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Abstract

Medical, financial, or social databases are analyzed daily for the discovery of pat-
terns and useful information. Privacy concerns have emerged as some database
segments contain sensitive data. Data mining techniques are used to parse, process,
and manage enormous amounts of data while ensuring the preservation of private
information, as data can be exploited by potential aggressors. Regarding social
networks, their privacy preserving analysis aims to understand better the network
and its behavior, while at the same time protecting the privacy and identity of its
individuals. Network data contain sensitive information and due to the increas-
ing popularity of social networks that are released publicly, effective anonymization
techniques are required to make the data available for research.

Considering the above, this thesis is divided in two parts and focuses on privacy
preservation of distributed databases and social network data. In the first part,
a privacy preserving data mining protocol is presented, thoroughly designed and
developed for both horizontally and vertically partitioned databases, which contain
either nominal or numeric attribute values. At the same time the accuracy of final
outcomes and the preservation of privacy is the main goal of the proposed protocol.
Cryptography, as shown by previous research, is the most accurate approach to
acquiring knowledge while maintaining privacy to assure both confidentiality and
integrity of data. The proposed algorithm exploits the multi-candidate election
schema to construct a privacy-preserving tree-augmented naive Bayesian classifier,
a more robust variation of the classical naive Bayes classifier. The exploitation of
the Paillier cryptosystem and the distinctive homomorphic primitive shows in the
security analysis that privacy is ensured and the proposed algorithm provides strong
defences against common attacks.

In the second part, an anonymization algorithm is developed for weighted graphs,
i.e., for social networks where the strengths of links are important. Previous studies
concentrate mainly on preventing identity disclosure in unweighted graphs. How-
ever, a weighted graph is more descriptive, revealing more information about the
relationships between entities, which allows adversaries to take advantage of poten-
tial security holes. Weights can be essential for social network analysis, but they pose
new challenges to privacy preserving network analysis. For instance, an adversary
may use his information about some edge weights to re-identify individuals. This in
contrast with many previous studies which only consider unweighted graphs. The
proposed anonymization method considers identity, edge and edge weight disclosure
for anonymizing weighted graph data, assuming that adversaries have knowledge
about the neighborhood of a targeting entity. In particular, a k-anonymous tech-
nique is presented that groups entities with same neighborhoods into supernodes and
the corresponding connections into superedges. The method provides k-anonymity
of nodes against attacks where the adversary has information about the structure
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of the network, including its edge weights.
Both approaches are proven efficient and have been evaluated in terms of privacy

and utility. Experiments deriving the benefits of real world databases demonstrate
the preservation of private data while mining processes occur.

Keywords Privacy; Data mining; Privacy preserving; Distributed databases; So-
cial networks; Security; Privacy preserving analysis; Tree Augmented Naive Bayes;
Paillier cryptosystem; Homomorphic encryption; Anonymization; k-anonymity; Gen-
eralization; Privacy Disclosure; Weighted social network; Identity disclosure; Edge
disclosure; Edge weight disclosure
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Περίληψη

Ιατρικές, οικονοµικές ή κοινωνικές βάσεις δεδοµένων αναλύονται καθηµερινά για την
ανακάλυψη προτύπων και χρήσιµων πληροφοριών. Προβλήµατα απορρήτου προκύπ-
τουν καθώς ορισµένα τµήµατα βάσης δεδοµένων περιέχουν ευαίσθητα δεδοµένα. Οι
τεχνικές εξόρυξης δεδοµένων χρησιµοποιούνται για την ανάλυση, την επεξεργασία
και τη διαχείριση τεράστιων ποσοτήτων δεδοµένων, διασφαλίζοντας παράλληλα τη δι-
ατήρηση των ιδιωτικών πληροφοριών, καθώς τα δεδοµένα µπορούν να αξιοποιηθούν
από πιθανούς επιτιθέµενους. ΄Οσον αφορά τα κοινωνικά δίκτυα, η ανάλυσή τους για
την προστασία της ιδιωτικότητας στοχεύει στην καλύτερη κατανόηση του δικτύου και

της συµπεριφοράς του, ενώ ταυτόχρονα προστατεύει το απόρρητο και την ταυτότητα
των ατόµων του. Τα δεδοµένα δικτύου περιέχουν ευαίσθητες πληροφορίες και λόγω
της αυξανόµενης δηµοτικότητας τους που δηµοσιεύονται δηµοσίως, απαιτούνται αποτε-
λεσµατικές τεχνικές ανωνυµοποίησης για τη διάθεση των δεδοµένων για έρευνα.
Λαµβάνοντας υπόψη τα παραπάνω, αυτή η διατριβή χωρίζεται σε δύο µέρη και

εστιάζει στη διατήρηση της ιδιωτικότητας σε κατανεµηµένες βάσεις δεδοµένων και
δεδοµένα κοινωνικών δικτύων. Στο πρώτο µέρος, παρουσιάζεται ένας αλγόριθµος
εξόρυξης δεδοµένων διατήρησης απορρήτου, σχεδιασµένος και υλοποιηµένος διεξοδικά
για οριζόντιες και κατακόρυφες κατατµηµένες βάσεις δεδοµένων, οι οποίες περιέχουν
χαρακτηριστικά είτε µε ονοµαστικές είτε µε αριθµητικές τιµές. Ταυτόχρονα, η ακρίβεια
των τελικών αποτελεσµάτων και η διατήρηση της ιδιωτικότητας είναι ο κύριος στόχος
του προτεινόµενου πρωτοκόλλου. Η κρυπτογραφία, όπως φαίνεται από προηγούµενη
έρευνα, είναι η πιο ακριβής προσέγγιση για την απόκτηση γνώσεων, διατηρώντας
παράλληλα το απόρρητο για να διασφαλιστεί τόσο η εµπιστευτικότητα όσο και η ακ-
εραιότητα των δεδοµένων. Ο προτεινόµενος αλγόριθµος εκµεταλλεύεται το πολυ-
υποψήφιο σχήµα εκλογής για να κατασκευάσει ένα tree-augmented naive Bayesian
ταξινοµητή, µια πιο ισχυρή παραλλαγή του κλασικού αφελής ταξινοµητή Bayes. Η
εκµετάλλευση του κρυπτοσυστήµατος Paillier και η θεµελιώδης οµοµορφική αρχή
δείχνουν στην ανάλυση ασφάλειας ότι διασφαλίζεται η προστασία της ιδιωτικότητας

και ο προτεινόµενος αλγόριθµος παρέχει ισχυρές άµυνες ενάντια σε κοινές επιθέσεις.
Στο δεύτερο µέρος, αναπτύσσεται µια µέθοδος ανωνυµοποίησης για σταθµισµένα

γραφήµατα, δηλαδή για κοινωνικά δίκτυα όπου η ισχύς των συνδέσµων είναι σηµαντική.
Προηγούµενες µελέτες επικεντρώνονται κυρίως στην αποτροπή της αποκάλυψης ταυτότη-
τας σε µη σταθµισµένα γραφήµατα. Ωστόσο, ένα σταθµισµένο γράφηµα είναι πιο περι-
γραφικό, αποκαλύπτοντας περισσότερες πληροφορίες σχετικά µε τις σχέσεις µεταξύ
οντοτήτων, γεγονός που επιτρέπει στους επιτιθέµενους να επωφεληθούν από πιθανές
τρύπες ασφαλείας. Tα βάρη µπορούν να είναι απαραίτητα για την ανάλυση κοιν-
ωνικών δικτύων, αλλά θέτουν νέες προκλήσεις στην προστασία του απορρήτου για
την ανάλυση δικτύων. Για παράδειγµα, ένας επιτιθέµενος µπορεί να χρησιµοποιήσει
τις πληροφορίες του σχετικά µε κάποια βάρη συνδέσµων για να επαναπροσδιορίσει τα
άτοµα. Αυτό έρχεται σε αντίθεση µε πολλές προηγούµενες µελέτες που θεωρούν µόνο
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µη σταθµισµένα γραφήµατα. Η προτεινόµενη µέθοδος ανωνυµοποίησης λαµβάνει υπ-
όψη την ταυτότητα, την σύνδεση και το βάρος της σύνδεσης για την ανωνυµοποίηση
σταθµισµένων δεδοµένων γραφήµατος, υποθέτοντας ότι οι επιτιθέµενοι έχουν γνώση
σχετικά µε τη γειτονιά µιας στοχευµένης οντότητας. Συγκεκριµένα, παρουσιάζεται µια
k - ανώνυµη τεχνική που οµαδοποιεί οντότητες µε τις ίδιες γειτονιές σε υπεροντότητες
και τις αντίστοιχες συνδέσεις σε υπερσυνδέσεις. Η µέθοδος παρέχει k - ανωνυµία
κόµβων έναντι επιθέσεων όπου ο επιτιθέµενος έχει πληροφορίες σχετικά µε τη δοµή
του δικτύου, συµπεριλαµβανοµένων των βαρών.
Και οι δύο µεθοδολογίες έχουν αποδειχθεί αποτελεσµατικές και έχουν αξιολογηθεί

ως προς το απόρρητο και τη χρησιµότητα. Τα πειράµατα που αντλούν τα οφέλη από
πραγµατικές βάσεις δεδοµένων δείχνουν τη διατήρηση των ιδιωτικών δεδοµένων κατά
τη διάρκεια τεχνικών εξόρυξης γνώσης.

Λέξεις-κλειδιά Απόρρητο; Εξόρυξη δεδοµένων; Διατήρηση της ιδιωτικότητας;
Κατανεµηµένες βάσεις δεδοµένων; Κοινωνικά δίκτυα; Ασφάλεια; Ανάλυση προστασίας
της ιδιωτικότητας; Tree Augmented Naive Bayes; Κρυπτοσύστηµα Paillier;
Οµοµορφική κρυπτογράφηση; Ανωνυµοποίηση; k -ανωνυµία; Γενίκευση; Αποκάλυψη
απορρήτου; Σταθµισµένο κοινωνικό δίκτυο; Αποκάλυψη ταυτότητας;
Αποκάλυψη συνδέσµου; Αποκάλυψη βάρους σύνδεσης
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Chapter 1

Introduction

1.1 Overview

The advancement of the Internet and technologies have increased the amounts of
data in various fields, and data applications have evolved from simple storage to
acquiring knowledge. Therefore the process of revealing important hidden patterns
and associations from a dataset, called data mining, advanced over the years. Data
mining has a wide range of applications and plays an essential role as through
operations and techniques automatic and algorithmic tools are created to generate
useful information and knowledge from data. For example, governments apply data
mining techniques to gain insights on citizens characteristics and companies to know
how their customers behave.

Data mining techniques are the main tools to extract knowledge. Generally,
data mining methods are categorized in three types: classification, clustering and
association rule mining. Classification methods are supervised learning techniques
in which classes are pre-determined. Clustering methods are unsupervised learning
methods and are not predefined. Association rule mining methods searches for
interesting relations in a dataset.

Acquiring knowledge though in many cases can violate the privacy of the indi-
viduals involved, and oppositely privacy poses restrictions to accessing knowledge.
Balancing access to knowledge and preserving privacy at the same time poses many
challenges. Thus, both data mining and information security research communities
are interested in overcoming this obstacle.

Social networks are a modern concept that have gained popularity in recent years.
That increased the network data that have been publicly available. Therefore, the
utility of social networks has extended beyond the user’s activity, as researchers
analyze network data to extract valuable information. Due to their nature, privacy
concerns have also been raised in this area. Data owners must protect the users
who are related with these data before releasing the datasets to the public. Thus, it
is important to provide methods that can efficiently hide sensitive information and
ensure anonymity.

In machine learning and privacy-preserving data mining there are two main con-
cepts that should be considered. The first focuses on anonymizing data and sup-
pressing identifiers to preserve privacy. The second refers to protecting privacy of
collections of datasets by securing data from unauthorized access. This dissertation
provides solutions for both dimensions.
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Data, in some cases, are distributed in multiple parties, and different organiza-
tions need to collaborate to run a data mining algorithm on their dataset union.
Standard data mining algorithms do not run on distributed data therefore their
modification is required. In real world applications, privacy issues arise due to secu-
rity and legal constraints as parties cannot simply send their data to a third party
to execute data mining methods and acquire knowledge. Therefore, the increasing
demands on protecting privacy and sensitive information created the need to develop
privacy preserving data mining (PPDM) techniques.

Since 2000, the research in this field has increased dramatically, and many al-
gorithms and protocols have been proposed for different data mining techniques.
Privacy preserving data mining aims to solve the problem of protecting privacy of
the individuals involved in data mining operations [1].

In distributed databases, the problem is defined as parties jointly conduct a data
mining process with their private data sets as input. For example, several medical
institutions wish to collaborate with each other, giving their data as input, such
that a data mining operation is performed, while privacy is preserved, to extract
knowledge i.e. if a patient will develop a disease based on their medical history.
When the operation is complete each party knows only their local data and the
global results of the mining process. Based on Goldreich [2], privacy is achieved
if each party can have access only to the local input and output of the process.
This definition is also used for anonymity of sensitive data and the owner identity.
However, Backstorm et al [3] show that the technique of simply removing identifiers
does not guarantee privacy. Therefore, more advanced anonymization methods are
required to achieve protection of individuals’ identity and sensitive information.

There are two main approaches for privacy preservation over distributed
databases: secure multi-party computation (SMC) and randomization. In secure
multi-party computation, the final outcomes are computed using cryptographic tools
among two or more parties who jointly compute a function with private data as in-
put. In randomization, data are perturbed using randomization and perturbation
techniques before sending them and their reconstruction occurs at the final destina-
tion of the data.

A social network and every network can be modeled as a graph which may
include additional information about the involved individuals and their relationships,
such as the strength of their connections which is represented by weights. For
example, a network of Twitter users is represented by a graph, where nodes are
considered the users, edges are the in-between connections and the weights show
how often the users communicate with each other. Privacy preservation in social
networks can be achieved by using either clustering-based or modification methods.
In clustering-based approaches, social data are clustered or generalized into groups.
In modification approaches, the graph is modified by inserting or deleting data
(nodes and/or edges).

Information loss measures the quantity of damage on the original data. For
example, by adding noise on the original data to preserve privacy can result in
data which are no longer useful to extract knowledge. Or, in social networks, the
anonymization method can mask the data such that graph properties are not able
to be obtained after the process. Balancing the data privacy and data utility is
challenging, considering at the same time the background knowledge of an adversary.

This dissertation focuses in two main topics and methods were designed and
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developed for: (1) privacy preservation of distributed databases and (2) privacy
preservation of social networks. Data utility and information loss is one of the two
main objectives. The second and most important objective is the privacy preser-
vation of sensitive data and individual’s identity. The methods described in this
dissertation are developed such that there is a balance between privacy and utility.

1.2 Problem description

1.2.1 Privacy and security

Everyday the world is getting more digitized, increasing the electronic data which
can be analyzed to discover knowledge, such as social and economic trends [4]. As
these data can be disclosed to unauthorized people, privacy becomes an important
aspect. Privacy can be defined as the prevention of sensitive information disclosure
when data mining is performed.

Both privacy and security put constraints in data mining tasks. Privacy and
security are two terms used interchangeably under different contexts, but both are
related to each other. Security is the process which needs to be implemented to
ensure privacy. Confidentiality, integrity and availability are the three fundamen-
tals of security. Security can be accomplished through controls of accessing an
individual’s information and protect it from unauthorized disclosure, modification,
loss or destruction. Security establishes policies and processes to obtain privacy
and confidentiality, including integrity mechanisms that safeguard information from
unauthorized modification. Privacy is defined as the right of an individual to keep
his personal information secret and not disclosed. Individual’s personal information
may lead to his identification if disclosed. Privacy can be accomplished through
policies and procedures.

For example, medical data are sensitive as they contain information about the
patients identities and their diseases. Analyzing medical data can help in generating
knowledge on how diseases are created or evolved. Therefore, the data need to
be anonymized before publicly released for data mining purposes. It is important
though to preserve privacy utilizing policies with efficient mining methods, so that
the utility is not reduced, and does not lead to inaccurate results which in case of
medical data can result in wrong predictions that are unacceptable.

1.2.2 Privacy preserving data mining framework

A general privacy preserving data mining framework is presented in Figure 1.1.
In data mining processes the data is collected by a single or multiple parties /
organizations and stored at databases. Privacy should be considered even at this
stage [5].

The data is transformed and sanitized for analysis purposes. Data anonymization
is performed by the data owner or a trusted party, in order to prevent sensitive infor-
mation disclosure. The processes applied are blocking, suppression, perturbation,
modification, generalization, sampling etc. Then, privacy preserving data mining
algorithms are applied for the generation of knowledge. The privacy preservation
techniques should also quantify data privacy and utility.
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The discovery of knowledge leads to the final results, rules and patterns that
can be used for further analysis. These results can also threaten privacy. For ex-
ample patterns may be revealed that can uniquely identify individuals. However,
anonymization methods that protect privacy of mining processes are not yet devel-
oped [6].

Figure 1.1: Privacy preserving data mining framework.

1.2.3 Policies and regulations

Nowadays, people are more concerned about their privacy and the privacy of their
data. Due to these concerns many counties establish new privacy regulations and
laws, such as the EU General Data Protection Regulation (GDPR) 1 [7] which took
effect in May 2018 and the California Consumer Privacy Act of 2018 2, or updated
their existing laws such as the Australian Privacy Regulation 2013 3 under the
Privacy Act 1988 [6, 8, 9].

Guidances for health related information in the US is provided by the Health
Insurance Portability and Accountability Act (HIPAA) Privacy Rule 4 [6]. Simi-
lar guidelines are provided by the Office of Australian Information Commissioner
in Australia. Moreover, in Australia, people are able to opt-out of their electronic
health record and delete them permanently as stated in My Health Records Amend-
ment (Strengthening Privacy) Bill 2018 5. Information Technology Rules (2011) un-
der the Information Technology Act (2000) were also introduced in India 6 to define
security practices and procedures [4]. Public health data are typically protected by
replacing sensitive attribute values. For example, Dutch hospitals use treatment
codes. The MIMIC dataset 7, an openly available dataset developed by the MIT
Lab for Computational Physiology uses subject IDs and removes sensitive attributes
from data [6].

Industry conventions, besides regulations, are also mandatory. Different compa-
nies should agree on how sensitive data is collected, stored and analyzed for building

1https://gdpr-info.eu/
2https://oag.ca.gov/privacy/ccpa
3https://www.oaic.gov.au/privacy/the-privacy-act/privacy-regulations
4https://www.cdc.gov/phlp/publications/topic/hipaa.html
5https://www.myhealthrecord.gov.au/about/legislation-and-governance/summary-privacy-

protections
6https://www.wipo.int/edocs/lexdocs/laws/en/in/in098en.pdf
7https://mimic.physionet.org/
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data mining applications, preserving privacy at the same time. Last but not least,
education on public awareness of information security needs to be increased [10].

1.2.4 Case studies and applications

Privacy preservation has been applied in many case studies and applications. Several
studies [8,11,12] have pointed out some of these cases. Kenthapadi et al [8] focus on
applications in the industry by presenting case studies from companies like Google,
Apple, LinkedIn, and Microsoft.

Google’s RAPPOR (Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse) project [13] is the first large scale deployment of differential privacy in in-
dustry. RAPPOR permits statistics to be collected for efficient, high utility analysis
of the collected data with strong privacy guarantees. RAPPOR is an open-source
project which can be used to improve browser security, find bugs, and provide better
overall user experience.

Apple [14] uses techniques from sketching and data streaming literature and
adapts them to ensure differential privacy deployed for iOS and macOS. The technol-
ogy has been used for applications such as learning new words from user keyboards,
learning health analytics, and device telemetry.

LinkedIn Salary is a web-scale crowdsourcing system for secure collection and
presentation of compensation insights to job seekers [15]. The key idea in this system
is to use noise generation and perform post-processing to achieve data consistency.

Microsoft’s local differential privacy algorithm has been deployed across millions
of Windows devices to collect application usage statistics in a privacy-preserving
manner [16].

Privacy preserving data mining applications can be grouped in four categories:
cloud computing, e-health, wireless sensor networks, and location-based services [12].
On the other hand, in [11] the authors mention different applications of privacy
preserving data mining methods, such as homeland security, bioterrorism, medical
database mining etc.

Cloud computing Cloud is a distributed infrastructure that collects, stores
and analyses large data with great storage and computation capabilities that can be
accessible through the network [12]. Individuals need to trust the cloud providers
with their data and for that reason privacy-preserving techniques focus on preserv-
ing privacy in cloud-based services. Different methods have been proposed either
for horizontally or vertically partitioned data stored encrypted in the cloud where
queries are allowed, or publishing data to the cloud based on the k-anonymity con-
cept.

Medical database mining One of the most sensitive data contained within
databases are the health records, therefore privacy-preserving approaches must be
considered in order to protect the privacy of the patients. These approaches are
divided in cryptographic and non-cryptographic [12].

Databases of DNA data are growing fast due to the advances in the DNA science
and forensic analysis. These data are extremely sensitive as they contain almost
unique identification information about an individual. Anonymity can be protected
by applying k-anonymity mechanisms, so that each record is not distinguished from
at least k − 1 other records [11].

Another application of medical database mining is bioterrorism, where medical
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data are analyzed and privacy needs to be preserved for data mining purposes [11].

Wireless sensor networks Wireless sensor networks are networks of distributed
sensors that monitor the physical environment [12]. Data is wirelessly exchanged
between these sensors, and due to low battery capacity it is important to process
data and communicate efficiently. These data may be considered sensitive, as they
might be used by attackers if they are used in a house, and track the behaviour
within it.

Location-based services Through a global positioning system (GPS) location
information can be obtained to provide users with useful services. This information
though is sensitive as an attacker might obtain it and discover the specific locations
of the target entity, such as the home address, the work address etc. Also these data
contain unique characteristics as they create behavioural patterns. For that reason
these data are considered sensitive. Thus, privacy preservation is required in order
to protect users from being tracked. Anonymity, perturbation and specific location
queries can be applied to preserve privacy in location-based data [12].

Homeland security The necessity of privacy-preserving techniques for home-
land security has created a number of applications because of the nature of surveil-
lance, in order to prevent user privacy violation. Some examples of such applications
are the credential validation problem, web camera surveillance, video surveillance
and the watch list problem [11].

1.2.5 Challenges

Data mining can be very valuable to many applications for information discovery,
but there is a growing concern about the usage of the data discovered and the
privacy threats that arise by data mining operations [17]. Individuals are worried
about their privacy being violated by unauthorized access to their personal data, and
the purposes for which data has been collected [10]. The pioneer work of Agrawal et
al. [18] and Lindell and Pinkas [19] open the field to many studies related to privacy
preserving data mining in order to address the privacy concerns while knowledge
is discovered by data mining operations. Many methods such as anonymization,
randomization, cryptography etc are applied on data in order to preserve privacy
[20]. However, these methods may generate information loss to some extent, or
create computational overhead [4].

Research and industry focus on improving security of infrastructures to protect
data. This however can be challenging as the concerns on data security are evolving
[21]. The three most important requirements that need to be fulfilled are the data
confidentiality, integrity and availability. However new requirements emerge such as
data quality, completeness, timeliness etc. If the quality of data is increased, data
is much more valuable, which may increase the possibility that an adversary might
gain unauthorized access and violate privacy or corrupt data. Since the amount of
data available is growing fast, more scalable mechanisms are required.

In many businesses, employees can have access to sensitive information. Their
actions of accessing private data though can be detected within a company, and face
disciplinary actions. However, most companies use internet based data management
services, in which users that are not their employees, might have access to the
sensitive data, resulting in more challenges as companies are not aware of the users
who accessed the data. For that reason organizations need to guarantee that they
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comply with security and privacy policies and requirements. Data privacy in cloud
computing is a major challenge, as the user does not have control of their data. It
is hard to determine where the data is stored and where it is processed.

Mining data produced by people related to their everyday life can violate privacy.
For example the data from mobile devices, such as their location, can be combined
with external information and uniquely identify a person from a large set.

Social networks as well have raised enormous challenges, as privacy and social
network goals are two completely opposite concepts. Many techniques have been
applied for anonymization of such networks which are described in Part II. User
education is crucial as well to avoid many privacy breaches, by taking advantage of
the privacy settings provided by the social networks [22].

Bertino et al. [23] propose that the goals of a privacy preserving data mining
algorithm should be defined before evaluating the algorithm. Based on their propo-
sitions, a privacy preserving data mining algorithm should satisfy few important
requirements. A privacy preserving data mining algorithm:

• ”should prevent the discovery of sensitive information.”

• ”should be resistant to various data mining techniques.”

• ”should not compromise the access and the use of non sensitive data.”

• ”should be usable on large amounts of data.”

• ”should not have exponential computational complexity.”

• ”should not consume high amounts of resources.”

However, not all privacy preserving data mining algorithms proposed in the lit-
erature satisfy all these requirements. For example, not all the proposed algorithms
are resistant to various data mining methods.

1.3 Motivation and objectives

Privacy of sensitive information in real-world applications is required because of reg-
ulations and laws, but also because of the interests of businesses and institutions.
For example, hospitals conduct research on medical data to acquire knowledge for
faster diagnosis in emergency cases. For marketing purposes, businesses and com-
panies are interested in knowing the habits of customers. In both examples, the
private data must be protected and the individual’s personal information should
remain hidden by unauthorized parties. The sensitive data should be anonymized
and/or distributed in a secure way such that useful information is extracted but
privacy is preserved.

The privacy preserving data mining field has made progress over the years. This
evolving field has gained interest from various communities such as information
security and data mining. Many achievements in the field have been accomplished,
however there are still many open issues.

Different data mining applications are designed for addressing different prob-
lems. There are no specific approaches designed that can be generalized and used in
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different scenarios. Developing data mining protocols that are efficient, effective, se-
cure and accurate is considered challenging, balancing at the same time the trade-off
between privacy, efficiency, utility and complexity.

After reviewing the existing privacy preservation methods proposed in this field,
most methodologies focus on centralized scenarios or the distributed ones are not
designed to address standardization issues. They do not support different data types,
and mainly concentrate on one distribution database type, horizontal or vertical.
Proposed methodologies lack implementation and the approaches proposed in the
literature are designed for addressing specific problems.

Some of these methodologies have been used for the anonymization of tabular
data. However they are not appropriate for graph data. Even more when graphs
contain additional information such as the strength of the relationships among indi-
viduals. Most methods previously proposed focus mainly on unweighted graph data.
These techniques cannot provide privacy in network data which contain sensitive in-
formation about their links. Background knowledge of adversaries can compromise
privacy, and re-identification may be achieved.

The objective of the dissertation is two-fold:

• Develop a privacy preserving framework for horizontally and vertically parti-
tioned databases while useful knowledge is obtained through mining processes.

• Develop an algorithm which provides anonymization in weighted graph data,
considering as background information of adversaries the neighborhood struc-
ture of the graph while keeping the data utility close to the original data.

1.4 Contribution

This dissertation makes two significant contributions which are independent, but
related to the privacy preserving data mining community. To overcome existing
problems and cover some holes in the privacy preserving data mining research, we
propose two protocols implemented for real world applications.

A well-designed framework is developed and implemented to support both hori-
zontally and vertically distributed databases. Until now all previous researches focus
on one database partition, and they lack implementation. The proposed protocol is
designed and implemented for a distributed environment where a third party who
acts as the data collector utilizes cryptographic mechanisms in order to perform the
mining process. The main goal of the protocol is to preserve privacy while allowing
the extraction of useful information. The protocol is developed such that it can be
used by real world applications. The protocol is scalable and can be easily extended
to support multiple data mining operations. The threat and security analysis along
with the experimental results show the applicability and performance with different
encryption mechanisms and different sizes of datasets.

The second contribution is related to privacy preservation in social networks. An
algorithm is presented, which was implemented for real world applications and pro-
vides anonymization of weighted graph data. Previous studies focus on unweighted
graphs which do not consider the connections between the individuals that repre-
sent. A more realistic approach is to consider a graph with more information about
the individuals such as the relationships between them and their strength, which
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is represented by weights. An information loss metric is presented which is applied
to prove that the proposed anonymization algorithm is accurate and privacy is pre-
served. Past researches focus mainly in identity disclosure. However the proposed
approach provides privacy for different types of disclosures, such as identity, edge
and edge weight disclosure. The experimental results and the security analysis of the
anonymization approach show that the proposed method strikes a balance between
privacy and utility for real world weighted graphs.

Part I and part II present in depth the proposed methodologies and the contri-
bution in the research community of privacy preserving data mining.

1.5 Dissertation structure

The dissertation is organized in ten chapters, separated in three main parts. The
current chapter provides an introduction to privacy preserving data mining and
states the problem that needs to be addressed. The concerns and challenges on
the domain are presented along with the objective and motivations, including the
contribution of the dissertation.

Part I: Chapter 2 presents an introduction to privacy preserving data mining in
distributed databases and its dimensions. A categorization of the existing method-
ologies is given along with the advantages and disadvantages of each method. A
synopsis of the proposal is defined in addition to the contribution of the proposed
privacy preservation framework. Chapter 3 reviews the literature of privacy preserv-
ing data mining for distributed databases. Chapter 4 outlines the proposed protocol
by presenting the theoretical background in Section 4.1, and describes in detail the
privacy preservation protocol in Section 4.2. The proposed method was evaluated
in terms of efficiency and privacy and the results are presented in Section 4.3. Fur-
thermore, the threat model of the proposal is provided in Section 4.4, and the part
is concluded with Chapter 5 which provides a summary on the topic presented in
Part I.

Part II: Chapter 6 provides an introduction to privacy preserving data mining
in graphs and social networks. The k- anonymity model is explained, and how the
utility can be preserved. A summary of the proposed algorithm, and its contribution
concludes the chapter. Chapter 7 presents the related work on unweighted and
weighted graphs. Chapter 8 describes the proposed anonymization algorithm. In
particular, Section 8.1 introduces the preliminaries and defines the problem which
is solved by the k-anonymization algorithm described in details in Section 8.2. The
evaluation of the proposed algorithm and the threat model are given in Section 8.3
and Section 8.4, respectively. Chapter 9 presents the summary of Part II.

Part III: This is the last part of the dissertation. Chapter 10 finishes the dis-
sertation by outlining the conclusions and findings of the research and discusses the
open issues. Future directions conclude the current research on privacy preserving
data mining.

Appendixes: Finally, Appendix A presents in detail the algorithm given in
Part II. Appendix B includes detailed tables on the related work presented in both
Part I and Part II. Appendix C presents detailed images of the proposed privacy
preservation technique for distributed databases. Appendix D provides a list of
the publications on which this dissertation is based on that have been published in
scientific journals and conference proceedings.
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Privacy preservation of distributed
databases
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Chapter 2

Introduction

In recent years, advances in information and communication technologies have raised
deep concerns about how data, and specifically private data, are processed. The de-
velopment of data mining techniques has attracted considerable attention as the
principal goal is to extract knowledge from data and, in the process, discover use-
ful patterns. Useful information can be obtained from data following these steps:
(1) data preprocessing, (2) data transformation, (3) data mining, and (4) pattern
presentation and evaluation [10]. The information discovered can have incredible
value, though serious threats to the security of the individual’s private information
must be eliminated. Personal data may be accessed by unauthorized parties and
used for different purposes other than the original one for which data were initially
collected. The privacy-preserving data mining field has emerged, focusing on solv-
ing the privacy issues facing data mining processes. Simultaneously ensuring data
accuracy and protecting privacy is the main objective of PPDM.

Public awareness has forced many governments to enforce new privacy protec-
tion laws. Regulations are essential to ensure the protection of sensitive information
and individual identities. Many countries have established laws on privacy protec-
tion. For example, the European Commission released the General Data Protection
Regulation (GDPR) [7], which recognizes the need to facilitate the free flow of
data, and unifies and promotes the protection of personal data within the European
Union. The GDPR requires the implementation of appropriately designed technical
measures, and systems should consider data protection to meet the Regulation’s
requirements.

Database owners require their data to not be misused by data mining processes
and protect their privacy while their data are further analyzed [24,25]. PPDM meth-
ods have numerous applications in medical and financial fields. Some companies,
for example, aim to extract knowledge on market trends in collaboration with other
companies without disclosing their sensitive data due to competition reasons. Con-
sider, for example, several distributed medical institutes desiring to perform medical
research while ensuring the privacy of their patients. They wish to run a data mining
algorithm on their database union to extract accurate outcomes without revealing
private information. The involved parties acknowledge the importance of combining
their data, mutually benefiting from their data union but none want to reveal the
private data of their patients. Applying PPDM methods, important knowledge is
discovered but sensitive information is unable to be extracted by unauthorized par-
ties [26]. Sensitive data are not only limited to financial or medical data, but may

13



University of Aegean Privacy Preserving Data Mining

also apply to phone calls, buying patterns, and more. Individuals are not interested
in sharing personal data without their consent or its sale for various purposes [9].

Databases distributed across several parties may be partitioned either
horizontally [27–30] or vertically [31, 32]. In the horizontally partitioned case, each
party’s database contains different records with the same set of attributes. The
main objective is to mine global information from the data. In the vertically parti-
tioned case, each party’s database contains different sets of attributes for the same
record set [11, 33] concerning the same identity. The union of vertically partitioned
datasets allows the discovery of knowledge that cannot be obtained from each indi-
vidual database. A horizontally partitioned dataset example is the medical records
of a patient, where the attributes associated with the patient are common for all
clinics, such as the number of the insurance card, the disease, and so forth. A verti-
cally partitioned dataset example is buying the records of a client, where each store
has specific and unique user habits and different patterns are created by each store’s
database [12].

Cryptography, randomization, perturbation, and k-anonymity are a few of the
various privacy-preserving techniques proposed in the literature. All these methods
aim to prevent the possible disclosure of sensitive information to possible adversaries
when data mining processes are applied for the extraction of useful information. Nu-
merous data encryption approaches proposed in the PPDM field are based on the
idea proposed by Yao [34] and extended by Goldreich [2]. Secure multiparty compu-
tation (SMC), a subfield of cryptography [2], aims to mine global information in the
form of aggregate statistics. A set of parties wishes to jointly compute a function
over the combination of all partitioned private data (input) of each participant. The
main aim of this process is to protect local data without revealing the input to other
parties. The data collector (miner), a trusted third party, performs all necessary
calculations with the input of all the acquired private data of all participants. The
miner, who acts as the data collector in the proposed protocol, forwards the final
results to each party, with their main concern being the preservation of privacy.
This process is secure if, at the end of it, neither of the parties nor the miner can
obtain information other than the final outputs [35]. The basic idea is described as
follows:

“the computation of a function that accepts as input some data is secure
if at the end of the calculation process neither party knows anything but
their own personal data, which constitute one of the inputs, and the final
results”. [2, 34].

The proposed framework is designed and developed based on this idea, such that
its usefulness can be exploited by the industry where privacy is valuable but at the
same time the discovery of knowledge can assist in performing better decisions and
operations. For example, medical institutes wish to cooperate in order to extract
knowledge on defining, based on their symptoms, if a patient might have a rare
disease. Or, if specific symptoms examined can categorize a patient to a vulnerable
group, in order to be prioritized for receiving a vaccine. Another example is the
insurance companies who wish to collaborate in order to extract knowledge that
will assist them in deciding if a client can receive life insurance. By utilizing the
proposed framework, banks can finalize their decisions if people should be considered
in order to receive a loan or other benefits.
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2.1 Privacy preserving data mining dimensions

Verykios et al. [32] and Sharma et al. [9], propose the following dimensions in which
privacy preserving data mining techniques can be classified: (1) data mining sce-
nario, (2) data mining tasks, (3) data distribution, (4) data types, (5) privacy defi-
nition, and (6) protection method.

Two main data mining scenarios are used for privacy preservation. In the first
scenario, the datasets are released allowing unrestricted access and data modifica-
tion is used to achieve privacy. In the second scenario, the datasets are not released
but data mining operations are allowed, achieving privacy using cryptographic tech-
niques.

Data mining tasks are applied based on the datasets containing various patterns.
Classification, association rule mining, clustering and Bayesian networks are few of
the data mining tasks [36]. A well designed privacy preservation technique should
support multiple data mining tasks, while maintaining data quality. However, data
quality is maintained by only a group of data mining tasks [9].

Data distribution refers to the division of data. Data sets can be either cen-
tralized or distributed. A centralized data set is owned by a single party. On the
contrary, distributed data sets are divided between two or more parties, who most
probably do not trust each other but are interested to perform data mining tech-
niques on their unified data. Distributed data can be classified as horizontally and
vertically partitioned. In horizontally partitioned data each party has the same set
of attributes but different set of records. In vertically partitioned data each party
has the same set of records but different set of attributes.

The dimensions proposed in [9] are similar to [32] but they add one more extra
dimension, the data types. There are two basic data types: numerical and categorical
(nominal). Boolean data are a special case of nominal data. The basic difference
between the two data types is that categorical data are categorized without a natural
rank, but on the other hand numerical data are instantly measured by a number.
This difference creates the need to take different privacy preservation approaches.

Privacy is defined differently based on the context [9]. Either data values are
sensitive and need to be protected or certain association or classification rules are
private. In the first case, privacy preservation focuses on individual values such
as personal identification information which can be linked to a specific individual.
Thus the information related to an individual must remain private and be protected
from disclosure [1]. In the second case, privacy preservation focuses on protecting
from disclosure of sensitive information related to a group. Therefore, the privacy
preserving techniques depend on how privacy is defined [1, 9].

The most important dimension is the privacy preservation technique that is used
for the protection of data such as data modification and secure multi-party com-
putation (SMC). Data modification methods perform modification on the original
values of a database, before releasing to the public, minimizing information loss.
Data modification methods are data perturbation, data swapping, aggregation and
suppression. Perturbation is accomplished by altering an attribute value or adding
noise in numerical attribute values drawn from a normal distribution with zero mean
or standard deviation [9]. Data swapping is used in nominal values and replaces orig-
inal values in order to create a non identified record, focusing on preserving patterns
instead of statistical properties. Values of individual records are interchanged and in
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the sampling method only a sample of data is released. Aggregation is used for pro-
tecting privacy by perturbing the original data set before releasing. In suppression,
sensitive data are deleted or suppressed before releasing.

Secure multi-party computation, a cryptographic-based technique introduced by
Yao [34], allows secure computation and privacy is preserved if at the end of the
computation none of the parties involved know anything other than their own input
and the final results [2,34]. The datasets are encrypted but data mining operations
can still be applied. This technique is based on cryptographic protocols and applied
to distributed datasets. The basic idea is that the parties involved in the data
mining process, encrypt their data and send it to other parties. More details on this
technique can be found in Section 2.2.5.

2.2 Privacy preserving techniques categorization

Over the years, privacy preserving data mining has been studied extensively by the
data mining community and many techniques have been proposed. Different privacy
preserving data mining techniques can be categorized into the following categories:
anonymization, perturbation, randomization, condensation, and cryptography [5,
23,32]. In the following subsections these methods are further presented.

2.2.1 Anonymization technique

Anonymization refers to the method in which an identity or/and sensitive data
about a record or individual need to be protected. The main goal of anonymiza-
tion methods is to make each individual/record indistinguishable among the other
individuals/records. Techniques such as generalization and modification are used to
achieve this goal [37–39].

Data in a table can have four types of attributes [5]: explicit identifiers, quasi
identifiers, sensitive attributes and non-sensitive attributes. The name or the tax
number are examples of explicit identifiers which can identify an individual explicitly.
Many attributes can be considered quasi-identifiers which can be used and combined
with public data in order to uniquely identify records and/or individuals. The salary,
the disease, etc are few of the attributes that are considered sensitive as they consist
of personal information about individuals. Attributes that can be revealed and there
is no need to be protected constitute the non-sensitive attributes.

The most representative anonymization approach is the k-anonymity. Based
on this approach any individual/record is k-anonymous if each individual/record
is indistinguishable from at least k − 1 other individuals/records. It is obvious
that explicit identifiers should be removed but privacy can still be violated if quasi-
identifiers are combined with public data. This created the need to protect privacy
and develop well-designed anonymization techniques, such as k-anonymity, and other
methods beyond k-anonymity such as l-diversity, t-closeness etc. K-anonymity is
extensively described in Section 6.2 and Section 6.2.1.

2.2.2 Perturbation technique

Perturbation methods distort data prior to data mining. These methods replace
original values with different ones such that the statistical information computed
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from both the original and perturbed data is the same. Perturbation techniques
aim to hide the individuals represented by the original data, by performing syn-
thetic changes in the original records so that statistical properties are preserved.
This can be achieved by adding noise or data swapping. Perturbation methods do
not reconstruct the original values, so for each data mining approach, i.e classifi-
cation, clustering or association rules, need different methods. Perturbation treats
attributes independently, thus an important disadvantage of this method is the loss
of information.

2.2.3 Randomization technique

Randomization is a perturbation technique where data are masked by random data.
Randomization methods aim to find a balance between privacy preservation and
knowledge discovery [5]. These methods add noise to data in order to mask the
original values and protect privacy in data mining operations. The noise that is
added is enough so that original values cannot be recovered. By recovering the
probability distribution of the aggregate data, it can be used for privacy preservation
purposes. Decision tree classification is based on aggregate values so this method
is very useful. Randomization is carried out in two main steps: firstly the data are
randomized and secondly they are transmitted to data receivers who reconstruct the
original distribution of the data by employing a reconstruction algorithm. This is a
simple method and does not require information about the distribution of the other
records [1]. Thus, randomization can be implemented at the data collection phase
and the existence of a trusted third party is not required. Since the knowledge of
the distribution of all records is not required, randomization treats all the records
equally disregarding their local density. A solution would be to add noise to all the
records, but this results in the reduction of the data utility.

2.2.4 Condensation technique

Condensation approach is using condensed statistics of the clusters in the dataset
to generate pseudodata. Groups of non homogeneous size are constructed such that
each record belongs to a group whose size is at least equal to its anonymity level.
Each group generates pseudodata in order to create a data set that has the same
aggregate distribution with the original dataset which can be used by a variety of
data mining problems. Privacy is better preserved by this methodology as data are
not modified, and pseudodata is used which has the same format as the original
data. However, the data mining results are largely affected as information is lost
due to the condensation of the records into groups [5].

2.2.5 Cryptography-based technique

Database owners wish to conduct data mining operations jointly with other datasets
distributed in different locations. For example, multiple institutions with medical
data wish to conduct research which will benefit all parties involved, but sensitive
information should remain secret. These operations can take place between mutually
untrusted parties, and for that reason the basic task in distributed privacy preserving
data mining is to preserve the privacy of the inputs the owners are providing but also
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their identities. Cryptography is ideal for these scenarios, where untrusted parties
collaborate in order to extract useful information but preserve their privacy at the
same time while utility remains in high levels. Data can be horizontally or vertically
distributed. This method reveals only the final results, and nothing more.

Most proposed methods in the literature based on cryptography follow the same
encryption protocol known as Secure Multiparty Computation (SMC). There are
two main adversarial models: the semi-honest and malicious. In the semi-honest
model, each party involved follows the protocol, but may be curious to learn the
sensitive information of the other parties. In the malicious model, the adversarial
party deviates from the protocol, and tries to learn the private information of the
participants to the protocol.

There are two types of distributed privacy-preserving data mining protocols [12]:
a set of secure protocols that prevent information disclosure and a set of operations
used in data mining algorithms and suitable for preserving privacy. In the first type,
the oblivious transfer protocol and the homomorphic encryption are included. The
oblivious transfer protocol is by definition a two-party protocol. In the homomorphic
encryption concept the objective is to perform algebraic operations on an encrypted
message such that the decrypted result is the same as the result of the algebraic
operation on the plain message. In the second type, the operations that are used
in both data partitions are: the secure sum, the secure set union, the secure size of
intersection and the scalar product [40]. The secure sum allows to obtain the sum
of the inputs from each party without revealing the inputs to the other parties. The
secure set union creates unions of sets without revealing the set owners. The secure
size of set intersection anonymizes the owner of the data by computing the size of
the intersection of the local sets. The secure scalar product uses random values
to an input and the final result is obtained by removing the randomness. In these
types, encryption techniques are used to prevent information disclosure.

The results of this approach are secure and exact but in case many parties are
involved this method may not be efficient. Also this method does not guarantee that
the disclosure of the final results may not pose threat to the privacy of individual
records.

2.2.6 Hybrid technique

Many techniques have been proposed in the privacy preservation field in order to
protect the data. However, there is no single technique that is consistent in all do-
mains. Each technique has some advantages but also some limitations and each one
performs in a different way based for example on the type of data or the application.
Because of the limitations of each method, two or more techniques can be combined
in order to overcome the privacy issues each method may pose. This approach of
merging more techniques is called hybrid technique.

For example, randomization and generalization can be combined, by applying
randomization on the original data and then the modified data are generalized,
providing results with better accuracy. Another example is the combination of
perturbation and generalization, reconstructing the original data in order to provide
results with no information loss. The authors in [27] combined noise addition with
cryptographic techniques for secure mining of association rules.
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2.3 Advantages and disadvantages of PPDM tech-

niques

Different privacy preserving data mining methods result in different advantages but
also disadvantages. Based on the technique, privacy can be preserved but there
might be information loss, or the complexity might result in an non-applicable
method. Table 2.1 presents the benefits and drawbacks of the different privacy
preserving data mining techniques [41,42].

Table 2.1: Advantages and disadvantages of PPDM methods.

Method Advantages Disadvantages

Anonymization

Generalization or modifica-

tion. Prevents identity dis-

closure while releasing sen-

sitive information.

Results in information loss

to some extent. Vulnerable

to linking attacks. Prone

to homogeneity attacks and

background knowledge at-

tacks.

Perturbation Simple technique. Adding

noise. Independent treat-

ment of distinct attributes.

Distortion is the only way

to reconstruct the original

value. Ambiguity in degree

of equivalence of different

records.

Randomization

Simple technique. Adding

noise. More efficient. Easily

implemented. No need for a

server. Useful for hiding in-

dividual sensitive data. Can

be implemented at data col-

lection phase.

Treats all the records

equally and reduces the

utility of the data. Not

appropriate for several

attribute databases. Infor-

mation loss.

Condensation Aggregation. Suitable for

pseudo-data. Better ap-

proach than modification in

original data.

Pseudo-data has the same

format as the original data.

Cryptography Well suitable approach.

Provide protection of

sensitive information.

Scaling is difficult when

more parties are involved.
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2.4 Knowledge protection

Most methodologies focus on preserving the data privacy, however, some methods
explore the protection of sensitive knowledge patterns that can be revealed after
the data mining processes. These methods modify as well the original dataset, but
in a way that will secure the disclosure of certain sensitive knowledge patterns.
Methodologies have been proposed for hiding sensitive knowledge in the context of
association and classification rule mining.

Association rule mining has as its main goal to produce a set of interesting and
useful rules [43]. A rule in a dataset is quantified based on the confidence and
support. The association rules whose confidence and support are above a specified
threshold are mined, but these rules may be sensitive according to the data owner.
All sensitive association rules should be hidden in the sanitized dataset and non-
sensitive rules should be available and not sanitized, however there is a cost on the
utility. The sanitization process has to be accomplished so that the general patterns
of the dataset are preserved, and sensitive knowledge is secret. Heuristic approaches
related to association rule hiding have been studied by the majority of researchers
due to their efficiency and scalability [44].

In classification rule hiding a set of classification rules is considered sensitive and
suppression or reconstruction techniques are used to protect from their disclosure. In
suppression techniques, the confidence of a classification rule is reduced by distorting
a set of attributes in the dataset that belong to transactions related to its existence.
In reconstruction approaches, the dataset is reconstructed by using only transactions
which support non-sensitive classification rules, thereby leaving the sensitive rules
unsupported [44]. Classification rule mining has been studied less compared to
association rule mining.

2.5 Evaluation criteria

An important characteristic in the development of PPDM algorithms is the recog-
nition of appropriate evaluation criteria. The already-developed privacy preserving
algorithms do not outperform all other algorithms on all evaluation criteria. An
algorithm may perform better than another one for specific criteria [32]. As such,
different sets of metrics for evaluating these algorithms have been proposed over the
past years. Quantifying privacy is challenging. Many metrics have been proposed in
the literature; however, multiple parameters need to be evaluated. Most of the pro-
posed metrics can be classified into three main categories depending on the aspect
being measured:

1. Privacy level metrics: the security of the data from a disclosure point of view;

2. Data quality metrics: quantify the loss of information/utility;

3. Complexity metrics: measure the efficiency and scalability of the different
techniques.

Both data quality and privacy level can be further categorized as data met-
rics and result metrics. Data metrics evaluate the privacy level and data quality
by estimating the transformed data resulting from applying a privacy preserving
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methodology. Result metrics evaluate the privacy level and data quality by esti-
mating the outcomes of the data mining process having the transformed data as the
input [12].

Verykios et al. [32] provided a different list of evaluation criteria to be used for
assessing the quality of PPDM algorithms:

• the performance of the algorithm in terms of time needs to hide sensitive
information,

• the data utility after the PPDM technique is applied, which is equivalent to
the minimization of information loss,

• the level of uncertainty with which the sensitive information hidden can still
be discovered and

• the resistance accomplished by the privacy algorithm to different data mining
techniques.

Sharma et al. [9] proposed a different set of evaluation criteria:

◦ Versatility: the ability of a technique to serve various data mining tasks, pri-
vacy requirements, and data set types. The technique is more useful if it is
more versatile.

◦ Disclosure risks: the possibility that a malicious party obtains sensitive data.
Preservation techniques aim to minimize the risks.

◦ Information loss: the decrease in data quality resulting from the noise added
to the data and the level of security applied. A privacy preserving technique
is required to maintain the quality of data in the released data sets. If data
quality is not maintained, the use of security is purposeless.

◦ Cost: the computation and communication costs. The computational cost
depends on the processes applied on the data, for example, randomizing the
database values, and the cost to run all processes. The higher the cost, the
more inefficient the technique.

Different parameters were also defined [23,45] to quantify the trade-off between
privacy and utility. The authors created a framework for evaluating PPDM algo-
rithms, indicating the importance of designing adequate metrics that can reflect the
algorithm properties and developing benchmark databases to test and evaluate all
types of algorithms. They identified a framework based on the following dimensions
to evaluate the effectiveness of PPDM algorithms:

� Efficiency is the ability of a privacy-preserving algorithm to execute with good
performance.

� Scalability evaluates the efficiency of a PPDM algorithm with increasing data
set sizes.

� Data quality is the quality of both the input data and the final data mining
results.
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� Hiding failure is the portion of sensitive data that is not hidden after the
PPDM technique is applied.

� The privacy level, which results from the use of a privacy preserving technique,
indicates how closely the sensitive information can still be estimated.

� Complexity refers to the execution of an algorithm in terms of performance.

Qi and Zong [46] described evaluation criteria and reviewed privacy protection
algorithms in data mining such as distortion, encryption, privacy, and anonymity.
Malik et al. [5] also presented evaluation parameters and discussed the trade-off
between privacy and utility. They suggested that practical algorithms need to be
developed that balance disclosure, utility, and costs to be accepted by industry. They
stated that novel solutions have been developed but product-oriented solutions need
to be developed so that real-world problems are efficiently handled.

2.6 Data quality

One of the most important properties of data is their quality. Data often are sold
or shared for research purposes and should have a certain level of quality based on
their potential usage. If the quality of data is high the more useful is the information
of the data contained within the database. Operations, such as perturbation tech-
niques, applied to sanitize sensitive information downgrade the data quality, which
may result in economical or social damages, or become useless for the purpose of
knowledge research. Data quality needs to be taken into account for the evaluation
of a privacy preserving data mining technique [23].

Bertino et al. [23] try to identify a set of possible measures that can be used
for the evaluation of data quality, after privacy preservation techniques have been
applied. After privacy preserving processes take place, the evaluation of the data
quality can be useful to qualify both the data and the data mining results. The
authors consider three main parameters:

• Accuracy: measures the proximity of a sanitized value to the original.

• Completeness: evaluates the degree of missed data in the sanitized database.

• Consistency: is related to the relationships among different fields of a data
record or among data records in a database.

Accuracy is a general parameter that can be measured on the analyzed data,
on the other hand completeness requires to determine all the relationships that are
relevant for a given dataset. Accuracy as a measure of the quality of data is closely
related to the information loss. Measuring accuracy depends on the specific pri-
vacy preserving data mining algorithms. For example, if the algorithm performs
perturbations, the information loss can be measured by measuring the dissimilarity
between the original and sanitized dataset. If the algorithm is using data swapping,
the information loss can be measured by a parameter measuring the data confusion
introduced by the value swappings. On the other hand, cryptography-based algo-
rithms do not use any perturbation technique in order to preserve privacy. These
methods assure data privacy through cryptographic techniques, which guarantee
that the quality of data is not compromised.
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2.7 Proposal

The proposed framework exploits encryption mechanisms such that privacy is pre-
served but at the same time useful information can be extracted through data mining
operations. The cryptography-based approach, as discussed, assures that the data
remain private but also guarantees that the data quality is not affected.

The protocol which is discussed thoroughly in Section 4, is designed for a dis-
tributed environment. In particular, a miner who acts as the data collector is con-
nected with at least three parties, each one communicating with the miner in order
to send their data and create the data mining model. The proposed privacy pre-
serving data mining approach was firstly designed only for horizontally partitioned
databases [47] and later extended to support vertically partitioned databases [48,49]
exploiting the multi-candidate election schema [50] aiming to extract global infor-
mation from both partition types. The approach handles both nominal and numeric
database values.

Traditional Naive Bayes classifier is widely used in the literature for privacy
preservation techniques, but is based on the unrealistic assumption that attributes
are independent. On the contrary, the current proposal utilizes the Tree Augmented
Naive Bayesian (TAN) classifier [51] which eliminates this assumption and behaves
more robustly. The privacy preserving version of this classifier was properly designed
and developed for the purposes of the proposed implementation. The Paillier cryp-
tosystem [52] was implemented to perform all necessary cryptographic processes to
preserve privacy, by exploiting the homomorphic primitive, first proposed by Yang
et al. [53]. Based on this primitive, the data collector (miner) and each partici-
pant are unable to identify the original data of the shared distributed databases,
except naturally the data owner. In addition, the identity of the database owners
is private and indefinable by any aggressor. Communication among participants is
unfeasible, and the miner is able to continue with the performance of all necessary
operations, if at least three participants are connected with the data collector. Inte-
gration mechanisms assure that all data transmitted are not modified as a summary
is concatenated to each message by applying the SHA-1 hash function. The only
data revealed is the final results to each one participant.

The protocol is safe from various types of attacks which are presented in Section
4.4. From the evaluation, the approach is considered efficient and there is a balance
between privacy preservation and knowledge discovery. Specifically, the protocol is
divided in six main phases:

Phase 1. Key generation All participants and the data collector create their
encryption key pairs, and a 1024 digital signature.

Phase 2. Mutual authentication Each party and the miner are mutually
authenticated using their digital signatures. We assume all parties are able to acquire
the public keys of each other participant.

Phase 3. Data collection The miner collects the data of each one of the
participants encrypted. In particular, requires only the frequencies of each attribute
value related to each class value. The homomorphic primitive is applied to ensure
that privacy is not violated.

Phase 4. Classifier initialization After the data collection, the classifier is
successfully initialized when at least 3 parties have sent their data and participate
in the creation of the mining model.
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Phase 5. TAN classifier creation If all above phases are complete, the miner
is in position to create the TAN classifier and create the final mining model.

Phase 6. Final results As the creation of the TAN classifier is complete, the
miner sends the final results encrypted to each participant.

2.8 Contribution

Privacy preservation has gained a lot of attention in the data mining community.
Many studies were presented related to this field. However most of the techniques
proposed in the literature are theoretical or empirical. The authors present solutions
that lack implementation of the hypothesis presented in their work.

Methods that have been proposed for privacy preservation handle either horizon-
tally or vertically partitioned databases. None of the privacy preserving algorithms
in the literature handle both partition types. In addition, these approaches mainly
focus on nominal attribute values. To our knowledge, in the privacy preserving re-
search field, the implementation of algorithms that support both horizontally and
vertically partitioned databases have never been proposed in the past. On the con-
trary, the current presented privacy preservation protocol is implemented to support
both partition types. The developed system can handle both nominal and numeric
attribute values, including binary values.

The cryptographic-based approach can assure that data remain secret and at the
same time the utility of data is assured. As presented in Section 4.3, the proposed
implemented protocol can preserve privacy and can confront a number of well known
attacks on distributed systems.

Zhang et al. [54] presented a technique similar to our approach. They apply the
Tree-Augmented Naive Bayes mining technique, the same as the mining method
in the current approach, however their proposed method handles only horizontally
partitioned databases. Moreover, they apply their method only on numeric attribute
values as they exploit perturbation mechanisms for preserving privacy. Perturbation
approach however can result in the decrease of data utility, which is avoided in case
cryptography is applied. Therefore, the method proposed in Chapter 4 is considered
a better approach as related to the accuracy of data while data mining operations
are applied in a distributed environment while preserving privacy.

2.9 Organization of Part I

The structure of Part I is as follows. Chapter 3 summarizes privacy preserving data
mining methods proposed in the literature. The proposed privacy preservation pro-
tocol is presented in Chapter 4. The background of the current approach is defined
in Section 4.1. Section 4.2 describes the proposed protocol and its security and de-
sign requirements. The evaluation of the current protocol in terms of performance
and data accuracy is presented in Section 4.3 while Section 4.4 analyzes some possi-
ble threats to the current proposal and how they are confronted. A brief summary
of Part I is given in Chapter 5.
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Chapter 3

Related work

Privacy preserving data mining received attention and widely researched through the
recent years and became an important topic in data mining research, since the work
presented in [18] and [19]. Privacy preserving data mining techniques have several
applications on different domains. Some of the domains raise concerns about the
disclosure of sensitive information.

The majority of privacy preserving data mining techniques developed to prevent
leakage of sensitive information, without undermining the extracted knowledge pro-
duced by the application of mining processes on data [44]. The methods applied
either modify or remove some original data to achieve privacy preservation. This
action creates a trade-off between the data quality and the privacy level, known as
utility. Privacy preserving data mining techniques should be designed in order to
guarantee the maximum utility of the produced outcomes while an appropriate level
of privacy is achieved.

Common approaches of privacy preservation in data mining are data distribution,
data distortion, data hiding, rule hiding, k-anonymity, randomization, etc [55]. A
simplified categorization of these approaches is given in [5]. Common goal of all
these methods is to provide effective results while reaching a trade-off between the
privacy level and the data mining technique performance [5].

Existing privacy preserving data mining methodologies [44] can be divided into
methodologies that protect the input data in the mining process, and methodologies
that protect the final results of the mining process. Privacy preservation techniques
(perturbation, generalization, transformation, etc), in the first methodology, are
applied to the input data to hide any private information and distribute the data
to other parties with safety. The main goal is the generation of accurate data
mining results. SMC methods enable data owners to apply mining methodologies
on their data, keeping the datasets secret. In the second approach, the applied
privacy preservation techniques prohibit the disclosure of private information derived
through the application of data mining algorithms.

Verykios et al. [32], categorize privacy preserving data mining algorithms in five
segments. The first segment is the data distribution, and refers to the division of
data, either centralized or distributed. Data modification, the second segment, is
used in order to modify the original database values. The databases may need to
be released to the public, so modification ensures the protection of privacy. Data
mining algorithm, the third segment, is the algorithm for which the data modifica-
tion is taking place and for which the privacy preservation technique is designed.
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The most important algorithms have been developed for classification, like deci-
sion trees, association rule mining algorithms, clustering algorithms and Bayesian
networks. Data or rule hiding, the fourth segment, refers to whether sensitive val-
ues should be protected by hidding raw or aggregated data. The complexity for
hiding aggregated data is higher, and for this reason, mostly heuristics have been
developed. In some cases individual data values are private, but in other cases indi-
vidual association or classification rules are considered private. Depending on how
privacy is defined, different privacy preserving techniques are applied. The most
important fragment is the privacy preservation technique. These techniques can be
categorized to heuristic-based, reconstruction-based and cryptography-based tech-
niques. Heuristic techniques modify selected values rather than all available values,
in order to minimize the information loss. In reconstruction techniques, the original
distribution of the data is reconstructed from the randomized data. Though, data
modification results in degradation of the database performance. In cryptographic
techniques, i.e. SMC, a computation is secure if at the end of it, no one knows
anything except its own input and the final results. These methods are considered
for preserving privacy in distributed environments by using encryption techniques.

As defined by the authors [56], every privacy preserving methodology should
answer one major question: ”Do the results themselves violate privacy?”. In other
words, do the results of a data mining process violate privacy by exposing sensitive
data and patterns that can be used by attackers? A privacy preservation classifi-
cation model is proposed by the authors, and they study possible ways an attacker
can use the classifier and compromise privacy, but they do not provide a solution to
prevent an attacker from accessing the mining results and thus violate privacy.

Scardapane et al. [57] analyze distributed medical data in multiple parties. Med-
ical environments may forbid, due to privacy restrictions, to disclose their locally
produced data to a central location.

Sweeney [31, 58] proposes a heuristic approach using generalization and sup-
pression techniques to protect raw data and achieve k-anonymity. A database is
k-anonymous, with respect to some attributes, if at least k transactions exist in the
database for each combination of the attribute values. The new generated database
guarantees the k-anonymity by performing generalizations on the values of the target
attributes. Zhong et al. [59] used a third-party to achieve k-anonymity in horizon-
tally partitioned databases.

More details on the k-anonymization approach is given in Section 6.2.
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3.1 Perturbation-based techniques

The most widely studied privacy preservation techniques are cryptography and ran-
domization. Agrawal et al. [43] presented a framework for preserving privacy by
randomizing nominal values for mining association rules. A naive Bayes learning
technique was applied in [60] to construct differentially private protocols to extract
knowledge from distributed data. A multiplicative perturbations approach was ap-
plied on the data for introducing noise by Liu et al. [61]. However, perturbation
techniques decrease the quality of the final results. Also, the authors in their pri-
vacy analysis did not consider any prior knowledge.

Vaidya et al. [62] apply differential privacy to develop a naive Bayes classifier
provided as a cloud service and focus on generating privacy preserving results instead
of sharing secure data sets. These techniques mainly focus on publishing useful
results and not sanitized data that can be shared.

Randomization techniques were used in the past to build association rules [63]
and decision trees [18] for vertically and horizontally partitioned databases respec-
tively. Du and Zhan [64] also proposed a method for building privacy preserving
decision trees. Evfimievski et al. [65] proposed privacy preserving association rule
mining based on randomization techniques and guaranteed privacy. Vaidya and
Clifton [63] studied association rule mining and proposed an algorithm based on the
Apriori algorithm to extract the candidate set for vertically partitioned data.

The randomization method even though is efficient, can result in inaccurate
outcomes. As revealed by the authors in [66], randomization techniques may com-
promise privacy. The authors point out that additive noise can be easily filtered out,
and special attacks can result in the reconstruction of the original data. A random-
ization technique that combines data transformation and data hiding was proposed
by Zhang et al [67]. They exploit a modified naive Bayes classifier to predict the
class values on the distorted data.

Agrawal and Srikant [18] build a decision tree classifier from applying pertur-
bation techniques on the training data and estimate the distribution probability
of numeric values. They propose a measure and evaluate the privacy offered by
their method. The privacy is measured by how closely the original values can be
determined through the modified data.

The approach presented in [33] is another reconstruction technique based on an
Expectation Maximization algorithm for distribution reconstruction. The authors
provide metrics for quantification and privacy and information loss measurement.
Unlike the approach in [18], the metric proposed in [33] takes into account the
fact that the perturbing distribution as well as both the perturbed record and the
reconstructed distribution are available to the user.
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3.2 Cryptography-based techniques

On the contrary, cryptographic-based techniques are more secure. They provide
accurate results but they lack efficiency. Most cryptographic methods proposed
in the literature are based on the idea of Yao [34], and an extension proposed by
Goldreich [2], who studied the secure multi-party computation problem.

A few proposed privacy preservation techniques apply encryption mechanisms
on horizontally partitioned databases for building decision trees [19, 68]. A variety
of cryptography based techniques are applied on naive Bayesian classifiers [28, 53,
69,70].

Kantarcioglu and Clifton [27] applied cryptography to build association discov-
ery rules over horizontally partitioned data. Yang et al. [53] focus on horizontally
partitioned data where each party has access to its own record. Tassa [71] focuses
on horizontally partitioned databases and proposed a protocol for secure mining of
association rules, presenting the protocol’s advantages over existing protocols [27].

On the other hand, the authors in [29, 40] and [69, 72], benefit from the crypto-
graphic methods and apply them on vertically partitioned databases to create associ-
ation rules and naive Bayesian classifiers, respectively. Vaidya and Clifton [73] focus
on vertically partitioned data and proposed a privacy preserving k-means clustering
algorithm, where clusters are based on their similarity. Du and Zhan [74] consider
two parties to construct ID3 on vertically partitioned databases. Fang et al. [75]
created a decision tree model for horizontally partitioned data based on homomor-
phism encryption. Fang et al. [76] proposed a decision tree classification for vertically
partitioned data. Vaidya and Clifton in [77] proposed a clustering approach over
vertically partitioned data.

Goethals et al. [78] proposed a simple and secure method, applying secure multi-
plications. Similarly, in [79], the authors propose a multi party approach to calculate
the aggregate class for vertically partitioned data applying Naive Bayes classifier.
Because of its simplicity and straightforward method, Naive Bayes classification is
utilized by many researches [28, 53,70,80].

Yu et al. [81] propose a method over vertically partitioned data for privacy pre-
serving SVM classification, computing the global SVM model without revealing data
or classification information to other parties. Jiang and Clifton [82] use exchange
encryption to completely anonymize vertically distributed data and hide sensitive
information in the communication process.

Other data mining methods have been proposed in the privacy preserving data
mining field, such as tree augmented naive Bayes [54] and the K2 algorithm [29].

Kumbhar and Kharat [83] proposed an algorithm based on homomorphic en-
cryption, secure scalar product and Shamir’s secret sharing technique for vertically
partitioned databases used for association rule mining. The authors also proposed an
algorithm for horizontally partitioned databases based on homomorphic encryption
with a combination of RSA public key cryptosystem.

Zhang et al. [54] proposed a similar approach to the current proposed method-
ology. However, they apply an algebraic technique to perturb the original data.
Instead, our protocol exploits cryptographic-based techniques, assuring privacy and
resulting in more accurate outcomes.

In Appendix B, a comparison of some privacy preserving data mining techniques
proposed in the literature are presented in Table B.1.
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Chapter 4

Privacy preservation framework

4.1 Background

In machine learning and statistics, classification refers to a supervised predictive
learning approach where a class value is predicted from data given as input. In its
simplest form is the ordering of data into groups based on their similarities. The
difference between clustering and classification is that classification uses predefined
classes, while clustering is used to establish such classes/groups. Classification can
be performed on both structured or unstructured data. The main goal of the ap-
proach is to identify the class of new data. Classification algorithms require as
input training data to predict the likelihood that future data will fall into one of the
predetermined classes. The learning model is trained using the training data and
the performance is measured using test data. Common classification problems are
speech recognition, face detection, handwriting recognition, document classification,
credit approval, medical diagnosis, target marketing etc.

4.1.1 Classification of nominal attributes

The main objective of classification is the prediction of an attribute value given
a training set by estimating the probabilities. Given an attribute X with nominal
values x1, . . . , xr, the calculation of the probability of each value is given by applying
Equation (4.1), where n is the total number of training instances for which V = uj
and nj is the number of instances that have X = xk.

P (X = xk|uj) = nj/n (4.1)

The conditional probability that an instance belongs to a certain class c is cal-
culated by Equation (4.2), where nac is the number of instances with class value c
and attribute value a, and na is the number of instances with attribute value a.

P (C = c|A = a) =
P (C = c ∩ A = a)

P (A = a)
=
nac

na

(4.2)
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4.1.2 Classification of numeric attributes

The calculations of the classification probabilities differ for numeric and nominal
attributes. The mean µ and variance σ2 parameters, for numeric attributes, are
calculated for each class and each attribute. The probability P (X = x′|uj) that an
instance is class uj can be estimated by substituting x = x′ in the probability density
equation. The conditional probability of a class is calculated for all classes, and the
class with the highest relative probability is chosen as the class of the instance.
These local sums are added together and divided by the total number of instances
having that same class to compute the mean µ for a class value. Each party, since
it is aware of the class of the training instances, can subtract the appropriate mean
µ from an instance having class value y, square the value, and sum all such values
together. The required variance is obtained by dividing the global sum by the global
number of instances having the same class y.

Equation (4.3) computes the normal probability distribution, where x is a ran-
dom variable, µ is the mean of the distribution and σ is the standard deviation (σ2

is the variance), π is approximately 3.14159 and e is approximately 2.71828.

P (x) =
1

σ ∗ sqrt(2π)
∗ e

−(x−µ)2

2σ2 (4.3)

4.1.3 Tree augmented naive Bayesian classifier

The traditional naive Bayes classification (Figure 4.1) is a method based on Bayes
theorem. Naive Bayes classifiers are simple, easy to build, and useful for very large
data sets as they are highly scalable. Naive Bayes classifiers support both nominal
and numeric attribute values. These classifiers compute the conditional probability
of each attribute value Ai given the class value C. The Bayes theorem is applied to
compute the probability of class C given a specific instance vector < A1.....An >,
given the total number of n attributes.

These classifiers assume that all attributes are conditionally independent given
the value of C, which is a restrictive and oversimplified assumption, reducing the
computational cost by only counting the class distribution. However, in most cases,
this assumption is unrealistic, as some attributes can be dependent. Since prior
knowledge of the class variable C is not considered, a bias in the estimated proba-
bilities is introduced, which leads to poor prediction outcomes in some domains [84].
The performance of such classifiers can be improved by removing this assumption.

One method to reduce the naive Bayes’ bias is to relax the independence assump-
tion using a more complex graph. An interesting variation of Bayesian networks is
the tree augmented naive Bayesian (TAN) classifier (Figure 4.2) [51]. TAN can be
viewed as a Bayesian network, a probabilistic graphical model, where each attribute
has the class as the parent, and possibly an attribute as a second parent. The exis-
tence of additional edges between attributes, which represent the correlation among
these attributes, is allowed by the TAN classifier. More specifically, in a TAN net-
work, the class C has no parents and each attribute Ai has the class and at most
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one other attribute Aj as parents, implying that the assessment of the class of at-
tribute Ai also depends on the value of Aj. For example, in a dataset, the age of an
individual and their financial income are two dependent attributes.

Figure 4.1: Bayesian network structure.

Figure 4.2: TAN structure.

The procedure of learning these edges, which is based on a method proposed by
Chow and Liu [85], reduces the problem of constructing a maximum likelihood tree
to find a maximal weighted spanning tree in a graph. The problem of finding such
a tree involves selecting a subset of edges such that the sum of weights attached to
the selected edges is maximized. The TAN algorithm consists of four main steps:
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1. The mutual information for each attribute pair is computed using Equation
(4.4), measuring how much information the attribute y provides about x.

2. An undirected graph is built in which the vertices are the variables in x (the
weight of an edge connecting two attributes).

3. A maximum weighted spanning tree is created.

4. The undirected tree is transformed to a directed one by choosing a root variable
and setting the direction of all edges to be outward from it.

Ip(X;Y ) =
∑
x,y

P (x, y)log
P (x, y)

P (x)P (y)
(4.4)

The TAN classifier, by removing any independence assumptions, behaves more
robustly with regards to classification compared to the classical naive Bayes classi-
fier, since it combines the initial structure of the naive Bayes algorithm with prior
knowledge (if available) or obtained knowledge about the correlation of input at-
tributes via a training approach. TAN substantially reduces the zero-one loss of
naive Bayes on many data sets and a range of experiments have shown that it out-
performs the naive Bayes classifier [51, 86]. TAN results are significantly improved
compared to those produced by the classical naive Bayes classifier and Bayesian net-
works. The robustness and computational complexity are also maintained, showing
better accuracy.

4.1.4 Homomorphic primitive

Homomorphic encryption is widely used in the literature [78,80,87,88] for approaches
implementing cryptography-based techniques. The homomorphic primitive was first
used to build a privacy-preserving data mining model in a distributed environment
by Yang et al. [53].

E(M1⊗M2) = E(M1)⊗ E(M2) (4.5)

This primitive allows the performance of calculations on encrypted data without
the need to decrypt these data. Equation (4.5) describes the operation where the
result of encrypting two messages is equal to the sum of the two messages separately
encrypted.
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4.1.5 Paillier cryptosystem

The additive homomorphic primitive is exploited by the Paillier algorithm [52].
Through this primitive, anonymity and unlinkability between parties and personal
data are achieved [69].

During the key generation phase of the Paillier cryptosystem, each participant
(the miner and all parties involved) generates a key pair of 1024 bits size on their
own side. The public key of each party is the product N of two random prime
numbers (N = p ∗ q), which are independent and have the same size, and a random
number g, which belongs to Z∗n2 . The private key is the result of variables lambda
shown in Equation (4.6) and mu, defined in Equation (4.7).

Lambda = lcm(p− 1, q − 1) = (p− 1) ∗ (q − 1)/gcd(p− 1, q − 1) (4.6)

mu = (L(glambda mod N2)−1 mod N), where L(u) = (u − 1 )/N (4.7)

Paillier encryption is performed as shown in Equation (4.8). In the proposed pro-
tocol, more specifically, if a participant j is interested in participating in forwarding
the frequency i to the miner, then the party needs to encrypt every message sent
with the miner’s public key. The cryptosystem is vulnerable to chosen-plaintext
attacks. For confronting these types of attacks, a random variable M is computed
by the miner, and delivered to each party encrypted with their own public key. The
M variable is used for encrypting every transmitted message.

The current approach requires the participation of at least three parties. When
all three parties have forwarded their data to the miner, the homomorphic primi-
tive is applied. The miner calculates the total frequencies of each possible attribute
value in relation to each class value by decrypting all the received messages simul-
taneously. The miner is not in a position to associate the received frequencies with
the original records and cannot link the data to their owners due to the execution
of the decryption process after the participation of at minimum three parties. A
decrypted message is presented in Equation (4.9).

E[mi,j] = gM
i

xN( mod N2) (4.8)

T = a0M
0 + a1M

1 + ......+ al−1M
l−1( mod N) (4.9)
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4.2 Privacy preservation protocol

Challenges arise during the execution of data mining processes when preserving pri-
vacy, since the collected data being mined often contain sensitive information. Data
mining techniques used to derive statistics from distributed databases should ensure
that personal data will not be disclosed to unauthorized individuals. The objective
of the proposed framework is to develop a privacy-preserving protocol that satisfies
the essential security and design requirements, exploiting efficient encryption mech-
anisms. The tree augmented naive Bayesian classification algorithm [85] is used to
extract accurate and global information while preserving privacy.

Encryption processes are applied to a client–server (party–miner) environment
ensuring that any message exchanged in a fully distributed environment is not ac-
cessible by internal or external attackers, either by the parties involved or the miner.
The miner generates the classification model by collecting the frequencies of each
attribute value in relation to each class value from at least three horizontally or
vertically partitioned databases, which are owned by different parties. In vertically
partitioned databases, we assume that every participant is aware of the class value
of each record. The proposed protocol was developed for supporting both nominal
attribute values (Algorithm 1) and numeric attribute values, including binary data
(Algorithm 2). Through the Paillier cryptosystem, all frequencies forwarded are
encrypted. The exploitation of the homomorphic primitive ensures that sensitive
data remain protected. Communication among parties is prohibited and the only
data flow occurs between each party and the miner, making communication among
parties infeasible.

As mentioned, the current work is an extension of previous research [47–49].
Notably, some of the features and requirements used arise from the quotations pre-
sented by Mangos et al. [87].

4.2.1 Design and security requirements

Each developed protocol must implement appropriate measures and follow data
protection principles to safeguard individual rights, as defined by the General Data
Protection Regulation (GDPR) [7]. Privacy and data protection must be considered
at the design phase and throughout the entire life cycle of any protocol and system,
as defined by the Privacy by Design approach. The development and implementa-
tion of the current protocol is highly impacted by this approach, and all necessary
measures were followed to preserve privacy and the individuals’ identities.

In a distributed environment, each party is considered either semi-honest or ma-
licious. Semi-honest participants follow the protocol specifications, but are curious
to learn more information. However, they do not deviate from the execution of
the protocol. Conversely, malicious participants are categorized into internal and
external. Internal adversaries deviate from the protocol, for example, by sending
specific inputs, with the main purpose of discovering other parties’ private data.
External adversaries will try to impersonate a legal participant and then behave as
an internal adversary. In the current protocol, both adversary types are considered.

All participants, the miner and each party, undertake the process of authenti-
cation, so they can mutually recognize if they are connected to a secure and literal
participant. Each participant sends their digital signatures, assuming they were
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Algorithm 1 Protocol for nominal attribute values

1: for c1 . . . cm class value do

2: for a1 . . . ai attribute value do

3: for 1 . . .n party do

4: 1. compute # instances fim with attribute value i and class value m

5: 2. compute # instances fn
m with class value m

6: end for

7: Miner applies the homomorphic primitive:

8:

E(f 1
mi ⊗ f 2

mi ⊗ · · · ⊗ fn
mi) = E(f 1

mi)⊗ E(f 2
mi)⊗ · · · ⊗ E(fn

mi)

9:

E(c1
m ⊗ c2

m ⊗ · · · ⊗ cnm) = E(c1
m)⊗ E(c2

m)⊗ · · · ⊗ E(cnm)

10: end for

11: Miner computes:

Pim =
E(f 1

mi ⊗ f 2
mi ⊗ · · · ⊗ fn

mi)

E(c1
m ⊗ c2

m ⊗ · · · ⊗ cnm)

12: end for
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Algorithm 2 Protocol for numeric attribute values

1: for c1 . . . cm class value do

2: for 1 . . .n party do

3: 1. compute # instances fm with class value cm

4: 2. compute sum of instances snm with cm

5: end for

6: Miner computes using homomorphic primitive:

7: Total sum sm :

E(s1
m ⊗ s2

m ⊗ · · · ⊗ snm) = E(s1
m)⊗ E(s2

m)⊗ · · · ⊗ E(snm)

8: Total # instances Nm :

E(f 1
m ⊗ f 2

m ⊗ · · · ⊗ fn
m) = E(f 1

m)⊗ E(f 2
m)⊗ · · · ⊗ E(fn

m)

9: Mean:

µm =
sm
Nm

10: end for

11: for c1 . . . cm class value do

12: for 1 . . .n party do

13: for instance y do

14:

uimn = ximn − µm

15:

uimn =
∑
y

(u2
mn)

16: end for

17: end for

18: Miner compute variance:

19:

um = E(u1
m ⊗ u2

m ⊗ · · · ⊗ unm) = E(u1
m)⊗ E(u2

m)⊗ · · · ⊗ E(unm)

20:

σ2
m = um ∗

1

Nm − 1

21: end for
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signed by a certification authority (CA), to confront such behaviors. This operation
ensures that only authorized parties participate in the protocol and they are assured
that a connection with the actual miner was accomplished.

Privacy is preserved only if confidentiality, anonymity, and unlinkability are ful-
filled. All transmitted messages between each party and the miner are encrypted,
and a message is only decrypted by the party that was supposed to receive the mes-
sage. The homomorphic primitive ensures that the miner is unable to identify the
inputs each party forwards, accomplishing anonymity and unlinkability. Both the
identity and the private data of each party remain secret. In the proposed protocol,
integrity mechanisms are exploited to identify any modification carried out by active
attackers, with the prime goal of diminishing the accuracy of the final outcomes or
discovering sensitive data. An SHA-1 digest is concatenated to every transmitted
message, prohibiting these behaviors and assuring any altered message will be de-
tected. Section 4.4 describes in depth the security and threat model of the proposed
protocol.

The proposed protocol satisfies the following main requirements, to ensure better
performance in scalable and distributed databases:

• Data mining processes extract statistical information.

• Database records are horizontally or vertically partitioned.

• Data can be either nominal or numeric.

• A large number of parties can be handled.

• Only authorized parties can send inputs to the miner.

• The communication among parties is not feasible.

• The miner must be connected with at least three parties before proceeding to
the mining process.

• The miner collects all the messages encrypted and performs the mining process.

• Individual records remain secret and only overall results are revealed.

• Any data given as input includes the encrypted frequency of each attribute
value in relation to any class value and cannot be modified, reduced or copied.

• A summary is concatenated to each transmitted message, as a result of apply-
ing the one-way hash function SHA-1.

• It is essential that computation and communication costs are low, both for
each party and the miner.

4.2.2 Protocol analysis

The protocol presented in the current work follows the classical homomorphic elec-
tion model, in particular, an extension for supporting the multi-candidate election
scheme, where each party has k-out-of-1 selections [50]. The Paillier cryptosys-
tem follows the homomorphic model and preserves privacy while mining operations
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are applied in a fully distributed environment. A data collector—in the current pro-
posal, the miner—collects and organizes all data forwarded by the participants of the
protocol. The miner exploits the homomorphic primitive when all encrypted data
are collected, and applies the tree augmented naive Bayesian classification model.
Through the classifier, correlations among the attributes are generated, resulting in
the creation of a network structure that represents them. Each transmitted message
during the execution of the protocol includes an SHA-1 digest to confirm that any
modification has not been performed. The miner delivers the final results to each
party who contributed to the creation of the mining model. The frequency of each
attribute value in relation to each class value, for both horizontally and vertically
partitioned databases, constitutes the final results, and we assume that every party
is aware of the class value for vertically partitioned database records.

The protocol is divided into six main phases and applied for both horizontally
and vertically partitioned databases. The protocol notations are given in Table 4.1.

Table 4.1: Protocol notations

Spu Miner’s public key for encryption/decryption

Spr Miner’s private key for encryption/decryption

Cpu Party’s public key for encryption/decryption

Cpr Party’s private key for encryption/decryption

SDpr Miner’s private key for digital signature

SDpu Miner’s public key for digital signature

CDpr Party’s private key for digital signature

CDpu Party’s public key for digital signature

H(m) SHA-1 hash of message m

Enc(m)k Encryption of message m with key k

Decr(m)k Decryption of message m with key k

Ai Database Attribute

M Random variable
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Phase 1. Key generation The miner generates the encryption key pair (Spu and
Spr) through the Paillier’s cryptosystem key generation phase. The miner produces a
1024 bit digital signature key pair (SDpu and SDpr) with the Rivest–Shamir–Adleman
(RSA) cryptosystem using the MD5 hash function. We assume that each party is
able to obtain the public keys. The same procedures are followed by each party
who also create the encryption key pair Cpu/Cpr and an RSA key pair CDpu/CDpr)
(Figure 4.3). We again assume that the miner is as well able to obtain the public
keys of all parties. In the key establishment phase, the miner also generates and
forwards a random value M .

Phase 2. Mutual authentication The miner and each party that participates
in the protocol are mutually authenticated by exploiting the digital signature scheme
(RSA), as each participant possesses a private and public key pair. This key pair
is generated and used only in this phase of the protocol assuming it was signed by
a CA. We assume that all parties are able to obtain the public keys of the other
participants.

If a party requests to connect with the miner, during the authentication phase,
they forward the public key Cpu and the digital signature, encrypting the Cpu key
with the miner’s CDpr private key. The miner proceeds to the decryption of the
digital signature with the public key CDpu of the party and generates a digest of the
Cpu message. If the miner is able to verify that the party is able to participate in the
protocol, responds by sending his public key Spu and digital signature encrypted with
the SDpr private key. The party continues with the same procedure by decrypting the
miner’s digital signature with public key SDpu and creates a digest of the Spu message
(Figure 4.3). After these steps are completed, the party is assured that a verified
connection with the actual miner is achieved, and both the miner and each party have
access to and participate in the protocol, excluding any unauthorized participants.
After exchanging all keys, every transmitted message is encrypted. The next step
is to send the random variable M , which is used by the Paillier cryptosystem, to
confront any chosen-plaintext attacks. This variable is sent encrypted with each
party’s public key Cpu.

Figure 4.3: Key generation and mutual authentication phases.
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Phase 3. Data collection After all the above procedures are performed, the
miner is ready to accept the participant’s personal data. A party can participate in
the exportation of statistics, providing their own sensitive data. However, the data
contained in the database cannot be disclosed in the notion of verbatim records,
neither to the miner nor to other participants nor to any attacker not involved in
the protocol. Every record is examined for the presence of missing values.

The collection of data begins from the miner. If a party consents to the creation
of the classification model, they initially send every possible value of the class and
every possible attribute value. All messages sent are encrypted with the miner’s
public key Spu. For horizontally partitioned databases, each party sends all possible
attribute values. For vertically partitioned databases, each party sends only the
values of the attributes that possess the required attribute; if the party does not
possess the requested attribute, Ai returns zero. The miner is not aware of the
possession of individual values at the end of this step.

The miner requests the frequencies for attribute Ai for each connected party
(Figure 4.4). Using the miner’s public key Spu, each party forwards the frequency
of each value for Ai attribute in relation to every class value, encrypted. The only
sensitive data sent by all parties are these frequencies, and they are encrypted.
Because the homomorphic primitive is applied, the miner remains unaware of the
specific frequencies. These procedures are necessary for the miner to initialize the
classifier.

Figure 4.4: Data collection phase.

Phase 4. Classifier Initialization If the Miner has collected the encrypted
frequencies related to attribute Ai from all three parties, applies the homomorphic
primitive. All encrypted frequencies are decrypted simultaneously, and the miner
obtains the overall distributions of each Ai attribute value in relation to each class
C value. The process continues with the miner requesting the frequencies for the
next Ai+1 attribute. The process is completed after the collection of all frequencies
for all attributes An. For horizontally partitioned databases, n represents the total
number of attributes. For vertically partitioned databases, n refers to the sum of
each party’s number of attributes. The classifier initialization is successful when at
least three parties cooperate in the implementation of the protocol (Figure 4.5).
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Figure 4.5: Classifier initialization phase.

Phase 5. TAN classifier creation The miner can proceed to the creation of
the TAN classifier after the classifier initialization phase is complete, meaning all
frequencies are collected and decrypted for each attribute, from at least three par-
ticipants. As described in Section 4.1.3, the miner now is in the position to create
the tree augmented naive Bayes model (Figure 4.6).

Phase 6. Final results When all the above-mentioned phases are complete, the
final results of the mining process are delivered by the miner. The miner sends the
results to each party involved in the creation of the data mining model, encrypted
with their own public key Cpu (Figure 4.6).

After the creation of the mining model and the shipment of the final results,
every participant can request that the miner respond with the class value and the
corresponding possibility that accrues from a set of possible attribute values, clas-
sifying new instances. This process was used to evaluate the performance of the
classifier, and the results are presented in the next section. Figure C.1 in Appendix
C presents in sequence the proposed protocol. The client interface is presented in
Figure C.2 in the same appendix.

Figure 4.6: TAN classifier creation and final results phases.
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4.3 Protocol evaluation

In this section, we evaluate the proposed protocol in terms of security and compu-
tational cost. Primarily, the mean Paillier key pair generation time was estimated
for both the miner and the party, and compared with El-Gamal key generation. We
compared the mean time needed to create the digital signatures in two different
systems. The main procedures of the protocol were examined to demonstrate that
they have a fast computation time while preserving privacy. Three different scenar-
ios were established for this purpose. The cryptosystem performance was evaluated
on encryption and decryption run times. The TAN classifier was evaluated using
recall, precision and F1 score variables as metrics.

All experimental results were calculated and are presented in milliseconds (ms).
Most experiments were conducted on a modest PC with Intel i5 2.4 GHz with 4 GB
of RAM. To extend some experiments, we performed them using a more advanced
computer. The purpose of the second system was to evaluate if a more advanced
system can decrease the computational cost of specific phases of the proposed pro-
tocol, like the key generation phase. The new PC was equipped with Intel Core i7,
2.9 GHz, and 16 GB of RAM, and each phase in which this computer was used is
denoted as i7 in contrast to the computer with the i5 processor. For this study, only
the key establishment experiments were conducted in both systems. The proposed
protocol was implemented in Java programming language, and both the miner and
all three participant interfaces were running on the same system.

The experiments showed that the performance of the protocol is mainly shaped
by the data collection phase, which is proportional to the number of attributes
included in the databases. We conclude that the partition of databases affects the
collection of data phase mainly when the amount of instances increases.

4.3.1 Key establishment

The key establishment was evaluated on both systems described above. Measure-
ments were collected from 50 runs performed for one participant and the miner to
calculate the performance of the key generation, authentication, and login opera-
tions. The encryption key pair generation and the RSA digital signature creation
were included in the key generation phase. We assumed that each participant knew
the miner’s SDpu key and the miner was aware of all public keys CDpu of the parties
involved in the mining process.

From the experiments conducted on the i5 computer system, we found that a
party requires 479 ms to create the encryption key pair and 122 ms to generate the
digital signature. The miner performs the encryption key pair generation in 433
ms and requires 108 ms to create the digital signature. The random variable M
used by the Paillier cryptosystem was produced in 43 ms. When the experiments
were conducted on the i7 computer system, the mean times significantly improved,
as shown in Figure 4.7. The Paillier encryption key generation mean time was al-
most four times faster when the measurements were performed in the i7 system.
The El-Gamal key generation was implemented to compare this phase using the
two cryptosystems. The Paillier and El-Gamal key generation experiments were
performed on the i7 system and we found that the key generation of the El-Gamal
cryptosystem was remarkably slower compared to the Paillier cryptosystem. The
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Figure 4.7: Comparison of key establishment procedures.

generation of RSA digital signatures was also compared between the two computer
systems, as presented in Figure 4.7. The digital signatures generation was signif-
icantly faster when the computer system was more advanced (i7). As shown by
the results, the Paillier asymmetric encryption algorithm is efficient in terms of key
establishment.

The time needed by the miner and each party to be mutually authenticated is
represented by the authentication time. In this phase, each participant sends the
public keys and digital signatures created in the key establishment phase. The mea-
surements from the conducted experiments showed that the mutual authentication
is achieved in 24 ms. In the login phase, the party sends the miner’s password en-
crypted with the Spu key and the miner, in return, responds with the correctness
of the password received by sending the encrypted random variable M . The mean
login time (262 ms) is longer than the mean authentication time as all the mes-
sages transmitted are encrypted, meaning decryption and encryption operations are
required.
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4.3.2 Experiments

The performance of the proposed protocol was measured by separately examining
its main procedures:

1. the collection of data from the miner (DC),

2. the initialization of the classifier (CI),

3. the creation of TAN classifier (TAN CC) and

4. the delivery of the final results (FR) to each party.

Table 4.2 presents the three customized scenarios used for conducting the ex-
periments based on the database partition. For each scenario, three parties were
connected to the miner and participated in the protocol with either horizontally or
vertically partitioned databases. These scenarios were evaluated and compared to
determine the performance of the protocol when different amounts of records and
attributes are involved in the creation of the mining model.

Table 4.2: Experiment scenarios

(a) Horizontally partitioned

Records Attributes

Scenario 1 50 5

Scenario 1 100 5

Scenario 3 100 10

(b) Vertically partitioned

Records Attributes

Scenario 1 50 3

Scenario 2 100 3

Scenario 3 100 6

The experiments were performed using real datasets provided by the UC Irvine
Machine Learning Repository [89]. The data were tailored for each scenario, and the
training set size was set to 1000, 2000, and 5000 records. A simplified structure of
this dataset is displayed in Figure 4.8. Table 4.3 provides the mean time to complete
each phase of the proposed protocol.

The customized scenarios were selected to compare the performance of the proto-
col depending on the number of attributes and records. From the results, we found
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Figure 4.8: Simplified TAN structure of “Adult” dataset.

that the overall time to complete the main procedures of the protocol is mainly
determined by the data collection phase, which mostly increases with increasing
number of attributes. Comparing both database cases, we found that the partition
affects mainly the data collection phase by doubling the mean time, mostly as the
number of instances is increased.

The distributed environment with three parties connected to the miner was se-
lected because we wanted the first evaluation of the protocol to be less ambiguous.
If more than three parties are connected with the miner and send their data, the
data collection phase is expected to be affected as well. In the future, conducting
experiments with more parties involved can prove the scalability and efficiency of
the proposed protocol.

4.3.2.1 Experiments: Horizontally partitioned databases

The scenarios used to evaluate the protocol for horizontally partitioned databases
are presented in Table 4.2a. For the first scenario, each database consisted of 50
records and 5 attributes; in the second scenario, it consisted of 100 records and 5
attributes; and in the third scenario, 100 records and 10 attributes. The results
showed that the initialization of the classifier has a low mean time, but it is affected
when the number of attributes is increased. Conversely, the initialization time is
slightly longer as the amount of database instances increases. Similar conclusions
were drawn during the data collection phase. However, the data collection process
has a long execution time, as each party has to send all their data/frequencies to the
miner. The data collection time increases reasonably when the number of instances
is higher, but when the database consists of a larger number of attributes, the miner
requires more time to collect all the frequencies. The mean time to create the TAN
model increases when the quantity of instances increases, unlike the increase in the
mean time when the attributes are doubled. Increases in the number of attributes
do not influence the mean time. When both the quantity of instances and attributes
increase, the mean time to forward the final results to each party also increases.
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Table 4.3: Main procedures comparison for each scenario

(a) 1st scenario results

Procedure 1st horizontal 1st vertical

DC• 31777 58939

CI? 13 57

TAN CC� 39 52

FR† 2407 3411

(b) 2nd scenario results

Procedure 2nd horizontal 2nd vertical

DC• 35502 59764

CI? 16 56

TAN CC� 17 118

FR† 3744 3592

(c) 3rd scenario results

Procedure 3rd horizontal 3rd vertical

DC• 94793 89073

CI? 30 64

TAN CC� 68 110

FR† 4455 6076

• Data collection.

? Classifier initialization.

� TAN classifier creation.

† Final results.
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4.3.2.2 Experiments: Vertically partitioned databases

The scenarios used to evaluate the protocol for vertically partitioned databases are
presented in Table 4.2b. In each customized scenario, we assumed that all parties
involved know the class C value. For the first scenario, each database included
50 records and 3 different attributes (plus the class attribute); in the second sce-
nario, the number of records was doubled and the number of attributes remained
the same; while in the third scenario, 100 records and 5 different attributes were in-
cluded in each database. The results showed that all the procedures of the protocol
require slightly more time to be completed compared to the corresponding scenario
for horizontally partitioned databases. The collection of data requires almost twice
the time due to the data partition. Like with horizontally partitioned databases,
the creation of the TAN classifier and the data collection phases require more time
when the amount of instances increases. When the attributes increase, the data
collection time lengthens, but less time is required in comparison to the horizontally
partitioned databases. The results showed that the classifier requires more time to
be initialized in relation to horizontally partitioned databases. If the number of
attributes increases, the TAN classifier creation behaves similarly for both horizon-
tally and vertically partitioned databases. The delivery of the final results is slower
for double the number of attributes for vertically partitioned databases.

4.3.3 Cryptosystem performance

The mean encryption and decryption time were calculated to measure the perfor-
mance of the Paillier cryptosystem. During the execution of the protocol, different
messages were transmitted, each one with a different number of characters. From all
the above executed scenarios, we measured all the encryption and decryption mean
times.

The results showed that a message can be encrypted in 51.5 ms on average.
The average time needed to decrypt a message was similar, and the measurements
revealed that a message can be decrypted in 67 ms. The decryption time slightly
increased most probably because of the application of the homomorphic primitive.
These results are collected from the ’i5’ system. By applying the same experiments
in the ’i7’ system, the encryption time is 11.6 ms and 19.4 ms is the decryption
time. As expected in the newer system the measurements are lower, almost 1/4
reduced. We conclude that the Paillier cryptosystem is efficient as the mean times
are low. In the future, a comparison of the Paillier and El-Gamal cryptosystem
would determine the most appropriate algorithm in terms of computational cost.
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Figure 4.9: Cryptosystem performance

4.3.4 Classifier evaluation

To examine the mining model created by the miner, we calculated the recall, pre-
cision, and F1 score. The percentage of records categorized with the correct class
in relation to the number of all records with this class is the recall. The percentage
of records that truly have a certain class over all the records that were categorized
with this class is the precision. The F1 score is computed using Equation (4.10). If
the F1 score is equal to 1, the precision and recall results are perfect. The lowest
possible F1 score is 0 if either the precision or recall is 0.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.10)

Three customized datasets with different amounts of instances were used as train-
ing sets (1000, 2000, and 5000 records). The databases were obtained from a real
dataset [89] and contained 14 attributes. A test set of 100 records (10% of the
training records) was used, which was not included in the training phase. The aim
of the classifier evaluation is to determine which mining model correctly classified
the test set. The evaluation results of the TAN classifier are presented in Table 4.4.
The naive Bayes classifier evaluation results are presented in Table 4.5.

Comparing the two classifiers, we found that TAN correctly classified more in-
stances compared to the naive Bayes classifier. Analyzing all three measurements
mentioned above, we found that the TAN classifier is a more accurate and appro-
priate method compared to traditional naive Bayes.
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Table 4.4: TAN classifier evaluation results.

Records 1000 2000 5000

Correct 54 55 56

Incorrect 46 45 44

Class value ≤ 50 > 50 ≤ 50 > 50 ≤ 50 > 50

Recall 0.42 0.63 0.52 0.6 0.54 0.6

Precision 0.48 0.57 0.73 0.38 0.73 0.39

F1 0.448 0.5985 0.6074 0.4653 0.6208 0.4727

Table 4.5: Naive Bayes classifier evaluation results.

Records 1000 2000 5000

Correct 49 49 50

Incorrect 51 51 50

Class value ≤ 50 > 50 ≤ 50 > 50 ≤ 50 > 50

Recall 0.42 0.54 0.48 0.52 0.50 0.8

Precision 0.43 0.53 0.77 0.23 0.47 0.2

F1 0.42495 0.5350 0.59136 0.3189 0.4845 0.32

4.4 Threat model

Many serious attacks need to be considered when a protocol is being developed.
Distributed environments have to prevent every possible threat on systems designed
with privacy preservation as their main concern. A threat is a potential violation
of security that exists when an action could breach security and cause harm. A
threat can be either intentional (an individual attacker) or accidental (a computer
malfunction).

Some types of security threats are related to unauthorized access. Services or
data becoming unavailable can be considered another security threat. The modifi-
cation of transmitted data is considered a major threat to the security of a system,
as well as the generation of fabricated data [90]. This section presents and discusses
the possible threats that can be confronted by the proposed protocol. Table 4.6 sum-
marizes these attacks and how they are approached and solved using appropriate
mechanisms by the presented system.

Security in distributed environments is an important concern that needs to be
analyzed to discover possible vulnerabilities or threats and avoid information loss.
A distributed system must follow some requirements for security enforcement [90]:
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Table 4.6: Possible security threats and their confrontation.

Attacks Security mechanism

Eavesdropping Asymmetric Cryptography (Paillier)

Collusion Lack of communication among parties

Probing Three parties, Cannot send blank input

Man-in-the-middle Digital Signatures

Message modification SHA-1

Denial of Service (DoS) Data send once

Chosen Plaintext Random variable M

• The sender of a message should be able to know that the message was received
by the intended receiver;

• The receiver of a message should be able to know that the message was sent
by the original sender;

• Both sides should be guaranteed that the contents of the message were not
modified while transferring data.

There are some broad areas of security in distributed systems: authentication,
access control, data confidentiality, data integrity, encryption, digital signature, and
nonrepudiation. Authentication is a fundamental concern when developing dis-
tributed systems. All entities in a secure system should follow an authentication
process assuring the communication is authentic. The authentication service as-
sures the participants that the message received is actually from the stated source.
This process occurs the first time a connection is initialized, and assures that all
entities involved are authentic. It must also ensure that there is no interference by
unauthorized third parties. Access control is the ability to control the access to
systems and prevent the unauthorized use of a service. This is achieved by iden-
tifying or authenticating each participant that tries to gain access, so that specific
access rights are provided to each party. Confidentiality is the protection of data
being transmitted from attackers and unauthorized disclosure. There are several
levels of protection, both regarding the data content being sent and the data flow.
This requires the attacker to not be able to observe the source and destination or
other characteristics of the traffic flow. As with confidentiality, data integrity mech-
anisms can be applied to part of a message or the whole message. The most useful
approach is full-message protection, ensuring messages received are not modified.
Encryption mechanisms transform data into a form that is not readable without
the use of intelligent systems. The transformation and recovery of data depend on
the combination of algorithms and encryption keys. Digital signatures allow the
recipient of a message to prove the source and integrity of the message and protect
against forgery. The digital signature can be signed to produce digital certificates
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that establish trust among users and organizations. Nonrepudiation prevents users
from denying they received or send a transmitted message. In these cases, the mes-
sages are registered by a notary so that none of the participants can back out of
a transaction and disputes can be resolved by presenting relevant signatures or en-
crypted text [91]. In the present work, we did not consider nonrepudiation, as these
cases fall beyond the scope of the presented protocol.

All parties involved in a distributed environment are considered to be mutually
mistrustful and, in some cases, curious to learn information about other participants’
data. Every participant is considered either semi-honest or malicious:

1. Semi-honest adversaries follow the protocol specifications; they do not collude
but are curious to discover other party’s data during the execution of the
protocol.

2. Malicious adversaries can be internal or external. Internals deviate from the
protocol and send specific inputs to infer other participants’ private data. An
external adversary tries to impersonate a legal participant and behave as an
internal.

The miner could be considered an internal adversary. To address such behaviors
in our proposal, external adversaries were excluded as they cannot participate, since
all parties have to send their digital signatures. We assumed the digital signatures
are signed by a certification authority. The mutual authentication provided by the
proposed protocol excludes any unauthorized users. Participants with no permission
to connect with the miner are not able to participate in the protocol. This means
that the Miner cannot be an internal adversary, as all participants are aware if a
connection is established with the actual miner. Participants who also behave as
internal adversaries are restricted to sending blank inputs or missing values to the
system. The only information revealed are the final outcomes; further information
is impossible to obtain. By exploiting the digital signatures, man-in-the-middle
attacks are not possible.

Several studies have examined the re-identification attack on privacy-preserving
data mining algorithms. Many hospitals, for example, are willing to publish their
data for research on the condition that any identifier that allows information pertain-
ing to specific patients is removed, either for administrative or commercial reasons.
This action, however, may not be enough, as re-identification attacks can lead to dif-
ferent public databases, thus revealing the real names of the referring patients [31].
To reduce re-identification risk, in the proposed method, we consider the privacy
of the individuals: the data are anonymized and the final results are published to
each participant to prevent any possibility of private and identification data being
revealed.

Some security attacks depend on the presence of one or more miners in a dis-
tributed environment or personal data being transmitted among two or many parties.
In distributed environments with only one miner, the final results can be discovered
by the data collector, but if more miners are involved, the protocol is vulnerable to
collusion attacks. If parties directly exchange data with each other, in the two-party
model, each party can easily determine the other party’s private data. In a model
where multiple parties are connected without a miner as the data collector, malicious
parties can modify the input data, which can be disastrous if n − 1 users collab-
orate. In the proposed protocol, to prevent these behaviors, data are exchanged
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only between the miner and each party, ensuring there is no collusion among the
participants. At least three parties must be involved, preventing any probing attack.
This approach establishes a secure protocol and semi-honest adversaries are faced as
the only information revealed and sent by the miner is the final outcomes. We did
not consider the collaboration of the parties outside of the protocol. Participants
in a protocol have a mutual interest to follow the protocol’s principles in real-world
applications.

If the requirements of confidentiality, anonymity, and unlinkability are fulfilled,
privacy can be preserved. The Paillier cryptosystem ensures that sensitive data
remain secret. The asymmetric encryption establishes an environment in which
all parties receive the messages that were intended only for them, and they are
the only ones that can decrypt these messages. Eavesdropping attacks or data
leaking are successfully managed by the proposed protocol. In addition, the Paillier
cryptosystem exploits the homomorphic primitive for both nominal and numeric
attribute values, which guarantees that the original data will not be revealed to
any attacker, the participants, or the miner. This primitive achieves anonymity and
unlinkability, two aspects that the proposed system is committed to providing. The
Paillier cryptosystem is vulnerable to chosen-plaintext attacks. This type of attack
is overcome by the current protocol using a random variable (M).

If active attackers try to modify any message exchanged during the execution of
the protocol and alter the final results or disclose sensitive data, they are stopped
using integrity mechanisms (SHA-1). The participants in the proposed protocol
are unable to resend their data and the protocol can be executed only once per
computer system, preventing denial of service attacks. Blank or missing inputs are
also excluded. Table 4.7 summarizes the security requirements and the technique
used in the current protocol.

Table 4.7: Security requirements.

Requirement Technique

Mutual authentication Digital Signatures, Password

Confidentiality Paillier cryptosystem

Anonymity Homomorphic primitive

Un-linkability Homomorphic primitive

Integrity SHA-1 hash function
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Summary

Voluminous data stored in distributed databases are exchanged daily due to tech-
nological progress. Global information can be acquired and important patterns
can be detected by applying data mining techniques on statistical databases. Such
databases often contain private data, and their disclosure when mining operations
are applied could compromise the privacy and the fundamental rights of individuals.

The proposed protocol in Part I focuses on solving this problem. A properly
designed privacy preserving data mining technique was developed for a distributed
environment. Participating databases can be horizontally or vertically partitioned,
supporting both nominal and numeric attribute values. A data collector, the miner,
groups the data received by at least three parties and performs all the operations
to generate the mining model. Communication among parties is infeasible and the
only workflow is between the trusted data collector (miner) and each participant in
the protocol. All messages exchanged during the execution of the proposed protocol
are encrypted using the Paillier cryptosystem. The homomorphic primitive ensures
that the miner decrypts the messages received all at once, preserving the privacy of
data. Cryptography-based techniques, as shown by previous research, are the most
appropriate approaches in terms of accuracy, as the original data are not modified or
transformed; therefore, the quality of the final results remains high. All transmitted
messages are examined for any type of modification, as each message is concatenated
with its summary produced by the one-way hash function SHA-1.

The experimental results showed that the proposed protocol is effective and
efficient for both database partitions. The performance of the protocol is mainly
affected by the increase in database attributes. Yet, given the size of the real dataset,
this is considered acceptable.

Most of the privacy preservation methods designed for data mining purposes are
theoretical and not implemented to support real world applications. The contribu-
tion of the proposed protocol is significant as, to the best of our knowledge, none of
the previously proposed techniques was designed and implemented for both horizon-
tally and vertically partitioned databases while simultaneously providing accurate
results and preserving privacy.

53



University of Aegean Privacy Preserving Data Mining

54 Maria E. Skarkala



Part II

Privacy preservation of social
networks

55





Chapter 6

Introduction

Social networks are exploited and analyzed by many different research fields such
as sociology and psychology. Their increasing popularity has raised the interest of
researchers also in the data mining community. Since social networks are being
released to the public for research purposes, there is an increasing concern about
the privacy of the individuals involved [92,93]. Therefore, it is necessary before the
network data being published for analysis, data mining or other purposes, to ensure
that these data do not contain any sensitive information such as the identities of the
individuals involved and their relationships [94]. Privacy risks have been studied for
anonymized social networks, and the results have shown that social networks need
to be anonymized such that sensitive data as protected but at the same time the
utility is preserved [95]. The action of removing only the identifiers or by replacing
them with other unique identifiers before releasing the network data to the public
is not sufficient [3].

A social network and every network can be modeled as a graph, where nodes
denote entities from the real world such as individuals and organizations. Individuals
in a social network might have stronger or weaker social ties with other individuals
in the network [96]. These strong or weak relationships between individuals are
represented by edges. A graph model may include additional information about the
involved individuals and their relationships. These additional information can be
for example the quantification of the strength of each connection which is denoted
as edge weights. Moreover, further information can be the node attributes which
express user information such as preference and affiliation. For example, the edges
and edge weights in [97] indicate the social interaction and the strength of the
relationships among the members of a Karate club at a US university.

A network includes usually three different entities: the users of the network
whose identity and private data need to be protected, and they are represented
by nodes in a graph; the adversary that wants to acquire sensitive information by
possessing background knowledge or by combining the released graph with external
information; the analyst whose adjective is to extract useful information by analyzing
the released graph.

Due to social networks being released, there is a growing concern about personal
privacy being breached. Thereby effective and efficient anonymization techniques
that allow analysis of the graphs are required. A privacy breach occurs when sen-
sitive information about the user is disclosed to an adversary. The privacy model
involves three components: a specification of what is considered private and needs
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to be anonymized, the external information that an adversary may possess and a
set of measurements on how much private are the data released and the loss in their
utility for analysis.

Nevertheless, the existence of edge weights pose additional challenges in anonymiz-
ing a network. An adversary may possess supplementary information about the edge
weights of the individuals, but any anonymization method should still be able to
protect the individuals. Methodologies that have been designed specifically for un-
weighted graphs are not sufficient enough to protect weighted graphs from attackers.
In case an adversary has additional information related to the edge weights, there
is a need to actually prevent from their disclosure [98]. Edge weights are important
for many analyses of weighted graphs, but at the same time as much information
as possible should be maintained, while preserving the utility of the anonymized
data [95].

If we consider the social network to be a weighted graph, then the privacy
breaches in social networks can be categorized into three types: identity disclosure,
link disclosure, and content disclosure [99–101].

• Identity disclosure is a fundamental privacy issue in social networks, in which
specific individual identity is revealed because an adversary was able to as-
sociate a node of the graph to this individual. The identity disclosure is
considered as the key of privacy violation in social networks because it usually
leads to the disclosure of content information as well as information about
their relationships.

• Link disclosure occurs when the existence of a relationship between two in-
dividuals is discovered. An adversary may want to know the degree of rela-
tionship between two entities. If the relationship of two individuals can be
determined by a certain path, then the privacy is compromised.

• Content disclosure is a privacy breach that occurs when data associated with
a node or an edge are revealed. These data can be either associated with an
individual or its relationships. Data such as the edge weight can be as well
considered sensitive in a weighted graph.

Additional privacy breaches can also be the disclosure of node existence, deter-
mining if a target node appears or not in the network, the disclosure of node and
edge attributes which are considered private, the properties disclosure regarding the
network structure around an individual, such as the degrees clustering coefficient or
properties of the neighbors of a node [102].

An anonymized network can be evaluated with regards to two criteria on whether
(i) the private data of each user are protected and (ii) the utility of the graph is
preserved. Since published data are used for analysis, anonymization must ensure a
balance between the privacy of the individuals, their connections and their related
content, and the utility of the resulting data such that it is not compromised. For
example, a social network represents the residents of a small city in which some
people got hospitalized with covid-19 virus. The nodes represent the people who
got affected by the virus, the links show the relationships with their immediate en-
vironment, and the edge weights stand for the frequency of communication between
them. This network must be anonymized so that it is not possible to later identify
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the patient’s identity and the strength of their relationships. Such a network can
be analyzed by researchers to identify how the frequency of their contact affects
the health of the patients, therefore the anonymization technique must ensure the
statistical properties are preserved.

6.1 Anonymization techniques

Anonymization techniques that are proposed for privacy preserving data mining of
graphs and networks have to face the following challenges: how to model the privacy
information that might be under attack; how to model the background knowledge
that an adversary may possess to attack the privacy of a target; how to model
data utility and information loss and how to develop an efficient anonymization
method that will preserve data utility, by minimizing information loss [103]. Sev-
eral techniques that have been proposed to preserve privacy in relational data are
not applicable to social network data, and cannot be used for protecting privacy
straightforwardly. The anonymization of social networks is far more challenging
compared to anonymizing tabular data [104].

Data should be anonymized properly before releasing in order to preserve privacy.
The anonymization techniques should consider both the privacy and utility of the
data. For example, naive anonymization removes all identifiers from the original
graph and replaces them with random numbers in the released graph. However this
method may be insufficient. By applying this method the utility of the data is highly
preserved, but the released network is vulnerable to attackers who by being aware
of the network structure can be able to re-identify an individual [105]. An adversary
can compromise privacy by combining external information with the released graph,
de-anonymize the nodes and learn the existence of the relationships between the
de-anonymized individuals [93].

Clustering-based and modification methods are the two state-of-the-art cate-
gories of anonymizing social network data [102].

Clustering-based or generalization approaches cluster nodes and edges into groups
and replace a subgraph with supernodes and superedges. With this approach, all in-
formation related to an individual is properly hidden. This category can be divided
into node clustering [105], edge clustering [100], node and edge clustering [106] and
node attribute mapping clustering methods [107].

Modification approaches modify the graph by inserting or deleting nodes and
edges in a graph, either by directly adding or removing specific edges or by randomly
adding or removing edges. Modification can be divided into three subcategories: the
optimization approach which makes optimal modification to the graph [108]; the
randomized modification approach which conducts perturbations [109–111] and the
greedy modification approach [104] which modifies the graph in a greedy way such
that the privacy and data utility is preserved [102].

In clustering approaches similar nodes and edges of the graph with same struc-
tural properties are grouped together and then in the published graph the nodes are
replaced by the groups. In graph modification techniques the topological structure
of the graph is modified by adding or deleting nodes and/or edges. In a graph all
nodes and edges are correlated and a change can spread across the whole network
and each change represents loss of utility. The above anonymization methods, in
addition to naive anonymization, can preserve privacy in social network data [93].
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6.2 The k anonymity model

The most well known and one of the first methods presented to preserve data privacy
is k-anonymity. K-anonymity method was initially defined by Samarati [112] and
Sweeney [31] for protecting privacy of tabular data. Many proposed techniques are
based on the k-anonymity model which aims to preserve privacy by making each
individual indistinguishable from at least k−1 other individuals. Thus, an individual
cannot be re-identified by an attacker with probability higher than 1/k.

Later researchers adopted this technique also for protecting privacy in network
and social data [113]. To apply k- anonymity on graphs, firstly it is important
to identify the attributes which can be used and linked to external information to
re-identify the individuals (quasi-identifier). Some data attributes can be used as
quasi-identifiers, such as the degree of the nodes, the neighborhood etc.

The goal of the k-degree anonymity technique [108] is to protect against an
adversary who has knowledge of the degree of some target nodes. If an adversary is
able to identify a single node with the same degree in the anonymous graph, then is
able to re-identify the node. This technique modifies the graph structure such that
all nodes satisfy k-anonymity of their degrees, by modifying the edges. At the end,
all nodes have at least k − 1 other nodes with the same degree.

Instead of using the node degree, another quasi-identifier can be the neighbor-
hood of a node. Zhou and Pei [104] proposed the k-neighborhood anonymity tech-
nique, considering 1-neighbourhood subgraph of the target node. This method pro-
tects from attackers with not only node degree as background knowledge, but also
the neighborhood topology of a target node. However, the authors in [114] showed
that the algorithm in [104] cannot handle attacks in which the adversaries have more
than 1-neighborhood knowledge.

Structural information about a node can also be considered as a quasi-identifier.
The k-automorphism algorithm [94] anonymizes a network and can guarantee k-
anonymity even against an adversary who could know arbitrary hops in each user’s
neighborhood. In order to achieve this, the algorithm creates a supergraph of the
original graph that satisfies the k-anonymity principle. In particular, a graph is
k- automorphic if there are k − 1 functions in the graph and for each node in the
graph that an attacker cannot distinguish from the k − 1 symmetric nodes. The
k-automorphism technique protects the graph against neighborhood [104], degree-
based [108] and subgraph attacks [105]. However, these techniques can compromise
the privacy of the relationships between nodes, even if their identity is completely
hidden.

Similar technique is the k-isomorphism anonymization approach [115]. In this
method, the graph is partitioned in k subgraphs with the same number of nodes
and all subgraphs become isomorphic by adding or deleting edges. The attackers
cannot determine that two identities are connected by a path of certain length with
probability more than 1/k. This technique protects the graph from neighborhood
attacks [104].

Other quasi-identifiers used are modelling more complex background knowledge
of an attacker. For example, in the k-candidate anonymity [109] technique, a node
is k-candidate anonymous with respect to query Q if there are at least k − 1 other
nodes in the graph that match query Q.

K- degree anonymity has been criticized, as it considers that an attacker pos-
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sesses too little background knowledge. Models such as k-neighborhood and k-
automorphism are more complex. These methods rely on their complexity, which
however can prevent them from working effectively and efficiently on large network
data.

However, most of these studies deal with simple graphs (unweighted, undirected,
loopless). There has been an increasing interest in the analysis of weighted networks.
Anonymizing a weighted social network is much more challenging than anonymizing
simple graphs. Therefore, beyond the identity and relationship privacy, the privacy
of edge weights also needs to be studied [98]. Edge weight anonymization is impor-
tant since if an adversary re-identifies a node, more information will be revealed if
the edge weights are not anonymized. This may be possible even when the network
has been k-anonymized.

6.2.1 Beyond k-anonymity

A social network that has been k-anonymized can still be vulnerable against specific
types of privacy leakage [116]. If for example all nodes in an k-anonymous group
have similar attributes and are associated with certain sensitive information, an
attacker can derive that sensitive information of the group [93].

Machanavajjhala et al. [117] introduced the concept of l-diversity for tabular
data. Based on this concept, each k-anonymous class requires l different values for
each attribute. This method can protect not only from identity disclosure, but also
from attribute disclosure. The authors also introduced two attacks that can compro-
mise privacy in a k-anonymity model: the homogeneity attack and the background
knowledge attack. In the first attack, the adversary can identify the sensitive at-
tributes of an instance in case the values lack diversity. In the second attack, the
adversary can identify the sensitive attributes of an instance in case he has back-
ground knowledge, such as information about the behaviour of an individual. The
l-diversity model ensures that sensitive attributes are diverse in the same class.
Xiao and Tao [118] also provide proof that l-diversity guarantees stronger privacy
preservation than k-anonymity.

However, Li et al. [99], went further and studied the vulnerabilities of the l-
diversity model. They introduced the concept of t-closeness. This method requires
that the distribution of sensitive attribute values within each class need to be close to
the distribution of the attributes in the whole dataset. Skewness attacks or similarity
attacks, in which the l-diversity approach is vulnerable, are confronted using the t-
closeness approach [99]. In particular, a class satisfies t-closeness if the distance
between the distribution of a sensitive attribute in this class and the distribution
through the entire dataset is bounded by a certain threshold. This approach protects
from both identity and attribute disclosure.

On the other hand, Chester and Srivastava [119] have shown that t-closeness
cannot be clearly applied to social networks. The α-proximity approach they pro-
posed can protect against attribute disclosure attacks. Their algorithm modifies a
graph with labeled nodes by adding dummy edges so that it is α-proximal.

All above mentioned approaches were further adopted for social network
anonymization of unstructured social network data [113].
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6.3 Background knowledge of attackers

Different forms of external knowledge can compromise the privacy in social net-
works. An adversary may have direct information about some individuals and their
relationships by participating in the network. Background information may be also
gained through public sources. Modeling the capability of an attacker in graphs is
more complex [92,102]. The adversaries rely on background knowledge to be able to
distinguish nodes and learn the relationships between the individuals from a released
anonymized graph [93]. If certain knowledge can uniquely identify some nodes in a
graph and is known by an adversary, the privacy of these entities can be breached
even if the data have been modified before publication [98]. Research on privacy
preservation techniques on graphs has shown that simple anonymization methods
do not work because in case an adversary possesses background knowledge, such as
the network structure, can re-identity or gain more information about the nodes of
the anonymized graph.

Backstrom et al. [3] described two types of attacks in an anonymized social
network: active and passive attacks.

• In an active attack, an adversary creates new accounts and relationships in the
original network and uses them in order to find the targets and their relations
in the anonymized network.

• In a passive attack, an adversary can identify itself in the anonymized network
and discover the identities and its relations with other identities. These attacks
are based on the observation of small uniquely identifiable subgraphs.

Personal information that describes an individual and the structural informa-
tion that describes how an individual is connected to other individuals in social
network data can be used as background knowledge by an adversary to compromise
privacy. Each individual has personal unique identifiers such as the home address
(semi-identifier) or the sex (quasi-identifier). Several identifiers can be combined to
potentially identify an individual.

Zhou et al [102] listed different types of background information. The node at-
tributes, relationships between individuals, node degrees, neighborhoods, subgraphs
and graph metrics such as betweenness, closeness and centrality, describe informa-
tion that can be used as background knowledge. Graphs that are not associated
with any attributes and the links are not labeled, the only background information
that an adversary can possess is related to the structure of the graph. The structural
information includes [102]:

• Node attributes [106] are a set of individual attributes that can uniquely link a
node to an individual. Node attributes often are modeled as labels in a social
network. These attributes are similar to quasi-identifiers in re-identification
attacks on tabular data.

• Degree [108] is the number of direct social links or relationships of an individ-
ual. This information can be used to map a target in a network.

• Link relationships [100, 107] describe the connectivity between individuals.
These links may have labels, such as the channels which the people use to
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communicate. In a social network, for example, an adversary may acquire
information about specific information between friends that only use email to
contact, and try to use this background knowledge to identify the target in
the network.

• Neighborhood [104, 105, 109] refers to a set of neighboring entities that have
direct social relationships to an individual which they might also have mutual
links.

• Subgraph [3, 94] refers to a set of relationships which the target individual is
connected to. The subgraph is a subset of the entire graph. An attacker can
identify an individual if he is aware of specific relationships.

• Network graph metrics [120] can implicitly reveal an individual. Graph met-
rics can be used as background knowledge from attackers to breach privacy.
Such metrics are the betweenness, closeness, centrality, path length, etc. For
example, the centrality can reveal the head of a group.

6.4 Preserving utility

Social networks need to be anonymized in order to preserve the privacy of the
individuals involved in the network. Anonymized networks are used by differ-
ent applications, for example to analyze the global structure or to analyze micro-
structures [102], leading to different anonymization methods.

However, the anonymization technique may affect the utility of the network.
The utility, also called information loss, of the published anonymized graph data
depends on the type of analysis that is performed on the anonymized network and
can be measured by various metrics. Such metrics can be put into two categories
with regards to whether the goal is to preserve the graph properties of the published
graph or maintain high quality of the results of executing aggregate queries on the
released graph [102].

Analyzing general graph properties is one of the most important applications.
Researches have developed various metrics to indicate the characteristics and struc-
ture of a network [121]. Some graph properties that need to be preserved are the
betweenness, closeness, shortest distance, centrality and path length. The between-
ness measures the degree an individual lies between other individuals in the network
in their shortest path. The closeness measures the degree an individual is near to
all other individuals in the network directly or indirectly. The shortest distance be-
tween a node and all other nodes that can be reached from it. The centrality counts
the number of relationships to other individuals in the network. The path length is
the distances between pairs of nodes in the network. Other graph properties include
the diameter, clustering co-efficient of networks and degree sequences [93,102]. The
clustering co-efficient is the degree to which graph nodes tend to cluster and degree
distribution is the probability distribution of node degrees over the social network.

Aggregate network queries compute the aggregate on some paths or subgraphs
which satisfy some given query conditions. For example, a user is interested to
find the nearest neighbor of a medical doctor node to a teacher node in a social
network. The aggregate query will return the average of the distance between these
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two nodes [93]. Customer relationship management is another field where aggregate
network queries are used [102].

Wu et al. [93] add one more category, the graph spectral properties. The spec-
trum of a graph is defined as the set of eigenvalues of the graph’s adjacency matrix
or other derived matrices, and can provide global measures for some graph charac-
teristics.

Quantifying the information loss is very challenging in anonymizing social net-
works. The best utility is achieved when the released anonymized graph is isomor-
phic to the original graph. In case the nodes and edges of a graph are labeled, the
measurement of aggregate queries is more useful. Information loss associated with
the graph structure changes need to be taken into account. Measures that are based
on the structure of the graph check the changes of the graph components that oc-
cured, such as the number of nodes and edges added or deleted. Moreover, changes
in the node attributes should be considered when the information loss is measured.
A more sophisticated measure of utility would consider the loss of structural prop-
erties in the anonymized data. For example, if all edges are removed then the utility
is zero. If the anonymization cost is low, this means that few changes have been
made to the original graph, resulting in higher overall utility [100].

6.5 Proposal

The analysis of weighted social networks have raised an increasing interest, as such
models can be used for analyzing various social phenomena. The weights of edges
can reflect affinity between two nodes or represent the communication cost between
two individuals. In a social network, for example, the weight can be the frequency
two individuals communicate to each other. This information may be considered
private.

When a graph contains edge weights, there is an additional goal to protect the
privacy of the weights. The proposed algorithm in this dissertation focuses on pub-
lishing social network data which allows useful analysis without disclosing sensitive
information. A novel algorithm is developed which preserves the privacy of the in-
dividuals in a graph, applying the k-anonymity model based on the generalization
method, and at the same time minimizing the information loss keeping the utility
of the anonymized graph in high level for better analysis and exploitation.

K nodes with similar neighboring characteristics and the same structural prop-
erties are grouped into the same supernode and their relationships are hidden as
they are grouped into superedges. Structural properties are based on the similarity
of neighbors and the edge weights. The edge weights are modified and uncertainty
about the existence of these relationships is introduced. The utility is measured in
terms of general structural properties of weighted graphs such as the degree distri-
bution, the edge weight distribution, the path length distribution and the volume
distribution. The solution prevents identity, edge and edge weight disclosure and
the graphs are weighted, undirected and may contain loops. The work is inspired by
the work presented by Toivonen et al. [122] and next chapters of Part II originate
from the work of Skarkala et al. [123].

The basic steps of the proposed algorithm are the following:
Step 1. Naive anonymization All the identifiers of the original graph are

removed and replaced by temporary identities. At this step the weights of the
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original graph remain the same.
Step 2. Node generalization Similar nodes are grouped together into the

same equivalent class, which have the same structural properties. Next all classes
are collapsed into single supernodes. Supernodes consist of at least k nodes of the
original graph in order to achieve k-anonymity, and each node will not be indistin-
guishable from at least k−1 other nodes in the same supernode. Even an individual
will not be able to identify itself in the supernode.

Step 3. Edge generalization After the super nodes have been created, the
corresponding edges are also collapsed into superedges. The superedges will repre-
sent the edges that connect the nodes, which are included in the supernodes, in the
original graph.

Step 4. Edge weight anonymity In this step the edge weight of the superedge
is modified to preserve the generalized graph by edge weight disclosure.

Step 5. Publish anonymized network The final anonymized network is
published for further analysis. Minimal information loss is achieved but at the same
time the privacy of each individual is preserved.

6.6 Contribution

Most of the previous works on network anonymization only handles unweighted
networks. As it comes to our knowledge, all the clustering-based methods that have
been proposed for weighted graphs, do not anonymize the network based on the
neighborhood structure and are concentrating mostly to preserve the network data
from identity disclosure. Also, as we are aware, all the cluster-based methods that
have already been proposed for weighted graphs have not considered neighborhood
based attacks.

Similar to our work is the one presented by Liu and Yang [124]. Our approach
differs as we propose a complete solution for edge weighted graphs which is based
on the neighborhood similarity of the nodes. In comparison with work [124], which
preserves the network only from identity and edge weight disclosure by grouping
nodes with the same weight bags into supernodes, our approach considers also link
disclosure and groups nodes with the same neighborhoods and the same structural
properties based on the similarity of neighbors and the edge weights. Grouping
nodes based on some structural properties such as degree or weight bag, reveals more
information from which an adversary can infer if a targeted node is included within
a supernode. On the other hand in our proposal, it is more difficult to terminate
the presence of a node in a supernode, since the only thing that is revealed is the
number of nodes included in a supernode and nothing more about their neighboring
properties. The generalization-based approach we use gives a stronger protection
against identity disclosure, as it includes degree anonymity, weight bag anonymity,
as well as neighborhood anonymity as its special cases.

In addition to preventing identity disclosure in weighted networks, the proposed
method can optionally prevent edge disclosure and edge weight disclosure. For both
of them, the k-anonymization process usually introduces some uncertainty. The
amount of this uncertainty in the anonymized graph can be quantified, and also
increased if needed to achieve the required privacy level. Anonymization techniques
modify data in some way to protect privacy, but this may affect the utility of the
data. The utility or information loss of the published anonymized graph data de-
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pends on its use. We use the total volume of (squared) edge weight changes as a
proxy for more complex and application-dependent utilities, and the method specif-
ically aims to minimize changes in edge weights while achieving k-anonymity.

In the proposed algorithm, we consider both active and passive attacks. Using
generalization methods specific patterns of relationships will be hidden and neigh-
borhoods with the same structural properties will be grouped in the same supern-
ode, achieving at the same time the minimum information loss. By exploiting the
k-anonymity model, the released network is isomorphic to the original one. Utility
can be measured in terms of the shortest paths and their lengths, where the shortest
path between two nodes is defined as the path with the minimum sum of weights.
An un-weighted algorithm is used as a baseline to evaluate our approach in terms
of privacy and utility using real world networks.

6.7 Organization of Part II

Part II is structured as follows. Chapter 7 addresses previous works on privacy
preservation of graphs and networks. The anonymization approach is presented in
Chapter 8. In this chapter the problem and key concepts are defined in Section 8.1.
The proposed anonymization algorithm for weighted graphs is explained in detail in
Section 8.2. Section 8.3 analyzes the evaluation of the experimental results. Possible
security threats and their confrontation are discussed in Section 8.4. Finally, a brief
summary of Part II is given in Chapter 9.
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Related work

Huge amounts of data being available in public has attracted the attention of data
mining researchers. The need to extract useful information and knowledge from
these data have forced the data mining community to develop efficient techniques
which will allow the exploitation of the plethora of available information. However,
effective data mining mechanisms which prevent the disclosure of private information
in social network data face a variety of challenges that have been raised due to
the amount of data and the sensitive information that might contain [125, 126].
Aggarwal [127] gives an introduction to social networks and the challenges of the
analysis of large social network data are discussed in [128]. Frikken and Golle [129]
first presented the definition of privacy preserving social network analysis. The
concern about privacy issues is growing due to the public release of real world social
networks or graphs [92, 93]. Privacy preservation of graphs and networks has also
been studied by Liu et al [92], and the authors discuss different privacy preservation
strategies for graph structures. Hay et al. [130] also discuss privacy preservation
methods and survey privacy threats and attacks in networks. Preservation of privacy
on social networks analysis has also been researched for criminal investigations [131].

Preibusch et al. [132] present a complete survey on privacy in social networks.
Users in social networks have the ability to control and manage social contexts
and often believe that a ”private” profile will protect them from any threat [133].
However, the authors in [132] argue that the user’s privacy may be exposed to
threats by their contacts’ privacy settings. Zheleva’s et al [133] results show that
by being a member of a group, a user’s private attributes may be revealed by the
group affiliations or friend’s of the user. Bonneau and Preibusch [134] point out that
“privacy in social networks is dysfunctional in that there is significant variation in
sites’ privacy controls, data collection requirements, and legal privacy policies”.

Over the years, extensive surveys have been presented on anonymization tech-
niques [92, 102, 130]. Identity disclosure is a major privacy breach in social net-
works, and adversaries with specific background knowledge can reveal the iden-
tity of the individuals involved. The simple anonymization technique, known as
naive anonymization, which removes the personal identification information has been
proved ineffective in case an adversary has background information about the struc-
ture of a graph [3, 109]. This anonymization method does not guarantee identity
and link privacy in simple graphs. Link disclosure happens when an adversary infers
that two individuals have a relationship. If just the unique identifiers are replaced,
by observing the structure it is easy for an adversary to identify that two target
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nodes are connected. Link re-identification can occur even when nodes cannot be
distinguished. Link re-identification was also researched by Ying and Wu [120] and
they consider the case in which an adversary does not have any background in-
formation, by studying the probability of existence of a link. On the other hand,
Korolova et al [135] consider that an adversary may gain background knowledge on
the neighborhood of compromised individuals to attack on edge privacy and collect
global information about the network.

Zhou et al. [102] categorize the anonymization techniques into two general ap-
proaches: clustering-based and graph modification. They also present different types
of background knowledge such as the existence or absence of nodes and edges, node
degrees, neighborhoods, subgraphs and graph metrics. Hay et al. [109] observed
that structure properties, such as the degree of a node or the degree of a node’s
neighbor can make an individual more distinguishable, in case for example the de-
gree is unique. This way the individual can be re-identified, even if there is no
background knowledge of the original label [104, 108]. Some researches on analyz-
ing privacy of graph data have shown that sensitive information in social network
data can be de-anonymized. De-anonymization techniques [136] have shown that
the social network structure can be exposed by analyzing the anonymous versions.
Watanabe et al. [95] also present an analysis of privacy threats for anonymized social
networks, and show the need of privacy and utility preservation at the same time.
Joshi and Kuo [137] present different ways of privacy violations in social network
data and metrics on how to measure security and privacy in online social networks.
Ciriani et al. [138] surveyed the k- anonymity concept and its possible variations.
K- anonymity has been studied widely. In the following, different techniques for
network anonymization are reviewed.

7.1 Unweighted graphs

7.1.1 Clustering based techniques

7.1.1.1 Clustering based techniques for preventing identity disclosure

The generalization approaches are applied in many privacy preservation methods.
In this approach nodes with similar structural properties are grouped together into
super nodes, and edges are joined in superedges. A clustering-based anonymiza-
tion approach for an unweighted and undirected graph was proposed by Campan
and Truta [139]. In their proposal nodes with attributes are clustered to become
indistinguishable, and only the number of edges between nodes within a cluster is re-
vealed. This approach is similar to our proposal, but instead focuses on unweighted
graphs.

Hay et al [105] proposed an edge generalization approach for unweighted graphs.
Their k-anonymous method groups nodes within the same neighborhood into supern-
odes and edges into superedges. Privacy based on this method will be preserved,
but due to many topological changes, the utility is not clear if it can be preserved.
The number of nodes within supernodes and the number of edges can be revealed.
Also, the authors do not impose any restriction on neighbourhood attacks.

Another clustering approach for undirected graphs is the i−hop degree approach
proposed by Thomson and Yao [140]. This method clusters nodes based on their
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degree and a combination of a node and its neighbor’s degree. Groups of k size are
created and edges are added and/or deleted so that each node within the same cluster
remains anonymous. The authors proposed the t-means algorithm, a constrained
version of k-means, that limits the number of nodes within a cluster. Moreover, they
proposed the union-split clustering algorithm, which joins nodes with two nearest
clusters, and in case the size is more than 2k the clusters are split to k size. The
authors consider as background knowledge an approach similar to vertex refinement
queries for zero and one level neighborhoods.

Attribute disclosure has not been taken into consideration in many works. How-
ever, another anonymization approach proposed by Campan and Truta [106] consid-
ers undirected graphs where nodes are associated with attributes and edges are not
labeled. Utility is optimized by using simultaneously the attribute and structural in-
formation. The clustering-based method clusters nodes which are indistinguishable
based on their relationships and their attributes and protects privacy by satisfying
k-anonymity both for quasi-identifier attributes and quasi-identifier structural at-
tributes. They measure structural information loss by introducing a metric based
on error probability and measure attribute information loss by adopting a general-
ization metric. This approach due to topological changes is not clear if it provides
utility preservation.

7.1.1.2 Clustering based techniques for preventing edge disclosure

Link mining is closely related to privacy preservation in graph data [141]. Getoor
and Diehl [141] presented a survey on link mining, portraying that link prediction is
one fundamental problem, through which the existence of a link between two nodes
is estimated by observing the links and node attributes. Link disclosure can occur
even if identity disclosure is prevented and each node is k-anonymous. For example,
if node a in the same group has an edge with every possible node b in the same
group, an adversary can predict that there is a connection by a certain link between
these two nodes, without knowing which node is who. Such privacy violation is easy
to execute since users of social networks are explicitly connected together [132].

Bhagat et al. [142] consider the links in a social network as rich interaction
graphs. They propose two anonymization techniques grouping nodes into classes,
and point out that this method does not guarantee privacy. They require an addi-
tional condition based on which two nodes who share a neighbor must be included in
different groups, in order to prevent edge disclosure. Each node cannot be connected
with two or more nodes in the same group. This condition ensures that nodes are
k anonymous and edge disclosure is bounded by 1/k. The authors assume that an
adversary might know a part of the nodes and links in the graph, and evaluate their
method allowing queries.

Zheleva and Getoor [100] consider edge disclosure prevention in unweighted
graphs. They propose a two step edge generalization approach, where nodes are not
labeled but edges contain labels. The authors achieve k-anonymity to anonymize
the nodes data and consider four edge modification cases: all edges are removed,
a part of edges is removed, none of the edges is removed, or edges are clustered.
Although the above proposed approaches would preserve privacy, it is not explicit
their usefulness as many topological features may be lost in the anonymized graph.
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7.1.2 Modification-based techniques

7.1.2.1 Modification-based techniques for preventing identity disclosure

Another privacy preservation approach is the modification of the graph, by adding or
deleting edges. This approach preserves the degree of each node in the original graph
by randomly switching a pair of existing edges and repeating the process k times.
Re-identification attacks are confronted but the utility of data is decreased [110]
due to randomization as many topological features are lost. Ying and Wu [110]
propose the performance of few edge perturbations while preserving the spectrum
of the original graph, which has close relations with topological properties such as
diameter, long paths and bottlenecks etc, preserving both identity and link disclo-
sure. Randomization methods for preserving graph spectral characteristics were also
proposed by Ying and Wu [110]. They examine the eigenvector values of nodes to
choose where edges are added, deleted or switched.

A k-candidate anonymity approach was presented by Hay et al. [109] which is
based on similar neighborhoods, where nodes and edges do not contain attributes.
In the proposed method, on a candidate set of each node random number of edge
deletions and additions occur such that each set is automorphically equivalent with
at least k − 1 other nodes. The authors presented three types of queries: vertex
refinement, subgraph and hub fingerprint queries on naive anonymized graphs. They
showed that the privacy of the individuals can be violated by applying subgraph
queries and if an adversary has background knowledge on the neighborhood of the
target node. This technique however works for average node degrees which is not
applicable to large scale social networks.

Liu and Terzi [108] presented k-degree anonymity in which for every node there
are at least k − 1 other nodes with the same degree. The authors assume that
adversaries have background knowledge of the node’s degrees/relationships and focus
on preventing identity disclosure. Their method modifies the edges by increasing
the degree of the nodes so that they become indistinguishable from at least k − 1
other nodes, as they have the same degree, trying to preserve the structure of the
original graph.

Zhou and Pei [104] proposed an anonymization method which generalizes the
node labels and edges are added to create similar neighborhoods, until each node
is k-anonymous. They assume adversaries know only the local neighborhood, 1-
neighborhood, of the target node and they guarantee that an adversary with such
information cannot identify any individual with confidence higher than 1/k.

Tripathy and Panda [114] modified the technique proposed in [104], with labeled
nodes. They create isomorphic neighborhoods by adding edges in order to prevent
re-identification, assuming the adversary has background knowledge about the nodes
within a finite number of hops from the target node. Their proposed method is based
on adjacency matrix instead of DFS which was used in [104]. This approach results
in less complexity time.

Zou et al. [94] proposed a k-automorphism algorithm which aims to construct a
new graph so that for any subgraph around a node there are at least k−1 isomorphic
subgraphs. They modify the graph by adding and deleting nodes and edges aiming
to confront attacks that reveal the relationships between nodes and the structure of
the target node. The authors assume that an adversary has background knowledge
of the subgraph of the target node and the k-automorphism approach guarantees
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privacy under any structural attacks, however it can be vulnerable to multiple other
attacks. If such a subgraph is distinguishable in the anonymized graph, then the
identity of the target node can be disclosed.

Wu et al. [143] add new nodes and edges to create k-automorphically equivalent
nodes until every node has at least k−1 other nodes that are indistinguishable from
it. The authors assume that an adversary might know the entire graph and the
location of the target node. In case the graph is k-symmetric, an adversary will not
be in position to identify the target node. The adversary is not realistic to be aware
of all the neighborhoods of the target node, rather than just a part of the graph
structure.

Yuan et.al. [144] focus on unweighted graphs with labeled nodes and one type of
labels for edges. Their approach combines generalization and structure protection
techniques such as micro data protection techniques by adding noise nodes or edges,
and they define three levels of protection requirements based on the background
knowledge of an attacker.

Clarkson et al. [101] transform a graph by adding edges such that each degree
appears at least k times, aiming to prevent identity disclosure. They focus on
unweighted and undirected graphs which do not contain self loops or multiple edges.
They assume the attacker has certain prior background knowledge and use degree
anonymization and structural cost to measure utility.

Chester et al. [145] transform a graph by adding nodes, in order to partition
the degree sequence into subsequences of k length, such that at least k − 1 other
nodes have the same degree. They consider both labeled and unlabeled graphs, and
they prove that on labeled graphs k-anonymization with a constant number of node
additions is NP-complete.

7.1.2.2 Modification-based techniques for preventing edge disclosure

Ying et al [146] compared k-degree anonymity to different perturbation methods. In
order to measure the level of anonymity they proposed the a-posteriori probabilities.
From their experiments they concluded that the graph properties are preserved
better for given levels of anonymity.

Link identification attacks were also studied by Zhang et al [147]. They propose
degree based methods using edge deletion and edge-based swaps, for reducing the
probability of edge existence. They assume that an adversary might be aware of
the nodes degrees. This approach however does not consider node re-identification,
which can occur even if the edge existence probability is small. For that purpose,
the authors proposed the notion of t-confidence, to protect from such attacks. Edge
anonymity is provided if the ratio of actual edges and possible edges between the
equivalent classes is greater than a given threshold t.

Cheng et al. [115] considered as well link identification attacks. They proposed
a k-isomorphism approach and showed that identity and link protection is achieved
by anonymizing k pair subgraphs. For large subgraphs however the approach of
finding frequent subgraphs can have high cost. Graph isomorphism problem which
determines whether two graphs are isomorphic is NP hard [115].
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7.2 Weighted graphs

Most of the existing literature on social network anonymization methods focus on
preserving privacy on simple undirected and unweighted graphs. Many efficient al-
gorithms have been proposed by researchers such as k-degree [108], k-isomorphism
[115], k-symmetry [143] and k-automorphism [94]. However these studies deal with
simple graphs only. In social networks though there are stronger or weaker rela-
tionships between individuals which are represented by edge weights and can vary.
Weighted graphs provide additional information which is sensitive, so anonymizing
these types of graphs is much more challenging, as the weight related information
can be used by attackers to compromise privacy and result in identity disclosure [96].

7.2.1 Modification based techniques

Anonymization methods on weighted graphs were first studied in [111,148]. Authors
consider the edge weights sensitive and they proposed a perturbation method which
preserves the shortest paths between pairs of nodes. However, in their approach the
anonymized weights are close to the original weights, which can lead to the discovery
of sensitive weight values by potential adversaries.

The authors in [149] and [150] extend the work by Liu et al. [148]. They focus on
preserving the shortest paths while the edge weights are being anonymized. Based on
their proposal, they re-assign the edge weights preserving at the same time a linear
property of the original graph. The authors discussed two linear properties in details:
single source shortest paths and all shortest path pairs. However, if an adversary
possesses node degrees as background knowledge, some sensitive information can be
re-identified.

Liu et al. [98] proposed a perturbation approach to anonymize edge weight. The
authors preserve linear properties such as the shortest paths, and concentrate on
preserving weight privacy by applying a k-anonymous algorithm to modify the edge
weights based on random walk and matrix analysis.

Li and Shen [151] propose two perturbation-based weight anonymization meth-
ods. They introduce two volume sequence perturbation algorithms to reconstruct a
graph, one with graph transformation and the other with problem reduction. They
modify the weights of the graph while considering the change of graph spectrum as
a metric for information loss and use algebraic connectivity as a quantitative met-
ric. They consider identity disclosure and assume the sum of weights as background
knowledge in order to protect privacy from volume attacks.

Li and Shen [96] propose volume and histogram anonymization in order to pre-
vent weight based attacks. They consider re-identification and modify edges and
edge weights. This method causes though information loss on the statistical prop-
erties of the weighted graph.

Wang et al. [152] proposed an anonymization method to preserve the sensitive
links between two nodes in a social network. They focus on k-anonymous path
privacy and perturb the minimal number of edge weights to create at least k indis-
tinguishable shortest paths, hiding sensitive information and the true paths are not
revealed.
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7.2.2 Clustering based techniques

Liu and Yang [124] propose a generalization anonymization method in weighted
undirected graphs and focus on protecting privacy while maintaining utility. They
propose the k-possible anonymity to protect graphs against weighted based attacks,
and they also investigate identity and edge weight disclosure. The proposed method
achieves k anonymity by grouping nodes with similar weights bags into supernodes
and edges are generalized using weight intervals. They evaluate their method using
weight related measurements such as edge weight, degree, volume and path length.

Compared to the current proposal, in [124] the authors focus only on identity and
edge weight disclosure. Modifying edges and edge weights to anonymize weight bags
can preserve privacy from weight based attacks, but the utility is reduced. Except
the information loss in each edge weight, the weight related statistical properties
information loss need to be measured. The structure of the graph is also affected
when anonymizing weighted graphs, but also the two connecting nodes are affected
by modifying the weight of an edge. In our proposal the nodes are grouped based
on the similarity of neighbors and edge weights. Grouping nodes based on some
structural properties such as degree or weight bag, reveals more information from
which an adversary can infer if a targeted node is included within a supernode. On
the other hand in our proposal, it is more difficult to determine the presence of a
node in a supernode, since the only thing that is revealed is the number of nodes
included in a supernode and nothing about their neighboring properties.

In Appendix B, details about the above mentioned works are presented in Table
B.2.
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Chapter 8

Anonymization methodology

8.1 Preliminaries

The privacy of individuals participating in social networks, especially when these
networks are published, is necessary to be preserved by an anonymization method
which at the same time minimizes the loss of information. In this section the back-
ground of the proposed anonymization method is defined. Social networks are mod-
eled as graphs that are weighted, undirected and contain loops, i.e., self-edges (Fig-
ure 8.1).
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Bob 1
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John 3

Maria 4
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Figure 8.1: Network structure.

8.1.1 Problem definition

A weighted graph G(V,E,W ) is defined by a set of nodes V , a set of edges E and
a positive weight function W . Given an edge ei,j = (i, j) ∈ E ⊂ V × V , we denote
the weight by wi,j = W (i, j). As mentioned above, we consider graphs which are
weighted, undirected and contain self edges. Similarly, the weight of a self-edge ei,i
is denoted by wi,i = W (i, i). For notational convenience, in case two nodes are not
connected the weight of their inexistent edge is defined as wi,j = 0. Since the graph
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is undirected the weights wi,j and wj,i are equal and the adjacency weight matrix is
symmetric.

The following abstract problem is considered. Given a weighted graph G, pro-
duce a privacy-preserving version G′ of it. The problem can be described as follows.

Problem. Given a weighted graph G(V,E,W ) and a parameter k, find the
generalization that anonymizes G into a k- anonymous graph G′(V ′, E ′,W ′), such
that the information loss IL(G,G′) is minimized.

Different forms of external knowledge can compromise the privacy of individuals
in social networks. An adversary may have direct information about some individ-
uals and their relationships by participating in the network or from other sources.
If certain knowledge can uniquely identify some nodes and edges between them in
a network and is known by an adversary, the privacy of these individuals can be
breached, even if the network data has been modified before publishing [96].

8.1.2 Preventing node identity disclosure

When social network data are anonymized in a privacy-preserving manner, one goal
is to avoid identity disclosure. The k-anonymity model has been widely used in the
literature for privacy preservation on graph data to achieve identity anonymization
[105,124,139,140].

K-anonymity, first defined in [112], is a strong property which captures the
protection of data with respect to possible re-identification of the individuals to
which the data refer. In the case of graph data, this anonymity property can be
defined as follows.

Definition 1. A graph is k-anonymous if every node in it is indistinguishable from
at least k − 1 other nodes.

This property demands that every node in a graph is indistinguishably related to
no fewer than k other nodes. Anonymization through k-anonymity, as described in
Definition 1, is achieved either by adding edges or nodes in a graph or by grouping
them together. In the present proposed method, we utilize the latter approach.

The basic idea is that original nodes in graph G are grouped into supernodes.
Edges between the original nodes are replaced by superedges between the supern-
odes. A special case of superedges is the self-superedges which describe the connec-
tions between nodes included in the same supernode.

Definition 2. A supernode snk in an anonymized graph G′ represents a set of
original nodes sni, snj, . . . in graph G.
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Definition 3. A superedge ei,j in an anonymized graph G′ represents a set of original
edges in graph G that connect nodes which are included within supernodes sni and
snj.

A supernode represents all the original nodes contained within it and the rela-
tion between any two original nodes is described/approximated by the superedge
between the supernodes that contain these original nodes. As a result, the only
immediate information about original nodes is their supernode membership, and all
other information is stored in the supernode.

While a supernode is simply a group of nodes, a superedge represents a hypo-
thetical set of edges. This set may contain edges that do not exist in the original
graph G. The weights may also differ from the original weights.

The graph data are generalized in order to produce a k-anonymous graph G′.
To produce a k-anonymous graph, we need to group the original nodes of graph G
into supernodes of size at least k and to assign superedges and superedge weights
between them. We call such a graph a k-anonymity grouping of G (Figure 8.2).

Definition 4. A k-anonymity grouping of a graph G = (V,E,W ) is a partitioning of
the set V of nodes into supernodes sni such that |sni| ≥ k, followed by a conjunction
of the corresponding edges and weights into superedges esni,snj , and modified edge
weights wsni,snj , respectively.

0, 4 1, 2
w: 2,25

p: 3/4

3, 5
w: 1,75w: 2,6

p: 2/4 p: 3/4

Figure 8.2: Anonymized Networka.
a w denotes the edge weight and p denotes the probability of edge existence.

A k-anonymous graph G′ consists of supernodes and superedges. A graph G′ =
(V ′, E ′,W ′) is k-anonymous if the set V ′ of supernodes is a k-anonymity grouping of
the set V of original nodes. This follows from the fact that a supernode represents
all of its original nodes, so that at least k original nodes within a supernode become
undistinguishable.

For analysis, the process of grouping nodes and edges has to be reversed to recover
an approximate copy of the original graph. Original nodes are easily recovered
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Figure 8.3: DeAnonymized Networkb.
b Two examples of the re-generated original graph.

Edges are randomly chosen based on the edge probability.

from supernodes, but edges and their weights may have changed. In particular, a
superedge is associated with the number of true edges it represents but not their
identities. To obtain an approximation of the original graph, that number of edges is
materialized among all the possible edges a superedge represents. Since this results
in some random changes of the network topology, it is a good practice to produce a
number of alternative reconstructions, analyze all of them, and study the statistics
over these graphs (Figure 8.3). In Section 8.3 we evaluate the proposed method
using a number of statistical properties.

In the case of network data, k-anonymity grouping stands for a special case of the
k-anonymity property. The grouping operation varies and depends on the property
which will be used in order to choose the appropriate nodes that will portray a
group. Such properties can be the degree, the weight bags or the neighbouring
structure, which is used in our proposal so as to select at least k nodes that will
form a group and each one will be indistinguishable among k−1 other nodes. Nodes
with similar neighbouring properties, such as a sharing neighbour and similar edge
weights are grouped together to achieve k-anonymity grouping or more specifically
k-neighbourhood anonymity. More specifically, the k-anonymity grouping condition
ensures that each group contains at least k nodes which implies that each node is
indistinguishable from k−1 other nodes in the same group/supernode. A supernode
generalizes and represents all its nodes, so they become structurally equivalent.

Thus, all the nodes within a supernode appear identical, and the supernode does
not reveal any other information, other than the number of the nodes included.
If an adversary would, for example, know the degree of a target node, the target
node could still not be identified, because it can be a member of any supernode
with a degree at least as high as its degree in the original graph. This means that
the identity of individuals represented by a single supernode is masked preserving
identity disclosure by any potential adversary. Therefore, if an anonymized graph
G′ is k-anonymous, an adversary cannot identify any node with confidence larger
than 1/k.

78 Maria E. Skarkala



CHAPTER 8. ANONYMIZATION METHODOLOGY

8.1.3 Preventing edge disclosure

In addition to the identity of individuals in social network data, information on
relationships between the individuals may also be considered sensitive. In such
cases, the anonymization of the network data should not just preserve the identity
of the individuals, but also to protect the information on connections between them,
i.e., to prevent edge and edge weight disclosure.

However, the k-anonymity as described above is not necessarily sufficient to
prevent these two types of disclosure [98]. Assume, for example, that the network
has been k-anonymized and that the adversary knows the degrees or the weight
bags of two nodes. Now the adversary may be able to identify the supernodes that
contain these two nodes, and also to infer even the existence of an edge in the
original network. That is possible, because a superedge esni,snj does not only unveil
a relationship between two supernodes, but also that the original nodes included in
the supernodes are or can be connected.

Consequently, there is a need to prevent or at least to make it more difficult for an
adversary to get definite information on the existence or non-existence of connections
between nodes. One possibility to prevent this, is to avoid superedges that give
absolute information about the existence of the original edges. Due to k-anonymity
grouping, a superedge typically also represents edges that do not exist in the original
graph, and therefore, this can be done easily using superedge probabilities.

Definition 5. A superedge probability usni,snj describes the existence of edges ei,j
between any pair of nodes included in supernodes sni and snj.

The idea is that superedges are assigned probabilities, in order to prevent edge
disclosure. Such a superedge probability can be defined as the percentage of original
edges that are represented by a superedge. For example, in Figure 8.2 the probability
of edge existence between supernodes sn(0,4) and sn(1,2) is 3/4. This means that there
are actually 3 edges in the original graph G out of total 4 edges that the superedge
represents in G′.

However, in some cases, for example, when the probability is close to 1, an adver-
sary may still be able to infer the existence of an edge. To prevent such a situation
all probabilities can be bound by a threshold. By keeping these probabilities below
a given threshold p′, an adversary can only infer the existence of an edge at most
with confidence p′, and edge disclosure can be guaranteed assuming that the adver-
sary does not have any other relevant information about the original network. More
specifically, except from the weight that describes the strength of each connection,
each edge from the set E ′ is described by the probability of its existence bounded
by a threshold. There are two ways to keep the probabilities low. One is to choose
suitable supernodes and superedges. Another one is to artificially make superedges
probabilities lower than p′ in the output of the method. By introducing uncertainty
about the existence of the original edge ei,j an adversary is unable to identify with
100% confidence that two nodes in G are actually connected.
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8.1.4 Preventing edge weight disclosure

Edge weights give descriptive information about the relationships between two nodes
in a graph. In social networks these weights can, for example, describe the strength
of the connection between two individuals. Such information can be seen as sensi-
tive, and if an adversary is aware of such weights, this information can be used to
identify connected target nodes even in an anonymized graph. Especially, a unique
pair of nodes in the anonymized graph with a specific edge weight leads to the re-
identification of these nodes. Thus, protection of the edge weights, i.e., avoiding
edge weight disclosure, should also be ensured before publishing the network data.

In the case of k-anonymity grouping, the weights assigned to the superedges
are combined from the original edge weights wi,j, since the edges ei,j between the
original nodes are joined to the superedges. The weights of these superedges are
called superedge weights wsni,snj .

The combination of the original edge weights can be done in different ways and
leads to the modification of the edge weight wsni,snj . A superedge weight is defined
as the average of the original edge weights, which results from Equation 8.1 where
i′ represents supernode sni and j′ supernode snj.

w′i′,j′ =

∑
{i,j}∈i′×j′ wi,j

|i′||j′|
(8.1)

Most of the time, these superedge weights wsni,snj differ from the weights wi,j

of the original edges. Thus, the edge weight disclosure in those cases is prevented.
However, in special occasions it may still be risky to publish these superedge weights
as such.

For example, if k = 2 and w′(i′, j′) = 0.25 with edge probability p(i′, j′) = 1,
publishing the superedge weight would immediately reveal that the only existing
original edge between the nodes in those supernodes has exactly that weight. If
the adversary knows all but one weight, that weight can be reverse-engineered. For
more systematic and controlled protection, can be modified by a random component
to add uncertainty of their real values.

On special occasions the weight wsni,snj is the exact same weight as wi,j. Possible
approaches to attack this type of edge weight disclosure are to use a particular upper
bound for the weight, or to define the weights as intervals. These approaches prevent
the edge weight disclosure, but they decrease the utility of the anonymized graph
G′ to some extent.

8.1.5 Measuring information loss

K-anonymity grouping of nodes and combining original edges and their weights as
superedges and superedge weights give us a privacy-preserving anonymization G′ of
an original graph G, and thus, solve the first part of our problem. However, we
need to consider how much information is changed or lost in the process of network
anonymization, as the generalization of the original graph can result in information
loss which decreases the utility of the anonymized graph G′.
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The information loss and data utility of weighted graphs, that are anonymized
based on the concept of k-anonymity grouping, can be measured using different
metrics. Our goal is to achieve k-anonymity with minimal information and use a
metric that minimizes the information loss, and thus, guarantee high utility of the
generalised graph. In order to achieve privacy-preserving anonymization, and at the
same time increase the utility of the resulting graph G′ is to make the anonymization
by using an efficient information loss metric. One way to preserve the utility of the
anonymized graph is to use the edge weight dissimilarity of the original graph G
and the anonymized graph G′. This metric is presented in Equation 8.2.

IL(G,G′) =
∑
ei,j

|W (i, j)−W ′(i′, j′)|2 (8.2)

It can be shown that the sum in Equation 8.2 is minimized when the weight
of each superedge is the average of the original edge weights [122]. Therefore, this
average is used to modify the edge weights but at the same time preserve the utility
of the released graph. The resulting weight is given by Equation 8.1 .

Our goal is to minimize the information loss that occurs when two nodes are
possible candidates for grouping into the same supernode. By using this formula to
narrow the information loss, we evaluate in Section 8.3 the reflection of this measure
in the anonymized graph G′ by comparing four different structural properties.
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8.2 k-anonymization algorithm

The main goals of the proposed algorithm are to prevent identity, edge and edge
weight disclosure by an adversary which possesses background knowledge of the
original graph. A social network is modeled as a weighted graph G. An individual
involved in the network is represented by a node in the original graph, and the
connections between them by edges. The strength of their relationships are described
by edge weights.

Based on the k-anonymity model, the main purpose of the anonymization algo-
rithm proposed, is to keep the identity of these individuals hidden, making each of
them indistinguishable from at least k − 1 other individuals. The basic idea is that
the original nodes are grouped into supernodes, the edges between original nodes
are replaced by superedges between supernodes and edges between nodes that are
contained within a supenode are replaced by a self-superedge.

In order to obtain a k-anonymity grouping of graph G with low information loss,
the original nodes of the graph are grouped based on the similarity and strength
of their relationships to other nodes and not based on their direct connections.
The proposed anonymization technique aims to make nodes indistinguishable as
far as the neighborhood is concerned. If a node has identical neighborhood set
with another node in the original graph (they share the same neighbor), these two
nodes are merged into a supernode in the anonymized graph G′. Specifically, two
nodes that share a neighbour (they are 2 − hop neighbours) and have similar edge
weights are grouped together into a supernode and each supernode includes at least
k original nodes with the similar neighbourhood properties. Thus, each supern-
ode includes at least k original nodes and the only immediate information about
original nodes is their supernode membership, as all other information is stored in
the supernode. Nodes within a supernode are thus indistinguishable, from which
k-neighbourhood anonymity of the original nodes follows. If an anonymized graph
G′ is k-neighbourhood anonymous, an adversary cannot re-identify each node within
the supernode with confidence larger than 1/k.

The original edges that connect nodes in graph G are grouped and represented
by superedges between supernodes in graph G′. The grouping is based upon the
results of Equation 8.1.5, aiming to minimize the information loss. The weight of a
superedge connecting two supernodes is the average weight of the edges that connect
the supernodes in the original graph. K-anonymity is not sufficient to prevent edge
disclosure. An adversary may be able to identify that a node from the original graph
is contained in a supernode with confidence 1/k, and by observing the superedge
may be able to infer the existence of an edge in the original graph. A superedge may
represent edges that do not exist in the original graph G [114]. Using the generation
of these in-existent edges, we introduce for each superedge and self-superedge the
concept of uncertainty in order to confront edge disclosure. The idea is that not
only the average weight of the original edges is assigned to superedges, but also
the probabilities of the edge existence between the nodes included in a supernode.
These probabilities stand for the percentage of the original edges (represented by
the superedge) that actually exist. By inserting uncertainty about the existence or
absence of edges, an adversary is unable to infer if two nodes are actually connected.
An upper bound p′ for this probability is given as a parameter. Now, the adversary
can only infer the existence of an edge with confidence not larger than p′.
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8.2.1 Anonymization algorithm

The basic steps of the proposed anonymization technique for social networks are
following.

Step 1: Naive anonymization All the identifiers of the original graph G are
removed and replaced by temporary identities. For example in Figure 8.1, the names
of the individuals participating in the network are transformed into numbers, e.g.
Alice is represented by number 0. By applying only this step, an adversary who
does not possess any prior knowledge on G cannot re-identify any targeted node.

Step 2: Node anonymity Nodes with similar neighbourhood properties are
grouped together into the same supernode and their corresponding edges into the
same superedge, while information loss is minimized. In particular, two nodes that
share a neighbour, which means their distance is exactly two hops, are merged into
a supernode. Supernodes consist of at least k nodes of the original graph in order
to achieve k-anonymity, and each node will be indistinguishable from at least k − 1
other nodes in the same supernode.

For example in Figure 8.1, the neighborhood set of nodes 1 consists of nodes {0,
3, 4, 5}. These nodes are possible candidates for grouping, since node 1 is their
common neighbor.

K-anonymity grouping indicates that each supernode should include at least k
original nodes. The original edges that connect nodes in graph G are grouped and
represented by superedges between supernodes in graph G′. In Figure 8.2, edge
e′(0,4),(1,2) represents all the original edges that connect nodes 0, 1, 2 and 4.

Step 3: Edge weight anonymity The weights assigned to the superedges are
combined from the original edge weights wi,j, since the edges ei,j between the orig-
inal nodes are joined to the superedges. The weights of these edges result from
Equation 8.1 minimizing the information loss at the same time. The weight of a
superedge connecting two supernodes is the average weight of the edges that connect
the supernodes in the original graph. Therefore, in Figure 8.2 the weight w′(0,4),(1,2)

is equal to the average weight of e0,1, e2,4 and e1,4 edges.
In the anonymized graph in most cases the edge weight w′ is different from the

edge weight w, yet there is a chance that w′ = w. In these cases, we consider an
upper bound or weight interval in order to preserve the anonymized graph from edge
weight disclosure. If original edge weights can be reconstructed from the anonymized
graph, which means that the edge weight w′ is similar to edge weight w, with error
less than e (a user given parameter), then the superedge weight is changed by using
a weight interval. This accessional action, however, may lead to the decrement of
the utility of the anonymized graph.

Step 4: Edge anonymity Except from the edge weight w′, the superedges are
also described by the probability of edge existence psni,snj , which defines the per-
centage of original edges that are represented by a superedge. The probabilities of
edge existence are computed for all superedges. If this probability is higher than p′

(a user given parameter) then the probability is set to p′. Note that this anonymiza-
tion strategy does not always protect from edge disclosure. In case the probability
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is set close to 1, then an adversary may determine that all the nodes within two
supernodes are also connected in the original graph. In this step the possibility
of edge disclosure is eliminated as an adversary can only infer with confidence not
larger than the probability that an edge between two original nodes exists.

Step 5: Publish anonymized network The final anonymized network G′ is
released for analysis.

8.2.2 Analysis of the anonymization algorithm

The kAnonymous algorithm (Algorithm 3) takes as input a weighted graph G and
a parameter k and returns an anonymized graph G′. The original nodes are grouped
in supernodes of at least k size and the edge weights of the superedges and super-
selfedges are set according to Equation 8.1. The algorithm works in a greedy mode
since two original nodes (supernodes) and their edges (superedges/superselfedges)
are grouped at a time until all the supernodes are containing at least k nodes,
minimizing information loss.

Algorithm 3 kAnonymous Algorithm

Input: graph G, parameter k

Output: anonymized graph G′

1: for each original node ni do

2:

set sni = {ni}

3: for each original edge ei,j do

4:

create edge esni,snj

5: while a node sni exists such that |sni| < k do

6: select a random node sni such that |sni| < k

7: for nodes snj in candidates(sni) do

8:

ILi = evaluate merger(sni, snj)

9: choose the node snj with the smallest ILi

10: merge(sni, snj)

11: end

In the first two lines of the algorithm, each original node ni in graph G is con-
sidered as a supernode in graph G′. In the next two lines, the corresponding edges
esni,snj between the supernodes are created. Line 5 examines if there exists one or
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more supernodes which include less than k nodes, i.e. if the network still needs to
be anonymized. In case the anonymization is not yet complete, in Line 6 a random
supernode is selected. In the following lines (7–10) this supernode is merged with
another supernode. To implement different strategies for selecting the other supern-
ode which will be merged, function candidates returns a list of possible options.
Each of these candidates is considered for possible merger and finally the best can-
didate is chosen. Given a set of nodes obtained with function candidates, in Line 8
the information loss IL is computed for each one of them. The supernode snj with
the smallest information loss is selected to be merged with supernode sni using the
merge function.

Algorithm 4 Candidates function

1: procedure candidates(sni)

2: snk := 2−hop neighbors of sni

3: if |snk| > 0 then

4: snj := anonymity cases (snk)

5: else if |snk| = 0 then

6: snk := neighbors of sni

7: if |snk| > 0 then

8: snj := anonymity cases (snk)

9: else if |NL| = 0 then

10: set snk 6= sni

11: snj := anonymity cases (snk)

12: return snj

The candidates function (Algorithm 4) returns a set of candidate nodes with
which node sni could be merged. Nodes with similar neighboring properties are
grouped together, therefore the set of 2−hop neighbors of node sni is selected firstly.
In case it is empty, the set of neighbors constitutes the next attempted candidate
set, which in case is also empty is replaced by all the remaining supernodes that are
different to sni and used as candidates. The last two candidate sets are used only
in the special occasions in which a node does not have any 2 − hop neighbors, so
the set of neighbors can be used or in case the node is not connected to any other
node, all the existing supernodes in the graph G′ constitute the candidate set.

The anonymity cases function (Algorithm 5) determines the candidate set based
on three different versions of the proposed method. This function determines whether
the candidate set will be randomly chosen, or will be chosen based on specific proper-
ties. In the first case a random candidate supernode snj is chosen. The Anonymous
case returns a candidate snj which may already include k nodes. The kAnonymous
case returns a candidate snj that has not been k-anonymized yet. In Section 8.3,
we evaluate these three versions of our proposal since they give different trade-offs
between speed and utility.
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Algorithm 5 Anonymity cases function

1: procedure anonymize cases(snk)

2: case Random:

3: select random snj ∈ snk

4: case Anonymous:

5: snj := snk

6: case kAnonymous:

7: snj := snk such that |snk| < k

8: return snj

The evaluate merger function (Algorithm 6) merges a possible candidate with
the selected supernode and computes the information loss, using Equation 8.1.5
that occurs in case supernode sni is merged with a possible candidate supernode
snj. The weight w′ is the average weight of the corresponding edges. The merging
operation is revised and the resulting information loss is returned.

Algorithm 6 Evaluate merger function

1: procedure evaluate merger(sni, snj)

2: merge(sni, snj)

3: compute ILj for grouping sni and snj (1)

4: undo the merge

5: return ILj

Function merge (Algorithm 7) takes place after the selection of the supernode
snj with the smallest information loss. A new supernode snnew is created by the
union of the best supernode snj and sni. For each node n included in the union
of the neighbors of sni and snj, a new edge is created that connects this node n
with the new supernode snnew, computing at the same time the average weight of
the corresponding edges. Every original edge that was attached to each one of the
merged nodes is deleted.

The kAnonymous algorithm is repeated until all the supernodes in graph G′

represent at least k nodes of graph G. In the following section, we evaluate three
different modes of our proposal. In the first case, the candidates function returns
a randomly chosen candidate snj which will be merged with the supernode sni

(Random). In the second case, even if a supernode has already k nodes it is included
in the set of candidates (Anonymous) while in the last case supernodes that are
already k anonymous are not considered in the candidate set (kAnonymous).
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Algorithm 7 Merge function

1: procedure merge(sni, snj)

2: create snnew := sni ∪ snj

3: Ni := neighbors of sni

4: Nj := neighbors of snj

5: for each node n in Ni ∪Nj do

6: create edge en,snnew

7: compute the weight w′n,snnew (2)

8: delete edges en,sni and en,snj

9: delete nodes sni and snj

10: end for

An extended version of the kAnonymous algorithm (Algorithm 8) is presented
in Appendix A.
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8.3 Algorithm evaluation

In this section the anonymization method is evaluated using two real datasets, the
Karate club [97] and Lesmis [153]. The first dataset contains 34 nodes and 78 edges
and describes the network of friendships between the members of a karate club at a
US university and the edges are indicating social interactions between two members.
The second dataset contains 77 nodes and 254 edges and describes the network of co
appearances of characters in Victor Hugo’s novel ”Les Miserables”. Nodes represent
characters and edges connect any pair of characters that appear in the same chapter
of the book. The values on the edges are the number of such co appearances. Both
networks are weighted and undirected. In our evaluation we did not use larger
datasets for the reason that we wanted the first evaluation of our proposal to be
more unambiguous. The usage of more complex datasets is one of the future plans.

A published anonymized network can be used for analysis by researchers. Our
aim is to preserve the utility of the anonymized graph in high level for better analysis.
For that purpose we measure the utility of the anonymized network that results after
the execution of the proposed technique in terms of general structural properties of
weighted graphs. We measure the degree, the volume distribution of all nodes in
the graph, the edge weight distribution of all edges in the graph and the path
length distribution between all pairs of nodes. The degree of a node in a network
is the number of connections it has to other nodes. The degree distribution is the
probability distribution of these degrees over the whole network. The volume is the
sum of weights included in a weight bag, which is the multiset of the weights of the
adjacent edges. The edge weight distribution is the distribution of weights assigned
to all the edges of the network. The path length distribution is the distribution of
lengths of shortest paths for all pairs of nodes.

The statistical properties were measured for the three versions of the proposed
algorithm described in Section 8.2. To conduct the experiments two more algorithms
were used to compare them with the kAnonymous algorithm. The randomized
version chooses a random 2 − hop neighbour of a node and groups the two nodes
into the same supernode. The anonymous version finds for each 2− hop neighbour
of a node, even the ones that are also contained to a k-anonymous supernode,
the best grouping that minimizes the information loss. On the other hand, the k-
anonymous version excludes from the candidate set the supernodes that are already
k-anonymous, as it finds for each 2 − hop neighbour that is not included in a k-
anonymous supernode the group for minimum information loss.

For the evaluation of the utility of the anonymized graph, randomly chosen
edges ei,j are sampled using the probabilities of edge existence. For example, if the
probability of edge existence is 6/8 between two supenodes, it means that there are
actually 6 edges in the original graph G out of the total 8 edges that the superedge
represents. Thus, six edges between the nodes are randomly chosen in order to
rebuild the original graph. From this random choice, also the degree, the path
and the volume are affected. As shown in Figure 8.3 in Section 8.1, after the de-
anonymization of graph G′ different graphs can be obtained, either similar or not to
the original graph.

The algorithms are implemented using Java programming language. The exper-
iments were conducted on a computer system with 1,60GHz AMD E-350 Processor
and 4GB RAM running the Windows 7 operating system.
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8.3.1 Running performance

Tables 8.1, 8.2 and 8.3 presents the runtime of the three anonymization algorithms
for the two real datasets and for different k parameters.

From the results, we conclude that the kAnonymous version for the Karate
Club dataset requires little more time in the Random version but less than the
Anonymous one, while the k parameter is getting larger. The running time of
the Random version is logically smaller than the running time of the other two
algorithms since it does not search for each possible candidate, but it picks one
randomly. In both datasets, the kAnonymous version requires less time than the
Anonymous one, while the k parameter is getting larger, since in the Anonymous
version all possible candidates are examined. The results show that the increment
of the k parameter has a small effect on the runtime of the kAnonymous algorithm
for each dataset, since it does not examine if a candidate is already k-anonymous,
which occurs for the second algorithm. For the Lesmis dataset the kAnonymous
version follows the same pattern as the first dataset. Figure 8.4 and Figure 8.5 show
a visual representation of the running times for both datasets.

Table 8.1: Running time for Karate club and Lesmis datasets (k = 2).

Algorithm Karate club Lesmis

Random 16 ms 82 ms

Anonymous 62 ms 323 ms

kAnonymous 47 ms 265 ms

Table 8.2: Running time for Karate club and Lesmis datasets (k = 5).

Algorithm Karate club Lesmis

Random 47 ms 156 ms

Anonymous 124 ms 422 ms

kAnonymous 47 ms 276 ms

Table 8.3: Running time for Karate club and Lesmis datasets (k = 10).

Algorithm Karate club Lesmis

Random 50 ms 171 ms

Anonymous 188 ms 687 ms

kAnonymous 70 ms 343 ms
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Figure 8.4: Running time for Karate club dataset

Figure 8.5: Running time for Lesmis dataset

8.3.2 Statistical properties

For measuring the utility of the anonymized graph, general structural properties
were used such as the degree distribution, the edge weight distribution, the path
length distribution and the volume distribution. The following figures present the
statistical properties for both real datasets and for selected k parameters comparing
the three anonymization versions with the original one.

In both datasets for k = 2 and k = 5, the degree distribution (Figure 8.6) of
the three versions tend to be the same with the original one, while for k = 10 the
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degree distribution of the kAnonymous version converges more to the original one.
The Random and Anonymous version behave the same for most of the experiments
conducted in the case of degree distribution.

For the edge weight distribution (Figure 8.7) the inexistent edges in which the
weight is zero were excluded, for better appearance of the results since they do
not offer any further information. The kAnonymous version for the Lesmis dataset
preserves better the edge weight of the anonymized graph than in the Karate club
dataset for k = 2. While for k = 5, for both datasets, the edge weight distribution
is maintained in high level by the kAnonymous version. On the other hand the
Anonymous version and the kAnonymous one incline to the original edge weights
for k = 10, in the Karate club dataset. In both datasets and for all k parameters,
the edge weight distribution is maintained in high level by both the kAnonymous
version and the Anonymous one.

The volume distribution (Figure 8.8) is preserved better by the kAnonymous
version for both datasets for k = 2 and k = 10. Even the volume distribution
of Lesmis dataset for the original graph and the kAnonymous one is almost the
same for k = 2. For parameter k = 5, both Anonymous and kAnonymous versions
preserve the volume of the nodes, having almost the same distribution as the original
graph.

For k = 2 the path length (Figure 8.9) of the Karate club dataset is preserved
better by the kAnonymous version while for the same k parameter in the Lesmis
dataset the path length is maintained by the Anonymous version. For both datasets
for k = 5 the Anonymous version performs better than the other two versions. On
the other hand, the kAnonymous algorithm converse with the original graph’s path
length distribution for both datasets and for parameter k = 10.

While the k parameter is increasing the degree of the original nodes in the
anonymized graph is decreasing in relation to the degree of the nodes in the original
graph. This is reasonable, since the number of nodes included into supernodes
depends on the k parameter, lowering at the same time the number of connections
for each node. The volume of nodes is also affected since it is related to their degree,
which is decreased, because it is related to the node’s connections. The kAnonymous
edge weights are kept in the same level as the original edge weights for k = 2, while
the edge weights are decreasing for bigger k parameter. This decrement is raised
because of the grouping of nodes that may cause more information loss due to the
big number of the k parameter. The path length of the original graph is preserved
more for bigger k, and even the original path length distribution of Lesmis dataset
is almost the same as the kAnonymous path length for k = 2.

Our results demonstrate that the kAnonymous version of the graph preserves
privacy and accurate results can be exported from the analysis of the anonymized
graph. The original network can be recovered with little bias through aggregation
on sampled graphs. From the results we conclude that both the Anonymous and
kAnonymous versions can preserve in the same way three out of four statistical prop-
erties. Therefore, the examination or the pretermission of the already k-anonymous
supernodes, does not affect the utility of the resulting anonymized graph.
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Figure 8.6: Degree distribution for Karate and Lesmis dataset
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Figure 8.7: Edge weight distribution for Karate and Lesmis dataset
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Figure 8.8: Volume distribution for Karate and Lesmis dataset
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Figure 8.9: Path length distribution for Karate and Lesmis dataset
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8.4 Threat model

Different forms of external knowledge can compromise the privacy in social networks.
Background information regarding individuals and their relationships can be used
by attackers to compromise the privacy of an anonymized network. There are three
main types of privacy attacks in graph data: identity disclosure, link disclosure
and content/attribute disclosure [99, 100]. In identity disclosure an adversary can
determine an individual from an anonymized record/graph and can lead to attribute
disclosure. In content/attribute disclosure an adversary can infer the attributes of
an individual. In link disclosure an adversary can discover that two individuals have
a specific relationship.

The background knowledge can be related to the neighborhood, degree, volume,
subgraph etc. [102]. The degree of a node shows the number of connections/edges
that this node has within the network. This information can be accessed by an
adversary, if for example the attacker is aware of a specific number of node’s con-
nections, re-identifying that way the individual. Labels are used to describe the
attributes of nodes. This information can be known by some adversaries which can
help them re-identify data and compromise privacy. An attacker may also know spe-
cific relationships between some target individuals, and use this information to link
the targets in the network. An attacker may also be aware of the neighborhood of
some targets, and try to identify the targets in a network using this background in-
formation. Moreover, some graph metrics can also be used as background knowledge
in order to identify individuals such as closeness, path length etc. [102].

The social network structure can be exposed by analyzing anonymized versions of
networks. Most nodes in real social networks belong to a small uniquely identifiable
subgraph [3]. Thus it is easy for an adversary to acquire subgraph background
knowledge to conduct an attack. Subgraph attacks such that an adversary can
learn the existence or absence of edges between specific targeted pairs of nodes
from anonymized social networks are presented in [3]. An adversary can attack
a network, either actively or passively, to identify a part of the network in order
to gain background information. In an active attack the adversary creates new
accounts and relationships in the original social network in such a way, so that these
nodes and edges will be included within the published anonymized network. The
attacker uses them in order to discover the identity of a target and its relations with
other identities in the anonymized network. In a passive attack, the adversary tries
to learn information about the nodes and edges after the anonymized network is
published. The adversary does not create new nodes or edges for de-anonymization,
but rather exchanges structural information with a small coalition of friends and
uniquely identifies this coalition’s subgraph, which enables those colluding friends
to locate themselves.

By only changing identifying identities on a published social network, is not
sufficient to preserve privacy, as an attacker can identify if there is a connection
between a pair of nodes [3]. A sensitive relationship between individuals can be
determined using different types of information such as edge existence, node at-
tributes and structural properties [100]. Three types of queries, defined in [105],
can assist an attacker to access information, i.e. subgraph queries, hub fingerprint
queries, and vertex refinement queries. The vertex refinement queries describe the
structure of the graph around a node, providing more information about the degree

96 Maria E. Skarkala



CHAPTER 8. ANONYMIZATION METHODOLOGY

of a node. Subgraph queries refer to the existence of a subgraph around a node,
by counting the number of edges. Cannot exactly assert the existence or absence of
edges in a network. A hub is a node with high degree. Hub fingerprint queries de-
scribe structural information about a node’s neighborhood and connections to other
hubs in the network [93]. If background knowledge is gained about the individuals
by an attacker, even the publication of the anonymized network can cause privacy
violation.

An adversary may have direct information about some individuals and their rela-
tionships by participating in the network or from other sources. If certain knowledge
can uniquely identify some nodes in a graph and is known by an adversary, the pri-
vacy of these entities can be breached even if the data has been modified before
publication [96]. Moreover, external databases can be accessed by attackers, which
can gain knowledge on specific individuals in a social network. In order to prevent
such attacks, the published network should be modified such that all identifiers are
obscured but keeping the utility in high level.

Published social networks are vulnerable to neighborhood attacks. Two types
of neighborhood attacks are the one-neighborhood attack and one-hop degree-based
attack [154]. In the first attack, an adversary has background knowledge of the
neighborhood and neighborhood relationships of a target node. In the second attack,
an adversary has prior knowledge of the degree of the target node and the degrees of
its one-hop neighbors. By using this knowledge, the attacker can identify the target
node in the anonymized network.

Regarding the proposed anonymization technique, we assume that adversaries
may have knowledge about some neighboring or weight-related properties of a tar-
geting entity, such as the degree or the weight bag of a node. Assume that the
adversary knows the degree of a target node. If an adversary has prior knowl-
edge about the neighbors of a target and the relationship among the neighbors, the
attacker may re-identify a target in a group of anonymized nodes that are all asso-
ciated with some sensitive information. For example, if nodes within a supernode
were grouped based on their similar degree.

Based on our proposal, the nodes are grouped in the same supernode if they share
a neighbor. This however does not mean that they have the exact same degree. A
given original node with a known degree can be a member of any supernode with a
degree at least as high as the degree of the original node. Moreover, if an adversary
knows the weight bag or the volume of a target node, and since the degree of the
nodes included within a supernode may not be the same, this means that they do
also have the same weight bag. However, all the nodes within a supernode appear
identical, and the supernode does not reveal any other information, other than the
number of the nodes included. After grouping, all these k nodes have identical
degree, weight bag and volume. In this way, it is difficult for an adversary to infer
which one of the k nodes is the target.

Link disclosure occurs when an adversary can determine whether a sensitive
relationship between two given nodes exists. K-anonymity as defined above is not
sufficient to prevent edge disclosure. Assume that the graph has been k-anonymized
and that the adversary knows the degrees or the weight bags of the two nodes.
Even in case an adversary may be able to identify the supernodes that contain the
two targeting nodes, based on the superedge between them may be able to infer
the existence of an edge in the original graph. Most of the works in the literature

Maria E. Skarkala 97



University of Aegean Privacy Preserving Data Mining

introduce uncertainty about the existence of an edge that connects two nodes in
a graph. By introducing uncertainty, using probabilities, about the edge existence
between two targeting nodes an adversary can only assume that these two nodes
are actually connected in the original graph, with confidence no larger than the
probability u assigned to each superdge.

Regarding edge weight disclosure, assume an adversary knows the edge weight
between two original nodes. Since, the weights of the edges are modified in the
anonymized network by assigning the average of all edge weights that the superedge
represents, the adversary is not able to identify the original edge weight. In case
the average weight represents the exact original edge weight, then an upper bound
can be used for preserving better the privacy of the edge weights, but the utility
of the anonymized graph is not maintained in high level. It must be noted that in
every experiment conducted all edge weights were modified, and did not represent
the exact original one.
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Summary

Many concerns have been raised since sensitive social data are publicly released
for research purposes. Social network data are analyzed by researchers, therefore
the development of effective anonymization techniques became a necessity. The
preservation of privacy of the individuals involved in a social network became the
main concern in the social network analysis community.

Apart from the identities of social network participants, the relationships be-
tween these individuals need to be protected. Most existing works on privacy preser-
vation over simple graphs deal with unweighted graphs. The proposed methods on
unweighted graphs cannot be applied to graphs that contain more information about
the individual relationships. Such information is the weight of the relationships be-
tween individuals, which is also considered sensitive.

In this part of the dissertation, a complete solution for effective and efficient
anonymization is presented, focusing on weighted social network data. The basic
preliminaries were introduced, in order to understand the background framework
of the proposed technique. More specifically, a clustering-based k-neighborhood
anonymization technique was presented. The method groups entities/nodes with
the same neighboring properties into supernodes. Moreover, the connections of the
nodes are grouped into superedges.

For measuring information loss, an effective metric was designed. Experimen-
tal results demonstrate that the proposed method strikes a balance between pri-
vacy and utility for real world weighted graphs. While preserving the utility of the
weighted original graph, at the same time identity, edge and edge weight anonymity
is achieved.

All clustering-based methods that have been proposed for weighted graphs in
the literature, do not anonymize the network based on the neighborhood structure
and have not considered neighborhood based attacks. They concentrate mainly in
preserving the network data from identity disclosure. In addition to preventing
identity disclosure, the proposed algorithm in Part II can prevent edge disclosure
and edge weight disclosure, which are not considered in most studies proposed to
the literature as it comes to our knowledge.
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Chapter 10

Conclusions

Due to technological progress and the wide use of the Internet, voluminous data
are stored in centralized or distributed databases. Data are exchanged daily for
analysis and discovery of interesting hidden patterns and global information can be
acquired by applying data mining techniques on statistical databases. Data analysis
is important for a wide range of applications such as health care systems, businesses,
insurances etc.

Nowadays, most systems are distributed and shared among several different par-
ties. In most applications the data owners do not allow the disclosure of their own
data. Databases often contain private data, and their disclosure when mining op-
erations are applied could compromise the privacy. Therefore, privacy preserving
data mining techniques have gained popularity and have become an important yet
challenging field. This field joins two research areas in computer science, security
and data mining.

Different privacy-preserving techniques focus on two main dimensions. The first
one is the application of secure algorithms to protect the private data from being
identified; data which can uniquely identify an individual. The second dimension
is related to the final results which can be combined with external information and
reveal private information about an individual, but not the identity.

There are two main privacy preservation methods for distributed data, cryptog-
raphy and randomization. In Part I of this dissertation the first approach is utilized
because of its security and accuracy of the final results. A privacy-preserving data
mining technique was developed and presented for a distributed environment where
databases can be horizontally or vertically partitioned. Both nominal and numeric
attribute values are supported.

A trusted third party, the miner, acts as the data collector. The miner groups the
received data and performs all secure operations to initialize and create the mining
model. A secure version of the tree augmented Naive bayes was implemented for
the purposes of the proposed method. However, the proposed protocol requires
the participation of at least three parties who give as input their own private data.
These three parties are not able to communicate with each other. The only workflow
is between the miner and each one party. The Paillier cryptosystem, which exploits
the homomorphic primitive, is used to encrypt all messages transmitted during
the execution of the proposed protocol. Due to homomorphic primitive, privacy is
preserved as the miner decrypts the messages received all at once.

Cryptography-based techniques do not modify or transform the original data.
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Therefore, these techniques are considered the most appropriate approaches in terms
of data accuracy, providing high quality of the final results. Simultaneously, all
messages transmitted are examined for any type of modification. In particular, each
message is concatenated with its summary, using the one-way hash function SHA-1.
In the proposed protocol, both semi-honest and malicious adversaries are considered,
and the threat analysis in Section 4.4 shows in detail how different types of attacks
are confronted and the corresponding mechanisms used to preserve privacy.

Experiments were conducted to analyze the performance of all the main phases
of the proposed protocol. The experiments took place for both partition types. The
classifier was evaluated using three metrics: recall, precision and F1 score. The
results showed that the proposed protocol is both effective and efficient. Its perfor-
mance is affected when the amount of database attributes is increased. Using more
advanced computer systems though the performance is almost four times improved
compared to systems with less improved features.

In the literature, most of the proposed methods are not designed to support
both partition types. Even more, these methods are mainly theoretical and have
not been implemented to support real world applications. The contribution of the
proposed protocol is significant as, to the best of our knowledge, none of the previ-
ously proposed techniques was designed and implemented for both horizontally and
vertically partitioned databases while simultaneously providing accurate results and
preserving privacy.

From the social networks perspective, data are being released publicly for anal-
ysis by different research fields such as psychology and sociology. Many concerns
have been raised since these data can contain private information about the indi-
viduals involved and their identity might be disclosed. These concerns resulted in
the development of effective anonymization techniques to preserve privacy.

Apart from the identities of social networks’ entities, in many cases the connec-
tions between these entities are considered sensitive. These connections can reveal
even more information if they are characterized by their strength, meaning their
connection weights.

Clustering-based and modification methods are the two main categories of
anonymizing social network data. In Part II of this dissertation we present an
anonymization technique for effectively anonymizing social network data. The social
networks considered are represented by weighted and undirected graphs. Specifically,
a clustering-based k-anonymization technique is proposed which groups entities with
the same neighboring properties. Similar nodes and their connections are grouped
into supernodes and superedges, respectively. The proposed method prevents at the
same time identity, edge and edge weight disclosure while preserving the utility of
the original graph. An effective metric to measure information loss was introduced.
Experiments conducted show that the utility is preserved for real world weighted
graphs and a balance between privacy and utility is achieved.

Most existing methods on privacy preservation of simple graphs cannot be ap-
plied to weighted graphs. Clustering based approaches proposed in the literature do
not consider neighborhood based attacks and they mainly focus on preventing iden-
tity disclosure. The proposed algorithm however provides mechanisms that prevent
all three possible privacy breaches: identity, edge and edge weight disclosure.

The purpose of this dissertation is to present mechanisms which preserve privacy
while data mining operations are applied to either tabular or graph data. Two meth-
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ods were proposed: the first approach preserves privacy in tabular data distributed
across multiple parties using cryptographic approaches; the second approach pre-
serves privacy in network data, represented by weighted graphs. Both proposals
have demonstrated that are efficient, performance related, and result in accurate
outcomes without information loss.

10.1 Open issues

Defining privacy is challenging and several definitions have been proposed [12]. In-
dividual’s own privacy is subjective. Because of the absence of a standard definition
it is hard to measure privacy. Most proposed metrics are defined and related to
specific applications only.

Evaluating a privacy preserving data mining algorithm in terms of performance
is not enough [23]. The scalability and efficiency of a privacy preserving data mining
algorithm produce different results for different databases. A framework that allows
the complete evaluation of a privacy preserving data mining algorithm considering
different parameters is a necessity to be implemented and proceed to an extensive
comparison of existing privacy preservation techniques in real world applications.

Systems that allow users to control their own data privacy need to develop the
concept of personalized privacy. Personalized privacy though is challenging, as the
user’s idea of privacy does not correspond to their actions. Their concerns and
actions can create a trade-off between privacy and utility, but also when the users
are not aware of the privacy risks their actions can lead to private data disclosure.
Solutions related to personalized privacy concept are yet to be implemented.

Cryptographic approaches can achieve privacy without compromising utility.
These techniques however can lack efficiency for real world applications. Their
development should be focused on preventing privacy of huge datasets and offer a
scalable functionality which can be applied in the industry.

Background knowledge of adversaries is hard to define and model. Identifying the
data that can be used for de-anonymization of public data that can be linked together
is complicated. More realistic models that describe the background knowledge that
is available to potential adversaries need to be developed.

Around the world many governments and public institutes are pressed to release
data publicly, due to transparency requirements. By releasing more information,
which can be obtained and analyzed by researchers, sensitive information may be
exposed. Therefore, the new era of big and open data extends the exploration of
the privacy preservation research field to future opportunities [116].
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10.2 Future research

Research on privacy preserving data mining of distributed databases and networks
has gone a long way and have been through several stages. The progress in the field
however will continue in the upcoming years. As more privacy threats appear, new
approaches will be developed and protocols will need to follow a common framework
with specific definitions, principles and requirements.

The protocols presented in this dissertation can be extended in many directions.
The proposed anonymization algorithm for privacy preservation of graphs can be
evaluated using more complex social networks. The effectiveness also on other statis-
tical graph properties can be investigated by carrying out experiments with larger
datasets. In the future, extensive de-anonymization approaches on the resulting
anonymized graph can prove the usefulness of the proposed algorithm in terms of
privacy preservation and identity concealment through neighborhood based node
grouping.

By comparing the proposed method for privacy preservation of distributed
databases with ensemble methods such as random forest or gradient boosting ma-
chines could lead to the discovery of the most efficient and accurate algorithm.
Furthermore, an extended comparison with El-Gamal’s elliptic curve cryptosystem
could be conducted in future research to achieve a balance between security and
efficiency. The comparison of the computation cost of the main phases of the pro-
posed protocol when either the Paillier or El-Gamal cryptosystem is applied could
be examined in the future. The evaluation could be broadened by comparing the
proposed method with previous schemes in the literature. Another interesting av-
enue for future research is the evaluation of the main procedures of the proposed
protocol when more than three parties are connected to the miner. Conducting such
experiments could prove the scalability and efficiency of the proposed protocol and
how the number of participants affects the performance of the protocol. Finally, in
the future, larger datasets and training sets from different real data sources could
be exploited to evaluate the overall performance of the presented protocol.

An interesting future research, is the combination of the two proposed method-
ologies which can eventuate to a more efficient privacy preserving data mining tech-
nique, which can be used in real world applications by institutes and the industry.
For example, a method which performs better can emerge from the combination of
k-anonymity and homomorphic encryption. K- anonymous data can be combined
with encrypted non-anonymous data and apply algebraic operations within groups
instead of the whole dataset [155].

The goal of developing privacy preserving data mining techniques should be
beyond the current status of creating basic methods that might not be applicable to
real world applications. The future lies with methodologies that are implemented for
institutes and businesses where privacy is essential and nowadays a public request.
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framework for privacy preserving network publication. Proc. VLDB Endow.,
2(1):946–957, 2009.

[95] Chiemi Watanabe, Toshiyuki Amagasa, and Ling Liu. Privacy risks and coun-
termeasures in publishing and mining social network data. In 7th International
Conference on Collaborative Computing: Networking, Applications and Work-
sharing (CollaborateCom), pages 55–66, 2011.

[96] Yidong Li and Hong Shen. Anonymizing graphs against weight-based attacks.
In 2010 IEEE International Conference on Data Mining Workshops, pages
491–498, 2010.

[97] Wayne Zachary. An information flow model for conflict and fission in small
groups. Journal of anthropological research, 33(4):452–473, 11 1976.

114 Maria E. Skarkala



BIBLIOGRAPHY

[98] Lian Liu, Cmida Lab, Jinze Liu, and Jun Zhang. Privacy preservation of
affinities in social networks. In Proceedings of the International conference on
Information Systems, pages 372–376, 01 2010.

[99] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Pri-
vacy beyond k-anonymity and l-diversity. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 106–115, 2007.

[100] Elena Zheleva and Lise Getoor. Preserving the privacy of sensitive rela-
tionships in graph data. In Proceedings of the 1st ACM SIGKDD Interna-
tional Conference on Privacy, Security, and Trust in KDD, PinKDD’07, page
153–171, Berlin, Heidelberg, 2007. Springer-Verlag.

[101] Kenneth Clarkson, Kun Liu, and Evimaria Terzi. Toward Identity Anonymiza-
tion in Social Networks, pages 359–385. Springer New York, 08 2010.

[102] Bin Zhou, Jian Pei, and WoShun Luk. A brief survey on anonymization
techniques for privacy preserving publishing of social network data. SIGKDD
Explor. Newsl., 10(2):12–22, 2008.

[103] Scott Coull, Fabian Monrose, Michael Reiter, and Michael Bailey. The chal-
lenges of effectively anonymizing network data. pages 230 – 236, 04 2009.

[104] Bin Zhou and Jian Pei. Preserving privacy in social networks against neighbor-
hood attacks. In Proceedings of the 2008 IEEE 24th International Conference
on Data Engineering, ICDE ’08, page 506–515, USA, 2008. IEEE Computer
Society.

[105] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis.
Resisting structural re-identification in anonymized social networks. Proc.
VLDB Endow., 1(1):102–114, 2008.

[106] Alina Campan and Traian Marius Truta. A clustering approach for data and
structural anonymity in social networks. 2008.

[107] Graham Cormode, Divesh Srivastava, Ting Yu, and Qing Zhang. Anonymizing
bipartite graph data using safe grouping. VLDB J., 19:115–139, 02 2010.

[108] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In
Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, page 93–106, New York, NY, USA, 2008.
Association for Computing Machinery.

[109] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth Sri-
vastava. Anonymizing social networks. Technical report, University of Mas-
sachusetts Amherst, 2013. Available online: https://scholarworks.umass.

edu/cgi/viewcontent.cgi?article=1175;context=cs_faculty_pubs (ac-
cessed on 3 December 2020).

[110] Xiaowei Ying and Xintao Wu. Randomizing social networks: a spectrum
preserving approach. pages 739–750, 04 2008.

Maria E. Skarkala 115



University of Aegean Privacy Preserving Data Mining

[111] Lian Liu, Jie Wang, Jinze Liu, and Jun Zhang. Privacy preserving in social
networks against sensitive edge disclosure. 2008.

[112] P. Samarati. Protecting respondents’ identities in microdata release. IEEE
Trans. on Knowl. and Data Eng., 13(6):1010–1027, 2001.

[113] Ghazaleh Beigi and Huan Liu. A survey on privacy in social media: Identifica-
tion, mitigation, and applications. ACM/IMS Trans. Data Sci., 1(1), March
2020.

[114] B. K. Tripathy and G. K. Panda. A new approach to manage security against
neighborhood attacks in social networks. In 2010 International Conference
on Advances in Social Networks Analysis and Mining, pages 264–269. IEEE
Computer Society, 2010.

[115] James Cheng, Ada Wai-chee Fu, and Jia Liu. K-isomorphism: Privacy preserv-
ing network publication against structural attacks. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD
’10, pages 459—-470, New York, NY, USA, 2010. Association for Computing
Machinery.

[116] Jordi Casas-Roma, Jordi Herrera-Joancomart́ı, and Vicenç Torra. A survey
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[150] Sudipto Das, Ömer Egecioglu, and Amr El Abbadi. Anonymizing weighted
social network graphs. In 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), pages 904–907, 2010.

[151] Yidong Li and Hong Shen. On identity disclosure in weighted graphs. In
Proceedings of the 2010 International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT ’10, pages 166—-174,
USA, 2010. IEEE Computer Society.

[152] Shyue-Liang Wang, Zheng-Ze Tsai, Tzung-Pei Hong, and I-Hsien Ting.
Anonymizing shortest paths on social network graphs. In Proceedings of the
Third International Conference on Intelligent Information and Database Sys-
tems - Volume Part I, ACIIDS’11, page 129–136, Berlin, Heidelberg, 2011.
Springer-Verlag.

[153] Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. Association for Computing Machinery, New York, NY, USA, 1993.

[154] Chuan-Gang Liu, I-Hsien Liu, Wun-Sheng Yao, and Jung-Shian Li. K-
anonymity against neighborhood attacks in weighted social networks. Security
and Communication Networks, 8, 07 2015.

[155] Chris Clifton, Wei Jiang, Mummoorthy Murugesan, and M. Ercan Nergiz. Is
privacy still an issue for data mining? In Next Generation of Data Mining,
2008.

Maria E. Skarkala 119



University of Aegean Privacy Preserving Data Mining

120 Maria E. Skarkala



Appendix A

Algorithms

121



U
n
iversity

of
A

egean
P

rivacy
P

reserv
in

g
D

ata
M

in
in

g

Algorithm 8 Extended version of kAnonymous algorithm

Input: Undirected weighted graph G, parameter k, parameter m (optional)

Output: (k,m) anonymized graph G′

1: Read weighted graph data

2: if identifier exist then

3: Replace them with random numbers/letters (Naive anonymization)

4: for each pair of nodes (u, v) (Initialization) do

5: Store all neighbors weights (inexistent weights replaced by zero)

6: Compute the distance between them by number of hops

7: while #nodes inito each SNi >= k (k-anonymity) do

8: for each node n1...w do

9: Select random node ni

10: Find the neighbors of ni (1-hop)

11: Find the neighbors’ neighbors of ni (2 hops)

12: for all possible 2-hop neighbors do

13: Select a random 2ni 2-hop neighbor

14: if nni have the same weight with ni then

15: Merge the two nodes in one supernode SN

16: Create one superedge SE that connects the SN with the 1-hop neighbor

17: Adjust the weight at the superedge

18: Compute the information loss IL

19: if the 1-hop neighbor has no other neighbors then

20: Merge the 1-hop neighbor to the SN
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21: else if they don’t have the same weight then

22: continue with another 2-hop neighbor

23: Find the 2-hop neighbors that have the same weight

24: Merge the two nodes in one supernode SN

25: Create a superedge from the edges that connect the new supernode with all the other original nodes

26: Adjust the weight at the superedge

27: else if they don’t have the same weight AND there is not any other 2-hop neighbor then

28: Find the 2-hop neighbors that have similar weight

29: Merge the two nodes in one supernode SN

30: Create a superedge from the edges that connect the new supernode with all the other original nodes

31: Adjust the interval of the possible weights of this superedge

32: for all possible 1ni 1-hop neighbors do

33: if the 1ni does not have another neighbor then

34: Merge node 1ni and the 2-hop neighbors into the same SN

35: Compute the information loss

36: Create a superedge from the edges that connect the new supernode with all the other original nodes

37: Adjust the interval of the possible weights

38: if ni does not have a 2-hop neighbor or does not have a neighbor at all then

39: if there exists a SN then

40: Merge it into a SN that minimizes the information loss

41: else

42: Create a SN only with this node (other nodes will be added later)

43: for each supernode SN1...n do

44: Select random SNi

M
aria

E
.

S
karkala

123



U
n
iversity

of
A

egean
P

rivacy
P

reserv
in

g
D

ata
M

in
in

g

45: if nodes into SNi were connected in G then

46: Label the superedge with the probability P of edge existence

47: if P = 1 then

48: while P < 0.8 (threshold) do

49: Move nk into another supernode that contains a neighbor in G, minimizing the information loss IL

50: Compute again the probability P of edge existence

51: for each pair of supernodes SNj and SNj do

52: if SNi and SNj contain nodes that were connected in G then

53: Label the superedge with the probability P (SNi− > SNj) of edge existence

54: if P (SNi− > SNj) = 1 then

55: while P (SNi− > SNj) < 0.8 (threshold) do

56: Select SNi and random node nk

57: Move nk into another supernode that contains a neighbor in G, minimizing the information loss IL

58: Compute again the probability P (SNi − . > SNj) of edge existence

59: for each supernode SN1...n (Optional step) do

60: if there are not at least m − 1 supernodes that are connected with superdges that have the same probabilities and weights

then

61: while (#SNi with same PB and WB >= m) (m-anonymity) do

62: move nodes from SNi to SNj minimizing the information loss IL

63: Return G′

64: end
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Table B.1: PPDM techniques comparison.

Article Mining Model Partition? Environment Privacy Method• Attribute Type� Execution†

Proposed Work TAN H and V C2S, one miner, parties > 2 C Nom and Num I

[18] Decision Trees H C2C, parties > 2 R Num E

[40] EM clustering H and V C2C, parties > 2 C Nd T

[27] Association Rules H C2C, parties > 2 C Nd I

[28] Naive Bayes H C2C, parties > 2 C Nom and Num T

[19] Decision trees H C2C, two parties C Nom T

[68] Decision trees H C2C, parties > 2 C Nom T

[63] Association Rules V C2C, two parties R Bin T

[29] K2 V C2C, two parties C Bin T

[53] Naive Bayes H C2S, one miner C Bin I

[70] Naive Bayes H C2S, two miners C Nd T

[30] Bayesian Nets H C2C C Nd T

[54] TAN H C2S, one miner P Num I

? DB partition: H=Horizontally, V=Vertically.

• C=Cryptography, R=Randomization, P=Perturbation.

� Nom=Nominal, Num=Numerical, Bin=Binary, Nd=Not defined.

† E=Empirical, T=Theoretical, I=Implemented.
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Table B.2: Comparison of privacy preserving techniques of graphs.

Article Type of graphs Anonymization
Technique or

Proposed Attack

Method Problem (created /
solved)

Attack (conducted /
confronted)

Proposed
Work

Weighted
Undirected

Clustering-
based

k-anonymity neighborhood grouping: nodes are
groups in supernodes and edges into superedges based
on the neighborhood similarities and edge weights.

Solved:
Link disclosure

Identity disclosure
Edge weight disclosure

Confronted:
Re-identification

Link-based attacks
Degree-based attacks
Weight-based attacks

Neighborhood-based attacks

Liu and Yang
[124]

Weighted
Undirected

Clustering –
based

k-possible anonymity: groups nodes based on weight
bag and the edge generalization by using weight inter-
vals.

Solved:
Identity disclosure

Confronted:
Weighted based attacks

Not referring

Li and Shen
[96]

Weighted
undirected

Perturbation –
based

k-volume and k-histogram anonymity: modify the
edge weights and node connections.

Solved:
Identity disclosure

Confronted:
Weight-based attacks

(Volume and histogram
attacks),

Re-identification attacks

Li and Shen
[151]

Weighted
Undirected

Perturbation –
based

Two algorithms presented to perturb the volume se-
quence.

Solved:
Identity disclosure

Confronted:
Volume attacks

Wang et al
[152]

Weighted
Undirected

Perturbation –
based

k-anonymous path privacy: perturb minimal number
of edge weights so that there are at least k indistin-
guishable shortest paths between the source and des-
tination nodes.

Solved:
Path anonymity

Edge weight privacy

Confronted:
Weighted based attacks

Not referring

Liu et al [98]
Weighted

(continuous weights)
Directed

Perturbation –
based

k-anonymous weight privacy, modify the edge weights,
preserve shortest paths and shortest path lengths. The
algorithm is based on random walk and matrix analy-
sis to modify individual edge weights.

Solved:
Edge weight disclosure

Confronted:
Weighted based attacks

Not referring

Liu et al [111,
148]

Weighted
Undirected

Perturbation –
based

Two perturbation strategies: Gaussian randomiza-
tion multiplication and greedy perturbation algorithm.
Perturb edge weights while preserving shortest paths
and their lengths.

Solved:
Edge weight disclosure

Confronted:
Weighted based attacks

Not referring

M
aria

E
.

S
karkala

127



U
n
iversity

of
A

egean
P

rivacy
P

reserv
in

g
D

ata
M

in
in

g

Table B.2: Comparison of privacy preserving techniques of graphs.

Article Type of graphs Anonymization
Technique or

Proposed Attack

Method Problem (created /
solved)

Attack (conducted /
confronted)

Das et
al [149]

Weighted
Directed

Perturbation –
based

Re-assign weights to edges so that the shortest paths
of the original graph can be preserved. Edges are k-
anonymous in their neighborhood.

Solved:
Edge weight anonymization

Identity disclosure

Confronted:
Re-identification

Weight-based attacks

Das et
al [150]

Weighted
Directed

Perturbation –
based

Linear programming method to change edge weights
while preserving shortest paths.

Solved:
Edge weight anonymization

Identity disclosure

Confronted:
Re-identification

Weight-based attacks

Backstrom et
al. [3]

Unweighted
Undirected

Passive and
active attacks

An adversary learns whether edges exist or not be-
tween specific pair of nodes. Active : Create an dis-
tinguishable subgraph. Passive : try to find specific
nodes in the released network, and discover the exis-
tence of edges among users to whom they are linked.

Created:
Link disclosure

Conducted:
Subgraph attacks

Bhagat et al.
[142]

Unweighted
Undirected
Bipartite

Labeled Nodes

Clustering-
based

Answer queries
“label list” approach: each node in the graph gets a
list of possible identifiers, including its true identifier.
“partitioning” approach: partitions the entities into
classes, and describes the number of interactions at
the level of classes, rather than nodes.

Solved:
Link disclosure

(edge safety condition)

Confronted:
Link based attacks

Campan and
Truta [106]

Unweighted
Undirected

Labeled Nodes
(identifier,

quasi-identifier,
and sensitive
attributes)

Clustering-
based

Their method clusters the nodes based on attribute
data and neighborhood and reveals only the number
of edges within a group and between pairs of groups.
The nodes have additional properties, which are gener-
alized so that all nodes in the same cluster are indistin-
guishable in terms of their quasi-identifier attributes.

Solved:
Content and identity disclosure

Not referring do not
impose any restriction
on the neighborhood

attack graphs

Cheng et al
[115]

Unweighted
Undirected

Perturbation –
based

k-isomorphism: form k pairwise isomorphic subgraphs
by adding or deleting edges, partitioning the graph
into k subgraphs with the same number of nodes.

Solved:
Link disclosure

Identity disclosure

Confronted:
Re-identification attacks

Subgraph attacks
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Table B.2: Comparison of privacy preserving techniques of graphs.

Article Type of graphs Anonymization
Technique or

Proposed Attack

Method Problem (created /
solved)

Attack (conducted /
confronted)

Chester et al
[145]

Unweighted
Undirected

Labeled and unlabeled
nodes

Perturbation –
based

k-degree anonymity: modification techniques to the
node set rather than the edge set, partitioning the de-
gree sequence into subsequences of length at least k by
adding dummy nodes.

Solved:
Identity disclosure

Confronted:
Degree based attacks

Clarkson et
al [101]

Unweighted
Undirected

Perturbation –
based

k-degree anonymity: edge additions and deletions
techniques.

Solved:
Identity disclosure

Confronted:
Re-identification

Degree based attacks

Hay et
al [109]

Unweighted
Undirected

Perturbation –
based

k-candidate anonymity: similarity of neighborhoods
based on the candidate set of each node, performing
a series of random edge deletions/additions such that
the set of nodes is automorphically equivalent.

Solved:
Identity disclosure

Confronted:
Re-identification attacks

Subgraph attacks

Hay et
al [105]

Unweighted
Undirected

Unlabeled nodes

Clustering –
based

Summarize graph topology in terms of node groups.
Neighboring nodes are grouped in a supernode reveal-
ing only the number of edges among and within par-
titions and the number of nodes in each partition.

Solved:
Identity disclosure

Edge disclosure
(adversaries knows the

degree signatures)

Confronted:
Re-identification attacks

Structural attacks
(do not impose any

restriction on
the neighborhood attacks)

Liu and Terzi
[108]

Unweighted
Undirected

Perturbation –
based

k-degree anonymity: anonymize degree sequence, at
least k- 1 other nodes in the graph with the same de-
gree, edge additions/deletions.

Solved:
Identity disclosure

Confronted:
Re-identification

(the adversary’s background
information consists
only of node degrees)

Thompson
and Yao [140]

Unweighted
Undirected

Clustering –
based

Perturbation –
based

k-anonymity based inter-cluster method, i-hop degree
based approach, nodes are grouped in the same su-
pernode based on a distance metric, each node within
a supernode have the same degree.

Solved:
Identity disclosure

Confronted:
Re-identification

Degree based attacks
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Table B.2: Comparison of privacy preserving techniques of graphs.

Article Type of graphs Anonymization
Technique or

Proposed Attack

Method Problem (created /
solved)

Attack (conducted /
confronted)

Tripathy and
Panda [114]

Unweighted
Undirected

Perturbation –
based

K-anonymization of subgraphs, edge additions to es-
tablish isomorphism of neighborhoods. Two compo-
nents with the same degree and having same adjacency
matrices are isomorphic according to their structure.

Solved:
Identity disclosure

Confronted:
Neighborhood based attacks
(even if the adversary has

information not only
about the immediate
neighbors, but also

about the nodes within
finite number of hops
from the target node.)

Wu et
al [143]

Unweighted
Undirected

Perturbation –
based

k–symmetry anonymity: adding new edges and nodes,
nodes are automorphically equivalent.

Solved:
Identity disclosure

Confronted:
Re-identification

Structural knowledge
(the adversary knows the

entire graph, and the location
of a node)

Ying and Wu
[110]

Unweighted
Undirected

Perturbation –
based

Randomization
Two randomization approaches that preserves the
spectrum of the graph (1) randomly add one edge fol-
lowed by deleting another edge and repeat this process
for k times and (2) randomly switch a pair of existing
edges.

Solved:
Identity and subgraph

disclosure

Confronted:
Subgraph attacks

Zhang and
Zhang [147]

Unweighted
Undirected

Perturbation –
based

Three heuristic algorithms that protect edge
anonymity using edge swap or edge deletion.
Degree-based edge swap, degree-based edge deletion
and edge-based edge swap.

Solved:
Link disclosure

Edge anonymity

Confronted:
Link identification attack

Zheleva and
Getoor [100]

Unweighted
Undirected

Labeled edges

Clustering –
based

Perturbation –
based

Edge deletion or addition and node-merging algo-
rithms are used to ensure that nodes are indistinguish-
able in terms of their surrounding neighborhood.

Solved:
Link disclosure

Confronted:
Link re-identification attacks

Zhou and Pei
[104]

Unweighted
Undirected

Labeled nodes
(one attribute)

Perturbation –
based

Answer queries
Generalizing node labels and adding edges to create
similar neighborhoods that are isomorphic, based on
k-anonymity model.

Solved:
Identity disclosure

Confronted:
Neighborhood attacks

(1-neighbor-graph attack)
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Table B.2: Comparison of privacy preserving techniques of graphs.

Article Type of graphs Anonymization
Technique or

Proposed Attack

Method Problem (created /
solved)

Attack (conducted /
confronted)

Zou et al [94]
Unweighted
Undirected

Perturbation –
based

k-automorphism: edge and node addition to create at
least k similar isomorphic subgraphs.

Solved:
Identity disclosure

Confronted:
Subgraph attacks
Structural attacks
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Appendix C

Figures

Figure C.1: Privacy preserving data mining protocol for distributed databases.
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Figure C.2: Privacy preserving data mining protocol client interface.
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