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Abstract

This thesis is concerned with the interplay between Bayesian Statistics and Nonlinear Dynam-
ical Systems. Specifically, the main goal of the thesis is the development of new Markov Chain
Monte Carlo (MCMC) methods that have applications in the general field of nonlinear dynam-
ics. The motivation for this approach is the decomposition of the modeling procedure into two
interacting parts: the deterministic part and the stochastic noise process. Using this kind of
modeling, we are able to capture a wide variety of phenomena, utilizing the complex behavior
of the nonlinear part and the new characteristics emerging from the interaction with the noise
process. The proposed methods are nonparametric, based on the Geometric Stick-Breaking
process as a prior over the space of probability measures. An important aspect of this work
is the relaxation of a very common assumption in the literature: the normality of the noise
distribution.

In Chapter 1 we present the basic notions and results of the Bayesian parametric and non-
parametric framework, that are essential for the understanding of the methods developed in
this thesis. We discuss the concept of exchangeability and the Theorem of de Finetti. Follow-
ing, we introduce the notion of a Bayesian nonparametric model and define the most popular
Bayesian nonparametric prior, the Dirichlet Process. We continue with the definition of the
main Bayesian nonparametric prior for the scope of this thesis, the Geometric Stick-Breaking
process and discuss the properties of Bayesian nonparametric Mixture models. Finally, the
main MCMC sampling methods are presented and discussed.

In Chapter 2, which is also introductory, we give the definitions and basic properties of dy-
namical systems, both in the deterministic and the stochastic case. The concept of chaos is
rigorously analyzed, along with the properties of chaotic systems, homoclinic tangencies and
invariant manifolds. We continue with the presentation of the most popular in the literature
noise-induced effects, as well as with the effects of dynamical noise on non-hyperbolic non-
linear maps. We conclude with an explanation of the inefficiency of parametric reconstruction
models under a non-Gaussian noise process.

In Chapter 3 we propose a Bayesian nonparametric framework, the Geometric Stick Breaking
Reconstruction (GSBR) model, suitable for the full reconstruction and prediction of dynamically-
noisy corrupted time series, when the additive noise may exhibit significant departures from
normality. In particular, any 0-mean symmetric density can be recovered, even in cases where



x

the size of the observed time series is small, hence statistical inference for the system is im-
proved and reliable. With the proposed model, we have also shown that the associated quasi-
invariant measure of the underlying random dynamical system, appears naturally as a predic-
tion barrier, similarly as the invariant measure appears as the prediction barrier in the deter-
ministic case. We have used the Geometric Stick Breaking process as a prior over the unknown
noise density, showing that it yields almost indistinguishable results from the more commonly
used, but computationally more expensive, Dirichlet Process prior. The GSBR model is also
generalized in order to include arbitrary number of finite lag terms and finally extended in the
multivariate case, where the noise process is modeled as an infinite mixture of multivariate
Normal kernels with unknown precision matrices, using Wishart distributions.

In Chapter 4, the thesis proceeds with the proposal of a new Bayesian nonparametric method,
the Dynamic Noise Reduction Replicator (DNRR) model, suitable for noise reduction over a
given chaotic time series, subjected to the effects of (the perhaps non-Gaussian) additive dy-
namical noise. The DNRR model provides a highly accurate reconstruction of the dynamical
equations, while in parallel it replicates the dynamics under reduced noise level dynamical
perturbations. The advantages of this method are that the estimated noise-reduced orbit has
approximately the same estimated deterministic part, while it evolves in a neighborhood of the
original noisy orbit. The two orbits remain close even in the regions of the noise-induced pro-
longations of the attractor, or in cases of perturbed multistable maps exhibiting noise-induced
jumps. We were also able to relate the regions of primary homoclinic tangencies of the associ-
ated deterministic system, with regions of persistent high determinism deviations.

Further, in relating the random dynamical systems with their associated deterministic parts, in
Chapter 5 we present an extention of the GSBR sampler, in order to provide a MCMC-based
stochastic approximation of the global stable manifold. Specifically, we have introduced the
Backward GSBR (BGSBR) model, in order to estimate past unobserved observations, namely
performing prediction in reversed time. We have emphasized on the support of the poste-
rior marginals of the unknown initial conditions, demonstrating that the union of the supports
contain the associated deterministic stable manifold of the attractor. The BGSBR sampler can
be applied multiple times over proper subsets of the noisy observations, each time generating
posterior samples for the various initial conditions. Then the global stable manifold of the asso-
ciated deterministic map can be stochastically approximated as the union of the supports of the
posterior marginal distributions. The method is parsimonious and efficient both in invertible
and non-invertible maps.

Finally, in Chapter 6 we present the main conclusions and address some relevant topics for
further research, based on the results obtained during this thesis. We discuss the generalization
of the proposed methods in continuous-time systems, as well as the possibility of dropping the
assumption of a known functional form of the underlying deterministic part. Furthermore, we
discuss the development of a RJMCMC-based extension of the GSBR model, in order to impute
a -possibly unknown- finite number of missing observations of an observed time-series. Finally,
we discuss the problem of application of Bayesian nonparametric methods in the context of
Coupled Map Lattices.



xi

We conclude with the bibliography and 3 Appendices. In Appendix A we present analytical
results regarding the MCMC sampling schemes appearing in the Chapters 3-5. In Appendix B
we analyze the dynamical behavior of the polynomial maps appearing in Chapters 3-4. Finally,
Appendix C provides information regarding the development of the algorithms using the Julia
language, as well as a URL in order to have access to the programs.
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Περίληψη

Η παρούσα διατριβή αφορά τη διάδραση μεταξύ Μπεϋζιανής στατιστικής και μη γραμμικών δυναμικών

συστημάτων. Ειδικότερα, ο βασικός στόχος της διατριβής είναι η ανάπτυξη νέων μεθόδων Markov
Chain Monte Carlo (MCMC) με εφαρμογές στο ευρύτερο πεδίο της μη γραμμικής δυναμικής. Το
κίνητρο για την ανάπτυξη τέτοιων μεθόδων, αφορά την διάκριση της διαδικασίας μοντελοποίηση-

ς σε δύο βασικά διαδραστικά μέρη: το αιτιοκρατικό (ντετερμινιστικό) μέρος και τη στοχαστική

διαδικασία θορύβου. Μέσω μιας τέτοιου είδους μοντελοποίησης, επιτυγχάνεται η σύλληψη μιας ευ-

ρείας συλλογής φαινομένων, αξιοποιώντας την πολυπλοκότητα της δυναμικής συμπεριφοράς λόγω

του μη γραμμικού μέρους και τα νέα χαρακτηριστικά που αναδεικνύονται λόγω της εμπλοκής των

στοχαστικών διαταραχών. Οι προτεινόμενες στατιστικές μέθοδοι είναι μη παραμετρικές και βασ΄-

ιζονται στη χρήση τυχαίων μέτρων πιθανότητας με γεωμετρικά βάρη (Geometric stick breaking
process (GSB)) ως εκ των προτέρων κατανομές στο χώρο των μέτρων πιθανότητας. Μια σημαντική
πτυχή των προτεινόμενων μεθόδων είναι η επίτευξη της χαλάρωσης μιας πολύ συχνής υπόθεσης στη

βιβλιογραφία: της κανονικότητας της διαδικασίας θορύβου.

Στο Κεφάλαιο 1 παρουσιάζονται οι βασικές έννοιες της Μπεϋζιανής στατιστικής, στην παραμετρική

και στη μη παραμετρική περίπτωση, καθώς και κάποια βασικά αποτελέσματα απαραίτητα για την

κατανόηση των αποτελεσμάτων της παρούσας διατριβής. Ειδικότερα, παρουσιάζεται η έννοια της

ανταλλαξιμότητας (exchangeability) και το Θεώρημα ανταλλαξιμότητας του De Finetti. Στη συνέ-
χεια παρουσιάζεται η πιο δημοφιλής Μπεϋζιανή μη παραμετρική εκ των προτέρων κατανομή (prior),
το τυχαίο μέτρο Dirichlet, καθώς και οι πιο δημοφιλείς αναπαραστάσεις του. Παρουσιάζονται,
επίσης, το βασικό τυχαίο μέτρο για την ανάπτυξη των μεθόδων της διατριβής, το τυχαίο μέτρο

με γεωμετρικά βάρη GSB και τα Μπεϋζιανά μη παραμετρικά μοντέλα μίξεων. Τέλος, αναλύονται
βασικά χαρακτηριστικά μεθόδων MCMC, οι αλγόριθμοι Metropolis, Gibbs, ο αλγόριθμος χρήσης
βοηθητικών μεταβλητών (slice sampler) και MCMC μέθοδοι δειγματοληψίας από μη παραμετρικά
μοντέλα μίξεων με τυχαία μέτρα Dirichlet και GSB.

Στο -επίσης εισαγωγικό- Κεφάλαιο 2 παρατίθενται οι βασικές έννοιες και ορισμοί σχετικά με το πεδίο

των δυναμικών συστημάτων, στην ντετερμινιστική και την στοχαστική περίπτωση. Γίνεται αναλυ-

τική επισκόπηση της έννοιας του χάους σε δυναμικά συστήματα, καθώς και των αναλλοίωτων πολ-

λαπλοτήτων (invariant manifolds) και παρουσιάζεται η έννοια της ομοκλινικής εφαπτομενικότητας
(homoclinic tangency). Στη συνέχεια, παρουσιάζονται κάποια από τα πιο διαδεδομένα στη βιβλι-
ογραφία φαινόμενα προκαλούμενα από το θόρυβο (noise-induced effects), καθώς και η επίδραση του
δυναμικού θορύβου σε μη υπερβολικές (non-hyperbolic) απεικονίσεις. Το Κεφάλαιο ολοκληρώνε-
ται με την επεξήγηση της μη αποτελεσμάτικότητας των παραμετρικών μεθόδων αναδόμησης στις

περιπτώσεις μη-κανονικού (non-Gaussian) δυναμικού θορύβου.
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Στο Κεφάλαιο 3, κατασκεύαζουμε ένα μη παραμετρικό Μπεϋζιανό μοντέλο κατάλληλο για αναδόμηση

των δυναμικών εξισώσεων και πρόγνωση μελλοντικών τιμών από παρατηρηθείσες χρονοσειρές μο-

λυσμένες με προσθετικό δυναμικό θόρυβο: το μοντέλο geometric stick-breaking reconstruction
(GSBR). Το GSBR μοντέλο βασίζεται στο τυχαίο μέτρο με γεωμετρικά βάρη (GSB), ενώ γίνεται
επίσης παρουσίαση του αντίστοιχου μοντέλου Dirichlet process reconstruction (DPR) βασισμένου
στο τυχαίο μέτρο DP, καθώς και η μεταξύ τους σύγκριση. Η βασική συνεισφορά της προτεινώ-
μενης μεθοδολογίας αφορά τη χαλάρωση της συνήθους υπόθεσης της κανονικότητας της διαδικασίας

θορύβου, καθώς μπορεί να εκτιμηθεί οποιαδήποτε συμμετρική γύρω από το μηδέν πυκνότητα, ακόμα

και σε περιπτώσεις όπου το διαθέσιμο δείγμα είναι μικρό. Δείχνουμε επίσης, ότι κάνοντας χρήση

των δύο μοντέλων, επιτυγχάνεται η εκτίμηση του ψευδο-αναλλοίωτου μέτρου του υποκείμενου σ-

τοχαστικού δυναμικού συστήματος, το οποίο εμφανίζεται ως φράγμα προβλεπτικής δυνατότητας

μέσω των περιθώριων κατανομών των μελλοντικών παρατηρήσεων. Τα παραγόμενα αποτελέσματα

μέσω του μοντέλου GSBR είναι ποιοτικά ίδια με εκείνα του αντίστοιχου DPR, απαιτώντας σημαντικά
χαμηλότερο μέσο χρόνο εκτέλεσης. Τέλος, η μεθοδολογία επεκτείνεται ώστε να γίνει εφικτή η μον-

τελοποίηση χρησιμοποιώντας αυθαίρετο πεπερασμένο πλήθος όρων χρονικών υστερήσεων (lags),
καθώς και στην πολυδιάστατη περίπτωση μέσω της άπειρης μίξης πολυδιάστατων κανονικών πυρή-

νων με άγνωστους πίνακες αποκρίσεων, χρησιμοποιώντας ως μέτρο μίξης το τυχαίο μέτρο GSB και
μέτρο βάσης (base measure) μια κατανομή Wishart.

Η διατριβή συνεχίζει στο Κεφάλαιο 4, προτείνοντας μια μη παραμετρική Μπεϋζιανή μεθοδολογία

βασιζόμενη επίσης στο τυχαίο μέτρο GSB, με σκοπό τη μείωση δυναμικού θορύβου σε διαθέσιμα
δεδομένα μη γραμμικών χρονοσειρών με προσθετικό θορυβο. Το μοντέλο Dynamic Noise Reduc-
tion Replicator (DNRR) επιτυγχάνει μεγάλη ακρίβεια στην αναδόμηση των δυναμικών εξισώσεων,
ώστε να αναπαράγει την υποκείμενη δυναμική σε περιβάλλον ασθενέστερου δυναμικού θορύβου. Τα

πλεονεκτήματα της μεθόδου αφορούν αφενός το κοινό ντετερμινιστικό μέρος μεταξύ της διαθέσιμης

και της αποθορυβοποιημένης τροχιάς και αφετέρου τη δυνατότητα της εκ των προτέρων ρύθμιση-

ς της μεταξύ τους εγγύτητας ακόμα και σε περιοχές επιμηκύνσεων του ελκυστή λόγω θορύβου

(noise-induced prolongations), ή σε περιπτώσεις αλμάτων λόγω θορύβου (noise-induced jumps)
σε πολλαπλά ευσταθείς (multistable) απεικονίσεις. Τέλος, μέσω της εφαρμογής του DNRR είναι
δυνατή η σύνδεση των περιοχών υψηλών αποκλίσεων από τον ντετερμινισμό με τις περιοχές των

πρωταρχικών ομοκλινικών εφαπτομενικοτήτων του υποκείμενου ντετερμινιστικού συστήματος.

Ακολούθως, συσχετίζοντας τα στοχαστικά δυναμικά συστήματα με τα αντίστοιχα ντετερμινιστικά

τους μέρη, στο Κεφάλαιο 5 παρουσιάζεται μία επέκταση του μοντέλου GSBR, με σκοπό τη σ-
τοχαστική προσέγγιση της ολικής ευσταθούς πολλαπλότητας (global stable manifold), με χρήση
μεθόδουMCMC. Ειδικότερα, γίνεται παρουσίαση του οπισθοδρομικού (backward) GSBR μοντέλου
BGSBR, μέσω του οποίου επιτυγχάνεται πρόβλεψη σε αντεστραμμένο χρόνο. Ιδιαίτερη έμφαση δίνε-
ται στο στήριγμα της περιθώριας κατανομής του διανύσματος των αρχικών συνθηκών. Συγκεκριμέ-

να, με κατάλληλες πολλαπλές εφαρμογές του BGSBR χρησιμοποιώντας υποσύνολα των διαθέσιμων
δεδομένων, δείχνουμε ότι η ένωση των στηριγμάτων των κατανομών αυτών για τις διάφορες αρχικές

συνθήκες παρέχουν μια στοχαστική προσέγγιση της ευσταθούς πολλαπλότητας του υποκείμενου

ντετερμινιστικού συστήματος. Η μεθοδολογία είναι εφαρμόσιμη τόσο σε αντιστρέψιμες όσο και σε

μη αντιστρέψιμες απεικονίσεις.
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Στο Κεφάλαιο 6 γίνεται σύνοψη των αποτελεσμάτων των προηγούμενων Κεφαλαίων και αναφορά σε

θέματα για μελλοντική έρευνα, τα οποία προέκυψαν κατά τη διάρκεια εκπόνησης της παρούσας Δια-

τριβής. Προτείνεται η γενίκευση των προτεινόμενων μεθόδων σε στοχαστικά δυναμικά συστήματα

συνεχούς χρόνου, καθώς και η δυνατότητα απόρριψης της υπόθεσης γνωστής συναρτησιακής μορφής

για το ντετερμινιστικό μέρος της διαδικασίας, κάνοντας χρήση της Gaussian διαδικασίας. Επιπλέον,
αναλύεται η δυνατότητα κατασκευής μιας επέκτασης του GSBR μοντέλου με χρήση MCMC μεθόδ-
ων αναστρέψιμου άλματος (Reversible Jump MCMC). Τέλος, προτείνεται η κατασκευή μοντέλων
βασιζόμενων στη Μπεϋζιανή μη παραμετρική στατιστική, προσανατολιζόμενων στην επίλυση προβ-

λημάτων του πεδίου των πλεγμάτων συζευγμένων απεικονίσεων (coupled map lattices).

Η Διατριβή ολοκληρώνεται με την παράθεση της βιβλιογραφίας και τριών Παραρτημάτων. Στο

Παράρτημα A παρουσιάζονται αναλυτικά αποτελέσματα, σχετικά με τα MCMC δειγματοληπτικά
σχήματα που εμφανίζονται στα Κεφάλαια 3-5. Στο Παράρτημα B αναλύεται η δυναμική συμπερι-
φορά των πολυωνυμικών απεικονίσεων οι οποίες χρησιμοποιούνται στα Κεφάλαια 3-4. Τέλος, το

Παράρτημα C περιέχει πληροφορίες σχετικά με την ανάπτυξη των αλγορίθμων με χρήση της γλώσσας
προγραμματισμού Julia, καθώς και ένας σύνδεσμος URL μέσω του οποίου μπορεί να γίνει λήψη των
προγραμμάτων τα οποία χρησιμοποιήθηκαν για την απόκτηση των παρουσιαζόμενων αποτελεσμάτων.
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associated log10−determinism plot is given in figure (b). . . . . . . . . . . . . . . 96

4.3 The true noise density f = f2,1, for σ2 = 0.21 × 10−4, is the red continuous
curve. Along, we superimpose the xn-estimated noise density f̂xn as a black
continuous curve, and the yn-estimated ‘weaker’ interactive noise density f̂yn as
a black dashed curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 In Figure (a) we present a delay plot of the points in the set MHT of the point
estimators of the Yi-posterior marginals, passing Hartigan’s test for unimodality.
In Figure (b) we depict the delay plot of the points in the set ΩHT that are above
the 99th percentile of the histogram of Ω. Regions of high Edyn are depicted in
Figure (c), and in Figure (d) we present the primary homoclinic tangencies of the
corresponding deterministic attractor. . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 KDEs of (a) individual log10-indeterminism points and (b) distance between
original and noise reduced orbit points, for different values of parameter ρ. . . . 98

4.6 The average distance E0(yn, xn) and the average dynamic error Edyn(yn, ĝxn) as
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1

Chapter 1

The Bayesian Framework

The concept of uncertainty is crucial in the process of mathematical modeling. We confront
uncertainty in a plethora of ways, either due to inherent randomness in the system evolution, or
due to a large number of active degrees of freedom. It is also known since the beginning of the
development of Chaos Theory, that even in deterministic systems -if the dynamical behavior
is complex enough- we may not be able to avoid uncertainty in terms of predicting the future
outcomes. In order to deal with uncertainty, we need to perform statistical inference and extract
information from the available data, using a proper probability model.

One of the main pillars of modern statistical inference is the Bayesian Theory, originating in the
early works of Thomas Bayes and Pierre-Simone Laplace and becoming more popular through
the advance of computational resources and MCMC methods. The essential feature of the
Bayesian approach is the expression of uncertainty in terms of probability statements, thus
the modeling of the parameters of interest (or all unknown quantities) as random variables
following a prior distribution that reflects our knowledge prior to observing the data. Then,
conditionally on the data, inference is based on the -updated- posterior distribution.

This thesis is devoted to the development of a new approach to nonlinear dynamic modeling,
utilizing a Bayesian nonparametric framework. In this chapter we will review some of the basic
definitions and results of Bayesian statistics, that are required to proceed to our main topic. We
will continue with a formal introduction to Bayesian inference, both in a parametric and a non-
parametric context. First, we will introduce the most widely used nonparametric prior, namely
the Dirichlet Process, and discuss its properties and representations. Next, we will introduce
the nonparametric prior that we will use for the construction of the models proposed in this
thesis, the Geometric Stick-Breaking process, as well as the corresponding Bayesian nonpara-
metric mixture models. We will end this Chapter with a description of the most widely used
MCMC methods and their extensions suitable for the component update of random measures.
For a thorough analysis of Bayesian statistics and MCMC methods the reader is referred to
[Rob07], [RC04], or [BS09]. Regarding the theory of Bayesian nonparametrics, extensive works
include [MQJH15], [HHMW10] and [Pha15].



2 Chapter 1. The Bayesian Framework

1.1 Construction of the statistical model

Let x = (x1, . . . , xn) be an observed sample. We assume that x consists of realizations xi of ran-
dom variables Xi defined over a probability space (Ω,F , P) and taking values on a complete
separable metric space (X, d), with X the associated Borel σ-algebra of subsets of X. We denote
with PX the space of all probability measures over X and with PX∗ the corresponding space of
densities.

In order to define a parametric Bayesian model, we need to assume that ϑ ∈ Θ is a random
vector of unknown quantities ϑ = (θ1, . . . , θd) and (X1, . . . , Xn | ϑ) are generated independently
and identically distributed (iid) from a probability measure Pϑ ∈ PX. In this case the parameter
space Θ is finite dimensional and we assign a prior measure Π ∈ PX, that induces a prior
distribution over the unknown parameters ϑ. The prior distribution incorporates our beliefs
about the parameters of interest before x is observed.

The motivation behind the Bayesian approach and the assignment of the prior distribution
over the random quantities of interest, is based on the concept of exchangeability. Instead of
making the stronger assumption that the observations x are independent, we assume that they
are exchangeable. In order to stress the importance of this distinction, suppose that the joint
distribution of x is p (x1, . . . , xn) and we aim to predict the next future unobserved observation.
Under the assumption of independence we have that p (xn+1|x1, . . . , xn) = p(xn+1) and we
treat individually every new data point, without taking into account the past ones.
Definition 1.1. A sequence of random variables X(n) = (X1, X2, . . .) is said to be exchangeable under
probability measure P if the joint probability

(X1, . . . , Xn)
d
=
(

Xτ(1), . . . , Xτ(n)

)
for every permutation τ defined on {1, . . . , n}. A sequence (Xi)i≥1 is infinitely exchangeable if every
finite subsequence is exchangeable.

Intuitively, there is no information contained in the specific order under which we obtain ex-
changeable observations, as their joint distribution remains invariant. Exchangeability is a
weaker notion than independence, so we can construct sequences of exchangeable random
variables that are not independent [HS76]. The famous de Finetti’s Representation Theorem states
that an infinite sequence of random variables is exchangeable if and only if it is conditionally
iid given a probability measure, known as the de Finetti’s measure. It was first proven for
sequences of binary random variables [DF37] and later on extended for arbitrary real-valued
variables [HS55]. For generalizations of the notion of exchangeability see [DF80].
Theorem 1.1 (de Finetti’s Representation Theorem). A binary sequence (Xi)i≥1 , Xi ∈ {0, 1} is
exchangeable if and only if there exists a distribution function F ∈ (0, 1) such that ∀n ∈N

P {X1 = x1, . . . , Xn = xn} =
∫ 1

0
θtn(1− θ)n−tn F(dθ), tn :=

n

∑
i=1

Xi,
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where F is the distribution function of the limiting empirical frequency, for which:

F(y) = P {Y ≤ y} , Y = lim
n→∞

1
n

n

∑
i=1

Xi

and P {X1 = x1, . . . , Xn = xn |Y = θ} = θtn(1− θ)n−tn

Essentially, the above Theorem states that binary sequences of random variables can be ex-
pressed as mixtures of independent Bernoulli sequences with probability of success θ, if θ is
distributed according to F, where F is defined as the limiting empirical frequency of the data.
So, in a Bayesian context, the data generating mechanism consists of the two stages

Xi | ϑ
iid∼ f (· | ϑ) , i = 1, . . . , n

ϑ ∼ ΠΘ,

and the objective is the determination of the posterior distribution, using Bayes’ theorem

Π (dϑ | x) = ∏n
i=1 f (xi | ϑ)ΠΘ (dϑ)∫

ϑ∈Θ ∏n
i=1 f (xi | ϑ)ΠΘ (dϑ)

∝ L (ϑ; x)ΠΘ (dϑ) .

This means that the posterior distribution Π (dϑ | x), i.e. the conditional distribution of ϑ given
the data x, is the update of our prior beliefs ΠΘ (dϑ), via the observed likelihood L (ϑ; x).
Moreover, using Bayes’ rule, we can derive the posterior predictive distribution of the next T
future unobserved observations as the mixture of the likelihood of the future T observations,
with the posterior measure serving as the mixing measure:

f (xn+1, . . . , xn+T | x1, . . . , xn) =
∫

ϑ∈Θ

T

∏
i=1

f (xn+i | ϑ)ΠΘ (dϑ | x1, . . . , xn) .

In the parametric case, the density f (x | ϑ) corresponds to a probability measure

P ∈ {Pϑ | ϑ ∈ Θ} ⊆ PX,

where the parameter space Θ is finite dimensional. For example, suppose that we wish to infer
the mean and variance of the Normal distribution that has generated the observed data, that is:

Xi | µ, σ2 iid∼ N
(
µ, σ2) i = 1, . . . , n

µ, σ2 ∼ ΠΘ,

with ϑ = (µ, σ2) ∈ Θ = R× (0, ∞). After a finite amount of observations, we are still uncertain
about the true value of the parameters ϑ = (µ, σ2) and this uncertainty is expressed by the
posterior distribution.

There are cases, though, that this finite parametrization of the density of the data-generating
process can be considered as a restriction. For example, we may have that Q ∈ PX, such that
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Xi |Q
iid∼ Q, 1 ≤ i ≤ n and we want to construct a probability model for Q, dropping the

(perhaps strong) assumption that it belongs to some parametric family of probability measures
parametrized by ϑ. In this case, we aim to infer the probability measure Q itself. The probability
measure Q is an element of the infinite dimensional space PX consisting of all the probability
measures over X, i.e. Θ = PX. For example, consider the problem of density estimation, where
we want to infer the unknown density f , responsible for the collection of data (x1, . . . , xn), that

is xi | f iid∼ f , 1 ≤ i ≤ n.

To this end, a Bayesian nonparametric (BNP) model is defined as a Bayesian model with infinite-
dimensional parameter space. If we define a BNP prior over the space of probability measures,
then we obtain a random measure, i.e. a measure drawn from some distributions over measures.
Formally, we have the following definition [Cin13]:
Definition 1.2. A random measure on (X,X ) is a transition kernel from (Ω,F ) into (X,X ), i.e. a
mapping M : Ω×X → R+, such that

1. M (·, A) is a random variable ∀A ∈ X

2. M (ω, ·) is a measure ∀ω ∈ Ω.

The meaning of the above definition is that M assigns for every possible outcome ω ∈ Ω, a
proper measure Mω and is essentially a stochastic process indexed by the elements (sets) of the
σ−algebra X .

In a nonparametric context, the use of a prior is motivated by the generalization of de Finetti’s
Theorem [HS55]. In this case the de Finetti measure is identified as a nonparametric prior
distribution over an exchangeable sequence of observations.
Theorem 1.2 (Hewitt and Savage generalization of de Finetti’s Representation Theorem). Let
(Xi)i≥1 be an exchangeable sequence of random variables over X. Then there exists a probability measure
ΠF ∈ PX such that ∀n ∈N

P {X1 ∈ A1, . . . , Xn ∈ An} =
∫

Q∈PX

n

∏
i=1

Q(Ai)ΠF(dQ).

The random empirical measure F is distributed like ΠF, i.e. F ∼ ΠF, where ∀A ∈ X :

F(A) = lim
n→∞

Fn(A) = lim
n→∞

1
n

n

∑
i=1

δXi(A).

Q is the distribution obtained by conditioning w.r.t. F , that is

P {X1 ∈ A1, . . . , Xn ∈ An | F = Q} =
n

∏
i=1

P {Xi ∈ Ai | F = Q} =
n

∏
i=1

Q(Ai).
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Therefore, under the assumption of exchangeability, we can write the Bayesian model in a two-
stage hierarchical form

Xi |Q
iid∼ Q

Q ∼ ΠF

and obtain the posterior distribution by applying Bayes’ theorem

ΠF(dQ) =
∏n

i=1 Q (xi)ΠF (dQ)∫
Q∈PX

∏n
i=1 Q (xi)ΠF (dQ)

∝ L (Q; x)ΠF (dQ) .

The nonparametric posterior predictive for T unobserved observations will be the mixture of
the (nonparametric) likelihood for T observations with mixing measure, the (nonparametric)
posterior measure:

Q (xn+1, . . . , xn+T | x1, . . . , xn) =
∫

Q∈PX

T

∏
i=1

Q (xn+i | ϑ)ΠF (dQ | x1, . . . , xn) .

BNP models are in general more complex, compared to parametric models. The main reasons
for their wide applicability in modern statistics are their flexibility and robustness. For exam-
ple, in the process of modeling complex phenomena, there is often a challenging task: How
complex should the model be, in order to be able to capture the desirable characteristics? A
promising approach to address such issues is the development of BNP methods, as they allow
for the model structure to be highly flexible, adapting its complexity as needed according to the
observed data. Moreover, the use of parametric models under the false assumption regarding
the parametric family of the data likelihood, may result in erroneous inference conclusions. An
indicative inadequacy of a parametric modeling will be presented at the end of Chapter 2.

1.2 The Dirichlet Process

One of the most popular Bayesian nonparametric priors is the Dirichlet Process (DP), originally
introduced by Ferguson [Fer73] as a prior over the space of probability measures. Before we
give the definition of a DP, we will recall the definition of the Dirichlet distribution, which is
considered a multivariate generalization of the Beta distribution, and is typically used as the
conjugate prior 1 of the multinomial distribution.

Definition 1.3 (Dirichlet Distribution [NTT11]). Let Zi
ind∼ G(ai, 1), 1 ≤ i ≤ n and Z := ∑n

i=1 Zi.
The random vector W = (W1, . . . , Wn), with Wi := Zi

Z , 1 ≤ i ≤ n has the Dirichlet distribution with
parameters α = (α1, . . . , αn) and probability density function

D (W | α) =
Γ
(

∑n
j=1 αj

)
∏n

j=1 Γ
(
aj
) n

∏
i=1

wαi−1
i I (W ∈ ∆n) ,

1For a given likelihood function, a prior is called conjugate, if it belongs to the same parametric family as the
posterior distribution.
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supported over the (n− 1)−dimensional probability simplex

∆n :=

{
(w1, . . . , wn) ∈ R+

n :
n

∑
i=1

wi = 1

}
.

Now we can give the definition of a DP random measure, which can be considered as an
infinite-dimensional generalization of the Dirichlet distribution. The definition is due to Fer-
guson [Fer73] who verified Kolmogorov’s consistency conditions [KBR18] in order to formally
prove the existence of this process.
Definition 1.4 (Dirichlet Process [Fer73]). Let c > 0 and P0 ∈ PX. We say that a random measure
P is distributed according to a Dirichlet Process P ∼ DP(c, P0) with concentration parameter c and
base measure P0 if and only if for every finite partition {A1, . . . , An} of X, we have that the vector of the
random probabilities (P(A1), . . . , P(An)) has the Dirichlet distribution

(P(A1), . . . , P(An)) ∼ D (cP0(A1), . . . , cP0(An)) .

This means that P is drawn from a DP if all its finite marginal distributions are Dirichlet. In
order to investigate the effect of the parameters c and P0, consider the partition (A, A′). We
have that

(
P (A) , P

(
A′
))
∼ D

(
(cP0(A), cP0(A′))

)
⇒ P (A) ∼ Be (cP0(A), c(1− P0(A))) ,

whence ∀A ∈ X we have that

E {P(A)} = P0(A)

V {P(A)} = P0(A) [1− P0(A)]

c + 1

Then the base measure P0 plays the role of the location parameter of the DP and the concen-
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Figure 1.1: Random samples from the prior DP(c, P0) for c = 1, 10, 100, and P0(dx) = N (x | 0, 1)dx.
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tration parameter c is precision-like in the sense that c → 0 implies V {P(A)} → 0. Because
P(A) = P0(A) with probability 1, the draws of the DP will be concentrated tight around the
base measure. In Fig. 1.2 we present draws from the DP with base measure the standard Nor-
mal distribution, for different values of the concentration parameter c. In the next section we
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Figure 1.2: Cdf’s resulting from 20 random samples from the prior DP(c, P0) for c = 1, 10, 100, for
P0(dx) = N (x | 0, 1)dx are superimposed with the true cdf of the base measure P0.

present the basic properties and some of the most popular representations of the DP appearing
in the literature, highlighting the range of its possible applications regarding clustering and
density estimation.

1.2.1 Properties and representations of the Dirichlet Process

Conjugacy of Dirichlet process

An attractive property of a DP is its conjugacy under iid sampling. This means that if we
observe a random sample x = (x1, . . . , xn) generated directly from a DP random measure such
that

xi |P
iid∼ P, 1 ≤ i ≤ n

P ∼ DP(c, P0)

then the conditional distribution of P given the data, i.e. the posterior random measure, will
also be a DP with parameters updated according to the observed sample, specifically

P | x ∼ DP
(

c + n,
c

c + n
P0 +

n
c + n

∑n
i=1 δxi

n

)
. (1.1)

We can see that the posterior base measure is a weighted average of the prior base measure and
the empirical distribution. The weight related to the prior is proportional to the concentration
parameter, while the weight related to the empirical distribution is proportional to the number
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of the observed values. Moreover, due to the consistency of the empirical cdf as an estimator,
if the observations xi are iid, then we have asymptotically that ∀A ∈ X

P (A) | x1, . . . xn
p→ P0(A).

It is also interesting the fact that the posterior base measure coincides with the posterior pre-
dictive distribution for the next future observation drawn from the DP.

Predictive distribution

Suppose again that we have a random sample xi |P
iid∼ P, 1 ≤ i ≤ n, with P ∼ DP (c, P0)

and we are interested in deriving the predictive distribution of the next future unobserved
observation xn+1, with P marginalized out. Then we have that ∀A ∈ X

P (xn+1 ∈ A | x1, . . . , xn) =
∫

P∈PX

P (xn+1 ∈ A |P) P (P | x1, . . . , xn)dP

=
∫

P∈PX

P (A) P (P | x1, . . . , xn)dP

= E {P (A) | x1, . . . , xn}

=
c

c + n
P0(A) +

n
c + n

∑n
i=1 δxi(A)

n
, (1.2)

following Eq. (1.1) for the posterior base measure of P. So we conclude that

xn+1 | x1, . . . , xn ∼
cP0 + n ∑n

i=1 δxi

c + n
(1.3)

and the posterior base distribution is also the predictive distribution .

Self-similarity

Another property characterizing the DP is the self-similarity property. Let P|B be the restric-
tion measure of P to a measurable B, P|B (A) := P(B ∩ A), and PB the conditional measure,
PB(A) := P(A∩B)

P(B) , with P(B) > 0. Similarly we obtain the restriction measure P|B′ and we have
the following Theorem (for a proof we refer to [GVdV17]):
Theorem 1.3 (DP self-similarity). If P ∼ DP(c, P0), then PB ∼ DP (cP0(B), P0|B) and the variable
P(B) and the processes (PB(A), A ∈ X ) , (PB′(A), A ∈ X ) are mutually independent ∀B ∈ X , such
that 0 < P0(B) < 1.

According to the above theorem, if we make a “localization” of the DP by conditioning on a
proper set B ∈ X , then the localized measure is still a (properly scaled) DP, with base measure
the restriction of the original base measure to B. Moreover, the localized processes at disjoint
sets are not only independent of each other, but also independent of the variable P(B). Es-
sentially, we can locally obtain processes that are similar to the original process P, so the DP
exhibits self-similarity.
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We now proceed to some of the most popular representations of the DP, which are indicative
for the rich structure of this process and useful for the construction of Bayesian nonparametric
MCMC algorithms.

Generalized Pólya Urn

The Generalized Pólya Urn scheme proposed by Blackwell and McQueen [BM+73], is a repre-
sentation of the DP that has been used to provide an alternative proof for the existence of the
process and is based on the integration of the underlying random measure.

Let again x = (x1, . . . , xn) be a random sample, xi |P
iid∼ P, 1 ≤ i ≤ n, with P ∼ DP (c, P0) We

have seen in Eq. (1.3) that by integrating out P we obtain the conditional predictive distribution
of xn+1 from

xn+1 | x1, . . . , xn ∼
cP0 + n ∑n

i=1 δxi

c + n
.

Denoting by (x̃1, . . . , x̃k) the vector of the distinct values of (x1, . . . , xn) and by nj, 1 ≤ j ≤ k, the
number of times that each xj has been observed in x such that ∑k

j=1 nj = n we can rewrite Eq.
(1.3) as

xn+1 | x1, . . . , xn ∼
cP0 + ∑k

j=1 njδx̃j

c + n
(1.4)

The Generalized Pólya Urn scheme provides an intuitive metaphor, describing a way to obtain
a sequence of (xi)i≥1 with the above conditionals, based on the following procedure: Suppose
we have an urn that is initially empty and we have an infinite set of unique colors X. We
choose at random a ball with color x1 ∈ X, x1 ∼ P0 and in each subsequent (n + 1)−step we
either choose at random a ball with a new color (xn+1 ∼ P0) and place it into the urn, or we
choose at random a ball from the ones already in the urn and place it back into the urn along
with another ball of the same color. If we pick a new color with probability proportional to
c > 0 and we choose a ball from the urn (that is xn+1 is drawn from the empirical distribution)
with probability proportional to n (the number of balls in the urn), then we have the following
conditional distribution:

xn+1 | x1, . . . , xn ∼

δx̃j , with probability nj
n+c for j = 1,. . . ,k.

P0, with probability c
c+n .

We note that, by construction, the probability of xn+1 having an already observed color say x̃j

is proportional to the number of times nj, 1 ≤ nj ≤ n this color has appeared. These sets of
identical xi, i.e. Cj =

{
i ∈ {1, . . . , n} : xi = x̃j

}
, 1 ≤ j ≤ k ≤ n, can be considered as clusters,

as it follows that ∪k
i=1Cj = {1, . . . , n} and Ci ∩ Cj = ∅, ∀i 6= j, moreover, the clusters induce

a random partition over [n]2. Because larger clusters tend to grow faster, this property is being
referred to as the “rich get richer” phenomenon.

2We denote with [n] the set {1, . . . , n}



10 Chapter 1. The Bayesian Framework

So, we can construct a Generalized Pólya Urn scheme using the DP. The reverse is also possible,
because a sequence of (xi)i≥1 generated by the Generalized Pólya Urn satisfies the property
of infinite exchangeability, thus by de Finetti’s theorem we have the existence of a random
measure Π, such that

P (x1 ∈ A1, . . . , xn ∈ An) =
∫

P∈PX

n

∏
i=1

P(Ai)Π(dP)

It has been proved [BM+73] that such a random distribution, playing the role of the mixing
measure is a DP. The Pólya Urn representation has applicability in marginal MCMC meth-
ods used for sampling from the DP, that result in finite-dimensional approximate samplers
integrating out the random measure. For details regarding marginal samplers we refer to
[Esc94, Nea00].

Chinese Restaurant Process

Another famous representation of the DP is the Chinese restaurant process (CRP), closely re-
lated to the generalized Pólya Urn. For given c > 0 and n ∈N, CRP (c, n) defines a distribution
over the partitions of [n] and is in fact, the distribution of the partitions induced by the Pólya
Urn scheme, discussed above. The name of the process is due to the following intuitive inter-
pretation.

Suppose we have a restaurant with an infinite number of tables, initially empty. When the first
customer arrives, he chooses to sit at a table at random. Then, every n + 1−customer, sits at
a new table with probability proportional to c, or chooses an occupied table with probability
proportional to the number of customers already sitting at the table. We can consider the dif-
ferent tables as clusters di, associated with the indices (customers) i, for i = 1, 2, . . .. It has been
shown [P+02] that the “rich gets richer” clustering effect of the DP is exhibited by the CRP and
the growth of the number of new tables is of order O(c log(n)).

An important feature of CRP is exchangeability [Ald85], in the sense that the probability of any
specific partition is invariant under the permutations of its elements, i.e. not affected by the
ordering of the customers. Letting k the number of distinct clusters, the probability of a given
partition π[n] ∼ CRP (c, n) can be written as

P
(

π[n]

)
=

ck

c (c + 1) . . . (c + n− 1) ∏
i∈π[n]

(|i| − 1)! (1.5)

Equation (1.5) is called an exchangeable partition probability function (EPPF). For generalizations
of the CRP and models of random partitions, we refer to [Pit95, P+02, IJ03].
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Stick-breaking representation

Perhaps the most widely used, especially by practitioners, representation of the DP is the Stick-
Breaking representation introduced by Sethuraman [Set94]. In this constructive definition,
Sethuraman showed that for a random measure P ∼ DP (c, P0) we can obtain the following
representation:

P =
∞

∑
j=1

wjδxj , (1.6)

where xj
iid∼ P0, j ≥ 1 and w =

(
wj
)

j≥1 is an infinite sequence of stick-breaking weights, defined
by

w1 = v1, wk = vk ∏
l<k

(1− vl), (1.7)

with vi
iid∼ Be (1, c) , i ≥ 1 and ∑∞

j=1 wi
a.s.
= 1.

According to the above definition, the DP is a discrete random measure.

The intuition behind the construction of the infinite sequence of weights is as follows: Con-
sider a unit-length stick. We break the stick at length v1. Then, we normalize the remaining
length 1− v1 and break it again at length v2, obtaining a piece of length w2 = v2(1− v1), along
with the remaining piece which is broken again in order to define w3. The process continues
ad infinitum and it is evident that ∑i≥1 wi

a.s.
= 1, inducing a countable (a.s.) random partition

of [0, 1]. One can use the notation w ∼ GEM(c)3 for the distribution obtained by Eq. (1.7).
The representation of Eq. (1.6) plays a central role in the construction of exact MCMC sampling
techniques, that -in contrast with the marginal methods discussed above- include in the infer-
ential procedure the random measure itself and use slice sampling methods for the creation of
finite dimensional Gibbs samplers.

Furthermore, an important aspect of Sethuraman’s definition, is that it can be modified in or-
der to construct a more general class of BNP priors (containing the DP), namely the class of
stick-breaking priors [IJ01]. It is possible to construct this class by allowing the weights to be

generated as in (1.7) but with more flexible vi
iid∼ Be (ai, bi) , ai, bi > 0, i ≥ 1. In this case, in order

to impose ∑i≥1 wi
a.s.
= 1, it suffice that ∑j≥1 log

(
1 + aj

bj

)
= ∞.

Examples of BNP priors that can be constructed using the above framework include the two-
parameter Poisson-Dirichlet process [PY97], the Indian Buffet Process [TGG07] and beta two-
parameter processes [IZ00]. Moreover, for a novel alternative proof of the existence of the DP
based on the stick-breaking representation see [HNW19]. We will continue with the definition
of a specific BNP prior that we will use extensively in the next Chapters, namely the Geometric
Stick-Breaking process.

3from the names of Griffiths-Engen-McCloskey
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1.3 The Geometric Stick-Breaking Process

The Geometric Stick-Breaking process is a random measure introduced by [FGMW10], and its
weights are less complex than the DP weights. Formally, we denote by G ∼ GSB(a, b, P0)

a random measure G ∈ PX drawn from a Geometric Stick-Breaking process with geometric
probability λ and base measure P0 if:

G = λ
∞

∑
j=1

(1− λ)j−1δxj (1.8)

with xi
iid∼ P0, i ≥ 1 and λ ∼ Be(a, b).

It is evident that equation (1.8) can be written in the form of Eq. (1.6), if we replace the infinite
sequence of the beta variables (vi)i≥1 with a single beta variable λ ∼ Be(a, b), namely the
geometric probability, imposing a geometric structure on the weights, by

wj = λ(1− λ)j−1, j = 1, 2, . . . (1.9)

Clearly, from the above representation, we have that ∑i≥1 wi
a.s.
= 1 and G is a.s. a discrete

random measure. In fact, the GSB random measure removes a level from the hierarchy of the
DP, by replacing the random weights with their expected values, thus having a less complex
structure. Formally, if w is an infinite sequence of stick-breaking weights as in Eq. (1.7) then

E {wk} =
1
c

k−1

∏
i=1

c
c + 1

=
1
c

(
c

c + 1

)k−1

, (1.10)

which has the form of Eq. (1.9), under the reparametrization λ = (1 + c)−1.

Regarding the properties of the GSB prior, we have the following Proposition, proved in [Mer18]:
Proposition 1.4. Let G ∼ GSB(λ, P0), then ∀A ∈ X it is that

1. E {G(A)} = P0(A)

2. Var {G(A)} = λ
2−λ P0(A)(1− P0(A)).

It appears that the simple construction of the (always decreasing) weights of the GSB prior,
leads to models that are at least as efficient as more complex BNP models, such as the DP
or even generalizations of the DP prior. The main reason for this, is that the GSB measure -
even with less complex weight structure- admits a stick-breaking representation, so it can be
proven using standard results [OC04] that it has full support on the space of discrete probability
measures. Intuitively, although a hierarchical level has been removed from the weights, the
flexibility of the random measure persists due to the infinity of the possible location parameters
that control the weights, supporting any cluster location.

In the next Chapters, we will construct methods based on the GSB prior that perform density
estimation yielding qualitatively indistinguishable results from the corresponding DP-based
methods, with significantly lower mean execution times (METs).
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1.4 Bayesian nonparametric mixture models

As we have seen, stick breaking random probability measures, such as DP or GSB, are a.s.
discrete random measures, even in the case where the base measure P0 is continuous. This
poses a significant restriction regarding possible BNP applications (e.g. density estimation), as
it renders the above priors inadequate for the modeling of densities.

In order to overcome the discrete nature of the DP, Antoniak [Ant74] and Lo [L+84] introduced
the Dirichlet Process Mixture (DPM) model. The main idea involves the smoothing of the DP
draws and making use of a parametric family of kernels.

Let Kθ =
{

K(· | θ), θ ∈ Θ ⊆ Rd} ⊂ PX∗ , a parametric family of kernels indexed by θ, i.e. for a
given θ ∈ Θ, K(· | θ) is a density.

Consider P ∼ DP (c, P0) and a sample x = (x1, . . . , xn). Using the DPM, we model xi, 1 ≤ i ≤ n
as xi |P ∼ f (· |P), where :

f (x |P) =
∫

θ∈Θ
K(xi | θ)P(dθ) (1.11)

Eq. (1.11) describes an infinite mixture of kernels in Kθ , with mixing measure a DP random
measure P. Hierarchically, using the latent variables (θ1, . . . , θn) ∈ Θn we obtain:

xi | θi
ind∼ K(· | θi)

θi |P
iid∼ P (1.12)

P ∼ DP (c, P0)

where observations xi with the same θj belong to the same mixture component, considered as
cluster. In contrast with parametric Bayesian mixture models, the number of clusters is deter-
mined according to the observed data and this is a highlight of the flexibility characterizing
BNP models.

Moreover, using the stick breaking representation of P, we can write the mixture distribution
of Eq. (1.11) as a convex combination of kernels, that is with w = (wi)i≥1 the infinite sequence
of stick breaking weights as in Eq. (1.7):

f (x |w, θ) =
∞

∑
i=1

wiK(x | θi) (1.13)

Of course, the choice of the random measure as mixing measure in Eq. (1.11) does not have to
be limited in the case of DP. In this thesis, we will make use of infinite mixture models based
on both the DP and GSB priors. In the general case where the mixture measure is distributed
according to some random measure of the class of the aforementioned stick-breaking priors,
we have the following analytical representation of the corresponding mixture model, with w =
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(wi)i≥1 and θ = (θi)i≥1 the infinite sequences of weights and locations respectively:

xi |w, θ
ind∼ f (xi |w, θ)

f (x |w, θ) =
∞

∑
j=1

wjK(x | θj)

w1 = v1, and wk = vk ∏
l<k

(1− vl) (1.14)

vi
iid∼ Be (ai, bi) , i ≥ 1

θi
iid∼ P0

Eqs. (1.12) constitute a special case of Eqs. (1.14). The reason for the popularity of the DPM
model, is mainly due to its conjugacy, in accordance with the conjugacy of the original DP, i.e.
the prior and posterior are both DPMs. When DPMs are used for density estimation, a proper
parametric family has to be chosen. For example, if we have evidence that the support of the
underlying density is R+ we may use Gamma or Log-normal kernels. A strong relevant result
is that any unimodal symmetric density can be represented as an infinite mixture of Normal
kernels. If we choose DP mixing measure and Normal kernels, i.e.

Kθ =
{

K(· | ϑ) = N
(
· | µ, σ2) , ϑ =

(
µ, σ2) ∈ R2} ,

then we have a Dirichlet Process Gaussian Mixture Model [GR10].

We note that there have also been proposed alternative methods, suitable for the modeling
of densities using a.s. discrete random probability measures, for example using normalized
continuous processes [NBPW+04].

We will now proceed with the presentation of the most popular MCMC methods used to per-
form Bayesian inference, in both parametric and nonparametric prior settings.

1.5 MCMC Methods

In a Bayesian framework the uncertainty about the parameters of interest is expressed in terms
of probability statements, and Bayesian inference is based on the posterior distribution. Essen-
tially, we update our prior beliefs regarding the parameters of interest via the prior distribution,
using the observed data via the data likelihood. In a parametric setting, given the conditionally
iid observations x = (x1, . . . , xn) we have that

x1, . . . , xn | ϑ
iid∼ f (· | ϑ)

ϑ ∼ π(·)
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and the posterior distribution will be the conditional distribution of ϑ given x, i.e.

f (ϑ | x) = π(ϑ) f (x | ϑ)
f (x)

=
π(ϑ) f (x | ϑ)∫

ϑ∈Θ π(ϑ) f (x | ϑ)dϑ
, (1.15)

where, due to conditional independence the likelihood has the form f (x | ϑ) = ∏n
i=1 f (xi | ϑ).

Now, all our posterior beliefs are expressed by f (ϑ | x) and we are typically interested in find-
ing Bayesian point estimators (e.g. the mean, the mode or a certain quantile of the posterior),
as well as credible intervals, i.e. regions that contain ϑ with a certain -usually high- probability.

This is an easy task when we choose a prior that is conjugate under the likelihood, resulting in a
posterior belonging in the same parametric family with the prior, but with updated parameters.
In many cases, though, this is not possible, and the intractability of

∫
ϑ∈Θ π(ϑ) f (x | ϑ)dϑ makes

the derivation of a closed form for the posterior impossible.

However, we can circumvent the problem by approximating the above integral via a proba-
bilistic method, known as Monte Carlo (MC) integration. In fact, for any integral that can be
expressed as an expectation with respect to a distribution π(·)∫

ϑ∈Θ
g(ϑ)π(ϑ)dϑ = Eπ {g(θ)} (1.16)

we can obtain an approximation using iid samples xi
iid∼ π(·), 1 ≤ i ≤ n. Specifically, the Strong

Law of Large Numbers guarantees the a.s. convergence of the sample mean of g(xi) to the
desired expected value, that is as n→ ∞:

In(g) =
1
n

n

∑
i=1

g(xi)
a.s.→ I(g) = Eπ {g(θ)} (1.17)

Furthermore, if the variance σ2
g = Varπ {g(ϑ)} is finite, it follows from the Central Limit The-

orem that the sequence of unbiased estimators In(g) converges asymptotically to a Normal
distribution: √

n (In(g)− I(g)) d→ N
(

0, σ2
g

)
(1.18)

Unfortunately, there are cases where sampling from π(·) is not possible, so Monte Carlo in-
tegration is not adequate. In order to deal with the complex (and often high-dimensional)
posterior distribution, we may resort to a large class of methods called Markov Chain Monte
Carlo (MCMC).

The main idea underlying the MCMC approach, is the construction of a Markov chain with
“nice” properties, whose stationary distribution is the distribution we are interested in, called
target distribution. Then, using iterative sampling we obtain samples that are approximately
from the target distribution. Typically, the target distribution is the posterior. The crucial prop-
erty of the constructed Markov Chain is ergodicity, so that the Chain explores the whole support
of π(·) and converges to its stationary distribution -which will also be unique [Rob07]- inde-
pendently of the initial point.
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There exists a vast and growing literature regarding theoretical results, practical implementa-
tions and modern applications of MCMC methods. For an extensive review and more thorough
analysis, we refer the reader to [RC04, BGJM11, GRS95, Tie94]. In the following, we will present
two of the most commonly used MCMC methods: Metropolis-Hastings and Gibbs sampling.

1.5.1 Metropolis-Hastings Algorithm

The Metropolis–Hasting (MH) algorithm, introduced by Metropolis [MRR+53] and later ex-
tended by Hastings [Has70], is one of the most popular MCMC methods and forms the basis
for an extensive class of algorithms.

Suppose we want to obtain a sample from a density π(ϑ), which is known up to a normalizing
constant (e.g. without knowing the integral appearing in Eq. (1.15)). The basic idea of the
MH algorithm involves the usage of a proposal distribution q(· | x) which is easy to sample from,
combined with a mechanism that is responsible for the acceptance of the samples proposed
by q(· | x). By construction, the MH algorithm has a stationary distribution, which has been
proven [Tie94] to be the target distribution.

Specifically, the algorithm is initialized at a point ϑ(0), such that π(ϑ(0)) > 0. Then, at each
t−step, we use the proposal distribution in order to sample a new candidate point ϑ̃ ∼ q

(
ϑ̃ | ϑ(t−1)

)
,

possibly depending on the previous state ϑ(t−1). The proposal will be accepted with probability

α
(

ϑ̃, ϑ(t−1)
)
= min

1,
π
(
ϑ̃
)

q
(

ϑ(t−1) | ϑ̃
)

π
(
ϑ(t−1)

)
q
(
ϑ̃ | ϑ(t−1)

)
 , (1.19)

which is called acceptance probability and is independent of the normalizing constant. Schemat-
ically, the MH algorithm (Algorithm 1) can be written as follows, for a d−dimensional param-
eter vector ϑ = (θ1, . . . , θd).

Algorithm 1 : METROPOLIS–HASTINGS sampling for multidimensional parameter.

1: procedure SAMPLE ϑ = (θ1, . . . , θd).
2: Set initial point ϑ(0) =

(
θ
(0)
1 , . . . , θ

(0)
d

)
.

3: for t = 1 to N do
4: Sample proposal ϑ̃ ∼ q

(
ϑ̃ | ϑ(t−1)

)
5: Calculate acceptance probability α(ϑ̃, ϑ(t−1))

6: Sample u ∼ U (0, 1)

7: Set ϑ(t) =

ϑ̃, if u < α(ϑ̃, ϑ(t−1))

ϑ(t−1), otherwise
8: end for
9: end procedure
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The elements of the vector ϑ can be sampled simultaneously from a d−dimensional proposal
distribution, or alternatively, we can make the sampling one variable (or sub-blocks of vari-
ables) at a time from lower dimensional proposal distributions qi(· | ·), 1 ≤ i ≤ d. The latter
sampling scheme is a special case of MH, called One-Variable-at-a-Time MH.

The original Metropolis algorithm, required the symmetry q (x | y) = q (y | x) of the proposal
distribution. Hastings generalized the algorithm, in order to allow non-symmetric proposals.
In the case of a symmetric proposal, the acceptance probability becomes

α
(

ϑ̃, ϑ(t−1)
)
= min

{
1,

π
(
ϑ̃
)

π
(
ϑ(t−1)

)}

and we obtain the so-called random walk Metropolis (RWM) sampler. Any distribution that is
simple to simulate from can be chosen as a proposal, though a minimal requirement in order
to guarantee the full exploration of the state space is that the support of the target distribution
is contained in the support of the proposal:

supp π ⊆
⋃

x∈supp π

supp q (· | x)

The transition kernel of the Markov Chain generating the MH algorithm, can be written as:

K
(

ϑ(t−1), ϑ(t)
)
= α

(
ϑ(t), ϑ(t−1)

)
q
(

ϑ(t) | ϑ(t−1)
)
+
(

1− α?
(

ϑ(t−1)
))

δϑ(t−1)

(
ϑ(t)
)

(1.20)

where
α?
(

ϑ(t−1)
)
=
∫

α
(

ϑ(t), ϑ(t−1)
)

q
(

ϑ(t) | ϑ(t−1)
)

dϑ(t).

The universal applicability of the MH, lies on the fact that the transition kernel of Eq. (1.20)
satisfies the detailed balance equation

K
(

ϑ(t−1), ϑ(t)
)

π
(

ϑ(t−1)
)
= K

(
ϑ(t), ϑ(t−1)

)
π
(

ϑ(t)
)

. (1.21)

Then the generated Markov Chain is reversible with respect to the target density, and it has as a
stationary distribution the target density π(·).

The main drawback of the MH algorithm is that it needs to be calibrated and this can be a
time-consuming task, especially for complex high-dimensional target distributions. The per-
formance of the algorithm, mainly the time to reach stationarity in order to adequately approx-
imate the target, is highly influenced by the proposal distribution. Having chosen a parametric
family for the proposal distribution (e.g. a Normal distribution centered at the last accepted
point), the basic criterion in order to calibrate the parameters is the acceptance rate (computed
by the empirical acceptance frequency). Very high or very low acceptance rates indicate poor
mixing and convergence properties, often indicating that the variance of the proposal should
increase or decrease respectively.

In any case, it is useful to perform convergence diagnostics after the application of MH. Apart
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from the acceptance rate, the mixing properties should be examined using autocorrelation func-
tion plots and trace plots and it is often useful to run multiple chains starting from different ini-
tial conditions, checking that they give similar results. A more thorough convergence analysis
may include quantitative diagnostics that exist in the literature [BR98], such as potential scale
reduction factor [GR+92, BG98]. Furthermore, a burn-in period of discarded samples is often
used in the beginning of the chain, in order to reduce the effect of the initial point, and thinning
is performed (keeping only one point every k iterations) aiming to reduce autocorrelation of
the sampled values.

The first theoretical result regarding MH scaling was proven by Roberts et. al [RGG+97] for
the RWM case, under Gaussian proposals. Specifically, the authors established that the optimal
acceptance rate is, under quite general conditions, 0.234 independently of the target density.
Heuristically, if the proposal is Gaussian, the proposal variance should be tuned so that the
acceptance rate is between 0.25 and 0.50, with higher values more appropriate for low dimen-
sional problems. For more results regarding the problem of optimal scaling, we refer the reader
to [RR+01, R+11].

In order to overcome the calibration problem, a new class of adaptive MCMC algorithms has
been introduced [HST+01, RR09, BDH14], where the proposal distribution is “automatically”
tuned during the sampling process, utilizing the information obtained by the history of the
process.

Moreover, the significance of the MH algorithm is also highlighted by a plethora of power-
ful MCMC algorithms that are based upon it. Popular examples of such algorithms include,
among others a MCMC version of Simulated Annealing [GT95, RCC10] useful for optimiza-
tion, Reversible Jump MCMC [RG97] often used for model selection, and Hamiltonian Monte
Carlo [DKPR87, N+11] providing an efficient alternative in order to sample from complex high-
dimensional densities.

1.5.2 Gibbs sampling

The Gibbs sampler introduced by Geman & Geman [GG84] and later generalized by Gelfand
& Smith [GS90] is a MCMC algorithm, that produces a sample approximately from the target
density π(·) without requiring an acceptance mechanism. This is the main advantage of the
algorithm, as it circumvents the often demanding task of tuning. Specifically, the Gibbs sam-
pling scheme, described in Algorithm 2, at each step performs draws from the full conditional
(FC) distributions. Suppose that at each step we want to sample a vector ϑ = (θ1, . . . , θd). The
components of ϑ are sequentially updated for j = 1, . . . , d from the FCs πθj | θ−j

(· | ·), where
θ−j =

(
θ1, . . . , θj−1, θj−1, . . . , θd

)
.

In the simplest case, the components θj, j = 1, . . . , d are one-dimensional and at each iteration
are all updated in the same order. Whenever possible, it is more efficient to perform the Gibbs
updates over blocks. Naturally, the higher speed compensates for the difficulty of sampling
from multidimensional FCs. Furthermore, if at each iteration a cycle from θ1 to θd is performed,
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we have a systematic scan Gibbs sampler. It is more efficient to randomly choose an index
j ∈ {1, . . . , d} at each iteration, update the single component (or block) θj with a draw from the
corresponding FC and keep the other components at their previous values. This scheme forms
a class of random scan Gibbs samplers, further generalized in [LYHN05, LC06].

The Gibbs sampler is preferred in cases where the FCs are of standard form, or at least easy
to sample from, e.g. using variants such as the slice sampler which we will present later on.
However, if some of the FCs (of a component or a block) are too complex to sample from, we
could substitute the Gibbs update with a Metropolis update using a proper proposal distribu-
tion resulting in a Metropolis-within-Gibbs algorithm [GBT95, GT01].

Essentially, we can consider any Gibbs update as a Metropolis update with proposal density
the corresponding FC and acceptance probability always equal to one.

Algorithm 2 : GIBBS sampling for multidimensional parameter.

1: procedure SAMPLE ϑ = (θ1, . . . , θd)

2: Set initial point ϑ(0) = (θ
(0)
1 , . . . , θ

(0)
d ).

3: for i = 1 to N do
4: for j = 1 to d do
5: Sample θ

(i)
j ∼ πθj | θ−j

(θj | θ(i)1 , . . . , θ
(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
d )

6: end for
7: Set ϑ(i) =

(
θ
(i)
1 , . . . , θ

(i)
d

)
8: end for
9: end procedure

The transition kernel of the Gibbs sampler is

K
(

ϑ(t−1), ϑ(t)
)
=

d

∏
j=1

πθj | θ−j
(θj | θi

1, . . . , θi
j−1, θi−1

j+1, . . . , θi−1
d ). (1.22)

Then it follows that the stationary distribution of the generated Markov chain is indeed the tar-
get (joint) density π (ϑ). For theoretical results regarding the convergence of the Gibbs sampler,
we refer to [RS97, JJN+13].

1.5.3 Slice sampling

When the target density has a complex form, the derivation of standard form FC distributions
is often not feasible. Although Metropolis-type updates are always a choice, a full Gibbs-type
updating sampling scheme might be preferred. Auxiliary variable methods [BGJM11] pro-
vide an efficient alternative class of algorithms, by artificially augmenting the state space with
auxiliary variables, leading to a set of easily sampled FCs. In [BG93], auxiliary variable meth-
ods have been used in order to remove unwanted high interactions (correlations) between the
components of the sampled vector. Further applications of such methods in Bayesian image
analysis are presented in [Hig98].
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A general auxiliary-variables methodology with wide applicability, is known as slice sampler
[DWW99, Nea03]. Suppose we have a target density π(·) that can be factorized as

π(ϑ) ∝ l(ϑ) f (ϑ), (1.23)

where f (·) is a density and l(·) is a non-negative invertible function (not necessarily a density),
so that we can obtain the sets

Au = {ϑ : u < l(ϑ)} (1.24)

The main idea of the method proposed in [DWW99] is the introduction of a strategic latent
variable u defined on (0, ∞), such that the marginal density π(ϑ) remains unchanged, while
the resulting FCs π(ϑ | u) and π(u | ϑ) are now easy to sample from. Formally, with the proper
introduction of u we have the joint density

π (θ, u) ∝ l(ϑ)I (u < f (ϑ)) (1.25)

from which we can deduce that the marginal density π(θ) remains unaffected by the introduc-
tion of u. The next step involves the iterative sampling from the simple forms of the FCs, that is
U (0, l(ϑ)) for u | ϑ and the restriction of f (·) on the set Au for ϑ | u. The Markov chain will have
as a stationary distribution the joint π(ϑ, u) and we are interested in the target marginal π(ϑ).
For theoretical results concerning the convergence of auxiliary-variable MCMC methods, we
refer to [MT97].

We note that, if needed, multiple latent (ui)1≤i≤n can be introduced, as long as we can use
non-negative invertible functions li(·), 1 ≤ i ≤ n in order to write down the target density as

π(ϑ) ∝
n

∏
i=1

li(ϑ) f (ϑ) (1.26)

and compute the FC distributions using the slice sets Ai
u = {ϑ : u < li(ϑ)} in accordance with

the scheme described above.

The factorization of the target density as in Eqs. (1.23-1.26) is not unique, in the sense that a
variety of different choices can lead to efficient samplers , provided that the marginal density
remains the target density and the FCs are substantially easier to sample from than the original
ones. General methods, however, have been proposed [DW01] suitable for the sampling of
truncated densities using a single latent variable. In the following Chapters, we will make
extensive use of sampling procedures requiring draws from truncated Normal densities, so we
illustrate the use of the slice sampler as in [DW01].

Suppose we have as target density a truncated standard Normal distribution over the interval
(a, b), i.e.

π(ϑ) ∝ exp
{
−ϑ2

2

}
I (ϑ ∈ (a, b)) (1.27)
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Introducing the latent variable u, such that the joint density can be written as

π(ϑ, u) ∝ I
(

u ∈
(

0, exp
{
−ϑ2

2

}))
I (ϑ ∈ (a, b)) (1.28)

we have that the marginal distribution remains unaffected, as

π(ϑ) =
∫ ∞

0
π(ϑ, u)du ∝

∫ exp
{
−ϑ2

2

}
0

I (ϑ ∈ (a, b))du ∝ exp
{
−ϑ2

2

}
I (ϑ ∈ (a, b)) (1.29)

and the FC distributions are uniform, namely

π(u | ϑ) = U
(

0, exp
{
−ϑ2

2

})
(1.30)

π(ϑ | u) = U
(

max
{

a,−
√
−2 log u

}
, min

{
b,
√
−2 log u

})
(1.31)

In Fig. 1.3 we present a sample from truncated N (0, 1) on (0, 3) using slice sampling, with
FCs given by Eqs. (1.31-1.31). We ran the sampler for 5, 000 iterations with a burn-in period
of length 1, 000. With red vertical lines we indicate 0 and 3. Based on the above scheme it
also easy to simulate draws from truncated versions of multivariate Normal, Beta or Gamma
distributions [DW01].
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Figure 1.3: Trace (Left) and histogram (Right) of a sample from truncated N (0, 1) on (0, 3), obtained
using slice sampling.

In the rest of this Chapter, we will present MCMC methods, based on slice sampling techniques,
suitable for the simulation of BNP mixture models, using DP and GSB priors.
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1.5.4 MCMC methods for Bayesian nonparametric mixture models

Bayesian mixture models [MMR05] have been extensively used in a variety of applications in
statistics [GSC+13] and machine learning [Mur12]. Different methods have been proposed in
order to perform model selection [CH+08], mainly regarding the choice of the number of the
mixture components (clusters), e.g. the number of Normal kernels in finite Gaussian mixture
model. The importance of Bayesian nonparametric mixture models -that can also be derived
as the limit of the corresponding finite mixture models when the number of components ap-
proaches infinity [Nea92, Ras00]- is highlighted by their potential to “automatically” adapt
their complexity (i.e. the number of the mixture components) according to the observed data.
Moreover, while in finite mixture models the number of clusters is often prespecified, the com-
plexity of Bayesian nonparametric mixture models may grow as the number of the available
data increases.

In terms of application, though, this flexibility comes with the expense of the need for more ad-
vanced MCMC methods, namely in order to sample from infinite dimensional state spaces. As
it has already been mentioned, there are two general categories of MCMC algorithms for BNP
models. The marginal samplers [MM98, Nea00] integrating out the infinite-dimensional ran-
dom measure and use Gibbs sampling in order to sample the finite dimensional marginal distri-
bution of the remaining variables, and the conditional methods retaining the random measure
in the sampling process, keeping only a finite number of variables at each iteration, which is
sufficient in the sense that the stationary distribution remains unchanged.

The main advantage of the conditional methods is that they do not suffer from the dependence
between parameters, existing in the marginal methods based on the Pólya Urn representation.
Initially [IZ00, IJ01, IZ02], the conditional methods were based on finite approximations of
the DP prior, essentially via a proper truncation of the stick-breaking construction. Later, Pa-
paspiliopoulos and Roberts [PR08] used retrospective sampling methods in order to construct
an algorithm that generates exact DPM samples. We are particularly interested in the slice-
sampling based method for BNP mixture models proposed by Walker [Wal07] and extended
by Kalli et. al [KGW11].

For what follows, suppose we have a sample x = (xi)1≤i≤n from a BNP mixture model, assign-
ing a DP or GSB random measure Π(·) as a prior over the mixing measure, that is

xi | θi
ind∼ K (xi | θi)

θi |P
iid∼ P

P ∼ Π

So, for i = 1, . . . , n, with w = (wi)i≥1 , θ = (θi)i≥1 the infinite sequences of stick-breaking
weights and (atom) locations respectively, the conditional distribution of xi can be written as

π (xi |w, θ) =
∞

∑
j=1

wjK
(
xi | θj

)
. (1.32)
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Th main idea of the slice sampling method [Wal07] involves the augmentation of the state space
with proper auxiliary variables, so that conditionally on those variables the number of weights
and locations that needs to be sampled at each iteration is finite.

In particular, we assign to each observation xi a clustering variable di indicating the associated
mixture component that generated xi, along with a random set of indices Ai that is by con-
struction a.s. finite. Then, if the conditional distribution di |Ai is uniform over Ai only a finite
number of variables will be required to sample from at each iteration of the MCMC sampler.

Thus, under a suitable generic augmentation scheme, the state space effectively will become
finite dimensional and no approximations are required. In the next sections we will describe in
detail the slice sampling method, when the prior over the mixing measure is DP [Wal07] and
GSB [FGMW10].

Sampling from the DP

Suppose we have that P ∼ DP (c, P0). Then, by the stick-breaking representation we have that
P = ∑j≥1 wjδθj , with weights w ∼ GEM(c). We introduce the set of latent variables {ui}n

i=1

such that the joint density of (xi, ui) for i = 1, . . . , n is

π (xi, ui |w, θ) =
∞

∑
j=1
I
(
wj > ui

)
K
(
xi | θj

)
= ∑

j∈Ai

K
(
xi | θj

)
(1.33)

with Ai the random slice sets of indices defined via the ui’s as

Ai ≡ Aw(ui) =
{

j ∈N : 0 < ui < wj
}

. (1.34)

Furthermore, introducing the set of the latent clustering variables {di}n
i=1, indicating the mix-

ture components from which xi came from, we can write

π (xi, ui |w, θ) =
∞

∑
j=1

π (di = j)π (xi, ui | di = j, w, θ) =
∞

∑
j=1

wjU
(
ui | 0, wj

)
K
(
xi | θj

)
(1.35)

so that the marginal distribution of xi remains unaffected and π (ui |w, θ) = ∑j≥1 wjU
(
ui | 0, wj

)
.

For the FC distributions, we have that:

π (ui | . . .) = U
(
ui | 0, wj

)
π (di | . . .) = DU {Ai} (1.36)

π (xi | . . .) =
1
|Ai| ∑

j∈Ai

wjK
(
xi | θj

)
Eqs. (1.36) indicate the effect of the random slice sets on the the FC distribution for each ob-
servation which is an equally weighted finite mixture, with weights equal to the cardinality of the
a.s. finite random set Ai. Finally, the complete model for the posterior distribution will have
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the form

π
(
w, θ | x, {ui}n

i=1 , {di}n
i=1
)

∝ π (w, θ)
n

∏
i=1
I
(
wdi > ui

)
K
(
xi | θdi

)
(1.37)

Having derived the posterior in Eq. (1.37), it is evident that only a finite number of weights and
locations needs to be sampled at every sweep of the Gibbs sampler. The sampling steps are:

1. The FC distributions for the latent ui’s are

π (ui | . . .) = U
(
ui | 0, wj

)
(1.38)

2. The θj-locations’ FCs are

π
(
θj | . . .

)
= P0(θj) ∏

di=j
K
(
xi | θj

)
(1.39)

If there are no di = j then θj’s are independently sampled from the prior P0.

3. Following an efficient modification [KGW11] of the originally proposed sampling scheme,
we can sample vj’s and ui’s as a block. This leads to the following FC

π
(
vj | . . . , exclude {ui}n

i=1
)
= Be

(
1 +

n

∑
i=1
I (di = j) , c +

n

∑
i=1
I (di > j)

)
(1.40)

so we are able to construct the stick-breaking weights following Eq. (1.7).

4. In order to sample the clustering variables from

π (di = k | . . .) = I (k ∈ Ai)K (xi | θk) (1.41)

we need to construct the random sets Ai. Specifically, we know the di ∈ {k : wk > ui}, so the
question is how many weights have to be sampled in order to ensure that we have the exact
number of them. Noting that the weights a.s. sum up to one, it suffices to identify the smallest
k∗, such that for u∗ = min1≤i≤n {ui}:

k∗

∑
j=1

wj > 1− u∗ (1.42)

There cannot exist k′ > k∗ such that for some ui, wk′ > ui, as in that case the weights would not
sum up to 1. So, all the weights needed for the chain to proceed are {w1, . . . , wk∗}. Moreover, it
has been proved [MT98] that k∗ is distributed as 1 + Poi (−c log u∗).

5. In order to sample the -randomized- concentration parameter c, we follow [Wes92], assigning
a Gamma prior c ∼ G(α, β−1). Then, sampling an auxiliary h ∼ Be (c + 1, n) and denoting
with κ the number of the distinct di, 1 ≤ i ≤ n we can sample c from the following 2-mixture of
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Gamma distributions

π (c | κ, h) = wcG (α + κ, β− log h) + (1− wc)G (α + κ − 1, β− log h) (1.43)

with weights defined by wc
1−wc

= α+κ−1
n(β−log h) . It is evident that a posteriori, c depends only on the

number of clusters and the sample size.

6. The draws from the predictive density π (xn+1 | x) will be used for density estimation pur-
poses. Specifically, we want to sample

xn+1 ∼ ∑
j≥1

w∗j K
(
· | θ∗j

)
(1.44)

where the weights and locations
(

w∗j , θ∗j

)
j≥1

define the posterior random measure P | x. To this

end, we can use the weights in order to choose a location θ∗k and then sample xn+1 ∼ K
(
· | θ∗k

)
,

i.e. from the specific component of the infinite mixture of kernels. To specify k, we generate
r ∼ U (0, 1) and demand

k−1

∑
j=1

wj < r ≤
k

∑
j=1

wj, (1.45)

with w0 = 0. It is possible that the available weights are inadequate to satisfy Eq. (1.45). In this
case we use Eq. (1.7) in order to produce more weights and sample θ∗n+1 from P0.

Sampling from the GSB

When the prior measure is a GSB process, we have that P ∼ GSB (λ, P0). By the stick-breaking
representation we have that P = ∑j≥1 wjδθj , but the less complex form of the geometric weights
leads to wj = λ(1− λ)j−1, j ≥ 1. We use a GSB mixture (GSBM) modeling approach, so for data
x = (x1, . . . , xn) and the infinite sequence of locations θ = (θi)i≥1, it is for i = 1, . . . , n:

π (xi | θ, λ) = λ
∞

∑
j=1

(1− λ)j−1K
(
· | θj

)
(1.46)

Again, we need to solve the problem of the infinite number of locations, using an appropriate
augmentation scheme. In particular, we need to assign to each observation xi a pair (di, Ai)

of a clustering variable and a random set respectively, so that the conditional distribution of
di |Ai will be discrete uniform over Ai, i = 1, . . . , n.

We note that the random sets Ai in the case of a DPM described above, typically are sets of
integers with gaps, e.g. {5, 220, 530, 780, 900}. The difference with the GSBM slice sampler is
that the simpler form of the weights allows us to construct sequential random sets (i.e. with no
gaps), thus leading to efficient samplers with lower mean execution times.

Specifically, following [FGMW10] we introduce the random variables Ni
iid∼ πN (·) , i = 1, . . . , n

such that Ai = {1, . . . , Ni} and the conditional distribution of each observation given Ni will
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be an equally weighted finite mixture of kernels

π (xi |Ni) =
1
Ni

Ni

∑
j=1

K
(
· | θj

)
(1.47)

while for the clustering variables we have

π (di |Ni) = DU {di |Ai} =
1
Ni
I (di ≤ Ni) (1.48)

and the augmented joint density of xi with (di, Ni)

π (xi, di = k, Ni = N) = πN(N)π (di = k |Ni = N)π (xi | di = k, Ni = N)

= πN(N)
1
N
I (k ≤ N)K (xi | θk) . (1.49)

The validity of the proposed augmentation is illustrated by the marginal distribution of xi,
which remains unaffected, as we have that

π(xi) =
∞

∑
k=1

1
N

∞

∑
N=k

πN(N)︸ ︷︷ ︸
wk

K (· | θk) . (1.50)

It is now clear that the ordered (decreasing) weights wk =
1
N ∑∞

N=k πN(N) depend on the choice
of πN(·). If we choose a Negative Binomial distribution πN(Ni) = NB (Ni | 2, λ) then we
recover the familiar geometric weights, as:

wk =
∞

∑
N=k

1
N

Nλ2(1− λ)N−1 = λ(1− λ)k−1. (1.51)

Then, the complete posterior distribution for the augmented GSBM model will have the fol-
lowing form

π
(
w, θ | x, {Ni}n

i=1 , {di}n
i=1
)

∝ π (w, θ)
n

∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni)K(xi | θdi). (1.52)

and only a finite number of weights, namely N∗ = max1≤i≤n Ni, will be required at each it-
eration of the Gibbs sampler. We complete the description of the slice sampler with the FC
distributions. At each iteration we have to update the sets of latent variables {Ni}n

i=1 , {di}n
i=1

and sample the (finite number of) weights and locations that characterize the draws from the
posterior random measure.

1. The θj-locations are sampled from

π
(
θj | . . .

)
= P0(θj) ∏

di=j
K
(
xi | θj

)
(1.53)
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2. The clustering variables are sampled from the discrete distribution

π (di | . . .) = I (di ≤ Ni)K
(
xi | θdi

)
(1.54)

3. Regarding the construction of the slice sets Ai, we only need to sample Ni, 1 ≤ i ≤ n from

the truncated Geometric FC distributions

π (Ni | . . .) ∝ (1− λ)Ni−1I (Ni ≥ di) (1.55)

4. Assigning a conjugate Beta prior λ ∼ Be (α, β) over the geometric probability we have

π (λ | . . .) = Be

(
λ | α + 2n, β +

n

∑
i=1

Ni − n

)
(1.56)

5. The geometric weights wj, j = 1, . . . , N∗ are constructed by

wj = λ(1− λ)j−1 (1.57)

6. The draws from the predictive density π(xn+1 | x) are performed in the same way as in the

DPM slice sampler, namely using the Eqs. (1.44-1.45).

The above slice sampling schemes are essential for the understanding of the methods that will
be constructed in the following Chapters. We complete this Chapter with an illustrative density
estimation example, using both DPM & GSBM models.

Density estimation using DPM & GSBM models

In order to illustrate the performance of the slice samplers described above, we apply them for
the purpose of density estimation. Specifically we choose Gaussian Kernels K (· | ϑ) = N (· | ϑ),
with ϑ =

(
µ, τ−1) ∈ R×R+ and use a sample x = (x1, . . . , x250) from the Normal mixture

π(x) =
1
3
N (x | − 4, 1) +

1
3
N (x | 0, 1) +

1
3
N (x | 6, 1). (1.58)

For both models we have the following prior specification:

c ∼ G(αc, βc), p ∼ Be(αλ, βλ), {(µj, τj) ∼ N (m, v−1)G(a, b) : j ≥ 1},

with (αc, βc, αλ, βλ, m, v, a, b) = (0.1, 0.1, 1, 1, 0, 10, 0.5, 0.5). For the complete slice sampler, we
have to sample from the FC distribution of ϑ =

(
µ, τ−1), which we set to the semi–conjugate

independent Normal-Gamma prior

π (µ, τ) = N
(

µ |
τjsj

njτj + v
,

1
njτj + v

)
G
(

τ | a + 1
2

nj, b +
1
2 ∑

di=j

(
xi − µj

)2

)
, (1.59)
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with sj = ∑di=j xi and nj = ∑di=j 1.

We ran the chains for 30, 000 iterations with a burn-in period of 5, 000. As a measure of distance
between the true density π and the estimated densities π̂DP, π̂GSB via the DPM and GSBM
models, respectively, we use the Hellinger distance, defined as

H( f , g) =
1
2

∫
R

(√
f (x)−

√
g(x)

)2

dx (1.60)

for densities f and g.

In Fig. 1.4(a) we present the histogram of the data, superimposed with the kernel density
estimators (KDEs) obtained by the posterior predictives of the DPM and GSBM models. In Fig.
1.4(b) we display the Hellinger distance over the sampling iterations after burn-in.
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Figure 1.4: Left: Data histogram and KDE’s obtained by the posterior predictive samples obtained DPM
(red) GSBM (blue) models. Right: Evolution of the Hellinger distancesH(π, π̂DP) (red) andH(π, π̂GSB)
(blue) over sampling iterations after the burn-in period.

We note that the estimated densities are almost indistinguishable, with Hellinger distances
H(π, π̂DP) = 0.089 and H(π, π̂GSB) = 0.087. Due to the less complex form of the consecutive
random slice sets, the GSBM model is characterized by lower MET, compared to the corre-
sponding DPM model. We will further analyze compare the two models on the estimation of
chaotic dynamic equations in Chapter 3.
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Chapter 2

Dynamical systems

In this Chapter we give the definitions and basic properties of dynamical systems, for the de-
terministic and the stochastic case. The concept of chaos is rigorously analyzed along with
the properties of chaotic systems, homoclinic tangencies and invariant manifolds. We continue
with the presentation of the most popular in the literature noise-induced effects, as well as with
the effects of dynamical noise on non-hyperbolic nonlinear maps. We conclude with an expla-
nation of the parametric reconstruction inefficiency under non-Gaussian noise processes. This
gives us the main motivation for the methods included in the next Chapters. For extended and
rigorous presentations of the Theory of Deterministic Dynamical Systems and Chaos we refer
to [GL02, ASY96, Ott02, SJ06].

2.1 Deterministic Dynamical systems

A dynamical system can be considered as a deterministic mathematical description for the evo-
lution of a system over time. We can give the following rigorous definition.
Definition 2.1 (Dynamical system). A deterministic dynamical system is a tuple (X, T , f ) consisting
of a state space X, a set T describing time and an evolution function f : X× T 7→ X, such that:

1. f0 = 1X,

2. fs+t = fs ◦ ft, ∀s, t ∈ T

where ft := f (·, t) and 1X the identity function over X.

Usually the time parametrization is defined over T = R and the dynamical system is called
continuous with a flow f , or over T = Z resulting in a discrete dynamical system with map f .
If the system is not explicitly depended on time it is called autonomous, otherwise it is called
non-autonomous. Moreover, the evolution function most of the times depends on some control
parameter ϑ ∈ Θ ⊆ Rd, controlling the asymptotic dynamical behavior. However the dynamical
behavior of large classes of seemingly different dynamical systems can be essentially the same.
In this case, the dynamical systems are called conjugate.
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Definition 2.2. The dynamical systems (X, T , f ), (Y, T , g) are conjugate if there exists homeomor-
phism h : X 7→ Y called topological conjugacy, such that

h ◦ f = g ◦ h (2.1)

We are typically interested in studying the orbits of a given dynamical system, which in the
case of a discrete dynamical system are the successive functional iterations of the evolution
map, starting from an initial point x0 ∈ X, i.e.

O f (x0) = { f n(x0) : n ≥ 0} (2.2)

with f n := f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n-times

and xn = f n(x0). If f (x) = x, x is a fixed point of f , while if f k(x) = x,

such that f r(x) 6= x for 1 ≤ r < k, x is a periodic point of (minimal) period k, while O f (x) ={
x, . . . , f k−1(x)

}
is the associated periodic orbit. Naturally, topological conjugacy is associated

with invariant objects, such as the spectrum of periodic orbits. In this thesis, we are mainly
interested in discrete dynamical system. We note that any continuous dynamical system can
be reduced to a discrete dynamical system using the technique of Poincaré sections [CE07], i.e.
examining intersections of the flow with proper hyperplanes.

For the sake of completeness, we will mention some definitions which will proved useful in
the sequel.
Definition 2.3. If p periodic point with minimal period k, then if d

dx f k(p) 6= 1 p is hyperbolic. More-
over, p is attracting if d

dx f k(p) < 1, or repelling if d
dx f k(p) > 1. Every attracting set has an associated

basin of attraction, i.e. the set of the initial conditions converging to it.
Definition 2.4. A point x ∈ X is forward asymptotic to p if:

1. limn→∞ f kn(x) = p, p is a periodic point of period k.

2. d( f n(x), f n(p)) n�∞−→ 0, p is non-periodic.

The stable set of p is the set W s(p) = {x : x forward asymptotic to p}. If f is invertible the unstable
set is also defined, asWu(p) = {x : x backward asymptotic to p}, with backward asymptotic meaning
forward asymptotic in reversed time n→ −∞.

We will further analyze the stable and unstable asymptotic sets for the case of higher-dimensional
maps, in section 2.3.
Definition 2.5. The set A ⊆ X is invariant under f if f (A) ⊆ A.

Whenever an orbit enters an invariant set, it will remain in the set forever. Invariant sets can be
further categorized in positively or negatively invariant, when the orbits are contained in the
set in forward (t > 0) or reversed (t < 0) time.
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2.1.1 Chaos in Dynamical Systems

If the evolution function is nonlinear, we may have the occurrence of complex dynamical be-
havior known as chaos. There exist various definitions [LY75, HO15] and generalizations [Li93,
SS94] for the notion of Chaos in the literature. Following Devaney [Dev08] we provide some
useful definitions.
Definition 2.6. f is topologically transitive if

∀A, B ⊆ X, ∃k > 0 : f k(A) ∩ B 6= ∅.

The intuition behind topological transitivity is that orbits starting at some x0 ∈ A will even-
tually visit any arbitrarily small neighborhood B of any other point y ∈ X. So, there are no
orbits that can be “trapped” forever in some A ⊂ X. We also note that topological transitivity
is equivalent to the existence of a dense orbit in X, i.e. there is x ∈ X : O(x) = X, where O(x)
denotes the closure of the orbit O(x) of x.
Definition 2.7. f exhibits sensitive dependence on initial conditions (SDIC) if

(∃δ > 0)(∀ε > 0, x ∈ X)(∃y ∈ Nε(x), n ∈N) : d( f n(x), f n(y)) > δ

where d(·, ·) is a metric over X and Nε(x) an ε−neighborhood of x.

The property of sensitive dependence on initial conditions implies that there exist orbits of
arbitrarily close initial conditions which will eventually diverge and this fact is highly impor-
tant in terms of numerical computation as this will cause round–off errors to be magnified.
Furthermore, sensitive dependence on initial conditions is closely related with the notion of
unpredictability. Systems that exhibit sensitive dependence on initial conditions although they
possess a deterministic evolution mechanism, are inherently unpredictable, in the sense that
the limited knowledge of their initial condition due to finite arithmetic precision will lead to
substantially erroneous calculation of the future states. A way to quantify the sensitive depen-
dence on initial conditions is the Lyapunov exponent, defined as

λ = lim
n→∞

1
n

log
∣∣∣ d
dx

f k(x0)
∣∣∣ = lim

n→∞

1
n

n−1

∑
k=0

log
∣∣ f ′(xk)

∣∣, (2.3)

which is the average exponential rate of divergence of nearby orbits and is independent of
the initial condition [Ose68]. Positive Lyapunov exponents are associated with sensitive de-
pendence on initial conditions as arbitrarily close initial points evolve in orbits separated by
an exponentially growing distance ∆xn ∼ eλn∆x0. There exist also, local Lyapunov exponents
[EFT91] associated with the local behavior of the nearby orbits separation. In more than one di-
mensions, d > 1, we have the existence of d-Lyapunov exponents [Str18], at least one positive of
which is an indication of sensitive dependence on initial conditions. Lyapunov exponents are
also related with the predictability of the dynamical system, vie the Lyapunov time, the inverse
Lyapunov exponent, which determines the time horizon until the behavior of the dynamical
system becomes unpredictable [Str18].
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We can now give the definition of a chaotic dynamical system:
Definition 2.8 (Devaney [Dev08]). (X, T , f ) is chaotic if:

1. f is topologically transitive,

2. periodic points are dense in X,

3. f exhibits sensitive dependence on initial conditions.

The above chaos definition is strong, in the sense that it implies several other definitions such
as the Li-Yorke or that of topological chaos. Regarding the necessity of all three conditions
it has been shown that sensitive dependence on initial conditions is implied by transitivity
and the existence of a dense periodic orbit [AG92], while whenever X is an interval I ⊂ R,
then topological transitivity alone implies both sensitive dependence on initial conditions and
existence of a dense set of periodic points [VB94]. For a recent survey of equivalent forms of
Devaney’s definition see [WH13].

Summarizing, a chaotic dynamical system is characterized by deterministic evolution of bounded,
aperiodic orbits, which exhibit sensitive dependence on initial conditions. As a result, chaotic
motion is unpredictable, and it seems erratic or even random while the underlying evolution
mechanism is purely deterministic. Chaos Theory keeps advancing [TKR+10, BDV06] and has
met wide applicability in a variety of sciences [Str18] such as physics [BR05], biology [Cof98],
economics [PPP94], or medicine [Wes12].

For continuous time autonomous systems, the occurrence of chaotic behavior requires that the
dimension of the state space is at least 3, while in the discrete case chaos arises even in one-
dimensional systems. We give a famous example of one-dimensional chaotic map, the logistic
map [May76] with X = R, and evolution function

f (µ, x) = µx(1− x). (2.4)

The logistic map has been widely used as an ecological model of predator-prey systems. In or-
der to qualitatively examine the dynamical behavior of the logistic map for the varying values
of the control parameter 0 < µ ≤ 4, we will use a bifurcation diagram. Bifurcations are qualita-
tive changes in the dynamical behavior of a dynamical system, appearing in a variety of ways.
A period-doubling bifurcation leads to the creation of a periodic orbit with double period than
the original one. One of the most common routes to chaos is the period-doubling cascade, i.e. an
infinite sequence of period doubling bifurcations, as illustrated in Fig. 2.1 for the case of logis-
tic map. The period-doubling cascade has universal properties [Cvi17] and characterizes the
whole family of unimodal maps. It has been proved [Fei78] that the ratio of parameter values
associated with a stable 2n periodic orbit is

δ = lim
n→∞

µn − µn−1

µn+1 − µn
= 4.669... (2.5)

where µn is the point of bifurcation and δ the Feigenbaum constant appearing in a large class of
both theoretical systems and experimental data
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The map f (µ, x) as the control parameter µ varies, undergoes a sequence of period doubling
bifurcations. Every k−period stable periodic orbit loses its stability, giving rise to a new stable
2k−periodic orbit. Moreover, inside the chaotic region there exist infinitely many periodic
windows, corresponding to finite length µ−intervals.

Figure 2.1: Bifurcation diagram for the logistic map. Left: 0 < µ < 4 Right: 3.56 < µ < 3.86. Red lines
indicate values 3.56, 3.86.

In Fig. 2.1 we can see the period doubling cascade and the periodic windows arising as finite
subintervals of the parameter range. For values of the control parameter that the dynamical
system is chaotic we have the existence of an infinity of periodic orbits, which are all unstable.

2.1.2 Statistical Properties of Deterministic Systems

The irregular seemingly random behavior of chaotic orbits, led early to the connection of chaos
theory with probability and statistics. The unpredictable nature of chaos is related with the
existence of a certain Borel probability measure associated with the dynamic system f, such
that it remains unchanged when f acts on it. This leads to the fact that although the point
estimation of future states becomes more and more inaccurate as the time horizon increases we
are able to make probabilistic statements regarding the long-term behavior of the orbits. This
is the main goal of the Ergodic Theory [PY98] approach to the analysis of dynamical system.
For an extensive analysis of the probabilistic properties characterizing deterministic dynamical
system, we refer to [LM85].

In Fig. 2.2 we provide an illustration of the way that densities are associated with orbits of a
dynamical system. We produce 2 orbits of the logistic map in the chaotic region, with control
parameter µ = 3.95, with length n = 50, 000. The initial conditions of the two orbits are very
close, namely x0 = 0.3 (blue) and y0 = 0.30001 (red). In Fig. 2.2(a) we present the first 100
map iterations of x0 and y0. The SDIC property is clearly depicted as the two orbits are initially
almost identical, but after approximately 15 iterations they appear to be completely different.
Of course, they are not completely different, as we can see in Fig. 2.2(b) where the qq-plot of the
empirical densities is depicted, clearly indicating that the two orbits share the same histogram
statistics, i.e. they visit the various subsets of the state space with the same probability. This fact
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is further illustrated by the indistinguishable histograms of the two orbits in Figs. 2.2(c) (x0) -
2.2(d) (y0).

Figure 2.2: (a) First 100 iterations of the initial conditions x0 (blue) and y0 (red). (b) qq-plot of the
empirical distributions of the 2 orbits, x and y. (c),(d) Histograms of the orbits x and y, respectively.

The above description essentially indicates the existence of a measure that remains invariant
under the effect of the map. The following two definitions are required for a more rigorous
statement regarding the long-term behavior of a dynamical system.
Definition 2.9. Let (X,X , µ) a measure space. A map f : X 7→ X is called measurable if

f−1(A) ∈ X , ∀A ∈ X , (2.6)

where f−1(A) = {x ∈ X : f (x) ∈ A}. Then, the measure µ is invariant for f (or f − invariant) if

µ
(

f−1(A)
)
= µ(A), ∀A ∈ X . (2.7)

The asymptotic behavior of a dynamical system is naturally related with the existence of in-
variant measures. We are often especially interested in invariant (probability) measures that
are absolutely continuous with respect to the Lebesgue measure, provided they exist under
general conditions [LY73]. Having derived an invariant probability measure µ, we can make
probabilistic prediction arguments for the long term behavior of the system in the sense that
P {xi ∈ A} = µ(A), for A ∈ X .
Definition 2.10. The Frobenius–Perron operator Pf : L1 7→ L1 is defined by

∫
A

Pf g(x)µ(dx) =
∫

f−1(A)
g(x)µ(dx), ∀A ∈ X , g ∈ L1 (2.8)
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with L1 the space of µ-integrable functions. Pf is also a Markov operator, as it satisfies g ≥ 0⇒ Pf g ≥ 0
and ‖Pf g‖ = ‖g‖, ∀g ∈ L1, with ‖ · ‖ the L1–norm.

We may consider the Frobenius–Perron operator as the mechanism describing how densities
evolve after applying the map f on them. Moreover, considering P as a Markov operator, a
fixed point g, i.e. Pg = g, is a stationary density of P [LM85]. Notably, the derivation of the
invariant measures is generally a difficult task, so their approximations are useful in providing
intuition about the asymptotic behavior of the dynamical system. Usually, we need to provide
approximations for a special invariant measure, called natural measure, as it assigns to each
A ∈ X the probability with which typical orbits visit A. Specifically, the natural (or physical)
measure ν f is defined as

ν f (A) = lim
r→0

lim
n→∞

1
n

n

∑
i=1
I
(

f i(x0) ∈ N(r, A)
)

, A ∈ X , (2.9)

where N(r, A) = {x ∈ X : dist(x, A) < r}, if the limit exists for almost all initial conditions, i.e.
for all x0 ∈ X except perhaps a set of zero measure.

For some modern applications of the theory and methods of invariant measures we refer to
[DZ10].

2.1.3 Higher-Dimensional Deterministic Systems

When the state space is high-dimensional X ⊆ Rd, d ≥ 2 we have d Lyapunov exponents,
measuring the average exponential rate of divergence along the d orthogonal directions. In
order to have the emergence of chaotic behavior, the greatest Lyapunov exponent has to satisfy
λmax = max1≤i≤d λi > 1.

The dynamical behavior of the dynamical system is related to the Jacobian matrix of the map
f , denoted by J n

f :=
(

∂ f n

∂xi

)
1≤i≤k

, where f n is the n−th iterate of f .

Definition 2.11. A fixed (k−periodic) point p is called hyperbolic, if J f (p) (J k
f (p)) has no eigenvalues

on the unit circle. Specifically:

1. If all the eigenvalues are smaller than 1, p is attracting.

2. If all the eigenvalues are greater than 1, p is repelling.

3. Otherwise, p is a saddle.

If the areas of the state space are preserved under the action of the map the dynamical system is
called conservative and detJ f = 1, whereas if the areas are not preserved we have a dissipative
dynamical system with detJ f < 1. In this thesis we are interested in dissipative dynamical
system which may have attractors in contrast with area-preserving maps.
Definition 2.12. ([ASY96]) The forward limit set of an orbit O f (x0) is the set

ω(x0) = {x ∈ X : (∀ε > 0, m ∈N)(∃n > m) : x ∈ Nε( f n(x0))} (2.10)
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A forward limit set with associated basin of attraction of non-zero measure is called an attractor.

In a similar fashion, but in reversed time, we can define the backward limit set. Moreover, if
O f (x0) is a chaotic orbit with x0 ∈ ω(x0), then ω(x0) is called a chaotic set. A chaotic attractor
is an attractor which is also a a chaotic set. Attractors can have a simple form such as fixed or
periodic orbits, but they can also have a highly complex geometry. This is the case of chaotic
(or strange) attractors [ER85]. When more than one different attractors 1 coexist, then the DS
exhibits multistability [Feu08]. The boundaries between the basins of attraction of multistable
systems can be highly complex, especially in cases where the number of the coexisting attrac-
tors is large [FGPY98].

In the following, we assume that the evolution function is a diffeomorphism, that the partial
derivatives of both f and f−1 exist and are continuous. Then, we introduce the tangent bundle
at x ∈ X, which is the collection of the tangent spaces of the state space at the given point:

TX =
⋃

x∈X

TxX (2.11)

For every vector u ∈ TxX, we have that J f u ∈ Tf (x)X with J f u and we can associate any point
x ∈ X with the stable and unstable vectors at x.
Definition 2.13. ([CE07])A vector u ∈ TxX is called:

1. Stable, if (∃λ < 1, c < ∞) such that ∀n ∈N : ‖J f n u‖Tf n(x)X ≤ cλn‖u‖TxX.

2. Unstable, if (∃λ < 1, c < ∞) such that ∀n ∈N : ‖J f n u‖Tf−n(x)X ≤ cλ−n‖u‖TxX.

If all the tangent vectors at a fixed point p are stable with the same λ, p is a stable fixed point, whereas
if there exist at least one unstable tangent vector, p is called an unstable fixed point.

Moreover, p is a hyperbolic fixed point, when there is a unique factorization of the tangent space
as the direct sum of the stable and unstable subspaces Es

p and Eu
p respectively, so that we can

write:
TpX = Es

p ⊕ Eu
p (2.12)

where Es
p and Eu

p are spanned by the exponentially contracted and expanded vectors under the
iterates of the Jacobian.
Definition 2.14. ([CE07]) A set X? ⊆ X is uniformly hyperbolic, if

1. f(X?) ⊆ X?

2. TxX = Es
x ⊕ Eu

x , ∀x ∈ X?

3. Vectors in Es
x (Eu

x ) are stable (unstable) as in Definition 2.13, with λ independent of x, ∀x ∈ X?.

Then, the map f is hyperbolic on X?.

The property of hyperbolicity -main feature in a large class of systems called Axiom A- is very
important, as it allows the derivation of general theoretical results regarding the shadowing
property [PS17], structural stability [Rob77], and the existence of natural invariant measure

1There even exist systems with an infinity of attractors [PV94]
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[Sin72]. Furthermore, non-hyperbolic systems react different to the effects of noise perturba-
tions than the hyperbolic ones.
Definition 2.15. Let x ∈ X be a saddle fixed point and f invertible. The local stable and unstable
manifolds of x for a given neighborhood Nδ(x) of x are defined respectively as:

Ws
loc(x) =

{
y ∈ X : lim

n→∞
d( f n(x), f n(y))→ 0, with f n(y) ∈ Nδ(x), ∀n ∈N

}
(2.13)

Wu
loc(x) =

{
y ∈ X : lim

n→∞
d( f−n(x), f−n(y))→ 0, with f−n(y) ∈ Nδ(x), ∀n ∈N

}
(2.14)

The local manifolds Ws
loc(x) and Ws

loc(x) are invariant under f and f−1 respectively and can be used
in order to construct the global invariant manifolds, which contain all points of the state space that
converge to x in forward (stable) or backward (unstable) time. Specifically we can write:

Ws(x) =
{

y ∈ X : lim
n→∞

d( f n(x), f n(y))→ 0
}
=
⋃

n≥1

f−n (Ws
loc(x)) (2.15)

Wu(x) =
{

y ∈ X : lim
n→∞

d( f−n(x), f−n(y))→ 0
}
=
⋃

n≥1

f n (Wu
loc(x)) (2.16)

The above definition can be extended for the case of k−periodic orbits or hyperbolic sets in general.

For a planar diffeomorphism f : R2 → R2, the Stable Manifold Theorem guarantees that both the
Ws(x) and Wu(x) are one-dimensional manifolds that contain x and moreover that at x they
are tangent to the stable Es

x and unstable Es
x subspaces, respectively.

Let Λ be a hyperbolic set and x, y ∈ Λ. If there exists a point q ∈ (Ws(x)\Λ)∩ (Wu(y)\Λ) then
q is called homoclinic point and -due to the invariance of the manifolds- implies the existence of
infinitely many other homoclinic points, thus the emergence of chaotic behavior. The angles
between the invariant manifolds formed at homoclinic points, are closely related with the hy-
perbolicity of the dynamical system. Subsequently, if the map f is hyperbolic and homoclinic
points exist, then the angles between the invariant manifolds are bounded away from zero and
there exists an invariant chaotic set where the dynamics are equivalent to Smale’s horseshoe
[Sma67].

The tangential intersections of the two manifolds are called homoclinic tangencies (HTs), and
their existence is mutually exclusive with the concept of hyperbolicity. If there exist HTs, then
whenever the attractor is ergodic there exists a dense set of them [GBP88], meaning that there
are infinite regions where the tangent space cannot be decomposed as a direct sum of stable
and unstable directions. In fact, all HTs are images or pre-images of certain, more “important”
HTs, called primary homoclinic tangencies. Primary HTs appear in regions where the sum of
the curvatures of the invariant manifolds is minimal (along each sequence of images of HTs
[GP91]), thus resulting in “wider” regions of tangential intersections. Formally, let

Cδ,ε
x? = {x ∈ Nδ(x?) : sin θs,u < ε} (2.17)

the critical region of the HT x?, i.e. the set of points near x? that “surround” the tangency in
the sense of almost zero angle θs,u between the stable Es

x and unstable Eu
x directions which is
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less say than a predefined ε > 0. Due to larger critical regions, primary HTs are the easier to
identify, while -although there is a dense set of them- most of the other HTs have critical regions
of practically negligible size. The most widely used methods for the identification of regions
of (primary) HTs are based on the concept of critical regions [LGYK93] or on the curvature
of the invariant manifolds [JK97b]. We will briefly describe the first method, as we will use
it to compare our results coming from our method for the stochastic approximation of stable
manifolds in Chapter 5.

In order to find regions of HTs, we need to identify the position of points where the stable
and unstable manifolds approach tangentially. It is sufficient to determine where the angle be-
tween the stable and unstable manifolds approaches 0. It is easier to identify primary HTs, as
they are characterized by large critical regions. In particular, we generate a deterministic orbit
of the DS of interest. Then at each orbit point, we calculate the stable and unstable directions,
using the Jacobian matrix. In order to do this, from a given point x we generate a forward or-
bit O+(x) = {x, f (x), . . . , f n(x)} and calculate the inverse Jacobian matrix at each orbit point.
Then we choose at random a unit vector and perform successive multiplications with the in-
verse Jacobian at each orbit point, starting from f n(x) and going backwards to x, normalizing
at each step. The final vector is used to approximate the stable direction at x. The reason for not
using the inverse map, is that the orbit will diverge from the original one. Regarding the un-
stable direction at x, we will use an orbit O−(xb) = {xb, f (xb), . . . , f n(xb) = x}, calculating the
Jacobian at each orbit point. Similarly, we multiply the random unit vector with the Jacobian at
each point of the stored trajectory, going forward from xb and ending at x. Finally, we calculate
the angle between the 2 directions at the points of the attractor and choose a small predefined
angle as a threshold, in order to identify regions of HTs. The above scheme is based on the fact
that Jacobian matrix of the forward map rotates a vector towards the unstable direction, while
the Jacobian of the inverse map rotates a vector towards the stable direction.

In Fig. 2.3 we present the local stable and unstable directions 2, as well as points of HTs for
the Hénon map. We have used an orbit of length 5, 000 for the standard parameters (θ1, θ2) =

(1.4, 0.3) for the Hénon map [Hén76]:

(xn, yn) = f (xn−1, yn−1) =
(
1− θ1x2

n−1 + θ2yn−1, xn−1
)

. (2.18)

There are critical consequences of the property of non-hyperbolicity, or equivalently the exis-
tence of HTs, leading to pathological dynamics. Such consequences include the loss of struc-
tural stability [GH13] and the shadowing property [HYG87], or the amplification of noise per-
turbations [JK97b]. Moreover, HTs play a crucial role in the symbolic dynamics formulation,
in particular regarding the construction of generating partitions [GK85] and are also related in
the deterministic case with regions of higher predictability [HF05] and interesting dynamical
phenomena, such as chaotic blue sky catastrophe [PS00] in experimental data. We remark that
hyperbolicity depends on the specific control parameters of the evolution function and not on
its functional form per se. For example there exist regions in the parameter space of the Hénon
map, for which the DS is uniformly hyperbolic [Ara07].

2The unstable manifold has been conjectured to be the closure of the attractor.
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Figure 2.3: (a) Attractor of the Hénon map with the stable (red) and unstable (blue) direction on each
orbit point. (b) Same set of points (black), with the primary HTs as centers of the red circles.

Delay-coordinate embedding

Suppose we have observed a scalar time series y = {yi}k
i=1 consisting of measurements gen-

erated from a generally unknown deterministic dynamical system. One of the main pillars of
nonlinear time series analysis is the reconstruction of the state space, namely the construction
of m−dimensional vectors xn =

(
yn, yn−τ, . . . , yn−(m−1)τ

)
∈ Rm, such that the new dynamics

are topologically equivalent [PCFS80] to the true -unknown- dynamics. Of course, the main
requirement of this method, called delay-coordinate embedding [Tak81], is the estimation of suit-
able embedding parameters: the embedding dimension m and the delay d. Having estimated
m, such that m > 2dA [SYC91] (dA is the capacity dimension of the true attractor) then the
topological conjugacy is assured. For an extensive analysis of embedding methods and their
applications we refer to [KS04].

In Fig. 2.4 we present the delay plot generated by the (xn+1, xn) embedded points from the
x−coordinate time series of a Hénon map orbit under standard parameters (θ1, θ2) = (1.4, 0.3)

We will use this result in the next Chapters, in order to investigate dynamical invariants of
higher-dimensional maps, having at our disposal scalar time series.
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Figure 2.4: Time series of the x−coordinate of a Hénon map orbit (left) and the corresponding 2-
dimensional (xn+1, xn) delay-plot (right).

2.2 Random Dynamical systems

In the previous sections we discussed the appearance of uncertainty in purely a determinis-
tic setting, via the the invariant measure over the evolution function of the dynamic system.
There is, though, another way that uncertainty comes in to play (thus the extensive literature
on probabilistic modeling and statistics [CT13]) in the field of dynamical systems, namely the
presence of random noise. In reality, it is often difficult to observe a system that is completely
deterministic and even if when this is the case, the finite precision arithmetic alone, can be con-
sidered adding random fluctuations between the successive functional iterations of the map.
Moreover, measurement devices are generally imperfect and the measurement errors cannot
always be considered negligible.

The type of noise contaminating the data is very important, as the various noise types induce
different effects on the system. Observational (or measurement noise), originating from errors
in the measurement process, is independent of the dynamics and can be thought of as being
added after the time evolution of the trajectories under consideration. On the other hand,
dynamical (or interactive) noise, is added at each step of the time evolution of the trajectories,
drastically modifying the underlying dynamics. Dynamical noise can also be used in order to
represent the error in the assumed model, thus compensating for a small number of degrees
of freedom, for example a small amplitude high dimensional deterministic part not included
in the model [KS04]. Due to the different impact of the noise types, the goal of discriminating
between measurement and dynamical noise, as well as estimating the associated noise density,
is highly significant [HS00, SM08, SKFP04].

Noise can be further categorized as additive or multiplicative. For simplicity, let us consider

a 1-d dynamical system (X, T , f ) and the noise processes (ei)i≥1 , (ζi)i≥1, with ei
iid∼ π(·), ζi

iid∼
q(·) and let x = (x1, . . . , xn) be the noise corrupted vector of observations, then we have the
following categorization:

• Additive observational noise: xi = yi + ei, where yi = f (yi−1). Noise is added after the
orbit generation.
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• Additive dynamical noise: xi = f (xi−1) + ei. Noise is added at each step of the orbit
evolution.

• Multiplicative dynamical noise: xi = ei f (xi−1). Usually multiplicative noise is applied
directly on the control parameters.

• Additive observational and dynamical noise, known as a state-space model:

xi = g(yi) + ei

yi = f (yi−1) + ζi.

Bayesian formulation has been of great use in the general field of noise perturbed dynamical
systems. The main idea is the modeling of the states of the system and the control parameters
as random variables. Thus we can model the noisy orbit as a stochastic process with a suit-
able transition kernel Q(·, ·) which is determined by the noise process e.g. in the simplest case
Q (x, A) = P {xn ∈ A | xn−1 = x}. Early connections between chaotic systems and Bayesian
statistics are discussed in [Ber92], while MCMC methods were used for nonlinear noise re-
duction by Davies [Dav98]. In [MC00] and [MC01], MCMC methods were applied for the
parameter estimation of state-space nonlinear models, extending maximum likelihood-based
existing methods [MS99a]. Later, in [SLTB05] a path integral representation was proposed for
the likelihood function in order to make inference in stochastic nonlinear dynamics, extended
for nonstationary systems in [LSDM08]. In [MNS+01] and [NMKY05] Bayesian methods were
suggested for reconstruction and prediction of nonlinear dynamical systems. More recently in
[MLMF12], a Bayesian technique was proposed for the prognosis of the qualitative behavior of
random dynamical systems under different forms of dynamical noise.

In this Thesis, we are mainly interested in the case of additive dynamical noise, using a flexible
modeling based on Bayesian nonparametric random measures. In general, dynamical systems
subjected to the effects of dynamical noise are called random dynamical systems (RDS). RDS
have been rigorously defined and studied, initially by Arnold [Arn13]. We will now proceed
with some useful definitions in order to formally define a RDS, as we will use this notion in
subsequent Chapters. For an extensive review of the Theory of RDS we refer to [Arn13, Dua15,
AJMR06], while [MMP15] provides a recent review of statistical methods concerning RDS.

Essentially, a RDS consists of two parts: the first part is the model for the deterministic DS
that is perturbed by a general noise process, while the second part is the modeling of the noise
process itself - emphasizing in particular on ergodic noise processes. Regarding the modeling
of the noise process, the notion of a metric DS is required.
Definition 2.16 ([AJMR06]). A metric dynamical system

(
(Ω,F , P) , (θt)t∈T

)
consists of a proba-

bility space (Ω,F , P) and a family of maps {θt : Ω→ Ω, t ∈ T } indexed by a set of times T , such
that:

1. (t, ω) 7→ θtω is (B(T )⊗F ,F )-measurable, where B(T ) the Borel σ-algebra generated by T .
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2. θt is measure-preserving, i.e. θtP = P, where

θtP (A) = P {ω : θtω ∈ A} , ∀A ∈ F .

Moreover, a measurable set A ∈ F is called θ-invariant if θt A = A, ∀t ∈ T and the metric DS is
ergodic under P if

P (A) ∈ {0, 1}, ∀ θ-invariant A ∈ F .

The measure-preserving property is essential in terms of defining a noise process that is station-
ary. For example [SH98], let (ξt)t∈T be a càdlàg continuous time stochastic process, i.e. with
T = R and right-continuous trajectories having limits from the left. We can define a metric
DS, using the shifts ξ(t) 7→ θτξ(t) = ξ(t + τ). In fact, every stationary stochastic process on
(X,X ) can be used to define a measure P on the product space

(
XT ,X T

)
, so that the associated

quadruple
((

XT ,X T , P
)

, (θt)
)

is a metric DS, with (θt) the shift operator. We could also con-
sider a DS as measure-preserving with respect to its natural measure, since it remains invariant
under the action of the associated map.

Having defined the metric DS, thus modeling the noise process, we can now proceed with the
formal definition of a random dynamical system, covering a large class of DS subjected to sta-
tionary stochastic perturbations, both in discrete (stochastic difference equations) or continuous
(stochastic differential equations) time.
Definition 2.17. [Arn13] A random dynamical system with state space (X,X ) over a metric DS θ :=(
(Ω,F , P) , (θt)t∈T

)
is a (B(T )⊗F ⊗ X, X)-measurable mapping

φ : T ×Ω× X 7→ X, (t, ω, x) 7→ φ(t, ω, x)

forming a cocycle over θ, i.e. φ(t, ω) := φ(t, ω, ·), when ∀ω ∈ Ω it is that:

1. φ(0, ω) = 1X, and

2. φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω), ∀s, t ∈ T .

In the spirit of the above definition, a DS is a special case of a RDS, when φ is independent of
ω. Moreover, based on the definition of a RDS, the notions of attractor and bifurcation take the
generalized forms of random attractors and stochastic bifurcations [SH98]. For an extensive
analysis of the analogy between DS and RDS, as well as a survey of the RDS applications, we
refer to [Chu04].

As mentioned above, we are interested in the case of additive dynamical noise, meaning that
in the simplest case, using the notation of Definition 2.17, we will model our observations
x = (x1, . . . , xn) as

xn = φ(n, ω, x) = gτnω(xn−1) = f (ϑ, xn−1) + en, with x0 = x (2.19)

where f : Θ × X 7→ X is a continuous map, depending on a vector of control parameters

ϑ ∈ Θ with ei
iid∼ π(·), and π(·) the unknown zero-mean symmetric density, with e(τnω) =
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en(ω) ≡ en. Subsequently [Arn13], the states of the RDS are iid random variables forming a ho-
mogeneous Markov chain {Xn = φ(n, ω, x0), n ∈N, ω ∈ Ω} with state space X and transition
probability kernels

Q (x, A) = P {Xn+1 ∈ A |Xn = x} = P {ω : gτnω(x) ∈ A} (2.20)

It is straightforward that the above transition kernels can be generalized for higher order
Markovian random processes. In the context of the full reconstruction of a dynamical equation,
which it will be discussed in Chapter 3, we aim to estimate the vector of the control parameters,
the initial condition x0, as well as the unknown density of the additive dynamical perturbations
which are perhaps non-Gaussian.

2.2.1 Quasi-invariant measures

In analogy with the deterministic case, the long-term dynamical behavior of a RDS is domi-
nated in some sense by its deterministic part. In particular, the inherent unpredictability per-
sists. If the associated deterministic part exhibits chaotic behavior, in terms of prediction we
are limited to to a Lyapunov time horizon and the making of probabilistic statements regarding
the asymptotic frequency of the system orbits passage for the various subsets of the state space.
To this end, we want to obtain the quasi-invariant measure of the RDS, formally defined as

µ̃ f (A) = lim
n→∞

P {xn ∈ A|n < τX′} (2.21)

where τX′ is the random time denoting the first time the system enters the trapping set X′, the
complement of X. For example, we are interested in how often the system visits subsets of the
state space before the noise drives away the orbit e.g. enters the basin of attraction of ∞. The
quasi-invariant measure is a deformation of the associated invariant measure of the DS, as it
is affected by the smoothing effect of the noise process, up to a length scale. Notably, when
the noise is observational, the invariant measure of the DS can be deconvoluted (isolated) from
the stationary measure of the noise process. This is not possible in the case of dynamical noise.
Moreover, the estimation of the quasi-invariant measure is a difficult task, especially in cases
where a small number of data is available. We present a method for the approximation of the
quasi-invariant measure, based on BNP modeling, in Chapter 3.

In Fig. 2.5 we present two noisy orbits (different realizations), generated by the same initial con-
ditions as in Fig. 2.2, perturbed with Gaussian additive noise with variance σ2 = 10−6, along
with the associated qq-plot of the two orbits and the corresponding smoothed-out histograms.
The stochastic system behavior is dominated by the underlying quasi-invariant measure.

We note that in Chapter 3 we will use the RDS framework, in the sense that we will provide
a stochastic approximation of the quasi-invariant measure of the system, while in Chapters
4-5 we will essentially consider the zero-noise limit case, i.e. we will provide methods for
estimating dynamical invariants (HTs and global stable invariant manifolds) for the unknown
underlying deterministic system.
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Figure 2.5: (a) First 100 noisy iterations of the initial conditions x0 (blue) and y0 (red). (b) qq-plot of
the empirical distributions of the 2 noisy orbits, x and y. (c),(d) Histograms of the noisy orbits x and y,
respectively.

2.2.2 Noise induced effects

The most generic effect of the noise is that it smears out the fine and rich structure of chaotic
dynamics, e.g. fractal structures such as Cantor sets or self-similarity. This is caused by the
dominance of the noise (and not of the map) up to a length scale depending on the noise mag-
nitude (affected by the variance and the support of the noise distribution). In Figure 2.6 we
present an illustrating example regarding the smearing-out effect on the structure of the deter-
ministic attractor. We use 10, 000 points of the reduced Lorentz map [EEZ14]

f :

(
xi

yi

)
7→
(
(1 + θ1θ2)xi−1 − θ2xi−1yi−1

(1− θ2)yi−1 + θ2x2
i−1

)
+

(
e1i

e2i

)
(2.22)

with the control parameters set to (θ1, θ2) = (0.85, 1). The noisy attractors were obtained us-

ing additive diagonal dynamical noise, ei
iid∼ N (0, Σ), with covariance matrix Σ = σ2I2, i.e.

e1i, e2i
iid∼ N (0, σ2) with variance σ2 ∈

{
10−6, 10−5, 10−4} for Figs. 2.6 (b)-(c)-(d), respectively.

Moreover, dynamical noise has a severe effect on non-hyperbolic maps due to the amplifica-
tion of the noise perturbations in the neighborhoods of HTs [JK97b]. Specifically, the noisy
orbits are driven away from the attractor, due to the geometrical structure in regions of HTs,
leading to deformations of the invariant measure called noise-induced prolongations. We will
refer to this effect and its relation with the loss of the shadowing property in Chapter 4. An-
other significant impact of noise perturbations, is the conversion of the attractor into a repellor,
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Figure 2.6: Deterministic (a) and noisy attractors of the reduced Lorentz map for additive diagonal noise
with variance: (b) σ2 = 10−6, (c) σ2 = 10−5, (d) σ2 = 10−4.

called noise-induced crisis3 [SDG+91]. This conversion is possible, if e.g. the noise magnitude
is large enough, in order to force a noisy trajectory to visit the basin of attraction of infin-
ity, leading to escape. Often, this happens in regions of HTs, as they are close to the basin
boundaries.Estimation of relevant statistical features such as escape times has been studied in
[Som93, HTG94].

Another interesting effect, is the so called noise-induced chaos [BSJ90, HES87]. We use this term to
refer to the phenomenon where for a certain value of the control parameters, we have the emer-
gence of a noisy attractor with SDIC, thus positive Lyapunov exponents over bounded noisy
orbits, while in the absence of noise such attractors disappear. The emergence of noise-induced
chaos has been connected [TLG08] with the presence of transient chaos [KG85], i.e. arbitrarily
long orbit segments (transients) with chaotic behavior, eventually reaching non-chaotic steady
states. Notably, the opposite effect, called noise-induced order [MT83], also exists. In this case,
the presence of noise results in the transition from a chaotic to a non-chaotic behavior, in terms
of e.g. Lyapunov exponents or entropy. The importance of the noise effects lies mainly on the
fact that although noise does destruct fractal structures, it does not necessarily result to a more
“simple” or to a more complex dynamical behavior. We can observe transitions from order to
chaos and vice versa, depending on the specific system subjected to the stochastic perturba-
tions.

In the next Chapters we will occasionally refer to a noise induced effect called noise-induced
jumps [ABP85]. This is the case when the underlying dynamic system (X, T , f ) exhibits more
than one coexisting attractors. Now, suppose that there exist simultaneously k attractors with
with corresponding basins of attraction Xj ⊂ X, with Xi ∩ Xj = ∅, ∀i 6= j, such that for initial

3Generally, the effect of crisis refers to the sudden disappearance of a chaotic attractor.
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conditions x(i)0 ∈ Xi, x(j)
0 ∈ Xj, the corresponding forward limit sets are isolated, in the sense

that ω(x(i)0 ) ∩ ω(x(j)
0 ) = ∅. The term noise-induced jumps refers to the existence of orbits that

traverse, under the effect of dynamical perturbations, some of the previously isolated basins of
attraction.

As an example, we consider the case of the following dynamically perturbed cubic map:

xi = f (θ, xi−1) + zi, zi
iid∼ N (0, σ2), (2.23)

with corresponding deterministic map f (θ, x) = 0.05 + θx − 0.99x3. The system becomes
bistable for values of the control parameter θ in the interval Θbi = [1.27, 2.54], exhibiting two
mutually exclusive period-doubling routes to chaos. The two attractors collapse into a single
attractor for for values of θ slightly larger that 2.54.

In Fig. 2.7 we present cases of coexisting isolated attractors. The coexisting, but mutually
exclusive, deterministic attracting orbits are depicted in blue and green colors. Noisy orbits,
under the f2,4 noise process are depicted in red color. Such noisy orbits are able to visit the
deterministically isolated attractors. Approximated deterministic basins of attraction, are given
in matching colors, on the y-axis.

1. In Fig. 2.7(a), for ϑ1 = 1.90 there are 2 isolated stable 1-cycles at approximately O+
st,1 =

{0.9801} (blue) and O−st,1 = {−0.9244} (green) which are all roots of the cubic equation
g(ϑ1, x) = x.

2. In Fig. 2.7(b), for ϑ1 = 1.95 there are in coexistence a stable 2-cycle and a stable 1-cycle at
approximately O+

st,2 = {0.9156, 1.0755} and O−st,1 = {−0.9521} respectively, which are all
roots of the 9th degree equation x = g(2)(ϑ2, x).

3. In Fig. 2.7(c), for ϑ3 = 2.15 there are 2 isolated stable 2-cycles O+
st,2 = {0.7831, 1.2582}

(blue) and O−st,2 = {−1.1661,−0.8873} (green) which are all roots of the 9th degree equa-
tion x = g(2)(ϑ3, x).

4. In Fig. 2.7(d), for ϑ4 = 2.25 we have the coexistence of a stable strange set (chaotic attrac-
tor) (blue)O+

st,∞ and an isolated 2-cycleO−st,2 = {−1.2507,−0.8269} (green). For example,
orbits starting from x0 = 1 are chaotic and orbits starting from x0 = −1 will eventually
stabilize on a 2-cycle.

The noise process we have used for the results presented in Fig. 2.7 is

f (z) =
9
10
N (z | 0, σ2) +

1
10
N (z | 0, (200σ)2), σ2 = 4 · 10−6. (2.24)

If the noise is Gaussian, perhaps the noise variance has to be large in order to have jumps in
orbits of small length. However, if the noise is not Gaussian we may have noise-induced jumps
due to rare perturbations of high amplitude. Such case could be the noise process of Eq. (2.24).
The Bayesian nonparametric framework will allow us to perform accurate inference on RDS
subjected to such non-Gaussian noise processes, used for a variety of different tasks.
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Figure 2.7: Orbits of g(ϑ, x) = 0.05 + ϑx− 0.99x3. Blue and green show deterministic orbits, red shows
noisy orbit.

We will further analyze the cubic random map in Chapters 3-4 and we will give an example
of noise-induced jumps in 2-dimensional maps in Chapter 5, where the boundaries of the dis-
joint basins of attraction will be identified using a stochastic approximation of the global stable
manifold.

In the next section, we will give an example of Bayesian parametric reconstruction of a simple
RDS, illustrating the inadequacy of parametric methods when the underlying noise process
departs from normality.

2.3 Bayesian Parametric Reconstruction

We can use the Bayesian framework in order to perform full reconstruction of the dynamical
equation of a random map, i.e. to estimate the control parameters, the initial condition and the
noise process. Choosing a parametric model, we assume that the observed data are generated
by a modeling random polynomial map, perturbed by additive Gaussian noise of unknown
precision, which we aim to recover.
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Following Hatjispyros et. al [HNW07a] we can use slice sampling techniques [DWW99] in
order to be able to perform Gibbs sampling steps with known distributions. Alternatively, we
refer to [MC00] for the description of adaptive rejection Metropolis (ARMS) sampling scheme,
in similar settings of state space models.

However, if the true noise density departs from normality, such as the noise process appearing
in Eq. (2.24), the parametric models are not efficient. The main reason for the inefficiency of
the parametric model when the noise is not Gaussian, is the erroneous estimation of the variance
of the noise process. For example the less frequent, but high magnitude noise perturbations of
f (·) in Eq. (2.24), force the variance of the (falsely) assumed Gaussian noise distribution to grow
artificially, thus resulting in non-reliable estimation of all the rest parameters. Alternatively, the
false assumption of normality could also lead to underestimation of the true variance. In any
case, the true underlying noise density is impossible to be estimated, in cases where it is not
Gaussian.

In the next Chapters, we will develop novel BNP methods based on the GSB random measure,
in order to perform reconstruction, prediction, noise reduction and approximation of the stable
manifold, using nonlinear time series of random maps with non Gaussian perturbations.
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Chapter 3

Bayesian Nonparametric
Reconstruction Models

3.1 Introduction

This chapter is devoted to the presentation of a novel Bayesian approach to the reconstruction
and the prediction of random dynamical systems. A common assumption in the literature is
the normality of the noise process. Such an assumption cannot always be justified and can
cause inferential problems when the noise process departs from normality, for example when
it produces outlying errors. Then, as we mentioned in Section 2.3, the estimated variance of
the normal errors is artificially enlarged causing poor inference for the system parameters of
interest. So for example we could have two sources of random perturbations. An environmen-
tal source caused by spatiotemporal inhomogeneities [SM08] producing weak and frequent
perturbations, and, a high dimensional deterministic component interpreted in our model as
stronger but less frequent perturbations in the form of outlying errors. Other cases include sys-
tems containing impulsive noise [SG74, Mid77], where the noise probability density function
does not decay in the tails like Gaussian. Also, in situations where the system under con-
sideration is coupled to multiple stochastic environments, the driving noise term may exhibit
non-Gaussian behavior, see for example Refs. [KSSH15b] and [KSSH15a]. It is our intention
therefore to model the dynamical noise using a highly flexible family of density functions,
providing a Bayesian nonparametric formulation [Fer73, FGMW10]. The BNP modeling will
be able to capture the right shape of the true underlying noise density hence leading to an
improved and reliable statistical inference for the system even in cases where the size of the
observed time series is small. Some recent applications of Bayesian nonparametric methods
in nonlinear dynamical systems include Dirichlet process (DP) based reconstruction [HNW09]
and joint state-measurement noise density estimation with non-Gaussian and Gaussian obser-
vational and dynamical noise components respectively [JDVS13].

The layout of the chapter is as follows. In section 3.2, we derive the two competing non-
parametric inferential models. The first model is based on DP mixtures, and we develop its
randomized-efficient version. It is based on the model that has been used for the reconstruc-
tion of random quadratic maps in [HNW09]. It involves two infinite dimensional parameters
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in the form of random probability weights and locations. The second one, being our main con-
tribution, is simpler and is based on GSB mixtures leading to a faster estimation algorithm as
it involves only one infinite dimensional parameter in the form of locations. The DP and GSB
based Gibbs samplers are described in detail in sections 3.3 and 3.4 respectively. In section
3.5 we specialize, for simplicity, to dynamical equations with polynomial nonlinearities to an
arbitrary degree, resorting to simulation. We use simulated time series produced by a cubic
map that is dynamically perturbed by outlying errors of varying intensity. We compare the
performance of the proposed GSB based Gibbs sampler against its randomized DP based and
plain parametric counterparts in the quality of reconstruction, out-of-sample forecasting and
quasi-invariant measure estimation. In section 3.6 we extend our model in cases of arbitrary
lags and higher-dimensional data, while in section 3.7 we conclude with a summary and future
work.

3.2 Building the inferential models

We consider the following random dynamical model given by

xi = T(ϑ, xi−1, zi) = g(ϑ, xi−1) + zi, i ≥ 1, (3.1)

where g : Θ ×X → X, for some compact subset X of R, (xi)i≥0 and (zi)i≥1 are real random
variables over some probability space (Ω,F , P); the set Θ denotes the parameter space and g
is nonlinear, and for simplicity, continuous in xi−1. We assume that the random variables zi are
independent to each other, and independent of the states xi.

In addition we assume that the additive perturbations zi are identically distributed from a zero
mean distribution with unknown density f defined over the real line, so that T : Θ×X×R→
R. We assume that there is no observational noise, so that we have at our disposal a time series
x(n) = (x1, . . . , xn) generated by the Markovian process defined in Eq. (3.1). The time series
x(n) depends solely on the initial distribution of x0, the vector of control parameters ϑ, and the
particular realization of the noise process.

We model the errors in recurrence relation (3.1) as an infinite mixture of zero-mean normal ker-
nels of the form N (x | 0, τ−1) with precision τ and mixing measure, a general discrete random
distribution G = ∑j≥1 πj δτj ; then letting τ = (τj)j≥1 and π = (πj)j≥1 we have

fπ,τ(x) =
∫

τ>0
N (x | 0, τ−1)G(dτ) =

∞

∑
j=1

πjN (x | 0, τ−1
j ).

For the observations (x(n) | x0) and for 1 ≤ i ≤ n we have the transition kernel

fπ,τ(xi | xi−1, ϑ) =
∞

∑
j=1

πjN (xi | g(ϑ, xi−1), τ−1
j ), 1 ≤ i ≤ n, (3.2)
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and associated data likelihood

fπ,τ (x1, . . . , xn | x0, ϑ) =
n

∏
i=1

∞

∑
j=1

πjN (xi | g(ϑ, xi−1), τ−1
j ). (3.3)

As it has been pointed out in [HNW09], a straightforward application of Gibbs sampling ideas,
for sampling from the posterior distribution f (ϑ, x0 | x1, . . . , xn), is not possible. In particular,
we have the following two difficulties:

1. The Gibbs sampler is infinite-dimensional, due to the infinite mixture of kernels.

2. The FCs are of non-standard form, due to the nonlinearities of the associated determinis-
tic map.

For example, if we assign to the initial condition x0 a uniform prior over the compact set X, the
FC for x0 will be

fπ,τ(x0 | · · · ) ∝
∞

∑
j=1

πj

{
I(x0 ∈ X)N (x1 | g(ϑ, x0), τ−1

j )
}

,

namely an infinite mixture of truncated kernels.

3.2.1 Dynamical Slice Sets

Due to the infinite mixture appearing in the product of the likelihood in the equation above,
we are not able to construct Gibbs samplers of finite dimensions.

To make the number of variables that we have to sample finite, we use slice techniques for
infinite mixtures. For each observation xi, we introduce the pair (di, Ai), consisting of the di

clustering variable indicating the component of the infinite mixture the observation xi came
from and the associated random slice set Ai, an almost surely finite set of indices. Notably, the
marginal distribution of the clustering variable is di |π ∼ ∑j≥1 πjδj, so the variables di have an
infinite state space.

Our aim is to have xi | τ, Ai coming from a finite mixture of normal kernels. Letting the random
variable di conditionally on the event {di ∈ Ai} attain a discrete uniform distribution, over
Ai; that is

f (di |Ai) = |Ai|−1I(j ∈ Ai),

we obtain

fτ(xi |Ai) =
∞

∑
j=1

f (xi, di = j |Ai)

=
∞

∑
j=1

f (di = j |Ai) fτ(xi | di = j) = ∑
j∈Ai

|Ai|−1N (xi | 0, τ−1
j ).
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where |Ai| denotes the cardinality of the set Ai. Thus, given the precisions τ and the slice set
Ai, the observation xi comes from an equally weighted almost surely finite mixture of normal
kernels.

Selecting specific forms for the slice sets, we can obtain different reconstruction models. In the
following two sections we select Ai in such way that allows us to recover the DPR and the
GSBR models respectively.

3.3 A Dirichlet process reconstruction model

The DPR model is obtained as a special case of the general reconstruction model if we use non–
sequential slice sets. That is, we assign to each observation xi a slice set that depends on the
weights π via a random variable ui such that

fπ(di = j | ui) = f (di = j |Ai) with Ai = {j ∈N : 0 < ui < πj},

as proposed in the slice sampler for the DPM model by [Wal07] and

fπ(di = j | ui) =
I(j ∈ Ai)

∑∞
s=1 I(s ∈ Ai)

=
I(ui < πj)

∑∞
s=1 I(ui < πs)

=
πj U (ui | 0, πj)

∑∞
s=1 πs U (ui | 0, πs)

,

For the auxiliary variable ui we obtain

ui |π ∼
∞

∑
j=1

πj U (0, πj) and ui |π, di = j ∼ U (0, πj),

Moreover, the joint distribution of ui, di is fπ(ui, di = j) = πj U (ui | 0, πj), while for a given
di = j we have f (xi | di = j) = N (xi | 0, τ−1

j ), so we can write the augmented random densities
as

fπ,τ(xi, ui, di = j) = πj U (ui | 0, πj)N (xi | 0, τ−1
j ). (3.4)

From eqs. (3.2) and (3.4) and letting πj = wj, where wj are the weights in the stick breaking
representation of the DP, that is w1 = z1 and for j > 1 :

wj = zj ∏
s<j

(1− zs), (3.5)

with zj
iid∼ Be(1, c) for some concentration parameter c > 0, we have

fw,τ(xi, ui, di = j | xi−1, ϑ) = wj U (ui | 0, wj)N (xi | g(ϑ, xi−1), τ−1
j ). (3.6)
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In a hierarchical fashion using the slice variables ui and the stick-breaking representation we
have for i = 1, . . . , n and j ≥ 1:

(xi | xi−1, di = j, θ, τ)
ind∼ N (xi | g(ϑ, xi−1), τ−1

j )

(ui | di = j, w)
ind∼ U (0, wj)

P(di = j |w) = wj

wj = zj ∏s<j(1− zs), zj
iid∼ Be(1, c)

c ∼ G(α, β), τj
iid∼ P0.

Then given ϑ, x0 and c the data likelihood based on a sample of size n is given by

fw,τ(xi, ui, di; 1 ≤ i ≤ n | ϑ, x0, c) ∝
n

∏
i=1
I(ui < wdi) τ1/2

di

× exp
{
−

τdi

2
hϑ(xi, xi−1)

}
, (3.7)

where hϑ(xi, xi−1) = (xi − g(ϑ, xi−1))
2.

From Eq. (eq. (3.7)) we can see that the usage of the auxiliary variables resulted in finite mix-
tures of Normal kernels appearing in the likelihood, hence the problem of infinite-dimensionality
has been solved. We note that in [HNW09] the authors used a different model for sampling,
with two main differences. The first difference regards the concentration parameter, which in
their case is fixed, while we let it to be random in contrast with [HNW09]. The second differ-
ence is the way we deal with the nonstandard FCs appearing in eq. (3.7).

In [HNW09], the authors introduce an auxiliary variable vi for each observation xi for 1 ≤ i ≤ n
defined as

vj | τj
ind∼ G(3/2, τj/2),

xi | xi−1, vi, θ
ind∼ U (g(ϑ, xi−1)−

√
vi, g(ϑ, xi−1) +

√
vi),

Using the representation of the normal distribution as a gamma mixture of uniforms, the ob-
tained likelihood for the DPR model can be written as:

fw,τ(xi, ui, di, vi; 1 ≤ i ≤ n | ϑ, x0, c) ∝
n

∏
i=1
I(ui < wdi) τ3/2

di

× e−
viτdi

2 I(vi > hϑ(xi, xi−1)).

This approach, also used in [HNW07a], has the advantage that all the variables are sampled
from mixtures of uniform distributions. Nevertheless, this comes at the cost of larger execution
times -when the sample is large- as the number of the auxiliary variables is equal to the sample
size. We will circumvent this problem by using an embedded Gibbs sampler of strategic aux-
iliary variables, whose size is equal to the length of the vector of the control parameter, hence
resulting in standard FCs with lower execution times.
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3.3.1 Extending the DPR model for prediction

The DPR model can be extended for prediction purposes, for a given prediction horizon T > n,
given an observed time series x(n) = (x1, . . . , xn),. In this case our aim is the estimation of the
future unobserved observations (xn+1, . . . , xn+T).

Letting nT = n + T, we can extend the the likelihood of the DPR model with the the random
variables (xn+1, . . . , xn+T), and obtain

fw,τ(xi, ui, di ; 1 ≤ i ≤ nT | ϑ, x0, c) ∝
nT

∏
i=1
I(ui < wdi)τ

1/2
di

× exp
{
−

τdi

2
hϑ(xi, xi−1)

}
. (3.8)

In the next section we describe an MCMC based algorithm for the randomized DPR ( rDPR)
model. The same procedure will be followed for the model based on the GSB random measure,
as we are interested in their comparison in terms of reconstruction and prediction efficiency.

3.3.2 Slice sampler for the rDPR model

In this section we describe an MCMC slice sampling algorithm for estimating the model. Specif-
ically we are interested in sampling (x0, ϑ) and the future unobserved variables xn+1, . . . , xn+T.
Before the description of the algorithm, we propose a certain prior specification scheme.

For the initial condition x0 we assign a uniform prior distribution over the set X̃ ⊆ R, which
represents our prior knowledge for the state space of the dynamical model given in Eq. (3.1).
Over the vector control parameters of the system ϑ we assume a uniform prior over the set
Θ̃ of the parameter space Rk. For the Dirichlet random measure P ∼ DP(c, P0), we assume
for the base measure a Gamma distribution, namely P0(dτ) = G(τ | a, b)dτ. Finally, following
[Wes92], the concentration parameter c attains a Gamma prior G(α, β), and will be updated as
described in Eq. (1.43).

After initializing the variables di for i = 1, . . . , nT and the variables c, x0 and ϑ, at each iteration,
we will sample the variables:

(τj), 1 ≤ j ≤ N∗, di, 1 ≤ i ≤ nT,

and
(ϑ, x0, c, znT+1),

with N = max1≤i≤nT di.

1. We begin with the update of the stick–breaking weights, given the clustering variables.
Namely, we update the zj–s using

f (zj | · · · ) = Be

(
zj | 1 +

nT

∑
i=1
I(di = j), c +

nT

∑
i=1
I(di > j)

)
, (3.9)
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for 1 ≤ j ≤ N. Then, we use the stick–breaking representation in order to construct the updated
weights (wj)j≥1.

2. We can now sample the slice variables ui, for i = 1, . . . , nT which are uniform distributions
on the interval (0, wdi), namely

f (ui | · · · ) ∝ I(ui < wdi). (3.10)

3. We then sample the precisions τj for j = 1, . . . , N and N = max1≤i≤nT di. We have that

f (τj | · · · ) = G
(

τj | a +
1
2

nT

∑
i=1
I(di = j), b +

1
2

nT

∑
i=1
I(di = j) hϑ(xi, xi−1)

)
, (3.11)

If j > N we sample the additional τj’s from the prior G(a, b).

4. In order to determine the number of the additional weights and precision we let u∗ =

min1≤i≤nT{ui} and find the smallest integer N∗ for which

N∗

∑
j=1

wj > 1− u∗. (3.12)

This step is crucial, as it provides an exact number of variables that we need to sample without
using any approximation, as discussed in Section 1.5.

5. We proceed with the sampling of the allocation variables di for i = 1, . . . , nT. It is that

P(di = j | · · · ) ∝ τ1/2
j exp

{
−

τj

2
hϑ(xi, xi−1)

}
I(j ∈ Ai). (3.13)

6. Then, we can sample the randomized concentration parameter c of the DP. Following [Wes92],
we let κ ∈ {1, . . . , nT} denote the number of unique values of the clustering variables. Then c
can be sampled from the following two-step scheme:

1. Sample s ∼ Be(nT + 1, c)

2. c | s, κ ∼ ρc G(α + κ, β− log c) + (1− ρc) G(α + κ − 1, β− log c),

with the weights ρc satisfying ρc
1−ρc

= α+κ−1
nT(β−log c) .

7. We can now sample zn+1 from the noise predictive f (zn+1 | x1, . . . , xn). At each iteration
of the Gibbs sampler we have updated weights (πj)1≤j≤N∗ and precisions (τj)1≤j≤N∗ and we
sample independently ρ ∼ U (0, 1). Then we choose τj with 1 ≤ j ≤ N∗ from

j−1

∑
i=0

πi < ρ ≤
j

∑
i=0

πi, π0 = 0.

If ρ > ∑N∗
i=0 πi, we sample τj from the prior G(a, b). In any case we sample zn+1 ∼ N (0, τ−1

j ).
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8. For the vector of parameters ϑ, the FC becomes

f (ϑ | · · · ) ∝ I(ϑ ∈ Θ̃) exp

{
−1

2

nT

∑
i=1

τdi hϑ(xi, xi−1)

}
. (3.14)

9. The FC for x0, will also be a truncated distribution

f (x0 | · · · ) ∝ I(x0 ∈ X̃) exp
{
−

τd1

2
hϑ(x1, x0)

}
. (3.15)

10. The full conditional densities for the future unobserved observations, when T ≥ 2 and for
j = 1, . . . , T − 1, are given by

f (xn+j | · · · ) ∝ exp
{
−1

2

[
τdn+j hϑ(xn+j, xn+j−1) + τdn+j+1 hϑ(xn+j+1, xn+j)

]}
. (3.16)

For j = T the full conditional is normal with mean g(ϑ, xn+T−1) and variance τ−1
dn+T

, that is

f (xn+T | · · · ) = N
(

xn+T | g(ϑ, xn+T−1), τ−1
dn+T

)
. (3.17)

3.4 A Geometric stick–breaking reconstruction model

For the construction of the GSBR model, we will use the generic reconstruction model with
sequential slice sets of the form Ai = {1, . . . , Ni}, as proposed in [FGMW10]. In particular,
letting Ai = {1, . . . , Ni}, with Ni being an almost surely finite discrete random variable of
mass fN(· | λ), and letting

f (di = j |Ni) ≡ f (di = j |Ai) =
I(j ∈ Ai)

∑∞
k=1 I(k ∈ Ai)

= N−1
i I(j ≤ Ni), 1 ≤ i ≤ n

a discrete uniform distribution on the set Ai, we obtain a GSB mixture based augmented ran-
dom density

fτ(xi, Ni = l, di = j) = fN(l | λ) l−1 × I(j ≤ l)N (xi | 0, τ−1
j ). (3.18)

Marginalizing (3.18) with respect to (Ni, di), it is that

fτ(xi) =
∞

∑
j=1

πjN (xi| 0, τ−1
j ) with πj =

∞

∑
l=j

l−1 fN(l | λ).

When Ni comes from the negative binomial distribution

fN(l | λ) = NB(l | 2, λ) = lλ2(1− λ)l−1I(l ≥ 1),

the weights πj, j ≥ 1 are geometric, that is

πj = λ (1− λ)j−1I(j ≥ 1). (3.19)
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The geometric weights can be thought of as a reparametrization of the expectation of the stick-
breaking weights given in Eq. (3.5), in the sense that πj = E

{
wj
}

with λ = (1 + c)−1. This is
important in terms of the comparison between the two models, as the main difference between
the DPR and the GSBR regards the nature of the weights. Specifically, the nonconsecutive slice
sets of the DPR lead to the necessity of a complete search of the vector where the weights are
stored, in order to identify which ones should be chosen. The ordered (decreasing) weights
of the GSBR model lead to lower mean execution times, as they circumvent the need for a
complete search.

From relations (3.2) and (3.18), and letting fN(· | λ) = NB(· | 2, λ), we have

fτ(xi, Ni = l, di = j| xi−1, θ) = NB(l| 2, λ) l−1 I(j ≤ l)×N
(

xi | g(θ, xi−1), τ−1
j

)
(3.20)

In a hierarchical fashion using the slice variables Ni we have that for i = 1, . . . , n and j ≥ 1:

(xi| xi−1, di = j, θ, τ)
ind∼ N (g(θ, xi−1), τ−1

j )

(di|Ni = l) ind∼ DU{1, . . . , l}
πj = NB(j| 1, λ), Ni

iid∼ NB(2, λ)

τj
iid∼ P0

Therefore, the obtained likelihood based on a sample of size n can be written as

fτ(xi, Ni, di; 1 ≤ i ≤ n | ϑ, x0, λ) ∝
n

∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni) τ1/2
di

× exp
{
−

τdi

2
hϑ(xi, xi−1)

}
. (3.21)

3.4.1 Extending the GSBR model for prediction

Similarly with the DPR model, we can extend the GSBR model to include the random variables
(xn+1, . . . , xn+T), for prediction purposes, at a given horizon T > n. In this case the augmented
likelihood of the GSBR model becomes

fτ(xi, di, Ni ; 1 ≤ i ≤ nT | ϑ, x0, λ) ∝
nT

∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni) τ1/2
di

× exp
{
−

τdi

2
hϑ(xi, xi−1)

}
. (3.22)

In the special case where there is additional information on the path of the future unobserved
orbit, for example there are intervals An+i such that xn+i ∈ An+i, i = 1, . . . , T we have:
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f (x0, xn+1, . . . , xn+T, ϑ | x1, . . . , xn, {xn+1 ∈ An+1} , . . . , {xn+T ∈ An+T}) ∝

f (x0, ϑ) f (x1, . . . , xn | x0, ϑ) f (xn+1, . . . , xn+T | x1, . . . , xn, x0, ϑ)×
P(xn+1 ∈ An+1, . . . , xn+T ∈ An+T)︸ ︷︷ ︸

∏T
i=1 I(xn+i∈An+i)

.

3.4.2 The slice sampler for the GSBR model

To choose the fittest between the rDPR and GSBR models, we adapt to a “synchronized” prior
specification. More specifically, due to the choice of a fully stochastic version of the DPR al-
gorithm, which involves imposing a G(α, β) prior over the concentration parameter c, we in-
troduce “synchronized” prior specifications, assigning a transformed gamma prior over the
geometric probability λ via λ = (1 + c)−1. So as a prior over λ we set

fτ(λ) = T G(λ | α, β) =
βαeβ

Γ(α)
λ−(α+1)e−β/λ(1− λ)α−1, (3.23)

with λ ∈ (0, 1). Note that for generic applications of the GSBR model, a beta conjugate prior
f (λ; α, β) = Be(λ; α, β) will be easier to implement. As a base measure for GSBR, we use
P0(dτj) = G(τj | a, b)dτj, j ≥ 1 for fixed hyperparameters a and b, as in the DPR.

We are now ready to describe the Gibbs sampler and the full conditional densities for estimat-
ing the GSBR model. After initializing the variables di for i = 1, . . . , nT and the variables λ, x0

and θ, at each iteration, we will sample the variables:

(τj), 1 ≤ j ≤ N∗, (di, Ni), 1 ≤ i ≤ nT,

and
(θ, x0, λ, znT+1),

with N∗ = max1≤i≤nT Ni.

1. We first sample the precisions τj for j = 1, . . . , d∗ and d∗ = max1≤i≤nT di. We have that

f (τj | · · · ) = G
(

τj | a +
1
2

nT

∑
i=1
I(di = j), b +

1
2

nT

∑
i=1
I(di = j) hθ(xi, xi−1)

)
, (3.24)

where -as above- the expression f (τj | · · · ) denotes the density of τj conditional on the rest of
the variables.

2. We then sample the infinite mixture allocation variables di for i = 1, . . . , nT. It is that

P {di = j | · · · } ∝ τ1/2
j exp

{
−

τj

2
hθ(xi, xi−1)

}
I(j ≤ Ni).
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3. Next, to construct the sequential slice sets Ai for 1 ≤ i ≤ nT we have to sample Ni from

P {Ni = l | di = j, · · · } ∝ (1− λ)lI(l ≥ j),

which is a truncated geometric distribution over the set {j, j + 1, . . .}.

4. The full conditional for x0, with a uniform prior over the set X̃ ⊆ R that represents our prior
knowledge for the state space of the dynamical system in relation (3.1) will be

f (x0 | · · · ) ∝ I(x0 ∈ X̃) exp
{
−

τd1

2
hθ(x1, x0)

}
. (3.25)

5. The full conditional densities for the future unobserved observations, when T ≥ 2 and for
j = 1, . . . , T − 1, are given by

f (xn+j | · · · ) ∝ exp
{
−1

2

[
τdn+j hθ(xn+j, xn+j−1) + τdn+j+1 hθ(xn+j+1, xn+j)

]}
. (3.26)

For j = T the full conditional is normal with mean g(θ, xn+T−1) and variance τ−1
dn+T

, that is

f (xn+T | · · · ) = N
(

xn+T| g(θ, xn+T−1), τ−1
dn+T

)
. (3.27)

6. For the vector of parameters θ, and assuming a uniform prior over the subset Θ̃ of the
parameter space Rk, the full conditional becomes

f (θ | · · · ) ∝ I(θ ∈ Θ̃) exp

{
−1

2

nT

∑
i=1

τdi hθ(xi, xi−1)

}
. (3.28)

7. Taking into consideration relation (3.23), the full conditional for the geometric probability λ

is
f (λ | · · · ) ∝ λ2nT−α−1 (1− λ)LnT e−β/λI(λ ∈ (0, 1)), (3.29)

where LnT = α + ∑nT
i=1 Ni − nT − 1.

8. Having updated λ, we construct the geometric weights πj for 1 ≤ j ≤ N∗ via Eq. (3.19). We
are now ready to sample zn+1 from the noise predictive f (zn+1|x1, . . . , xn). At each iteration
of the Gibbs sampler we have updated weights (πj)1≤j≤N∗ and precisions (τj)1≤j≤N∗ and we
sample independently ρ ∼ U (0, 1). Then we take the τj with 1 ≤ j ≤ N∗ satisfying

j−1

∑
i=0

πi < ρ ≤
j

∑
i=0

πi, π0 = 0.

If ρ > ∑N∗
i=0 πi, we sample τj from the prior G(a, b). In any case we sample zn+1 from the Normal

kernel N (0, τ−1
j ).
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Details on sampling efficiently from the nonstandard densities arising in Eqs. (3.15) to (3.17)
and Eqs. (3.25) to (3.27), via the use of embedded Gibbs samplers in order to circumvent
Metropolis–within–Gibbs implementations, are provided in Appendix A.1. In Appendix A.2
we also derive the transformed posterior of the geometric probability λ given in Eq. (3.29).

We note that if we use a Beta conjugate prior for the geometric probability λ, i.e. λ ∼ Be(α, β),
then the FC will be

f (λ | · · · ) = Be

(
λ | α + 2 nT, β +

nT

∑
i=1

Ni − nT

)
, (3.30)

3.5 Simulation results

In this section we will illustrate the efficiency of the two models described above, using syn-
thetic data sets coming from cubic polynomial maps. Moreover we will compare the DPR and
the GSBR models in terms of efficiency and speed. We will see that the two models give almost
indistinguishable results, while the easier to implement GSBR algorithm exhibits lower mean
execution times when compared to the DPR model. For a fair comparison, we use a trans-
formed gamma prior instead of the -otherwise more reasonable choice- conjugate beta prior
for the geometric probability λ.

Furthermore, in order to emphasize on the motivation for a BNP framework, we compare the
two nonparametric models with the associated parametric Bayesian reconstruction-prediction
model (denoted as Param. in the Tables), i.e. a model that uses the assumption of Gaussian
errors with unknown precision. We will use the Percentage Absolute Relative Error (PARE)
defined as PARE = 100× |x − x̂|/|x|, where x and x̂ are the true and estimated values of the
quantities of interest, respectively.

3.5.1 The experimental setup

The dynamical behavior of the cubic map: Quadratic polynomial maps can exhibit for each
parameter value at most one stable attractor, while multistability -as we mentioned in Section
2.4- can be achieved with higher degree polynomial maps [KFG99]. We will generate observa-
tions from a cubic random map with a deterministic part given by

g̃(ϑ∗, x) = 0.05 + ϑ∗x− 0.99x3. (3.31)

For ϑ ∈ Θbi = [ ϑ bi, ϑbi] with ϑ bi = 1.27 and ϑbi = 2.54 the map becomes bistable. In the phase
space of the map we can identify two mutually exclusive period-doubling cascades together
with two disjoint basins of attraction. The dynamical behavior of the cubic map in Eq. 3.31 can
be depicted via the bifurcation diagram given in Fig. 3.1. The two coexisting attracting sets for
ϑ∗ ∈ Θbi areO+ (in blue) andO− (in green). For values of ϑ slightly larger than 2.54, the setO+

undergoes a sudden change. It becomes repelling, and all orbits are attracted by the “lower”
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set O−. The same behavior can be observed for all ϑ ∈ (2.54, 2.65]. Nevertheless, orbits in the
presence of dynamical noise of sufficient intensity, visit the vicinity of the repelling set O+, ad
infinitum.

Figure 3.1: The bifurcation diagram for the deterministic map xi = g(ϑ∗, xi−1).

In Fig. 3.2, we set the value of the control parameter to ϑ = ϑ? = 2.55 (which is the value
of the control parameter we have used in our numerical experiments) and we superimpose
two deterministic and one noisy orbit. The two deterministic orbits, starting from x0 = 1 and
x0 = −1, are depicted in blue and green respectively, whereas the stochastic, starting from
x0 = 1, in red. For values of ϑ greater than 2.65, there is only one stable attractor.
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Figure 3.2: The orbits of the the deterministic map xi = g(ϑ∗, xi−1), with ϑ∗ = 2.55, starting from x0 = 1
and x0 = −1 are depicted in blue and green, respectively. A dynamically-noisy orbit, starting from
x0 = 1, is given in red.

Noise processes: We illustrate the GSBR and rDPR models with simulated data sets, consist-
ing of observations generated from the cubic random recurrence xi = g̃(ϑ∗, xi−1) + zi, for the
specific parameter value ϑ∗ = 2.55 and initial condition x0 = 1. The dynamical noise zi was
sampled from:

1. The equally weighted normal 4-mixture

f1 =
3

∑
r=0

1
4
N
(
0, (5r + 1)σ2) , σ = 10−2. (3.32)
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2. The normal 2-mixtures, which exhibit progressively heavier tails for 1 ≤ l ≤ 4

f2,l =
5 + l

10
N (0, σ2) +

5− l
10
N
(
0, (200σ)2) , σ = 10−3. (3.33)

As a measure of the tail fatness of the density z ∼ f , we use the mean absolute deviation from
the mean normalized by the standard deviation, for a zero mean z it is that TFf = E|z|/

√
E|z|2.

The closer TFf is to 1, the thinner the tails are. It can be verified numerically that

TFf1 > TFf2,1 > · · · > TFf2,4 .

We model the deterministic part g(ϑ, x) of the map in Eq. (3.1) with a polynomial in x of degree
m = 5.

Prior specifications: Here we define the synchronized prior specifications of the GSBR and
rDPR Gibbs samplers. We use the following general prior set up:

c ∼ G(α, β), λ ∼ T G(α, β), {τj ∼ G(a, b) : j ≥ 1}
ϑ ∼ U ((−M, M)k+1), x0 ∼ U (−M0, M0),

where k is the degree of the modeling polynomial.

A. Noninformative reconstruction and prediction – NRP: In the absence of any prior knowl-
edge, we propose a noninformative prior specification for simultaneous reconstruction and
prediction, namely

PSNRP : α = β ≥ 10−1, a = b ≥ 10−4, M� 1, M0 � 1.

B. Informative reconstruction and prediction – IRP: When a–priori we believe that the dy-
namical noise resembles a finite mixture of zero mean Gaussians with variances that are close
to each other, we set:

PS IRP : α > β ≥ 10−1, a > b ≥ 10−4, M� 1, M0 � 1.

Such prior specifications induce a small average GSB probability λ (and consequently a large
average DP concentration mass c), forcing the Gibbs samplers to activate a large number of
normal kernels. Thus, generating a more detailed Gaussian mixture representation of the un-
known dynamical noise.

Data sets and invariant sets: In Figure 3.3(a), we display the deterministic orbit of length 280
of the deterministic map yi = g̃(ϑ∗, yi−1), with starting point at y0 = 1. We have approximated
the interval X that remains invariant under the action of g̃(ϑ∗, · ) by [−1.8881, 1, 8991] (see Ap-
pendix B), and the associated average characteristic Liapunov exponent by 0.4625. Realizations
of the random recurrence xi = g̃(ϑ∗, xi−1) + zi, x0 = 1 under different types of noise are given
in Figure 3.3(b) and (c) respectively.
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Our observations for reconstruction and out–of–sample prediction will be the data sets x(200)
f1

and {x(200)
f2,l

: 1 ≤ l ≤ 4}. The latter data sets, have been generated in R under the random
number generator seeds RNG f1 = 1 and RNG f2,l :1≤l≤4 = {10, 15, 13, 38}.

Approximations of the deterministic and noisy invariant measures are given in Figure 3.3(d)-
(f). The deterministic invariant measure µg̃,0(dy) is approximated in Figure 3.3(d). The z-noisy
measures µg̃,z(dx) approximated in Figure 3.3(e) and (f), are quasi-invariant in the sense that
for all measurable subsets B of R it is that µg̃,z(B) = limt→∞ P(xt ∈ B | τX′ > t), where τX′ is a
random time denoting the first time the system enters the trapping set X′ (see Appendix B).
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Figure 3.3: In Figure 3.3(a)-(c) we display the deterministic orbit and f1 and f2,3 data-realizations with
initial condition x0 = 1. In Figure 3.3(d)-(f) we display the deterministic and the f1 and f2,3 quasi-
invariant set approximations respectively.

Complexity measures and prior specifications: The occurrence of an informative structure
in the available data sets may help the practitioner to decide between an informative and a
noninformative prior set up.

Approximate entropy (ApEn) [Bor15, Pin91] can be used to assess the complexity of the avail-
able set x(n)f of observations. Large ApEn values indicate irregular and unpredictable time
series data. Nevertheless, it is known that ApEn values are heavily dependent on sample size
(lower than expected for small sample sizes).

A recently developed complexity measure that is less dependent on the sample size is the fore-
castable component analysis Ω (ForeCa) [Goe13, Goe16], which is based on the entropy of the
spectral density of the time series, and is normalized between zero and one. Large Ω values
characterize more predictable time series.
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In Figure 3.4, we display the Ω curves as functions of the sample size n, for the time series
x(n)f1

and {x(n)f2,l
: 1 ≤ l ≤ 4}. For the computation of the Ω curves we have used the weighted

overlapping segment averaging (WOSA) method [Goe16]. The data sets {x(n)f2,l
: 1 ≤ l ≤ 4}

have the more informative structure as for n > 80 and 1 ≤ l ≤ 4 it is that

Ω(x(n)f2l
) > Ω(x(n)f1

).
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Figure 3.4: Here we display the Ω curves relating to the data sets x(n)f1
and {x(n)f2,l

: 1 ≤ l ≤ 4} for n
between 50 and 280.

3.5.2 Informative reconstruction and prediction under the f1 dynamic noise

We ran the Param., rDPR and GSBR Gibbs samplers for T = 20 in a synchronized mode, for
5× 105 iterations and a burn-in period of 10, 000, using data set x(200)

f1
under the informative

prior specification (IRP) PS IRP with α = 3, β = 0.3, a = 1, b = 10−3 and M = M0 = 10.

We remark that under noninformative prior (NRP) specifications of the form α = β ≤ 0.3, and
a = b ≤ 10−3, the average number of active normals for both nonparametric samplers is lesser
than four, leading to less accurate estimations. The following provide a summary and some
brief comments.

Initial condition and dynamical noise density estimations: In Figure 3.5(a) we display kernel
density estimations (KDEs) based on the predictive samples of the marginal posterior (PPM)
for the initial condition x0. The differences between the two predictives coming from the GSBR
and rDPR samplers are indistinguishable.

The three modes of the predictive density of x0 are very close to the three real roots of the
polynomial equation g̃(ϑ∗, x)− g̃(ϑ∗, 1) = 0 which are the preimages of g̃(ϑ∗, 1). Note that for
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ϑ ∈ (0.74, 2.97), it is that g̃−1(ϑ, g̃(ϑ, 1)) ∈ {ρ,−1− ρ, 1} with ρ = −(1 +
√

4ϑ/0.99− 3)/2. We
refer to the three preimages of g̃(ϑ, 1) by xL = ρ (left), xM = −1− ρ (middle) and xR = 1 (right).

In Figure 3.5(b), we give superimposed the noise predictives coming from the two models
together with the true density of the noise component given in eq. (3.32). We note how the
synchronized execution produces almost identical dynamical noise density estimations, which
are very close to the true noise density f1 (solid line in red).
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Figure 3.5: In Figure 3.5(a) we give superimposed the KDEs based on the posterior marginal predictive
samples of the initial condition variable x0. In Figure 3.5(b) we superimpose the GSBR and the rDPR
noise density estimations together with the true dynamical error density.

In Figure 3.6(a)-(f), we plot the running ergodic averages for the θj variables of the first 80, 000
iterations after burn-in. We observe that the θj chains have converged after the first 10, 000
iterations, and that the chains are mixing well. In Table 3.1 we display the percentage absolute
relative errors (PARE’s) of the synchronized estimations. For each j, we have created K =

47 approximately independent samples of size N = 104, each sample separated by s = 500
observations

{θ(ir)j : Mr + 1 ≤ ir ≤ Mr + N} with Mk = (r− 1)(N + s),
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for r = 1, . . . , K. Then we created K realizations of the sampling mean (SM) estimator. Finally
we took

θ̂j =
1
K

K

∑
r=1

1
N

Mr+N

∑
i=Mr+1

θ
(i)
j , 0 ≤ j ≤ 5.

We estimate x0 by the maximum a–posteriori (MAP) of the x0 predictive sample, by dividing
the interval [−2, 2] into 300 bins. We remark the accuracy and the closeness of the estimated ϑ

values.
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Figure 3.6: Chain ergodic averages for the θj variables based on the data set x(200)
f1

, under prior specifi-
cation PS IR, are superimposed in Figure 3.6.

Table 3.1: (ϑ, x0) reconstruction PAREs (T = 0) under the informative prior configuration.

Model θ0 θ1 θ2 θ3 θ4 θ5 x0

Param. 1.98 0.37 0.03 0.58 0.00 0.04 xM : 3.87
rDPR 0.81 0.29 0.01 0.09 0.04 0.14 xM : 0.80
GSBR 0.19 0.27 0.05 0.04 0.02 0.18 xR : 0.60

Estim. x201 x202 x203 x204 x205 GSBR-Av Par-Av
SM 6.43 7.35 29.70 5.48 13.68 12.53 53.49
MAP 3.84 11.48 19.16 2.15 149.06 37.14 53.25

Out–of–sample posterior predictive marginals and the prediction barrier: In Figure 3.7(a)-(j)
we display the KDEs of the marginal posterior predictive samples of the variables x201, . . . , x205

and x216, . . . , x220 coming from the GSBR (solid red line) and rDPR (dashed black line) super-
imposed. Together, we superimpose the f1 quasi-invariant measure approximation (solid black
line). We note how the synchronized execution produces almost identical posterior predictive
marginals (PPM’s).

As the prediction horizon increases, the PPM densities are starting to resemble to the f1 quasi-
invariant density approximation, which naturally forms a prediction barrier. As such, any
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attempt to predict beyond this time horizon will replicate the quasi-invariant measure approx-
imation. From this point on, we can make only probabilistic prediction arguments for the long
term behavior of the system that involve the quasi-invariant measure i.e. P(xn+i ∈ A) =

µg̃,z(A) for all i ≥ T and for all measurable subsets A of R.
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Figure 3.7: In Figure 3.7(a)-(j) we display superimposed the first five and the last five KDEs of the out–
of–sample posterior marginal predictive based on data set x(200)

f1
under the informative specification

PS IRP. Together we superimpose the KDE of the f1 quasi invariant density (solid black line). In all
Figures, the bullet point represents the corresponding true future value.

In Table 3.2, we give the mean computational time per 103 iterations relating to the synchro-
nized execution of the rDPR and GSBR samplers under prior set up PS IRP for a simple recon-
struction (T = 0) and prediction (T = 20). In both cases, the GSBR sampler has the fastest
execution times. In the last two rows of Table 3.1 we give the PARE’s of the first five GSBR
out–of–sample predictions using the SM and MAP estimators. The last two columns exhibit
the mean PARE’s under a GSBR and a parametric (Param.) prediction.

Table 3.2: Mean execution times in seconds per 103 iterations for x(200)
f1

.

Data set x(200)
f1

Prior spec. Algorithm T = 0 T = 20
PS IRP rDPR 5.44 11.76
PS IRP GSBR 2.24 8.65
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3.5.3 Noninformative reconstruction and prediction under the f2,l heavy tailed dy-
namic noise

Here we simultaneously reconstruct and predict using the noninformative prior set up. More
specifically for T = 20 we set α = β = 0.3, a = b = 10−3, M = M0 = 10; we iterated the GSBR
sampler 5× 105 after a burn-in period of 10, 000.

In Figure 3.8 we display the KDEs based on the PPM samples of the out–of–sample variables
{x201, . . . , x205} and {x216, . . . , x220} (solid lines in red) under data sets x(200)

f2,l
: 1 ≤ l ≤ 4} (rows

(a) to (d)). Together we superimpose the KDE of the associated quasi-invariant densities for
1 ≤ l ≤ 4 (solid lines in black).
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Figure 3.8: In Figure 3.8 we display the GSBR KDEs of the PPM sample of the out–of–sample variables
{x201, . . . , x205} and {x216, . . . , x220}(solid lines in red) based on samples x(200)

f2,l
: 1 ≤ l ≤ 4} (rows (a) to

(d)) under the noninformative prior specification. Together we superimpose the KDE of the f2,l quasi-
invariant densities for 1 ≤ l ≤ 4 (solid lines in black).

In Tables 3.3 and 3.4 we display a PARE summary of (ϑ, x0) estimations and out-of-sample
prediction respectively, based on data sets {x(200)

f2,l
: 1 ≤ l ≤ 4}.

In Table 3.3 we compare horizontally the PARE results coming from the GSBR and the paramet-
ric sampler (Param.); we notice that in all cases, the accuracy of the GSBR model is considerably
higher than its parametric counterpart. In all cases, the parametric algorithm predicts a quintic
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polynomial deterministic part. Also, the GSBR model precision improves as the noise model
becomes more heavy tailed.

Table 3.3: Simultaneous reconstruction-prediction under the noninformative prior specification. The
(ϑ, x0) PARE’s are based on the data sets {x(200)

f2,l
: 1 ≤ l ≤ 4} for T = 20.

Noise Model θ0 θ1 θ2 θ3 θ4 θ5 x0

f2,1 Param. 19.95 1.54 4.83 4.39 2.52 1.01 7.27
GSBR 0.51 0.01 0.06 0.02 0.02 0.00 xR : 0.03

f2,2 Param. 2.89 0.94 4.07 2.37 2.07 0.76 7.49
GSBR 0.54 0.05 0.06 0.12 0.03 0.03 xR : 0.03

f2,3 Param. 29.97 0.40 4.97 1.25 1.88 0.41 7.55
GSBR 0.20 0.04 0.04 0.13 0.02 0.04 xR : 0.03

f2,4 Param. 15.57 1.07 1.33 3.71 0.43 1.03 6.40
GSBR 0.10 0.01 0.05 0.03 0.01 0.00 xR : 0.03

In Table 3.4 when we compare the average PARE results coming from the GSBR and the para-
metric sampler (the last two columns) we notice that in all cases for both the SM and the MAP
estimators, the prediction of the GSBR model is considerably better. We also notice, that as
we move to a more heavy tailed noise model, the GSBR prediction gradually improves and
the MAP–GSBR estimator becomes more efficient. This is due to the multimodal nature of the
PPM’s generated by GSBR.

Table 3.4: Simultaneous reconstruction-prediction under the noninformative prior specification. The
out–of–sample PARE’s are based on data sets {x(200)

f2,l
: 1 ≤ l ≤ 4} for T = 20. The GSBR-Av and

Par-Av columns are the PARE means of the first five out–of–sample estimations using the GSBR and the
parametric Gibbs (Param.) samplers respectively.

Noise Estim. x201 x202 x203 x204 x205 GSBR-Av Par-Av
f2,1 SM 12.50 0.86 12.57 44.04 82.11 30.42 58.72

MAP 12.86 2.10 77.13 25.89 39.99 31.59 69.62
f2,2 SM 0.52 0.70 8.07 167.16 15.17 38.32 65.08

MAP 0.29 1.72 0.50 103.00 20.96 25.29 65.57
f2,3 SM 0.72 7.99 0.01 9.74 49.94 13.68 233.53

MAP 0.14 0.47 2.34 0.39 1.38 0.93 234.80
f2,4 SM 0.24 1.01 2.95 3.79 40.25 9.65 60.69

MAP 0.07 0.86 4.78 0.13 21.00 5.37 109.23

3.6 Extending the GSBR sampler

In this section we make two extensions of the previously described GSBR model, in order to be
able to include:

1. Deterministic counterparts with higher order lags
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2. Higher-dimensional data

The above extensions are essential in terms of widening the application areas of the proposed
model and being able to analyze real data sets, often characterized by high dimensionality
and/or need for many autoregressive (polynomial) terms for the approximation of the deter-
ministic part.

3.6.1 Higher order lags

We are interested in performing reconstruction and prediction of random dynamical systems,
from observed time series with additive errors and deterministic part including higher order
lags. Specifically, we define the random recurrence relation T : Θ×Xd ×R→ R given by

Xi = T(θ, Xi−1, . . . , Xi−d, ei) (3.34)

= g(θ, Xi−1, . . . , Xi−d) + ei, i ≥ 1,

where, g : Θ ×Xd → X, for some compact X ⊆ R, (Xi)i≥−d+1 and (ei)i≥1 are real random
variables over some probability space (Ω,F , P); we denote by θ ∈ Θ ⊆ Rm any dependence of
the deterministic map g on the control parameters. As above, g is nonlinear, and for simplicity,
continuous in Xi:d := (Xi−1, . . . , Xi−d). The random variables ei are assumed to be independent
to each other, independent of the states Xi−r for r < i + d and identically distributed from a
0−mean distribution with unknown density f defined over the real line. The time series xn is
determined by the distribution of the initial vector X1:d, the vector of control parameters θ, and
the particular realization of the noise process.

Finally, notice that the lag-one stochastic process (W1
i , . . . , Wd

i ), formed out, from time-delayed
values of the (Xi) process, defined by

Wk
i =

{
g(θ, W1

i−1, . . . , Wd
i−1) + ei k = 1

Wk−1
i−1 1 < k ≤ d ,

is Markovian over Rd. In other words, the time series is d−th order Markovian, as each obser-
vation xi depends on the d previous states. This weakening of the Markov property makes the
modeling more flexible, especially in cases of e.g. financial time series, where we have evidence
of long memory. From a dynamical point of view, this is also an important assumption, as it
enables us to analyze results in the embedded phase space of the one-dimensional time series
in our disposal, using Taken’s embedding Theorem [Tak81]. From Eq. (3.34), we obtain the
data likelihood

fπ,τ (x1, . . . , xn, | x1:d, ϑ) =
n

∏
i=1

∞

∑
j=1

πjN (xi | g(ϑ, xi:d), τ−1
j ).
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Then, using sequential slice sets of the form Ai = {1, . . . , Ni} and letting fN( · |p) = NB( · |2, p)
for the distribution of the auxiliary Ni, we obtain again the geometric weights πj = λ(1− λ)j−1

and we have that for i = 1, . . . , n and j ≥ 1:

(xi | xi:d, θ, di = j, τ)
ind∼ N (xi | g(ϑ, xi:d), τ−1

j )

For the prediction of T future unobserved observations and nT = n + T the associated likeli-
hood becomes

f (xi, di, Ni ; 1 ≤ i ≤ nT | ϑ, x1:d, λ) ∝
nT

∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni) τ1/2
di

× exp
{
−

τdi

2
hϑ(xi, xi:d)

}
, (3.35)

where hϑ(xi, xi:d) = (xi − g(ϑ, xi:d))
2.

The construction of the slice sampler is straightforward, following Section 2. We note that for
prior distribution over the initial condition vector, we may use a Uniform distribution over a
suitable subset X̃ of Rd, based on our a-priori knowledge about the associated phase space of
the system, instead of a constant prior.

Furthermore, there is a slight change in the full conditional distributions of the future variables,
as they include more terms due to the higher lag, namely for j = 1, . . . , T we can write

f (xn+j | . . .) ∝ exp

−
1
2

j+d

∑
k=j
k≤T

τdn+k hϑ(xn+k, x(n+k):d)

 ,

meaning that e.g. the FC for the last future unobserved xn+T will be a Normal distribution

f (xn+T | . . .) ∝ exp
{
−

τdn+k

2
hϑ(xn+T, x(n+T):d)

}
.

Simulations

We illustrate the performance of the proposed model on the reconstruction and prediction of
observed time series from the Hénon map, using the one-dimensional lag-2 representation. We
could also have used one-dimensional observations using the x or y coordinate of the classical
2-dimensional map. Specifically, we use data sets x(200)

f2,1
of length 200, generated by the Hénon

map
xi = 1.38− x2

i−1 + 0.27xi−2 (3.36)

perturbed by the f2,l , 1 ≤ l ≤ 4 additive dynamical noise

f2,l =
5 + l

10
N (0, σ2) +

5− l
10
N (0, 105σ2), σ2 = 10−7 (3.37)
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and as modeling polynomial we will use the complete quadratic map lag 2

g(ϑ, x, y) = θ0 + θ1x + θ2y + θ3xy + θ4x2 + θ5y2. (3.38)

The synthetic set of observations is coming from

xi = g(ϑ, xi−1, xi−2) + ei, ei
iid∼ f2,l (3.39)

which is alternatively called a polynomial autoregressive (PAR) process of second degree with
lag 2 [KKA15] PAR(2, 2), with an unknown vector of initial conditions x0 = (x0, x−1). In our
case, we choose (x0, x−1) = (−0.5, 1.2).

Here we simultaneously reconstruct and predict using the noninformative prior set up. More
specifically for T = 25 we set α = β = 0.5, a = b = 10−3, M = M0 = 10; we have iterated the
GSBR sampler 5× 105 after a burn-in period of 100, 000.

In Fig. 3.9 we display the data set x(200)
f2,1

, superimposed with the union of the embedded poste-
rior predictive marginals for x201, . . . , x225.

We can see that the sampled values of the posterior predictives, when embedded in R2 lie on
the noisy attractor, thus approximating the quasi-invariant measure of the system. The sampled
values follow the attractor even on regions of noise-induced prolongations, which do not exist
in the associated deterministic map. We will see from the results, that the choice of a BNP
model is crucial when we have noise processes such as f2,l , as the parametric model is unable
to identify the true underlying model.

We note that the prediction in forward time is related to the propagation of the PPMs of the fu-
ture unobserved observations along the unstable invariant manifold of the associated determin-
istic map of the system. In chapter 5 we will discuss the prediction in reversed time, associated
with the stable invariant manifold of the underlying deterministic map, as it can be considered
equivalent to prediction in forward time using the inverse map (given that the map is invert-
ible). In this sense, the unstable manifold of the inverse map is the stable manifold of the map
itself.

For the control parameters we use the posterior mean as Bayesian estimator, while for the ini-
tial conditions we use the MAP estimator. For the predictions x̂201 − x̂225 we perform the Har-
tigan’s statistical test [HH85] for multimodality on the posterior marginals, in order to choose
the appropriate point estimator; we utilize the MAP or the sample mean estimator when the
corresponding posterior marginal is multimodal or unimodal respectively.

In Figure 3.8 we display the KDEs based on the PPM samples of the out–of–sample variables
{x201, . . . , x205} and {x221, . . . , x225} (solid lines in red) under data sets x(200)

f2,l
: 1 ≤ l ≤ 4} (rows

(a) to (d)). Together we superimpose the KDE of the associated quasi-invariant densities for
1 ≤ l ≤ 4 (solid lines in black).

In Tables 3.5 and 3.6 we display a summary of the results for the (ϑ, x0) estimations and out-
of-sample prediction respectively, based on data sets {x(200)

f2,l
: 1 ≤ l ≤ 4}. For (ϑ, x0) and
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Figure 3.9: Left: Data set x(200)
f2,1

. Right: Embedded x(200)
f2,1

(black) in R2, superimposed with the union of
the embedded posterior predictive marginals for x201, . . . , x225 (red).

x201− x205 we use the corresponding PAREs, while as measure of overall prediction quality we
use the mean squared error (MSE), defined as MSE(x, x̂) = 1

n ∑n
i=1(xi − x̂i)

2.

Table 3.5: Simultaneous reconstruction-prediction under the noninformative prior specification. The
(ϑ, x0) PARE’s are based on the data sets {x(200)

f2,l
: 1 ≤ l ≤ 4} for T = 25.

Noise Model θ0 θ1 θ2 θ3 θ4 θ5 x0 x−1
f2,1 Param. 4.58 5.49 4.86 0.28 0.56 4.27 24.89 32.18

GSBR 0.04 0.05 0.03 0.01 0.01 0.03 22.70 17.43
f2,2 Param. 0.58 0.24 5.68 0.43 0.31 0.88 20.1 19.5

GSBR 0.10 0.14 0.08 0.03 0.03 0.11 7.40 5.44
f2,3 Param. 1.81 1.54 2.02 0.43 0.07 2.12 9.01 12.46

GSBR 0.01 0.03 0.05 0.00 0.01 0.02 3.63 3.22
f2,4 Param. 1.55 1.45 0.25 0.16 0.07 1.55 0.95 2.15

GSBR 0.00 0.00 0.01 0.00 0.00 0.00 1.03 0.73

In Table 3.5 we compare the PARE results coming from the GSBR and the parametric sampler
(Param.).Again, in all cases, the accuracy of the GSBR model is considerably higher than its
parametric counterpart.

In Table 3.6 when we compare the average PARE results coming from the GSBR and the para-
metric sampler (the last two columns) we notice that in all cases, the prediction of the GSBR
model is considerably better.

In Figure 3.8 we display the KDEs based on the PPM samples of the out–of–sample variables
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Table 3.6: Simultaneous reconstruction-prediction under the noninformative prior specification. The
out–of–sample PARE’s are based on data sets {x(200)

f2,l
: 1 ≤ l ≤ 4} for T = 25. The GSBR-Av and

Par-Av columns are the PARE means of the first five out–of–sample estimations using the GSBR and the
parametric Gibbs (Param.) samplers respectively.

Noise Model x201 x202 x203 x204 x205 Ov. MSE
f2,1 Param. 26.83 1348.87 59.60 174.01 118.34 1.43

GSBR 0.19 22.94 0.52 0.19 1.01 1.10
f2,2 Param. 7.60 8.79 49.81 11.63 51.75 1.78

GSBR 0.24 1.07 1.77 0.06 0.17 1.10
f2,3 Param. 33.56 32.48 212.54 85.53 400.59 1.65

GSBR 2.37 0.01 22.48 0.30 1.32 1.62
f2,4 Param. 27.54 81.67 357.26 64.54 271.23 1.89

GSBR 0.07 7.61 22.83 7.11 47.48 1.50

{x201, . . . , x205} and {x216, . . . , x220} (solid lines in red) under data sets x(200)
f2,l

: 1 ≤ l ≤ 4}
(rows (a) to (d)). Together we superimpose the KDE of the associated quasi-invariant densities
for 1 ≤ l ≤ 4 (solid lines in black). The predictive accuracy is high for the first five future
unobserved observations. Moving ahead in time, the prediction errors become higher, until the
model reaches the prediction barrier of the associated quasi-invariant measure. We note that
-especially in small sizes- the quality of both reconstruction and prediction exhibits significant
dependence on the particular noise realization.

In any case it is evident from the obtained results, that when the noise departs from normality,
the performance of the GSBR model is significantly higher than its parametric counterpart in
terms of both reconstruction and prediction.

3.6.2 Two–dimensional dynamical noise

In this subsection, we will extend the GSBR model, for the full reconstruction and prediction of
nonlinear random dynamical systems, from observed high dimensional time series data, with
additive dynamical noise in k dimensions. An important fact is that when the dynamical noise
is added simultaneously at k dimensions, then we can no longer represent the observed system
in one dimension with k lag terms, perturbed by one dimensional noise. The reason for this
lies on the inadequacy of the assumed iid one dimensional noise to capture the effects of higher
dimensional and perhaps correlated or non–Gaussian noise processes.

Suppose that we have observed a time series xn = (x1, . . . , xn), where for i = 1, . . . , n each
observation is k−dimensional, i.e. xi = (xi1, . . . , xik)

T generated by the random dynamical
system

Xi = T(θ, Xi−1, . . . , Xi−d, ei) (3.40)

= g(θ, Xi−1, . . . , Xi−d) + ei, i ≥ 1,
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Figure 3.10: In Figure 3.10(a1)-(a5) we display superimposed the first five and in (b1)-(b5) the last five
KDEs of the out–of–sample posterior marginal predictive based on data set x(200)

f1
under the noninfor-

mative specification PSNRP.Together we superimpose the KDE of the f2,1 quasi invariant density (solid
black line). In all Figures, the bullet point represents the corresponding true future value.

with initial condition vector X1:d =
(
X1

0, . . . , Xd
0
)
, where Xj

0 =
(

xj
01, . . . , xj

0k

)T
. Specifically,

letting X a compact subset of Rk we have the nonlinear function g : Θ ×Xd → X and the
random recurrence T : Θ×Xd ×Rk → Rk, with the observations being random variables over
some proper probability space.

We assume the additive perturbations ei are independent of the observations, independent
of each other and identically distributed from a zero mean distribution f defined over Rk,

i.e. ei
iid∼ f . In order to relax the normality assumption for the noise process, we model the

unknown density f as an infinite mixture of 0−mean k−variate Normal kernels with precision
matrices

(
Λj
)

j≥1, with mixing measure a general discrete random distribution G = ∑j≥1 πj δΛj .
Then, we have that the noise density can be written as

fπ,Λ (z) =
∞

∑
j=1

πjNk

(
0, Λ−1

j

)
,
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where π =
(
πj
)

j≥1 is an infinite sequence of random weights and Λ =
(
Λj
)

j≥1 an infinite
sequence of precision matrices Λj ∈ S+1.

Then, the associated data likelihood takes the form

fπ,Λ (x1, . . . , xn, | x1:d, ϑ) =
n

∏
i=1

∞

∑
j=1

πjNk

(
xi | g(ϑ, xi:d), Λ−1

j

)
.

As a base measure we set P0(dΛ) = Wk (Λ | ν, Σ)dΛ, the Wishart measure with ν degrees of
freedom and positive semidefinite k× k covariance matrix Σ.

In order to sample from an a.s. finite dimensional space, we augment with the sequential slice
sets Ai = {1, . . . , Ni}, assign fN( · |p) = NB( · |2, λ) and obtain the geometric weights πj =

λ(1− λ)j−1, where λ is the geometric probability of the GSB random measure. Then, taking
into account the T future unobserved observations we can compute the associated augmented
likelihood, with nT = n + T:

f (xi, di, Ni ; 1 ≤ i ≤ nT | ϑ, x1:d, λ) ∝
nT

∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni) |Λdi |
1/2

× exp
{
−1

2
(xi − g (ϑ, xi:d))

T Λdi (xi − g (ϑ, xi:d))

}
. (3.41)

The sampling algorithm described below, is similar to the one-dimensional sampling algorithm
described in Section 2. In particular we will initialize the variables di, Ni for i = 1, . . . , nT, λ, x1:d

(the initial condition vector) and ϑ. At each iteration of the Gibbs sampler, we we will sample
the variables:

(Λj), 1 ≤ j ≤ N∗, (di, Ni), 1 ≤ i ≤ nT,

and
(ϑ, x1:d, λ, znT+1),

with N∗ = max1≤i≤nT Ni.

1. The full conditional for the geometric probability λ ∼ Be(α, β) remains unchanged:

f (λ | · · · ) = Be

(
λ | α + 2 nT, β +

nT

∑
i=1

Ni − nT

)
, (3.42)

Having updated λ, we construct the geometric weights πj for 1 ≤ j ≤ N∗ via Eq. (3.19).
We note that in this case we will not use a transformed Gamma prior, as we are not aiming
to compare the multivariate GSBR and ans DPR models. The multivariate GSBR algorithm
have a faster execution time as compared with its multivariate DPM counterpart, due to the
consecutive random slice sets.

1We denote by S+ the space of symmetric positive definite k× k real matrices
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2. We then sample the precision matrices Λj for j = 1, . . . , N∗ and N∗ = max1≤i≤nT Ni. Assign-
ing a conjugate Wishart prior over Λj, i.e. Λj ∼ Wk (ν0, Σ0) we have that

f (Λj | · · · ) =Wk

(
Λj | ν0 +

nT

∑
i=1
I(di = j),

(
Σ−1

0 + Sj

)−1
)

, (3.43)

where Sj = ∑nT
i=1 I(di = j) (xi − g (ϑ, xi:d)) (xi − g (ϑ, xi:d))

T.

3. We then sample the infinite mixture allocation variables di for i = 1, . . . , nT from the discrete
full conditional distribution

Pr(di = j |Ni, · · · ) ∝ |Λj|1/2 exp
{
−1

2
(xi − g (ϑ, xi:d))

T Λj (xi − g (ϑ, xi:d))

}
I(j ≤ Ni). (3.44)

4. The construction of the sequential slice sets Ai for 1 ≤ i ≤ nT requires, as in the one–
dimensional case, the sampling of the auxiliary variables Ni from

Pr(Ni = r | di = j, · · · ) ∝ (1− λ)r I(j ≤ r), (3.45)

which is a truncated geometric distribution over the set {j, j + 1, . . .}.

5. In this step we need to sample zn+1 from the (multivariate) noise predictive distribution
f (zn+1 | x1, . . . , xn). At each iteration of the Gibbs sampler, we have updated weights (πj)1≤j≤N∗

and precision matrices (Λj)1≤j≤N∗ and we sample independently ρ ∼ U (0, 1). Then we take
the Λj with 1 ≤ j ≤ N∗ satisfying

j−1

∑
i=0

πi < ρ ≤
j

∑
i=0

πi, π0 = 0.

Whenever ρ > ∑N∗
i=0 πi, we sample Λj from the prior Wk (ν0, Σ0). In any case, we have that

zn+1 = Nk

(
0, Λ−1

j

)
.

6. The full conditional for x0, with a uniform prior over the set X̃ ⊆ Rkd that represents our
prior knowledge for the state space of the dynamical system in will be

f (x1:d | · · · ) ∝ I(x0 ∈ X̃) exp
{
−1

2
hϑ (x1, x1:d, Λd1)

}
, (3.46)

where hϑ

(
xi, xi:d, Λdi

)
= (xi − g (ϑ, xi:d))

T Λdi (xi − g (ϑ, xi:d)).

7. For the vector of parameters ϑ, and assuming a uniform prior over the subset Θ̃ of the
parameter space Rk, the full conditional becomes

f (ϑ | · · · ) ∝ I(θ ∈ Θ̃) exp

{
−1

2

nT

∑
i=1

hϑ

(
xi, xi:d, Λdi

)}
. (3.47)
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8. The full conditional densities for the future unobserved observations, when T ≥ 2 and for
j = 1, . . . , T, are given by

f (xn+j | . . .) ∝ exp

−
1
2

j+d

∑
k=j
k≤T

hϑ

(
xn+k, x(n+k):d, Λdn+k

) . (3.48)

Simulations

In order to illustrate the inadequacy of the parametric model in the case of higher dimension,
we perform reconstruction using an observed time series x(200)

f1
of length n = 200 from the

2-dimensional Hénon map
f (x, y) = (1.38− x2 + y, 0.27x) (3.49)

with initial condition x0 = (1, 0.2) contaminated with non Gaussian noise f1, following the
mixture

f1(z) =
1
2
N2
(
z | 0, σ2I2

)
+

1
2
N2
(
z | 0, (100σ)2I2

)
, σ = 10−3,

where I2 is the 2× 2 unit matrix. We present the data set x(200)
f1

in Fig. 3.11, where the severe
effect of the dynamical noise on the structure of the corresponding deterministic attractor is
evident. We model the observations as

(xi, yi) = g (ϑ, xi−1, yi−1) + ei = (θ0 + θ1xi−1 + θ2x2
i−1 + yi−1, θ3xi−1) + ei.

For the parametric model (Param.) we consider the noise as ei
iid∼ N2

(
0, Λ−1), where Λ ∼

W2 (2, Σ0) is the unknown precision matrix, with a conjugate Wishart prior.

For the extended GSBR model, the noise is represented as an infinite mixture of bivariate zero-

mean Normal kernels, with unknown precision matrices ei
iid∼ ∑j≥1 wjN2

(
0, Λ−1

j

)
, with base

measureW2 (2, Σ0). We assign uniform priors over the initial condition vector and the control
parameters x0 ∼ U

(
(−2, 2)2), ϑ ∼ U

(
(−10, 10)4), while for the geometric probability we use

a Be(0.5, 0.5) prior. We ran the chain for 85, 000 iterations with a burn-in period of length 5, 000.
In Table 3.7 we present the (ϑ, x0) PAREs for the parametric and the GSBR models.

Table 3.7: (ϑ, x0) reconstruction PARE’s based on the data set x(200)
f1

.

Model θ0 θ1 θ2 θ3 x0 y0

Param. 0.21 0.74 0.63 4.50 5 80
GSBR 0.01 0.01 0.02 0.00 1 5

In Table 3.7 we see that the mean PAREs obtained from the GSBR model are significantly lower
compared with those of its parametric counterpart, both for the control parameters and the
initial condition vector. The main reason for the better performance of the BNP model is that it
correctly identifies the true underlying noise process, even with small sample size, in contrast
with the parametric model which -by construction- is unable to infer the true non-Gaussian
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Figure 3.11: (a) Data set x(200)
f1

, from the 2-dimensional noisy Hénon map, (b) Deterministic orbit of
length 2, 000 from the corresponding unperturbed system.

process f1. We stress again the fact that whenever we are confident that the underlying noise is
Gaussian a parametric model will be as accurate as a Bayesian nonparametric one.

Furthermore, in order to illustrate the efficiency of the GSBR model in terms of prediction, we
use the data set x(500)

f2
of length 500 from the noisy Hénon map, i.e.

(xi, yi) = f (ϑ, xi−1, yi−1) + ei = (1.31− x2
i−1 + yi−1, 0.23xi−1) + ei, ei ∼ f2,

with the noise process sampled from

f2(z) =
3
4
N2
(
z | 0, σ2I2

)
+

1
4
N2
(
z | 0, 103 · σ2I2

)
, σ2 = 10−5.

Again, we have used as modeling map

g (ϑ, x, y) = (θ0 + θ1x + θ2x2 + y, θ3x).

We aim to predict the next T = 5 future observations. The prior specification are the same
as before, with a uniform over (−10, 10)2 for the initial condition vector. We ran the chain for
200, 000 iterations with a burn–in period of length 5, 000 performing thinning every 15 itera-
tions.
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In Table 3.8 we present the PAREs and the MSEs for the two coordinates x and y of the five
future observations. The corresponding KDEs of x501 − x505 and y501 − y505 are presented in
Fig. 3.12. We use the dip test as a criterion for the choice of Bayesian point estimator.

Table 3.8: Prediction PARE’s and overall MSEs for the x and y coordinates based on the data set {x(500)
f2
}.

Model x501 x502 x503 x504 x505 x−MSE
Param. 0.23 4.39 4.97 45.84 12.91 3.5 ·10−5

GSBR 0.14 13.85 0.27 9.20 3.29 2.6 ·10−5

Model y501 y502 y503 y504 y505 y−MSE
Param. 2.77 2.07 356.05 7.70 34.98 14.5 ·10−4

GSBR 2.94 4.42 313.17 0.35 3.38 4.4 ·10−4

From the results in Table 3.8 we see that the GSBR model performs considerably better than
its parametric counterpart, mainly due to the precise identification of the noise process. For a
large prediction horizon we expect the PPMs to eventually reach the prediction barrier of the
quasi-invariant set.
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Figure 3.12: We display the five KDEs of the out–of–sample posterior marginal predictives for the x (up-
per) and y (lower) coordinates based on the data set x(500)

f2
. In all Figures, the red bullet point represents

the point estimate, while the triangle represents the true future value.

In order to further emphasize the need for a flexible nonparametric framework, we perform
reconstruction using an observed time series xn

f3
of length n = 1, 000 from the 2-dimensional

Hénon map:
f (x, y) = (1.38− x2 + y, 0.27x) (3.50)
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with initial condition x0 = (1, 0.2), contaminated with non Gaussian noise f3, coming from the
mixture

f3(z) =
1
2
N2

(
z | 0, σ2

(
1 ρ

ρ 1

))
+

1
2
N2

(
z | 0, σ2

(
1 −ρ

−ρ 1

))
,

with σ2 = 10−3 and ρ = 0.85. The noise process f3 is an equally weighted mixture of two
bivariate Gaussian densities with opposite correlations and is an illustrating example of a pro-
cess that cannot be properly inferred if we use a simple parametric modeling. Moreover, such
noise processes cannot be recovered from one dimensional observations, as the perturbations
are present at every iteration in both coordinates simultaneously.

For the reconstruction we have used the same prior specification as before and have ran the
chain for 150, 000 iterations with a burn–in period of 30, 000.

The flexibility of the GSBR model is highlighted by the accurate estimation, with a mean PARE
of 0.04% for the control parameters. In Fig. 3.13 we present the noisy orbit xn

f3
and the two

dimensional KDE of the posterior marginal of the initial vector (x0, y0). The (x0, y0) posterior
marginal lies on the direction of the global stable manifold, as we will analyze later on, in
chapter 5.

Figure 3.13: (a) Data set xn
f3

and (b) 2-d KDE of the initial vector (x0, y0) posterior marginal. Position of
the true (x0, y0) is indicated with a white "x".

In Fig. 3.14 we present the results indicating the accurate recovery of the noise process. The two
components of opposite correlation resulted in a density that departs from normality, as shown
in the two dimensional KDE of the noise predictive. We also present the posterior marginals
for the x and y coordinates of the estimated noise process, superimposed with the true noise
marginal densities.

Notably, even if a parametric model manages to achieve low errors on the control parameter
estimation due to a very large sample size, it will nevertheless result to the erroneous estimation
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Figure 3.14: (a) 2-d KDE of the noise predictive distribution and corresponding posterior marginals of
the (b) x and (c) y coordinates (black) of the estimated noise process, superimposed with the true noise
marginal densities (red).

of the noise density.

3.7 Conclusions

We have described a Bayesian nonparametric approach for dynamical reconstruction and pre-
diction from observed time series data. The key insight is to use the GSB process, developed
by [FGMW10], as a prior (over the space of densities) over the noise component.

The GSBR model removes a level from the hierarchy of the rDPR model as it replaces the
weights of the stick breaking representation of the DP with their expected values, leading to
a simpler model with only one infinite dimensional parameter, namely the locations of the
atoms (τj) of the random measure. GSB mixture dynamical modeling is as accurate as DP
based modeling but with smaller execution times, and easier implementation.

We have also shown that in a joint prediction of future values of a low dimensional noisy
chaotic time series, the quasi-invariant set appears as a “prediction barrier”. Also, our numer-
ical experiments indicate that when the sample size of the time series is small, the forecastable
component analysis Ω measure can group the available sets of observations in terms of their
complexity. A larger Ω index suggests a less informative prior set up.

Both rDPR and GSBR models are characterized by wide applicability, as infinite mixtures of
zero mean Gaussians can mimic the effect of zero–mean heavy tailed behavior to an arbitrary
level of accuracy.
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Chapter 4

Bayesian Dynamical Noise Reduction

4.1 Introduction

This chapter is devoted to the construction of a novel BNP method, suitable for another in-
teresting problem of the field of nonlinear dynamics, namely the problem of noise reduction.
Many different approaches have been adopted to address the general issue of nonlinear noise
reduction. Hammel et al. [Ham90], used techniques originated from the proof of the shadow-
ing lemma to reduce noise in observed chaotic data. Farmer and Sidorowich [FS91], proposed
the use of Lagrangian multipliers for the minimization of the distance between the observed
and the denoised orbit. In order to deal with homoclinic tangencies, they used a combination
of manifold decomposition and singular value decomposition techniques. Locally linear mod-
els were introduced by Schreiber and Grasssberger [SG91] for noise reduction, while Davies
proposed initially gradient descent [Dav93] and later Levenberg-Marquardt [Dav94] methods
for the minimization of the dynamic error. The first attempt to a Bayesian noise reduction
framework [Rob07] was due to Davies [Dav98]. Other methods include the usage of shad-
owing methods [Jud08], wavelet transformations [Jan12], Sequential Markov Chain methods
[DDFG01] in the case of state space models, and Kalman filtering techniques [WM97], while
important theoretical results about the consistency of signal extraction, under measurement
noise, were presented by Lalley et al. [L+99, LN06].

Extensive studies on the effect of dynamical noise on the underlying deterministic system in-
clude the works of Jaeger and Kantz [JK97b], and, Strumic and Macek [SM08]. Moreover, in
the presence of dynamical noise, shadowing trajectories of non-hyperbolic maps is not possible.
This problem was addressed by Kantz [JK97a], introducing a noise reduction method based on
“parameter shadowing”. In this work, a shadowing pseudo-orbit is generated, evolving in
some neighborhood of the original orbit, fulfilling the nearby rather than the exact dynamics.

We will propose a fully Bayesian nonparametric method for the reduction of the additive dy-
namical noise perturbing an observed noisy time series (xi) of length n. In particular, we de-
velop the DNRR model, whereby we introduce the n strategic hidden random variables (Yi).
Their posterior distribution describes all possible noise reduced trajectories in the neighbor-
hood of the original trajectory, and we show that with the appropriate point estimation, we
can recover a noise reduced trajectory (yi) that for moderate noise levels is being generated
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by approximately the same dynamical system, generating the observed noisy time series, yet
perturbed by a weaker error process. We also show that near the homoclinic tangencies of the
associated deterministic system, the posterior marginal distributions Yi become multimodal
limiting the noise reduction levels.

The novelty of our approach lies on the fact that we make no parametric assumptions for the
density of the noise component. Instead, we model the additive error using a highly flexi-
ble family of density functions, which are based on a Bayesian nonparametric model, namely
the Geometric Stick Breaking process [FGMW10], extending previous works regarding recon-
struction and prediction of random dynamical systems [HNW07b, HNW09, MKH17].The noise
reduction method proposed can be applied to cases where the noise is not assumed to be nor-
mally distributed, or even in cases where we know that the noise component has a mixture
density. Such cases include, among others, scenarios where the noise is the result of multiple
sources affecting the time evolution of the underlying dynamics. In this case, our method will
be able to estimate the true noise density and moreover identify the number of the sources as
the ergodic average of the active clusters.

The chapter is organized as follows. In Sec. 4.2 we mention some aspects of the problem and
present the noise reduction algorithm steps. In Sec. 4.3 we present the MCMC procedure for
the estimation of the noise-reduced orbit. In Sec. 4.4 we resort to simulation. We illustrate our
method in the case of the random full quadratic and polynomial maps under non-Gaussian
dynamical noise. We conclude in Sec. 4.5 giving some directions for further research.

4.2 Preliminaries

We define the random recurrence relation given by

Xi = T(θ, Xi−1, . . . , Xi−d, ei) (4.1)

= g(θ, Xi−1, . . . , Xi−d) + ei, i ≥ 1,

where g : Θ×Xd → X, for some compact subset X of R, (Xi)i≥−d+1 and (ei)i≥1 are real random
variables over some probability space (Ω,F , P); we denote by θ ∈ Θ ⊆ Rm any dependence
of the deterministic map g on parameters. g is nonlinear, and for simplicity, continuous in
Xi:d := (Xi−1, . . . , Xi−d). We assume that the random variables ei are independent to each
other, and independent of the states Xi−r for r < i + d. In addition we assume that the addi-
tive perturbations ei are identically distributed from a zero mean distribution with unknown
density f defined over the real line, so that T : Θ× Xd ×R → R. Finally, notice that the lag-
one stochastic process (W1

i , . . . , Wd
i ), formed out, from time-delayed values of the (Xi) process,

defined by

Wk
i =

{
g(θ, W1

i−1, . . . , Wd
i−1) + ei k = 1

Wk−1
i−1 1 < k ≤ d ,

is Markovian over Rd.
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We assume that there is no observational noise, so that we have at our disposal a time series
xn := (x1, . . . , xn) generated by the nonlinear stochastic process defined in Eq. (4.1). The time
series xn depends solely on the initial distribution of X1:d, the vector of parameters θ, and the
particular realization of the noise process.

Orbits contaminated with dynamical noise are a-pseudo-orbits of the underlying g-dynamics
in the sense that for all 1 ≤ i ≤ n there is positive a for which 0 < |xi − g(θ, xi:d)| ≤ a. g-
invariant measures µg(dx) are deformed and smoothed-out into T-quasi-invariant measures
µT(dx) = limt→∞ P{x < Xt ≤ x + dx|τX′ > t}, where τX′ is a random time denoting the first
passage time of the system to the unbounded trapping set X′ = R \ X. Mind that, µT is not
a convolution of the unperturbed measure µg with the noise distribution, as it happens in the
case of observational noise.

As a distance between the two time series xn and yn, we will use the average correction

E0(xn, yn) =

√
1
n

n

∑
i=1

(xi − yi)2.

We will measure the overall deviation of the noisy orbit xn from the g-determinism, with the
average dynamical error

Edyn(xn; g) =

√
1
n

n

∑
i=1

(xi − g(θ, xi:d))2.

4.2.1 Dynamical noise reduction

Dynamical noise has a severe effect on the underlying dynamics, i.e. the deterministic part
of the noisy corrupted time series, especially when the system under consideration is non-
hyperbolic. In the hyperbolic case, the shadowing lemma guarantees the existence of shadow-
ing pseudo-orbits and moreover if the dynamical noise is bounded, it can be treated as mea-
surement noise. This means that we can find a g-deterministic orbit yn and a noise process (z̃i)

such that xi = yi + z̃i. The z̃i errors are describing the distribution of the distance between the
two orbits, and the xn-dynamical noise reduction problem can be treated as a yn-observational
noise reduction problem. This is not valid, though, when the underlying dynamics are non-
hyperbolic.

In the non-hyperbolic case, the presence of homoclinic tangencies (HTs) in the phase space,
points where the stable and unstable manifold of a hyperbolic orbit intersect tangentially, is re-
sponsible for the emergence of a much more complicated structure. In the vicinity of HT’s, the
dynamic perturbations are amplifying dynamics away from the neighborhood of the attractor.
One of the effects caused by the noise amplifications due to HT’s are noise-induced prolonga-
tions [JK97a]. For example, in Figure 4.1, we display the delay plots of the deterministic and a
dynamically perturbed realization of the Hénon map of lengths n = 5000. The noisy trajectory,
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Figure 4.1: Noisy and deterministic Hénon trajectories, of length n = 5000, are depicted in red and
black, respectively, for a 3% dynamical noise level.

has been generated via

xi = g(xi−1, xi−2) = 1.38− x2
i−1 + 0.27xi−2 + ei, (4.2)

where ei
iid∼ 0.6N (0, σ2) + 0.4N (0, 100σ2), for σ2 = 0.21× 10−4, with initial condition x0 =

x−1 = 0.5. The time series realization has been chosen, such that, the noise level is approx-
imately 3%. We can see the intense noise induced prolongations, as clouds of points in red,
away from the neighborhood of the deterministic attractor (points in black).

The deformation of the g-invariant measure to a T-quasi-invariant measure, leads to the expan-
sion of its support, and the perturbed map visits areas of the phase space that was not able to
visit without the effect of the dynamical noise.

We aim to reconstruct the underlying deterministic dynamics in the form of a map ĝxn , and
sample a yn trajectory, such that we will be able to control its average deviation from determi-
nacy Edyn(yn, ĝxn), with respect to ĝxn , as well as its average correction E0(xn, yn), with respect
to xn.

4.2.2 Gaussian and non-Gaussian noise processes

We assume that the corrupting noise f , responsible for the observed time series xn, can be
represented as a countable mixture of zero mean normals N (z|0, σ2

i ) of variances σ2
i , that is

f (z) := fM(z) =
M

∑
i=1

piN (z|0, σ2
i )
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with pi > 0 and ∑M
i=1 pi = 1, where M can be infinite. Then, the variance associated with fM

(when it exists), is the pi-mixture of the σ2
i -variances i.e. σ2

fM
= ∑M

i=1 piσ
2
i . Following Jaeger and

Kantz [JK97a] we define the noise level η as the percentage of the sampling standard deviation
of xn (the signal), that is, η = 100 σf /σxn .

As a measure of the departure from normality of the noise process f , we use the mean absolute
deviation from the mean, normalized by the standard deviation. So for a zero mean Z ∼ f it is
that TFf := E|Z|/

√
E|Z|2. The closer the quantity TFf is to one, the thinner the tails are. We

have the following lemma:

Lemma 1. For all M ≥ 1, it is that

TFfM ≤ TFf1 with TFfM =
1

σfM

√
2
π

M

∑
i=1

piσi. (4.3)

Proof: We let |Z| ∼ f+, then it is clear that

f+(z) =
fM(z) I(z > 0)∫

R+ fM(z)dz
= 2

M

∑
i=1

piN (z|0, σ2
i )I(z > 0),

where I(z > 0) is the characteristic function of the interval (0, ∞). The equation for TFfM

in (4.3) can be verified by the fact that
∫

R+ zN (z|0, σ2
i )dz = σi

√
2/π. By Jensen’s concave

inequality we have that ∑M
i=1 piσi ≤ σfM or equivalently that TFfM ≤ TFf1 . �

We consider the noise processes f1 and { f2,l : 1 ≤ l ≤ 4} given by

f1(z) =N (z|0, σ2) (4.4)

f2,l(z) =
5 + l

10
N (z|0, σ2) +

5− l
10
N
(
z|0, 100σ2) .

From lemma 1, irrespective of the choice of σ2, it is that TFf2,l < TFf1 =
√

2/π, and the TFf2,l se-
quence is decreasing, namely, it can be verified that {Tf2,l : 1 ≤ l ≤ 4} = {0.58, 0.53, 0.49, 0.46}.

The motivation for a Bayesian nonparametric framework for noise reduction comes from the
fact that the application of stochastic methods, under the false assumption of a normal noise
process ( f = f1), will artificially enlarge the estimated variance of the presumed normal errors,
thus, causing poor inference for the system parameters of interest, as demonstrated in Ref.
[MKH17] and in Chapters 2-3.

4.3 The dynamic noise reduction replicator model

Given a noisy corrupted time series xn, we will use a Bayesian nonparametric approach to esti-
mate the posterior joint density of a noise reduced vector of random variables Yn = (Y1, . . . , Yn).
A noise reduced time series yn = (y1, . . . , yn), will be formed by some central tendency statistic
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applied to predictive samples of the marginal posterior densities (MPDs) for all i = 1, . . . , n.
We define, the estimated vectors θ̂xn and θ̂yn , of the control parameters of g, and the associated
estimated noise components f̂xn and f̂yn , based on the time series xn and yn, respectively. Our
intention is to create the yn time series, in such a way, that it possesses an underlying estimated
deterministic law, ĝyn( · ) := g(θ̂yn , · ), that is in some sense (to be made precise in the sequel)
close to the estimated deterministic law, ĝxn( · ) := g(θ̂xn , · ), responsible for xn, such that, the
estimated noise component f̂yn influencing interactively the yn time series, will be a weaker
version of the estimated dynamic noise component f̂xn influencing the original xn time series.
We remark that the ĝyn and f̂yn estimations under the noise reduced trajectory yn have been
produced via the GSBR–sampler as described in Chapter 3 and in Ref. [MKH17].

4.3.1 A generic probability model

To permit a stochastic approach to the estimation of the unobserved sequence yn, under the
generic assumption of a symmetric zero mean dynamical error process, we adopt the following
stochastic model:

xi = g(θ, xi:d) + ei, ei
iid∼ f ( · ) (4.5)

f ( · ) =
∞

∑
k=1

wkN ( · |0, λ−1
j ), 1 ≤ i ≤ n

yi = g(θ, yi:d) + ζi, ζi
iid∼ N ( · |0, δ)

y1:d = x1:d, P− a.s. and |xi − yi| < γi, γi
iid∼ h( · ),

where we define w∞ = (wk)k≥1 to be an infinite sequence of random probability weights,
λ∞ = (λk)k≥1 an infinite sequence of independent and identically distributed (i.i.d) positive
random variables (the precisions), with the two sequences w∞ and λ∞ independent of each
other. The positive random variables γi are i.i.d. from some distribution h, possibly depending
on parameters.

We will show numerically, that under a reasonable choice for the prior distribution of the vari-
able τ = δ−1, the posterior distribution of δ (the variance), will concentrate its mass near zero.
This, will enable us, to minimize the overall deviation of the yn trajectory from the estimated
determinism. To control the similarity of the yn trajectory, with respect to the observed xn tra-
jectory, we assume that both trajectories originate from the same initial point, that is, y1:d = x1:d.
At the same time, a-priori, we restrict each yi to be γi-close to xi. The latter statement, conveys
prior information, on the proximity of the variable yi to the data point xi. Finally, we remark that
the random mixture ω 7→ f ( · , ω) = ∑∞

k=1 wk(ω)N ( · |0, λ−1
j (ω)) undertakes the rôle of a non-

parametric prior over the noise density assumed responsible for the time series xn, supported
over the space of densities with mean zero, which are in turn supported over R.

We note the following lemma, which will prove useful in the sequel:

Lemma 2. Letting P := ∩n
i=1{|xi − yi| < γi}, we have the following cases:
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1. When γi = γ̄i = const. a.s. for 1 ≤ i ≤ n, it is that

P (P| xn, yn) =
n

∏
i=1
I(xi − γ̄i < yi < xi + γ̄i).

2. If γi
iid∼ W(2,

√
2/ρ) for 1 ≤ i ≤ n, where ρ is a fixed hyperparameter, and W(a, b)

denotes the Weibull distribution of shape a and scale b, we have that

P (P| xn, yn) = exp

{
−ρ

2

n

∑
i=1

(xi − yi)
2

}
.

Proof: (1.) When γi = γ̄i for all 1 ≤ i ≤ n, it is that

P (P| xn, yn) =

{
1 yi ∈ (xi − γ̄i, xi + γ̄i), 1 ≤ i ≤ n

0 otherwise.

(2.) Because γi
iid∼ W(2,

√
2/ρ) if and only if γ2

i
iid∼ E(ρ/2), where E(a) denotes the exponential

distribution with mean 1/a, it is that

P (P| xn, yn) =
n

∏
i=1

P{γ2
i > (xi − yi)

2} =
n

∏
i=1

exp
{
−ρ(xi − yi)

2/2
}

,

which gives the desired result. �

4.3.2 The posterior model

We consider the posterior of the stochastic quantities f , θ, x1:d, y1:d, τ and yn given the data set
xn, the restrictionR := {y1:d = x1:d}, the proximity information P , and the model spaceM for
the functional representation of the deterministic part g(θ, xi:d); for example, the model space
could be the ring R[xi:d] of polynomial functions in the variable xi:d, with coefficients over R.
Then, using Bayes’ theorem, we have

π ( f , θ, x1:d, y1:d, τ, yn| xn,R, P ,M) ∝ (4.6)

π ( f , θ, x1:d, y1:d, τ) π (yn, xn,R,P| f , θ, x1:d, y1:d, τ,M) ,

where π( f , θ, x1:d, y1:d, τ) is the prior density. Having in mind, that the estimation of the noise
density f is equivalent to the estimation of the variables w∞ and λ∞, the likelihood factor on
the second line of equation (4.6), becomes

π (yn, xn,R,P|w∞, λ∞, θ, x1:d, y1:d, τ,M) = (4.7)

P(R| y1:d, x1:d)P (P| xn, yn)π(xn|w∞, λ∞, θ, x1:d,M)π(yn| θ, τ, y1:d).
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We believe, that it will be more efficient to control the average corrections between the two tra-

jectories, under the assumption that γ2
i

iid∼ E(ρ/2). For this reason, we augment the conditional
part of our posterior by the hyperparameter ρ. Then, taking into account the model represen-
tation for the noise components in (4.5), lemma 2, the fact that P(R| y1:d, x1:d) = I(y1:d = x1:d)

and the likelihood representation in (4.7), the posterior becomes

π (w∞, λ∞, θ, x1:d, τ, yn| xn,R, P ,M, ρ) ∝ π (w∞, λ∞, θ, x1:d, τ)

× I(y1:d = x1:d)
n

∏
i=1
N (yi| xi, ρ−1)

n

∏
i=1

∞

∑
j=1

wjN (xi| g(θ, xi:d), λ−1
j )

n

∏
i=1
N (yi| g(θ, yi:d), τ−1).

Such a likelihood will lead to a Gibbs sampler with an infinite number of full conditional dis-
tributions. To avoid that, we introduce the jointly discrete random vectors dn = (d1, . . . , dn)

and Nn = (N1, . . . , Nn) (see Ref. [MKH17], and references therein). The di random vari-
able, denotes the component of the random mixture f in (4.5), that the observation xi came
from. In fact, the state space of the di variable can be made a.s. finite, if we define the ran-
dom variable Ni ∼ fN( · | p), where p is a parameter, such that, the conditional random vari-
able (di|Ni) attains a discrete uniform distribution over the a.s. finite set Si = {1, . . . , Ni}.
Then, it can be shown, that by letting Ni to follow the particular negative binomial distribution
fN(Ni| p) = Ni p(1− p)Ni−1I(Ni ≥ 1), the random weights wj in (4.5), will form the strictly
decreasing geometric sequence wj = p(1− p)j−1I(j ≥ 1). So that, in the (dn, Nn)-augmented
posterior (4.6), we can switch from the variable w∞ to the variable p. Finally, the posterior
attains the representation

π(p, λ∞, dn, Nn, θ, x1:d, τ, y(n)| x(n), ρ,R,P ,M) ∝ π(p, λ∞, τ, θ, x1:d) (4.8)

×
n

∏
i=1

di : di≤Ni

p2(1− p)Ni−1λ1/2
di

exp
{
−

λdi

2
(xi − g(θ, xi:d))

2
}

× I(y1:d = x1:d) τn/2 exp

{
−1

2

n

∑
i=1

[
τ(yi − g(θ, yi:d))

2 + ρ(yi − xi)
2]} .

We note that, the likelihood factor in the second line of the previous equation, is very similar to
the GSBR-likelihood that appears in equation (11), of Proposition 4.1, in Ref. [MKH17].

4.3.3 Priors and full conditional distributions

To complete the model, we assign independent priors to the variables p, λ∞, θ, x1:d, and τ,
namely:

1. We set π(p) = B(p|a1, a2), a beta conjugate prior, with fixed shape hyperparameters a1

and a2.

2. The variable λ∞ is an infinite sequence of independent precisions (inverse variances).
Nevertheless, the nonparametric MCMC will require, at each sweep, the computation
of only an almost surely finite number, N∗ = max1≤k≤n Nk, of posterior λjs. Standard
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Bayesian modeling suggests to use gamma conjugate prior distributions over the λj pre-
cision parameters, so we set Π(dλ∞) = ∏∞

j=1 G(λj|b1, b2)dλj, where b1 and b2 are the fixed
shape and rate hyperparameters, respectively. Similarly, because τ is a precision, we set
a-priori π(τ) = G(τ|γ1, γ2).

3. For the vector of parameters θ = (θ1, . . . , θs) and for the the vector of initial conditions
x1:d = (x0, . . . , x1−d), we assume the independent priors π(θ) ∝ 1 and π(x1:d) ∝ 1, re-
spectively. For example, suppose that a-priori we have

π(θ1, . . . , θs) ∝
s

∏
i=1

exp{−(θi − θ0,i)
2/2σ2

0,i},

then letting σ2
0,i tend to infinity, one obtains π(θ) ∝ 1. Such a prior is noninformative, and

although improper (not a density over Rs), leads to a proper full conditional for θ.

Note that, to reduce dynamical error, the prior expectation E(δ) will have to be set close to
zero. And if at the same time, we want to control the proximity between the original and the
noise reduced orbit, we will have to predetermine values for the prior means of γis, in the
interval [2× 10−6, 2× 10−4]. This is due to the fact, that the individual distances |xi − yi| are by
construction small.

We have the following proposition:
Proposition 4.1. The full conditional distributions for the noise reduced orbit yn, are given by π(yj| · · · ) ∝
e−C(yj|··· )/2, where π(yj| · · · ) denotes the dependence of the variable yj to the rest of the variables. Let-
ting hθ(yj, yj:d) := (yj − g(θ, yj:d))

2, the function C(yj| · · · ), for j = 1, . . . , d is given by

C(yj| · · · ) = τ
d

∑
k=0

hθ(yj+k, yj+k:d)

× I(y0 = x0, . . . , y−d+j = x−d+j) + ρ(yj − xj)
2,

for j = d + 1, . . . , n− d is given by

C(yj| · · · ) = τ
d

∑
k=0

hθ(yj+k, yj+k:d) + ρ(yj − xj)
2,

and, for j = n− d + 1, . . . , n, by

C(yj| · · · ) = τ
j−n

∑
k=0

hθ(yj+k, yj+k:d) + ρ(yj − xj)
2.

Proof. The desired result, comes from the representation of the posterior in equation (4.8).
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4.3.4 The DNRR sampler

To accelerate the convergence of the Gibbs sampler based on the posterior distribution in (4.8),
we collect our variables in to the two groups:

G1 = {v, θ, x1:d} and G2 = {τ, yn}

with v = {p, λ∞, dn, Nn}. We first sample, from the full conditionals of G1 given xn, and then,
from the full conditionals of G2 given G1 and xn. Then, it is not difficult to see that such a blocked
Gibbs sampler scheme, admits the same stationary distribution as the plain Gibbs sampler
scheme, coming from sampling the full conditionals of G1 ∪G2 given xn, each one individually.
Proposition 4.2. Given the modelM and fixed ρ > 0, marginally, (G2|xn) is distributed as

(G2|xn) ∼
∫

Rs+d×V
Π( · , · |θ, x1:n, xn)Π(dθ, dx1:n|v, xn)Π(dv|xn), (4.9)

where V denotes the support of the random vector v.

Proof. Given the modelM, and fixed ρ > 0, we want to sample from the variable (τ, yn|xn).
To do so, we should first sample from the joint of θ and x1:n given xn, and then from the joint
of τ and yn given θ and x1:n, that is

(θ, x1:n|xn) ∼ Π( · , · |xn)

and then from
(τ, yn|xn) ∼ Π( · , · |θ, x1:n, xn)

whence
(τ, yn|xn) ∼

∫
Rs+d

Π( · , · |θ, x1:n, xn)Π(dθ, dx1:n|xn).

For a generic noise source, we have to sample first from (p, λ∞|xn), and then from (θ, x1:n|p, λ∞, xn).
However, for the creation of an a.s. finite Gibbs sampler, the random vector (dn, Nn) has to be
introduced. Then, letting v = (p, λ∞, dn, Nn), one has

(θ, x1:n|xn) ∼
∫

V
Π( · , · |v, xn)Π(dv|xn),

which gives the desired result.

Now, it is clear, that our model is based on the iteration of two consecutive steps, the (ĝxn , f̂xn)-
reconstruction step and the yn-sampling step:

1. We have seen that the reconstruction step, stems from the GSBR-sampler introduced in
Ref. [MKH17]. The differences are: the absence of the out-of-sample variables, the more
general d-dimensional lag dependence, the application of a conjugate beta prior and the
application of an improper prior, on the variables p and (θ, x1:d), respectively.
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2. In the noise-reduction step, the noise reduced trajectory yn, is sampled conditionally on
the sampled values of the reconstruction step. We can think of the reconstruction stage,
as providing observations from the distributions of the initial condition y1:n and the pa-
rameter θ of the estimated deterministic part ĝxn of the new trajectory. To replicate the
ĝxn -dynamics, under a reduced dynamical error, we use a Metropolis within Gibbs up-
dating procedure, with a small variance random walk proposal distribution, initialized
at the observed xn trajectory.

Then, the new trajectory yn, has the following properties:

1. We define, the relative dynamical noise reduction Rdyn attained by the yn trajectory with
respect to the yn as

Rdyn(yn, xn; ĝxn) := 1−
Edyn(yn; ĝxn)

Edyn(xn; ĝxn)
,

so that Rdyn > r implies Edyn(y(n); ĝxn) < (1− r)Edyn(x(n); ĝxn). We will see, that in all
our numerical examples, it is that with r > 0.8.

2. When ρ tends to infinity, the distribution of distances between the individual points of
the yn and xn trajectories, concentrates its mass to zero.

3. The estimated underlying deterministic parts of yn and xn are close to each other. For
suppose, that we estimate in terms of the GSBR-sampler, the g-dynamics given the xn

and the yn trajectories. Then the distance d(ĝxn , ĝyn) between the two deterministic parts
will be small; for example, when ĝxn and ĝyn are polynomials, this distance could be the
l2-norm of the polynomial ĝxn − ĝyn .

The sampling scheme: We first specify initial values for the variables x1:n, θ, τ, and we iterate
for t = 1, . . . , K the following sampling scheme:

S1: For i = 1, . . . , n, generate the state space range variable N(t)
i ∼ π(Ni| · · · ), of the alloca-

tion variable d(t)i .

S2: For i = 1, . . . , n, generate the infinite mixture allocation variable d(t)i ∼ π(di| · · · ).

S3: For i = 1, . . . , N∗, with N∗ = max1≤k≤n Nk, sample λ
(t)
i ∼ π(λi| · · · ).

S4: Generate the initial condition vector (x1:n)
(t) ∼ π(x1:n| · · · )

S5: Generate θ(t) ∼ π(θ| · · · ).

S6: Sample the geometric probability p(t) ∼ π(p| · · · ).

S7: Having updated p(t) and λ(t) up to N∗, sample from the noise process f̂xn

z(t)n+1 ∼
N∗

∑
j=1

p(t)(1− p(t))j−1N
(

zn+1 | 0, 1/λ
(t)
j

)
.
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S8: Initialize the vector of initial conditions (y1:n)
(t) of the noise reduced trajectory to the

previously sampled initial condition (x1:n)
(t) of the xn, and iterate for j = 1, . . . , n the

following Metropolis-within-Gibbs sampling scheme:

(a) Generate proposal
y∗j ∼ y(t−1)

j + νN (0, 1). (4.10)

(b) Calculate the acceptance probability α(y(t−1)
j , y∗j ) given by

min
{

1, exp
{
−1

2

[
C(y∗j | · · · )− C

(
y(t−1)

j | · · ·
)]}}

.

(c) Accept y(t)j = y∗j with probability α(y(t−1)
j , y∗j ).

S9: Generate τ(t) ∼ π(τ| · · · ).

4.4 Simulation Results

In this section, we will provide numerical illustrations of the DNRR algorithm for the random
Hénon map, and the random bistable cubic map introduced in Ref. [MKH17]. In all cases,
except in the case for the variable τ, the prior specifications are completely noninformative.

As a prior for the geometric probability variable, we take the arcsine density p ∼ B(0.5, 0.5),
which coincides with the Jeffrey’s prior for p. On the precisions (λj)j≥1 of the random density
f , we place the vague gamma prior λj ∼ G(10−3, 10−3), which is very close to a scale invariant
prior. On the control variable θ, and the initial condition variable x1:d, we assign the translation
invariant priors π(θ) ∝ 1 and π(x1:d) ∝ 1, respectively. Because we want a-posteriori to force
the variance δ = τ−1 to concentrate its mass near zero, we have to set its prior mean and
variance close to zero. We can achieve this by setting τ ∼ G(104, 10−2). Finally, to avoid mixing
issues, following standard methodology, each time, we calibrate [RC04] the proposal variance
ν2 of the embedded Metropolis-within-Gibbs sampler in equation (4.10), such that, the mean
acceptance probability of the sampling scheme is between 25 and 35%.

In all our numerical experiments, the DNRR Gibbs samplers have ran for 25× 104 iterations
leaving the first 5× 104 samples as a burn-in period.

4.4.1 The Hénon map

We consider a time series realization xn of size n = 1000, coming from the random recurrence

relation given in (4.2) with ei
iid∼ f2,1, variance σ2 = 0.21× 10−4 and initial condition x0 = x−1 =

0.5 for noise level at approximately 3%. We model the deterministic part g, with the complete
quadratic polynomial in the two variables, namely

g(θ, xi−1, xi−2) = θ0 + θ1xi−1 + θ2xi−2 + θ3xi−1xi−2 + θ4x2
i−1 + θ5x2

i−2. (4.11)
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Table 4.1: Relative dynamical noise reductions, average indeterminisms and average distances, for two
different values of ρ.

ρ Edyn(xn, ĝxn) Edyn(yn, ĝxn) Rdyn E0

102 0.02932 0.00286 0.9023 0.0428
5× 105 0.02932 0.00710 0.7577 0.0223

1. A neutral proximity restriction: We first ran the DNRR sampler with the proximity parame-
ter set to ρ = 102. In fact, values of ρ smaller than 104, due to the informative nature of τ, have a
diminishing effect on the full conditional distributions of the Yj variables of Proposition 4.1. As
a result, for such ‘small’ ρ values, the proximity restriction P becomes neutral, and the DNRR
sampler estimates the noise reduced orbit yn attaining minimum average deviation Edyn with
respect to the estimated ĝxn , and maximum average distance with respect to xn.

In the first two rows of Table 4.2, we present percentage absolute relative errors (PAREs) of the es-
timated θ-coefficients, with respect to the true values, based on the noisy and the noise reduced
trajectories, of the maps ĝxn and ĝyn , respectively. The last two columns of the table, display
average PAREs, θ̄, and l2-distances. Because the yn based quantities, θ̄ and l2, are small, we
consider both xn and yn based θ-estimations as identifying the specific Hénon map given in
(4.2).

The posterior variance δ = τ−1 has the interval [1.39 × 10−6, 1.81 × 10−6] as a 95% highest
posterior density interval. The distribution of the individual variances of the yn trajectory,
concentrates most of its mass in the interval [0, 10−5].

We have the following results presented from Figure 4.2 to Figure 4.6:

1.1. Noise reduction measures: In Figure 4.2(a), we present superimposed the original time
series xn (points in red), and the estimated noise reduced trajectory yn (points in dark gray) in
delay coordinates. We can see the noise reduced trajectory, shadowing the original trajectory,
in the regions of noise-induced prolongations. In Figure 4.2(b), we display superimposed the
individual log10-determinism plots of the original and the estimated time series, in red and
dark gray color, respectively; for example, the individual log10-determinism plot of the time
series (xi) is the trace of time series

(
log10 |Edyn(xi, ĝ)|

)
. The red and black horizontal lines

correspond to the average log10-determinisms of the noisy and the noise reduced times series,
respectively. In the first line of Table 4.1, we exhibit the denoising measures Edyn, Rdyn and
E0. The average noise reduction achieved by the DNRR sampler is larger than two orders of
magnitude, with Rdyn(yn, xn; ĝxn) = 0.902, Edyn(yn; ĝxn) = 0.00286 and E0(xn, yn) = 0.0428.

1.2. Dynamic noise estimation: In Figure 4.3, we display superimposed the true noise den-
sity f = f2,1 (red continuous curve), the xn based estimated noise density f̂xn (black continu-
ous curve) and the yn based estimated noise density f̂yn (black dashed curve). We remark the
closeness of the noise densities f and f̂xn , and the fact that the f̂yn density, represents a much
‘weaker’ error process. The latter, along with the fact that the θ-estimation based on the noise
reduced trajectory identifies the specific Hénon map, validates our contention, that the noise
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Figure 4.2: In figure (a), we present superimposed delay plots of the noisy, the noise reduced and the
deterministic trajectories of the Heńon map, of length n = 1000. The associated log10−determinism
plot is given in figure (b).

Table 4.2: PAREs, average PAREs and l2-distances, for the estimated coefficients of the deterministic
part of the perturbed Hénon map in (4.2), based on the noisy and the corresponding noise reduced
trajectories, for two different values of ρ.

Time series ρ θ0 θ1 θ2 θ3 θ4 θ5 θ̄ l2

xn 102 0.089 0.096 0.046 0.044 0.011 0.070 0.059 0.00177
yn 0.063 0.043 0.022 0.028 0.020 0.038 0.036 0.00110
xn 5× 105 0.079 0.071 0.041 0.031 0.002 0.059 0.047 0.00146
yn 0.177 0.155 0.015 0.023 0.005 0.157 0.089 0.00330

reduced trajectory comes from a dynamical system very close to the original one, perturbed
interactively by a ‘weaker’ error process.

1.3. The existence of HTs as a cause for a-posteriori multimodality: While most of the Yi-
MPDs are unimodal, a small number of them is multimodal, namely, those that their support
contains the projection of a point of HT. We have used the Hartigan’s statistical test [HH85]
for multimodality, to choose the appropriate Yi-point estimator; we utilize the maximum a-
posteriori (MAP) estimator for the case of a Yi-multimodal MPD, and the sample mean estima-
tor for the unimodal case. In Figure 4.4(a) we present a delay plot of the set MHT of MAP esti-
mations (solid red circles) coming from the Yi-posterior marginals, passing the Hartigan’s test
for multimodality. Alternatively, we could consider the Yi-predictive-samples, coming from
the embedded Metropolis-within-Gibbs sampler, after burn-in. For each Yi-sample, we com-
pute the forecastable component analysis index Ωi [Goe13, Goe16], which is normalized in the
interval [0, 1]. We let Ω = {Ωi : 1 ≤ i ≤ n}, and we consider the subset of points ΩHT of
Ω, that are above the 99th percentile of its histogram, and thus, their predictive distribution
exhibits more structure. In Figure 4.4(b) we depict a delay plot of ΩHT (solid red circles). We
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Figure 4.3: The true noise density f = f2,1, for σ2 = 0.21× 10−4, is the red continuous curve. Along,
we superimpose the xn-estimated noise density f̂xn as a black continuous curve, and the yn-estimated
‘weaker’ interactive noise density f̂yn as a black dashed curve.

can see that the points in the sets MHT and ΩHT are related to the areas of increased indeter-
minism depicted in Figure 4.4(c). The location of the deterministic primary HTs are given in
Figure 4.4(d). We remark that the sets MHT and ΩHT, for fixed n, are random (point process
realizations) because they depend on the particular realization of the time series ω 7→ xn(ω),
for example ω 7→ ΩHT = ΩHT(yn|xn(ω)).

Figure 4.4: In Figure (a) we present a delay plot of the points in the set MHT of the point estimators of
the Yi-posterior marginals, passing Hartigan’s test for unimodality. In Figure (b) we depict the delay
plot of the points in the set ΩHT that are above the 99th percentile of the histogram of Ω. Regions of
high Edyn are depicted in Figure (c), and in Figure (d) we present the primary homoclinic tangencies of
the corresponding deterministic attractor.
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2. The average distance E0 as a function of ρ: Here we perform a series of executions of the
DNRR sampler with the same prior set up, and the same observed time series xn, as in the
previous subsection, for different values of the ρ parameter. We have taken ρ ∈ {ρj = j× 104 :
j = 1, . . . , 200}. For example, for ρ = 5× 105, the effect of the proximity restriction becomes
very strong. In the second line of Table 4.1, we present the noise reduction measures Edyn,
Rdyn and E0. The average noise reduction achieved in this case decreases toRdyn(yn, xn; ĝxn) =

0.7577. The average indeterminism of yn with respect to ĝxn escalates to Edyn(yn; ĝxn) = 0.00710,
with the average distance decreased considerably to E0(xn, yn) = 0.0223. In Figure 4.5(a), we
present superimposed, the distributions of the individual log10-indeterminisms of the noise
reduced trajectory with respect to ĝxn , for ρ = 102 (curve in black) and ρ = 5× 105 (curve in
gray). We can see that for large values of ρ the density of log10-indeterminisms becomes more
peaked and shifts to the right. In Figure 4.5(b), the density of the individual distances for the
large value of ρ concentrates its mass near zero.

In Figure 4.6, we present the noise reduction measures Edyn(yn, ĝxn) and E0(yn, xn) as functions
of ρ. It is that as ρ increases, the average indeterminism and the average distance are increasing
and decreasing, respectively.
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Figure 4.5: KDEs of (a) individual log10-indeterminism points and (b) distance between original and
noise reduced orbit points, for different values of parameter ρ.

3. Fixed noise levels imply fixed relative noise reduction: In this experiment we choose the
variances and the time series realizations xn, for each f2,l noise process for 1 ≤ l ≤ 4, such that,
they give an associated noise level η of about 3%. In the fourth column of Table 4.3, we can see
that the relative noise reduction measure Rdyn, does not undergo major changes, and it attains
values between 0.871 and 0.902.

4.4.2 A bistable cubic map

Here, we consider the cubic map

xi = g(ϑ, xi−1) = 0.05 + ϑxi−1 − 0.99x3
i−1. (4.12)



4.4. Simulation Results 99

0
.0

1
0

.0
2

0
.0

3
0

.0
4

(scaled by 10
5
)

0 4 8 12 16 20

Edyn

E0

Figure 4.6: The average distance E0(yn, xn) and the average dynamic error Edyn(yn, ĝxn) as functions of
the parameter ρ.

Table 4.3: Measures of reconstruction and noise reduction efficiency for the f2,l noise processes. The
variances of the noise processes, and each realization has been chosen, such that, η is fixed at about 3%,
where Edyn = Edyn(yn, ĝxn).

Noise σ2 × 104 E0 Edyn Rdyn θ̄xn θ̄yn

f2,1 0.21 0.0428 0.00286 0.902 0.059 0.036
f2,2 0.29 0.0514 0.00371 0.871 0.115 0.062
f2,3 0.40 0.0490 0.00392 0.871 0.072 0.098
f2,4 0.77 0.0627 0.00323 0.892 0.054 0.059

For ϑ ∈ Θbi = [1.27, 2.54] the map is bistable in the sense that two mutually exclusive period-
doubling cascades coexist. For values of ϑ close to 2.54, we denote the two coexisting attractors
by O1 ⊂ I1 and O2 ⊂ I2, with approximately I1 = [−1.60,−0.10) and I2 = [−0.10, 1.67].
For values of ϑ slightly larger than 2.54, the set O2 undergoes a sudden change. It becomes
repelling, and all trajectories over I1 ∪ I2 are attracted by O1. In fact, similar behavior can be
observed for all ϑ ∈ (2.54, 2.65).

We let ϑ = ϑ∗ = 2.55 and we consider the dynamically perturbed map xi = g(ϑ∗, xi−1) + ei

with ei
iid∼ f2,1, σ2 = 0.55 × 10−4, and ρ = 102. Then, noise-induced jumps are taking place

between the intervals I1 and I2. Here we consider dynamically perturbed time series obser-
vations xn, of small sample size n = 200. As a modeling polynomial, we utilize the general
quintic polynomial g(θ, xi−1) = ∑5

k=0 θjxk
i−1.

Noise reduction in the neighborhood of noise induced jumps: In Figure 4.7(a), we can see
the estimated yn trajectory (in black) evolving in the neighborhood of the original trajectory xn

(in red), incorporating the weaker dynamical noise f̂yn , given in Figure 4.9, as a black dashed
density. We remark, that our method, is based on the fact that it allows only small stochastic
steps around the original orbit, and thus, the noise reduced orbit follows closely the original
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Table 4.4: Measures of reconstruction and noise reduction efficiency for the cubic map, for various σ2’s
for the f2,1 noise processes, where Edyn = Edyn(yn, ĝxn).

σ2 × 104 η % E0 Edyn Rdyn θ̄xn θ̄yn

0.33 3.5 0.0395 0.00749 0.812 0.281 0.425
0.55 4.5 0.0413 0.00695 0.842 0.605 0.804
0.59 5.5 0.0631 0.00952 0.826 0.438 0.262
0.67 6.5 0.0453 0.00847 0.848 0.872 0.958
1.00 7.5 0.0630 0.00819 0.867 0.856 0.987

orbit even to its noise-induced prolongations in the interval I2. The corresponding log10 in-
determinism plot is given in Figure 4.7(b). The plot of the individual distances between the
original and the noise reduced trajectory is given in Figure 4.7(c). In Table 4.4 we display the
noise reduction efficiency for the cubic map, for noise levels between 3.5% and 7.5%. In the
last column of the table are displayed the average PAREs θ̄yn of the yn based estimation of the
deterministic part of the noise reduced dynamics. We have observed, that the average PARE
becomes larger than 1%, when the noise level exceeds 8%.
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Figure 4.7: In Figure (a), we give superimposed, the deterministic trajectory, the noisy trajectory xn and
the estimated yn trajectory. In Figure (b) we present the corresponding log10-indeterminism plot. The
trace of the individual distances between the original and the noise reduced trajectory is given in Figure
(c).

In Fig. 4.8 we presented a delay plot with the corresponding log10-determinism values. We note
that the role of the primary HTs in the two-dimensional case, here is played by the critical points
of the associated deterministic map. We have experimentally validated the above argument
also in the case of the logistic map, where we have one critical point. Such analogies between
the presence of HTs and the presence of critical points have also been mentioned e.g. in Refs.
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[JK97b, Man85].
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Figure 4.8: Delay plot of the noise-reduced cubic map orbit points, colored by log10-determinism devi-
ations.
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Figure 4.9: Kernel density estimations based on the predictive samples of f̂xn (continuous black curve),
the predictive samples of f̂yn (dashed black curve) along with the true dynamical noise density (contin-
uous red curve).

4.5 Conclusion

In this chapter, we have presented a novel approach to the problem of noise reduction of dy-
namically perturbed nonlinear maps, the DNRR sampler. Our approach is Bayesian, modeling
a noise reduced trajectory yn, that evolves in the neighborhood of a given noisy trajectory xn. Our
proposed DNRR algorithm, is flexible and accurate, because the assumptions for the under-
lying noise process f perturbing the original trajectory are relaxed. A-priori, we consider the
noise as coming from a random countable mixture of zero mean Gaussians. Then, the number
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of the components, the weights, and the variances of the normal mixture f̂xn , approximating
the actual noise process f , are estimated directly from the observed time series. This in turn,
implies a high accuracy estimation of the deterministic part ĝxn , which is the basic ingredient of
the replication part of the DNRR sampler. Also, we have seen, that for moderate noise levels,
the noise reduced trajectory yn, has an estimated deterministic part ĝyn remaining close to the
estimated deterministic part ĝxn of the original trajectory.

We could modify the proposed DNRR model, by dropping the assumption of a known func-
tional form for the deterministic part, and instead, apply over g, a Gaussian Process prior
[Ras04]. We believe, that such an approach, will be appropriate for a wide variety of real world
data sets, characterized by strong nonlinearity and (or) complicated contaminating dynamic
noise.
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Chapter 5

On the stochastic approximation of the
global stable manifold

5.1 Introduction

In the recent literature, there has been a growing interest for the construction and analysis
of models that include nonlinear deterministic components and are influenced by a variety of
noise processes. There exist two main distinct fields of research in relation with random pertur-
bations of dynamical systems. The first regards the analysis of Random Dynamical Systems, by
defining direct stochastic generalizations of the central notions appearing in the theory of Dy-
namical Systems, such as random attractors [CDF97] and random invariant manifolds [MS99b].
The second approach, which we will follow in this chapter, regards the behavior of a perturbed
system in the zero-noise limit, i.e. having as reference system the underlying nonlinear deter-
ministic part.

Invariant manifolds are essential to the theory of dynamical systems, as the behavior of any
dynamical system is related to the underlying geometrical structure of the state space, more
specifically the organization of the invariant stable and unstable subspaces. There exist several
methods in the literature suitable for the approximation of invariant manifolds of deterministic
and random dynamical systems.

The need for a development of generic methods suitably approximating the invariant mani-
folds of nonlinear dynamical systems is highlighted by the fact that in general it is not possible
to describe the the invariant set of points via closed-form analytic expressions. A special case of
a power series expansion approximation for the stable and unstable manifolds of a Hénon map
saddle fixed point is presented in Ref. [FR81]. The most widely used method for the approxi-
mation of the global stable manifold of any invertible map is [YKY91], the authors also propose
a method suitable for noninvertible maps in [KYY96]. Another method for the approximation
of the global stable manifold of invertible maps is introduced in [KO+98] and is extended to
the Search-Circle algorithm in [EKO04] for the noninvertible case. A modified version of the
Search-Circle, which is faster and is based on the same concept is presented in [LFZ12]. For the
numerical computation of higher-dimensional invariant manifolds, we refer to [GMJ17, KO99]
and [GV04]. For a review of numerical methods for two-dimensional manifolds we refer to
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[KOD+05]. A restriction of some of the above methods, can be considered the requirement of
the complete knowledge of the dynamical system. A method suitable for the approximation of
invariant manifolds given only by experimental data, where there is no available model, is in-
troduced in [TBS03]. Moreover, the “parameterization method” originally introduced by Cabré
et. al [CFdlL03a, CFdlL03b], forms the basis of a series of results relevant to the establishment
of the existence and the computation [vdBJR16] of invariant manifolds.

In this chapter we are interested in relating the random dynamical systems with their associ-
ated deterministic parts. More specifically, we propose an extension of the GSBR sampler intro-
duced in Chapter 3, in order to provide a MCMC based stochastic approximation of the global
stable manifold based on an observed noisy time-series. We introduce the Backward GSBR
model, in order to compute the support of the densities of a certain set of past unobserved ob-
servations, by performing predictions in reversed time. We emphasize on the diffuse support
of the posterior marginal densities of the far-off in the past initial conditions. We demonstrate
that such supports contain part of the associated noisy stable manifold. The BGSBR sampler
can be applied multiple times over proper subsets of the noisy observations, each time gener-
ating posterior samples of the various parts of the stable manifold. Then the global noisy stable
manifold of the associated noisy time-series observations can be approximated as the union of
the supports of the posterior marginal distributions.

The special feature of the initial vector posterior marginals, is that they are the only variables
with full conditional distributions depending solely on the observations that are ahead of them
in time. All other variables, have full conditional distributions depending on both the future
and the past values. This apparent lack of information, regarding past values, makes the sup-
port of the associated full conditional to diffuse along the direction of the local stable manifold
contained on a neighborhood of the true initial condition. We will see that when we perform
prediction in reversed time, the variance of the (new) initial condition vector posterior marginal
is increased, spreading the sampled values along the stable manifold.

We will demonstrate the efficiency of the proposed method using different types of polyno-
mial maps, which are of particular interest not only because of their rich dynamical behavior,
but also due to their ability to approximate more complicated maps, as a finite degree Taylor
approximation of non-polynomial nonlinearities. Furthermore, in essence all invertible poly-
nomial maps, i.e. any nontrivial polynomial diffeomorphism of R2 with constant Jacobian, are
conjugate to compositions of generalized Hénon maps [DM00].

The basic advantage of the proposed method is its ability to provide an adequate stochastic ap-
proximation of the stable manifold, under a data driven method. In particular, no knowledge
regarding the parameters of the system is required, not even the location of the saddle fixed
point, just a general functional representation of the deterministic part. Namely, the proce-
dures of the system identification and of the stochastic approximation are performed in paral-
lel, similarly with the DNRR model described in Chapter 4. Our method is parsimonious, due
to the flexibility induced by the general functional form of the deterministic part and the GSB
prior, while it is applicable even with small data sets corrupted by (perhaps) non-Gaussian
noise. Moreover, an important feature of the BGSBR model is its wide applicability. In fact
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we will demonstrate the applicability of the BGSBR algorithm for the case of invertible and
non-invertible maps.

This work is related with utilizing a Bayesian non-parametric framework, for approximating
dynamical invariants, based on observed time series data. As we have seen in the previous
chapters one can in principle approximate

• the quasi-invariant measure of the underlying random dynamic system implying the ex-
istence of a prediction barrier.

• the positions of primary homoclinic tangencies (if they exist) revealing the non-hyperbolic
nature of the underlying randomly perturbed deterministic dynamic system.

This Chapter is organized as follows. In Section 5.2, we discuss some preliminary notions. In
Section 5.3, we derive the Backward Geometric Stick Breaking Reconstruction (B–GSBR) model,
a Bayesian nonparametric mixture model suitable for the prediction in reversed time and for
the stochastic approximation of the global stable manifold from observed time series data, by
applying a GSB prior. In Section 5.4, we resort to simulation. We apply the B–GSBR model on
deterministic and random polynomial maps of arbitrary degree that are dynamically perturbed
by noise processes which are (perhaps) non Gaussian. Finally, we discuss the conclusions and
some directions for future research.

5.2 Preliminaries

5.2.1 Invariant manifolds of deterministic systems

In what follows, we will consider a planar diffeomorphism g of R2 to itself. The global dynam-
ical behavior of the map g is determined by dynamically invariant objects, such as the stable
and the unstable manifolds. Let y a saddle fixed point of g, i.e. the Jacobian Dyg has eigenval-
ues λs, λu such that |λs| < 1 and |λu| > 1. The global stable manifold [GL02, KO+98] Ws(y) is
the set of points whose orbit tend to y in forward time:

Ws(y) =
{

x ∈ R2 : g(n)(x)→ y, n→ ∞
}

.

Similarly, the corresponding unstable manifold is defined as the set of points whose orbits tend
to y in reversed time, i.e. :

Wu(y) =
{

x ∈ R2 : g(−n)(x)→ y, n→ ∞
}

.

Since g is invertible, we note that the stable manifold of g is the unstable manifold of g−1 and
vice versa.

Due to the stretching and folding mechanisms, the two manifolds do not only intersect at the
fixed point but also in other locations called homoclinic points. If the intersection between the
invariant manifolds is tangential, we have a point of homoclinic tangency and thus infinitely
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many, due to invariance under both g and g−1. Homoclinic tangencies (HTs) are important in
the study of how noise affects chaotic systems, as they lead to noise amplification. In the sym-
bolic dynamics literature, they have been proposed as a basis for building generating partitions.
Furthermore, the existence of HTs is mutually exclusive with the property of hyperbolicity, thus
making shadowing impossible. Perturbations in the vicinity of HTs are driven away from the
attractor and only due to the folding effects of the nonlinear map the noisy orbits are mapped
onto it again. For a detailed description of the above mechanism see Ref. [JK97b].

The Hénon map [Hén76] is defined as

g (θ, x, y) =
(
θ1 + θ2x2 + θ3y, x

)
, (5.1)

with inverse:
g−1 (θ, x, y) =

(
x,− 1

θ3
(θ1 + θ2y2 − x)

)
. (5.2)

The Hénon map exhibits the same qualitative dynamical behavior with a wide variety of poly-
nomial maps, namely quadratic maps with a constant Jacobian.

In Fig. 5.1 we present portions of the stable manifold of the saddle fixed point (0.631, 0.631), for
the classical parameter θ = (1,−1.4, 0.3). We obtain points of the stable manifold by iterating a
set of points in small line segments, aligned along the stable direction of the saddle fixed point
[GL02]. We notice the emergence of homoclinic tangencies, as the map exhibits non-hyperbolic
chaotic behavior. The attractor has been conjectured to be the closure of the unstable manifold.

Figure 5.1: Attractor of the Hénon map (black), superimposed with portions of the global stable mani-
fold (gray).

Another illustrating example regarding the relevance of the stable manifold with the basins of
attraction in cases of multistability is the dual Hénon map [SX15], which is a special case of the
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Generalized Hénon map [DM00] (GHM). The Generalized Hénon map is defined as:

g (θ, x, y) =
(
θ1 + θ2x + θ3x3 + θ4y, x

)
, (5.3)

with inverse:
g−1 (θ, x, y) =

(
x,− 1

θ4
(θ1 + θ2y + θ3y3 − x)

)
. (5.4)

For the values of the control parameters θ = (0, 2,−0.1, 0.3) we have the case of the dual Hénon
map, exhibiting bistable behavior. In Fig. 5.2 we present two symmetric (with respect to the
origin) isolated attractors along with their corresponding basins of attraction. The two basins
of attraction are extend to infinity in both directions of the y axis and have a fractal boundary
[SX15].

Figure 5.2: Attractors of the bistable Dual Hénon map, superimposed with the corresponding basins of
attraction. We have used the red and gray colors for the basins of attraction of the coexisting strange
attractors in the first and the second quadrant, respectively.

In Fig. 5.3 we plot the pair of strange attractors, along with the two global stable manifolds
superimposed. The two associated symmetric saddle fixed points situated in (3.605, 3.605) and
(−3.605,−3.605). The two interlaced global stable manifolds form the boundaries between
the different basins. Points that belong in the stable manifolds they do not converge on the
attractors, they will eventually converge to the associated saddle fixed points.

5.3 The BGSBR model

Suppose that we have at our disposal a time series xn = (x1, . . . , xn) which is a realization of
the random recurrence relation given by

Xi = T(θ, Xi−d, . . . , Xi−1, ei) (5.5)

= g(θ, Xi−d, . . . , Xi−1) + ei, i ≥ 1,
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Figure 5.3: Attractors of the bistable Dual Hénon map, superimposed with the corresponding global
stable manifolds. We use red and gray color for the global stable manifolds of the first and third quadrant
saddle fixed points respectively.

where g : Θ× Xd → X, for some compact subset X of R. The states of the system (Xi)i≥−d+1

and the noise perturbations (ei)i≥1 are real random variables over some probability space
(Ω,F , P) and we denote by θ ∈ Θ ⊆ Rm any dependence of the deterministic map g on the
control parameters. g is nonlinear continuous in x̃i−d−1:d = (xi−d, ..., xi−1).

As in the previous chapters, we assume that the random variables ei are independent to each
other, and independent of the states Xi−r for r < i+ d. In order to relax the common assumption
of normality for the noise process, we assume that the additive perturbations ei are identically
distributed from some zero mean distribution with unknown density f defined over the real
line, so that T : Θ× Xd ×R→ R.

We do not take observational noise into consideration, so that the time series xn is completely
determined by the initial vector, the vector of control parameters, and the particular realization
of the noise process. We note that the observed time series can also be considered as the one-
dimensional measurements of the states of a dynamical system of unknown dimension, which
can be embedded in a proper m–dimensional space using delay coordinates and suitably cho-
sen time delay τ.

We propose a Bayesian nonparametric model, the backward geometric stick breaking recon-
struction (B–GSBR) model, in order to jointly estimate a fixed number of consecutive past ob-
servations, namely performing prediction in reversed time. That is, given xn = (x1, . . . , xn)

and a reversed time prediction horizon T, we aim to estimate the past observations vector
x̃−T:T = (x−T+1, . . . , x0), as well as the shifted to the past initial condition vector x̃−T−d:d =

(x−T−d+1, ..., x−T) corresponding to the augmented time-series x̃−T:T+n.

For example, letting d = 2 and T = 3, our goal will be to estimate jointly the three past obser-
vations x̃−3:3 = (x−2, x−1, x0) and the vector of the shifted initial conditions x̃−5:2 = (x−4, x−3)
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corresponding to the augmented to the past time-series x̃−3:n+3 = (x−2, x−1, x0, x1, ..., xn).

To this end, we extend the GSBR model [MKH17] presented in Chapter 3, such that we will
be able to jointly estimate the control parameters θ, the (perhaps) non-Gaussian density of
dynamical noise process, the vector of past observations x̃−T:T = (x−T+1, ..., x0) together with
the corresponding initial vector x̃−T−d:d = (x−T−d+1, ..., x−T).

We will model the errors in recurrence (5.5) as an infinite mixture of zero-mean normal kernels
of N (x | 0, τ−1

j ) for j ≥ 1 with precision τj and mixing measure, the random geometric stick
breaking measure

G = ∑
j≥1

πjδτj ∼ GSB(a, b, G0) with πj = λ(1− λ)j−1 and λ ∼ Be(a, b).

Letting τ∞ = (τj)j≥1 and π∞ = (πj)j≥1, it is that

f (x |π∞, τ∞) =
∫

τ>0
N (x | 0, τ−1)G(dτ) =

∞

∑
j=1

πjN (x | 0, τ−1
j ).

The data likelihood of xn conditional on the initial vector x̃−d:d, after the augmentation with the
auxiliary variables (di, Ni) for 1 ≤ i ≤ n takes the form

f (xi, di, Ni : 1 ≤ i ≤ n | λ, θ, x̃−d,d) ∝
n

∏
i=1

di≤Ni

λ2(1− λ)Ni−1 τ1/2
di

exp
{
−

τdi

2
hϑ(xi, xi:d)

}
,

where λ the geometric probability of the GSB prior measure over the noise process and hϑ(xi, xi:d) =

(xi − g(ϑ, xi:d))
2.

The conditional likelihood for a prediction in reversed time for T > 0, will be

f (xi, di, Ni : −T + 1 ≤ i ≤ n | λ, θ, x̃−d:d) ∝
n

∏
i=−T+1

di≤Ni

λ2(1− λ)Ni−1 τ1/2
di

exp
{
−

τdi

2
hϑ(xi, xi:d)

}
.

(5.6)
We have the following proposition:

Proposition 5.1. We let τi
iid∼ G(ε, ε) for all i ≥ −T + 1 and we consider the cluster-slice group

variable
(
dn+T, Nn+T) with dn+T = (d−T+1, . . . , dn) and Nn+T = (N−T+1, . . . , Nn). Then the

augmented posterior Π
(
λ, τ∞, dn+T, Nn+T, x̃−T−d:d, x̃−T:T | xn,R

)
, conditionally on the event R =
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{x−T+1 ∈ X, . . . , x0 ∈ X} will be proportional to the quantity:

Be(λ | a, b)
∞

∏
i=1
G (τ−T+i | ε, ε) I

(
θ ∈ Θ̃

) d

∏
i=1
U (x−T−d+i |X)

×
T

∏
i=1

d−T+i : d−T+i≤N−T+i

λ2(1− λ)N−T+i−1 U (x−T+i ∈ X) N
(

x−T+i | g(θ, x̃−T−d+i−1:d), τ−1
d−T+i

)

×
n

∏
i=1

di : di≤Ni

λ2(1− λ)Ni−1 U (xi ∈ X) N
(

xi | g(θ, x̃−d+i−1:d), τ−1
di

)
.

Proof.

Π (λ, τ∞, θ, x̃−T−d:d, x̃−T:T | xn,R) ∝ Π (λ, τ∞, θ, x̃−T−d:d, x̃−T:T, xn | R)
= Π (λ, τ∞, θ, x̃−T−d:d) Π (x̃−T:T | λ, τ∞, θ, x̃−T−d:d,R) Π (xn | λ, τ∞, θ, x̃−T−d:d, x̃−T:T)

= Π (λ, τ∞, θ, x̃−T−d:d)
T

∏
i=1

Π (x−T+i | λ, τ∞, θ, x̃−T−d+i−1:d, x−T+i ∈ X)

×
n

∏
i=1

Π (xi | λ, τ∞, θ, x̃−d+i−1:d)

= Π (λ) Π (τ∞) Π (θ)
d

∏
i=1

Π (x−T−d+i)
T

∏
i=1
U (x−T+i ∈ X)Π (x−T+i | λ, τ∞, θ, x̃−T−d+i−1:d)

×
n

∏
i=1

Π (xi | λ, τ∞, θ, x̃−d+i−1:d) .

Augmenting the posterior with the cluster-slice variable
(
dn+T, Nn+T) we obtain:

Π
(

λ, τ∞, dn+T, Nn+T, x̃−T−d:d, x̃−T:T | xn, {x−T+1∈X, . . . , x0 ∈ X}
)

∝ Π (λ) Π (τ∞) Π (θ)
d

∏
i=1

Π (x−T−d+i)

×
T

∏
i=1

d−T+i : d−T+i≤N−T+i

λ2(1− λ)N−T+i−1 U (x−T+i ∈ X) N
(

x−T+i | g(θ, x̃−T−d+i−1:d), τ−1
d−T+i

)

×
n

∏
i=1

di : di≤Ni

λ2(1− λ)Ni−1 U (xi ∈ X) N
(

xi | g(θ, x̃−d+i−1:d), τ−1
di

)

∝ Be(λ | a, b)
∞

∏
i=1
G (τ−T+i | ε, ε) I

(
θ ∈ Θ̃

) d

∏
i=1
U (x−T−d+i |X)

×
T

∏
i=1

d−T+i : d−T+i≤N−T+i

λ2(1− λ)N−T+i−1 U (x−T+i ∈ X) N
(

x−T+i | g(θ, x̃−T−d+i−1:d), τ−1
d−T+i

)

×
n

∏
i=1

di : di≤Ni

λ2(1− λ)Ni−1 U (xi ∈ X) N
(

xi | g(θ, x̃−d+i−1:d), τ−1
di

)
.
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At each iteration of the Gibbs sampler, we we will sample the variables:

(τj), 1 ≤ j ≤ N∗, (di, Ni), −T + 1 ≤ i ≤ n,

(x̃−T−d:d, x̃−T:T) and (ϑ, λ, zn+1),

with N∗ = max−T+1≤i≤n Ni.

Following section 3.2, the construction of the slice sampler is straightforward. We note that for
prior distribution over the initial condition vector we may use a uniform distribution over a
suitable subset X of Rd, based on our a-priori knowledge about the associated phase space of
the system. For the geometric probability a reasonable choice will be a conjugate Beta prior.

Furthermore, we need to derive the full conditional distributions for the past variables and the
new initial condition vector, namely for j = 1, . . . , T + d we can write

f (x1−j | . . .) ∝ I
(

x1−j ∈ X
)

exp

−1
2

d

∑
k=0

k−j≥−T

τd1−j+k hϑ(x1−j+k, x̃−j+k−d:d)

 ,

meaning that the FC of the last component x−T−d+1 of the initial condition vector x̃−T−d:d will
be the truncated density

f (x1−(T+d) | . . .) ∝ I
(

x1−(T+d) ∈ X
)

exp
{
−

τd−T−d+1

2
(x−T+1 − g(ϑ, x−T−d+1, . . . , x−T))

2
}

.

5.3.1 Stable manifold stochastic approximation

The proposed method is based on the observation that the posterior marginal distribution of
the initial condition vector lies along the stable direction, i.e. the direction of the stable mani-
fold [HZ98]. We use the stable direction, for example in order to find regions of homoclinic
tangencies, by iterating a random (normalized) vector with the inverse Jacobian matrix at a
given point, as explained in Refs. [CEP13, LGYK93]. We note that due to numerical errors,
we are not able to actually multiply with the inverse Jacobian, so we use the evaluation of the
inverse Jacobian at each orbit point. For more details, see subsection 2.1.3 of this thesis and Ref.
[LGYK93].

On the initial condition estimation

Before we proceed with the algorithm for the stochastic approximation of the stable manifold,
we will address the problem of the initial condition estimation in terms of reconstruction, i.e.
with T = 0. Suppose we have a data set xn = (x1, . . . , xn) as in Eq. (5.5) and we are interested
in recovering the initial condition vector x̃−d:d = (x−d+1, ..., x0). Our inference is based on the
posterior marginal distribution of the initial vector, via the GSBR algorithm (or equivalently
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the BGSBR with T = 0), using the proper Bayesian estimate. The quality of the estimate, is
affected mainly by two factors:

1. The particular realization of the noise process.

2. The position of the initial vector in the state space.

In order to illustrate the above effects, we generate a deterministic orbit ym of the Hénon
map, with yj = g(yj−1, yj−2) = 1.38− y2

j−1 + 0.27yj−2, j = 1, . . . , 250 starting from (y−1, y0) =

(−0.61, 1.37) and use each vector of consecutive orbit points
(
yj, yj+1

)
as initial vector x(0,j) =

(x−1,j, x0,j) for a random orbit xj,n =
(
x1,j, . . . , xn,j

)
with the same deterministic part, i.e. for

i = 1, . . . , 500
xi,j = g(xi−1,j, xi−2,j) + ei,j, ei,j

iid∼ f (5.7)

with noise process f (x) = 9
10N (x | 0, 10−7) + 1

10N (x | 0, 10−3). We perform reconstruction at
each one of the 250 data sets and compute the absolute error (AE) of x−1,j and x0,j, for j =

1, . . . , 250. We model the deterministic part g, with the complete quadratic polynomial in the
two variables and use as Bayesian estimate the posterior mean.

Our estimate is affected practically by the magnitude of the first noise perturbations, in the
sense that stronger random perturbations are affecting the initial part of the data generating
process leading to worse estimates of the initial conditions. In Fig. 5.4 we present the obtained
AEs of x0,j’s superimposed with the magnitude (absolute value) of the second noise perturba-
tion of each data set |e2,j|, j = 1, . . . , 250. We can see that the locations of relatively high AEs
correspond to stronger noise perturbations, with correlation between the noise magnitude and
x0,js AE equal to 0.96. For the x−1,j AEs we have the same behavior, with correlation equal to
0.88. For the logistic map (and any nonlinear map with lag one), the initial condition estimation
depends only on the first random noise perturbation.
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Figure 5.4: Absolute errors of the x0,j estimates (black) and absolute values of the second noise pertur-
bation |e2,j|, for j = 1, . . . , 250.

The estimation of the initial condition is moreover affected by its position on the state space.
More specifically, the posterior marginal of the initial vector lies along the stable direction and
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depends on the curvature of the local stable manifold. In Fig. 5.5 (a) we present the determin-
istic orbit used to generate the initial conditions, superimposed with the sampled values of the
initial condition posterior marginals for two cases with different local curvature of the stable
manifold. Near the initial condition (0.08,−1.32) the stable manifold exhibits locally high cur-
vature, while near the initial condition (1.71,−0.02) the curvature of the local stable manifold
is very small. Note that for both cases the initial condition is in the neighborhood of a HT. In
Fig. 5.5 (b)-(c) we enlarge the area around the two initial points and present the sampled values
with the corresponding 90% highest posterior density regions, defined by the black polygonal
curves around the initial points. The closeness of the HTs to the two initial points results in the
increase of the variance of the posterior marginals (when compared to regions with no neigh-
boring primary HTs). The supports of the posterior distributions have clearly different shapes,
due to the different local curvature of the global stable manifold around the different regions
of the primary HTs. Thus, apart from the intensity of the noise, the local stable direction also
affects the quality of the initial vector estimation.
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Figure 5.5: (a) Embedded deterministic orbit y superimposed with the sampled values for the initial
conditions around (0.08,−1.32) (in blue) and (1.71,−0.02) (in red). In Fig. 5.5(b) and 5.5(c) we present
enlargements of the regions [−0.07, 0.23] × [−1.47,−1.17] and [1.57, 1.87] × [−0.17, 0.13], respectively.
The green triangles indicate the positions of the true initial conditions.

Positive reversed time prediction horizon

When we sample from the joint density of the variables x̃−T−d:d = (x−T−d+1, ..., x−T), which
are considered as the initial point for the time series (x̃−T:T, x̃0:n) = (x−T+1, ..., x0, x1, ..., xn), for
T > 0, there is an increase of uncertainty forcing the sampled values to diffuse along remote
portions of the stable manifold, along the stable direction. So, we can utilize this diffusion effect
caused by the increase of the reversed time prediction horizon T, in order to reveal larger and
more remote portions of the global stable manifold. The approximation of the global stable
manifold via sampling from the joint density of x̃−T−d:d for T > 0, can be considered as a data
driven method as it is based exclusively on the observed time-series xn.
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Furthermore, in the same way that forward orbits of a map g are attracted by the unstable man-
ifold containing the attracting set, backward orbits are attracted by the unstable manifold of the
inverse map g−1. However, the unstable manifold of g−1 coincides with the stable manifold of
g, which we stochastically approximate by performing prediction in reversed time.

We demonstrate this diffusion effect along the various parts of the stable manifold by produc-
ing two versions of the last numerical experiment one for T = 0 and one for T = 2. Both
versions will involve the deterministic orbit ym of length m = 250. Each orbit point yj is used
as an initial condition for the realization of a non–Gaussian noisy orbit xj,n of length n = 500.

For T = 0 we sample from the marginal joint density of the variable (x−1,j, x0,j), being the
initial point of the xj,n = (x1,j, . . . , xn,j) realization for j = 1, . . . , 250 producing the sets of
points Ws(xj,n, T = 0) for j = 1, . . . , m , and we denote their union byW s

0.

For T = 2 we sample from the marginal joint density of the variable (x−3,j, x−2,j) of the T = 2
version, being the initial point of the augmented to the past orbits (x−1,j, x0,j, xj,n) =

(x−1,j, x0,j, x1,j, . . . , x500,j) producing the sets of points Ws(xj,n, T = 2) for j = 1, . . . , m, and
we denote their union byW s

2. In Fig. 5.6(a) we display superimposed the set of pointsW s
0 in

red and the the set of pointsW s
2 in gray.

The increase of the prediction horizon drives the supports of the posterior distributions along
the stable direction. In a sense, the reversed time prediction at a point x, is mimicking the effect
of multiplying the points of a backward orbit ending at x with the inverse Jacobian matrix, thus
approximating the stable direction. In Fig. 5.6 (b)-(c) we zoom in certain regions of the state
space for a more detailed inspection of this phenomenon.

Also, in Figs. 5.7(a) and 5.7(b) we present the associated density–colormaps of the set of points
W0 andW2, respectively. Higher color intensity corresponds to regions of higher relative fre-
quency of the sampled values, thus to regions associated with higher posterior probability. For
T = 0, the posterior marginals put almost all of their mass close to the true initial conditions,
along the stable direction. Fig. 5.7(a) can be compared with the local stable directions shown
in Fig. 2.3(a). On the other hand, due to the increased time reversed horizon for T = 2 we
can see in Fig. 5.7(b) that the posterior marginals are more spread across the remote parts of
the stable manifold, far from the neighborhoods of the true initial conditions. We consider the
union setW2 providing us with an approximation of the noisy global stable manifold of the of
the random Hénon map given in Eq. (5.7).

Whenever we have only one available data set (x1, . . . , xn) generated by an unknown per-
turbed dynamical system, in order to reveal more portions of the stable manifold, we apply
the B–GSBR algorithm multiple times, each time based on proper subsets of the observed orbit.
More specifically, on the k–th consecutive application of the B–GSBR model, we will use the
data set xn

k = (xk, . . . , xn), the last n− k + 1 points of the observed time–series, to sample the
data set Ws(xn

k , T = t). After a prespecified number of applications, say m, we use the union
set W s

t = ∪m
k=1Ws(xn

k , T = t) of the supports of joint posterior marginals, or alternatively the
associated regions of higher posterior probability, as an approximation to the global stable man-
ifold. Regarding the choice of the prediction horizon T, we have observed that small values
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Figure 5.6: Embedded deterministic orbit y (black) superimposed with the sampled values of all the
250 initial conditions for T = 0 (red) and T = 2 (gray). In (b) and (c) we zoom in the regions
[−0.50, 0.55] × [−1.8,−0.5] and [1.30, 1.75] × [−1, 1], respectively. At every chain we performed thin-
ning every 50 iterations.

of T between 2 and 5 give nearly indistinguishable results. Lower values should be preferred,
whenever computational resources are limited.

In Fig. 5.8 we display the propagation pattern of the support of the T–marginal densities along
the stable direction, for a specific initial point and a varying time reversed prediction horizon
T.

More specifically, in Fig. 5.8 we have set the initial point to (x−1, x0) = (−2, 0) and we have
generated a sample (x1, . . . , xn) of length n = 500, with the standard parameters of the Hénon
map, using additive Gaussian noise with variance σ2 = 10−7. We have applied the B–GSBR
model, for different reversed time horizons T = 0, 1, 2, 3.

The described method of stochastic approximation is relevant to the approximation methods
described in chapters 3 and 4. We have approximated the quasi-invariant measure of the sys-
tem by applying the GSBR model and the location of primary homoclinic tangencies by ap-
plying the DNRR model. The novelty of the above methods lies on the fact that we are able
to approximate features of the associated random, or deterministic map, with stochastic data–
driven methods.
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Figure 5.7: Embedded colormaps of the posterior samples for each x(0,j), j = 1, . . . , 250, when (a) T = 0
and (b) T = 2. Higher color intensity corresponds to regions of higher posterior probability.

Figure 5.8: Embedded data from noisy Hénon map (black), superimposed with the posterior marginals
of the initial condition vector (red) and past unobserved observations (gray). True values of initial
condition and true past observations are indicated with square and circles respectively .
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5.4 Simulations

In this section, we provide numerical illustrations of the proposed B–GSBR algorithm, in or-
der to stochastically approximate the global stable manifolds of the saddle fixed points of the
Hénon and Dual Hénon maps, using synthetic time series. Moreover, we will apply the B–
GSBR model on orbits from deterministic and noisy noninvertible polynomial maps. We will
apply the algorithms for different non–Gaussian noise processes, using mixtures of two Nor-
mal kernels with different variances.

In the following, we will use a non-informative prior specification, suitable for cases in which
there is no prior information available regarding the data generating process. Specifically, as a
prior for the geometric probability variable, we take the arcsine density λ ∼ B(0.5, 0.5), which
coincides with the Jeffrey’s prior for λ. On the precisions (τj)j≥1 of the random density f , we
place the vague gamma prior G(10−3, 10−3), which is very close to a scale invariant prior. On
the variables of the initial conditions we assign uniform priors based on our a priori knowledge
of the map state space.

In our numerical experiments, unless otherwise stated, the B-GSBR Gibbs samplers have ran for
20× 104 iterations for every application, leaving the first 5× 104 samples as a burn-in period.
We performed thinning every 150 iterations in order to reduce the correlation between the
sampled values.

5.4.1 Hénon map

The zero noise limit case

We consider a time series realization xn of size n = 2000, coming from the deterministic recur-
rence relation given in (5.1) using the parameter values (θ1, θ2, θ3) = (1,−1.4, 0.3) with initial
point (x−1, x0) = (−1, 0.5) . We consider the data as coming from a deterministic part g cor-
rupted by a very low, close to zero, intensity dynamical noise process. For example we could
assume the existence of such a zero limit noise process ei ∼ f ∗ as coming from the overall er-
rors produced at each iteration of the map, caused by the finite precision of the floating point
computer arithmetic that is:

xi = g(θ, xi−1, xi−2) + ei, ei ∼ f ∗ (5.8)

For more details, see Ref. [HW11]. For greater flexibility we use f ∗(z) := ∑∞
i=1 piN (z|0, σ2

i ),
which is an infinite mixture of Normal kernels. In this case, in principle, any symmetric
0−mean density can be recovered.

The deterministic part g is modeled with the complete quadratic polynomial in two variables,
namely

g(θ, xi−1, xi−2) = θ0 + θ1xi−1 + θ2xi−2 + θ3xi−1xi−2 + θ4x2
i−1 + θ5x2

i−2. (5.9)
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We used a fixed reverse time prediction horizon T = 3 and we have performed m = 500
consecutive applications of the B–GSBR algorithm.

In Fig. 5.9 we present the embedded data points over R2 lying on the Hénon attractor (in black),
superimposed with the sampled values from the joint posterior marginals of the initial condi-
tion vector for each one of the 500 consecutive applications (in red). For the initial conditions
we assigned a uniform prior over the interval (−3, 3).

Figure 5.9: Embedded data from deterministic Hénon map (points in black), superimposed with the
sampled values of the consecutive joint posterior marginals of the initial condition vector (points in
red).

It is evident that the union of the supports of the joint posterior marginals forms a stochastic
approximation of the associated global stable manifold of the deterministic map, as shown in
Fig. 5.1.

In order to further investigate the quality of the stochastic approximation, we show in Fig.
5.10 data points and sampled values from the joint posterior marginals over the rectangle
[0.65, 1.25]× [−0.5, 0.5].

We remark that whenever we are confident that we have in our disposal a deterministic data
set, or a noisy data set perturbed by Gaussian noise, we can use the parametric counterpart of

the B–GSBR model. In this case, we have to model the noise as ei
iid∼ N (0, λ−1) and assign a

Gamma prior over the unknown precision of the noise distribution. Nevertheless, when the
noise departs from normality, a parametric modeling will lead to erroneous estimations as we
have analyzed in the previous chapters.
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Figure 5.10: Enlargement of the rectangle [0.65, 1.25]× [−0.5, 0.5] of Fig. 5.9.

Non–Gaussian noise

We perform the same simulation as in the previous section, using a single data set from the
noisy Hénon map. We consider a time–series realization xn of size n = 1000, coming from the
recurrence relation given in (5.1) using the parameters values θ = (θ1, θ2, θ3) = (1,−1.4, 0.3),
corrupted by the dynamical noise

f1(z) =
2

∑
i=1

wiN
(
z | 0, σ2

i
)

,

with w1 = 0.75, w2 = 0.25, σ2
1 = 10−6, σ2

2 = 10−3 and initial condition (x−1, x0) = (−1, 0.5) . We
model again the deterministic part g, with the complete quadratic polynomial in two variables
as in equation (5.4). For the initial condition we have assigned a uniform prior over the interval
(−6, 2).

We have used the reversed time prediction horizon T = 3 and we have performed m = 250
consecutive applications of the B–GSBR algorithm, based on the data set xn with starting data
set (x1, . . . , xn) and ending data set (xm, . . . , xn).

In Fig. 5.10 we present the embedded data points over R2 which are close to the Hénon at-
tractor (in black), superimposed with the union of the sampled values from the joint posterior
marginals of the initial condition vector coming from the 250 consecutive applications (in red).

We note that due to the presence of non–Gaussian corrupting noise, the approximation of the
global stable manifold is subjected to a blurring effect. However, with the proposed method
we are still able to gain insight about the qualitative characteristics of the dynamical behavior
of the underlying system that generated the observed data set.



120 Chapter 5. On the stochastic approximation of the global stable manifold

Figure 5.11: Embedded data from noisy Hénon map (points in black), superimposed with the sam-
pled values of the consecutive joint posterior marginals of the initial condition vector. Colormap of the
relative frequency, using a high analysis grid.

It is better, then, instead of approximating the stable manifold with the union of the supports
of the posterior marginals to use regions of higher posterior probability. Specifically, we apply
a high analysis grid over the subset of the state space that we are interested in approximating
the manifold and color–code the regions according to the relative frequency of the posterior
samples inside each region. Then, the regions of higher posterior probability will provide us
with an increased quality stochastic approximation of the stable manifold.

5.4.2 The generalized Hénon map

The zero noise limit case

In this subsection we will consider the map

xi = θ1 + θ2xi−1 + θ3x3
i−1 + θ4xi−2, (5.10)

with corresponding two-dimensional representation given in Eq. (5.3). We set the control pa-
rameters to (θ1, θ2, θ3, θ4) = (0, 2,−0.1, 0.3). These are the parameter values for which two
Hénon-like attractors A+ and A− coexist (see Fig. 5.3), situated to the first and third quadrant,
respectively.
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We generate two deterministic orbits xn
+ = (x+1 , ..., x+n ) and xn

− = (x−1 , ..., x−n ), with initial points
p+ = (1, 0.5) and p− = (0.5, 1), lying on the basins of attraction of A+ and A−, respectively.

We use the two orbits as our observed data sets, and to each orbit we apply the B–GSBR algo-
rithm with reversed time horizon T = 2. We set the restriction interval to X = (−5, 5). So that
the prior over the initial variables (x−3, x−2) is uniform over X2 and the variables (x−1, x0) are
truncated to X2.

In Fig. 5.12 we present the embedded data sets xn
+ and xn

− in black over R2. They are lying close
to the coexisting Hénon-like attractors. Together we superimpose the unions of the sampled
values Ws

+ = ∪m
j=1Ws(x̃+j−1:n−j+1; T = 2) in red and Ws

− = ∪m
j=1Ws(x̃−j−1:n−j+1; T = 2) in gray

for m = 500.

Figure 5.12: Deterministic orbits of the bistable Dual Hénon map, superimposed with the corresponding
stochastically approximated global stable manifolds. We use red and gray colors for the joint posterior
marginals corresponding to the first and third quadrant data sets respectively.

The union of the supports Ws
+ and Ws

− of the joint posterior marginals, form a stochastic ap-
proximation of the associated global stable manifolds of the deterministic map, in Fig. 5.3. The
support of the pairs of time reversed initial points is the square X2 = (−5, 5)2, which we have
used as a prior and a a restriction to the posterior. However, the density of the union of the
supports is very close to zero in regions that do not belong in the associated basin of attraction.

We emphasize that we had no prior information at our disposal regarding the parameters of
the map or the location of the saddle fixed points. The stochastic approximation is completely
data driven, given a general functional representation for the deterministic part.

The case of an impulsive noise process

In this subsection we demonstrate the efficiency of the proposed model in the case of a sample
generated by the GHM, under the influence of impulsive dynamical noise.
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More specifically, we generate the realization xn of length n = 500 using the recurrence relation
given in (5.10) for the values of the control parameters (θ1, θ2, θ3, θ4) = (0, 2,−0.1, 0.3), cor-
rupted by the impulsive dynamical noise f2(z) = ∑2

i=1 wiN
(
z | 0, σ2

i
)
, with w1 = 0.9, w2 = 0.1,

σ2
1 = 10−7, σ2

2 = 10−2,using the initial point p+ = (1, 0.5).

We apply the B-GSBR sampler with fixed reversed time prediction horizon T = 2, with the
same prior specifications as above. In Fig. 5.13 we present the result of 150 consecutive appli-
cations of the model. For the initial condition (x−3, x−2) we have assigned the uniform prior
over the square X = (−10, 10)2.

Figure 5.13: Stochastic approximation of the global stable manifold of the Dual Hénon map. Embedded
data from noisy data set xn (points in black), superimposed with the sampled values of the consecutive
joint posterior marginals of the initial condition vector (points in red).

We remark that although the noise density is non–Gaussian and the length of the orbit small, we
are able to produce an adequate approximation of the stable manifold, regarding the qualitative
characteristics and the boundary of the basins of attraction. The density of the union of the
supports is non–zero inside the square (−10, 10)2, but (as in the zero noise limit case) it is very
close to zero in regions that do not belong in the associated basin of attraction.

5.4.3 A non-invertible 2-d quadratic map

In this subsection we illustrate the performance of the B–GSBR model on nonlinear time–series
data coming from noninvertible polynomial maps. As an example, we will use the noninvert-
ible quadratic map

g(θ, x, y) = (θ1 − x2 + θ2y, x2), (5.11)
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with the lag-2 representation given by

xi = θ1 − x2
i−1 + θ2x2

i−2, (5.12)

for the value of the control parameters (θ1, θ2) = (1.38, 0.211). For a detailed analysis of the
dynamical behavior of two–dimensional non-invertible quadratic maps we refer to [ES10]. The
noninvertibility of the map (5.11) is caused by the squared term in the y−coordinate.

Since there exist orbit points with more than one preimages, we extend the definition of the
stable and unstable manifolds [San00] to

Ws(p) = {x ∈ R2 : there exists an infinite forward orbit {xn} through x

such that xk → p, as n→ ∞}
(5.13)

and

Wu(p) = {x ∈ R2 : there exists an infinite backward orbit {xn} through x

such that xk → p, as n→ −∞},
(5.14)

for a map g with fixed point p. Whenever the invertibility of g is not guaranteed, usually Ws

and Wu are being referred to as the stable and unstable invariant sets, respectively. The global
invariant sets are no longer guaranteed to be manifolds and due to the multiple preimages,
they can have intersections, being non–smooth or being totally disconnected [FKP03]. The
approximation of the stable manifold in such case is useful, because it gives us information on
the complicated basins of attraction that the multiple preimages create [EKO04]. The simplest
case of noninvertible quadratic maps are of the (Z0 − Z2) type, meaning that there exist points
in the state space with only two or zero preimages, defining the two mutually exclusive basins
of attraction.

The prior specifications for the following two simulations, remain the same as before, while the
initial point for the orbits will be (x−1, x0) = (0.5, 1.5). For the initial conditions we assigned a
uniform prior over the interval (−2, 2).

The zero noise limit case

We generate a deterministic orbit xn coming from the map in Eq. (5.12), of length 2, 000. We aim
to stochastically approximate the global stable manifold of the non-invertible map in (5.12).

We set T = 3 and perform 500 consecutive applications of the BGSBR model, moving one point
at each step. We ran all chains for 200, 000 iterations with a burn–in period of length 50, 000,
performing thinning every 150 iterations.

In Fig. 5.14 we present the deterministic data xn with the union of the sampled joint posterior
marginals of the initial variables (x−4, x−3). We remark that the x–axis symmetry is caused by
the y–preimages.
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Figure 5.14: The embedded data from deterministic orbit xn is depicted in black. Together we have
superimposed the union of the sampled values of the consecutive joint posterior (x−4, x−3) in red.

The case of an impulsive noise process

We have generated a noise contaminated orbit realization xn, of length n = 2000, coming from
the map

xi = θ1 − x2
i−1 + θ2x2

i−2 + ei ei
iid∼ f3, (5.15)

with f3(z) = 0.9N (z | 0, 10−7) + 0.1N (z | 0, 10−2).

In the previous chapters, we have shown that for such a noise, parametric models are not
suitable for inference, so, the Bayesian nonparametric approach is essential. Nevertheless, if
we are confident that the available data sets are contaminated by Gaussian noise (or by noise
practically indistinguishable from Gaussian noise), then it is preferable to use a parametric
counterpart to the BGSBR sampler.

Here we set T = 2 and perform 500 consecutive applications of the B–GSBR model, moving
one point at a time. We have ran the associated chains for 200, 000 iterations with a burn–in
period of length 50, 000, performing thinning every 150 iterations.

In Fig. 5.15 we present the stochastic approximation of the stable manifold obtained by the
application of the B–GSBR algorithm to the noisy data set xn and after applying a density–
color–map representation. The quality of the obtained approximation is adequate, although
more “noisy” than the previous illustration where the observed orbit was longer and deter-
ministic. We remark that the qualitative characteristics of the B–GSBR algorithm persist for
small and noise contaminated data sets.

Moreover, as we are interested in the recovery of the stable manifold of the underlying de-
terministic part, whenever we are confident that the observed data have relatively high noise
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Figure 5.15: Stochastic approximation of the global stable manifold of the noninvertible map, super-
imposed with the noisy data set xn (points in black). Colormap of the relative frequency, using a high
analysis grid.

level, we can first use the DNRR model in order to obtain a noise–reduced orbit and then apply
the BGSBR model on the denoised orbit.

We remark that for the noisy data sets generated by all Hénon-like maps, invertible or not, by
using the complete quadratic (5.9) as modeling map, we have managed to perform identifica-
tion of the underlying deterministic part with high accuracy. It is the accurate identification
combined with the accurate noise density estimation that allows us to obtain adequate approx-
imations of the associated stable manifolds. It is a straightforward task the construction of
algorithms suitable for more general maps, such as for example lag 3 models, invertible or not.
In fact, for the creation of Gibbs samplers for PAR processes of arbitrary degree and lag, we
can apply minor modifications to the modeling polynomial equations appearing in the slice
sampling step. For more details see Appendix A.

5.5 Conclusion

We have presented a new approach for the stochastic approximation of the global stable method,
based on Bayesian nonparametric MCMC methods and particularly on the extension of the
GSBR model, analyzed in Chapter 3. Our methods are data-driven and require no prior infor-
mation about the underlying deterministic map, other than a polynomial functional represen-
tation. By a proper application of the proposed model we were able to stochastically approxi-
mate the global stable manifold and gain insight about the qualitative dynamical behavior, in
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the zero noise limit (having as reference the associated deterministic system). Our method can
be applied in cases of noninvertible maps.

As a future work, we propose the following directions:

1. Relaxing the assumption for a functional representation of the deterministic part, by
adopting a Gaussian Process [Ras04] prior supported over the space of functions.

2. Improving manifold approximation, using manifold denoising algorithms [HM07], such
as the Manifold Blurring Mean Shift algorithm [WCP10].
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Chapter 6

Conclusions and future research

6.1 Conclusions

Noise effects are ubiquitous in real and experimental data sets, and are originated exogenously
as measurement errors or endogenously as dynamic–interactive errors. In this thesis we have
discussed the construction of novel algorithms aiming to confront the case of dynamical noise,
which is vastly important mainly due to its capability to induce new dynamical phenomena.

In this thesis we have presented a new approach to nonlinear dynamic modeling, using Bayesian
nonparametrics. We have relaxed the assumption of normality for the noise components, by
developing a highly flexible Bayesian nonparametric framework. An important aspect of this
approach is its capacity of approximating dynamical invariants which are in principle a diffi-
cult task to deal with from a computational point of view. Such dynamical invariants include
quasi-invariant measures, homoclinic tangencies and global stable manifolds. We have seen
that the combination of the fields of nonlinear dynamics and Bayesian nonparametrics can be
useful in the direction of constructing a flexible and parsimonious framework, suitable for the
analysis of real-world data and the detailed analysis of complex problems in dynamics.

More specifically, in this thesis we have applied Bayesian nonparametric methods in the prob-
lems of reconstruction, prediction [MKH17], noise reduction [KH18] and approximation of the
stable manifold [HK19]. In all of the above problems we have shown that models based on the
GSB random probability measures are efficient, with lower mean execution times and and at
the same time are easier to implement than the corresponding Dirichlet Process based models.
The main reason for this fact, is that although the two random measures have different random
weights -in particular the GSB weights are simpler- they share the same support over the space
of probability measures. We are confident that the Bayesian nonparametric methods in the fu-
ture will assist further and successfully deal with with problems regarding complex dynamics
and stochastic perturbations.
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6.2 Directions for future research

There exists a plethora of research directions, which can be based on the exploitation of the
connection between Bayesian nonparametrics and Random dynamical systems regarding both
modeling of complex systems and novel theoretical aspects. Furthermore, there is potential for
interesting applications of Random dynamical systems in Mathematical Biology and Neuro-
science, where the effects of noise play crucial role and there is evidence of rich noise–induced
phenomena, e.g. in neural modeling. In what follows, we address some future research
projects, based on the results obtained throughout this thesis.

6.2.1 Gaussian Process & general noise scenarios

In working with real-world data sets, the assumption of a given functional family representa-
tion for the deterministic part of the unknown dynamical system, can be considered a restric-
tion. One possible way to relax this assumption is to apply a Gaussian Process (GP) [Ras04]
as a nonparametric prior over the unknown functional form. Under this approach, we could
extend our models to a fully Bayesian nonparametric form.

An interesting research path also involves proper extensions of the nonparametric prior over
the noise processes, in order to include more general cases such as multiplicative, multimodal
or non–stationary noise processes. Furthermore, it would be worth investigating the applicabil-
ity of our models in continuous-time systems, by performing proper modifications regarding
essentially discretization schemes of the stochastic differential models.

6.2.2 RJMCMC Imputation & Embedding

Analysis of real data sets coming from measurements, may sometimes be challenging due to
a malfunction of the measurement device. Such malfunctions could result in sets of missing
observations, (perhaps) of an unknown number. A natural continuation of my research will be
the development of a Bayesian nonparametric framework involving the concept of Reversible
Jump Markov Chain Monte Carlo [Gre95] (RJMCMC) sampling, in order to estimate the the
proper model regarding the number of consecutive missing observations and impute them
using the proper Bayesian estimator.

Another interesting application of RJMCMC in the context of random dynamical systems re-
gards the construction of a general MCMC sampling scheme, suitable for the determination of
the embedding parameters (delay and embedding dimension), from one-dimensional obser-
vations. In cases where the observed time series is contaminated with dynamical noise, the
traditional methods used for the determination of the embedding parameters are inefficient.
An interesting alternative may include the randomization of the delay and the embedding
dimension, where a RJMCMC based sampling scheme will enable transdimensional jumps be-
tween the models of different dimension, thus enabling the construction of the proper Bayesian
model.
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6.2.3 Perturbed Coupled–Map Lattices

Spatiotemporal phenomena arising in spatially extended systems, have been observed and
analyzed in the context of many scientific disciplines, such as chemistry, neuroscience or en-
gineering. A widely used approach for spatiotemporal modeling is the Coupled Map Lattice
(CML), originally introduced by Kaneko [Kan93]. It consists of continuous states that evolve
in discrete time and space and can be used to model dynamical behaviors described by partial
differential equations. CMLs have been used to model and identify a wide range of complex
dynamical phenomena, including spatiotemporal chaos, traveling waves, turbulence and in-
termittency. Essentially, in a CML we have dynamical units organized by means of a lattice
that has a specific deterministic or random [Sin02] rule for spatial interaction (coupling). For
example we may use a global or a local coupling scheme, depending on whether we aim to
have interaction between all or only some of the lattice units, respectively.

We are interested in developing novel methods based on the Bayesian nonparametric frame-
work, in order to perform inference based on data sets generated by stochastically perturbed
CMLs. The need for a Bayesian nonparametric modeling is justified by the common assump-
tion of Gaussian noise environment, which can be relaxed by using random measure mixtures
of probability kernels as priors over the noise process. For example, suppose we have a CML
at time n, with lattice sites i ∈ {1, . . . , N}, that is:

x(i)n+1 = (1− ε)g
(

ϑ, x(i)n

)
+

ε

2

{
g
(

ϑ, x(i−1)
n

)
+ g

(
ϑ, x(i+1)

n

)}
+ ζn, ζn

iid∼ f (·)

where g(·) is a real map, ε is the coupling strength of the nearest neighbor interactions, and the
noise is distributed according to an unknown symmetric zero-mean density f (·). For example
we could make the assumption that the maps are organized on a ring. Based on a data set
generated by the associated perturbed CML, we are interested in estimating the control param-
eters ϑ, the initial point x0 =

(
x(1)0 , . . . , x(N)

0

)
, the coupling strength ε and the unknown noise

density f (·).
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Appendix A

Sampling from nonstandard full
conditionals

A.1 Sampling ϑ, x0 and xn+j, 1 ≤ j ≤ T − 1

Here we adapt our calculations for the specific case where the deterministic part is a polynomial
of degree m, namely g(θ, x) = ∑m

k=0 θk xk.

A.1.1 Sampling the ϑ = (θ)0≤j≤m coefficients

From eqs. (3.14) and (3.28) and for j = 1, . . . , m it is that

f (θj| · · · ) ∝ I(θ ∈ Θ̃j) exp

{
−1

2

n

∑
i=1

λdi hθ(xi, xi−1)

}
, (A.1)

where Θ̃j is the j–th projection interval of the set Θ̃. Letting ξ ji := xi −∑m
k=0
k 6=j

θk xk
i−1, we obtain

the full conditional for θj, which is a normal truncated over the set Θ̃j given by

f (θj| · · · ) ∝ I(θ ∈ Θ̃j)N (θj|µj, τ−1
j ) (A.2)

with

µj := τ−1
j

n

∑
i=1

λdi ξ jix
j
i−1, τj :=

n

∑
i=1

λdi x
2j
i−1.

To sample from this density, a-priori we set θj ∈ Θ̃j := (θ−j , θ+j ) and we augment the θj full
conditionals by the auxiliary variables θ′j [DWW99] such that jointly

f (θj, θ′j| · · · ) ∝ U (θj|θ−j , θ+j ) I
(

θ′j > (θj − µj)
2
)

e−τjθ
′
j/2. (A.3)

Then we have the following Lemma:
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Lemma A.1. The augmentation of the full conditionals of θj for j = 1, . . . , m with the positive random
variables θ′j such that they jointly satisfy (A.3), leads to the following embedded Gibbs sampling scheme:

f (θ′j|θj, · · · ) ∝ E(θ′j|τj/2) I(θ′j > (θj − µj)
2)

f (θj|θ′j, · · · ) = U (θj|αj, β j), αj := max{θ−j , µj − θ′1/2
j }, β j := min{θ+j , µj + θ′1/2

j }.

where E(θ′j|τj/2) denotes the exponential density with rate τj/2.

Proof. These are the full conditionals of the bivariate density given in Equation (A.3).

A.1.2 Sampling the initial condition x0

Similarly, to sample from the full conditional of x0 in eqs. (3.15) and (3.25), we introduce the
variable x′0 such that

f (x0, x′0| · · · ) ∝ I(x0 ∈ X̃) I
(
x′0 > hθ(x1, x0)

)
e−λd1

x′0/2.

Clearly, the full conditional of x′0 is an exponential of rate λd1 /2, truncated over the interval
(hθ(x1, x0), ∞). The new full conditional for x0 is a mixture of at most m uniforms given by

f (x0|x′0, · · · ) ∝ I(x0 ∈ X̃) I(x0 ∈ Rg), Rg := {x : x 0 < g(θ, x) < x0}, (A.4)

where x 0 := x1 − x′1/2
0 and x0 := x1 + x′1/2

0 . The set Rg can be represented as the union of
intervals, with boundaries defined by the real roots of the two polynomial equations

q(x0) := g(θ, x0)− x 0 = 0, q(x0) := g(θ, x0)− x0 = 0. (A.5)

More specifically, we are going to show that there is r ≤ m such that

Rg =∪r
i=1(ρ2i−1, ρ2i), (A.6)

with {ρ1, . . . , ρ2r} the ordered set of the real roots of the two polynomial equations in (A.5). In
the sequel we make use of the following notation

{q < 0} := {x0 ∈ R : q(x0) < 0},
{q > 0} := {x0 ∈ R : q(x0) > 0}.

First we will consider the two even degree cases. When the leading coefficient is positive, the
equation q = 0 has at least two real roots. If there are more than two real roots, their number
will be a multiple of two. On the other hand, when q = 0 has real solutions their number will
be even. Then for s′ ≥ 1 and t′ ≥ 0 it is that

{q < 0} = (ρ1, ρ2) ∪ · · · ∪ (ρ2s′−1, ρ2s′) (A.7)

{q > 0} = (−∞, ρ
1
) ∪ · · · ∪ (ρ

2t′
, ∞). (A.8)
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When t′ ≥ 1 it is that ρ1 < ρ
1
< ρ

2t′
< ρ2s′ . Therefore r = 2(s′ + t′) and the intersection of the

two sets {q < 0} and {q > 0} is of the form (A.6). When the leading coefficient is negative the
result is similar with the right hand sides of equations (A.7) and (A.8) interchanged.

When the degree is odd and the leading coefficient is positive, both equations q = 0 and q = 0
have at least one real solution ρ1 and ρ

1
respectively, with ρ

1
< ρ1. If some of the two equations

have more than one real solution, the number of the additional roots will be a multiple of two.
So for s′ ≥ 0 and t′ ≥ 0 it is that

{q < 0} = (−∞, ρ1) ∪ (ρ2, ρ3) ∪ · · · ∪ (ρ2s′ , ρ2s′+1) (A.9)

{q > 0} = (ρ
1
, ρ

2
) ∪ · · · ∪ (ρ

2t′−1
, ρ

2t′
) ∪ (ρ

2t′+1
, ∞). (A.10)

For s′ ≥ 1 and t′ ≥ 1 we have ρ
1
< ρ1 < ρ

2t′+1
< ρ2s′+1, and r = 2(s′ + t′ + 1) which shows

that the intersection of the two sets {q < 0} and {q > 0} is of the form (A.6). When the leading
coefficient is negative the result is similar with the right hand sides of the equations (A.9) and
(A.10) interchanged.

So we have proved the following lemma:
Lemma A.2. The augmentation of the full conditional of x0 with the positive random variable x′0 leads
to the following embedded Gibbs sampling scheme:

f (x′0|x0, · · · ) ∝ E(x′0|λd1 /2) I(x′0 > hθ(x1, x0))

f (x0|x′0, · · · ) ∝ I(x0 ∈ X̃) I
(

x0 ∈ ∪r
i=1(ρ2i−1, ρ2i)

)
,

for some r ≤ m, with {ρ1, . . . , ρ2r} being the ordered set of the real roots of the two polynomial equations
in (A.5).

A.1.3 Sampling the first T − 1 future observations

The full conditionals xn+j for 1 ≤ j ≤ T − 1 in eq. (3.16) and ?? given in the main text are non-
standard densities. We augment the conditional of xn+j with the pair of variables (x′n+j, x′′n+j)

such that jointly

f (xn+j, x′n+j, x′′n+j| · · · ) ∝ e−
1
2 λdn+j

x′n+j I(x′n+j > hθ(xn+j, xn+j−1))

× e−
1
2 λdn+j+1

x′′n+j I(x′′n+j > hθ(xn+j+1, xn+j)).

The full conditionals of x′n+j and x′′n+j are truncated exponentials with rates λdn+j /2 and λdn+j+1 /2
over the intervals (hθ(xn+j, xn+j−1), ∞) and (hθ(xn+j+1, xn+j), ∞) respectively.

The full conditional of xn+j is of the form (A.4) with the set X̃ replaced by the set (x−n+j, x+n+j)

with x±n+j := g(θ, xn+j−1)± x′1/2
n+j , and the setRg replaced by the set {x : x n+j < g(θ, x) < xn+j}

with x n+j := xn+j+1 − x′′1/2
n+j and xn+j := xn+j+1 + x′′1/2

n+j .
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A.2 Sampling the geometric probability λ

To sample from the density ineq. (3.29) in the main text we include the pair of positive auxiliary
random variables p1 and p2 such that

f (λ, λ1, λ2 | · · · ) ∝ λ2nT−α−1I(λ1 < (1− λ)LnT )I(λ2 < e−β/λ),

with λ ∈ (0, 1). The full conditionals for λ1 and λ2 are uniforms

f (λ1 | · · · ) = U (λ1| 0, (1− λ)LnT ), f (λ2 | · · · ) = U (λ2| 0, e−β/λ).

The new full conditional for λ becomes

f (λ | λ1, λ2, · · · ) ∝ λ2nT−α−1

 I
(
− β

log λ2
< λ < 1− λ

1/LnT
1

)
LnT ≥ 0

I
(

max
{
− β

log λ2
, 1− λ

1/LnT
1

}
< λ < 1

)
LnT < 0.

We can sample from this density using the inverse cumulative distibution function technique.
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Appendix B

Invariant set of the map x′ = g̃(ϑ∗, x)

For ϑ = ϑ∗ = 2.55 we let

g̃(x) ≡ g̃(ϑ∗, x) = 0.05 + 2.55x− 0.99x3,

and we define g̃(n) to be the n-fold composition of g̃ with itself. We let R(2) to be the set of real
roots of the polynomial equation g̃(2)(x) = x, with x = minR(2), x = maxR(2) and X = [ x, x ].
We denote the complement of X by X′ = X′− ∪X′+, where X′− = (−∞, x ) and X′+ = (x, ∞).
We will prove the following lemma:
Lemma B.1. Let g̃ be the polynomial given in eq. (3.31), then for all x ∈ X′, it is that

lim inf
n→∞

g̃(n)(x) = −∞ and lim sup
n→∞

g̃(n)(x) = ∞.

Proof. It is not difficult to verify geometrically the following facts:

1. g̃(x ) = x, g̃(x ) = x.

2. x ≤ x ≤ x ⇔ x ≤ g̃(x) ≤ x.

3. g̃(x) > x, g̃(2)(x) < x, ∀ x ∈ X′−.

4. g̃(x) < x, g̃(2)(x) > x, ∀ x ∈ X′+.

5. The restrictions of g̃ and g̃(2) to X′, are decreasing and increasing functions respectively.

Then for all x ∈ X′− we have the set of inequalities

g̃(2n+1)(x) < g̃(2n−1)(x) < · · · < g̃(x) < x.

Suppose that limn→∞ g̃(2n+1)(x) = x∗ then limn→∞ g̃(2n+3)(x) = g̃(2)(x∗) = x∗, meaning that
x∗ ∈ R(2) which is a contradiction. Therefore limn→∞ g̃(2n+1)(x) = −∞, for all x ∈ X′−. Simi-
larly for all x ∈ X′+ we have the set of inequalities

g̃(2n)(x) > g̃(2n−2)(x) > · · · > g̃(2)(x) > x,

from which limn→∞ g̃(2n)(x) = ∞, for all x ∈ X′+.





153

Appendix C

Julia codes

The algorithms for all the models constructed in this thesis, that is the GSBR, the DNRR and
the BGSBR models (as well as their parametric counterparts) have been developed in the Julia
language [BKSE12].

The associated software is available and can be downloaded from the URL:

Link to thesis codes

or available upon request via e–mail:

kkaloudis@aegean.gr or konst.kaloudis@gmail.com.

https://www.dropbox.com/sh/um4xok1jucenxmh/AABPrm5ocrAA8SXwimLNeedSa?dl=0
kkaloudis@aegean.gr
konst.kaloudis@gmail.com
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