qualitative findings.

Based on the above, the current study used a nonequivalent control group design with pre-and-post
guestionnaires and post-tests. Firstly, it was important before conducting the experiment to identify the
difficulties faced by students on how they use and apply basic programming constructs and concepts with
the intention after that to create two groups. The measurement of students’ learning performance was made
by measuring:

a) computational understanding with the use of (pre-and-post questionnaire) questionnaire that is
proposed by Korkmaz et al. (2017),

b) worksheets in relation to error rubric analysis criteria at the end of in-game tasks to describe their
proposed solutions firstly in short sentences and in pseudocode for each stage superlatively (see
CT 1-4 from Table 7-3),

c) on code tracing analysis for the applicability of selection control flow blocks and the exploitation
of nesting composition among programming constructs, such as mastering if/else conditionals with
numbers using S4SL or Scratch respecting to each group (see CT 5-6 from Table 7-3). Students
should be able to propose well-defined solutions and learning outcomes that can be easily

visualized in Scratch or S4SL.

158

Following Cohen et al.’s (2011) guidelines as a method research design, N represents non-
randomization, O1 represents pre-questionnaires and pre-tests (i.e., questionnaires that participants are
required to complete prior to the implementation of a treatment), X represents the implemented treatment
(i.e., the OpenSim with S4SL adoption for one group and Scratch for the second group), and O2 represents
the posttests (i.e. worksheets and error analysis rubrics). Both the control group (CG) and the experimental
group (EG) completed pre-and-post-questionnaires and post-tests after the intervention; however, the
experimental group was the only group that was received the research treatment. Nonequivalent control
group has been described by Cohen et al. (2011) as “one of the most commonly used quasi-experimental

designs in educational research” (p. 283) and it is represented below:

Experimental Group: N 01 X 02
Control Group: N 01 02

Participants were not randomly selected and not randomly divided; thus, the research method in this
study is regarded as quasi-experimental. Using non-equivalent group designs, different groups receive
different treatments and the effectiveness of a treatment is evaluated by comparing the performances of the
two groups. Such a research design method requires pre-questionnaires, in furtherance of having an
indication of how similar the two groups (control and the experimental) were before the intervention and
post-tests for both groups after this teaching intervention.

Although a comparison group should be as alike as possible in as many dimensions as possible, the
assignment of participants in the two groups was deliberately non-randomized. This decision was deemed
necessary to be avoided any possible biases in this study’s results, as it was difficult to randomly assign
scholars to different schools about the control and treatment groups not only in general (Slavin et al., 2007),
but in specific, it is needed a gender equality for CT instruction (Grover & Pea, 2013; Werner et al., 2015).
The different CS instructors from the three different classrooms and programming environments used in
their courses were crucial factors. Also, the assignment of participants to the two groups was non-
randomized because it was needed the experimental group to be comprised of experienced to OpenSim with
S4SL users for two reasons. The first is to understand whether high school students would be able to operate

the OpenSim effortlessly, and the second is to minimize the novelty effect.

7.3.1. Setting and sample

This study was conducted in an intensive 4-weeks period with 6 sessions as described in Table 2. The
first 2 sessions lasted 40 minutes inside the computer laboratories of the three high schools. The other 4
sessions lasted 40 minutes inside the computer laboratories on a University campus, and specifically

Department of Product and Systems Design Engineering (DPSD), in which two computer laboratories were

159

formed to be alike as the conventional instructional conditions inside a school. Thence, each student had
his/her own desktop computer in two different computer laboratories. One laboratory was used for each
group, where either Scratch or OpenSim was installed in standalone mode in order to prevent any potential
misconceptions among students’ answers and evaluate the learning performance for each one separately.
The conventional or similar to the aspects of regular instructional settings can give several potential benefits
on how each interactive environment may be used by CS instructors in the future. Such instructional settings
will be more valuable to CS instructors who may want to use the proposed interactive environments in the
same instructional conditions rather than into conditions that any researcher wished to use the proposed SG
which could be more appropriate to extract this study’s results more widely in the educational community.
An overview of using Scratch and OpenSim with S4SL and basic instructions and information about the
RVC simulator were presented to each group.

The present evaluation study approved by the University of the Aegean Ethics Committee (No.
Protocol: 7515/4-12-2017). In addition, before initiation of the research phases that described earlier, all
necessary permissions were taken by the Greek Ministry of Education, Research and Religious Affairs (No.
Protocol: 226058/D2/21-12-2017), and informed consent needed to be obtained from all participants and
their parents (or their legal guardians).

After completing the questionnaire regarding the gained information from students’ demographics
and level of difficulties in CS concepts, they were split into two groups to be considered as similar as
possible. The sample comprised of 24 girls (Mag=14.37, SD=1.55) and 26 boys (Mag=14.44, SD=1.48)
who volunteered participate, and they were from three Greek local schools. Thence, a total of fifty (n=50)
participants were recruited to attend in all formal (inside the class) and informal (inside the University
campus) sessions. To potentially increase the diversity of the participants’ opinions, it was imperative to
ensure not only the heterogeneity on their gender and background about programming courses participation
(demographics) but also the homogeneity of each group with participants who scored across all ranges in
the pre-questionnaire adopted by Lahtinen et al. (2005). The two groups differed on the interactive
environment that used, i.e., Scratch for the control group (CG), which consisted of 25 participants (boys,
n=13, girls, n=12), and OpenSim with S4SL for the experimental group (EG), which consisted of 25
participants (boys, n=13, girls, n=12).

Since this study had a non-randomized sample, there were key concerns about methods of conscious
control of implicit attitudes between male (boys) and female (girls) participants. Also, it was imperative to
ensure the gender balance for both groups and so the same number of participants needed. For example,
calling attention to gender may increase unconscious or implicit biases, even if the purpose of making
participants’ gender salient to avoid that gender influence (gender discrimination). Finally, before starting

the experiment and without getting assigned randomly students in only one of the two groups, it was

160

appropriate to dodge any potential fellowships and friendships or to eschew perceptions about the level of
difficulties on learning computer programming. The following figures depict an instructional process in-
school and in the computer labs of the University campus (see Figure 7-6, Figure 7-7, Figure 7-8, and

Figure 7-9).

Figure 7-6: A boy from the control group plays the RVC simulator using Scratch

Figure 7-7: A girl from the control group plays the RVC simulator using Scratch

161

Figure 7-9: A boy from the experimental group plays the RVC simulator using OpenSim

In this study, a nonequivalent control group design with pre-and-post questionnaires and post-tests
through worksheets were used. Thus, it was important before conducting the experiment to identify any
potential difficulties that might students face regarding how they use and apply fundamental programming
constructs and concepts. The purpose of such an effort was the creation of two groups respecting their

different background on programming knowledge and gender to avoid possible biases.

162

All in all, the three CS instructors who had the responsibility for teaching the theory about the use of
programming constructs were in collaboration with the supervising researcher in order to:
a) provide feedback by posing questions to each participant when s/he seemed to get confused and
helping them find an adequate direction to propose a solution and
b) assess through code tracing from the palette of S4SL or Scratch focusing on the applicability of
algorithmic control flow so that identify whether the adoption of selection control flow blocks and

the exploitation of programming constructs and commands is achieved properly.

7.3.2. Experimental setup

The experimental setup of the quasi-experiment is shown in Figure 7-10. At the beginning of the
learning activity, all participants took two pre-questionnaires adopted by Lahtinen et al. (2005) and
Korkmaz et al. (2017) for gathering data about the difficulties existed on learning programming and about
their self-report regarding the cultivation of skills related to CT based on their previous game playing
experiences.

The pre-questionnaire aimed to understand the background information of the participants and
assigned them to the two groups fairly by examining participants' demographic information, study habits,
game experience, and prior programming knowledge. This stage was crucial to determine the homogeneity
of the participants and to verify that they all had a similar science-related background before the
experimental instruction. All integrated behaviors were recorded by the researcher for further analysis. Each
part of the solution is represented by an instruction card which is downloadable as .sb and .sb2 files from
the palette of Scratch and S4SL respectively to investigate the correctness of programming behaviors
through a code tracing analysis that integrated into visual elements. For each sub-goal, each novice created
an instruction card and assembled the visualized instruction blocks to implement plans for the sub-goals.

During this teaching intervention, the CG used Scratch and the EG used OpenSim with S4SL to play
the SG. After the learning activity, all students took the post-questionnaire of Korkmaz (2017) and
completed as well as worksheets (post-tests) to propose in natural language and apply into code their

solution plans to all subparts of the simulated computational problem.

163

Experimental group (n=25) Control group (n=25)

N\ N7

Instruction of the basic learning knowledge

A4

Demographics and pre-guestionnaires about difficulties in learning
programming and self-report assessment for gathering CT skills data

\Z

Introduction to the in-game activities

N

OpenSim+5cratch45L Scratch

N N

Accomplishment of in-game tasks

A4

Completing worksheets and post-questionnaires from self-report

assessment for gathering CT skills data

\V

Assessing students’ learning performance

S

a. A “think-aloud” protocol analysis before starting to code all
participants

b. Error analysis rubric gathered from the worksheets (pseudocode
in natural language)

d. Coding and analysis of design patterns using the visual palette of
5451 for the EG and Scratch for the CG

c. Statistical analysis of pre-and-post questionnaires about skills
related to CT

e. Interviews with participants of both groups after the experiment

Figure 7-10: The quasi-experimental procedure

30 min.

20 min.

30 min.

dweeks/
40 min.

164

7.3.3. Procedure

To operationalize the CT instructional approach for the purposes of this teaching intervention, six
sessions in Table 7-3 are provided corresponding to the six core dimensions of the broader CT conceptual
framework. The proposed in-game tasks are associated with concepts and skills related to CT may be
predominantly helpful for instructors or educators who design (in-) formal instructional contexts using the
RVC simulator to foster students’ computational problem-solving strategies. The programming tasks took
place inside formal (e.g. computer school labs) and informal (e.g. University campus) instructional settings.
Table 7-3 presents the design of tasks from this teaching intervention with the proposed SG consisted of:

a) the learning tasks associated with the operational definition of CT as a problem-solving process
with specific learning objectives (CSTA & ISTE, 2011) combined with the skills related to CT such
as problem-solving, algorithmic thinking, creativity and critical thinking (Korkmaz et al., 2017),

b) the proposed design guidelines (G1-G5) from Pellas and Vosinakis (2017a) about the creation of
the RVC simulator, and

c) the in-game instructional contexts that can assist students to express and apply computational
problem-solving practices. From the 1% to the 4" session [CT 1-4], the study was conducted in
computer school labs and the final two sessions [CT5-6] at the DPSD campus (Pellas & Vosinakis,
2018).

Table 7-3: In-game activities associated with operational characteristics and skills related to
computational thinking

Sessions | 1t session | 2" session | 3@ session | 4" session | 5t session | 6™ session
[CT1] [CT2] [CT3] [CT4] [CT5] [CT6]
The Formulating |Logically Representing |Automating Identifying, Generalizing and
pperational |problems organizing data solutions analyzing and [transferring a
definition and analyzing |abstractionto [through implementing |problem-solving
of CT the data become algorithmic possible process to
simplified the |thinking solutions propose a
main problem solution

Skills Problem- Critical Algorithmic Design-based Pattern
related to |solving thinking Abstraction thinking and creative Recognition
CT thinking
Proposed |Student Student Simulation of [System’s Development of |Applying design
nstruction |motivation |active an authentic feedback on the |computational |patterns (G5)
al (G1) participation |problem (G2) |user’s actions |practices (G4)
guidelines (G1) (G3)
In-game Decompose |Analyze a Designate the [Transform a Proposing and |{Implement and
activities |in subparts |cleaning path [RVC’s solution to the |creating a step- |examine the
Students [the main and describe |movements in |algorithmand |by-step effectiveness of
should be |problem the robot the spatially- |debug by algorithmic the proposed
able to...) vacuum explicit finding errors [solution to design patterns

cleaner context preventing coding

(RVC) syntactic/seman

movements tic to make the

165

refinement of
problem-
solving strategy
an easier
process.
Students’ |(a) (a) Gathering |(a) (a) Communica- |Developing and |(a) Creating
earning Understan- |appropriate |Describing ting a step-by- |rationalize simulations by
putcomes |ding how to |information jcommon step algorithm. |decision made |executing design
separate in [and selecting |behaviorsor |(b) to propose patterns,
subparts the [relevant programming |Exemplifying [solutions (b) Generalizing a
main information |constructs why a proposed [through coding |proposed solution
problemto |(b) between algorithm can to a specific
manage it Conceptua- |different become problem that was
and propose |lizing precise [scripts. effective for a given and
design instructions |(b) Identifying (problem. amplifying by the
patterns and rules abstractions in |(c) Discovering demonstration as
easier which the digital how effective is a design pattern
(b) students can |environment |a proposed
Organizing |use in order algorithm.
the data to propose an
algorithm

Table 7-3 associates with a process on how students can develop their skills in gameplay with the
previously defined CT skills from the aforementioned analysis so that supporting computational problem-

solving development through in-game settings.

7.3.4. Instruments

The measurement of students’ learning performance was made firstly through worksheets in relation
to error rubric analysis criteria at the end of all in-game tasks to be expressed their proposed solutions, in
short sentences, and secondly to be described as pseudocodes/algorithms (see CT 1-4 from Table 7-3), and
thirdly to be applied as code their strategy for solving subparts of the main computational problem. A code
tracing analysis related to the applicability of control flow code blocks to be exploited the appropriateness
and correct execution of programming constructs and commands. This was a criterion about their correct
(or not) use, such as mastering if/else conditionals with numbers using S4SL or Scratch respecting to each
group in an effort to increase the validity of the conclusions referred and written in natural language (see
CT 5-6 from Table 7-3).

To measure students’ learning performance based on final design patterns, quantitatively, this study
followed Chao’s (2016) coding framework analysis. Also, pre-and-post questionnaires based on Korkmaz
et al. (2017) were used to determine the level of skills related to CT. Since each student had his/her own
PC and a specific nickname (user 1, user 2...etc.), all pre-and-post questionnaires and worksheets were
answered anonymously protecting any confidential information. Also, all participants needed to give
answers inside each school computer laboratory for completing the pre-questionnaires and inside the DPSD

computer laboratory for any given post-test and post-questionnaire in order to be further ensured the

166

anonymity since it was unable to be identified any IP (Internet Protocol) address from someone’s personal

computer. All tests and questionnaires were translated into Greek. In particular, the instruments which were

used for data collection are the following:

a)

b)

Student profiles and demographics in an individual questionnaire were administered at the
beginning of the proposed teaching intervention. The questionnaire recorded some simple
demographic data, such as student gender, background on computer use for example, like the
frequency of computer use, computer experience and knowledge on creating and/or playing games
in learning programming (see Appendix C, p. 223).

A closed-ended pre-questionnaire was adopted by Lahtinen et al. (2005) so as to understand the
major difficulties that students face in how using and applying fundamental programming
constructs and concepts before the experiment. It consists of 4 items evaluated using a 5-point
semantic differential scale before the experiment (see Appendix D, p. 225). This questionnaire is
the most appropriate to identify the perceived difficulty in programming courses and knowledge
gained by using programming environments for students at the high school level (Koorsse et al.,
2015). With this questionnaire, the separation of all participants based on their answers from the
pre-questionnaire adopted by Lahtinen et al. (2005) was made. The second criterion for the
separation of the two groups was the demographics of participants, their previous experience and
difficulties regarding programming. With a view to increasing the diversity of their opinions, each
group included participants who had not only different perceptions/opinions about programming
but also those with different demographic characteristics. This decision was necessary to avoid the
creation of any group of participants who may have the same gender and/or the same perceptions
since their assignment was deliberately non-randomized.

A closed-ended (pre-and-post) questionnaire proposed by Korkmaz et al. (2017) was handed out
from all participants from the two groups to fill it before and after the completion of the teaching,
intervention to determine their personal opinion regarding the level of skills related to CT. The
validity and reliability of a questionnaire named “Computational Thinking Scales (CTS) ” that is
proposed by Korkmaz et al. (2017). This questionnaire offers self-reported measures about
participants’ views on how they have tried to determine and use skills related to CT. There are
appeared five components in regard to the CTS questionnaire. For the purposes of this study, the
component of cooperativity was excluded since there was any activity to support collaboration
among participants. Only four components comprised four questions about skills related to CT are
used, for the following four components: critical thinking, algorithmic thinking, problem-solving
and creativity (see Appendix E, p. 227). Nevertheless, three were the questions that used creativity.

The adaption of this study’s questionnaire was made according to Korkmaz et al.’s (2017)

167

suggestions and guidelines. In specific, the same authors have argued that the CTS questionnaire
is relevant to participants who may come from different education levels and age groups. Since
Korkmaz et al. (2017) have provided validity and reliability of each component, further studies
have an opportunity to choose either to use each one of the five-factor components from CTS
guestionnaire separately or all of them as a whole (Korkmaz et al., 2017). The adopted CTS
guestionnaire was given to each participant of the two groups before and after the teaching
intervention. For this study’s purpose, the questionnaire consisted of 15 items with a 5-point Likert
scale for four items that described earlier, ranging as “(1) never”, “(2) rarely”, (3) sometimes”,
“(4) generally,” and “(5) always”. An indicative example of a question that has been adopted is

>

the following: “I have difficulties to demonstrate my proposed solution for a problem”.

d) A “think-aloud” protocol used to analyze and examine in more depth the computational practices

and perspectives in which students verbalized their thought process while programming on-screen
tasks in the interest of rationalizing their computational practices (Lye & Koh, 2014). Before
starting to code, all participants were individually asked to describe the way that they would like to

follow for solving each of the 3 chosen stages.

e) After the data gathering activity from the think-aloud protocol, a semi-structured interview at the

f)

end of the entire intervention was made in the University campus. Participants had the chance to
express their opinion freely was used aimed to provide supplementary responses to the activities
described in the previous questionnaires (see Appendix F, p. 229).

An error analysis rubric was given after this teaching intervention to all students individually in
order to complete certain tasks. Each student was asked to describe and write in worksheets his/her
proposed solutions for each subpart of the main problem (see Table 7-4), firstly by describing a
solution in natural language, and thereafter in coding via Scratch for the CG (see Appendix G, p.
230) or via S4SL for the EG (see Appendix H, p. 236) and. The assessment of the student’s
proposed solution was based also on the same graded criterion instrument. The identification and
interpretation of students’ common error patterns due to the misconceptions about their
achievements can provide diagnostic information about their strengths and weaknesses in
expressing and/or implementing a proposed solution. The error analysis rubric items (see Table 7-
5 and Table 7-6) challenged students to analyze, diagnose, and provide targeted instructional
remediation. It intended to help them overcome common error patterns and misconceptions, i.e.
logic errors through the expression of the algorithm as pseudocode in natural language. Such an
instrument was also followed by Howland and Good (2015) and it is regarded as essential in order
to be determined students’ computational understanding and concepts in terms of expressing their

solution plans for simulated problem-solving tasks.

168

g) During the teaching intervention, systematic monitoring of the students’ work was applied by
taking notes in a structured form (observation sheets). Both the supervising researcher and CS
instructors filled in the sheets and then extensively discussed their observations to reach consent

and decide on their importance.

7.3.5. Data analysis

An initial analysis of short sentences in natural language was conducted by looking at students’
descriptions as computational rules and concepts for the creation of algorithms in natural language before
starting to code. Table 7-4 shows some indicative examples of the describing rules which are segmented
into subsections according to the computational constructs that students need to represent as encoded
solutions (design patterns). In this direction, for each rule and concepts section, an error rubric analysis in
order to be identified the correct and incorrect variants of the computational rule sections was used. The
proposed model below seeks to give some answers to inform and guide educators and researchers in regard
to the alternative phrasings which preserved the semantic meaning of the rule section with a view of adding
(or not) another phrase without changing the semantic meaning. A rule section can be accepted as correct

if there is existed an event that could be described completely and unambiguously including the key phrases

of the model answer.

Table 7-4: Error analysis rubric criteria

Category

Explanation [code]

Grades

0. Correct

Correct answers are described and
implemented correctly without any
errors to be identified not only in
short sentences expressed in natural
language or as
algorithms/pseudocodes but also
when applied with specific use of
programming constructs and
instructions into code [C]

0.5 grade for each correct task (CT
1-4) identified in each CT
instructional session for each of the
3 in-game stages. Other 6 gained if
expressing an algorithm
(pseudocode) in the CT5 session
can be applied properly into code
using programming constructs in
the final CT6 session (see all
sessions described in Table 7-3). As
a result, the maximum number of
grades that someone can gain is 12.

E1. The errors of commission or
errors of omission for the
description and understanding of a
proposed solution is based on the
problem-solving situation that
should be expressed

a. Errors of omissions: Some of the
key elements for the description of
a solution are missing, such as the
following:

(i) Goals,

(ii) Instructions/events/rules, and
(iii) Anticipated outcomes [E1.2]
b. Errors of commission: Key
elements for the description of a
solution are totally missing or
contain erroneous information
[E1.2]

0.5 grade can be lost for any error
that is identified in each key
element of the first 4 CT
instructional stage (see CT 1-4 from
Table 7-3).

169

E2. The errors of commission or
errors of omission for the
description of the algorithm in a
simple but rigorous form in natural
language and its implementation
into code (Testing and Debugging)

a. Errors of omission: Some rules,
instructions or programming
constructs that need to be used are
missing from the algorithm
expressed in text form as it is
written in natural language [E2.1]

0.5 grade can be lost for errors
identified in each key element of
the last two CT instructional stage
[see CT 5-6 from Table 7-3]

b. Errors of commission: Some
erroneous information about the
rules, instructions or programming
constructs description that need to
be used are missing from the
algorithm expressed in natural
language [E2.2]

c. Errors of omission: Some rules,
instructions or programming
constructs that need to be used are
missing when a solution plan is
applied do not finally exist [E2.3]
d. Errors of commission: Key
elements for the description of a
solution are totally missing or
contain erroneous information from
the code that need to be finally
applied [E2.4]

e. Vague description: Description
and/or implementation of
ambiguous or vague descriptions of
the basic elements corresponding to
the algorithm and into code are
identified in a solution plan [E2.5]

Table 7-5 and Table 7-6 describe how the grading scheme is applied. Specifically, Table 7-5 shows
the marking scheme for a question which asks students to write a simple rule containing a goal and an
anticipated outcome. It is described a model answer alongside with notes and scores in order to assist a
coder determine any variations on students’ answers which could be considered as acceptable. When all
tasks completed, data were coded by the supervising researcher and specific guidelines were given to any
CS instructor. The inter-rater reliability was determined by using Pearson's r in an effort to measure any
possible correlation between the scores from the two raters (any CS instructor of each class and the
supervising researcher), and Cohen's Kappa in regard to the agreement between their error coding. There
was a correlation of 0.85 (p < 0.001) on scores and a Kappa value of 0.78 (p < 0.001) on the codes based
on the post-tests from the worksheets written in natural language. Such scores indicate both high inter-rater
reliability for the scores and high inter-rater agreement in coding tasks since categorical data up to 0.7 is

regularly considered as satisfactory (Jonsson & Svingby, 2007).

170

Table 7-5: Example model answer

that the RVC has to
follow?

Question 4 Marks Rules Model rule Notes
[CT 4]: Can you 1 Goal “The RVC is For example, accept
briefly describe a placed under the ‘Repeat’” (or
step-by-step table can make a “Iteration””) when the
solution (rules, movement to RVC is placed
directions, clean...” somewhere in the room
programming or another equivalent
structures and/or keyword
limitations) in 1 Anticipated “Keeping as a root | Accept that “the RVC
natural language outcomes of the small table, will follow a cleaning

the RVC can spin
around itin a 4-
spiral square
cleaning path by
turning as well in
180 or 90 degrees
but not over 10m”

path doing 4 squares
with common root to be
the small table”

Table 7-6: Example of students’ answers and grades

Indicative examples of proposed solutions Grading scales Error
in natural language (min. 0/2, max. 2/2) code
[CT 4]
""Since the robot moves only 5m, | can use an 2/2 — Correct description of programming constructs | E.O
iteration method to break its motion into 4 x and instructions
1.25m for each side of the squares in OpenSim | (Explanation: The spatial infrastructure of the room
(or 4 x 35 for Scratch), depending on the is considered and the numerical operations for the
direction that the RVC needs to move (0-180 calculation of distances between objects or other
degrees), without causing damages on its visual elements with the avatar and the programming
orientation in the floor. construct usage are adequately described).
"I propose to "split" the robot’s movement Y - Lack of clear instructions E.1.1
into pieces 4 x 1.25m for each side of the (Explanation: It is considered the spatial layout of
squares in OpenSim (or 4 x 35 for Scratch). the room and the numerical operations to calculate
Also, each time depending on the direction | the distance that the robot cleaner has to move, but
want to give behaviour to move without without proposing any programming construct that
causing damage, | need to define its can be used).
orientation in the space".
"l suggested using an iteration method in Y - Lack of clear instructions E.1.2.
order to be rotated the robot around the (Explanation: The spatial infrastructure of the room
square floor of the room." and the numerical operations to calculate the
distances in relation to the "cleaning path" that the
robot has to follow were not taken into account.
However, the programming construct that can be
used is not).
"l suggested that the robot need to be rotated | 0/2 - Errors of commission with erroneous E.2.2
around the 4-square floor and its’ continuous | information
movement with 90° (degrees) turning left or (Explanation: It does not take into account the spatial
right when it is needed™. layout of the room and the numerical operations to
calculate the distances with respect to the "cleaning
path™ that the robot has to move, nor it is clear the
programming constructs that can be used).

171

The data collected by retrieving log data about the students’ computational problem-solving
strategies. Three different types of assessment were utilized. For this reason, it was decided to allow
students expressing their initial thinking about a proposed solution in natural language through short
sentences and write the algorithm as pseudocode into worksheets.

Second, one pre-and-post CTS questionnaire as a self-assessment to determine students’ opinions
regarding the use of skills related to CT based on the components that Korkmaz et al. (2017) have
proposed. In favor of planning and extracting this study’s results, the Statistical Package for the Social
Sciences (SPSS) was utilized to conduct and interpret, firstly, an internal consistency reliability analysis
through Cronbach's alpha (a) and, secondly, Kolmogorov-Smirnov and Shapiro-Wilk normality tests for
the homogeneity of the variance. Any statistical analysis and interpretation of the main findings have
followed the guidelines from Privitera (2017). The Cronbach's alpha (a) for each component of the CTS
pre-questionnaire from the EG are the following: a=0.81 for critical thinking, a=0.71 for algorithmic
thinking, a=0.76 for problem-solving and a=0.73 for creativity. In the CTS post-questionnaire, a=0.86 for
critical thinking, a=0.91 for algorithmic thinking, a=0.97 for problem-solving and a=0.93 for creativity.
The Cronbach's alpha (a) for each component of the CTS pre-questionnaire from the CG is the following:
a=0.93 for critical thinking, a=0.95 for algorithmic thinking, a=0.87 for problem-solving and a=0.94 for
creativity. In the CTS post-questionnaire, a=0.77 for critical thinking, a=0.84 for algorithmic thinking,
a=0.85 for problem-solving and a=0.81 for creativity. Therefore, Cronbach’s alpha has a satisfying and
high internal consistency for all the components of the CTS questionnaire (a>0.7) for both groups, before
and after the teaching intervention, according to the recommendations of Singh (2007).

Due to the non-normality and non-variance homogeneity of the data, non-parametric tests such as
Mann-Whitney U tests were the most appropriate to be detected differences between the two groups. Also,
Wilcoxon signed rank tests were used to detect differences between pre-and-post-questionnaires, split by
gender from the participants’ self-reported data analysis to be determined skills related to CT (Korkmaz
et al., 2017). Supplementary, qualitative data were collected through semi-structured interview questions
from participants’ free comments and/or answers. For the best processing of the study analysis and
reliability of qualitative data, the Nvivo (ver. 10) software was also used in an effort to be analyzed the
content of participants’ answers from the interview’s questions.

Third, to measure students’ learning performance, a coding framework analysis from Chao’s (2016)
study was utilized. It consists of 10 indicators related to computational practice (sequence, selection,
simple iteration, nested iteration, and testing), computational design (problem decomposition, abutment
composition, and nesting composition), and computational performance (goal attainment and program
size). The entire debugging process seeks to investigate the consistency on how correct students’ cognitive

thinking as a solution plan expressed in natural language and if such a plan is applied properly into code.

172

7.3.6. Results

Descriptive sampling data analysis

After the data collection, the statistical analysis data of the profile questionnaire and the pre-
questionnaire based on Lahtinen et al.’s (2005) questions in terms of difficulties in programming follows.
The initial intention of this study is to provide some preliminary information about the perceptions of 50
participants regarding programming. Some of the most significant misinterpretations were largely
concerned with the recognition in regard to the cognitive value of programming courses. Specifically, the
understanding on how using programming constructs in real-world problems, either with simple or nested
use of those constructs referring mostly to selection and iteration programming methods have been widely
noticed by the majority of students (86%).

The acquisition of knowledge is usually either by reading theory or practically by solving exercises
proposed by the formal textbook (65%), or outside of this in the context of learning how to program through
proposed exercises in programming environments that CS instructors have chosen. During past
programming courses, students mainly used “Hour of Code ” and “Scratch” platform (95%), where many
games are hosted in order to learn how to apply programming rules and constructs by programming through
game playing small or semi-structured (10%), artistic expressions (80%) or storytelling creations (10%).

According to students' personal perspectives, difficulties and/or misconceptions are caused due to:

a) the lack of alignment on how to transform a solution from natural language to code (50%),

b) the inefficient attempts to unilaterally learn syntax or semantics of a programming language (40%),
and

c) the use of interactive environments that often cannot simulate easily a design pattern that has value

for implementation in solving a problem (10%).

Measuring computational concepts description and expression

Overall evaluation

To measure any improvement in overall rule/instruction specification ability, the mean scores of the
worksheets from the two groups using error analysis rubric was indicated as appropriate to analyze students’
answers in response to the RQ1. Also, the proposed rubric is comprised of specific grades was provided,
but no more than 12. The error analysis rubric was compromised 6 in-game sessions for the 4 stages, 1 for
the participants’ personal training and other 3 to be counted for their final grades to each one from the CT
instructional sessions described in Table 7-3 includes the innate thinking of describing a solution in short
sentences through text form in natural language (CT 1-4), to an algorithm (CT5) and finally apply into code

every proposed solution plans (CT6). To this notion, 12 grades were the highest score that each participant

173

could gain that was calculated as follows: 0.5 grades gathered from each of the session CT1-4 described in
Table 7-3, i.e. 3 (in-game stages) x 2 (0.5 grades x 4 for CT1-4 sessions) = 6 grades. In addition, other 6
grades could be gained. From the session CT5-6 described in Table 7-3, players could gather 3 grades, i.e.
1 grade by expressing pseudocodes (CT5) and another 1, when a solution plan was applied correctly into
code (CT6) for every stage that they completed. This should be repeated 3 times since 3 were the stages
that participants need to complete. Therefore, 3 grades from the 3 stages could be gained. If all participants
from the EG or the CG achieved the maximum score by playing the proposed SG (RVC simulator), then
their group could gather 300 grades in overall (i.e. 25 participants from each group x 12 grades that each
one could gain). This indicates that completing the 3 stages, all boys and girls from the EG or the CG could
have 156 and 144 grades, respectively. In other words, when boys either from the EG or CG completed all
in-game stages, they could gain 78 grades for the sessions (CT1-4) and other 78 from the other two sessions
(CT5-6). Also, girls could gain 72 grades for the sessions (CT1-4) and the other 72 for the sessions (CT5-
6).

Figure 7-11 shows box plots of the grades between the scores of the two groups. The mean score on
the EG was 9.7 (SD=1.56) and 8.5 (SD=1.45) on the CG. Such a difference had large effect between the
two groups (n=50, U(1)=3.19, Z=-2.31, p=0.01, r=-.53).

Box plot about grades from the experimental and control group

14
12 «12
10 —|—1ﬂ
03
8.5
8 B
——60
6 *f
4
2
0

Figure 7-11: Box plot about grades from the experimental group and control group

174

The mean score of final grades on the EG was 9.7 (SD=1.56) and 8.5 (SD=1.45) on the CG. Based
on the Mann-Whitney U tests, such a difference had large effect between the two groups (n=50, U(1)=3.19,
Z=-2.31, p=0.01, r=-.53). In terms of overall measures of understanding and describing computational
concepts, for boys, the mean score (final grade) was 9.91 (SD=1.38) while the mean of boys of the CG was
9.12 (SD=1.41). In specific, for girls, the mean score (final grade) of the CG was 7.82 (SD=0.99) while the
mean score of the EG was 9.46 (SD=1.71). Figure 7-12 displays the mean scores, split by gender for both

groups.
Box plots about grades from the experimental and control group split by gender

14
12

10

M Grades for boys of the experimental group M Grades for boys of the control group
M Grades for girls of the experimental group [l Grades for girls of the control group

Figure 7-12: Box plots about grades from each group by gender

While in both groups two boys from each group achieved 12 grades, which was the highest-ranking

score in this SG, two girls in the CG had minimum ranking score 6 grades.

Measures of computational concepts

This work seeks to investigate any changes in boys’ and girls’ understanding regarding the different
computational concepts, namely, enhanced understanding of goals, rules/instructions and anticipated
outcomes. This implies an effort of presenting if the improvements were specific to certain computational
concepts or occurred across all types. Three rule segments were categorized as goals, ten as
rules/instructions, and anticipated outcomes respectively.

Using the Mann-Whitney U tests, the difference between the post-scores between the two groups was

not significant for the goals (n=50, U(1)=3.34, Z=-2.11, p=0.14), significant for rules/instructions (n=50,

175

U(1)=3.74, Z=-2.78, p=0.01) and highly significant for anticipated outcomes (n=50, U(1)=3.74, Z=-2.89,
p=0.001).

Below, Figure 7-13 shows the sums of grades about correct for each concept for both groups, split
by gender. To this notion, boys from EG and/or from CG can maximum gain in the session from CT1 to

CT4 78 grades (13 boys x 6 grades=78 grades) and girls 72 (12 girls x 6 grades=72 grades).

CT 1-4 instructional stages (Sum of grades)

45
40
35
30
25
20
15
10
5
0 Boys from the Girls from the Boys from the control = Girls from the control
experimental group experimental group group group
m Goals 18 14 15 16
Instructions 20 22 23 18
Anticipated outcomes 40 36 40 38
m Goals Instructions Anticipated outcomes

Figure 7-13: Measures of understanding each computational concept

Based on grades gathered, all participants from both groups seemed to be really close. However, boys
in both groups had better performance related to goals, instructions and anticipated outcomes in order to
describe a solution. Also, in all stages, boys and girls of the EG from the sum of grades gathered are higher
than the grades gathered from boys and girls from the CG.

Types of correct and incorrect computational concepts

Looking at the types of correct and incorrect computational concepts made in CT 1-4 instructional
sessions from both groups, several are interesting findings. All in all, boys of the EG in rule segments have
made fewer errors of omission (percentage difference was 19%) contrary to those who used Scratch. Girls
of the former group have made fewer mistakes (percentage difference was 7%). Also, seeing errors of
commission, boys and girls of the EG had fewer mistakes than to their CG counterparts. Figure 40 shows
the sum of grades of incorrect answer segments by error type made from the two groups of participants.

Mann-Whitney U tests were carried out to examine whether the distribution of error codes changed

significantly for the two groups. There were fewer missing rule segments mentioned in the EG as compared

176

to the CG, without any difference to be significant. Nevertheless, in total there was a highly significant
difference in terms of vague fully erroneous instructions of the CG, with fewer vague rule segments of
instructions/rules noticed by the EG. Another interesting point of view was a significant increase in the
number of erroneous instructions and rules from girls of the CG. Concerning on the differences in error
patterns between the two groups, design patterns largely reflected on the overall error patterns (shown in
Figure 7-14), with the only significant difference to be the reduction in vague rule segments between the
two groups (n=50, U(1)=3.66, Z=-3.25, p=0.03).

CT 1-4 sessions (error analysis rubric)

60
50
40
30
20
- | i B I
0 - .
Boys from the Girls from the Boys from the control Girls from the control
experimental group experimental group group group
= Correct (sum) 52 49 48 46
= Errors of omission 16 13 18 20
Errors of commission 10 10 12 12
m Correct (sum) mErrors of omission Errors of commission

Figure 7-14: Types of correct and incorrect of computational concepts using an error analysis rubric

Based on the grades gathered, boys and girls of the EG made fewer errors in rules or instructions
(errors of omission) than to their CG counterparts, while it is indicative that girls of latter groups made gave
sometimes erroneous or vague information than girls (errors of commission) of the former group (see
Figure 7-14).

177

CT5 (pseudocodes/algorithms)

70
60
50
40
30
20
s Hl= Bl EEE
Boys from the Girls from the Boys from the Girls from the
experimental experimental control group control group
group group
= Correct 66 54 56 36
u Errors of omission 8 11 8 11
i Errors of commission 4 7 14 21

mCorrect ®Errors of omission = Errors of commission

Figure 7-15: Types of errors in creating pseudocodes/algorithms

CT6 (coding)

70
60
50
40
30
20
; N L
. Hm =]
Boys from the Girls from the Boys from the control = Girls from the control
experimental group experimental group group group
m Correct 62 55 50 48
= Errors of omission 10 10 15 7
= Errors of commission 6 7 13 17

mCorrect mErrors of omission m Errors of commission

Figure 7-16: Types of errors in applying code

Figure 7-15 and Figure 7-16 show the correct and incorrect answers in terms of expressing the
algorithmic solution plans and applying them into code as design solutions. Since there was no single
solution for using a specific programming construct, the choices had to be justified. In both groups, there
was control and feedback from the supervising researcher, while recommendations were made for some

changes and lapses. The scoring of pseudocode responses was made by taking into account the original

178

description proposed in a text form having short sentences in natural language and whether this as a thinking
solution plan could be responded to an algorithm with concrete steps. If a lower value of the indicator
“testing” identified, this suggested fewer tests on computer instructions composed by a participant. This
may imply that participants tested their computer instructions based on chunks of the instructions rather
than line-by-line or debugging by copying and pasting someone else’s code. In other words, the participants
who adopted the “trial approach” collected the least dusty dots and produced somewhat inefficient
instructions, which implies relatively lower effective and efficient programs. “Testing” indicator disclosed
that only one boy (4%) from the CG did not achieve to implement a script regarding of his 3 that he proposed
in worksheets and the same case was also observed in the CG with a boy (4%) and a girl (4%).

For testing the consequence of generated computer instructions, the indicator of “testing” showed the
average frequency that participants tested the consequence of executing a computer program immediately
after generating or revising it. It shows the ratio in a number of rules and instructions that can be executed
as computer programs in order to test the consequence of problem-solving depending on (visualized)
control flow and command blocks. If a lower value of the indicator “testing” identified, this suggested fewer
tests on computer instructions composed by a participant. This may imply that some participants tested their
computer instructions based on chunks of the instructions rather than line-by-line or debugging by copying
and pasting from someone else’s code. In other words, the participants who adopted the Trial approach
collected the least dusty dots and produced somewhat inefficient instructions, which implies relatively
lower effectiveness and efficiency programs. “Testing” indicator disclosed that only one boy (4%) from the
EG did not achieve to implement a script regarding of his 3 that he proposed in worksheets and the same

case was also observed in the control group with a boy (4%) and a girl (4%).

Descriptive statistics of computational problem-solving indicators into code

In regard to RQ2, Table 7-7 and Table 7-8 reveal the descriptive statistics of 10 indicators concerning
the implementation of computational problem-solving strategies from the EG. Regarding the dimension of
computational practice, the results showed that the participants used more selection (M=2.51, SD=0.52)
and nested iteration (M=1.89, SD=1.04) than sequence (M=1.67, SD=1.04) or simple iteration (M=1.51
SD=0.66) control flow blocks in solving the subparts of the main computational problem that consisted of
3 in-game stages. The results also showed that the participants, on average, tested all programmed
instruction (see “testing” indicator) 2.84 times (SD=0.36). This may indicate that most participants tended
to test their code by a chunk of instructions rather than by a single instruction.

Referring to computational design, in Table 7-7, the indicator of “problem decomposition” showed
that the participants produced 2.76 (SD=0.42) subparts of solutions. This may indicate that the participants

would generally divide one computational problem into two or more subparts of problems and formulate

179

corresponding solutions. The results also showed that the participants demonstrated more “abutment
composition” (M=2.16, SD=0.73) than “nesting composition” (M=0.72, SD=0.77). The results suggest that
the participants, in the RVC simulator created in OpenSim, were more likely to generate solutions to the
subparts of the main problem by adjoining control flow code blocks rather than nesting the control flow
blocks. With regards to their computational performance, the indicators of “goal attainment” and “program
size” showed that the participants, on average, collected 18.56 (SD=3.33) dusty dots giving grades and used

12.32 (SD=2.11) command blocks to solve a computational problem.

Table 7-7: Statistical results of computational problem-solving strategies from the experimental group

Range (n=the number of times that each
Indicators indicator was used) M SD
Computational practice
Sequence 0-3 1.67 1.04
Selection 0-3 2.51 0.52
Simple iteration 0-2 1.51 0.66
Nested iteration 0-2 1.89 1.04
Testing 0-3 2.84 0.36
Computational design
Problem decomposition 0-3 2.76 0.42
Abutment composition 0-3 2.16 0.73
Nesting composition 0-2 0.72 0.77
Computational problem-solving performance
Goal attainment From 12 to 22 18.56 3.33
Program size From 10 to 15 12.32 2.11

Table 7-8 reveals the descriptive statistics of 10 indicators regarding the implementation of
computational problem-solving strategies from the CG. Regarding the dimension of computational practice,
the results showed that the participants used more sequence (M=2.38, SD=0.99) and simple iteration
(M=1.81, SD=0.71) than selection (M=1.21, SD=0.45) or nesting iteration (M=1.57, SD=0.49) control flow
blocks in solving the subparts of the main computational problem that consisted of 3 in-game stages. The
results also showed that the participants, on average, tested all programmed instruction (see “testing”
indicator) 2.64 times (SD=0.48). In the opposite view, participants who utilized Scratch tended to test their
code by a single instruction rather than by a chunk of instructions, for example, using nesting iteration.

Referring to computational design, in Table 7-8, the indicator of “problem decomposition” showed
that the participants produced 2.76 (SD=0.42) subparts of solutions. This may indicate that the participants
would generally divide one computational problem into two or more subparts and formulate corresponding
solutions. The results also showed that the participants demonstrated more ‘“abutment composition”
(M=2.28, SD=0.77) than ‘“nesting composition” (M=0.48, SD=0.75). The results suggest that the

participants, who utilized the RVC simulator created in Scratch, were more likely to generate solutions to

180

the subparts problems by adjoining control flow code blocks rather than nesting the control flow blocks.
Regarding their computational performance, the indicators of “goal attainment” and “program size” showed
that the participants, on average, collected 18.04 (SD=2.66) dusty dots and used 13.76 (SD=2.37) command
blocks to solve a computational problem.

Table 7-8: Statistical results of computational problem-solving strategies from the control group

Range (n=the number of times that each
Indicators indicator was used) M SD
Computational practice
Sequence 0-3 2.38 0.99
Selection 0-2 1.21 0.45
Simple iteration 0-1 1.81 0.71
Nested iteration 0-2 1.57 0.49
Testing 0-3 2.64 0.48
Computational design
Problem decomposition 0-3 2.76 0.42
Abutment composition 0-3 2.28 0.77
Nesting composition 0-2 0.48 0.75
Computational problem-solving performance
Goal attainment From 12 to 22 18.04 2.66
Program size From 10 to 18 13.76 2.37

Summing up quantitative data to respond in RQ2 based on code tracing analysis from the palettes of
Scratch and S4SL, the results indicated that students of the EG have encoded more complex solutions by
combining sequence aligned with selection and repetition programming constructs contrary to those of the
CG who seemed to use in their design patterns either repetitive or sequential constructs. Taking into account
the results from “program size” and “goal attainment”, students of the former group were able not only to
collect a great number of dusty dots to accomplish their goals but also to create more efficient and effective
programs with a smaller number of code blocks. Therefore, almost all participants from the EG received

higher grades than those from the CG.
Analysis of students created scripts in different instructional contexts related to

computational thinking

Findings overall

All the proposed solutions written in short sentences through natural language (scripts) from students
of both groups while playing a SG. Totally, of the 50 students who took part in this experiment, all of them
created an algorithm and coding several proposed solutions regardless of the interactive environments that

were used. Specifically, 22 out of 25 (88%) managed successfully the creation of a working script by

181

playing the game in OpenSim with S4SL, completed with goals alongside with one or more anticipated
outcomes for at least 2 stages, in contrast to the CG where 20 out of 25 (80%). Overall, the sum of grades
gathered by the EG were 254 for completing and correcting scripts that were written and saved from the
CG were 237 grades enclosing revisions to already created scripts before the final proposal in coding
(“testing” indicator). Considering distinct individual scripts alone, a total of 3 scripts for all the three stages
need to be created for the CT 1-5, including the pseudocode and the CT6 was for the implementation of the
final solution via Scratch or S4SL palette.

The examination of computational constructs presented in each script would give to this study’s
findings some important information. Basically, it was necessary for each script to contain, after the main
goal, a single action that should include instructions and/or rules that the RVC needs to follow a cleaning
pathway. One of the most distinctive characteristics that need to be referred was that more complex scripts
contained more than one action, appropriately sequenced. For example, it was observed that further
complexity is evidenced by the inclusion of conditionals either of simple “repeat” conditionals or of more
complex “repeat...until” orfand some participants from the EG considered Boolean operators within the
conditionals.

On the other side, participants from the CG had a different perception in solving such a problem, as
they proposed simple or nested iteration methods or/and some of them included Boolean operators or
variables. Besides, according to the creation of computational practices, 3 boys (23%) and 1 girl (8%) from
the CG proposed solutions one boy (7%) and two girls (16%) from the CG proposed solutions which are
created by scripts using a simple script and only, for example, sequence programming method. In addition,
31 students (74%) created one or more complex scripts, i.e. their scripts contained additional constructs
beyond the basic requirements for some well-formed scripts. Lastly, 30 students (71%) created a sequence

of two or more actions.

Findings from the use of programming constructs in computational practices split by
gender

Of the 150 scripts which were created to describe the situation and instructions that a RVC should
follow from all participants, 75 from each group were finally collected. A variety of different events were
used by a student in furtherance of setting goals and anticipated outcomes in their scripts. In total, 22
participants from the CG (88%) have tried to use and combine more than one programming construct for
the implementation of their programming method and 23 participants (92%) from the EG. In specific, 11
boys and 11 girls who utilized Scratch and 12 boys and 11 girls who utilized OpenSim with S4SL tried to

combine another one programming construct with the chosen one that they would like to solve in the first

182

stage. However, there was not found an association between the EG and the CG (U(1)=3.11, Z=-2.29,
p=0.18).

Figure 7-17 and Figure 7-18 show specific events that are applied to the code, split by gender. Scripts
specified participants’ goals by conversation lines are easiest to implement, and the ones that students’
innate thinking to solve a problem and after that to code via Scratch or S4SL palette. For instance, Figure
7-17 depicts the cumulative percentage of boys and girls from the CG used to express and apply into the
code a solution plan. Firstly, boys in their majority (41%) have used a sequence as the main programming
construct, as the second choice was the combination of selection and simple iteration (29%) and as third
the selection (18%). A variety of girls (40%) have used a combination of simple and nested interaction,

secondly simple iteration (30%) and as the third choice was the sequence.

Boys from the control group

Selection
18%

Selection+Simple

iteration Sequence
6% 41%
Simple+Nested
iteration] _ _
29% Simple iteration

6%

Figure 7-17: Computational concepts which are used from boys in the control group

A range of different types of actions was included in students’ scripts with different methods to be
also observed. These actions using programming constructs follow on from the goals until the anticipated
outcomes shown in Figure 7-19 below. It shows the cumulative percentage that participants from the EG
have expressed and applied into code their scripts, split by gender. The use of programming constructs was

not broadly similar between boys and girls.

183

Girls from the control group

Simple+Nested

iteration
10% Sequence

20%

Simple iteration
30%

Sequence+Selection
40%

Figure 7-18: Computational concepts which are used from girls in the control group

Figure 7-20 depicts the cumulative percentage of boys and girls from the EG used to express and
code a solution. Firstly, boys, in their majority, have used selection as the main programming construct
(40%), as the second choice was the combination of simple and nested iteration (30%) and as third sequence
and nested iteration (20%). Almost nearly, many girls have chosen to use a combination of sequence and
nested iteration (34%) a combination of simple and nested interaction (33%), secondly sequence (22%) and

as the third choice was the combination of sequence and selection (11%).

Boys from the experimental group
Sequence+Simple
iteration
10%

Selection
30%

Sequence+Nested
iteration
20%

Simple+Nested
iteration
40%

Figure 7-19: Computational concepts which are used from boys in the experimental group

184

Girls from the experimental group

Simple+Nested
iteration
33%

Sequence
22%

\
N
L\

Sequence+Selection
11%

Sequence+Nested
iteration
34%

Figure 7-20: Computational concepts which are used from girls in the experimental group

Analysis of skills related to computational thinking

Results from the pre-and-post questionnaire to measure skills related to computational
thinking split by groups

Self-reported students’ answers in regard to the potential assistance of the RVC simulator for CT
instruction needs to be investigated since it was difficult to extract answers only from the coding analysis
process. Pre-and-post CTS questionnaires in the direction of determining the levels of skills related to CT
(Korkmaz et al., 2017) were regarded as essential for that purpose. Therefore, to determine the mean score
of skills related to the CT scale, it was imperative to find the average of all the scores. In total, the mean
score of participants’ answers from the CG in Figure 7-21 is presented. Students have reported the highest
scores not only in the demonstration of a solution (Mpre=3.06, SD=1.14; Mpost=3.64, SD=1.33) but also
to the establishment of the equity that tends to give a step-by-step solution to a problem (Mpre=2.94,
SD=1.14; Mpost=3.94, SD=1.33). Such an effort was accomplished either by developing genuine ideas
different from the ordinary ones (Mpre=2.93, SD=1.04; Mpost=3.37, SD=1.12) or by using critical thinking
and logical thinking focused on deciding what shall be done and believed that need to be done (Mpre=3.02,
SD=1.34; Mpost=3.41, SD=1.37).

185

Horizontal stacked bar chart of top/bottom-2-boxes of skills related to CT using
Scratch

N

©

Sy
w
o
B

Algorithmic thinking

Creativity FXE] 3.37
Critical thinking e — 302
Problem-solving XT3 3.64
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

H Mean score for post-questionnaire (control group) B Mean score for pre-questionnaire (control group)

Figure 7-21: Determining the computational thinking skills of participants from the control group

Figure 7-22 presents totally the mean scores of participants’ answers from the EG. Students reported
the highest scores for shaping and assessing their own ideas, being able to make efficient use of code blocks
critically (Mpre=3.04, SD=1.47; Mpost=4.24, SD=1.56). They also seemed to understand better the
instructions that could be proposed as solutions to subparts of the simulated computational problem before
the description of an algorithm (Mpre=2.96, SD=1.22; Mpost=4.22, SD=1.61). Participants from the same
group, seemed to find essentially alternative solutions by generating different methods for presenting their
thinking solution plan which can be different from the ordinary ones (Mpre=3.01, SD=1.27; Mpost=4.18,
SD=1.87) or express by generating algorithmically a proposed step-by-step solution for solving subparts of
the main problem (Mpre=3.01, SD=1.57; Mpost=4.18, SD=1.61).

Horizontal stacked bar chart of top/bottom-2-boxes of skills related to CT using
OpenSim with Scratch4SL

Algorithmic thinking 4.18

3.01
Problem-solving 2.96 4.22
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

H Mean score for post-questionnaire (experimental group) B Mean score for pre-questionnaire (experimental group)

Figure 7-22: Determining the computational thinking skills of participants from the experimental group

186

Additionally, to investigate at absolute differences in CTS pre-questionnaire and post-questionnaire
mean scores, the normalized learning change was also calculated by taking into account the maximum
possible gain or loss given the pre-questionnaire scores (Marx & Cummings, 2007). The normalized
learning change is defined as a variant on normalized learning gain (<g>) which is appropriate for situations
in which there are instances of negative learning gain for a small number of the students. In specific, the
normalized learning gain was calculated as <g>=100x(post-pre)/(100-pre), and a modified calculation was
used for students with negative learning gain: 100x(post-pre/pre) (Howland & Good, 2015; Knight, 2010).
The purpose was to be measured the effectiveness of each intervention regarding the conceptual
understanding for determining skills related to CT from each group separately. Overall, there was a positive
normalized gain of the participants from the EG who utilized OpenSim with S4SL (41%) to determine their
skills related to CT than their CG counterparts who used Scratch (20%).

To conclude, it is notable that while in both groups after using the two interactive environments,
higher mean scores were achieved from participants who played the SG via OpenSim than those who played
it via Scratch.

The mean score of CT questionnaires among all scales is higher for the EG. In addition to the above,
some indicative responses to the semi-structured interview from the participants from the EG and CG are
the following:

» “In-game elements are really well-presented in OpenSim. This helped me not only to comprehend
my decisions by applying and explaining my solutions using S4SL but also to know why | used some
programming constructs. In contrast to other small parts of playable games such as Minecraft or Star Wars
through Hour of Code website, the RVC simulator assisted me to understand reasons of using some
programming methods for specific subparts inside the 3 rooms” (a girl from the EG).

* “I knew Scratch. I think that dragging and dropping programming constructs helped me really to
apply my proposed solutions, as I visually saw the results of the code, save and present for each stage” (a
boy from the CG).

* “The S4SL palette enabled me to write correctly the code, while I was previously tried to describe
and propose a solution about what | observed in OpenSim” (a boy from the EG).

* “Because of knowing previously Scratch, I did not want the CS instructor’s guidance to express
and apply my solution plans” (a girl from the CG).

Reflecting on researchers’ observations, some of the most important parts of such a process need to
be extracted. First, students have found interesting the entire process really because most of them tried to
low the time of cleaning routes for each room and present alternative solutions as it was asked at the
beginning to do. Second, students of the EG who explored using an avatar the entire house assimilated the

intervention more easily and they explored it before the main activities starting often without any

187

intervention from the CS instructors. Third, students from both groups had similar difficulties in describing
their algorithmic plans with clarity and accuracy in natural language to gather information verbalized in
think-aloud, since they preferred to describe a process in general rather than being more concise in a step-
by-step solution. This also had an effect on programming. It was at end crucial to mention that Scratch and
the S4SL palette was an important factor affecting the proposed design patterns for avoiding any syntax

errors and be focused on the problem statement simulated in the interactive environments.

Results from the pre-and-post questionnaire to measure skills related to computational
thinking split by gender

Table 7-9 presents participants’ answers on how they tried to determine skills related to CT before
and after this teaching intervention, split by gender. Answers of participants from the EG were higher in
the CTS post-questionnaire than their counterparts from the CG. In specific, boys presented higher mean
scores in terms of problem-solving thinking, algorithmic thinking and critical thinking with 4.34, 4.32 and
4.47 respectively, in contrast to boys from the CG.

Table 7-9: Descriptive analysis and Wilcoxon signed-rank tests of computational thinking skills split by
gender

Wilcoxon signed Wilcoxon
CT skills Gender Scratch rank test OpenSim with S4SL signed rank test
M SD M SD M SD M SD
(pre) | (pre) | (post) | (post) (pre) | (pre) | (post) | (post)
Problem- Boys Z7=-4.09, p=0.11, Z7=-4.12, p=0.03,
solving 2.81 0.79 3.81 1.17 | r=-0.55 321 | 1.19 4.34 1.27 | r=-62
Girls 7=-3.79, p=0.13, 7=-4.02, p=0.02,
3.14 1.11 4.14 1.22 | r=-0.67 287 | 137 412 1.07 | r=-61
Boys 7=-3.67, p=0.14, 7=-4.36, p=0.11,
Creativity 2.83 1.02 4.03 1.14 | r=-59 2.88 | 1.36 4.03 1.16 | r=-46
Girls 7=-3.72, p=0.07, Z=-4.49, p=0.12,
3.15 0.75 3.89 1.17 | r=-45 343 | 161 4.12 1.14 | r=-46
Critical Boys Z=-3.96, p=0.11, Z=-4.66, p=0.08,
thinking 2.88 0.73 3.88 1.04 | r=-32 3.27 | 0.97 4.47 0.84 | r=-45
Girls 7=-3.12, p=0.06, 7=-3.89, p=0.15,
2.89 0.74 3.89 0.95 | r=-38 278 | 0.74 4.15 0.85 | r=-49
Algorithmic Boys 7=-3.42, p=0.001, 7=-4.03, p=0.01,
thinking 2.68 0.68 3.88 0.97 | r=-66 352 | 0.87 4.32 0.97 | r=-66
Girls Z=-3.65, p=0.001, Z7=-4.04, p=0.02,
2.97 0.99 3.78 1.08 | r=-55 298 | 1.07 4.08 1.28 | r=-58

In regard to problem-solving, the Wilcoxon Signed-rank test showed that there was a significant
increase for boys from the EG resulted by the pre- (median=3.18) and post-questionnaire (median=4.28) to
be determined skills related to CT, Z=-4.12, p=0.03, and the increase was large (r=-.62). This increase in
problem-solving was also observed on girls from the EG by measuring the pre- (median=3.05) and the post-
guestionnaire (median=4.06) to be determined skills related to CT, Z=-4.02, p=0.02, and the increase was
large (r=-.61).

With respect to algorithmic thinking, the Wilcoxon Signed-rank test showed that there was a

significant increase of the boys from the EG resulted by the pre- (median=3.22) and post- (median=4.22)

188

guestionnaire to be determined skills related to CT (Z=-4.03, p=0.01) and the increase was large (r=-.66).
This increase in problem-solving was also observed on girls from the EG by measuring the pre-
(median=3.55) and the post-questionnaire (median=4.02) to be determined skills related to CT (Z=-4.04,
p=0.02) and the increase was large (r=-.58). In terms of critical thinking, however, there was not any
significant difference to be mentioned either about boys or girls of the two groups.

As the data was skewed (not normally distributed), the most appropriate statistical test was the Mann-
Whitney U in order to compare differences between the two groups. The statistical analysis showed that
the EG of OpenSim (median=4.12; mean rank=4.06) scored higher on both problem-solving and
algorithmic thinking. First, participants from the EG (median=4.87; mean rank=3.88) scored higher than
participants from the CG (median=4.02; mean rank=3.67) in regard to problem-solving. Mann-Whitney U
value was found to be statistically significant U(1)=4.33, Z=-5.43), p=0.02, and the difference between the
EG and CG was large (r=-.62). Second, participants from the EG scored also greater (median=4.65; mean
rank=3.56) than participants from the CG (median=6.88; mean rank=3.22) in terms of algorithmic thinking.
Mann-Whitney U-value was found to be statistically significant U(1)=4.11 (Z=-5.61), p<0.01, and the
difference between the EG and CG was large (r=-.56).

What follows is a discussion from transcribing and observing the think-aloud responses and
retrospections from questions by asking the participants from both groups. One permanent example was for
the rooms of the second stage and the main question was as follows: “Why is this cleaning pathway that
you decided to propose for the cinema room as the most appropriate in order to not lose battery energy the
RVC?” An indicative example was answered by a boy from the CG. It was interesting to mention that those
who used mostly the selection programming constructs, were those who utilized Scratch as the user would
see an only horizontal piece of floors in two-dimensions. His decision was justified saying that “seeing
those sits and sofas and one static avatar, I believed that by determining the RVC'’s actions calculating the
distance between this avatar and the furniture, I would have the best solution using such a construct”.

In contrast, a girl from the EG stated the following: “The iteration method use would better, since
either walking in the first person or in three dimensions as an avatar, | understood the movements inside
the room that need to be done like being under the small table and make spiral movements around it the
robot performing to this notion better in order to reach the final goal”. This implies that participants who
used OpenSim seemed could understand better the spatial geometry layout for suggesting a particular
movement that the RVC should follow to clean each room of the house as everything was formed in 3D
realistic simulated problem-solving contexts.

Based on the above results and with a purpose to give an answer in the RQ2, participants from the

EG seemed that had greater satisfaction by using OpenSim with S4SL as they seemed to determine in a

189

higher level in critical thinking and problem-solving skills. Also, the participants from the CG have

achieved lower mean scores than those from the EG to all skills related to CT.

7.3.7. Discussion

The present quasi-experimental study seeks to investigate if a SG created in OpenSim with S4SL or
in Scratch can affect the learning performance of boys and girls in order to gain a greater understanding on
the use of skills related to CT for developing, applying and transforming their solution plans into code by
comparing their computational problem-solving strategies. All grades were measured according to the
proposed solutions into code from the participants in both groups in order to investigate the correctness of
programming behaviors integrated into visual elements. In specific, the RVC simulator created in OpenSim
seemed to have the potential to provide the appropriate teaching and learning contexts for instructive guided
support through formal and informal instruction settings. While OpenSim allows the free experimentation
and reflection of students inside a 3D problem-solving environment, its combination with S4SL enables
users to express and apply their solution plans into as design patterns.

This study’s findings indicate that a great number of participants from the EG appeared to not have
any difficulties in producing some good computational problem-solving practices without being
complicated, but with the combination of simple design patterns to be presented as final solutions. The
participants from the CG attempted to provide relatively not so advanced computational design strategies
and they appeared to have the most difficulties in producing a good computational performance. This may
suggest that in the proposed SG created in Scratch with the adoption of selection control flow using nesting
composition programming methods may be insufficient about a good performance for solving
computational problems due to a large number of code blocks that were utilized. The participants from the
CG tended to adopt the nesting method and show relatively frequent testing of solutions. The simple design
strategies appeared to meet the quantitative requirement of computational problems; however, many
solutions proposed by participants from the CG were relatively ineffective. In this regard, some participants
seemed that had difficulties in applying their nesting programming methods to solve the subparts of the
simulated problem. Therefore, it was reasonable to investigate errors or revisions made by players of both
groups during the process of programming that could give answers about the difficulties or find other
possibilities that might lead to frequent testing of solutions and good (or not) computational performance.
To this notion, the participants’ computational problem-solving strategies from the decomposition of
subparts of the main problem to the combination of control flow code blocks seemed to affect their
knowledge about why and how they can use those instructions and rules with fundamental programming
constructs correctly so as to propose their solution plans (de Raat, 2007; Robins et al., 2003). Such a finding

comes in line also with a substantial body of contemporary research (Brennan & Resnick, 2012; Lye &

190

Koh, 2014; Whiterspoon et al., 2017) have argued that students' computational practices and design are
regarded as essential on measuring their performance in learning computer programming.

Consistent with Howland’s and Good’s (2015) study findings, a block-based palette is regarded as a
reliable tool for high school students to avoid syntax errors in programming and it can facilitate them to
trigger in problem-solving via 3D games by expressing and applying more succinct and precise rules with
instructions combined with programming constructs. On the other side, contrary to the results of past efforts
(Brennan & Resnick, 2012; Denner et al., 2012; Mouza et al., 2016), participants from this study using a
3D SG had reasonable efforts to answer why they utilized specific programming constructs and instructions
in their computational practices, dodging the vague syntax of programming constructs. Such a process can
give valuable answers for assessing how students try to think and practice computationally before they start
coding in practice.

An instructional fading scaffolding process can be a crucial parameter for high school students on
how learning can be applied into code with effective and efficient design patterns by understanding the use
of skills related to CT and concepts as proposed solutions for simulated real-world problems. Moreover,
through coding, students could critically review their solutions and adopt an analytical reasoning strategy
during the problem-solving process as it was indicated according to their answers in the think-aloud
protocol. Such a finding is consistent with the claims of previous studies (e.g., Liu et al., 2011; Liu et al.,
2017) which have shown that students’ critical thinking or analytical thinking is in relation with problem-
solving skills fostered via a SG’s gameplay.

Inevitably, the alternative computational design patterns in problem-solving contexts which were
reflected on the creation of different computational practices and applied successfully as alternative
solutions, have also influenced students’ learning performance based on the indicators “program size” and
“goal attainment”. For example, the participants from the EG who applied their computational practices
using selection programming, they also tended to use the more advanced design strategy of nesting different
control flow code blocks. This may lead to the production of relatively effective and efficient computer
programs. In essence, students are motivated due to the novelty of the 3D VW as a technology to be engaged
in meaningful interaction with the visual elements and objects in order to develop more effective
computational problem-solving strategies and then have a better performance. Therefore, the in-game use
of evocative 3D visual objects of basic geometric shapes (e.g., triangle, square, and hexagon) can be
considered as a powerful abstract conceptualization approach that can assist the development of skills
related to CT. This can also give evidence of a deeper understanding of the description of a cognitive
thinking process for the comprehension and production of the proposed solutions that applied in code. With

this in mind, such a process can become appropriate and effective as well as learning gain on when and

191

how students tried to decompose problems so as to propose solutions by applying control flow code blocks,
such as selection or nested iteration.

Another interesting point of view is that this study’s results are encouraging from a gender perspective
in terms of computational understanding. While previous studies (Brennan & Resnick, 2012; Denner et al.,
2012) have focused on finding ways to motivate the views and perceptions of boys and girls related to
programming in relation to computational practices using computer games, few were directly compared the
relative performance across genders. In this study, boys and girls from the EG proposed more solution plans
based on nesting and selection programming methods, thus using fewer code blocks than to their CG

counterparts who used mostly simple selection and sequence.

7.3.8. Limitations

Inescapably, there were notable limitations in this study that should be referred. These are as follows:

a) The sample size was small to its number (n=50).

b) Non-equivalent groups design use to separate participants as similar as possible and compare fairly
having lack of random assignment or any prior differences from participants from both groups may
have an impact on this study’s findings.

c) The convenience sampling that involved all participants, was up to a middle response from a part
of the population from only three Greek high schools.

d) The three CS instructors and the supervising researcher during the entire teaching intervention gave
sufficient support and feedback to each participant.

e) Even though the pre-questionnaire may indicate similarity in abilities, it was based on subjective

self-reported data to separate participants into two groups.

192

Chapter 8: Educational implications for theory and practice

In response to limitations and in light of surge regarding the use of interactive environments which
previous studies (e.g. Grover & Pea, 2013; Witherspoon et al., 2017) and literature reviews (Kafai & Burke,
2015; Lye & Koh, 2014) have been well-documented, the present thesis investigated the students’
computational problem-solving strategies for solving simulated real-world problems created in OpenSim
and in Scratch. It supports the opinion that a SG created in OpenSim that displays a more natural intuitive
modality for user-interaction tasks can support greatly students’ understanding in terms of problem-solving
situations in simulated real-world contexts than in Scratch. The present thesis is also in the line of reasoning
from future outlook or limitations which have been previously mentioned in terms of integrating SGs to CT
instruction. In particular, this thesis has tried to give answers to a significant number of limitations that
previous studies have noticed. First, it gives potential answers about the learning affordances of 3D VWs
compared to other technologies such as VPEs in programming courses (Girvan et al., 2013). Second, it
compares the learning gain between boys and girls in a controlled experimental design study (Liu et al.,
2017). Third, it presents empirical evidence on how a SG can influence students’ computational problem-
solving strategies in programming courses at the high school level (Chao, 2016; Liu et al., 2011).

For this thesis’s research aim and objectives, firstly, a theoretical design framework is proposed for
the development and creation of a SG. Secondly, a preliminary and quasi-experimental (empirical) study
were conducted. The findings from the preliminary study indicate that perceived learning support from the
instructor combined with user interface design features and elements of a SG created in OpenSim with
S4SL have positively affected students’ learning involvement as well as their computational practices.
Students were supported on learning how to think and practice “computationally” and achieved to analyze
further how in-game elements should be mapped inside the RVC simulator. This process assisted students
to develop skills related to CT skills in order to express their computational practices based on their own
solution plans before start applying those plans into code. More specifically, such a process was regarded
as essential for spotting and solving subparts of a computational problem inside the proposed 3D SG. This
means that students were able:

a) tothink critically and logically in order to communicate their solution plans by organizing correctly
instructions and programming constructs in natural language in different tasks of a simulated real-
world problem, and

b) to produce alternative computational practices with efficient and effective design patterns so as to
apply successfully their solution plans into workable algorithms because they seemed to understand

in-game visualized evocative spatial metaphors.

193

After the preliminary’s study completion, a second empirical was conducted. A quasi-experiment
was utilized to investigate the effects of a SG created in the 3D VW of OpenSim and in the VPE of Scratch
on students’ learning performance by assessing their computational problem-solving strategies for teaching
and learning programming. Such a study was required to build more solid evidence based on the
effectiveness and feasibility that a VPE such as Scratch and a 3D VW such as OpenSim combined with
S4SL palette can offer. The findings revealed that instructive guided learning support alongside with a
visual palette with code blocks from S4SL and natural intuitive modality for user interaction of a 3D SG
has a significant and positive influence on students’ learning outcomes based on expression and execution
of their computational problem-solving strategies. Specifically, mean scores on pre-and-post questionnaires
from the EG unveiled improvements higher than their CG counterparts in two aspects. First, participants
from the former group created more complete computational instructions with unambiguous instructions
and rules combined with programming constructs in order to program correctly using the proposed SG and
be accomplished the learning goals. Second, participants from the EG proposed and expressed solutions
not only with more correct computational concepts in natural language but also based on their practices into
code than their counterparts who utilized Scratch.

To maximize further the students’ learning performance in programming courses, the current thesis
makes educational implications for theory and practice about the implementation and evaluation of
scientifically-driven CT instruction using interactive environments. More specifically, the educational
implications for practitioners and game designers are focused on the use of a SG that can enhance students’
cognitive learning involvement for learning computer programming. Also, the implications of this thesis
can inform scholars or educators about the use of the most potential user interface elements and features
which can support a fading scaffolding instruction for students’ achievements and outcomes. The
theoretical implications are the following two. First, a theoretical design framework with specific guidelines
and recommendation is proposed for designing a SG that can be developed by using interactive
environments to support high school students’ computational design, practice, and performance. Such a
theoretical design framework can assist developers and educators to ensure that such a SG will provide the
most appropriate features and elements to become the learning and teaching CT more effective.

Based on this thesis’ studies, educators and scholars need to consider how to encourage the SG
integration among girls and boys respecting gender equality in their in-game problem-solving tasks for
learning how to program. The SG user interface design characteristics and features are considered as
important on students’ learning performance. More attention should be paid to in-game problem-solving
tasks with a specific storyline with stages that include different levels of difficulty and objectives with
characters in a digital environment that cannot cause any conflict of interest among students with a different

gender. Students should learn how to formulate their thinking solution plans into abstract representations

194

using visual metaphors that can be projected using a SG in order to assist them to specify more precisely
the algorithmic rules corresponding to fundamental programming constructs that need to be used in
programs. The measurement of students’ progress and learning performance through in-game activities
follows a process that can allow them to apply a cognitive process by transforming their thinking solutions
into the code for several problem-solving tasks. To this notion, a SG with an intuitive-natural modality for
user-interaction can give to all players the opportunity to pay attention on the computational design of
algorithmic problem-solving activities and more importantly to transform their computational practices as
proposed solution plans into code to the given subparts of a main problem by avoiding syntax errors using
a visual palette with code blocks. In addition, the reflective observation of the concrete visual experience
assimilates abstract conceptualization without remaining tacit so as to facilitate students’ understanding of
how and why to use specific computational concepts to solve problems having two perspectives:

a) to create correct and complete computational instructions and rules specifying learning goals and

b) to develop an understanding of expressing and applying solution plans in terms of using cognitive

thinking skills related to CT.

Second, this thesis suggests a teaching intervention with the use of a SG created in Scratch and
OpenSim to foster CT instruction in high school programming courses within the operational-instructional
context from CSTA and ISTE (2011). The proposed GBL teaching intervention emphasizes further to the
important role of the instructor’s support to all students’ tasks for expressing sufficiently alternative and
self-explanatory solutions through in/-formal instructional settings. The instructor’s feedback and guidance
also facilitated students to rationalize their decisions taken on the cognitive aspects of computational
practices into code. Specifically, an instructional-guided approach that is accompanied with the use of a SG
can be appropriate for understanding how the cognitive thinking process of solving a problem with skills
related to CT such as problem-solving, logical and critical thinking. Such an approach is reflected inside
their proposed computational practices for the execution and verification of students’ thinking solution
plans correctness into code.

The current thesis provides also practical implications. First, in terms of educational-instructional
contexts, scholars and educators need to consider the realistic simulated representational fidelity of in-game
elements and features in relation to the player’s awareness and presence. User interface design features and
elements of a 3D VW supported greatly players to map out in-game subparts of the main problem greater
as they were able to configure grades by exploring and understanding the consequences arising from their
choices made into the RVC simulator given the appropriate feedback to their actions. OpenSim seemed to
assist players to think and transform alternative algorithms into workable solution plans and apply more
accurate computational concepts and practices as design patterns via S4SL. The high representational

fidelity of in-game elements and features in relation to the players’ awareness allowed them to study

195

multiple traces of threads and consider several alternative choices. They have taken seriously into account
for spotting and solving subparts of the main problem using skills related to CT such as algorithmic and
critical thinking. This implies the transformation of a thinking process to be proposed a solution with
accurate instructions or rules associated with the simulated problem-solving features and elements of the
RVC simulator created in OpenSim. Moreover, based on the results from the experimental study,
participants from the EG were focused on how to solve subparts of the computational problem via the
proposed SG to think critically their solutions as workable algorithms and after that to start coding their
computational practices using S4SL to propose solutions as design patterns than those who utilized Scratch.
Second, some practical implications need to refer for instructional design educators and scholars. A
set of key recommendations about the design guidelines, design criteria, components and features to
recommend building upon the experience gained from subsequent design and evaluation of the proposed
SG for CT instruction are the following:
a) Alignment of in-game learning goals and objectives of programming courses: The alignment of in-

game goals with the learning objectives of programming courses can help players to consider a
clear indication about what they exactly need to accomplish in an effort to be assessed effectively
any knowledge gained from each game task in specific time-limited tasks.

b) Various guests and goals with different levels of difficulties: Trace balancing among quests and

goals to all in-game stages need to be connected from simple to more complicated tasks, in which
each player (boys and girls) can navigate and explore fluidly as the time passing or if specific goals

from each stage are accomplished properly.

c) Logical in-game consequences of players’ actions: Logical reasoning of visual entities’ actions
combined with in-game elements/objects and unambiguous instructions from the CS instructor are
more important than a collection of random events without meaning. The interaction with the visual
elements should assist players to receive feedback about the consequences of each choice made.

d) Exploration and accessibility: In-game availability for free exploration and accessibility to each

stage should have the appropriate features and elements to motivate players. It needs to be assumed
that players’ actions would have an increased level of efforts and outcomes in order to be
accomplished certain in-game learning goals.

e) A specific learning scenario that cannot cause gender biases: A specific scenario with a rational

structure can help players to think about essential choices for solving each subpart of the main
problem without having to respect “gender equality”. Both in terms of the choices inherent with a
specific storyline and with respect to the constraints/limitations that are provided, a SG need to
assist players to understand their in-game actions, outcomes and consequences based on the

feedback received of his/her actions inside it.

196

9)

h)

)

The player’s awareness and presence: Awareness and presence of players need to be visually

appealing and distinctive. They need to have some choices to configure a virtual character to be
ensured gender equity and ability so that can someone contribute based on his/her own willing.

User design features and elements with natural intuitive modality: In-game user interface design

features and elements with a more natural intuitive modality for users’ actions combined with
simulations where various evocative spatial metaphors that have certain information can pave a
pathway from problem formulation to solution expression supported by skills related to the logical

reasoning and critical thinking on players’ actions.

Core mechanics for awards and punishments: Pre-defined core mechanics to ensure possible
solutions, mistakes and/or winning grades need to be announced at the beginning to each player.
Pennant visual spotting via checkpoints can maintain players’ interest as a sequence of logical
reasoning steps which may be useful to understand their in-game progress when specific in-game
learning goals are properly achieved.

Game mechanics: Visualized program tracking mechanisms or simultaneously selective processing

of every target item (e.g., visual elements/objects) are important in the fading scaffolding CT
instruction. In such a process, players can assess automatically the correctness of their own
computational practices with the use of control flow blocks in terms of identifying the effectiveness
and efficiency of the alternative design patterns as solutions to each part of the main problem.

Simulation of embodied experiences/ideas: Simulation of embodied experiences/ideas through

guided discovery learning processes can foster players’ problem-solving ability in spotting and in
solving a computational problem. Such a process can assist players to experience and realize how
programming knowledge is gained from the formulation of computer programs and evaluation of
the consequent results using a visual palette of colored code blocks in regard to programming

syntax so as to apply their solution plans to avoid any potential “cognitive overload”.

According to the above, a revised game design map can be proposed by aligning design criteria, game

a)

guidelines and essential components with features from the PIVB framework which have empirically been
investigated to support students’ achievements and outcomes. Figure 8-1 below depicts how specific
colored frames of design criteria can be revised and aligned with the initial game design criteria and

elements/features following the evaluation results from both studies. These are the following:

the “Learning content” can be aligned with “the alignment of in-game learning goals and
objectives of programming courses” and “simulation of embodied experiences/ideas” (blue color

frame),

197

b) the “Gender issues” can be aligned with “various quests and goals with different levels of

difficulties ”, “a specific learning scenario that cannot cause gender biases” and “the player’s

awareness and presence” (orange color frame),

c) the “Use interface design features and elements” can be aligned with “logical in-game

consequences of players’ actions”, “the exploration and accessibility”, and “the user design

features and elements with natural intuitive modality”, (yellow color frame) and finally

d) the “Awards and punishments” can be aligned with “the core mechanics for awards and

punishments” and “game mechanics” (green color frame).

Design
guidelines
(ii;z::h;:hng P1: User’s
s s oo
tivation and
parﬁ:-ipate inactive | l]::.sm:
learning tasks engagement
G2: Simulating an
authentic problem P2: Clear and
——
challenging goals
G3: System’s P3: System’s
feedback on users” -, feedback
actions
G4: Facilitating the
development of P4: Scaffolding
p tational » process
problem-solving
strategies through a
scaffolding process
G5: Applyi P5: Deblr:d:llg
desi tterns fo process based on
propase an answer students Sl based
for 2 problem learning ontcomes
Figure 8-1

Design Instructional Alignment with
criteria perspectives design components
and features

(©1)
Decomposing
sub-parts of the
main problem

- (G2)

Formulating
sub-parts of the
main problem

(G3)

-0l - =
using
abstractions

(G4)

User interface Expressing

design features
and elements

~ =~

-

design solutions

(©5)
Generating the
appropriateness of
the most effective
and efficient
design patterns

. A revised design map constructed by following the game guidelines and principles of the

PIVB framework

198

Chapter 9: Conclusions

The maturity and accessibility of computer technologies have prompted educators to harness the
power of GBL in educational settings in favor of creating practical and highly interactive visual forms of
learning for different learning subjects and domains such as those of CS and programming. Furthermore,
GBL approaches using interactive environments has become a flourishing area for education research in
computer programming that is quickly gaining momentum since it has the potential to enable new forms of
CT instruction and transform the learning experience. So far, a significant number of literature reviews
(Grover & Pea, 2013; Kafai & Burke, 2015; Lye & Koh, 2014) have suggested that further studies need to
investigate the effects of using interactive environments for CT instruction in K-12 programming courses
and their impact on students’ understanding in terms of starting how to think before start coding. Indeed, it
is arguable if the way of using VPEs and 3D VWSs can support students to take advantage of intuitive,
natural modality for user-interaction tasks in activities that required for the development and use of skills
related to CT having a more general understanding about the use of computational concepts to solve
problems (Howland & Good, 2015; Mouza et al., 2016). Therefore, there has been remarkably little research
made to investigate if playing a computer game created in interactive environments have an impact on
students’ computational understanding to assess their learning performance.

To give answers on the above research challenge, this thesis provides empirical evidence from the
exploitation of a SG following an instructive guided approach with exercises focus on programming and
investigates its” impact on students’ learning performance by assessing their computational problem-
solving strategies (i.e. computational design, computational practices, and computational performance).
The proposed SG was created in two interactive environments with a different user interface design features
and elements to address the difficulties encountered in learning and teaching how to use fundamental
programming constructs for solving simulated real-world problems. The first was the visual programming
of Scratch and the second was the 3D VW of OpenSim, in which participants needed also to use the S4SL
visual palette to apply their solution plans into code.

The aim of this thesis is twofold. The first is to propose a theoretical design framework for the
development and creation of a SG. The second is to investigate and analyze the effects of a SG on high
school students’ learning performance in programming courses. T0 achieve the twofold aim and objectives
of this thesis, an initial step was an overview of the research field and the impact of game playing
approaches to support CT instruction and computational problem-solving through programming courses.

To achieve the first aim, the current thesis proposes a theoretical design framework with specific
design guidelines and recommendations (Pellas & Vosinakis, 2017a). Such an effort was made to develop

a simulated problem-solving environment that can assist students to support and understand how to use

199

skills related to CT by expressing in natural language (pseudocode) and by applying into code their
computational problem-solving strategies. In particular, the RVC simulator has provided various visual
features and elements for players to compose and test their programs. Such a SG seemed to assist especially
high school students to propose different design patterns as solution plans and evaluate the consequence of
the instructions relating to programming constructs that they would like to propose in simulated problem-
solving contexts. Accordingly, it is of great importance to mention what makes the RVC simulator different
than previous gaming prototypes. The main design features and elements that differ from the proposed SG
from the rest of the existing educational games are as follows:

e Students had the chance to develop cognitive thinking skills related to CT and practice into code
their solution plans with the same learning goals and stages with different levels of difficulty to
accomplish by playing a SG created in Scratch and OpenSim with S4SL.

e In-game use of visual elements inside the proposed SG (RVC simulator) was displayed as evocative
spatial metaphors of basic geometric shapes (e.g., triangle, square, and hexagon) assisting novices
to think and practice “computationally”.

o Abstract spatial representations of geometric shapes were extensive considering the different design
features and characteristics of OpenSim or Scratch, which need to be used by participants to
traverse the RVC a specific cleaning path taking into consideration the spatial layout in each room.
Students needed to use critical and logical reasoning skills to propose their solution plans and after
that started to code.

e The intuitive modality for user-interaction simulation tasks and realistic simulated representational
fidelity of the proposed SG seemed that can assist players to analyze easier each problem-solving
task better in order to propose effective and alternative solution plans that were applied or even
being re-used with similar design patterns to other in-game stages later.

To achieve the second aim, a preliminary and an experimental study were conducted. Generally, both
are in line with previous works (Chao, 2016; Grover et al., 2015; Werner et al., 2015), which have suggested
that when students understand visually and conceptually how and what they need to program, they are also
able for spotting and solving other subparts of the main problem within the game. Specifically, and more
importantly was the measurement of boys’ and girls’ learning performance, and in specific the way that
they have described and applied their computational problem-solving strategies. In an effort to understand
the effects of a SG created in Scratch and OpenSim with S4SL to solve the same subparts of a computational
problem, this thesis investigated students’ design patterns as programming behaviors integrated into visual
elements to be analyzed their computational problem-solving strategies. Thus, an empirical evaluation
conducted to examine students’ learning performance using the proposed SG with a view of supporting

them:

200

a)

b)

to express not only by describing accurate rules, behaviors, situations which are combined as
command/instructions from a natural language to workable algorithms but also by investigating
any potential limitations, errors of commissions and/or omissions using programming constructs
when they proposed different solutions to a computational problem,

to apply and execute computational practices into the code to be proposed solutions for the same
computational problem-solving tasks in two interactive environments (OpenSim combined with
S4SL and Scratch) which have different user interface design features and elements in order to
compare their design patterns, and lastly

to identify the learning effect of a SG created in two interactive environments which have different
user design features and characteristics in order to measure the learning performance of boys and
girls before and after the teaching intervention.

To understand further the learning gain in terms of enhancing the learning outcomes of both groups,

the findings from this experimental study identified the differences among rules/concepts, the use of

programming constructs or instruction commands through logical steps and the expression of errors ranging

from the correct expressions in natural language to the implementation of workable algorithms into code

for the analysis of design patterns. Such an evaluation process was as one of the most indicative for testing

and debugging thinking solution correctness of thinking solution plans for each of the subparts of the main

problem. This thesis’ findings have pointed out some important aspects to be considered in relation to the

students’ learning performance measurement in overall. Mean scores on the pre-and-post questionnaires

and worksheets from participants from the EG who used OpenSim with S4SL has revealed reasonable

improvements. The most important improvements which have been unveiled are the following:

a)

b)

the creation of correct and complete computational instructions with rules to specify learning goals
fundamental to computing, and

the expression and implementation of computational concepts related to CT skills usage which
were higher than their CG counterparts.

Reflecting on both studies’ findings that are described in this thesis, a substantial number of

instructional-pedagogical and technological-functional challenges for the successful integration of the

proposed SG into formal and informal teaching contexts are clarified below.

Using of the RVC simulator combined with the proper support of a CS teacher can assist high
school students to develop and use cognitive thinking skills related to CT, such as problem-solving,
critical thinking and creativity for the expression and implementation of their solution plans into
workable algorithms. Nonetheless, such a SG alone cannot provide the expected learning outcomes,
because it was observed by the preliminary and experimental study that students often needed

explanations and clarifications regarding mainly the introduction to the first lectures until a

201

complete understanding of the proposed RVC simulator’s functions. The use of the same command
and programming constructs of the S4SL visual palette as those of Scratch has generally assisted
students from EG to be more easily involved in coding tasks and more on how to use tools and
camera of OpenSim to map out correctly.

Since a SG cannot alone provide the anticipated learning outcomes, an instructional framework is
also needed. In addition, one of the appropriate teaching and organizational frameworks for
activities has been proposed by CSTA and ISTE (2011). This thesis provides specific problem-
solving tasks which can be carried in formal (inside the school contexts) and informal (within the
university's computer laboratories through workshops) to provide instructional support on students’
learning performance. Such an instructional framework aimed at presenting a series of specific
actions and a set of specifications, regulations with rules that define the actions and orders in which
students tend to apply their solution plans in order to create favorable and efficient learning
conditions for better use of the proposed game.

The gradually fading scaffolding instruction from a CS teacher and the different levels of
difficulties into the stages of a SG for players’ progress is another important issue. Such a process
has also assisted players to solve subparts of the main problem, maintaining their interest
undisturbed to gain confidence in order to provide and communicate some good computational
practices into code. Students who have clear instructions seemed to achieve all in-game goals in
each teaching intervention more than those who showed little mood and perhaps did not want to
continue in the experimental process.

The ability of students to express and apply a set of solution plans in different in-game stages with
a gradual difficulty to each one. Such a design decision seemed to assist them to be focused more
on the problem- solving and the alignment between what they would like to solve and what a
solution plan into code would contain. This was reflected by their answers to several questions and
the data gathered by decoding quantitative and qualitative measurements in the research process

that has positively influenced the development of skills related both to CT and programming.

This thesis advocates that a 3D VW such as OpenSim combined with a visual palette of S4SL can

provide a digital environment to support GBL activities related to CT instruction in high school

programming courses. Moreover, the proposed SG that is created in a 3D VW assisted students to have

greater learning performance in terms of computational design, computational practices, and perspectives

in contrast to a VPE, such as Scratch. The potential use of a 3D VW features and characteristics permit a

wide use of computational problem-solving tasks in simulated real-world contexts with all of its benefits

that boys and girls from the EG who finally achieved based on their grades than their counterparts who used

202

There are several limitations that have to be noted in the preliminary and empirical study. To this
notion, this thesis’s results are limited by a number of factors described above, and thus there are some
consequences. First, the non-random assignment of the CG and the correlational relationship between
progress and gains do not address causality. Therefore, it is possible that other unobserved factors, such as
supplemental materials developed by CS teachers that have been previously used in their programming
courses or even other students’ characteristics such as age or class attendance accounted for their abilities
to move further into the curriculum and score higher on the post-questionnaires to achieve better scores as
indicated by their computational performance. Second, the extent to which CS teachers have access and
incorporated via SGs, specifically in the Greek curriculum can greatly vary, as each school regions may
have differential access to other (or the same) computing devices. Third, feedback on students’ actions from
the three CS instructors and/or the supervising researchers during the entire teaching process may have to
avoid any potential gender biases or misunderstandings about the use of a SG’s features and elements may
impact on their learning performance in overall.

This thesis suggests some key recommendation for further research. First, future studies in K-12
curriculum needs to investigate CS teachers’ input for gathering information about what additional
materials should be taken into consideration and which could contribute to the successful utilization of
interactive environments in programming courses. Also, future works may investigate relevant issues with
larger sample sizes and longer time experiments. In particular, longitudinal studies with long-term analysis
of students’ learning experiences in programming courses alongside with a larger sample to provide
additional evidence based on their solutions to several real-life computational problems. Such an effort can
also provide important insights regarding the suitability of interactive environments for interdisciplinary
learning in STEM subjects.

Second, for the same game concept that is described in the RVC simulator, an empirical investigation
needs to be conducted in order to measure students’ learning performance. For instance, a comparative
study can be also suggested between a group that can use a LEGO Mindstorms NXT accompanied by a wide
range of sensors and an interactive environment from 3D VWs or VPEs. Such a study can give evidence if
game design features with real and simulated natural intuitive modality can assist players to understand
better certain information that may pave a pathway from problem formulation to solution expression using
the former technology in a real environment and the latter in a computer simulation with the same problem-
solving tasks.

Third, future research needs also to investigate further the proper exploitation and integration of a
learning analytics subsystem in the RVC simulator in order to gather information data recorded from
players’ actions and how such information can be used for the re-design and monitor CS instructors more

effectively in K-12 programming courses.

203

References

ACM Education Policy Committee. (2014). Rebooting the pathway to success: Preparing students for
computing workforce needs in the United States. Retrieved 23 March 2017 from

http://pathways.acm.org/ACM pathways_report.pdf.

Adams, E. (2009). Fundamentals of game design. New Riders: Berkeley, CA.

Adler, R. & Kim, H. (2017). Enhancing future K-8 teachers’ computational thinking skills through
modeling and simulations. Education & Information Technologies, 23(4), 1501-1514.

Alessi, S.M. & Trollip, S.P. (2001). Multimedia for learning: Methods and development. Boston, MA,;
Allyn and Bacon.

Afari, E. & Khine, M.S. (2017). Robotics as an educational tool: Impact of Lego Mindstorms. International
Journal of Information and Education Technology, 7(6), 437-442.

Ambrosio, A., Almeida, L., Macedo, J., & Franco, A. (2014). Exploring core cognitive skills of
computational thinking. PPIG 2014 - 25th Annual Workshop.

Anderson, N., Lankshear, C., Timms, C. & Courtney, L. (2008). ‘Because it’s boring, irrelevant and i don’t
like computers’: why high school girls avoid professionally-oriented ICT subjects. Computers &
Education, 50(3), 1304-1318.

AP Computer Science Principles (2017). AP Computer Science Principles Including the Curriculum
Framework. New York, NY: College Board.

Arapoglou A., Makoglou, Economakos, N. & Fitrokos, G. (2003). Computer Science at Gymnasium.
Organization of textbook editions: Athens (In Greek).

Bachu, E. & Bernard, M. (2014). Visualizing problem solving in a strategy game for teaching programming.
In Proceedings of the International Conference on Frontiers in Education: Computer Science and
Computer Engineering (FECS) (p. 1). The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp).

Baldwin, D. (1996). Discovery learning in computer science. SIGCSE Bulletin 28(1), 222-226.

Barr, V. & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is
the role of the computer science education community? ACM Inroads, 2(1), 48-54.

Bargas-Avila, J. A. & Hornbeek, K. (2011). Old wine in new bottles or novel challenges: a critical analysis
of empirical studies of user experience. In SIGCHI (pp. 2689-2698). New York, USA: ACM.

Bell, T., Alexander, J. & Freeman, I. & Grimley, M. (2008). Computer science without computers: new
outreach methods from old tricks. In: 21st Annual Conference of the National Advisory Committee on
Computing Qualifications (NACCQ 2008) (pp. 127-133). NACCQ: Auckland, NZ.

204

http://pathways.acm.org/ACM_pathways_report.pdf

Bell, M. (2008). Toward a definition of virtual worlds. Journal of Virtual Worlds Research, 1(1). Retrieved
December 1, 2008, from http://journals.tdl.org/jvwr/article/view/283

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers in Mathematics
and Science Teaching, 20(1), 45-73.

Bienkowski, M., Snow, E., Rutstein, D. W. & Grover, S. (2015). Assessment design patterns for
computational thinking practices in secondary computer science: A first look (SRI technical report).
Menlo Park, CA: SRI International. Retrieved from http://pact.sri.com/resources.html.

Bickford, T. (2011). Advanced programming with LEGO® NXT Mindstorms. Retrieved 18 September 2018
from http://www.mainerobotics.org/uploads/8/3/4/4/8344007/advanced programmingforprint.pdf

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A. & Engelhardt, K. (2016). Developing computational
thinking in compulsory education. Spain: Joint Research centre.

Bodrova, E. & Leong, D. J. (2003). The importance of being playful. Educational Leadership, 60(7), 50—
53.

Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 Annual meeting of the American Educational
Research Association, = Vancouver, Canada. Retrieved 29 March 2013 from
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick AERA2012_CT.pdf

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in the middle school

classroom. The Journal of Media Literacy Education, 4(2), 121-135.

Carbonaro, M., Szafron, D., Cutumisu, M. & Schaeffer, J. (2010). Computer-game construction: a gender-
neutral attractor to computing science. Computers & Education, 55(3), 1098-1111.

Carter, L. (2006). Why students with the apparent aptitude don’t choose to major in Computer Science.
SIGCSE Bulletin, 38(1), 27-31.

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Computers & Education, 95(2), 202-215.

Chetty, J. (2015). Lego mindstorms: Merely a toy or a powerful pedagogical tool for learning computer
programming? In Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015),
vol. 27 (pp. 30-36). Sydney: Australia.

Coban, M., Karakus, T., Karaman, A., Gunay, F. & Goktas, Y. (2015). Technical problems experienced in
the transformation of virtual worlds into an education environment and coping strategies. Educational
Technology & Society, 18(1), 37-49.

Cohen, L., Manion, L. & Morrison, K. (2011). Research methods in education. Abingdon, Oxon:
Routledge.

205

http://journals.tdl.org/jvwr/article/view/283
http://pact.sri.com/resources.html
http://www.mainerobotics.org/uploads/8/3/4/4/8344007/advanced_programmingforprint.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Computing at School. (2015). Computational thinking: A guide for teachers. Retrieved 5 February 2018

from http://computingatschool.org.uk/computationalthinking.

Cooper, S., Dann, W. & Pausch, R. (2003). Using animated 3D graphics to prepare novices for CS1.
Computer Science Education, 13(1), 3-30.

Costa, J. & Miranda, G. (2016). Relation between Alice software and programming learning: A systematic
review of the literature and meta-analysis. British Journal of Educational Technology.
DOI:10.1111/bjet.12496.

Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. Harper Perennial, New York.

Culp, R.E. (1998). Adolescent girls and outdoor recreation: A case study examining constraints and
effective programming. Journal of Leisure Research, 30(3), 356-379.

Dagdilelis, V., Satratzemi, M. & Evangelidis, G. (2004). Introducing secondary education students to
algorithms and programming. Education & Information Technologies, 9(2), 159-173.

Dalgarno, B. & Lee, M. J. W. (2010). What are the learning affordances of 3-D virtual environments?
British Journal of Educational Technology, 41(1), 10-32.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-Machine
Studies, 39(2), 237-267.

Davies, S. (2008). The effects of emphasizing computational thinking in an introductory programming
course. 38th Annual Frontiers in Education Conference (FIE 2008). IEEE Saratoga Springs, New York,
USA. DOI:10.1109/fie.2008.4720362.

Denner, J., Werner, L. & Ortiz, E. (2012). Computer games created by middle school girls: Can they be
used to measure understanding of computer science concepts? Computers & Education, 58(1), 240-
249.

Denner, J., Campe, S. & Werner, L. (2019). Does computer game design and programming benefit
children? A meta-synthesis of research. ACM Transaction in Computing Education, 19(3), 1-35.

Denning, P.J. (2000). Computer science. In Encyclopedia of Computer Science (pp. 405-419). Chichester,
UK: John Wiley & Sons Ltd.

de Freitas, S. & Oliver, M. (2006). How can exploratory learning with games and simulations within the
curriculum be most effectively evaluated? Computers & Education, 46(3), 249-264.

de Raadt, M., Watson, R. & Toleman, M. (2006). Chick sexing and novice programmers: explicit
instruction of problem solving strategies. Eighth Australasian Computing Education Conference (pp.
55-62). Hobart, Australia.

de Raadt, M. (2007). A review of Australasian investigations into problem solving and the novice

programmer. Computer Science Education, 17(3), 201-213.

206

http://computingatschool.org.uk/computationalthinking

de Raadt, M., Watson, R. & Toleman, M. (2009). Teaching and assessing programming strategies explicitly.
In the 11th Australasian computing education conference (ACE) (pp.45-54). Wellington, New Zealand.

Detsikas, N. & Alimisis, D. (2011). Status and trends in educational robotics worldwide with special
consideration of educational experiences from Greek schools. In Proceedings of the International
Conference on Informatics in Schools: Situation, Evolution and Perspectives (pp. 1-12). Bratislava:
Comenius University.

Dickey, M. (2005). Three-dimensional virtual worlds and distance learning: Two case studies of active
worlds as a medium for distance education. British Journal of Educational Technology, 36(3), 439—
461.

Dondi, C. & Moretti, M. (2007). A methodological proposal for learning games selection and quality
assessment. British Journal of Educational Technology, 38(3), 502-512.

Dumbleton, T. & Kirriemuir, J. (2006). Digital games and education. In J. Rutter & J. Bryce (Eds.),
Understanding digital games (pp. 223-240). London: Sage.

European School net (2015). Computing our future. Computer programming and coding Priorities, school
curricula and initiatives across Europe. Retrieved 12 August 2017 from
http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf/746e36b1-e1a6-4bfl-
8105-ea27c0d2bbe0

European Commission (2016). Coding and computational thinking on the curriculum. Key messages of
PLA#2. Helsinki: Education and Training. Retrieved 25 March 2017 from
https://ec.europa.eu/education/sites/education/files/2016-pla-coding-computational-thinking_en.pdf

European Commission (2016). “She Figures 2015”. Retrieved 20 March 2017 from

https://ec.europa.eu/research/swafs/pdf/pub gender equality/she figures 2015-final.pdf

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011). Improving teaching and learning of computer
programming through the use of the Second Life virtual world. British Journal of Educational
Technology, 42(4), 624-637.

Fabricatore, C. (2007). Gameplay and game mechanics: A key to quality in videogames. In ENLACES
(MINEDUC Chile) -OECD Expert meeting on videogames and education, Santiago de Chile, Chile.

Feurzeig, W. & Papert, S. A. (2011). Programming-languages as a conceptual framework for teaching
mathematics. Interactive Learning Environments, 19(5), 487-501.

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J. & Zagami, J. (2016). Arguing for
Computer Science in the school curriculum. Educational Technology & Society, 19(3), 38—46.

Garris, R., Ahlers, R. & Driskell, J. (2002). Games, motivation and learning: a research and practice model.
Simulation & Gaming, 33(4), 441-467.

207

http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf/746e36b1-e1a6-4bf1-8105-ea27c0d2bbe0
http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf/746e36b1-e1a6-4bf1-8105-ea27c0d2bbe0
https://ec.europa.eu/education/sites/education/files/2016-pla-coding-computational-thinking_en.pdf
https://ec.europa.eu/research/swafs/pdf/pub_gender_equality/she_figures_2015-final.pdf

Garneli, V., Giannakos, M. & Chorianopoulos, K. (2015). Computing Education in K-12 Schools: A
Review of the Literature. IEEE Global Engineering Education Conference (EDUCON) (pp. 536-544).
IEEE: Tallinn, Estonia.

Garneli, V. & Chorianopoulos, K. (2017). Programming video games and simulations in science education:
exploring computational thinking through code analysis. Interactive Learning Environments. DOI:
10.1080/10494820.2017.1337036.

Gee, J. P. (2007). Good video games and good learning: Collected essays on video games, learning, and
literacy. New York: Peter Lang

Girvan, C. (2018). What is a virtual world? Definition and classification. Educational Technology Research
and Development. DOI: https://doi.org/10.1007/s11423-018-9577-y.

Girvan, C., Tangney, B. & Savage, T. (2013). SLurtles: Supporting constructionist learning in 'Second Life'".
Computers & Education 61(2), 115-132.

Good, J., & Robertson, J. (2006). CASS a framework for learner centred design with children. In

International Journal of Artificial Intelligence in Education, 16(4), 381-413.

Good, J. (2011). Learners at the wheel: novice programming environments come of age. International
Journal of People-Oriented Programming, 1(1), 1-24.

Good, J., Howland, K. & Thackray, L. (2008). Problem-based learning spanning real and virtual worlds: A
case study in Second Life. ALT-J, Research in Learning Technology, 16(3), 163-172.

Good, J., Howland, K. & Nicholson, K. (2010). Young people's descriptions of computational rules in role-
playing games: an empirical study. In 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC).

Good, J. & Howland, K. (2016). Programming language natural language? Supporting the diverse
computational activities of novice programmers, Journal of Visual Languages and Computing. DOI:
http://dx.doi.org/10.1016/j.jvlc.2016.10.008.

Graham, S. & Latulipe, C. (2003). Computer science girls rock: Sparking interest in computer science and
debunking the stereotypes. In Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education (pp.322-326). New York, NY: ACM Press.

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Grover, S., Pea, R. & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computers Science Education, 25(2), 199-237.

Ha, O. & Fang, N. (2018). Interactive virtual and physical manipulatives for improving students’ spatial
skills. Journal of Educational Computing Research, 55(8), 1088-1110.

208

https://doi.org/10.1007/s11423-018-9577-y

Haberman, B. & Kolikant, Y.B.D. (2001), Activating “Black Boxes” instead of opening “Zippers” - a
method of teaching novices basic CS concepts. Proceedings of the ACM ITiCSE ‘01 Conference (pp.
41-44). Canterbury, UK.

Hamlen et al. (2018). Effects of teacher training in a computer science principles curriculum on teacher and
student skills, confidence, and beliefs. Proceeding SIGCSE '18 Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (pp. 741-746). Baltimore, Maryland, USA: ACM.

Hamrick, T. & Hensel, R. (2013). Putting the fun in programming fundamentals - Robots make programs
tangible. 120™ ASEE Annual conference and exposition. Paper ID #6062. Atlanta: USA.

Hellenic Pedagogical Institute (2003). Diathematikon Programma: A Cross Thematic Curriculum
Framework for Information and Communication Technology - Compulsory Education. Retrieved 15

March 2016 from http://www.pi-schools.gr/download/programs/depps/english/16th.pdf (in Greek).

Hew, K. F. & Cheung, W. S. (2014). Students’ and instructors’ use of Massive Open Online Courses
(MOOCs): motivations and challenges. Educational Research Review, 12(1), 45-58.

Howland, K. & Good, J. (2015). Learning to communicate computationally with Flip: A bi-modal
programming language for game creation. Computers & Education, 80(2), 224-240.

Hong, J. C. & Liu, M. C. (2003). A study on thinking strategy between experts and novices of computer
games. Computers in Human Behavior, 19(2), 245-258.

Horn, M. S. & Jacob, R. (2007). Tangible programming in the classroom with Tern. In: CHI '07 Conference
on Human factors in computing systems (pp. 965-970). San Jose: USA.

Hsu, T. C., Chang, S. C. & Hung, Y. T. (2018). How to learn and how to teach computational thinking:
Suggestions based on a review of the literature. Computers & Education, 126(2), 296-310.

lacovides I, Cox AL, McAndrew P, Aczel J. & Scanlon, E. (2014). Game-play breakdowns and
breakthroughs: exploring the relationship between action, understanding, and involvement. Human &
Computer Interaction, 22-30(3-4), 202-310.

International Society for Technology in Education (ISTE) and the Computer Science Teachers Association
(CSTA). (2011). Operational definition of computational thinking for K-12 Education. Retrieved 26

August 2016 from http://www.iste.org/docs/ct-documents/computational-thinking-operational -

definition-flyer.pdf?sfvrsn=2

Ismail, M., Nasir, N. & Naufal, U. (2010). Instructional strategy in the teaching of computer programming:
A need assessment analyses. The Turkish Online Journal of Education Technology, 9(2), 125-131.
Jakos, F. & Verber, D. (2016). Learning basic programing skills with educational games: A case of primary

schools in Slovenia. Journal of Educational Computing Research. DOI: 10.1177/0735633116680219.
Jonsson, A. & Svingby, G. (2007). The use of scoring rubrics: Reliability, validity and educational

consequences. Educational Research Review, 2(2), 130-44.

209

http://www.pi-schools.gr/download/programs/depps/english/16th.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2

Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2011). The 2011 Horizon Report. Austin,
Texas: The New Media Consortium.

Kabatova, M., Jaskova, L., Lecky, P. & Lassakova, V. (2012). Robotic activities for visually impaired
secondary school children. Proceedings of 3rd International Workshop Teaching Robotics, Teaching
with Robotics Integrating Robotics in School Curriculum (pp. 22-31). Trento, Italy.

Kafai, Y. & Burke, Q. (2015). Constructionist Gaming: Understanding the benefits of making games for
learning. Educational Psychologist. Special Issue: Psychological perspectives on digital games and
learning, 50(4), 313-334.

Kalelioglu, F., Gulbahar, Y., Akgay, S. & Dogan, D. (2014). Curriculum integration ideas for improving
the computational thinking skills of learners through programming via scratch. In Proceedings of the
7th international conference on informatics in schools: Situation, evolution and perspectives (pp. 101
112). Istanbul, Turkey.

Kalelioglu, F., Gulbahar, Y. & Kukul, V. (2016). A framework for computational thinking based on a
systematic research review. Baltic Journal of Modern Computing, 4(3), 583-596.

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E. & Lui, D. (2014). A crafts-oriented approach to
computing in high school: Introducing computational concepts, practices, and perspectives with
electronic textiles. ACM Transactions on Computing Education 14, 1, Article 1.

Kantor, G., Manikonda, V., Newman, A. & Tsakiris, D. (1996) Robotics for High School Students in a
University Enviroment. Computer Science Education, 7(2), 257-278.

Klassner, F. & Anderson, S. (2003). Lego Mindstorms: Not just for K-12 anymore. IEEE Robotics and
Automation Magazine, 10(2), 12-18.

Kay, J. et al. (2000). Problem-based learning for foundation computer science courses. Computer Science
Education 10(2), 109-128.

Kelleher, C., Pausch, R. & Kiesler, S. (2007). Storytelling Alice motivates middle school girls to learn
computer programming. In Proceedings of CHI (pp. 1455-1464). USA: ACM.

Kiesmdiller, U. (2009). Diagnosing learners' problem-solving strategies using learning environments with
algorithmic problems in secondary education. ACM Transactions on Computing Education, 9(3), 17-
26.

Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet and
Higher Education, 8(2), 13-24.

Kim, S. & Jeon, J. (2007). Programming LEGO Mindstorms NXT with visual programming. In
International Conference on Control, Automation and Systems (pp. 2468-2472). Seoul, Korea.

Kirkwood, M. (2000). Infusing higher-order thinking and learning to learn into content instruction: A case

study of secondary computing studies in Scotland. Journal of Curriculum Studies, 32(4), 509-535.

210

Koenemann, J. & Robertson, S. P. (1991). Expert problem-solving strategies for program comprehension.
In S. P. Robertson, G. M. Olson and J. S. Olson (Eds.) Reaching Through Technology, Proc. ACM
Conf. on Human Factors in Computing Systems CHI’91 (pp 125-130). Reading, MA: AddisonWesley.

Kong S.-C., Chiu M.M. & Lai M. (2018). A study of primary school students' interest, collaboration
attitude, and programming empowerment in computational thinking education. Computers &
Education, 127(2), 178-189.

Koorsse, M., Cilliers, C. & Calitz, A. (2015). Programming assistance tools to support the learning of IT
programming in South African secondary schools. Computers & Education, 82(2), 162-178.

Korkmaz, O., Cakir, R. & Ozden, M. Y. (2017). A validity and reliability study of the Computational
Thinking Scales (CTS). Computers in Human Behavior. DOl:
http://dx.doi.org/10.1016/j.chb.2017.01.005.

Knight, J. K. (2010). Biology concept assessment tools: Design and use. Microbiology, 5.

Kurland, D. M., Pea, R., Clement, C. & Mawby, R. (1986). A study of the development of programming
ability and thinking skills in high school students. Journal of Educational Computing Research, 2(4),
429-458.

Lahtinen, E., Ala-Mutka, K. and Jarvinen, H. (2005). A study of the difficulties of novice programmers. In:
Proceedings of the 10th Annual SIGCSE Conference on innovation and Technology in Computer
Science Education (pp. 14-18). ACM: Caparica, Portugal.

Li, F. W. B. & Watson, C. (2011). Game-based concept visualization for learning programming. In
Proceedings at the 3" International ACM workshop on multimedia technologies for distance learning
(pp.37-42). Scottsdale, AZ, USA.

Lim, J.K.S. & Edirisinghe, E.M. (2007). Teaching computer science using Second Life as a learning
environment. In ICT: Providing choices for learners and learning. In Proceedings ascilite Singapore.

Retrieved 30 October 2016 from http://www.ascilite.org.au/conferences/singapore07/procs/lim.pdf.

Lindberg, R. Laine, T. & Haaranen, L. (2018). Gamifying programming education in K-12: A review of
programming curricula in seven countries and programming games. British Journal of Educational
Technology. D0i:10.1111/bjet.12685.

Linden Lab (2011). Second Life Education: The virtual learning advantage. Retrieved 23 October 2015
from http://lecs-static-secondlife-com.s3.amazonaws.com/work/SL-Edu-Brochure-010411.pdf

Liu, C. C., Cheng, Y. B. & Huang, C. W. (2011). The effect of simulation games on the learning of

computational problem solving. Computers & Education, 57(5), 1907-1918.
Liu, Z., Zhi, R., Hicks, Z. & Barnes, T. (2017). Understanding problem solving behavior of 6-8 graders in
a debugging game. Computer Science Education. DOI: 10.1080/08993408.2017.1308651.

211

http://dx.doi.org/10.1016/j.chb.2017.01.005
http://www.ascilite.org.au/conferences/singapore07/procs/lim.pdf
http://lecs-static-secondlife-com.s3.amazonaws.com/work/SL-Edu-Brochure-010411.pdf

Lockwood, J. & Mooney, A. (2017). Computational thinking in education: Where does it fit? A systematic
literary review. Retrieved from https://arxiv.org/ftp/arxiv/papers/1703/1703.07659.pdf.

Lye, S. Y. & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41(3), 51-61.

Luxton-Reilly, A., Ibrihim, S., Brett, A. Becker, A., Giannakos, M., Kumar, A.N., Ott, L., Paterson, J. Scott,
M.J., Sheard, J. & Szabo, C. (2018). Introductory programming: A systematic literature review. In
Proceedings of the 2018 ITiCSE Conference on Working Group Reports (ITiCSE-WGR ’18) (pp. 284—
289). ACM, New York, NY, USA.

Maddux, C. D. & Rhoda E. C. (1984). Logo is for all children: Learning with the turtle. Exception Parent,
14(3), 15-18.

Malone, T.W. (1980). What makes things fun to learn? A study of intrinsically motivating computer games.
(Report CIS-7). Palo Altao, CA: Xerox Palo Alto Research Center.

Marshall, P. (2007). Do tangible interfaces enhance learning? Paper presented at the Proceedings of the
1st International Conference on Tangible and Embedded Interaction (pp. 163-170). Baton Rouge,
Louisiana, USA.

Marx, J. D. & Cummings, K. (2007). Normalized change. American Journal of Physics, 75-87.

McGill, T.J. & Volet, S.E. (1997). A conceptual framework for analysing students' knowledge of the
various components of programming. Journal of Research on Computing in Education, 29(3) 276-297.

Miglino, O., Lund, H. & Cardaci, M. (1999). Robotics as an educational tool. International Journal of
Interactive Learning Research, 10(1), 25-47.

Mouza, C. Marzocchi, A., Pan, Y & Pollock, L. (2016). Development, implementation, and outcomes of
an equitable computer science after-school program: Findings from middle-school students. Journal of
Research on Technology in Education, 48(2), 84-104.

Myers, B., Pane, J. & Ko, A. (2004). Natural programming languages and environments. CACM. 47(9), 47-
52.

Moorman, P. & Johnson, E. (2003). Still a stranger here: Attitudes among secondary school students
towards computer science. In Proceedings of the 8th Annual Conference on Innovation and Technology
in Computer Science Education (pp. 193-197). New York, NY: ACM Press.

National Research Council (NRC). (2010). Committee for the Workshops on Computational Thinking:
Report of a workshop on the scope and nature of computational thinking. Washington, DC: National
Academies Press.

Oddie, A., Hazlewood, P., Blakeway, S. & Whitfield, A. (2010). Introductory problem-solving and
programming: Robotics versus traditional approaches. Innovation in Teaching and Learning in

Information and Computer Sciences, 9(2), 1-11.

212

https://arxiv.org/ftp/arxiv/papers/1703/1703.07659.pdf

Pane, J., Ratanamahatana, J. & Myers, B. (2001). Studying the language and structure in non-programmers’
solutions to programming problems. International Journal of Human-Computer Studies, 54(2), 237-
264.

Papastergiou, M. (2009). Digital game-based learning in high school computer science education.
Computers & Education, 52(1), 1-12.

Papert, S. (1980). Children, computers and powerful ideas. New York: Basic Books publishers.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of
Computers for Mathematical Learning, 1(1), 95-123.

Partnership for 21st Century Skills. (2009). Framework for 21st century learning. Retrieved from

http://www.p21.org/our-work/p21-framework.

Pellas, N. & Vosinakis, S. (2017a). How can a simulation game support the development of computational
problem-solving strategies? In IEEE Global Engineering Education Conference (pp. 1124-1131).
IEEE: Greece, Athens.

Pellas, N. & Vosinakis, S. (2017b). Learning to think and practice computationally via a 3D simulation
game. In the 11" International Conference on Interactive Mobile Communication, Technologies and
Learning - "Advances in Intelligent Systems and Computing" (pp. 193-204). Springer: Thessaloniki,
Greece.

Pellas, N. & Vosinakis, S. (2018). The effect of computer simulation games on learning introductory
programming: A comparative study on high school students' learning performance by assessing
computational problem-solving strategies. Education & Information Technologies, 23(6), 2423-2452.

Prensky, M. (2007). Digital game-based learning. USA: Paragon House Ed edition.

Privitera, G. (2017). Student study guide with IBM SPSS workbook for research methods for the Behavioral
Sciences (2"). SAGE Publications: Los Angeles.

Qian, Y. & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Transactions in Computers Education, 18(1).

Rapaport, W. J. (2005). Philosophy of Computer Science: An introductory course. Teaching Philosophy
28(4), 319- 341.

Repenning, A. & loannidou, A. (2006). What makes end-user development tick? 13 design guidelines. In
End-User Development, H. Lieberman, F. Paterno, and V. Wulf, Eds., Human Computer ~ Interaction
Series (pp. 51-85). New York, USA: Springer.

Repenning, A., Webb, D., & loannidou, A. (2010). Scalable game design and the development of a checklist
for getting computational thinking into public schools. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (SIGCSE ’10) (pp. 265-269). New York: ACM Press

213

http://www.p21.org/our-work/p21-framework

Repenning, A., Webb, K., Koh, E. et al. (2015). Scalable game design: A strategy to bring systemic
computer science education to schools through game design and simulation creation. ACM
Transactions on Computing Education (TOCE), 15(2), 11.

Repenning A., Basawapatna A.R. & Escherle N.A. (2017). Principles of Computational Thinking Tools.
In: Rich P., Hodges C. (Eds) Emerging Research, Practice, and Policy on Computational Thinking.
Educational Communications and Technology: Issues and Innovations (pp. 291-305). Springer, Cham.

Resnick, M., Martin, F., Sargent, R. & Silverman, B. (1996). Programmable bricks: Toys to think with.
IBM Systems Journal, 35, 3&4.

Resnick, M. et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.

Rico, M., Martvnez-Mupoz, G., Alaman, X., Camacho, D. & Pulido, E. (2011). Improving the programming
experience of high school students by means of virtual worlds. International Journal of Engineering
Education, 27(1), 52-60.

Ring, B. A, Giordan, J. & Ransbottom, J. S. (2008). Problem solving through programming: motivating
the non-programmer. Journal of Computing Sciences in College, 23(3), 61-67.

Robertson, J. & Howells, C. (2008). Computer game design: Opportunities for successful learning.
Computers & Education, 50(2), 559 — 578.

Robertson, J. (2012). The influence of a game-making project on male and female learners’ attitudes to
computing. Computer Science Education, 23(1), 58-83.

Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: A review and
discussion. Computer Science Education, 13(3), 137-172.

Rocco, S. & Plakhotnik, S. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks:
Terms, functions, and distinctions. Human Resource Development Review, 8(1), 120-130.

Rodriguez, B., Kennicutt, S., Rader, C. & Camp. T. (2017). Assessing computational thinking in CS
Unplugged activities. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (SIGCSE’17) (pp. 501-506). Seattle, WA, USA.

Roman-Gonzalez et al. (2017). Which cognitive abilities underlie computational thinking? Criterion
validity of the computational thinking test. Computers in Human Behavior, 72(3) 678-691.

Rosenbaum, E. (2008). Scratch for Second Life. In S. Veeragoudar Harrell (Chair & Organizer). Virtually
there: Emerging designs for STEM teaching and learning in immersive online 3D microworlds.
Symposium in proceedings of the international conference on learning sciences — ICLS 2008. Utrecht,
The Netherlands: ICLS.

Ryan, W. & Siegel. M.A. (2009). Evaluating interactive entertainment using breakdown: Understanding

embodied learning in video games. Proceedings of International Conference: Breaking New Ground:

214

Innovation in Games, Play, Practice and Theory (DiGRA’ 2009). London: United Kingdom. Retrieved
30 of March 2018 http://www.digra.org/dl/db/09287.38300.pdf.

Rubin, J. & Chisnell, D. (2008). Handbook of usability testing: How to plan, design, and conduct effective
tests (2nd Ed.). Wiley, Indianapolis.

Schneider, B., Jermann, P., Zufferey, G. & Dillenbourg, P. (July-Sept. 2011). Benefits of a tangible
interface for collaborative learning and interaction. IEEE Transactions on Learning Technologies, 4(3),
222-232.

Slavin, R. E., Cheung, A., Groff, C. & Lake, C. (2007). Effective reading programs for middle and high
schools: A best-evidence synthesis. Baltimore, MD: Johns Hopkins University, Center for Data-Driven

Reform in Education.

Salen, K. & Zimmerman, E. (2004). Rules of play: Game design fundamentals. USA: MIT press.

Selby, C. C. (2015). Relationships: computational thinking, pedagogy of programming, and Bloom's
taxonomy. In Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 80-
87). United Kingdom, UK: ACM.

Sentance, S. & Csizmadia, A. (2017) Computing in the curriculum: Challenges and strategies from a
teacher’s perspective. Education and Information Technologies, 22(2), 469—495.

Singh, K. (2007). Quantitative social research methods. Thousand Oaks, CA: Sage Publications.

Singh, S., Ribeiro, T. & Guestrin, C. (2016). Programs as black-box explanations. CoRR abs/1611.07579.

Soloway, E. (1986). Learning to program=learning to construct mechanisms and explanations.
Communication of the ACM, 29(9), 850-858.

Soloway, E. & Spohrer, J. (1989). Some difficulties of learning to program. In E. Soloway & J.C. Spohrer,
(Ed.). Studying the Novice Programmer (pp. 283-299). Lawrence Erlbaum Associates, Hillsdale, NJ.

Steiner, C. M., Kickmeier-Rust, M. D. & Albert, D. (2009). Little big difference: gender aspects and gender
— based adaptation in educational games. Lecture Notes on Computer Science. VVol. 5670: Learning by
playing. Game-based education system design and development (pp. 150-161). Springer.

Steinkuehler, C. & Squire, K. (2014). Videogames and Learning. The Cambridge Handbook of the Learning
Sciences, 377-394.

Suzuki, H. & Kato, H. (1993). AlgoBlock: A tangible programming language, a tool for collaborative
learning. In the Proceedings of 4th European Logo Conference (pp. 297-303). Copenhagen, Denmark.

Squire, K.D. (2003). Video games in education. International Journal of Intelligent Games & Simulation.
2(1), 49-62.

Taub, R., Armoni, M. & Ben-Ari, M. (2012). CS unplugged and middle-school students’ views, attitudes,
and intentions regarding CS. ACM Transactions on Computing Education, 12(2), 1-29.

215

http://www.digra.org/dl/db/09287.38300.pdf

Teaching guidelines of the Greek Ministry of Education, Research and Religious Affairs. (2017). Retrieved
23 September 2017
https://www.minedu.gov.gr/publications/docs2016/%CE%9F%CE%94%CE%97%CE%93%CE%99%CE %95
%CENA3_%CE%A0%CE%IBY%CE%I7%CEY%ALY%CE%IF%CEY%AG%CEY%IFY%CE%AL%CE%I9%CE%9
A%CE%97 %CE%93%CE%A5%CE%9C%CE%ID%CE%91%CE%A3I%CEY%99%CE%IF 2016 17.pdf (in
Greek).

The Royal Society. (2012). Shut down or restart? The way forward for computing in UK schools. UK: The

Royal academy of Engineering.

Theodoropoulos, A., Antoniou, A. & Lepouras, G. (2016). How do different cognitive styles affect learning
programming? Insights from a game-based approach in Greek schools. ACM Transactions on
Computing Education, 17(1), Article 3.

Topu, F.B., Reisoglu, I., Yilmaz, TK. et al. (2018). Information retention’s relationships with flow,
presence and engagement in guided 3D virtual environments. Education & Information Technologies.
DOI: https://doi.org/10.1007/s10639-017-9683-1

Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., & Verno, A. (2003). A model curriculum
for K-12 Computer Science: Final Report of the ACM K-12 Task Force Curriculum Committee (2nd
ed.). New York, NY, USA: ACM.

Tullis, T. & Albert, W. (2013). Measuring the user experience: collecting, analyzing, and presenting

usability metrics. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Tuomi, P., Multisilta, J., Saarikoski, P., & Suominen, J. (2017). Coding skills as a success factor for a
society. Education and Information Technologies, 23, 419-434

Vallance, M. et al. (2009). Designing effective spaces, tasks and metrics for communication in second life
within the context of programming LEGO NXT mindstorms™ robots. International Journal of Virtual
and Personal Learning Environments, 1(1), 20-37.

Vahldick, A., Mendes, A.J. & Marcelino, MJ (2014). The review of games designed to improve
introductory computer programming competencies. In 44th Annual Frontiers in Education Conference
(pp. 781-787). Madrid, Spain.

Volkel, S., Wilkowska, W. & Ziefle, M. (2018). Gender-specific motivation and expectations toward
Computer Science. Proceedings of the 4th Conference on Gender & IT (GenderIT '18) (pp. 123-134).
Heilbronn, Germany: ACM Press.

Yusoff, Z., Kamsin, A. et al. (2018). A survey of educational games as interaction design tools for affective
learning: Thematic analysis taxonomy. Education & Information Technologies, 23(1), 393-418.

Warburton, S. (2009). Second Life in higher education: Assessing the potential for and the barriers to deploying

virtual worlds in learning and teaching. British Journal of Educational Technology, 40(3), 414-426.

216

https://www.minedu.gov.gr/publications/docs2016/%CE%9F%CE%94%CE%97%CE%93%CE%99%CE%95%CE%A3_%CE%A0%CE%9B%CE%97%CE%A1%CE%9F%CE%A6%CE%9F%CE%A1%CE%99%CE%9A%CE%97_%CE%93%CE%A5%CE%9C%CE%9D%CE%91%CE%A3%CE%99%CE%9F_2016_17.pdf
https://www.minedu.gov.gr/publications/docs2016/%CE%9F%CE%94%CE%97%CE%93%CE%99%CE%95%CE%A3_%CE%A0%CE%9B%CE%97%CE%A1%CE%9F%CE%A6%CE%9F%CE%A1%CE%99%CE%9A%CE%97_%CE%93%CE%A5%CE%9C%CE%9D%CE%91%CE%A3%CE%99%CE%9F_2016_17.pdf
https://www.minedu.gov.gr/publications/docs2016/%CE%9F%CE%94%CE%97%CE%93%CE%99%CE%95%CE%A3_%CE%A0%CE%9B%CE%97%CE%A1%CE%9F%CE%A6%CE%9F%CE%A1%CE%99%CE%9A%CE%97_%CE%93%CE%A5%CE%9C%CE%9D%CE%91%CE%A3%CE%99%CE%9F_2016_17.pdf
https://doi.org/10.1007/s10639-017-9683-1

Webb, N. M., Ender, P. & Lewis, S. (1986). Problem-solving strategies and group processes in small groups
learning computer programming. American Educational Research Journal, 23(2), 243-261.

Webb, H. & Rosson, M. B. (2013). Using scaffolded examples to teach computational thinking concepts.
In Proceedings of the 44th ACM technical symposium on Computer science education (pp. 95-100).
ACM: USA.

Webb et al. (2017). Computer science in K-12 school curricula of the 2Ist century: Why, what and when?
Education & Information Technologies. DOI: 10.1007/s10639-016-9493-x

Werner, L., Denner, J. & Campe, S. (2015). Children programming games: A strategy for measuring

computational learning. ACM Transactions on Computing Education, 14(24).

Werner, L., Denner, J., Campe, S. & Kawamoto, D. C. (2012). The fairy performance assessment:
Measuring computational thinking in middle school. In L. S. King & D. R. Musicant (Eds.), Proceedings
of the 43rd ACM technical symposium on computer science education (pp. 215-220). New York, NY:
ACM.

Werner, L., Denner, J. & Campe, S. (2014). Using computer game programming to teach computational
thinking skills. In K. Schrier (Ed.), Learning, education and games: Volume 1, curricular and design
considerations (pp. 37-53). Pittsburgh, PA: ETC Press.

Wing. J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link Magazine, Spring.
Carnegie Mellon University, Pittsburgh.

Witherspoon, E.B., Higashi, R.M., Schunn, C.D., Baehr, E.C. & Shoop, R. (2017). Developing
computational thinking practices through a virtual robotics programming curriculum. ACM
Transactions on Computing Education, 18(1), 20.

Xie, L., Antle, A. N. & Motamedi, N. (2008). Are tangibles more fun? Comparing children's enjoyment
and engagement using physical, graphical and tangible user interfaces. In the Proceedings of the 2"
International Conference on Tangible and Embedded Interaction (TEI '08) (pp. 191-198). Bonn,
Germany.

Xinogalos, S. & Satratzemi, M. & Malliarakis, C. (2015). Microworlds, games, animations, mobile apps,
puzzle editors and more: What is important for an introductory programming environment? Education
& Information Technologies, 22(1), 145-176.

Zuckerman, O., Arida, S. & Resnick, M. (2005). Extending tangible interfaces for education: Digital
montessori-inspired manipulatives. In the Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (pp.859-868). Portland, Oregon: USA.

217

Appendices
Appendix A: The questionnaire of the preliminary study

Dear participant,

I would like to welcome you to this study’s questionnaire. This questionnaire intends to get grades
of view about your personal opinion on computer programming and your attitude to the potential use
of a simulation game created in OpenSim with Scratch4SL to support learning of computer
programming constructs and skills. It consists of three different parts. These are the following:

1. Demographics and personal information
2. Background in computer programming
3. User learning experience

The current questionnaire is provided in order to be recognized any possible difficulties and
constraints in terms of learning how to program. | would like to ask you to read the following items and
put one of the following numbers as an answer:

(1) Strongly Disagree, (2) Disagree, (3) Neutral, (4) Agree, (5) Strongly agree.
All of your answers need to be written next to each question that is consistent with your personal
experience after this teaching intervention.

Please be assured that this questionnaire is completely confidential, and no attempts will be done
to identify you. All data will be kept only for the purpose of this research. For this reason, | will to you
a unique nickname and you will be asked to enter this when filling it inside this questionnaire. Your
nickname will be asked only if you want to complete this questionnaire after you have played the
simulation game in order to extract your personal responses for this study’s results. The questionnaire
will take 15-20 minutes to complete.

Thanks for your participation. | really appreciate your contribution to this research!

Consent for participation

Based on the researcher’s instructions and statements, I would like to declare the following:

¢ | understand the learning objectives and the aims of this teaching intervention.

e | amaware that my participation is completely voluntary.

¢ | have the right to withdraw from this study at any time, without any negative impact on me.

e | understand that the data gathered will be recorded only for this study’s purposes and that the
records will remain confidential.

e | amalso aware that the interview will be modified to suit on the writing needs and that | will
be able to review it, after the corrections and modifications have been applied, in order to
approve it or not.

e | understand that the final outcomes either from my answers in the worksheets or from the
interview will not be shared to anyone or published without my personal permission. Such a
permission will be requested after the completion and emendation of the interview by the
researcher as well as my own review, correction, modification and approval.

e | understand the aim of this study and the content provided to me above, and therefore, | agree
to take part.

Nickname:

Age:

Gender:

218

In the first part of this questionnaire, personal information needs to be provided in the first part of the study.
Please provide to me with some details about yourself that will enable me to evaluate your results

statistically.

1. I have a personal computer

YES

NO

2. I believe that Informatics and specifically programming is

a) Strongly agree

b) Agree

¢) ldon't know

d) Disagree

e) Strongly disagree

3. Frequently, 1 know and use the following programmin

g environment

a) Scratch

b) Alice

¢) AgentCubes

d) Games from the Hour of Code

e) Other

4, I have previously utilized and played to learn how to code through online sites like Scratch or in

the “Hour of code” (www.code.orq)

a) Strongly agree

b) Agree

c) Ildon't know

d) Disagree

e) Strongly disagree

219

http://www.code.org/

In the second part, please provide some details about your learning experience and first perceptions by

using OpenSim and Scratch4SL palette.

Learning Effectiveness (LE)

1. I was able to decompose the main problem into subparts

2. | was able to understand the use of programming constructs

3. | started thinking before coding in order to assess the validity of my solution

4. | understood how to apply a step-by-step solution with programming constructs and
commands via Scratch4SL

5. I had the chance to debug my solution by firstly expressing and then applying it to code
blocks

Learning procedure (LP)

1.1 could effectively communicate my solution plan using specific instructions and
programming constructs

2. | could effectively express a solution into the algorithm

3. I was able to understand the instructor’s feedback either in face-to-face or in-game context

4. | was able to explain the reasons for using specific programming constructs

5. I succeeded in applying my proposed solution with design patterns for each subpart of the
main problem

User experience (UX)

1. OpenSim was easy to use

2. The S4SL palette was easy to use

3. OpenSim & S4SL are useful to understand how programming constructs can be used in a
real-world problem

4. | found the use of avatars helpful for exploration in order to gather information about the
subparts of this problem

5. | felt engaged by playing the RVC simulator

6. The RVC simulator was visually appealing

220

Appendix B: The interview questionnaire of the preliminary study

1
2.
3.
4

Can you briefly describe your experience using OpenSim and Scratch4SL?
Have you found helpful for learning to program the use of RVC simulator?
Can you refer to any potential advantages and disadvantages when you played this game?

Do you want to refer to any technical problems when playing the RVC simulator?

221

Appendix C: Demographics questionnaire for participants

Dear participant,

I would like to welcome you to this gquestionnaire to collect some demographics and personal
information from you. This questionnaire consists of three different parts including seven questions.
These are:

1. Demographics and personal information
2. Background in computer programming
3. The use of interactive environment to learn how to program

Please be assured that this questionnaire is completely confidential, and no attempts will be done
to identify you. All data will be kept only for the purpose of this research. For this reason, | will to you
a unique nickname and you will be asked to enter this when filling it inside this questionnaire. Your
nickname will be asked only if you want to complete this questionnaire after you have played the
simulation game in order to extract your personal responses for this study’s results. The questionnaire
will take 15-20 minutes to complete.

Thanks for your participation. | really appreciate your contribution to this research!

Consent for participation

Based on the researcher’s instructions and statements, I would like to declare the following:

e | understand the learning objectives and the aims of this teaching intervention.

e | am aware that my participation is completely voluntary.

¢ | have the right to withdraw from this study at any time, without any negative impact on me.

e | understand that the data gathered will be recorded only for this study’s purposes and that the
records will remain confidential.

e | am also aware that the interview will be modified to suit on the writing needs and that I will
be able to review it, after the corrections and modifications have been applied, in order to
approve it or not.

e | understand that the final outcomes either from my answers in the worksheets or from the
interview will not be shared to anyone or published without my personal permission. Such a
permission will be requested after the completion and emendation of the interview by the
researcher as well as my own review, correction, modification and approval.

¢ | understand the aim of this study and the content provided to me above, and therefore, | agree
to take part.

Nickname:
Age:
Gender:

222

Personal Information is needed to be provided in the first part of the study. Please provide us with some
details about yourself that will enable us to evaluate your results statistically.

1. | have a personal computer
YES
NO

2. I mostly use my personal computer for:
Games

Internet

Programming

Exercises

Other

3. | believe that Informatics and specifically programming is
a) Strongly agree
b) Agree

c) Idon't know

d) Disagree

e) Strongly disagree

4. Frequently, | know and use the following programming environment
a) Scratch

b) Alice

¢) AgentCubes

d) Games from the Hour of Code
e) Other

5. I have previously utilized and played to learn how to code online sites like Scratch or in the “Hour of
code” (www.code.org)
a) Strongly agree
b) Agree
¢) Idon't know
d) Disagree
e) Strongly disagree

6. What kind of activities using interactive environments you are mostly involved in learning
programming?
a) Learning how to code by game making in creative
computing or artistic expression
b) Learning how to code by making interactive stories
c) Learning how to code by making interactive games
d) Learning how to code by playing games

7. | have previous experience with simulation games.
YES
NO

223

http://www.code.org/

Appendix D: The questionnaire about students’ difficulties in
programming

Dear participant,

I would like to welcome you to this study’s questionnaire. This questionnaire intends to get view
your points on computer programming and your attitude to a potential use of a simulation game created
in OpenSim (or Scratch) to support learning of computer programming constructs and skills.

This questionnaire consists of four different parts. These are:

A. Difficulties on understanding programming constructs and concepts usage

B. Main reasons for utilizing programming environments

C. Instructional setting and knowledge gained by using programming environments

D. Major difficulties and concerns on learning how to code using programming environments

The questionnaire is provided in the second part of this study in order to be recognized possible
difficulties and constraints regarding introductory programming. Please read the following items and
put a check mark (V) next to those that are consistent with your personal experiences during
programming courses. All of your answers need to be written next to each question that is consistent
with your personal experiences after this teaching intervention.

Please be assured that this questionnaire is completely confidential, and no attempts will be done
to identify you. All data will be kept only for the purpose of this research. For this reason, | will to you
a unique nickname and you will be asked to enter this when filling it inside this questionnaire. Your
nickname will be asked only if you want to complete this questionnaire after you have played the
simulation game in order to extract your personal responses for this study’s results. The questionnaire
will take 15-20 minutes to complete.

Thanks for your participation. | really appreciate your contribution to this research!

Consent for participation

Based on the researcher’s instructions and statements, [would like to declare the following:

o | understand the learning objectives and the aims of this teaching intervention.

e | amaware that my participation is completely voluntary.

o | have the right to withdraw from this study at any time, without any negative impact on me.

e | understand that the data gathered will be recorded only for this study’s purposes and that the
records will remain confidential.

e | am also aware that the interview will be modified to suit on the writing needs and that | will
be able to review it, after the corrections and modifications have been applied, in order to
approve it or not.

e | understand that the final outcomes either from my answers in the worksheets or from the
interview will not be shared to anyone or published without my personal permission. Such a
permission will be requested after the completion and emendation of the interview by the
researcher as well as my own review, correction, modification and approval.

e | understand the aim of this study, and therefore, | agree to take part.

Nickname:
Age:

Gender:

224

A. The major degree of difficulty in understanding programming constructs and concepts usage (one
choice)

a) Sequence

b) Iteration

c) Selection

d) Nesting programming constructs

e) Nesting programming constructs with variables and/or numbers
f) Expression of a proposed solution in the natural language

g) Describing an algorithm as pseudocode

h) Applying a proposed strategy from natural language to code

B. Main reasons for utilizing programming environments

a) Learning how to use fundamental programming constructs (e.g.,
sequence or selection) in general

b) Learning how to apply programming constructs in specific
problem-solving contexts

¢) Creating by coding interactive games

d) Playing by coding interactive games

e) Learning how to code for creating interactive stories

f) Implementing pre-designed examples based on the school
textbook

g) Learning how to use fundamental programming constructs (e.g.,
sequence or selection) in general

C. Instructional setting and knowledge gain by utilizing programming environments

a) By questioning the CS instructor only before starting the new
course

b) By questioning the CS instructor during the course’s exercises

¢) Reading the theory and doing exercises on my own

d) | rarely have questions

D. Major difficulties and concerns on learning how to code using programming environments

a) Using interactive environments that do not facilitate the
development of an algorithm

b) Understanding why using programming constructs in a problem-
solving situation is not well-defined

¢) Unilateral learning on how to compile using only either code
syntax or semantics of a programming language

d) Lack of features that can assist the description and execution of a
program to solve a problem

225

Appendix E: The pre-and-post questionnaire about the students’
determination of skills related to computational thinking

Dear participant,

This questionnaire intends to get grades of view regarding the self-reported determination of your
skills related to computational thinking in computer programming before and after this teaching
intervention. The current questionnaire consists of four different parts in terms of your personal opinion
for skills related to CT regarding the use of an interactive environment that you will use. These are:

A Problem-solving

B. Critical thinking

C. Algorithmic thinking
D. Creativity

This questionnaire provided in the third part of this study in order to be recognized possible
difficulties and constraints regarding introductory programming. Please read the following items and
put one number as an answer (1) never, (2) rarely, (3) sometimes, (4) generally, and (5) always next
to each question that is consistent with your personal experiences before and after this teaching
intervention. All of your answers need to be written next to each question that is consistent with your
personal experiences after this teaching intervention.

Please be assured that this questionnaire is completely confidential, and no attempts will be done
to identify you. All data will be kept only for the purpose of this research. For this reason, | will to you
a unique nickname and you will be asked to enter this when filling it inside this questionnaire. Your
nickname will be asked only if you want to complete this questionnaire after you have played the
simulation game in order to extract your personal responses for this study’s results. The questionnaire
will take 15-20 minutes to complete.

Thanks for your participation. | really appreciate your contribution to this research!

Consent for participation

Based on the researcher’s instructions and statements, [would like to declare the following:

o | understand the learning objectives and the aims of this teaching intervention.

e | amaware that my participation is completely voluntary.

o | have the right to withdraw from this study at any time, without any negative impact on me.

e | understand that the data gathered will be recorded only for this study’s purposes and that the
records will remain confidential.

e | am also aware that the interview will be modified to suit on the writing needs and that I will
be able to review it, after the corrections and modifications have been applied, in order to
approve it or not.

e | understand that the final outcomes either from my answers in the worksheets or from the
interview will not be shared to anyone or published without my personal permission. Such a
permission will be requested after the completion and emendation of the interview by the
researcher as well as my own review, correction, modification and approval.

e | understand the aim of this study, and therefore, | agree to take part.

Nickname:
Age:

Gender:

226

A. Problem-solving

a) | have problems with the demonstration of a proposed solution for a problem
keeping it in my mind and expressing it adequately

b) 1 struggle to apply a proposed solution the way | have planned it respectively and
gradually.

¢) | cannot describe so many options while thinking of alternative ways to propose
different solutions regarding a problem.

d) | have problems to use where and how correctly the variables such as X and Y for

proposing a solution to a problem

B. Critical thinking

a) | like solving problems which are related to my previous knowledge gained from
previous ones that | have solved

b) | prepare regular plans regarding a solution for more complex problems

c) |try being able to think with great precision in more challenging things.

d) [Itry to think before practice systematically while comparing the options at my hand

and while reaching a decision.

C. Algorithmic thinking

a) | can immediately establish the equity that will give the solution to a problem

b) 1 think that it is better to be provided instructions with mathematical symbols and
concepts

¢) | believe that I can easily catch the relation between the figures and visual elements

d) | can express alternatively a solution to a specific real-life, even if mathematical
definitions are needed to become more accurate

D. Creativity

a) | believe that by giving appropriate time and effort most of the problems can be
solved

b) I can apply my personal plan while making it solve a problem.

c) Itrust my intuitions and feelings on how wrong or correct they are when approaching
a solution to a problem

227

Appendix F: The interview guestionnaire of the quasi-experimental
study

1. Can you provide specific reasons on why the proposed simulation game helped you (or not) to
express and apply your solution plans into code?

2. Which of the main in-game features helped you most to understand the simulated problem-solving
context?

3. Do you think that the proposed SG really facilitated you to think before applying your strategy in
a more creative way into code? Can you please justify your answer?

4. How do you think the use of basic gameplay features (e.g., the code palette or the graphical user
interface features and elements) helped you in favor of expressing and applying a solution from an
algorithm into code?

228

Appendix G: The worksheet about the learning activities using Scratch

THINKING ABOUT THE CONTROL MOVEMENT OF A ROBOT VACUUM CLEANER USING
PROGRAMMING CONSTRUCTS

Proposed time duration: 4 teaching hours (40 min. for each session)

Requirements: Hardcopies to write pseudocode and instruction cards to write the encoded solution using
Scratch

Technological means: Scratch

Learning goals

The learning goals can be achieved by familiarizing students with the simulation game and its potential
contribution to facilitate the development and implementation of computational problem-solving strategies
in simulated real-world contexts. In particular, students are expected to achieve the following:

o To explore how a robot vacuum cleaner can be moved into a big house, taking into account the
spatial layout of each room that displays several simulated problem-solving contexts between the
furniture and other house objects.

e To propose a solution with logical reasoning by expressing specific steps of a solution based on a
computational problem-solving strategy and exploit different forms of constructs and commands
such as REPEAT, "From ... until ..." or "Until...repeat", SELECTION ("If ... then" or "If" then
"otherwise™) or the SEQUENCE of in order to construct design patterns as a solution to each in-
game task using the visual palette for coding tasks.

e To explain the appropriateness of using specific programming constructs in order to express your
solution plans as design patterns that integrated as behaviors into the robot to predict its control
movement without causing damages in the house.

Helpful tips

e By using specific programming constructs, a computer can execute the given instructions and
actions (calculations, screen displays, etc.) precisely and faster than a human.

e Regarding the rotation and move of the robot around the home, please do not forget the basic
concepts that you have learned in Geometry. In this case, it is imperative to remind you that 90°
(degrees) is the right angle in a square with each side having a length and a width of 5m and 45°
angle is equal half of the right angle. All in all, if you are thinking about how the robot needs to be
moved into a square-shaped space; thus, turning 360° degrees in 4 steps or otherwise can turn
360°/4=90°.

e For the correct execution of the robot’s control movements/instructions, there are notecards of
Scratch and hardcopies/worksheets that can be used for proposing and describing through a text
form in natural language your pseudocodes for each stage. Consequently, using a code block palette
from Scratch to integrate behavior inside the robot (OpenSim) and assess the correctness of your
solution plan (cleaning pathway) into code.

Basic guidelines

The research aim of this teaching intervention is the exploitation of a simulation game following an
instructive guided approach with step-by-step programming exercises and the investigation of its’ impact
on students’ learning outcomes depending on computational problem-solving strategies that can be applied
intro code via Scratch. Having the role of embedded software engineer, you should assist an old woman
with special needs, who moves only with her wheelchair and struggles to clean all rooms of her house. In

229

a gameplay context, you need to elaborate a solution aimed at creating algorithms with logically and precise
instructions and finally to propose solution plans as design patterns into code. Firstly, you need to navigate,
determine the robot’s movement positions and describe the best cleaning path that an autonomous robot
can follow in sufficient time. Thereupon, your solutions can be implemented by integrating behavior using
Scratch in order to give specific directions to a robot vacuum cleaner that should move and clean 3 rooms
that are differentiated in spatial geometry layout, in terms of division among house furniture and objects.
Please try to calculate arithmetically distances without causing hits or damages.

According to the above, house furniture and objects in square floors are seen as evocative spatial
metaphors of basic geometric shapes (e.g., triangle, square, and hexagon) to think and practice
computationally with an abstract conceptualization approach alongside with pathfinding in a logical
problem can be followed. To prevent hitting a table, you need to determine arithmetic computation between
chairs and table distance (e.g., each side’s square floor has side 5m) or-/and calculate degrees of turning
correctly (e.g., 90° for square or 45° for equilateral triangle) to traverse the robot a specific cleaning pathway
down from the table, without hitting the table lamp. This process is becoming more compelling as you need
to apply a computational strategy via Scratch palette beneficial to be presented the shortest path between
the present location and the goal location of the robot. Last but not least, it is also important to notice that
the distance from the robot should be no more than 140 steps for movement (aligned to 5m), because then
the signal will be lost, and the robot will not be controlled causing damage until the battery shutting down
automatically. Since a specific role is assigned to you, a number of steps of your strategy need to be
followed:

a) explore each room separately to identify any drawbacks among house objects and furniture,

b) plan specific movements to pass all checkpoints the vacuum robot for optimum performance in order
to propose the shortest cleaning path in reasonable time, and locate any further grades that should be avoided
so0 as to clean all dusty dots over the floor, without hit any object or furniture, and finally

c) program the shortest cleaning route that can be proposed for each room individually in order not to
turn off the robot due to battery consumption after one hour. Whenever the robot is programmed to pass
and clean all dusty dots (gray signs) off the floor, for rewarding, it gains energy, giving grades to its battery
life. If gathering the smallest possible number of code blocks for cleaning each room based on resilient
planning, execution time and fewer hits on the house furniture or objects, then such a player is declared as
the winner.

The rooms

All in all, 6 rooms designed with learning tasks lasted only 40 minutes, but one is going to be used for
your personal training. Therefore, you are free to propose different solutions based on your design patterns
as there was not a pre-defined one. You have the chance to choose only 4 rooms, with 1 to be chosen from
each stage. Only the chosen 3 rooms count to your final grades. The bedroom or the drawing room (Stage
1) are developed for introductory activities to learn how to use some tools and another one need to be
excluded (see Figure 1).

A presupposition is to use the same programming method and constructs (i.e., simple or nested iteration,
sequence or selection) can be used at first stages including the bedroom (1.1) and the drawing room (1.2)
to propose a solution for the other 3 chosen rooms again only once more. This means that for the other two,
you should propose a combination of programming methods or other programming constructs nested with
numbers and/or variables.

Except for the above two rooms, the rest four in-game rooms have different levels of difficulty. For
example, the second stage includes the billiard room (2.1) and cinema room (2.2) have a medium level of
difficulty due to the fewer objects and house furniture, in which players can use either one programming
method.

The relaxing room (3.1) and sitting room (3.2) are included in the third stage. Both have a higher level
of difficulty as at least optically house furniture and objects created to each one differentiates on the
geometric shapes and thence more programming methods need to be combined. When you decide which
of the 3 rooms from the three stages want to play, you have a chance to use one different method that can

230

be combined with the proposed programming method in order to gain higher grades, e.g., a combination of
selection with the sequence.

In Figure 1, below 6 rooms are appeared. Please choose 3 of them so as to provide for each one a
proposed solution to all subparts of this simulated real-life problem.

| 3.1. The relaxing room | 3.2. The sitting room

Figure 1: The in-game stages created by Scratch

231

When all the above considerations can be addressed in a specific timeline, a thorough exploration of
each room is appropriate to map out the possible grades from which the robot could pass to clean. Secondly,
it is important for taking good grades not only to fully describe the robot’s movement by controlling its
steps in an algorithmic way but also to program it, utilizing programming constructs. At the end of the
description and expression of the proposed solution in the worksheet (see the table below), I will be
informed about your progress, and after that, | will allow you to present your described solution plan into
code. Thus, any solution that you will give should not only be a description of commands and instructions
by utilizing each programming construct that as an engineer should present in small sentences using natural
language, but it should also be performed by using the Scratch palette in the code to prove the correctness
and the degree of your applications. Helping you to apply the commands and instructions please use
Scratch’s palette, as Figure 2 depicts.

5 Scratch 2 Offline Editor = m} X
BEPMN © ey futy Tps About I N2
] Scripts | Costumes | Sounds
L ~® -
VAEB.1 {
[oron —— | [N = |2
Jl Looks [l controi \%
I Sound I Sensing %0
I Pen I Operators y. 0

I Data I Mare Blocks

mave steps

point in direction (E0hd

point towards mouse-pointer

go to mouse-pointer

X112y 180 (4 (e

Sprites New sprite: @ / & £y
B
o, S
New baddrop:
Q= Q

W/ dE

Figure 2: The programming constructs and commands in the palette of Scratch

Main activity

By following the structure of the scenario that was previously described, you must try to program the
robot in each of the 3 rooms so that it can be cleaned in a specific period of time, without hitting objects or
furniture that can change its direction. To achieve this goal, you need to write correctly programming
constructs and commands to determine the movements and rotation of the robot in each room that has a
specific layout geometry. A proposed solution for each of the 3 chosen rooms needs to be written in the
table below. In this table, you must write both in the form of natural language short sentences that entail
Goals, Rules/instructions, and Anticipated outcomes, pseudocode with simple step-by-step description.
Lastly, you need to determine the extent to which the algorithm that you have proposed in natural language
can be applied into code via Scratch.

232

Question: Can you describe which may be a preferable choice to demonstrate a cleaning pathway that a

robot vacuum cleaner needs to follow for each of your 3 chosen rooms as depicted in Figure 1?

Description of a proposed solution in natural
language with short sentences

Pseudocode

Important note: After the description of a proposed solution to the above Table, please use Scratch for

coding and save it as a .sb file to your personal computer to gather data at the end of this experiment.

Thanks for your participation!

233

Appendix H: The worksheet about the learning activities using OpenSim
with Scratch4SL

THINKING ABOUT THE CONTROL MOVEMENT OF A ROBOT VACUUM CLEANER USING
PROGRAMMING CONSTRUCTS

Proposed time duration: 4 teaching hours (40 min. for each session)

Requirements: Hardcopies to write pseudocode and instruction cards to write the encoded solution using
Scratch4SL

Technological means: OpenSim + Scratch4SL

Learning goals

The learning goals can be achieved by familiarizing students with the simulation game and its potential
contribution to facilitate the development and implementation of computational problem-solving strategies
in simulated real-world contexts. In particular, students are expected to achieve the following:

e To explore how a robot vacuum cleaner can be moved into a big house, taking into account the
spatial layout of each room that displays several simulated problem-solving contexts between the
furniture and other house objects.

e To propose a solution with logical reasoning by expressing specific steps of a solution based on a
computational problem-solving strategy and exploit different forms of constructs and commands
such as REPEAT, "From ... until ..." or "Until...repeat”, SELECTION ("If ... then" or "If" then
"otherwise™) or the SEQUENCE of in order to construct design patterns as a solution to each in-
game task using the visual palette for coding tasks.

e To explain the appropriateness of using specific programming constructs in order to express your
solution plans as design patterns that integrated as behaviors into the robot to predict its control
movement without causing damages in the house.

Helpful tips

e By using specific programming constructs, a computer can execute the given instructions and
actions (calculations, screen displays, etc.) precisely and faster than a human.

e Regarding the rotation and move of the robot around the home, please do not forget the basic
concepts that you have learned in Geometry. In this case, it is imperative to remind you that 90°
(degrees) is the right angle in a square with each side having a length and a width of 5m and 45°
angle is equal half of the right angle. All in all, if you are thinking about how the robot needs to be
moved into a square-shaped space; thus, turning 360° degrees in 4 steps or otherwise can turn
360°/4=90°.

e For the correct execution of the robot’s control movements/instructions, there are notecards of
Scratch and hardcopies/worksheets that can be used for proposing and describing through a text
form in natural language your pseudocodes for each stage. Consequently, using a code block palette
from Scratch to integrate behavior inside the robot (OpenSim) and assess the correctness of your
solution plan (cleaning pathway) into code.

Basic guidelines

The research aim of this teaching intervention is the exploitation of a simulation game following an
instructive guided approach with step-by-step programming exercises and the investigation of its’ impact
on students’ learning outcomes depending on computational problem-solving strategies that can be applied

234

intro code via Scratch. Having the role of embedded software engineer, you should assist an old woman
with special needs, who moves only with her wheelchair and struggles to clean all rooms of her house. In
a gameplay context, you need to elaborate a solution aimed at creating algorithms with logically and precise
instructions and finally to propose solution plans as design patterns into code. Firstly, you need to navigate,
determine the robot’s movement positions and describe the best cleaning path that an autonomous robot
can follow in sufficient time. Thereupon, your solutions can be implemented by integrating behavior using
Scratch in order to give specific directions to a robot vacuum cleaner that should move and clean 3 rooms
that are differentiated in spatial geometry layout, in terms of division among house furniture and objects.
Please try to calculate arithmetically distances without causing hits or damages.

According to the above, house furniture and objects in square floors are seen as evocative spatial
metaphors of basic geometric shapes (e.g., triangle, square, and hexagon) to think and practice
computationally with an abstract conceptualization approach alongside with pathfinding in a logical
problem can be followed. To prevent hitting a table, you need to determine arithmetic computation between
chairs and table distance (e.g., each side’s square floor has side 5m) or-/and calculate degrees of turning
correctly (e.g., 90° for square or 45° for equilateral triangle) to traverse the robot a specific cleaning pathway
down from the table, without hitting the table lamp. This process is becoming more compelling as you need
to apply a computational strategy via Scratch palette beneficial to be presented the shortest path between
the present location and the goal location of the robot. Last but not least, it is also important to notice that
the distance from the robot should be no more than 140 steps for movement (aligned to 5m), because then
the signal will be lost, and the robot will not be controlled causing damage until the battery shutting down
automatically. Since a specific role is assigned to you, a number of steps of your strategy need to be
followed:

a) explore each room separately to identify any drawbacks among house objects and furniture,

b) plan specific movements to pass all checkpoints the vacuum robot for optimum performance in order
to propose the shortest cleaning path in reasonable time, and locate any further grades that should be avoided
so as to clean all dusty dots over the floor, without hit any object or furniture, and finally

c) program the shortest cleaning route that can be proposed for each room individually in order not to
turn off the robot due to battery consumption after one hour. Whenever the robot is programmed to pass
and clean all dusty dots (gray signs) off the floor, for rewarding, it gains energy, giving grades to its battery
life. If gathering the smallest possible number of code blocks for cleaning each room based on resilient
planning, execution time and fewer hits on the house furniture or objects, then such a player is declared as
the winner.

The rooms

All in all, 6 rooms designed with learning tasks lasted only 40 minutes, but one is going to be used for
your personal training. Therefore, you are free to propose different solutions based on your design patterns
as there was not a pre-defined one. You have the chance to choose only 4 rooms, with 1 to be chosen from
each stage. Only the chosen 3 rooms count to your final grades. The bedroom or the drawing room (Stage
1) are developed for introductory activities to learn how to use some tools and another one need to be
excluded (see Figure 1).

A presupposition is to use the same programming method and constructs (i.e., simple or nested iteration,
sequence or selection) can be used at first stages including the bedroom (1.1) and the drawing room (1.2)
to propose a solution for the other 3 chosen rooms again only once more. This means that for the other two,
you should propose a combination of programming methods or other programming constructs nested with
numbers and/or variables.

Except for the above two rooms, the rest four in-game rooms have different levels of difficulty. For
example, the second stage includes the billiard room (2.1) and cinema room (2.2) have a medium level of
difficulty due to the fewer objects and house furniture, in which players can use either one programming
method.

The relaxing room (3.1) and sitting room (3.2) are included in the third stage. Both have a higher level
of difficulty as at least optically house furniture and objects created to each one differentiates on the

235

geometric shapes and thence more programming methods need to be combined. When you decide which
of the 3 rooms from the three stages want to play, you have a chance to use one different method that can
be combined with the proposed programming method in order to gain higher grades, e.g., a combination of
selection with the sequence.

In Figure 1, below 6 rooms are appeared. Please choose 3 of them so as to provide for each one a
proposed solution to all subparts of this simulated real-life problem.

| 1.1.The bedroom | 1.2.The drawing room

| 2.1. The relaxing room | 2.2. The cinema room

3.1. The sitting room 3.2. The relaxing room

Figure 1: The in-game stages created in OpenSim

236

When all the above considerations can be addressed in a specific timeline, a thorough exploration of
each room is appropriate to map out the possible grades from which the robot could pass to clean. Secondly,
it is important for taking good grades not only to fully describe the robot’s movement by controlling its
steps in an algorithmic way but also to program it, utilizing programming constructs. At the end of the
description and expression of the proposed solution in the worksheet (see the table below), I will be
informed about your progress, and after that, | will allow you to present your described solution plan into
code. Thus, any solution that you will give should not only be a description of commands and instructions
by utilizing each programming construct that as an engineer should present in small sentences using natural
language, but it should also be performed by using the Scratch palette in the code to prove the correctness
and the degree of your applications. Helping to find the commands and instructions using from Scratch, the
following Figure 2 was created to understand the alignment of code commands in the S4SL palette.

e

o< (L oess move @ meters e G (3 degrees

point in direction EEI

r- |
L 0

Figure 2: The programming constructs and commands in the palette of Scratch and Scratch4SL

Main activity

By following the structure of the scenario that was previously described, you must try to program the
robot in each of the 3 rooms so that it can be cleaned in a specific period of time, without hitting objects or
furniture that can change its direction. To achieve this goal, you need to write correctly programming
constructs and commands to determine the movements and rotation of the robot in each room that has a
specific layout geometry. A proposed solution for each of the 3 chosen rooms needs to be written in the
table below. In this table, you must write both in the form of natural language short sentences that entail
Goals, Rules/instructions, and Anticipated outcomes, pseudocode with simple step-by-step description.
Lastly, you need to determine the extent to which the algorithm that you have proposed in natural language
can be applied into code via Scratch4SL.

237

Question: Can you describe which may be a preferable choice to demonstrate a cleaning pathway that a
robot vacuum cleaner needs to follow for each of your 3 chosen rooms as depicted in Figure 1?

Description of a proposed solution in natural Pseudocode
language with short sentences

Important note: After the description of a proposed solution to the above Table, please use Scratch4SL
for coding and save it as a .sh2 file to your personal computer to gather data at the end of this experiment.

Thanks for your participation!

238

