
1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Προηγμένες Μέθοδοι Ανίχνευσης

Κακόβουλου Λογισμικού στην

Πλατφόρμα του Android

Συγγραφέας

Βασίλειος Κουλιαρίδης

Επιβλέπων

Καθ. Γεώργιος Καμπουράκης

ΔΙΑΤΡΙΒΗ

για την απόκτηση Διδακτορικού Διπλώματος

στο

Εργαστήριο Ασφάλειας Πληροφοριακών και Επικοινωνιακών Συστημάτων

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Σάμος, Μάρτιος 2021

http://www.aegean.gr
http://www.icsd.aegean.gr/group/members-data.php?group=L1&member=1770
http://www.icsd.aegean.gr/gkamb
http://www.icsd.aegean.gr/group/index.php?group=L1
http://www.icsd.aegean.gr/
http://www.icsd.aegean.gr/
https://eng.aegean.gr/el
http://www.icsd.aegean.gr/
https://www.aegean.gr/

University of the Aegean

Doctoral Thesis

Advanced Methods for Android
Malware Detection

Author

Vasileios Kouliaridis

Supervisor

Prof. Georgios Kambourakis

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

at the

Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering

School of Engineering

University of the Aegean

Samos, March 2021

http://www.aegean.gr
http://www.icsd.aegean.gr/group/members-data.php?group=L1&member=1770
http://www.icsd.aegean.gr/gkamb
http://www.icsd.aegean.gr/group/index.php?group=L1
http://www.icsd.aegean.gr/
https://eng.aegean.gr/en
http://www1.aegean.gr/aegean2/index.html

Υπεύθυνη Δήλωση

Εγώ, ο Βασιλειος Κουλιαρίδης, δηλώνω ότι είμαι ο αποκλειστικός συγγραφέας της υποβλη-

θείσας Διδακτορικής Διατριβής με τίτλο «Προηγμένες Μέθοδοι Ανίχνευσης Κακόβουλου

Λογισμικού στην Πλατφόρμα του Android». Η συγκεκριμένη Διδακτορική Διατριβή είναι

πρωτότυπη και εκπονήθηκε αποκλειστικά για την απόκτηση του Διδακτορικού διπλώμα-

τος του Τμήματος Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων. Κάθε

βοήθεια, την οποία είχα για την προετοιμασία της, αναγνωρίζεται πλήρως και αναφέρεται

επακριβώς στην εργασία.

Επίσης, επακριβώς αναφέρω στην εργασία τις πηγές, τις οποίες χρησιμοποίησα, και μνημονε-

ύω επώνυμα τα δεδομένα ή τις ιδέες που αποτελούν προϊόν πνευματικής ιδιοκτησίας άλλων,

ακόμη κι εάν η συμπερίληψη τους στην παρούσα εργασία υπήρξε έμμεση ή παραφρασμένη.

Γενικότερα, βεβαιώνω ότι κατά την εκπόνηση της Διδακτορικής Διατριβής έχω τηρήσει α-

παρέγκλιτα όσα ο νόμος ορίζει περί διανοητικής ιδιοκτησίας και έχω συμμορφωθεί πλήρως

με τα προβλεπόμενα στο νόμο περί προστασίας προσωπικών δεδομένων και τις αρχές της

Ακαδημαϊκής Δεοντολογίας.

Υπογραφή:

Ημερομηνία: Μάρτιος 7, 2021

i

Declaration of Authorship

I, Vasileios Kouliaridis, declare that this thesis entitled, “Advanced Methods for Android

Malware Detection” and the work presented in it are my own. I confirm that:

� This work was done wholly while in candidature for a research degree at this

University.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date: March 7, 2021

ii

Advising Committee of this Doctoral Thesis:

Professor Georgios Kambourakis, Supervisor

Department of Information and Communication Systems Engineering

University of the Aegean, Greece

Professor Emmanouil Maragoudakis, Advisor

Department of Informatics

Ionian University, Greece

Assistant Professor Elisavet Konstantinou, Advisor

Department of Information and Communication Systems Engineering

University of the Aegean, Greece

University of the Aegean, Greece

2021

iii

Approved by the Examining Committee:

Stefanos Gritzalis

Professor, University of Piraeus, Greece

Georgios Kambourakis

Professor, University of the Aegean, Greece

Emmanouil Maragoudakis

Professor, Ionian University, Greece

Elisavet Konstantinou

Assistant Professor, University of the Aegean, Greece

Panagiotis Rizomiliotis

Assistant Professor, Harokopio University, Greece

Dimitrios Skoutas

Assistant Professor, University of the Aegean, Greece

Marios Anagnostopoulos

Assistant Professor, Aalborg University, Denmark

University of the Aegean, Greece

2021

iv

Copyright c©2021

Vasileios Kouliaridis

Department of Information and Communication Systems Engineering

School of Engineering

University of the Aegean

All rights reserved. No parts of this PhD thesis may be reproduced or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the author.

Abstract

Department of Information and Communication Systems Engineering

School of Engineering

University of the Aegean

Doctor of Philosophy

by Vasileios Kouliaridis

Mobile devices are an integral part of our everyday life. From online social networks

to mobile banking transactions, mobile devices are more or less trusted and used by

billions of people worldwide. In the same trend, the number of vulnerabilities exploiting

mobile devices are also augmented on a daily basis and, undoubtedly, popular mobile

platforms, such as Android and iOS, represent an alluring target for malware writers.

The Android operating system is currently the most widespread mobile platform world-

wide. As a result, countless malicious applications are deployed every year to capitalize

on the popularity of this platform. Indeed, the topic of mobile malware detection has at-

tracted significant attention over the last several years. However, while notable research

has been conducted toward mobile malware detection techniques, most state-of-the-art

approaches lean on rather outdated mobile malware datasets and Android operating

system versions. Therefore, current proposals to mobile malware analysis and detection

cannot easily keep up with future malware sophistication.

This PhD thesis aims to devise, propose, and meticulously assess advanced, more ro-

bust mobile malware analysis schemes destined to the Android platform. Precisely, we

examine the effect of classification features when dynamic instrumentation is applied,

to demonstrate that the effectiveness of base classification models based on either static

or dynamic analysis without instrumentation is clearly outperformed by models using

dynamic instrumentation. This thesis also proposes and evaluates ensemble learning

techniques, as well as a more sophisticated extrinsic ensemble approach to exhibit that

ensemble models can further improve the performance of each individual base classifier.

We also report on the effect of using either the entire feature set or a random subspace

of classification features of instances to demonstrate how the latter assists an extrinsic

malware detection ensemble to further augment its effectiveness. This thesis also aims

to examine the usefulness of dimensionality reduction techniques, when exclusively ap-

plied on malware detection base verifiers, as well as ensembles. On top of everything

else, the thesis at hand aims to analyze the most challenging and recent mobile malware

datasets and explore the most significant feature categories in terms of classification

effectiveness.

Greek Abstract

(Εκτεταμένη Περίληψη)

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Διδακτορική διατριβή

του Βασίλειου Κουλιαρίδη

Οι φορητές συσκευές αποτελούν αναπόσπαστο κομμάτι της καθημερινής μας ζωής. Από

διαδικτυακά κοινωνικά δίκτυα έως συναλλαγές τραπεζικής κινητής τηλεφωνίας, οι κινητές

συσκευές είναι περισσότερο ή λιγότερο αξιόπιστες και χρησιμοποιούνται από δισεκατομμύρια

ανθρώπους παγκοσμίως. Την ίδια στιγμή, ο αριθμός των ευπαθειών που εκμεταλλεύονται

κινητές συσκευές αυξάνεται επίσης σε καθημερινή βάση, και αναμφίβολα, δημοφιλείς πλατ-

φόρμες για κινητά, όπως το Android και το iOS, αντιπροσωπεύουν έναν ιδιαίτερα δελεα-

στικό στόχο για οποιονδήποτε συγγραφέα κακόβουλου κώδικα. Το λειτουργικό σύστημα

Android είναι σήμερα η πιο διαδεδομένη πλατφόρμα για κινητά παγκοσμίως. Ως αποτέλε-

σμα, αμέτρητες κακόβουλες εφαρμογές αναπτύσσονται κάθε χρόνο για να εκμεταλλευτούν

τη δημοτικότητα αυτής της πλατφόρμας. Πράγματι, το ζήτημα της ανίχνευσης κακόβουλου

λογισμικού για κινητές συσκευές έχει προσελκύσει σημαντικές ερευνητικές προσπάθειες τα

τελευταία χρόνια. Ωστόσο, ενώ έχει γίνει αξιοσημείωτη έρευνα σχετικά με τις τεχνικές

ανίχνευσης κακόβουλου λογισμικού για κινητές πλατφόρμες, οι περισσότερες προηγμένες

προσεγγίσεις βασίζονται σε ξεπερασμένα σύνολα δεδομένων (datasets) κακόβουλου λογι-

σμικού και σε παρωχημένες εκδόσεις του λειτουργικού συστήματος Android. Επομένως,

οι τρέχουσες προσεγγίσεις για την ανάλυση και τον εντοπισμό κακόβουλου λογισμικού

για κινητές συσκευές δεν μπορούν εύκολα να συμβαδίσουν με τη μελλοντική εξειδίκευση

κακόβουλου λογισμικού.

Η παρούσα διδακτορική διατριβή στοχεύει να προτείνει, εξετάσει, και αξιολογήσει νέες προ-

σεγγίσεις ανάλυσης κακόβουλου λογισμικού για κινητές συσκευές στην πλατφόρμα του

Android. Συγκεκριμένα, εξετάζουμε την επίδραση των χαρακτηριστικών ταξινόμησης όταν

παρέχεται κώδικας ελέγχου (instrumentation code) κατά την εκτέλεση του προγράμματος,

για να αποδείξουμε ότι η αποτελεσματικότητα των μοντέλων ταξινόμησης που βασίζονται

είτε σε στατική είτε σε δυναμική ανάλυση χωρίς κώδικα ελέγχου υπερτερεί σε σχέση με τα

μοντέλα που εφαρμόζουν δυναμική ανάλυση με τον κλασσικό τρόπο. Επιπλέον, η παρούσα

διατριβή προτείνει και αξιολογεί τεχνικές συλλογικής μάθησης, (ensemble learning) καθώς

και μια πιο εξελιγμένη προσέγγιση εξωγενούς συλλογικής μάθησης για να καταδείξει ότι

τα μοντέλα συλλογικής μάθησης μπορούν να βελτιώσουν περαιτέρω την απόδοση κάθε ε-

πιμέρους βασικού ταξινομητή. Επιπλέον, η διατριβή διερευνά την επίδραση της χρήσης είτε

ολόκληρου του συνόλου χαρακτηριστικών ταξινόμησης είτε ενός τυχαίου αντιπροσωπευτι-

κού υποσυνόλου με σκοπό να καταδείξει πώς το τελευταίο βοηθά ένα εξωγενές σύνολο

εντοπισμού κακόβουλου λογισμικού για να αυξήσει περαιτέρω την αποτελεσματικότητά του.

Η διατριβή στοχεύει επίσης να εξετάσει τη χρησιμότητα των τεχνικών μείωσης διαστάσεων,

όταν εφαρμόζεται αποκλειστικά σε βασικούς ταξινομητές ανίχνευσης κακόβουλου λογισμι-

κού, καθώς και σε μοντέλα συλλογικής μάθησης. Τέλος, η διατριβή στοχεύει στην ανάλυ-

ση των πιο απαιτητικών και πρόσφατων συνόλων δεδομένων κακόβουλου λογισμικού για

κινητές πλατφόρμες και στη διερεύνηση της σημαντικότερης κατηγορίας χαρακτηριστικών

ταξινόμησης.

Acknowledgements

First and foremost, i would like to express my deep gratitude to my supervisor Professor

Georgios Kambourakis, for his guidance, advice, and continuous support throughout my

PhD study. Ηe has been of invaluable support throughout these years in many ways,

which has really helped me to shape my research.

I would like to express my gratitude to Dr. Nektaria Potha, Dr. Konstantia Barbatsalou,

and Dr. Geneiatakis Dimitrios, for their precious help and support during my research.

Particularly, i am grateful to Dr. Potha for her valuable contributions to chapters 5, 6,

and especially 7, of this PhD thesis. Additionally, i would like to thank the members of

the examining committee, for investing time in reviewing this thesis and offering advice.

Last but not least, I would like to express my utmost gratitude to my family for their

unconditional love and trust.

x

Dedicated to my family

Contents

Greek Declaration of Authorship i

Declaration of Authorship ii

Advising Committee of this Doctoral Thesis iii

Approved by the Examining Committee iv

Copyright v

Abstract vi

Extended Abstract in Greek viii

Acknowledgements x

List of Figures xvi

List of Tables xviii

Abbreviations xx

1 Introduction 1

1.1 Motivation and Objectives . 3

1.2 Contributions . 4

1.3 Thesis Structure . 7

2 Background 9

2.1 Android’s Security Model . 9

2.1.1 Application Sandboxing . 9

2.1.2 Permissions . 9

2.1.3 Inter-Process Communication . 11

2.1.4 SELinux . 12

2.1.5 Application Signing . 12

xii

Contents xiii

2.1.6 Trusty Trusted Execution Environment (TEE) 12

2.1.7 Verified Boot . 13

2.2 Mobile Malware . 13

2.2.1 Trojans . 13

2.2.2 Worms . 14

2.2.3 Rootkit . 14

2.2.4 Botnet . 14

2.2.5 Cryptocurrency Mining . 15

2.2.6 Spyware . 15

2.2.7 Ransomware . 16

2.2.8 Hybrid . 16

2.3 Mobile Malware Penetration Techniques 16

2.3.1 Repackaging . 17

2.3.2 Drive by download . 18

2.3.3 Dynamic payloads . 18

2.3.4 Stealthy malware techniques . 19

2.4 Mobile Malware Detection Techniques . 19

2.4.1 Introduction . 19

2.4.2 Mobile malware detection classification 20

2.4.3 Survey of works . 22

2.4.4 Discussion and future directions 28

2.4.5 Conclusions . 31

2.5 Machine Learning-based Classification . 31

2.5.1 Machine learning classifiers . 32

2.5.2 Evaluation metrics . 36

2.5.3 Training and validation . 38

2.5.4 Ensemble learning . 38

2.5.5 Dimensionality reduction . 40

3 Mal-warehouse: A data collection-as-a-service of mobile malware be-
havioral patterns 43

3.1 Introduction . 43

3.2 Proposed Methodology . 44

3.2.1 Data Collection . 46

3.2.2 List of Malware . 47

3.3 Evaluation . 50

3.3.1 Machine Learning Results . 50

3.3.2 CPU Usage Results . 51

3.3.3 Memory Usage Results . 52

3.4 Discussion . 53

3.5 Related Work . 53

3.6 Conclusions . 55

4 Feature importance in Android malware detection 56

4.1 Introduction . 56

4.2 Datasets . 57

4.3 Feature importance . 58

Contents xiv

4.4 Related work . 64

4.5 Conclusions . 65

5 Two anatomists are better than one - Dual-level Android malware
detection 67

5.1 Introduction . 67

5.2 Proposed Methodology . 69

5.2.1 Androtomist . 69

5.2.2 Extraction of features and feature modeling 71

5.2.3 Dataset . 75

5.2.4 Classifiers and metrics . 77

5.3 Evaluation . 78

5.3.1 Signature-based detection . 78

5.3.2 Anomaly-based detection . 81

5.4 Discussion . 83

5.5 Related Work . 92

5.6 Conclusions . 97

6 Improving Android malware detection through dimensionality reduc-
tion techniques 98

6.1 Introduction . 98

6.2 The Proposed Method . 99

6.2.1 Dimensionality Reduction . 100

6.3 Experiments . 101

6.3.1 Description of Data . 101

6.3.2 Experimental Setup . 102

6.3.3 Results . 104

6.3.4 Comparison with the state-of-the-art 107

6.4 Previous Work . 110

6.5 Conclusion . 112

7 An Extrinsic Random-based Ensemble Approach for Malware Detec-
tion 114

7.1 Introduction . 114

7.2 Methodology . 116

7.3 Experimental Study . 117

7.3.1 Description of Data . 117

7.3.2 Experimental Setup . 119

7.4 Results . 121

7.4.1 Contribution of a random subspace set of features 123

7.4.2 Comparison with the state-of-the-art 125

7.4.3 Genre of External cases . 127

7.5 Related Work . 129

7.6 Discussion . 131

8 A mapping of machine learning techniques for Android malware de-
tection and a converging scheme 133

8.1 Introduction . 133

Contents xv

8.2 Survey of works . 136

8.3 Discussion . 143

8.4 Related work . 147

8.5 Conclusions . 148

9 Conclusions and Future Directions 150

9.1 Conclusions . 150

9.2 Thesis Contributions . 151

9.3 Future Research Directions . 154

Bibliography 156

List of Figures

2.1 Typical centralized botnet architecture . 15

2.2 Typical ransomware operation . 16

2.3 General APK repacking procedure . 17

2.4 Drive by download method . 18

2.5 Mobile malware detection techniques . 20

2.6 Malware Detection Techniques in Chronological Order 29

2.7 K-Nearest Neighbor . 33

2.8 Logistic Regression . 33

2.9 Decision Tree . 34

2.10 Random Forest . 35

2.11 Neural Network . 36

2.12 AUC exaples . 37

2.13 PCA method . 41

3.1 Mal-warehouse Operation . 45

3.2 Mal-warehouse Information Extraction Tool 46

4.1 Average feature importance scores on all three datasets for the two feature
categories (Permissions and Intents) . 62

5.1 Androtomist’s high level architecture . 70

5.2 Androtomist’s components interworking 72

5.3 Feature engineering. fi corresponds to an existing feature 75

5.4 The performance (AUC) of the proposed static and hybrid analysis on An-
droZoo, VirusShare, and Drebin corpora for different classification models 85

5.5 AndroZoo: ROC (Static Analysis) . 86

5.6 VirusShare: ROC (Static Analysis) . 86

5.7 Drebin: ROC (Static Analysis) . 87

5.8 AndroZoo: ROC (Hybrid Analysis) . 87

5.9 VirusShare: ROC (Hybrid Analysis) . 88

5.10 Drebin: ROC (Hybrid Analysis) . 88

5.11 The performance (F1) of the proposed static and hybrid analysis on An-
droZoo, VirusShare, and Drebin corpora for different classification models 89

5.12 The percentage in performance (AUC) of hybrid and static methods by
averaging the output of the base classifiers on the three datasets 89

5.13 Average Feature Importance scores of static and hybrid analysis on all
three datasets for a varying set of feature categories. 91

xvi

List of Figures xvii

6.1 The performance (AUC) of the examined ensembles when a=1 and a=0.5,
using either AVG (left) or MV (right) fusion techniques, on Androzoo
dataset for varying types of base models, respectively. The performance
of the best base model is also depicted. 108

7.1 The performance (AUC) of the examined base models, using either a =
0.5 (left) or a = 1 (right) on AndroZoo dataset. 122

7.2 The performance of AUC of the proposed ERBE and ERBEa=1. The best
performing base model, ERBEMLP is also shown. 124

8.1 Number of works utilizing each base classification model per year 145

8.2 Baseline scheme for mobile malware detection models 146

List of Tables

3.1 Mal-warehouse Database - CPU Usage Table 51

3.2 Mal-warehouse Database - Memory Usage Table 51

3.3 CPU Usage Evaluation . 52

3.4 Memory Usage Evaluation . 53

4.1 Outline of major datasets ordered by their creation date. Asterisk = not
all samples are malicious, Dash = Not available 59

4.2 Top 10 features in the Drebin dataset. 62

4.3 Top 10 features in the VirusShare dataset. 63

4.4 Top 10 features in the AndroZoo dataset. Left: 2K apps dataset, right:
4K apps dataset . 63

4.5 AUC and accuracy comparison between permissions and intents for the
4K AndroZoo corpora. Best scores for the 8 base models are in boldface. . 64

5.1 Feature vectors for example apps A1 and A2. 76

5.2 Top 30 suspicious permissions. 80

5.3 Top 15 permissions in goodware. 80

5.4 Signature-based detection scores (%). 81

5.5 Results per dataset and classification performance metric. 83

5.6 Improvement in performance (difference in AUC) between methods us-
ing hybrid analysis (base models and ensemble) and static analysis (base
models and ensemble). Statistically significant differences (p < 0.05) are
indicated in boldface. A negative value means a decrease in performance. 90

5.7 Comparison of state-of-the-art hybrid systems in terms of collected fea-
tures and classification accuracy (best case). “Mixed” means a mixed, but
not strictly defined dataset, containing records from Drebin, Genome, and
Contagio datasets . 93

5.8 Outline of the related work . 96

6.1 AUC scores of the proposed malware detection base models on the An-
drozoo corpora . 105

6.2 Comparison of the AUC of both ensemble methods 106

6.3 Comparison of the proposed approach with state-of-the-art detection
works in terms of collected features, accuracy and AUC score (* For this
work, we only consider the results stemming from static analysis on An-
drozoo corpus) . 109

7.1 Scores of all evaluation measures examined in ERBE malware detection
method and the best performing base models with a = 0.5 and a = 1 for
k = 200 on AndroZoo dataset. 123

xviii

List of Tables xix

7.2 Improvement in performance (difference in AUC) between ensemble meth-
ods as well as base models using a = 0.5 and a = 1 on AndroZoo dataset. 125

7.3 Comparison of state-of-the-art methods with the proposed ERBE mal-
ware detection method of this study. 127

7.4 Scores of all evaluation measures examined of ERBE method when k =
200 based on different genre of external instances 128

7.5 Outline of the related work . 130

8.1 Feature extraction options per analysis method 134

8.2 Outline of the surveyed works . 142

8.3 Summary of key characteristics observed across the surveyed works 143

8.4 Important topics addressed by the related works. PEM: Performance eval-
uation metrics, DT: Detection techniques, ML: Machine learning, AM:
Analysis methods, FE: Features and feature extraction, DL: Deep learn-
ing, ML PI: ML performance improvement 148

9.1 Overall PhD Thesis Contribution. 152

Abbreviations

ADB Android Debug Bridge

API Application Programming Interface

APK Android Application Package

ARM Advanced RISC Machine

ART Android Runtime

AUC Area Under the Curve

AVG Average

CA Classification Accuracy

CA Code Analysis

CI Code Instrumentation

CPU Central Processing Unit

CSV Comma-separated values

DB Database

DDoS Distributed Denial of Service

DI Dynamic Instrumentation

DR Demensionality Reduction

EL Ensemble Learning

ERBE Extrinsic Random-based Ensemble

EC2 Ensemble Clustering and Classification

FI Feature Importance

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

HLLE Hessian Eigenmapping

xx

Abbreviations xxi

ICC Inter-Component Communications

IDS Intrusion Detection System

IPC Inter-Process Communication

k-NN k-Nearest Neighbors

LDA Linear Discriminant Analysis

LLE Locally Linear Embedding

LR Logistic Regression

MA Manifest Analysis

MAC Mandatory Access Control

MCA Multiple Correspondence Analysis

MDS Multi-dimensional Scaling

MIET Mal-warehouse Information Extraction Tool

ML Machine Learning

MLP Multiple Layer Perception

MV Majority Vote

NB Naive Bayes

OEM Original Equipment Manufacturer

OS Operating System

RCA Principal Component Analysis

ROC Receiver Operating Characteristic

RPC Remote Procedure Calls

SDK Software development kit

RF Random Forest

SGD Stochastic Gradient Descent

SVM Support Vector Machine

SI Static Instrumentation

TEE Trusty Trusted Execution Environment

TLS Transport Layer Security

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

SCA System Calls Analysis

Abbreviations xxii

SGD Stochastic Gradient Descent

SRA System Resources Analysis

SNE Stochastic Neighbor Embedding

SMS Short Message Service

SVM Support Vector Machine

URL Uniform Resource Locator

USB Universal Serial Bus

UI User Interface

UIA User Interaction Analysis

VM Virtual Macine

Chapter 1

Introduction

Modern smartphones combine the communication capability of cellphones with the func-

tionality of a Personal Computer (PC). Such devices allow users to access a large variety

of on-line services, such as web navigation, message exchange, and mobile banking. In

addition, most smartphones are equipped with an application-based interface, which

facilitates the downloading of various programs that can perform a diversity of tasks.

However, the availability of such mobile services increases their susceptibility to mal-

ware attacks [1]. Mobile malware poses undoubtedly a major threat to the continuously

increasing number of mobile users worldwide. The Android operating system (OS) is

currently the most prevalent mobile platform, with a market share that exceeds 74% [2].

In this context, the openness of the Android OS, as well as its immense penetration into

the market makes it a hot target for malware writers. According to a Kaspersky report,

5,6M mobile malicious installation packages for Android have been discovered in 2019

[3]. Furthermore, while researchers have been trying vigorously to find optimal detection

solutions, mobile malware is becoming more sophisticated and its writers are getting in-

creasingly skilled in hiding malicious code [4]. To stay covert, malware writers deploy

numerous techniques, such as encrypting code, thus making legacy signature-based de-

tection increasingly harder. Furthermore, most Antivirus (anti-malware) systems use

static signatures of previously identified malware to identify the existing malware, and

while they do so quite successfully, they are far from achieving the same detection per-

formance for new instances of malware. That is, mutated and zero-day malware requires

continuous update of the signature database as malicious applications (apps) are con-

stantly improved to circumvent the various detection methods.

1

Chapter 1. Introduction 2

Machine learning (ML) has been exploited in the development of intelligent systems

for several years. Supervised ML classifiers acquire a labeled dataset and generate an

output model which is able to process new data. The adoption of ML classifiers has

therefore been demonstrated to improve the precision of detection [5]. Consequently,

machine learning has also become an important asset to mobile malware detection.

Current mobile malware detection approaches lean primarily towards static anomaly-

based detection [6, 7, 8, 9, 5], although methods based on dynamic analysis have started

to proliferate [6, 9, 10, 11]. Naturally, the cardinal reason behind the popularity of static

analysis techniques arises from the fact that they do not require the app to be running,

hence they are usually faster and straightforward to implement. Generally, anomaly-

based detection comprises two distinct phases; the training and the detection or testing

one. It typically employs machine learning to detect malicious behavior, i.e., deviation

from a model built during the training phase.

Up to now, a plethora of detection systems rely on machine learning to classify whether

a mobile app is malware or not, and they do so with a high reported detection accuracy.

However, various parameters can influence machine learning effectiveness. Precisely,

the instances used to evaluate a model can have a major impact on the classification

accuracy. The Android OS is a continuously updated operating system with major

security enhancements, as well as new features being introduced every year. For the

same reason, each year new mobile malware families emerge, exploiting different attack

vectors, which mutates their behavior [12, 13]. A mobile app is flagged as malicious by

the ML classifier which uses the features extracted during static or dynamic analysis as

an input. A ML algorithm trained using outdated data is therefore not as reliable as it

should have been.

To fill the above mentioned literature gaps, this doctoral thesis seeks for new methods

that can address the reported limitations and empower detection systems with agile and

adaptable characteristics. Under this prism, our work:

(a) Provides a thorough analysis on state-of-the-art mobile malware detection techniques

for offering optimal countermeasures.

(b) Implements and evaluates new analysis techniques to improve current detection

methodologies.

Chapter 1. Introduction 3

(c) Introduces and evaluates new methodologies in mobile malware detection through

advanced machine learning properties.

As further explained in the next section, the PhD thesis at hand aims in introducing

novel tools and methodologies to counter the latest and future mobile malware.

1.1 Motivation and Objectives

As previously mentioned, mobile malware detection approaches nowadays lean primarily

towards static anomaly-based detection. In this context, a key point, which to our

knowledge is not properly addressed in the literature, is the importance of each feature

category, say, permissions and intents, in mobile app classification. Simply put, which

group of features in general, and which features within each group in particular do

contribute the most information when it comes to classification? And, is the answer to

the previous question related to the employed dataset as the case may be? Furthermore,

while significant research has been conducted towards the use of static approaches,

insufficient attention has been paid to hybrid approaches for mobile malware detection.

So, in cases where features stemming from static analysis cannot produce satisfactory

results, is hybrid analysis a better direction for future mobile malware detection schemes?

Overall, the galloping rise of mobile malware of any kind calls for more robust detection

solutions by leveraging on ML.

Given the above mentioned observations, the goal of the PhD thesis at hand is to in-

troduce and rigorously assess robust methodologies and tools to counter contemporary

mobile malware, as well as to explore future needs and limitations of current mobile

malware detection approaches. In a nutshell, the objectives, and simultaneously the

research pillars of this PhD thesis are as follows:

Objective 1: With a focus on the Android platform, we intent to shed light on mobile

malware detection techniques proposed in the literature so far and provide a thorough

analysis over the analyzed features and the machine learning classification and detection

methodologies used. Through this analysis we intent to identify open research challenges

in mobile malware analysis and detection and pinpoint on future directions.

Chapter 1. Introduction 4

Objective 2: We aim to deliver novel methodologies which cater for highly accurate

mobile malware detection mechanisms, and therefore can repel future malicious behavior

with a high precision.

Objective 3: We aim to expand the second objective and further explore ML method-

ologies which can provide continuous improvement in mobile malware detection, by im-

proving the gain of information on demand.

As detailed in the next subsection, the novelties of this work mainly lie in the last two

objectives, while the first one basically explores the related literature for identifying

possible gaps, shortcomings, and research directions.

1.2 Contributions

As already pointed out, the main intention of this PhD work is to devise advanced

methodologies and tools as countermeasures to concurrent mobile malware threats, as

well as to provide insight on current mobile malware analysis and detection approaches.

More specifically, the contribution of this PhD thesis with respect to our publications

in scientific journals and conferences is as follows:

• A survey on ML-powered mobile malware detection techniques12. The main axes

of this contribution are:

– Presents a thorough analysis of the latest mobile malware detection tech-

niques.

– Offers a comprehensive overview of the different approaches to mobile mal-

ware detection, in an effort to understand their detection method, explore

their evaluation results, and possibly categorize each literature contribution

under a novel classification scheme.

– Identifies research challenges and future directions in mobile malware analysis

and detection.

1V. Kouliaridis, G. Kambourakis, A comprehensive survey on machine learning techniques for An-
droid malware detection. Information, 2020 (submitted)

2V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, S. Chen. A survey on mobile malware detection
techniques. IEICE Transactions on Information and Systems 103 (2), 204-211, 2020

Chapter 1. Introduction 5

– Offers a detailed mapping of ML techniques utilized in this field of research

and introduces a converging scheme to guide future research.

• Mal-warehouse: A data collection-as-a-service of mobile malware behavioral pat-

terns3. The main contributions of this work are:

– Presents Mal-warehouse, an open-source tool performing data collection-as-

a-service for Android malware behavioral patterns.

– Exhibits evaluation results by using ML techniques as a proof-of-concept of

the detection capabilities of the proposed model.

– Offers a publicly available database on the cloud, for further evaluation and

processing by other researchers and interested parties.

• Feature importance in Android malware detection4. This work

– Examines the hitherto most commonly used and modern datasets used in

Android malware detection.

– Demonstrates the most significant feature category, by using the average co-

efficients of permissions and intents for a large number of malware instances

per corpus.

– Reports the top ten features per dataset and discuss similarities between these

corpora.

• Improving Android malware detection through dimensionality reduction tech-

niques5. The contributions of this work are as follows:

– Proposes a simple ensemble approach by aggregating the output of each mal-

ware instance separately, for a number of malware detection base models.

The combination of base classification models achieves the best results in

3V. Kouliaridis, K. Barmpatsalou, G. Kambourakis and G. Wang. Mal-Warehouse: A Data
Collection-as-a-Service of Mobile Malware Behavioral Patterns. 2018 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI), 1503-1508, 2018, doi: 10.1109/SmartWorld.2018.00260.

4V. Kouliaridis, G. Kambourakis and T. Peng. Feature Importance in Android Malware Detection.
2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communi-
cations (TrustCom), pp. 1449-1454, 2020, doi: 10.1109/TrustCom50675.2020.00195.

5V. Kouliaridis, N. Potha, and G. Kambourakis. Improving Android Malware Detection Through
Dimensionality Reduction Techniques. Machine Learning for Networking, Springer International Pub-
lishing, pp. 57–72, 2021, doi: 10.1007/978-3-030-70866-5 4.

Chapter 1. Introduction 6

comparison to each particular base model with reference to most challeng-

ing malware corpora. This evidently demonstrates that an ensemble of base

classifiers based on a larger size and probably heterogeneous base models is

the most appropriate and able to handle challenging malware detection sce-

narios, and thus can further improve the performance of each individual base

classifier.

– Examines the usefulness of two well-known dimensionality reduction tech-

nique, namely, PCA and t-SNE when exclusively applied on malware detec-

tion base verifiers as well as ensembles, respectively. It is demonstrated that

both these transformations can considerably increase the performance of each

base model as well as the proposed ensembles. However, the implementation

of t-SNE is more effective than PCA transformation and assists base models

and malware detection ensemble methods to further increase their effective-

ness in all the examined cases.

– Reports detailed experimental results on malware detection under the Andro-

zoo dataset that are directly compared with state-of-the-art methods under

the same settings.

• Two anatomists are better than one - Dual-level Android malware detection6.

This work is dedicated to the design and implementation of a novel tool capable

of applying both static and dynamic analysis of apps on the Android platform.

Specifically, the main contribution axes of this work are as follows:

– A methodology is presented that collects groups of static and dynamic fea-

tures mapping the behavior of an app, including permissions, intents, API

calls, Java classes, network traffic, and inter-process communication. Espe-

cially for the dynamic analysis part, among others, we improve the hitherto

related work by means of contributing features emanating from the hooking

of Java classes, which is made possible due to instrumentation.

– We report experimental results on three different well-known mobile malware

benchmark datasets that are directly compared with state-of-the-art methods

under the same settings. The performance of the approaches presented in this

work is quite competitive to the best results reported so far for these corpora,

6V. Kouliaridis, G. Kambourakis, D. Geneiatakis, N. Potha. Two Anatomists Are Better than
One—Dual-Level Android Malware Detection. Symmetry 2020, 12, 1128, doi: 10.3390/sym12071128.

Chapter 1. Introduction 7

demonstrating that the proposed methods can be an efficient and effective

alternative toward more sophisticated malware detection systems.

– We propose an ensemble approach by averaging the output of all base models

for each malware instance separately. The combination of all base models

achieves the best average results across all three data sets examined. This

demonstrates that ensembles of classifiers based on multiple, possibly het-

erogeneous models, can further improve the performance of individual base

classifiers.

• An Extrinsic Random-based Ensemble Approach for Malware Detection7.

– We adopt predefined categories of external malware and benign instances and

propose a more sophisticated extrinsic ensemble approach, which provides a

positive or negative answer by averaging the output of the base models for

each test instance separately. Again, it is demonstrated that ensemble models

can further improve the performance of each individual base classifier.

– We examine the effect of external instances when an ensemble malware de-

tection method is provided combining different sizes and types of external

instances. It is demonstrated that ensembles based on a larger and possibly

homogeneous size of external instances are exceptionally effective alternative

to ensembles included smaller sizes and feasibly more heterogeneous external

instances.

– We report experimental results on contemporary benchmark datasets and

directly compare them against state-of-the-art methods under the same set-

tings. The performance of the method presented in this study is quite com-

petitive to the best results reported so far for these datasets, exhibiting that

an extrinsic ensemble method is much more reliable and effective for the mal-

ware detection task.

1.3 Thesis Structure

The next chapter presents the key components of the Android’s security model, as well

as background information on mobile malware types and the different kinds of mobile

7Nektaria Potha, V. Kouliaridis, G. Kambourakis. An extrinsic random-based ensemble approach
for android malware detection. Connection Science, doi: 10.1080/09540091.2020.1853056.

Chapter 1. Introduction 8

malware detection techniques. Furthermore, it offers a succinct overview of the diverse

machine learning algorithms, the relevant evaluation metrics, and possible performance,

in terms of detection accuracy, enhancing techniques.

Chapter 3 details on the design and implementation of “Mal-warehouse”, a data

collection-as-a-service of mobile malware behavioral patterns.

Chapter 4 presents results on the analysis of a critical mass of mobile apps from the

hitherto most contemporary and prevailing datasets. Moreover, it provides insight on

the importance of app classification features pertaining to permissions and intents, by

ranking these feature categories using the Information Gain algorithm.

Chapter 5 presents “Androtomist”, a novel open source tool capable of applying both

static and dynamic analysis of apps on the Android platform. Unlike similar hybrid

solutions, Androtomist capitalizes on a wealth of features stemming from static analysis

along with rigorous dynamic instrumentation to dissect apps and decide if they are

benign or not.

Chapter 6 examines the potential contribution of two known dimensionality reduc-

tion transformations namely, Principal Component Analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE) in mobile malware detection.

Chapter 7 introduces a sophisticated Extrinsic Random-based Ensemble (ERBE)

method where in a predetermined set of repetitions, a subset of external instances (ei-

ther malware or benign) as well as classification features are randomly selected, and an

aggregation function is adopted to combine the output of all base classification models

for each test case separately.

Chapter 8 attempts to schematize the so far ML-powered malware detection approaches

and techniques by organizing them under four axes, namely, the age of the selected

dataset, the analysis type used, the employed ML techniques, and the chosen perfor-

mance metrics. Moreover, based on these axes, this chapter introduces a converging

scheme which can guide future Android malware detection techniques and provide a

solid baseline to machine learning practices in this field.

Chapter 9 offers a discussion on the results and contributions of this PhD thesis. The

same chapter elaborates on future research directions as well.

Chapter 2

Background

2.1 Android’s Security Model

This section presents a brief discussion on the major components of the Android’s secu-

rity model. However, it primarily focuses on the permissions and inter-process commu-

nication, which are a key part of this thesis.

2.1.1 Application Sandboxing

One of the most important security features of Android is app sandboxing, also known

as app isolation. It works by taking advantage of the Linux OS user-based protection

to identify and isolate app resources. To do so, Android assigns a unique user ID (UID)

to each Android app and runs it in its own process. It then executes each app in a

dedicated process (process-level isolation) with that UID. The Application Sandbox is

located in the kernel, thus it extends to both native code and OS apps. Specifically, all

of the software running after loading the kernel, run within the app sandbox.

2.1.2 Permissions

App permissions support the user’s privacy by protecting access restricted data, such

as the user’s contacts, and restricting actions, such as making a phone call. Android

categorizes permissions into different types, including install-time permissions, runtime

permissions, and special permissions [14].

9

Chapter 2. Background 10

• Install-time permissions give an app limited access to restricted data and actions.

The system automatically grants an app install-time permissions upon installation.

• Runtime permissions, also known as “dangerous” permissions, grant an app ad-

ditional access to restricted data and restricted actions. Therefore, an app must

request runtime permissions before it can access the restricted data or perform

restricted actions. Since API level 23, apps which use runtime permissions prompt

users to accept permissions at runtime rather than at installation. Since API level

29, users are prompted by the runtime permissions dialog to either always allow,

allow while in use, or deny permissions.

So far, there are 30 dangerous permissions listed in the Android API, namely, API

version 30 [14]:

1. ACCEPT HANDOVER

2. ACCESS BACKGROUND LOCATION

3. ACCESS COARSE LOCATION

4. ACCESS FINE LOCATION

5. ACCESS MEDIA LOCATION

6. ACTIVITY RECOGNITION

7. ADD VOICEMAIL

8. ANSWER PHONE CALLS

9. BODY SENSORS

10. CALL PHONE

11. CAMERA

12. GET ACCOUNTS

13. PROCESS OUTGOING CALLS

14. READ CALENDAR

15. READ CALL LOG

16. READ CONTACTS

17. READ EXTERNAL STORAGE

18. READ PHONE NUMBERS

19. READ PHONE STATE

20. READ SMS

21. RECEIVE MMS

22. RECEIVE SMS

23. RECEIVE WAP PUSH

24. RECORD AUDIO

25. SEND SMS

26. USE SIP

27. WRITE CALENDAR

28. WRITE CALL LOG

29. WRITE CONTACTS

30. WRITE EXTERNAL STORAGE

• Special permissions correspond to particular app operations. Only the platform

and original equipment manufacturers (OEMs) can define special permissions.

Chapter 2. Background 11

2.1.3 Inter-Process Communication

Process isolation improves the security of the apps which are running on the device.

Nevertheless, there are some cases in which one process may need to provide useful

service to other processes. Android offers a mechanism for inter-process communication

(IPC) using remote procedure calls (RPCs), in which a method is called by an activity

or other app component, but executed in another process, with any result returned back

to the caller [15]. An Intent provides a facility for performing runtime binding between

the code in different apps.

Specifically, Intents carry information that the Android OS uses to select the appropriate

component to use, such as the exact component name or component category to receive

the intent. They also carry information which specifies the generic action to perform,

such as view or pick. For example, if an app wants to view a web page, it expresses

its “Intent” to view the URL by creating an Intent instance and handing it off to the

system. The system locates some other piece of code, in this case the web browser, that

knows how to handle that Intent, and runs it. There are two forms of intents used,

namely explicit and implicit. The former specify a component which provides the exact

class to be run. Implicit Intents on the other hand do not directly specify a software

component; instead, they must include enough information for the system to determine

which of the available components is best to run for that intent [16]. Listing 2.1 displays

a piece of the manifest file of an app which uses intents.

<activity android:name="ShareActivity">

<!-- This activity handles "SEND" actions with text data -->

<intent -filter >

<action android:name="android.intent.action.SEND"/>

<category android:name="android.intent.category.DEFAULT"/>

<data android:mimeType="text/plain"/>

</intent -filter >

<!-- This activity also handles "SEND" and "SEND_MULTIPLE" with media data -->

<intent -filter >

<action android:name="android.intent.action.SEND"/>

<action android:name="android.intent.action.SEND_MULTIPLE"/>

<category android:name="android.intent.category.DEFAULT"/>

<data android:mimeType="application/vnd.google.panorama360+jpg"/>

<data android:mimeType="image /*"/>

<data android:mimeType="video /*"/>

</intent -filter >

</activity >

Chapter 2. Background 12

Listing 2.1: Example of an intents declaration in an app’s manifest file

2.1.4 SELinux

Android uses the Security-Enhanced Linux (SELinux) to enforce mandatory access con-

trol (MAC) over all processes, even processes running with root/superuser privileges.

SELinux operates on the principle of default denial. In other words, anything not ex-

plicitly allowed is denied. SELinux can operate in two modes: “permissive”, in which

permission denials are logged but not enforced, and “enforcing”, in which permissions

denials are both logged and enforced. Android operates SELinux in enforcing mode [17].

2.1.4.1 Seccomp filter

In addition to SELinux, Android uses Seccomp [18] to further restrict access to the kernel

by blocking access to certain system calls. As of Android 7.0, Seccomp was applied to

processes in the media frameworks. As of Android 8.0, a seccomp filter is installed into

zygote, the process from which all apps are derived. It blocks access to certain system

calls, which have been implicated in some security attacks. It also blocks the key control

system calls, which are not useful to apps [19].

2.1.5 Application Signing

Android requires that all apps be signed with a certificate before they are installed on a

device or updated. Apps which attempt to install without being signed are rejected by

the package installer of the Android device. One important advantage of code signing

is that the OS can check if an installed app is coming from the same source upon their

update by comparing its signing certificates.

2.1.6 Trusty Trusted Execution Environment (TEE)

Trusty is a secure OS kernel derived from Little Kernel, which facilitates a Trusted

Execution Environment (TEE) for the Android OS. Trusty runs on the same processor

Chapter 2. Background 13

as the Android OS, but it is isolated from the rest of the system by both hardware

and software. Trusty and Android run parallel to each other. Trusty’s isolation aims

to protect itself from malware or potential vulnerabilities exploited. There are many

potential uses for a TEE such as mobile payments, multi-factor authentication, device

reset protection, secure PIN and fingerprint processing [20].

2.1.7 Verified Boot

Verified Boot ensures that all executed code comes from a trusted source, such as the

device’s OEM, rather than from an attacker or corruption. It works by establishing a

full chain of trust, starting from a hardware-protected root of trust to the bootloader,

to the boot partition and other verified partitions [21].

2.2 Mobile Malware

Despite Android’s well-thought and engineered security model, its great market share

as well as its openness have provided an interesting opportunity for attackers. Over

the years, Android malware have spread and evolved more than in any other platform

[3, 4]. Any type of software segments that lead to a device usage without the owner’s

awareness can be characterized as malware. There exist many different types of mobile

malware, including Trojans, worms [22], botnets [23], spyware and ransomware. Each

of them follows a diverse behavior pattern, but all of them are in scope of this thesis.

The latest mobile malware types are summarized in the following subsections.

2.2.1 Trojans

Malware can come packaged as a Trojan, a piece of software that appears to provide

some functionalities, but instead, contains a malicious functionality. Namely, its basic

feature is the creation of backdoors, so as to provide entry points to the remote attackers.

Contrary to viruses and worms, a trojan does not create replications.

When installed on a device, Trojans may steal user’s confidential information without

the user’s knowledge. They can also usurp browsing history, messages, contacts, and

even banking credentials. According to the Kaspersky Mobile Evolution Report [3],

Chapter 2. Background 14

more than 156K mobile banking Trojans, such as BankBot [24], have being detected in

2020. End-user devices get infected by fake updates, email, and SMS phishing.

2.2.2 Worms

A worm is a program that makes copies of itself, typically from one device to another,

using different transport mechanisms through an existing network without the user’s

intervention. To do so, contrariwise to computer viruses, worms are equipped with net-

working capabilities. The entities that can be affected by worms are web sites, internet

traffic and sometimes even the victim’s device can be remotely seized and operated by

the programmer of the worm.

2.2.3 Rootkit

A Rootkit is a type of program designed to hide itself in the compromised devices and

provide continued privileged access to a device. A rootkit was originally a collection of

tools that provided administrator-level access to a device or network [25].

2.2.4 Botnet

The word botnet is made up of two words: “bot” and “net”. The former term is short

for Robot and the latter for network. As shown in Figure 2.1 a botnet is a set of devices

linked together with the ability to be remotely controlled by the so called command and

control (C&C) server. Attackers often use botnets to launch large-scale attacks, such as

a distributed denial of service attack (DDoS), orchestrate massive spam mail campaigns,

conduct BitCoin mining, or to illegally collect information.

Chapter 2. Background 15

Figure 2.1: Typical centralized botnet architecture

2.2.5 Cryptocurrency Mining

While not as sophisticated as their desktop counterparts, mobile malware related to

Bitcoin mining are increasing every year [26, 4]. According to Kaspersky Security Net-

work [27], most malware of this type was hidden within popular apps, that were secretly

mining cryptocurrency while showing soccer videos.

2.2.6 Spyware

The purpose of spyware is not dedicated to causing direct system damage, but rather

to collecting information to be used for advertisement by third party entities, who keep

their identity secret [28]. Spyware apps may acquire, store and transfer personal infor-

mation (credentials, credit card numbers, phone numbers, e-mail addresses etc.), but are

also capable of sniffing network traffic and associated users’ activity, generating pop-up

messages, and altering default web pages in browsers. When installed on a device, this

piece of software spies the user’s activity and forwards it to remote servers. The spy-

ware does not display any app icon in the Application Launcher, and could therefore

stay unnoticed by users. One way to detect this malware is by observing the Application

Manager, where a so-called “Android System Message” app shows. Nickispy [29] is a

characteristic example of this type of malware.

Chapter 2. Background 16

2.2.7 Ransomware

As illustrated in Figure 2.2, this type of malware, prevents users from accessing the data

on their devices by encrypting them, until a considerable ransom amount, typically in

some cryptocurrency, is paid. In 2020 more than 20K mobile ransomware have been

detected [3]. Ransomware present an alarming threat to users and organizations who

must choose to either pay the ransom or end up with possibly valuable encrypted data.

Figure 2.2: Typical ransomware operation

2.2.8 Hybrid

This type of mobile malware is very common nowadays. For example, Android/LokiBot

[26] combines the functionality of a banking trojan with crypto ransomware. It can

encrypt files, but it might also send bogus notifications in an attempt to trick users

into logging in to their bank account. During 2018, Android/LokiBot has targeted more

than 100 financial institutions and kit sales on the dark web generated a profit of up to

2$ million [26].

2.3 Mobile Malware Penetration Techniques

This section succinctly presents the four most well-known malware penetration tech-

niques used by mobile malware. Note however that such techniques is not the focus of

the current PhD thesis.

Chapter 2. Background 17

2.3.1 Repackaging

Repackaging is often used to disassemble an app for appending malicious content and

then reassembling it. This process is done by reverse engineering tools, and as shown

in Figure 2.3, the result is a cloned app which operates as the original, but embeds

hidden malicious operations. Malware authors repackage the popular apps of Android

official market, namely Google Play [30], and distribute them on other less monitored

and policed third party app-stores. During repackaging, malicious authors change the

signature of repackaged app and so the app seems new to virus detectors. The main

steps involved in app repackaging are:

• Download the popular free/paid app from the popular app-store(s).

• Disassemble the app with a disassembler such as apktool [31].

• Generate a malicious payload in Java and convert it to bytecode using the dx (part

of the Android SDK build tools [32]) tool.

• Add the malware payload into the benign app. Modify the AndroidManifest.xml

and/or resources, if required.

• Assemble the modified source again using apktool [31].

• Distribute the repackaged app by self-signing with another certificate to the less

monitored third party app market.

Figure 2.3: General APK repacking procedure

Furthermore, repacking and repackaging techniques can be used to generate a large num-

ber of malware variants. It can also be used to produce a number of unseen variants of

an already known malware. As the signature of each malware variant varies, the com-

mercial anti-malware cannot detect the mutated malware. Repackaging is a big threat

Chapter 2. Background 18

as it can pollute the app distribution market places and also hurts the reputation of the

original third party developer. On top of everything else, malware writers can divert

advertisement revenues by replacing the advertisements of the original developers. The

AndroRAT APK Binder [33] tool repackages and generates a trojanized version of a

popular and legitimate app, equipping it with Remote Access Trojan (RAT) functional-

ity. That is, the adversary can remotely force the infected device to send SMS messages,

make voice calls, access the device location, record video and/or audio, and access the

device files using the hidden remote access service.

2.3.2 Drive by download

This technique refers to an unintentional download of malware in the background. As

shown in Figure 2.4, drive by download attacks occur when an unsuspected user visits

a nefarious website, which in turn injects malware into the victim’s device without the

user’s knowledge.

Figure 2.4: Drive by download method

2.3.3 Dynamic payloads

An app can also incorporate malicious payload as an executable APK/jar in encrypted

or plain format within its APK resources [34]. Once installed on the device, the app

decrypts the payload. If the malicious payload is a jar file, the malware loads the

DexClassLoader API and executes dynamic code. However, it can trick the user to

install the embedded APK by disguising as an important update. The app can execute

native binaries using the Runtime.exec API, an equivalent of Linux fork()/exec(). Some

Chapter 2. Background 19

malware, instead of embedding payload as a resource, download the malicious content

from remote servers dynamically, and thus are infeasible to detect through static analysis

methods.

2.3.4 Stealthy malware techniques

Android device malware scanners cannot perform deep analysis because of the avail-

ability of limited resources such as memory and battery. Malware writers exploit these

hardware constraints limiting the anti-malware defences, and use stealth techniques, in-

cluding code encryption, key permutations, dynamic loading, reflection code, and native

code execution to effectively attack the victim’s device.

2.4 Mobile Malware Detection Techniques

2.4.1 Introduction

Until now, mobile malware detection techniques has been surveyed by several works.

Yan et al. [7] compare mobile malware detection methods based on several different

evaluation criteria and metrics but mainly focus on the Android OS. La Polla et al. [35]

survey the evolution of mobile threats, vulnerabilities and intrusion detection systems

over the period 2004-2011. While this is one of the most comprehensive works on the

topic, by now it misses current developments. Gandotra et al. [36] examine techniques

for analyzing and classifying mobile malware. Furthermore, they list several works for

each detection technique. Nevertheless, they do not discuss the effectiveness of each work

based on their evaluation results. Yan et al. [37] report on mobile malware categories,

taxonomy and attack vectors. Furthermore, they provide a comparison of dynamic

mobile malware detection methods and discuss future research trends.

This section aims to provide state-of-the-art information on current mobile malware

trends. Furthermore, it offers a comprehensive overview of the different approaches to

mobile malware detection, in an effort to understand their detection method, discuss

their evaluation results, and possibly categorize each contribution under a novel classi-

fication scheme.

Chapter 2. Background 20

2.4.2 Mobile malware detection classification

Mobile malware detection methods serve as countermeasures for the existing malware.

However, their functionality differs according to variables related to the focus of each

method. The main categorization vector in malware detection methods is related to

the detection type. As shown in Figure 2.5 the two main detection techniques are the

signature-based and anomaly-based [6]. In regards to the analysis part, the static and

dynamic methods are used.

Figure 2.5: Mobile malware detection techniques

2.4.2.1 Signature-based detection

Generally, signature-based detection (also known as misuse detection) relies on known

signatures, that is, detection rules aiming to discern between benign and malicious pieces

of code. More specifically, a signature represents a collection of features which can be

used to model the malicious behavior of malware. Ideally, a signature should be able to

identify any malware exhibiting the malicious behavior specified by the signature [38].

While signature-based detection systems are able to identify previously encountered

malicious software and may have a high degree of portability between platforms, they

miss to recognize novel instances of malware or variations of known ones. Thus, the

detection ability of a misuse detection system primarily depends on the newness of the

detection rules the system has been configured with.

In static analysis, the acquisition of signatures occurs during the decomposition and

analysis of the malware source code. On the other hand, signatures in dynamic analysis

are acquired after the execution of the malicious code. More specifically, information is

Chapter 2. Background 21

gathered during app execution to decide its maliciousness. This is done using preconfig-

ured and predetermined attack patterns that are given beforehand by experts to build a

signature database or a pattern set [6]. Finally, hybrid analysis incorporates both static

and dynamic signature-based detection.

2.4.2.2 Anomaly-based detection

Anomaly-based methods use a less strict approach. This is done by observing normal

behavior of a device for a certain amount of time and using the metrics of that normal

model as a comparison vector to deviant behavior. In regards to the analysis part,

the static and dynamic methods are used. The static analysis examines an app before

installation by dissecting it, whereas the dynamic performs the analysis during the app

execution, by gathering data such as system calls and events. Either in the static or the

dynamic version, anomaly-based detection techniques comprise two parts, the training

and detection phase. During the former, a non-infected system is operating normally and

this procedure is observed and tracked. On the other hand, the detection phase serves

as a testing period, when deviations from the training period model are considered

anomalies. A key advantage of anomaly-based detection is its ability to detect zero-day

attacks [38]. Zero-day attacks are attacks that are previously unknown to the malware

detection system.

Static analysis does not require the execution of the malicious payload. Its function is

to check the code of the potentially malicious app for specific snippets of code, suspi-

cious functionality, and other behavioral traits. In dynamic analysis, the training and

detection phases happen during the execution of the app. Apart from the capability of

detecting unknown malware, this trait also enables the detection of zero-day attacks.

However, as already mentioned before, the false positive rate issues are rather intense. In

order to soften this incident, accurate normal behavioral models have to be constructed

during the training sessions. Hybrid analysis is rather popular among anomaly-based

detection solutions [6].

Chapter 2. Background 22

2.4.3 Survey of works

Mobile malware detection methods serve as countermeasures for the existing malware.

However, their functionality differs according to variables related to the focus of each

method. This section aims to classify the existing research works, according to the detec-

tion techniques reported by the authors, and review their functionality and effectiveness.

This survey focuses on research papers dated no more than 10 years ago. The considered

works have been categorized in the following subsections in chronological order.

2.4.3.1 Signature-based detection

Enck et al. [39] proposed a security service for the Android Operating System (OS),

named Kirin. Kirin certificates an app at install time, using a set of security rules, which

are templates designed to match suspicious properties in apps’ security configuration.

More specifically, after the installer extracts security configuration from the package

manifest, Kirin evaluates the configuration against a collection of predefined security

rules.

Chen et al. [40] proposed a detection approach which identifies threat patterns. It

analyzes the function invocation, as well as the data flow to detect malicious behaviors in

Android devices. More specifically, their scheme uses reverse engineering to recreate the

source code and class files from each app and builds the corresponding API invocation

and dependency graphs. Based on these two graphs, their system can detect threat

patterns, which may reveal whether an app attempts to access confidential information

or perform any illegal access. Their experiments show 91.6% detection rate over 252

malicious samples.

Papamartzivanos et al. [11] proposed a host and cloud-based system that operates

under a crowdsourcing logic. Their system includes 3 main services, namely privacy-

flow tracking, crowdsourcing, and detection and reaction against privacy violations. The

client communicates with the cloud services via a TLS connection and is relieved from

resource demanding tasks. More specifically, the client consists of 3 modules, namely

privacy inspection, response, and event sensor. The cloud side also consists of 3 modules,

namely crowdsourcing, detection, and hook update.

Chapter 2. Background 23

2.4.3.2 Anomaly-based detection

Wu et al. [41] implemented DroidMat, which provides malware detection through mani-

fest and API call tracing. The authors extract app information from its manifest file and

disassembly codes. More specifically, they collect information from the app’s manifest

file such as “intent”, which is an abstract description of an operation to be performed,

and Inter-Component Communications (ICC) and API calls related to permissions. The

authors collected 238 Android malware and 1,500 benign apps to test DroidMat and their

results show an up to 97.87% accuracy rate in detecting mobile malware.

An approach which analyses an app’s permissions to detect malware in Android

(PUMA), was presented by Sanz et al. [42]. The authors gathered 1,811 benign Android

apps, as well as 4,301 malware samples. The authors state that they observed several

differences in permissions usage by malware apps. More specifically, they noticed that

malware often requires only one permission, while benign apps usually ask for 2 or 3

permissions. The authors used several machine learning techniques for malware detec-

tion, including SimpleLogistic, NaiveBayes, BayesNet, SMO, IBK, J48, RandomTree

and RandomForest. Finally, they performed analysis on the extracted permissions from

mobile apps and observed a detection accuracy of 92%.

Peiravian et al. [43] proposed the combination of permissions and API calls and the use of

machine learning methods to detect malicious Android apps. Their framework consists of

4 components. The first one decompresses the APK file of an app to extract the manifest

and class files. The second characterizes apps based on the requested permissions and

API calls. The third one carries out feature extraction on the permissions and API

calls. The latter employs the training of the classification models from the collected

data. The authors state that during the evaluation tests, the proposed method achieved

a promising detection rate, while holding precision up to 94.9%.

In an attempt to address the issue of removing malicious apps from mobile app markets,

Chakradeo et al. [44] proposed an approach for market-scale mobile malware analysis

(MAST). MAST analyzes attributes extracted from the app package and uses Multiple

Correspondence Analysis (MCA) to measure the correlation between multiple categorical

data. Furthermore, only easily obtained attributes are extracted to keep MAST less

costly than deep analysis. These attributes are permissions included in the manifest

file, intent filters and pre-agreed upon action strings (also included in the manifest file),

Chapter 2. Background 24

native libraries inside the source code and malicious payloads hidden in zip files inside

the app package. During the training phase 15,000 apps from Google Play [30] and

a dataset of 732 known-malicious apps were used to train MAST. According to the

authors, MAST triage processes mobile app markets in less than a quarter of the time

required to perform signature detection.

Liang et al. [45] proposed a permission combination-based scheme for Android mobile

malware detection. The authors collected permission combinations declared in the app

manifest file, which are requested frequently by mobile malware, but rarely by benign

apps. More specifically, a tool called k-map was developed in order to find permission

combinations extracted from the app manifest file, which are frequently used by malware

apps. Moreover, they calculated the permission request frequencies out of the permission

combinations extracted. Their experiments showed that the system was able to detect

malware with low false positive and negative rates, that is, malware detection rate up

to 96%, and the benign app recognition rate was up to 88% [45].

Canfora et al. [46] proposed mobile malware detection using op-code frequency his-

tograms. Their approach classifies malware by focusing on the number of occurrences of

a specific group of op-codes. More specifically, the authors used a detection technique,

which uses a features vector obtained from 8 Dalvik op-codes. These op-codes are usu-

ally used to alter the app’s control flow. After training the classifier, the authors tested

their proposed method to conclude that these features are able to classify a mobile app

as trusted or malicious with a precision rate of 93.9%.

Yusof et al. [47] proposed a mobile botnet classification based on permissions and API

calls. During the training phase, 5,560 malware from 179 different mobile malware

families were collected. The authors examined 50 Android botnet samples using static

analysis and reverse engineering to extract the 16 most important permissions and 31

API Calls from the botnet samples. Finally, they chose 800 random apps from Google

Play [30] to test their classification using Naive Bayes, K-nearest Neighbour, Random

Forest, and Support Vector Machine algorithms. Their results achieved 99.4% detection

rate and 16.1% false positive rate.

Li et al. [48] proposed SIGPID, a malware detection system based on permission usage

analysis on the Android platform. To test their detection model, the authors collected

3 different datasets which contain 2,650, 5,494 and 54,694 malware apps respectively.

Chapter 2. Background 25

Their detection model uses 22 out of 135 permissions to improve the runtime performance

by 85.6%. Finally, they used machine learning algorithms to evaluate their results,

including RandomForest, PART, FT, RotationForest, RandomCommittee, and SVM,

and achieved a detection rate of 93.62%.

Tao et al. [49] proposed MalPat, an automated malware detection system which scans

for malicious patterns in Android apps. During the training phase, the authors were

able to aquire hidden patterns from malware and extract APIs that are widely used

in Android malware. The authors collected 31,185 benign apps and 15,336 malware

samples and extracted features from the source code of decompiled files. To evaluate

MalPat, the authors followed a repeated process, in which they randomly selected a

percentage of both malicious and benign datasets as the training set, and the remaining

part is regarded as the testing set. The average of their results show that MalPat can

detect malware with 98.24% F1 score.

Shen et al. [50] proposed a malware detection approach based on information flow analy-

sis. The authors proposed complex-flow as a new representation schema for information

flows. According to the authors, complex-flow is a set of simple flows that share a com-

mon portion of code. For example, if an app is able to read contacts, store them and

then send them over the Internet, then these two flows would be (contact, storage) and

(contact, network). The authors state that their approach can detect if an information

flow is malicious or not based on the app’s behavior along the flow. When a new app is

installed their system compares its behavior patterns (obtained from the complex-flows

representation of the app) to decide whether it is more similar to benign or malicious

apps from the training set using two-class SVM classification. During the evaluation

process, the authors used 4 different data sets, totaling 8,598 apps, to test the precision

of their detection approach.

Shabtai et al. [51] presented a system for detecting meaningful deviations in a mobile

app’s network behavior. The system monitors the running apps to create their “nor-

mal” network behavior. It is then able to detect deviations from the learned patterns.

According to the authors, their main goal was “to learn user-specific network traffic

patterns for each app and determine if meaningful changes occur”. For this reason,

semi-supervised machine learning methods were used to create the normal behavioral

patterns and to detect deviations from the app’s expected behavior.

Chapter 2. Background 26

Damopoulos et al. [52] proposed a tool which dynamically analyzes iOS apps in terms

of method invocation. The authors designed and implemented an automated malware

analyzer and detector for the iOS platform, namely iDMA. iDMA is able to generate

exploitable results, which can be used to trace app’s behavior to decide if it contains

malicious code. Also, Damopoulos et al. [52] proposed an IDS framework that supports

both host- and cloud-based protection mechanisms. Their framework employs diverse

anomaly-based mechanisms. To evaluate their architecture, the authors developed a

proof-of-concept implementation of the framework, equipped with 4 smartphone detec-

tion mechanisms. “The first two detection mechanisms, namely SMS Profiler and iDMA,

aim to detect the illegitimate use of system services and identify unknown malware. The

other two, coined iTL and Touchstroke, can provide (post) authentication to ensure the

legitimacy of the current user” [52].

Jang et al. [53] presented Andro-AutoPsy, an anti-malware system based on similar-

ity matching of malware information. During the training phase, the authors gathered

malware-centric and malware creator-centric information from anti-virus technical re-

ports, malware repositories, community sites and web crawling. The authors chose 5

footprints as features: “the serial number of a certificate, malicious API sequence, per-

mission distribution (critical permission set, likelihood ratio), intent and the intersection

of the usage of system commands and the existence of forged files” [53]. Andro-Autopsy

consists of a client app running on the device and a remote server. The client app sends

the app package file (.apk) to the remote server. The latter entity then analyzes the

app and decides whether it is malicious or not, based on integrated footprints. The au-

thors state that Andro-AutoPsy “successfully detected and classified malware samples

into similar subgroups by exploiting the profiles extracted from integrated footprints”

[53], while it is able to detect zero-day exploits at the same time. Furthermore, Andro-

AutoPsy allows anti-virus vendors to conduct similarity matching on previously detected

samples.

Chen et al. [54] aimed to combine network traffic analysis with machine learning meth-

ods to identify malicious network behavior in highly imbalanced traffic. The authors

captured traffic from over 5,560 mobile malware samples. Furthermore, they designed

a tool to convert mobile traffic packets into traffic flows. According to the authors, the

accuracy rate of the machine learning classifiers can reach up to 99.9%. However, the

performance of the classifiers declines when the imbalanced problem gets worse.

Chapter 2. Background 27

As discussed further in Chapter 3, Kouliaridis et al. [55] proposed Mal-warehouse, an

open-source tool performing data collection-as-a-service for Android malware behavioral

patterns. Specifically, the authors collected 14 malware samples to analyze their effects

on the Android platform. The authors developed an open source tool called “MIET”,

which extracts usage information, over a period of time, from the Android device for each

malware installed on the device. Finally, Mal-warehouse is enhanced with a detection

module, which the authors evaluated via the use of machine learning techniques.

Wang et al. [56] proposed a method which combines analysis of network traffic with

the c4.5 machine learning algorithm which according to the authors is capable of iden-

tifying Android malware with high accuracy. During the evaluation process the authors

tested their model with 8,312 benign apps and 5,560 malware samples. Furthermore,

their results show that the proposed model performs better than state-of-the-art ap-

proaches. Finally, when combining two detection mechanisms, it achieves a detection

rate of 97.89%.

Alam et al. [57] proposed DroidNative for the detection of both bytecode and native code

Android malware. According to the authors, DroidNative is the first scheme to build

cross-platform (x86 and ARM) semantic-based signatures for Android and operates at

the native code level. When apps are analyzed, bytecode components are passed to an

Android Runtime (ART) [58] compiler to produce a native binary. The binary code

is disassembled and translated into Malware Analysis Intermediate Language (MAIL)

code. After MAIL code is generated, DroidNative operates in two phases, training and

testing. To evaluate DroidNative, the authors performed a series of tests with over

5,490 Android apps. Their results demonstrated a detection rate of 93.57% with a false

positive rate of 2.7%. Unfortunately, as with all static analysis detection techniques,

DroidNative cannot detect compressed or encrypted malicious code.

Fei et al. [59] propose a hybrid approach for mobile malware detection. The authors

collect information pertaining to runtime system calls over a set of known malware and

benign apps using a dynamic approach. More specifically, they gather system-calling

data during runtime by modifying the Android OS source code. Furthermore, they

process and analyze the collected information to create malicious patterns and normal

patterns from both system calls and sequential system calls. That is, malicious and

normal patterns are produced “by calculating the ratio of the average frequency of a

Chapter 2. Background 28

sequential system call in the set of malware and the average frequency of the same

sequential system calls in the set of benign apps” [59]. According to the authors, the

accuracy rate of their detection approach exceeds 90%.

2.4.4 Discussion and future directions

This section presents a comprehensive comparison of the 22 mobile malware detection

approaches surveyed in Section 2.4.3. Figure 2 illustrates the timeline of the research

works included in this survey. As already mentioned, papers are dated between 2009

and 2018. Different kinds of geometrical shapes refer to detection classification (e.g.,

square to static signature-based, trapezium to behavior signature-based, parallelogram

to hybrid signature-based, circle to static anomaly based, diamond to dynamic anomaly-

based, and hexagon to hybrid anomaly-based). The various works are placed within the

diagram in chronological order (top to bottom). Numbers inside them correspond to

the matching reference. The letter on the left refers to OS type (A is for Android, I

is for iOS), while the letter on the right refers to the detection method. The selection

of letters is as close to the first letter of each detection method as possible. Solid lines

between two shapes imply influence (of a given work vis-a-vis to another), while dashed

ones imply compliance or reference to previous work.

As shown in Figure 2, Enck et al. [39] and Wu et al. [41] had an important impact on

the evolution of mobile malware detection. Furthermore, while there is a variation in

detection methods used during the previous 8 years, latest contributions lean towards

anomaly-based detection. More specifically:

Chapter 2. Background 29

Figure 2.6: Malware Detection Techniques in Chronological Order

• At least 9 out of 22 approaches depend on the app’s manifest file for their detection

process, including [39], [41], [60], [45], [42], [43], [47], [48], [49]. Permission analysis

is a popular detection technique among these approaches and it is the most pop-

ular detection technique since 2014. According to evaluation results from these

contributions, permission-based detection can produce results with high detection

rate, but also in some cases high false positive rate (FPR).

• Schemes which utilize native code analysis, such as Alam et al. [57], can produce a

high detection rate of up to 93.57% and 2.7% FPR. Unfortunately, this approach

cannot detect compressed or encrypted code.

Chapter 2. Background 30

• Complex-flow analysis is a new type of information flow analysis proposed by

Shen et al. [50], which according to the authors, produced 86.5% detection rate.

Unfortunately, their method cannot detect malicious behavior that is present in

native code, which is the case for some of the latest mobile malware.

• Chen et al [54] produced the highest accuracy rate among dynamic anomaly-based

approaches. However, while this approach can be highly accurate, it can only

detect a subset of malware samples, i.e., those that generate considerable network

traffic.

• iOS Detection approaches, such as the work proposed by Damopoulos et al. [61]

[52], produce high accuracy results, however these approaches require jailbreaking

[62], which could put the device at risk and make the end-user reluctant to employ

it.

• Hanlin et al. [60] use sandboxing to safely analyze malware behavior. Although

this is a rather promising approach, previous research has shown that some mobile

malware are able to detect emulators by looking into several device features [63].

• Some methods combine 2 detection categories into a hybrid solution so as to detect

a wide range of malware types. Several of these hybrid solutions carry out mobile

malware detection on both the host and cloud, including [60], [52], [11], [59]. While

hybrid solutions could offer many benefits, the small amount of reported results

from the works included in Section 2.4.3, as well as previous work [64] suggests

that these benefits should be subject to careful examination.

Some approaches were rendered as inconclusive during this survey due to doubtful

methodologies or metrics. These approaches are:

• Canfora et al. [46] showed a promising accuracy rate of up to 95% using OP-code

frequency analysis, but their results are doubtful due to outdated app samples

dated from 2012.

Tao et al. [49] showed high F1 score, but the authors used an outdated Android

OS version and malware samples.

Chapter 2. Background 31

• Damopoulos et al. [61] proposed a promising approach for the iOS platform and

reported zero FPR, but failed to report on essential data, such as the number of

non-malware samples used.

Most of the techniques surveyed in Section 2.4.3 still lack in detecting zero-day mal-

ware. Furthermore, with the current sophistication of malware, it is difficult to detect it

through traditional rule matching using existing technologies [65, 66]. This may be the

reason behind the large number of malicious apps still on the loose in official app stores.

Therefore, future research efforts should concentrate on clarifying how to efficiently join

detection techniques into hybrid solutions with the purpose of increasing the subset of

malware which can be detected, as proposed in previous work [67], but also offer actual

detection improvement [64].

2.4.5 Conclusions

This section provides a state-of-the-art survey on the timely topic of mobile malware

detection techniques. It does so, by categorizing and succinctly analyzing the various

detection schemes as proposed in the literature during the years 2011 to 2018, based

on their detection method. It also highlights on the benefits and limitations per cat-

egory of techniques and per examined scheme where applicable, in an effort to offer a

comprehensive overview of this challenging topic. As a side contribution, it elaborates

on the existing interrelations between the examined works, which not only reveals the

major influencers in this fast evolving research area but also the chief challenges to be

addressed in the near future.

2.5 Machine Learning-based Classification

In machine learning, classification is a supervised learning approach in which an algo-

rithm learns from the input data and then uses this learning to classify new observations.

In other words, it is the process of predicting the class of given instances [68]. Classes

are also called targets or labels. The dataset may simply be bi-class (like identifying

whether the person is male or female or that the mail is spam or non-spam) or it may be

multi-class. Some practical examples of classification problems are: speech recognition,

Chapter 2. Background 32

handwriting recognition, bio metric identification, document classification, and malware

detection.

2.5.1 Machine learning classifiers

There are a lot of classification algorithms available but it is not possible to conclude

which one is superior to other. It depends on the application and nature of the examined

dataset. The best performing classification algorithms used in this thesis are detailed

below.

Naive Bayes Classifier (Generative Learning Model) It is a classification tech-

nique based on Bayes’ Theorem with the assumption of independence among predictors.

In other words , a Naive Bayes classifiers assume that the presence of a particular feature

in a class is unrelated to the presence of any other feature or that all of these properties

have independent contribution to the probability [69]. This family of classifiers is rela-

tively easy to build and particularly useful for very large data sets as it is highly scalable.

Along with simplicity, Naive Bayes is known to outperform even highly sophisticated

classification methods.

Nearest Neighbor The k-nearest-neighbors algorithm is a supervised classification

technique that uses proximity as a proxy for ‘sameness’. The algorithm takes a bunch

of labelled points and uses them to learn how to label other points. To label a new

point, it looks at the labelled points closest to that new point (those are its nearest

neighbors). Closeness is typically expressed in terms of a dissimilarity function. Once it

checks with ‘k’ number of nearest neighbors, it assigns a label based on whichever label

the most of the neighbors have [70]. Figure 2.7 depicts the k-NN operation. Using the

geometric distance to decide which is the nearest item may not always be reasonable

or even possible: the type of the input may, for example, be text, where it is not clear

how the items are drawn in a geometric representation and how distances should be

measured. You should therefore choose the distance metric on a case-by-case basis.

Chapter 2. Background 33

Figure 2.7: K-Nearest Neighbor

Logistic Regression (Predictive Learning Model) The goal of logistic regression

is to find the best fitting model to describe the relationship between the dichotomous

characteristic of interest (dependent variable = response or outcome variable) and a

set of independent (predictor or explanatory) variables [71]. This is better than other

binary classification like nearest neighbor, since it also explains quantitatively the factors

that lead to classification. Overall, Logistic Regression is a significant machine learning

algorithm because it has the ability to provide probabilities and classify new data using

both continuous and discrete datasets. Figure 2.8 depicts logistic function’s curve which

indicates the likelihood of something, such as whether a person is male or female.

Figure 2.8: Logistic Regression

Chapter 2. Background 34

Decision Trees Decision tree builds classification or regression models in the form of

a tree structure. It breaks down a data set into smaller and smaller subsets while at the

same time an associated decision tree is incrementally developed [72]. The final result

is a tree with decision nodes and leaf nodes. A decision node has two or more branches

and a leaf node represents a classification or decision. The topmost decision node in a

tree which corresponds to the best predictor called root node. Decision trees can handle

both categorical and numerical data. Figure 2.9 depicts a simple example of a decision

tree.

Figure 2.9: Decision Tree

Random Forest Random forests or random decision forests are an ensemble learning

method for classification, regression and other tasks, that operate by constructing a

multitude of decision trees at training time and outputting the class that is the mode

of the classes (classification) or mean prediction (regression) of the individual trees.

Random decision forests correct for decision trees’ habit of over fitting to their training

set. Figure 2.10 illustrates the Random Forest’s operation.

Chapter 2. Background 35

Figure 2.10: Random Forest

Neural Network As shown in Figure 2.11, a neural network consists of units (neu-

rons), arranged in layers, which convert an input vector into some output. Each unit

takes an input, applies a (often nonlinear) function to it and then passes the output on

to the next layer. Generally the networks are defined to be feed-forward: a unit feeds

its output to all the units on the next layer, but there is no feedback to the previous

layer. Weightings are applied to the signals passing from one unit to another, and it is

these weightings which are tuned in the training phase to adapt a neural network to the

particular problem at hand.

Chapter 2. Background 36

Figure 2.11: Neural Network

2.5.2 Evaluation metrics

After training the model the most important part is to evaluate the classifier to verify its

applicability. We consider the following classification performance metrics, where TP,

TN, FP, and FN represent correspondingly true positives, true negatives, false positives,

and false negatives.

• Accuracy (CA) : TP
TP+TN+FP+FN . The number of correctly classified patterns over

the total number of patterns in the sample.

• Precision (P) : TP
TP+FP . The ratio of TP values over the sum of TP and FP.

• Recall (R) : TP
TP+FN . The ratio of TP over the sum of TP and FN.

• Area Under Curve (AUC): The higher positive-over-negative value ranking capa-

bility of a classifier.

• F1 : 2P×R
P+R .

2.5.2.1 Precision and Recall

Precision is the fraction of relevant instances among the retrieved instances, while recall

is the fraction of relevant instances that have been retrieved over the total amount of

relevant instances. Precision and Recall are used as a measurement of the relevance.

Chapter 2. Background 37

2.5.2.2 ROC curve (Receiver Operating Characteristics)

ROC curve is used for visual comparison of classification models which shows the trade-

off between the true positive rate and the false positive rate. The area under the ROC

curve is a measure of the accuracy of the model. When a model is closer to the diagonal,

it is less accurate and the model with perfect accuracy will have an area of 1.0

2.5.2.3 Area Under the Curve (AUC)

Generally, AUC quantifies the effectiveness of each examined approach for all possible

score thresholds. As a rule, the value of AUC is extracted by examining the ranking of

scores rather than their exact values produced when a method is applied to a dataset.

Noticeably, the estimation of the AUC measure is based on all possible thresholds.

Besides, this evaluation measure does not depend on the distribution of positive and

negative samples and therefore can produce more robust results when using non-balanced

datasets i.e., datasets with unequal number of instances per class. Figure 2.12 comprises

four exaples of a ROC curve and the corresponding AUC value.

Figure 2.12: AUC exaples

Chapter 2. Background 38

2.5.3 Training and validation

In a dataset, a training set is implemented to train a model, while a test (or validation)

set is to validate the model. Instances in the training set are excluded from the test

(validation) set. Usually, a dataset is divided into a training set and a validation set (or

testing set) in each iteration. There are more than one ways one can split a dataset into

a training and testing set, the most sampling methods are listed below.

• Cross-validation: Over-fitting1 is a common problem in machine learning which

can occur in most models. k-fold cross-validation can be conducted to verify that

the model is not over-fitted. In this method, the data-set is randomly partitioned

into k mutually exclusive subsets, each approximately equal size and one is kept

for testing while others are used for training. This process is iterated throughout

the whole k folds [73].

• Random sampling: Random sampling randomly splits the data into the training

and testing set in the given proportion (e.g. 70:30); the whole procedure is repeated

for a specified number of times.

• Leave-one-out: Leave-one-out is similar to random sampling, but it holds out one

instance at a time, inducing the model from all others and then classifying the

held out instances. This method is usually more stable and reliable but also very

slow.

2.5.4 Ensemble learning

Ensemble methods use multiple learning algorithms to obtain better classification per-

formance than could be obtained from the use of a single learning algorithm [74]. More

specifically, ensemble methods are meta-algorithms that combine several machine learn-

ing techniques into one predictive model in order to decrease variance (bagging), bias

(boosting), or improve predictions (stacking).

1overfitting is the production of an analysis that corresponds too closely or exactly to a particular
set of data, and may therefore fail to fit additional data or predict future observations reliably

Chapter 2. Background 39

2.5.4.1 Ensemble learning techniques

There are many known ensemble techniques, some of them are easy to implement while

others are more complex. The most common ensemble techniques are detailed below.

Taking the minimum or maximum of the results The most simple ensemble

learning implementation is taking the minimum or maximum predicted value from all

classifiers to make the final prediction.

Taking the mode of the results The mode is a statistical term that refers to the

most frequently occurring number found in a set of numbers. In this technique, multiple

models are used to make predictions for each data point. The predictions by each model

are considered as a separate vote. The prediction which we get from the majority of the

models is used as the final prediction.

Taking the average of the results In this technique, the average score from all of

the classifiers’ scores is calculated to make the final prediction.

Taking the weighted average of the results This is an extension of the averaging

technique. All models are assigned different weights defining the importance of each

model for prediction.

Bagging In Bagging, random samples of the training data are created (sub sets of

training data set). Then, we build a model (classifier or Decision tree) for each sample.

Finally, results of these multiple models are combined using average or majority voting.

As each model is exposed to a different subset of data and we use their collective output

at the end, so we are making sure that problem of overfitting is taken care of by not

clinging too closely to our training data set. Thus, Bagging helps us to reduce the

variance error.

Boosting Boosting is an iterative technique which adjusts the weight of an observation

based on the last classification. If an observation was classified incorrectly, it tries to

increase the weight of this observation and vice versa. Boosting in general decreases the

Chapter 2. Background 40

bias error and builds strong predictive models. Boosting has shown better predictive

accuracy than bagging, but it also tends to over-fit the training data as well. Thus,

parameter tuning becomes a crucial part of boosting algorithms to make them avoid

overfitting. Boosting is a sequential technique in which, the first algorithm is trained

on the entire data set and the subsequent algorithms are built by fitting the residuals

of the first algorithm, thus giving higher weight to those observations that were poorly

predicted by the previous model. It relies on creating a series of weak learners each of

which might not be good for the entire data set but is good for some part of the data

set. Thus, each model actually boosts the performance of the ensemble.

Stacking Stacking is an ensemble learning technique that combines multiple classi-

fication or regression models via a meta-classifier or a meta-regressor. The base level

models are trained based on a complete training set, then the meta-model is trained on

the outputs of the base level model as features. The base level often consists of different

learning algorithms and therefore stacking ensembles are often heterogeneous.

2.5.5 Dimensionality reduction

Dimensionality reduction is the process of reducing the dimension of the feature set.

As the number of features increases, the model becomes more complex. The more the

number of features, the more the chances of overfitting. A machine learning algorithm

which is trained on a large number of features, can get increasingly dependent on the

data it was trained on. This can lead to overfitted, resulting in poor performance on

real data, beating the purpose [75].

Avoiding overfitting is a major motivation for performing dimensionality reduction. The

fewer features our training data has, the lesser assumptions our model makes and the

simpler it will be. The most important advantages of dimensionality reduction are listed

below:

• Removes redundant features and noise.

• By decreasing misleading data the model accuracy improves [76].

• Less dimensions require less computing, thus requiring less training time.

Chapter 2. Background 41

• Less dimensions allow usage of algorithms unfit for a large number of dimensions

• Less data requires less storage space.

Linear dimensionality reduction methods The most common and well known

dimensionality reduction methods are the ones that apply linear transformations, like

PCA (Principal Component Analysis): Popularly used for dimensionality reduction in

continuous data, PCA rotates and projects data along the direction of increasing vari-

ance. As shown in 2.13, the features with the maximum variance are uses as principal

components.

Figure 2.13: PCA method

Factor Analysis: a technique that is used to reduce a large number of variables into fewer

numbers of factors. The values of observed data are expressed as functions of a number

of possible causes in order to find which are the most important. The observations are

assumed to be caused by a linear transformation of lower dimensional latent factors and

added Gaussian noise.

LDA (Linear Discriminant Analysis): projects data in a way that the class separability

is maximised. Examples from same class are put closely together by the projection.

Examples from different classes are placed far apart by the projection.

Non-linear dimensionality reduction methods Non-linear transformation meth-

ods or manifold learning methods are used when the data does not lie on a linear

subspace. It is based on the manifold hypothesis which says that in a high dimensional

structure, most relevant information is concentrated in small number of low dimensional

Chapter 2. Background 42

manifolds. If a linear subspace is a flat sheet of paper, then a rolled up sheet of paper

is a simple example of a nonlinear manifold. Informally, this is called a Swiss roll, a

canonical problem in the field of non-linear dimensionality reduction. Some popular

manifold learning methods are:

Multi-dimensional scaling (MDS) : A technique used for analyzing similarity or dissim-

ilarity of data as distances in a geometric spaces. Projects data to a lower dimension

such that data points that are close to each other (in terms if Euclidean distance) in the

higher dimension are close in the lower dimension as well.

Isometric Feature Mapping (Isomap) : Projects data to a lower dimension while preserv-

ing the geodesic distance (rather than Euclidean distance as in MDS). Geodesic distance

is the shortest distance between two points on a curve.

Locally Linear Embedding (LLE): Recovers global non-linear structure from linear fits.

Each local patch of the manifold can be written as a linear, weighted sum of its neigh-

bours given enough data.

Hessian Eigenmapping (HLLE): Projects data to a lower dimension while preserving the

local neighbourhood like LLE but uses the Hessian operator to better achieve this result

and hence the name.

Spectral Embedding (Laplacian Eigenmaps): Uses spectral techniques to perform dimen-

sionality reduction by mapping nearby inputs to nearby outputs. It preserves locality

rather than local linearity

t-distributed Stochastic Neighbor Embedding (t-SNE): Computes the probability that

pairs of data points in the high-dimensional space are related and then chooses a low-

dimensional embedding which produce a similar distribution.

Chapter 3

Mal-warehouse: A data

collection-as-a-service of mobile

malware behavioral patterns

3.1 Introduction

In the last few years, the expanding Android market share has become an increasingly

attractive target for malicious attacks. According to a report by F-Secure [77], 99% of all

mobile malware targets Android devices. Given the severity of this threat, there is a need

for the development of reliable detection solutions. A robust detection solution in such

platforms requires a rather detailed knowledge background, where malware behaviour

will be tracked and further observed. To this end, this chapter concerns the design

and implementation of Mal-warehouse, a data collection-as-a-service of mobile malware

behavioral patterns. Firstly, a series of tests is performed on an Android device. The

initial measurement takes place after a clean installation of the OS. After installing a

different malware per test, CPU, memory and network usage, as well as process and

network statistics are measured over time and then stored in a cloud database. The

database will become publicly available to the community and will allow for users’ con-

tribution of experimental metrics. Up to now, CPU and memory usage were selected for

further evaluation, due to their immediate feature availability that required only minor

pre-processing. Machine learning algorithms were then employed so as to compare the

43

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 44

aforementioned metrics of each infected session with the clean instance. The results of

the evaluation procedure showed that malicious behaviour can be successfully identified

in the majority of the cases.

Despite the rather satisfactory results, there were some unavoidable limitations. First,

there was a small amount of extracted patterns per spec and per malware, fact that

resulted in some poorly calculated metrics. Despite the fact that these metrics were

excluded, they can still be used in the future, when more information per malware is

collected. Furthermore, the mobile device we employed is running the relatively new

Android Nougat (7.0) version. This resulted in unexpected and restricted behavior for

some malware, especially for those dating back to 2012-2015. Finally, the device does not

support SIM cards, which means that certain malicious activities, such as SMS sending

could not be observed during the testing phase.

3.2 Proposed Methodology

For testing our tool, a total of 14 malware samples were collected to analyze and exper-

iment on their effects on a target Android device. In addition, Mal-warehouse Informa-

tion Extraction Tool (MIET), an open-source tool written in Python 3.4 was developed

for automating the process of collecting hardware usage information, such as CPU,

memory and network usage, running processes, and network traffic.

For this initial experiment, a NVIDIA Shield K1 tablet running the Nougat (7.0) Android

version was used. The device runs on a 2.2 GHz quad-core ARM Cortex A15 CPU and

carries 2GB of DDR3 RAM. At first, the aforementioned metrics were collected upon a

fresh installation of the OS. All collected malware were then tested on the device and all

the metrics were exported using MIET. Our approach demands that we revert the device

to its original state, after the installation and testing of each malware. This guarantees

the best possible comparison results and simultaneously ensures the forensic soundness

of the data. The metrics collected were logged in a behavioral database in the cloud.

The overall process is depicted in Fig. 3.1.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 45

Figure 3.1: Mal-warehouse Operation

The aim of the aforementioned testing process is not only to contribute information

on how different malware affect devices, but also the fact that further statistics related

to hardware usage exported by MIET can be evaluated for detection purposes. This

is achieved by using various machine learning algorithms (in our case kNN, Random

Forest, SVM, Naive Bayes, AdaBoost) to determine whether a device is infected by

malware, based on changes on the device behavior, instead of, say, just scanning for

known file hashes. Finally, after each malware was tested, a device image was saved for

further analysis and comparison. The MIET interface is depicted in Figure 3.2, where

the following operations are available.

• Scan device: Search and list available connected devices.

• Dump CPU info: Extract CPU usage information.

• Dump memory info: Extract memory usage information.

• Dump netstat details: Extract network statistics.

• Dump battery stats: Extract battery statistics.

• Dump process stats: Extract running processes and associated details.

• Run full device scan: This operation lasts for approximately 30 minutes. It

triggers 4 iterations, each running 60 seconds after the previous run has fin-

ished and executes each action listed above to get a complete device scan over time.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 46

Figure 3.2: Mal-warehouse Information Extraction Tool

3.2.1 Data Collection

Device data were collected by using the ADB [78]. ADB is a command-line tool that

enables communication between a device and a computer, and also provides access to

a Unix shell. Enabling the “USB Debugging” option under “Developer Options” is

important to allow MIET to communicate with the Android device via ADB. Rooting the

mobile device is needed in order to gain administrator-level access and perform activities

such as browsing the directories of the device’s internal storage, copying necessary files,

mounting partitions, etc. The necessary tools for rooting the device were the Android

SDK platform tools [79], as well as the recovery image provided by NVIDIA [80]. One of

the reasons for choosing the specific device was that NVIDIA provides an official rooting

mechanism, without the need of third party software.

MIET runs in any environment able to execute Python scripts. It uses ADB to run shell

commands and export CPU usage (overall and per process), memory usage (overall and

per process), network traffic data, and battery usage. For each malware, MIET measures

hardware usage statistics multiple times every few minutes and then stores the results

in a local .csv file. Each file contains different measurements over time. In other words,

multiple measurements are needed to capture all functions and effects of malware on a

certain device, over a certain period of time. It is important to understand that metrics

exported by MIET include more than just CPU or Memory usage as a percentage, but

thousands lines of process information per malware over time. More specifically, for

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 47

CPU usage, MIET is able to log user and kernel usage per process, as well as minor

and major faults per process. Furthermore, for memory usage, MIET is able to log

memory usage (measured in Kbyte) per process and memory usage for each process

category (e.g. System, Visible, Cached etc.). These results are then stored manually in

the database, while automation of the specific procedure is one of the authors’ future

plans. The following subsection enlists the malware used on the device.

3.2.2 List of Malware

This subsection includes a list of all malware analyzed and tested, as well as a succinct

description for each of them. The first 10 malware samples, dating from 2011 to 2014

were acquired from the Contagio Minidump depository [81], whereas the rest 4 from

Bhatia’ s Github depository [82].

Android Armor It is a potentially unwanted application (PUA), a type of malware

that is not essentially responsible for causing system damage, but is still not wanted in a

system, since it monitors user behavior to pick pop-up ads. Pop-ups are likely to affect

the device’s performance but they definitely have an effect on users’ experience, due

to their personalized character. Similarly to most PUAs, Android Armor is available

for download by third party application platforms or websites. When installed, it is

invoked when the user opens a browser application. It begins running in the background,

cascaded as a user experience improvement utility. Overall, the aim of this malware is

to advertise more unwanted applications. Android Armor was spotted in January 2013

[83].

BadNews This malware is masqueraded as an advertisement and upon its installation,

it starts spreading various other malware. Its actions then range from spreading fake

news messages and sending the device’s phone number to a command and control (C&C)

server, to prompting users to install other malicious applications. BadNews is also known

to disguise itself as application updates to other popular applications. The malware was

initially propagated from the Google Play store and an estimated 2 to 9 million users

had already downloaded this application from the store before its removal. BadNews

was discovered in April 2013 [84].

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 48

Xsser It is a mobile Remote Access Tool (RAT). It is spreading through Man-In-The-

Middle (MITM) and phishing attacks [85]. Researchers believe that this malware is

being used by an organized group which targets owners of specific devices and software

vendors with the goal of stealing credentials, hijacking browsing sessions, and executing

code at the infected devices. Attacks have focused on software vendors, software-as-a-

service (SaaS) providers and Internet Service Providers (ISPs). They also serve other

malware via phishing or by impersonating legitimate websites. The malware was orig-

inally created so as to infect the Android OS, but later versions of this malware affect

jailbroken iOS devices. Surveillance, theft of login credentials and Distributed Denial of

Service (DDoS) attacks are malicious activities caused by Xsser infections. Xsser was

detected in October 2014 [86].

CoinKrypt It uses the maximum computational power of a device for generating

virtual currency [87]. This results in device overheating and battery drain. The malware

appears to be targeting only newer virtual currencies such as Litecoin, Dogecoin, and

Casinocoin. The threat was detected in March 2014.

NotCompatible This malware operates like a drive-by download threat [88]. It is

downloaded by visiting an infected website, which tricks victims into downloading a

package, namely update.apk. Once installed, the malware attempts to communicate

with C&C servers. NotCompatible was first discovered in January 2012.

Nickispy It is a spyware circulating in unofficial application markets in China. When

installed on a device, it spies the user’s activity and forwards it to remote servers. The

spyware does not display any application icon in the Application Launcher, and could

therefore stay unnoticed by users. One way to detect this malware is by observing the

Application Manager, where a so-called “Android System Message” application shows.

This spyware was detected in October 2011 [89].

SpamSoldier It is a type of mobile malware that turns the victim’s device into a

bot and sends spam text messages, while pretending to be a game application. It

proceeds to the actual game .apk installation, but also engages in malicious activity in the

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 49

background and sends spam messages that attempt to spread the malware. SpamSoldier

was detected in December 2012 [90].

AngryBirds - LeNa Once activated, the malware connects with a C&C server, in-

stalling launch packages without the owner’s approval. This malware is targeted for

devices running the Android OS. Lookout researchers have stated that they have dis-

covered this exploit on a number of alternative application marketplaces, hiding as a

fake version of Rovio’s popular Angry Birds in Space game. This malware was detected

in April 2012 [91].

Angrybirds – Transformers Researchers of the Russian antivirus vendor Doctor

Web [92] have analyzed the behavior of this malware, which is now identified as An-

droid.Elite.1.origin, and discovered that it is designed to disrupt certain communication

on the device, as well as to delete data stored on the SD card. The Elite Android

Trojan requires administrative rights, while misleading the user that it is necessary for

the completion of the installation process. The moment it gains higher privileges, it

automatically starts the wiping process of the storage unit. Furthermore, it prevents

communication via texting by blocking communication applications and access to them

and the message “Obey Or Be Hacked” pops up. This malware was detected in October

2014 [93].

Feabme It is a remote access Trojan which appears to be a popular Android game

such as the “Cowboy adventure”. This Trojan can steal files and take over services or

applications. Furthermore, it includes ransomware code, which can encrypt files, lock

the screen and blackmail the user for a payment up to 500 USD to unlock the device.

This threat was detected in July 2015 [94].

Rumms It refers to a family of mobile malware targeting users from Russia. Attack-

ers lure their victims into downloading this malware by sending fake SMS messages

containing malicious links. The infected app will request administrator privileges, hide

itself and then send device information to a remote C&C server. Furthermore, infected

phones upload incoming SMS messages to remote servers, forward incoming calls, and

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 50

send SMS messages to contacts. The earliest identified sample was traced in January

2016 [95].

TrojanDownloader.Agent.JI This malicious application imitates an Adobe Flash

Player update. It is distributed by compromised websites such as adult services. The

application creates pop ups related to increased battery consumption until the user

enables the service. Further actions include sending device information to C&C servers

and downloading other malicious applications. The application was detected in February

2017 [96].

3.3 Evaluation

This section is concerned with our initial machine learning evaluation procedure. Two

metrics, namely CPU and memory usage of infected devices, are tested using a variety

of classification algorithms against the equivalent measured values when the device was

in a “clean” state.

3.3.1 Machine Learning Results

MIET exports metrics in .csv format. The metrics are then imported into the database,

which contains the following tables: malware, CPU usage, memory usage, device be-

haviour, hardware behaviour. The table named “Malware” lists all the malware and

includes a short description of each one. It also provides each malware with a unique id.

The table entitled “CPU usage” includes usage (%), process, user and kernel usage (%),

minor and major faults and a malware id field, which interconnects each row with the

“Malware” table. The table entitled “Memory usage” includes usage (Kbyte), process,

tag, and a malware id field. The “Hardware behavior” table lists only the increase in

CPU and memory usage, as well as a malware id field. The “Device behavior” table

includes a malware id field and a set of device behavior qualitative indications, such as

the deleted files, file replication, pop-up windows, and the restricted services. Tables 3.1

and 3.2 are snapshots of the Mal-warehouse database.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 51

Usage Process User Kernel Minor Major Malware

4.5 mediaserver 2.8 1.6 3 0 4

4.0 system server 2.6 1.4 731 0 4

3.6 com.android.systemui 1.2 2.3 542 1 4

0.9 android.process.media 0.5 0.3 766 1 4

0.6 rm ts server 0.6 0.0 14 0 4

Table 3.1: Mal-warehouse Database - CPU Usage Table

Usage Process Tag Malware

131.832 surfaceflinger 1 2

110.266 com.android.systemui 1 2

98.66 system 1 2

64.322 com.google.android.gms 1 2

56.996 com.android.chrome 1 2

Table 3.2: Mal-warehouse Database - Memory Usage Table

3.3.2 CPU Usage Results

Data analysis on the results was carried out using the open source data mining tool

Orange [97] and included only quantitative metrics. More specifically, each row of the

imported files contains a column pointing to the target variable, which represents the

ground truth state of the tuple (infected-clean) and the rest of its columns are either

CPU or memory usage attributes.

As already pointed out, in our evaluation, 5 different machine learning algorithms,

namely kNN, Random Forest, Support Vector Machine, Naive Bayes and AdaBoost,

were used. The selected sampling technique was 10-fold cross-validation. Table 3.3

shows the best performance results per malware for the classification related to CPU

usage. AdaBoost and Naive Bayes showed the best performance over the rest of the

algorithms. It is also observable that contemporary malware exhibited lower successful

detection rates when compared to the respective older instances. One possible interpre-

tation of this phenomenon is that their mechanisms may consume less resources when

compared to their ancestors. However, this is not a safe conclusion and more data have

to be collected in order to give a more definitive answer.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 52

Malware AUC CA F1 Precision Recall Algorithm

Android Armor 69.2% 79.1% 88.3% 81.3% 96.6% AdaBoost

Angry Birds Lena 80.3% 73.0% 81.8% 69.8% 98.7% AdaBoost

Bad News 80.3% 82.4% 89.5% 82.3% 98.0% AdaBoost

Android CI4 79.2% 78.1% 86.5% 77.8% 97.5% AdaBoost

Coinkrypt 53.7% 74.4% 85.0% 77.0% 94.7% AdaBoost

Nickyspy 51.8% 74.0% 84.7% 77.7% 93.2% AdaBoost

Spamsoldier 56.6% 75.8% 85.8% 77.7% 96.6% AdaBoost

Xsser 78.7% 83.9% 90.6% 83.2% 99.4% AdaBoost

Feabme 74.4% 69.5% 69.2% 73.6% 65.2% Naive Bayes

Mazar bot 63.3% 67.1% 79.8% 73.8% 86.7% Naive Bayes

Rumms 77.2% 71.9% 71.6% 73.5% 69.8% Naive Bayes

TrojanDownloader.Agent.JI 76.1% 73.1% 73.0% 76.3% 69.9% Naive Bayes

Table 3.3: CPU Usage Evaluation

Furthermore, it is notable that the “Rumms” malware is among the toughest against

CPU usage detection, scoring the lowest recall and one of the lowest precision rates.

“Feabme” on the other hand, scored the lowest precision and one of the lowest recall

rates. “Xsser” has the highest precision, recall and accuracy rates. Finally, the ratio

between the number of TP and TN results is slightly unbalanced. More specifically, the

detection of non-infected patterns was less accurate, which can be seen in some of the

AUC rates.

3.3.3 Memory Usage Results

Tests and score of each malware analysis for memory usage results are shown in Ta-

ble 3.4. From the Table 3.4, it can be observed that AdaBoost had the best performance.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 53

Malware AUC CA F1 Precision Recall Algorithm

Android Armor 67.9% 80.1% 87.7% 82.5% 93.5% AdaBoost

Angry Birds Lena 85.4% 83.6% 83.0% 84.7% 81.4% AdaBoost

Bad News 76.8% 88.0% 92.9% 88.0% 98.4% AdaBoost

Android CI4 71.4% 84.4% 90.8% 85.6% 96.6% AdaBoost

Coinkrypt 79.1% 89.3% 93.7% 88.6% 99.5% AdaBoost

Nickyspy 74.9% 87.4% 92.6% 87.3% 98.6% AdaBoost

Spamsoldier 72.7% 85.8% 91.6% 86.6% 97.3% AdaBoost

Xsser 75.0% 86.1% 91.7% 87.0% 96.9% AdaBoost

Feabme 84.7% 84.0% 90.5% 86.1% 95.4% AdaBoost

Mazar bot 75.8% 79.1% 86.8% 83.3% 90.6% AdaBoost

Rumms 80.6% 83.5% 90.2% 86.0% 94.8% AdaBoost

TrojanDownloader.Agent.JI 78.3% 80.6% 88.6% 83.5% 94.3% AdaBoost

Table 3.4: Memory Usage Evaluation

Most malware have a satisfying result in memory usage, with “Android Armor” having

the lowest recall and precision, as well as AUC rates. On the other hand, “Coinkrypt”

presented the highest recall, precision and accuracy detection rates.

3.4 Discussion

It is obvious that the overall quality of the data collected by MIET strongly depends

on the amount and diversity of the available malware. Further data extractions from

the same and other malware would improve the respective findings. In addition, due

to hardware limitations, a large amount of malicious applications were never tested as

intended, while different versions of the Android OS would result in different device

behaviors. Older Android OS versions would increase malware activity, while newer

versions would further restrict malware activity on the device. Additionally, enhancing

the scenarios with device usage simulations would also alter malware activity on the

device and help improve the results. Finally, devices that support SIM cards would also

increase activity with certain malware.

3.5 Related Work

Christodorescu et al [98] tested 3 commercial virus scanners to conclude that simple

obfuscation transformations were able to successfully cascade the engineered malware.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 54

The authors proposed Static Analysis of Executables (SAFE) in order to detect malicious

patterns in executables and tested the aforementioned solution in 4 different samples.

Other approaches, such as Kolter and Maloofs’ research [99] focus on machine learning

for detecting malicious executables.

Blasing at al. [100] presented AASandbox, a method based on the native Android

sandbox mechanism, for performing static and dynamic analysis of executables.

Damopoulos et al. [101] proposed an anomaly-based Intrusion Detection System (IDS)

based on users’ behavioral profiles on mobile devices. Furthermore, they used 4 machine

learning algorithms to detect misuse in phone calls, SMS and Web browsing service logs.

According to the authors, at least one algorithm was able to detect misuses with a very

high success rate.

An approach to permission-based Android malware detection called PUMA, was pre-

sented by Sanz et al. [42]. The authors used machine learning techniques for malware

detection, by analyzing the extracted permissions from the mobile applications.

Wu et al. [41] implemented DroidMat, which provides malware detection through man-

ifest and API calls tracing. Its static feature-based mechanism “includes permissions,

deployment of components, intent messages passing, and API calls for characterizing

the Android applications behavior”.

Damopoulos et al. [61] proposed a tool for dynamically analyzing any iOS software in

terms of method invocation. The same authors also detailed on the synergistic operation

of host and cloud anomaly-based IDS for smartphones.

Papamartzivanos et al. [11] proposed a cloud-based system that operates under a crowd-

sourcing logic. Their system includes three main services, namely privacy-flow tracking,

crowdsourcing, and detection and reaction against privacy violations.

Jang et al. [53] presented Andro-AutoPsy, an anti-malware system based on similarity

matching of malware information. The authors state that Andro-AutoPsy succeeded

in detecting and classifying malware samples into similar subgroups “by exploiting the

profiles extracted from integrated footprints, which are implicitly equivalent to distinct

characteristics”.

Chapter 3. Mal-warehouse: A data collection-as-a-service of mobile malware behavioral
patterns 55

3.6 Conclusions

In this chapter we presented a collection of mobile malware behavioral patterns by

extracting CPU and memory usage information per process from a mobile device us-

ing the open-source tool MIET, which is available at the following repository: https:

//gitlab.com/billkoul8/malwarehouse.git. With the extracted data, the authors

were able to detect CPU and memory usage anomalies. After converting the exported

usage information accordingly, the data were uploaded into a public database. By using

machine learning algorithms on the exported metrics, the authors were able to evaluate

the optional detection model with rather favorable results. The significance of this re-

search lies in the promising results from the collection of samples analyzed and to the

scalable character of the proposed solution.

https://gitlab.com/billkoul8/malwarehouse.git
https://gitlab.com/billkoul8/malwarehouse.git

Chapter 4

Feature importance in Android

malware detection

4.1 Introduction

As previously mentioned in Chapter 1, anomaly-based detection employs machine learn-

ing to detect malicious behavior, i.e., deviation from a model built during the training

phase. In this context, a key point, which to our knowledge is not properly addressed

in the hitherto literature, is the importance of each feature category, say, permissions

and intents, in mobile app classification. Simply put, which group of features in general,

and which features within each group in particular do contribute the most information

when it comes to classification? And, is the answer to the previous question related to

the employed dataset?

To respond to the previous questions, this chapter first briefly surveys all the major

datasets used in the context of app classification in the Android platform. We specifically

consider datasets exploited in the respective literature from 2012 onward. Then, we

concentrate on the so far most commonly used and modern datasets, namely Drebin

[102], VirusShare [103], and AndroZoo [104], and try to answer the second question per

dataset. Precisely, by using the average coefficients of permissions and intents for a large

number of malware instances per corpus, we demonstrate the most significant feature

category. Lastly, we report the top ten features per dataset and discuss similarities

between these corpora.

56

Chapter 4. Feature importance in Android malware detection 57

4.2 Datasets

Heretofore, several mobile app corpora have been built and exploited by researchers to

evaluate malware detection approaches on the Android platform. This section surveys in

chronological order all major mobile malware datasets used in the literature. Table 4.1

compares all datasets, with regard to their age, size, access, and impact to the research

community. As shown in the table, AndroZoo and VirusShare are the only datasets still

being updated today. The table also includes the number of works each dataset was

employed according to: (i) a corresponding list of publications as given in the dataset’s

website, (ii) a listing of downloads in the dataset’s website, and (iii) the citations the

original dataset work, if any, has received according to Google Scholar.

• Contagio mobile mini-dump [81]: It is a publicly available repository of mobile

malware samples. The samples were collected in 2010 and currently the dataset

contains 189 malware samples, thus being by far the smallest available corpus.

• MalGenome [105]: In 2012, the MalGenome dataset was released. This corpus

contains 1,260 malware samples categorized into 49 different malware families.

The malware instances are dated from Aug. 2010 to Oct. 2011. The work which

introduced this dataset seems to be by far the most highly cited. Unfortunately,

the MalGenome project has stopped sharing their dataset in Dec. 2015.

• VirusShare [103]: The access to the dataset’s website is granted via invitation

only. The dataset does not only contain mobile malware samples, but also samples

from various platforms, including Windows and Linux. Furthermore, it is updated

regularly and contains samples in the time span from 2012 to 2020. This dataset is

also very popular in the research community, i.e., the number of works exploiting

it is steadily growing every year.

• Drebin [102]: It comprises 5,560 malware across 179 different families. The samples

were collected between Aug. 2010 and Oct. 2012. Drebin is one of the most

popular datasets and it is referenced in more that 1.3K works in the literature.

On the downside, it has not received an update since 2012.

• DroidBench [106]: Is a set of apps implementing different types of data leakage.

At present, the repository comprises 120 apps. The main task of these apps is

Chapter 4. Feature importance in Android malware detection 58

data leak. Put simply, the samples in DroidBench are not real malware instances

and are only meant to evaluate analysis tools.

• PRAGuard [107]: It currently contains 10,479 malware samples, obtained by ob-

fuscating the MalGenome and the Contagio mobile mini-dump datasets with seven

different obfuscation techniques. The samples are dated from 2010 to 2011.

• AndroZoo [104]: AndroZoo is a growing collection of Android apps collected from

diverse sources, including the official Google Play store [30]. The dataset is updated

regularly and it currently contains over 12M samples. The access to the dataset

is granted by application only. The number of works using this dataset is also

growing on a yearly basis.

• Kharon [108]: It comprises only 7 instances of malware, namely, SimpLocker,

BadNews, DroidKungFu1, SaveMe, MobiDash, WipeLocker, and Cajino, which

have been manually dissected and documented. The samples are dated from 2012

to 2016.

• Android Adware and General Malware Dataset (AAGM) [109]: It is generated

from 1,900 apps belonging to the following three categories: 250 adware apps, 150

general malware apps, and 1,500 benign apps. Benign samples are dated from 2015

to 2016, but there is not enough information on the creation date of the malware

samples.

• AMD [110]: It is a publicly shared dataset which contains 24,553 samples cate-

gorized in 135 varieties among 71 malware families. The samples are dated from

2010 to 2016. At the time of writing, the AMD website were unavailable.

4.3 Feature importance

A key factor that affects the accuracy of machine learning based malware detection

methods is the importance of features contained in malware samples [111]. To obtain a

clear view of this aspect, the current section presents our results on feature importance

over a great mass of malware apps collected from the state-of-the-art datasets. That

is, as already pointed out in section 4.2, VirusShare and AndroZoo seem to be the only

Chapter 4. Feature importance in Android malware detection 59

Dataset Created Last updated Size Access type Publications/Downloads/Citations

Contagio mobile 2010 2010 189 Public -/-/-

MalGenome 2011 2011 1,260 Unavailable -/460/2181

VirusShare 2011 2020 Unknown* Invitation 1307/-/-

Drebin 2012 2012 5,560 Public -/157/1353

DroidBench 2013 2013 120 Public -/-/-

PRAGuard 2015 2015 10,479 Application -/133/84

AndroZoo 2016 2020 12,498,250* Application -/-/267

Kharon 2016 2016 7 public -/-/20

AAGM 2017 2017 1,900* Public -/-/29

AMD 2017 2017 24,553 Public -/368/171

Table 4.1: Outline of major datasets ordered by their creation date. Asterisk = not
all samples are malicious, Dash = Not available

datasets still being updated today. Furthermore, the Drebin dataset has been used by

a multitude of research works on the topic of mobile malware detection, thus making it

ideal when comparing new detection methods with previous state-of-the-art.

Precisely, in the context of this section, we randomly collected 1K malware samples

from each of these three datasets, as well as 1K random benign apps from Google play

to create three 2K balanced datasets of both malware and benign apps. The samples are

dated from 2010 to 2012, 2014 to 2017, and 2017 to 2020 for the Drebin, VirusShare and

AndroZoo corpora, respectively. Static analysis was performed via the open-source tool

Androtomist [111] to extract permissions and intents for each of the 3K malware plus

1K benign samples collected in total. Specifically, each app was decompiled to get the

Manifest.xml file and log permissions and intents to create feature vectors, i.e., binary

representations of each distinct feature.

The feature importance score is assigned by coefficients calculated as part of an Infor-

mation Gain (IG) model. Specifically, IG is an entropy-based feature evaluation method

and is defined as the amount of information provided by the feature items [112]. Put

simply, low probability, i.e., rare events are more surprising and have a greater amount

of information. This also means that probability distributions where the events are al-

most equally likely are more surprising and have larger entropy. Therefore, in our case,

information entropy can be roughly thought of as how much variance the data have. For

example, a dataset of only one feature would have zero entropy. On the other hand, a

dataset of mixed features would have relatively high entropy. The formula to calculate

Chapter 4. Feature importance in Android malware detection 60

the information Entropy for a dataset with C classes is as follows:

E = −
C∑
i

pilog2pi

where p is the probability of randomly picking an element of class i, i.e., the proportion of

the dataset made up of class i. It is worth noting that the entropy metric of uncertainty

introduced by Shannon [113] has been exploited in several works in the information

security literature [114, 115, 116].

Computing the IG for a feature involves calculating the entropy of the class label, i.e.,

positive (malware) or negative (benign) for the entire dataset and subtracting the con-

ditional entropies for each possible value of that feature, in our case “exist” (1) or “not

exist” (0). The entropy calculation requires a frequency count of the class label by

feature value. Precisely, the instances of a dataset are selected with a feature value x.

Then, the occurrences of each class are counted and the entropy for x is computed. This

step is repeated for each possible value x (0,1) of the feature. The formula to calculate

IG is as follows:

IG(D, v) = H(D)–H(D|v)

Where IG(D, v) is the information gain for the dataset D for the variable v, H(D) is

the entropy for the dataset before any change, and H(D|v) is the conditional entropy

for the dataset given the variable v. The higher the IG score the more information is

gained from this feature.

Tables 4.2, 4.3, and the left side of table 4.4 include the top 10 features observed for

Drebin, VirusShare, and AndroZoo, respectively, along with their IG score. By observing

the top 10 features of Drebin and VirusShare in Tables 4.2 and 4.3, it becomes obvious

that there is a similarity between the top features of these corpora. More specifically,

the first three features are the same for both Drebin and VirusShare’s top 10. In total,

7 out of 10 features are identical in both tables divided into 6 permissions and 1 intent.

On the other hand, as shown in the left side of table 4.4, AndroZoo has 1 out of 10

identical features with Drebin’s top 10, and shares zero out of 10 identical features with

VirusShare’s top 10. Lastly, all of the Androzoo’s top 10 features are intents, contrariwise

to Drebin and VirusShare where only 2 and 3 out of 10 are intents, respectively. This

further demonstrates the difference in feature importance among the examined datasets.

Chapter 4. Feature importance in Android malware detection 61

To verify our conclusions on feature importance regarding the examined datasets, we

randomly selected an additional 1K malware apps from the most contemporary one,

i.e., Androzoo, and also randomly added 1K new benign apps from Google Play. This

doubles the number of instances contained in our AndroZoo dataset, i.e., 2K malware

and 2K benign apps in total. The right side of table 4.4 contains the feature importance

scores for this new double size dataset. As expected, the top 10 features in Table 4.4

are all intents too. Also, 8 out of 10 features are common to the two sides of the table,

and 3 out of the 4 top features occupy the same places in both sides of the table. This

further supports the observation that feature importance is tightly related to the age

of the malware. Naturally, this phenomenon may negatively affect the performance of

older detection methods if solely based on these two categories of features.

Figure 4.1 illustrates the average feature importance scores per dataset, for both the

examined feature categories, namely permissions and intents. Note that the mean score

is calculated over all the permissions and intents identified, and not solely on the top

10 values included in tables 4.2, 4.3, and 4.4. As easily observed from the figure, in

the AndroZoo corpus, intents produced a much more higher - approximately triple - IG

score than permissions. Emphatically, this situation applies almost equally to both the

2K and 4K datasets. Nevertheless, this picture is clearly inverted in the Drebin and

VirusShare corpora, that is, in Drebin there is an ≈ +0.0045 and in VirusShare an ≈

+0.002 higher score than that of intents.

Chapter 4. Feature importance in Android malware detection 62

Figure 4.1: Average feature importance scores on all three datasets for the two feature
categories (Permissions and Intents)

IG Score Feature Category

0.2294 android.permission.INTERNET Permissions

0.2130 android.permission.READ PHONE STATE Permissions

0.1335 android.permission.SEND SMS Permissions

0.0994 android.permission.WRITE EXTERNAL STORAGE Permissions

0.0965 android.permission.RECEIVE BOOT COMPLETED Permissions

0.0939 android.permission.RECEIVE SMS Permissions

0.0857 android.permission.READ SMS Permissions

0.0810 android.intent.action.BOOT COMPLETED Intents

0.0706 com.google.android.c1dm.intent.RECEIVE Intents

0.0683 android.permission.ACCESS COARSE LOCATION Permissions

Table 4.2: Top 10 features in the Drebin dataset.

Chapter 4. Feature importance in Android malware detection 63

IG Score Feature Category

0.2305 android.permission.INTERNET Permissions

0.2276 android.permission.READ PHONE STATE Permissions

0.1713 android.permission.SEND SMS Permissions

0.1477 android.permission.RECEIVE SMS Permissions

0.1328 android.permission.WRITE EXTERNAL STORAGE Permissions

0.1067 android.permission.READ SMS Permissions

0.0958 android.intent.category.HOME Intents

0.0926 android.intent.action.DATA SMS RECEIVED Intents

0.0648 android.intent.action.BOOT COMPLETED Intents

0.0610 android.permission.WAKE LOCK Permissions

Table 4.3: Top 10 features in the VirusShare dataset.

IG Score Feature IG Score Feature Category

0,1550 android.intent.action.USER PRESENT 0,1680 android.intent.action.USER PRESENT Intents

0,1401 android.intent.action.PACKAGE REMOVED 0,1528 android.intent.action.PACKAGE REMOVED Intents

0,1208 android.intent.category.DEFAULT 0,1208 android.intent.category.BROWSABLE Intents

0,0769 android.intent.action.PACKAGE ADDED 0,1162 android.intent.action.PACKAGE ADDED Intents

0,0672 android.intent.category.BROWSABLE 0,0955 cn.jpush.android.intent.NOTIFICATION RECEIVED PROXY Intents

0,0652 android.intent.action.VIEW 0,0812 android.intent.action.ACTION POWER CONNECTED Intents

0,0582 com.google.android.c1dm.intent.RECEIVE 0,0780 org.agoo.android.intent.action.RECEIVE Intents

0,0530 cn.jpush.android.intent.NOTIFICATION RECEIVED PROXY 0,0722 com.google.android.c1dm.intent.RECEIVE Intents

0,0521 android.intent.action.ACTION POWER CONNECTED 0,0685 android.intent.action.MEDIA MOUNTED Intents

0,0518 org.agoo.android.intent.action.RECEIVE 0,0685 cn.jpush.android.intent.NOTIFICATION OPENED Intents

Table 4.4: Top 10 features in the AndroZoo dataset. Left: 2K apps dataset, right:
4K apps dataset

As a final step, the permissions and intents were used separately to classify the mal-

ware samples collected from the 4K AndroZoo corpora. Recall that vis-à-vis the rest

of the datasets given in Table 4.1, AndroZoo is expected to be more challenging as

it contains contemporary malware. Specifically, Table 4.5 includes the AUC and ac-

curacy (CA) scores for permissions and intents for a number of base models, namely

AdaBoost, k-NN, Logistic Regression (LR), Naive Bayes (NB), Multilayer Perceptron

(MLP), Random forest (RF), Stochastic Gradient Descent (SGD) and Support Vector

Chapter 4. Feature importance in Android malware detection 64

Category AdaBoost k-NN LR NB MLP RF SGD SVM Ensemble

AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA

Permissions 0,737 0,706 0,767 0,616 0,758 0,705 0,762 0,692 0,739 0,707 0,735 0,704 0,671 0,671 0,471 0,484 0,757 0,711

Intents 0,842 0,790 0,756 0,730 0,835 0,766 0,808 0,712 0,849 0,788 0,856 0,799 0,761 0,761 0,472 0,497 0,858 0,801

Both 0,865 0,806 0,813 0,767 0,852 0,794 0,835 0,72 0,867 0,803 0,882 0,814 0,762 0,763 0,502 0,501 0,879 0.809

Table 4.5: AUC and accuracy comparison between permissions and intents for the
4K AndroZoo corpora. Best scores for the 8 base models are in boldface.

Machine (SVM). Note that the rightmost column of the same table shows the AUC and

CA scores calculated by using an ensemble model. The ensemble model was constructed

by averaging the output of all 8 base models previously mentioned. The evaluation of

each model was carried out using the 10-fold cross-validation technique.

As observed from Table 4.5, when using the base models, the best AUC score if only

employing the permissions as a feature category is 76.7% vis-à-vis 85.6% when only

using intents. On the other hand, the best AC score is 70.7% and 79.9% when using

permissions and intents, respectively. Simply put, as a sole feature category, intents

scored a 8.9% and 9.2% higher AUC and AC than permissions, respectively. On the other

hand, the ensemble model shows a 10.1% and 9% improvement in AUC and accuracy

score, respectively. Finally, as shown in the bottom line of the Table, the best AUC

and AC scores when using these two feature categories in tandem are 88.2% and 81.4%,

respectively. This means that the utilization of both feature categories resulted in a

betterment of 2.1% and 0.8%, on the AUC and AC respectively, when compared to the

scores achieved when using only intents. Of course, this increment in performance is

indeed considerable, but not exceptional.

4.4 Related work

This section presents previous work on feature importance and feature selection. As

already mentioned, thus far, this topic has received little attention in the literature.

Feizollah et al. [117] categorized the available features into four groups, namely, static,

dynamic, hybrid, and app’s metadata. Furthermore, the authors evaluate the aforemen-

tioned features with regard to the difficulty of extraction and their popularity among

the relevant literature. Finally, they offer a survey of the available datasets. On the

Chapter 4. Feature importance in Android malware detection 65

downside, the only available datasets at the time of this research were Contagio [81],

MalGenome [105], and Drebin.

Zhao et al. [118] proposed a feature selection algorithm called FrequenSel. According

to the authors, FrequenSel selects features which are frequently used in malware and

rarely used in benign apps, thus it can more accurately distinguish between the positive

and negative class. During their experiments, the authors evaluated their approach

with a collection of 7,972 apps, which contained malware collected from Drebin and

other public malware libraries, as well as benign apps from Google Play. Their results

reported an accuracy of up to 98%. Similar to [117], the apps used in this work are

nowadays considered outdated.

Kouliaridis et al. [111] introduced an online open-source tool called Androtomist, which

performs hybrid analysis on Android apps. The authors focused on the importance

of dynamic instrumentation, as well as the improvement in detection achieved when

hybrid analysis is used vis-à-vis to static analysis. During their experiments, the authors

compared feature importance between three datasets, namely Drebin, VirusShare, and

AndroZoo. Finally, the authors elaborated on features which seem to be commonly

exploited in malware and seldom in benign apps. While the datasets used in their work

comprise newer apps as opposed to [117] and [118], the authors used a rather small

subset of each dataset in the course of their experiments.

To the best of our knowledge, none of the above mentioned works address feature im-

portance across multiple datasets with a large number of samples.

4.5 Conclusions

This chapter examined the literature on Android malware detection spanning the period

from 2012 to 2020. The focus was on contributions exploiting machine learning and on

identifying the datasets used in each relevant work. Our analysis showed that three

datasets, namely Drebin, VirusShare, and AndroZoo stand out. Following, we used a

significant mass of malware instances existing in each of the aforementioned datasets

along with a large number of benign instances to estimate the feature importance of

permissions and intents. We reported the most important features per dataset in terms

of IG, as well as similarities and differences between the top features in each of them. Our

Chapter 4. Feature importance in Android malware detection 66

results reveal a noteworthy difference in feature importance when inspecting our partial

AndroZoo datasets vis-à-vis the other two. Thus, our findings, especially those stemming

from the AndroZoo dataset which consists of contemporary malware apps, demonstrate

that the permissions feature alone is insufficient, and even the mixture of intents and

permissions does not yield remarkable results, and therefore it should be bolstered by

supplementary, more weighty features. The need for more feature categories, i.e., the

ones produced via static or dynamic analysis or both, as well as their importance in

the detection process is also supported and scrutinized by previous work [111]. As a

way forward, we aim to improve this research by also examining the significance of

features stemming from dynamic analysis, in an effort to find the best combination

of feature categories which can be used against mobile malware. Moreover, based on

feature importance, we aim to examine feature dimension reduction via the use of diverse

techniques.

Chapter 5

Two anatomists are better than

one - Dual-level Android malware

detection

5.1 Introduction

As previously explained in section 2.4, mobile malware detection schemes can be catego-

rized into two broad classes, namely signature and anomaly-based. The former collects

patterns and signatures stemming from known malware, and compares them against

unknown pieces of code for determining their status. The latter class employs a more

lax approach; by observing the normal behavior of a piece of code for a certain amount

of time and using the metrics of that normal model against any deviant behavior. App

analysis on the other hand is done by means of either a static, dynamic, or hybrid

method. Briefly, opposite to the dynamic approach, static analysis involves examining

an app without actually running it. In the last few years, considerable work has been

devoted to all the three types of app analysis for the sake of effectively detecting mal-

ware on Android [102, 119, 120, 121, 52]. However, hitherto, little attention has been

paid to hybrid approaches for malware detection with emphasis on ML. Moreover, as

previously explained in Section 4.5, features stemming from static analysis alone, such

as permissions and intents may not be sufficient when examining concurrent mobile mal-

ware apps, thus there is a need for more weighty features. The current chapter aims

67

Chapter 5. Dual-level Android malware detection 68

to improve the research presented in Chapter 4 by also extracting additional features

stemming from dynamic analysis.

This chapter concerns the design, implementation and evaluation of Androtomist, a hy-

brid detection solution that combines static analysis and dynamic instrumentation to

detect mobile malware on the Android platform. Instrumentation is the process of in-

jecting trace code into a software’s source code, binary code, or execution environment,

and is mainly exploited for debugging, tracing, and performance and security analysis

purposes. Instrumentation techniques do not necessarily modify code, but rather tam-

per with the app’s execution or behavior based on defined constructs. The advantages

of melding static analysis with dynamic instrumentation into a hybrid approach are

twofold. On the one hand, the static analysis works as a fast pre-filtering mechanism

capitalizing on permission analysis, API calls, and intents. On the other, by instru-

menting code, one is able to scrupulously analyze and detect a plethora of behaviors

during runtime, such as network traffic, information leakage threatening the privacy of

the end-user [11], and so on. On top of legacy signature-based metrics, Androtomist

is assessed via the use of different classification performance metrics against three well-

known malware datasets.

To enable the use of Androtomist by virtually anyone, including ordinary end-users,

a web app has been developed. The web-based interface caters for easily uploading

and analyzing mobile apps on-the-fly. Both static and dynamic analysis in terms of

feature extraction are performed automatically. Finally, unlike similar open source tools,

Androtomist is easy to set up and has only a few dependencies, all of which pertain to

open source software. The main contributions of this study are:

• A methodology is presented that collects groups of static and dynamic features

mapping the behavior of an app, including permissions, intents, API calls, Java

classes, network traffic, and inter-process communication. Especially for the dy-

namic analysis part, among others, we improve the hitherto related work by means

of contributing features emanating from the hooking of Java classes, which is made

possible due to instrumentation.

• We examine the effect of features when dynamic instrumentation is provided. It is

demonstrated that the effectiveness of classification models based on either static

Chapter 5. Dual-level Android malware detection 69

or dynamic analysis without instrumentation is outperformed by models using

dynamic instrumentation.

• We report experimental results on three different well-known mobile malware

benchmark datasets that are directly compared with state-of-the-art methods un-

der the same settings. The performance of the approaches presented in this chapter

is quite competitive to the best results reported so far for these corpora, demon-

strating that the proposed methods can be an efficient and effective alternative

toward more sophisticated malware detection systems.

• We propose an ensemble approach by averaging the output of all base models for

each malware instance separately. The combination of all base models achieves the

best average results in all three data sets examined. This demonstrates that en-

sembles of classifiers based on multiple, possibly heterogeneous models, can further

improve the performance of individual base classifiers.

• A new, publicly available, open source software tool is provided that could be

exploited for conducting further research on mobile malware detection.

5.2 Proposed Methodology

This section details on our methodology, that is, the tool implemented, the feature

extraction process, and the datasets exploited.

5.2.1 Androtomist

Androtomist is offered as a web app [122], which enables the user to easily upload,

analyze, and study the behavior of any Android app. Figure 5.1 depicts a high-level

view of the Androtomist’s architecture. Specifically, Androtomist comprises three basic

components, namely virtual machines (VMs), database (DB), and a web app. Each app

is installed on a VM running the Android OS. All the features collected during app

analysis are stored in the DB. A user is able to interact with Androtomist via the web

app.

For the needs of this work, Androtomist runs on a desktop computer equipped with

an Intel Core i7-3770K CPU and 8GB of RAM. VirtualBox [123] is used to create and

Chapter 5. Dual-level Android malware detection 70

Figure 5.1: Androtomist’s high level architecture

manage Virtual Machines (VMs). Depending on the user’s preference, a VM running

Android ver. 7.1, 8.0 or 9.0 is automatically deployed during an app’s dynamic analysis

phase in order to extract its runtime behavior. A VM communicates with Androtomist

using ADB [78], which is a command-line tool that enables communication between an

Android device and a computer, and also provides access to a Unix shell. Each time after

the installation and testing of an app, the device (VM) is reverted to its original state.

This guarantees the best possible comparison results and simultaneously ensures the

forensic soundness of the data [55]. This process can be easily performed automatically

when using VMs, and as result, the execution time needed for the whole process is

substantially reduced. In the context of this work, VMs running the Android ver. 7.1

were used. The reason for not choosing a newer version is to achieve the maximum

possible compatibility across malware samples from each dataset listed in Section 5.2.3.

Finally, Androtomist is written in .NET Core and its source code is publicly available

at [124] under the European Union Public Licence [125].

The process of analyzing APK files is simple and does not demand any special knowledge

about malware analysis. After the user connects to the Androtomist’s app, they are

able to upload the desired APK file in the “files” section. Next, after clicking on the

corresponding button, the system initiates the analysis process, which executes in the

background. The output per APK file analyzed is available for inspection in the “results”

webpage, where there is also an option to export it to a CSV-formatted file. The results

webpage incorporates a summary of the app’s malicious features, if any, plus an overall

Chapter 5. Dual-level Android malware detection 71

percentage estimation on whether the app is malevolent or not. A detailed output

report is also available for download, which contains a substantial amount of data,

namely permissions, intents, network traffic, and inter-app communications. Generally,

inter-app communication refers to the action of data being passed on to another app

using intents during runtime. However, it is noted that inter-app communication cannot

always be detected while analyzing one app at a time. Androtomist yields the following

types of data:

• Data from static analysis: Permissions and intents from the manifest file, API calls

retrieved from the smali files.

• Data from dynamic analysis by means of instrumentation: Network traffic, inter-

app communication, Java classes.

All the above mentioned pieces of data are stored in the DB. The web app offers two

types of user menu, “user” and “admin”. The latter is meant only for the expert user and

offers advanced functions, such as rebuilding the detection signatures from new datasets

(see subsection 5.3.1), exporting feature vectors to train ML models (see subsection

5.3.2), and adding users to the app. The former is destined to the novice user, even the

non-tech-savvy one, and offers basic functionality, including uploading and analyzing

apps, as well as inspecting the analysis results.

5.2.2 Extraction of features and feature modeling

Under the hood, Androtomist firstly decompiles and scans the app’s APK file to extract

information, and secondly, installs and runs the APK on a VM, while generating pseudo-

random user action sequences to extract its runtime behavior. In addition, the tool

produces vectors of features that can be fed to ML classifiers to assort apps. The

internal workings of both static and dynamic analysis phases is schematically shown in

Figure 5.2.

Precisely, the app’s APK is fed 1© to the analysis controller, which first triggers static and

then dynamic analysis. During static analysis 2©, the APK file is scrutinised to collect

static features as detailed further down. During dynamic analysis 3©, a VM running the

Android OS is loaded, and the APK is installed on it 4©. The instrumentation code is

Chapter 5. Dual-level Android malware detection 72

Figure 5.2: Androtomist’s components interworking

injected during runtime 5©. Moreover, pseudo-random user input events are generated

6© and the instrumentation controller logs any information emanated from the triggered

events 7©. The totality of features collected by both static and dynamic analysis are

stored in the DB. The following subsections elaborate on each of the aforementioned

steps of the analysis process.

Static feature extraction: The APK file is used as input to fetch static features, i.e.,

permissions, intents, and API calls. These features are automatically extracted with the

help of reverse engineering techniques. Indicatively, for a 1Mb, 10Mb, and 20Mb app,

the overall process takes correspondingly ≈10, ≈16, and ≈19 secs. In greater detail, the

main steps are as follows:

• Use the Apktool [31] to decompile the APK file and get the manifest file called

“AndroidManifest.xml” and the binary stream file called “classed.dex”.

Chapter 5. Dual-level Android malware detection 73

• Get app’s permissions and intents from the manifest file.

• Decompile the binary stream to acquire the smali files and scan them to discover

API calls.

Dynamic feature extraction: Androtomist collects a variety of information during app

runtime by means of dynamic instrumentation. These pieces of data include the Java

classes used, network communication specifics, and inter-app communication details. To

do so, Androtomist capitalises on Frida [126], a full-fledged free dynamic instrumentation

toolkit. Frida is able to hook on any function, inject code into processes, and trace the

app’s code without executing any compilation steps or app restarts. In particular, the

instrumentation controller illustrated in Figure 5.2 feeds 7© the instrumentation code

along with the app’s package name to Frida during runtime. The instrumentation code

hooks on method implementations and alters their operation. Information logged by

Frida is forwarded to Androtomist in real-time using ADB. As previously mentioned,

all the aforementioned functions are performed automatically. The overall process takes

≈2 min for all apps, independent of their size. Specifically, 1 min is required to load

a VM and install the app, and another one is allocated to the generation of ≈1,000

pseudo-random user action sequences using the UI/app exerciser Monkey [127]. The

main stages can be summarized as follows:

• Start a new VM with a clean image of the Android OS.

• Connect the device (VM) with ADB.

• Copy the selected APK file in the device (VM) and install it.

• Start the instrumentation process using the package name and the instrumentation

code.

• Generate pseudo-random streams of user events into the app on the VM.

• Log the output from the instrumentation process, namely java classes, inter-app

communication derived from triggered intents, and any information stemming from

network communications, including communication protocols, sockets, IPs, ports,

and URLs.

Chapter 5. Dual-level Android malware detection 74

Androtomist allows experienced users to create and import custom Javascript instrumen-

tation code and inject it during dynamic analysis. The code in Listing 5.1 is a simplified

example of such a case and can be applied to log possible intents triggered during run-

time. Specifically, the code hooks the constructors of the class android.content.Intent,

which is used by Android apps to trigger intents. On the other hand, Listing 5.2 provides

the code which can be used to hook classes and log parameters.

/* The primary pieces of information in intents are:

1. Action

The general action to be performed , such as

ACTION_VIEW , ACTION_EDIT , ACTION_MAIN , etc.

2. Data

The data to operate on , such as a person record in the contacts DB ,

expressed as a URI */

Java.perform(function () {

var intent = Java.use("android.content.Intent");

// constructor Intent(String action)

intent.$init.overload(’java.lang.String ’). implementation=function(action)

{

console.log("action" + action);

}

// constructor Intent(Intent o)

intent.$init.overload(’android.content.Intent ’). implementation=function(o)

{

console.log("intent" + o);

}

// constructor Intent(String action , Uri uri)

intent.$init.overload(’java.lang.String ’, ’android.net.Uri’)

.implementation=function(action , uri)

{

console.log("action" + action + ", url" + uri);

}

...

});

Listing 5.1: Example of instrumentation code which hooks intents

// Objects to hook

var objectsToLookFor = ["java.net.Socket","java.net.URLConnection","java.net.URL",

"dalvik.system.DexClassLoader"....];

for (var i in objectsToLookFor) {

Java.perform(function () {

Chapter 5. Dual-level Android malware detection 75

Java.choose(objectsToLookFor[i], {

"onMatch": function (instance) {

console.log("\nProcess has Instantiated instance of: "

+ objectsToLookFor[i]);

console.log("Details: " + instance.toString ());

},

"onComplete": function () {

}

});

});

}

Listing 5.2: Example of instrumentation code which hook Java classes

The data collected in the DB can be further analyzed to classify an app as malicious or

benign. To this end, as it is illustrated in Figure 5.3, the gathered raw data must be first

transformed into vectors of features. As already pointed out, the resulting vectors can

be exported to a CSV-formatted file and used in the context of any data mining tool.

Figure 5.3: Feature engineering. fi corresponds to an existing feature

5.2.3 Dataset

In the context of mobile malware detection, several datasets were built to cover manifold

and exceptionally demanding malicious cases. These corpora of malware samples are

considered as benchmark datasets for evaluating novel schemes that attempt to distin-

guish between malware and goodware samples. Initially, this chapter employed three

Chapter 5. Dual-level Android malware detection 76

well-known datasets used extensively in the related literature; the full Drebin dataset

[102] dated from 2010 to 2012, a collection (subset) from VirusShare [103] dated from

2014 to 2017, as well as a collection from Androzoo [104] dated from 2017 to 2020. Pre-

cisely, the number of malware samples taken from each of the aforementioned datasets

was correspondingly 5,560, 10,000, and 1,520, i.e., a total of 17,080 samples. It is im-

portant to note that the Drebin dataset contains outdated samples, and therefore, these

pieces of malware were only used to cross-validate our results vis-à-vis the related work.

On the other hand, Androzoo samples are expected to be more challenging when it

comes to detection, given that this corpus contains newer, and therefore more sophisti-

cated malware in comparison to those in the Drebin and VirusShare datasets.

After analysing 17,080 mobile malware samples from the three datasets, a total of more

than 50,000 different vectors of features were collected. Note that each vector is a binary

representation of each distinct feature. Let us for example take the simplest case of just

two apps. App A1 uses permission A, intent B, and initiates communication via HTTP

with IP: 1.1.1.1. App A2 on the other hand, uses permission B, intent C, and triggers

communication via HTTPS with IP: 1.1.1.2. As a result, as shown in Table 5.1, the

vectors of features for both app A1 and app A2 have twice as many binary indicators.

Of course, a real-world app would produce a much more lengthy vector.

App permissionA permissionB intentA intentB HTTP HTTPS 1.1.1.1 1.1.1.2

A1 1 0 1 0 1 0 1 0

A2 0 1 0 1 0 1 0 1

Table 5.1: Feature vectors for example apps A1 and A2.

Naturally, putting aside the capacity of the data mining tool, the overall number of

50,000 different vectors, meaning 50,000 diverse columns (features), exceeds the ability

of Androtomist and virtually and proof-of-concept tool to fetch them in a reasonable time

using SQL queries. So, for the needs of our experiments in subsection 5.3.2, a smaller

subset of 100 or 120 malware samples per dataset was finally used. Specifically, we

randomly selected 100 malware samples from each of the Drebin and VirusShare datasets

and 120 from - the more challenging - AndroZoo. This sample reduction technique is

also observed in previous work, including those in [128], [129] and [130]. Specifically,

common malware families can produce overestimated results. Therefore, we filtered

commonplace information among malware families, such as sample year and package

Chapter 5. Dual-level Android malware detection 77

name from each dataset, for the sake of obtaining equally distributed samples across

the different malware families. It is important to mention that all the three (reduced)

datasets are balanced, containing an equal number of randomly selected malicious and

benign apps. The benign apps were collected from Google Play Store [30] and are

common across all the three datasets but the AndroZoo, which incorporates 20 more.

5.2.4 Classifiers and metrics

The vast majority of the state-of-the-art methods focused on the detection of malicious

samples were ranked based on recall and precision of correct answers combined by the F1

measure. For each instance separately, these measures of correctness are concentrated

on providing a binary answer, either a positive (malware class) or a negative (goodware

class) one. This indicates that the information about the distribution of positive and

negative instances is necessary in order to set this threshold. In this work, we follow

exactly the same evaluation procedure to achieve compatibility of comparison with pre-

viously reported results. For each dataset, the set of the extracted scores based on the

test instances are normalized in the interval of [0,1] per classification model per examined

method. To this direction, the estimation of the threshold is set equal to 0.5.

Moreover, we use the AUC of the receiver-operating characteristic curve as the main

evaluation measure [131]. Generally, AUC quantifies the effectiveness of each examined

approach for all possible score thresholds. As a rule, the value of AUC is extracted

by examining the ranking of scores rather than their exact values produced when a

method is applied to a dataset. Noticeably, the estimation of the AUC measure is based

on all possible thresholds. Besides, this evaluation measure does not depend on the

distribution of positive and negative samples.

In this work, a sizable number of well-known and popular supervised ML algorithms are

applied. That is, for each dataset, we consider seven of the most widely used binary

classification models, namely Logistic Regression (LR), Näıve Bayes, Random Forest,

AdaBoost, Support-vector machine (SVM), k-nearest neighbors (k-NN) and Stochastic

Gradient Descent (SGD). The majority of the classification algorithms applied falls

under eager learning. In this category, supervised learning algorithms attempt to build

a general model of the malicious instances, based on the training data. Obviously, the

performance of such classifiers strongly depends on the size, quality and representative of

Chapter 5. Dual-level Android malware detection 78

the training data. On the other hand, k-NN is a weak learner (known as lazy learner) as

that is not using the training data to construct a general model, but it makes a decision

based on information extracted for each sample separately. For each classifier applied,

the default values of the parameter settings are used. The general model of each eager

classifier is built following the 10-fold cross-validation technique.

Finally, for each dataset, a simple meta-model, that is, an aggregate function, is de-

veloped combining all the base classifiers applied either in hybrid or static methods

separately. This heterogeneous ensemble is based on the average score resulted by all

seven binary classification models for each sample. Regarding the Android malware

literature, “ensemble learning” is also exploited by the authors of References [132, 133]

5.3 Evaluation

We assess our approach using both signature and anomaly-based detection. In fact, re-

garding signature-based detection, Androtomist has the capacity to automatically gen-

erate detection signatures by combining static and dynamic features. We first present

the signature-based results in subsection 5.3.1, and then we detail on the classification

results after training a ML model with the identical set of features.

5.3.1 Signature-based detection

Generally, misuse detection, also known as signature-based detection, relies on known

signatures, that is, detection rules aiming to discern between benign and malicious pieces

of code. While these systems are capable of identifying previously encountered malicious

software and may have a high degree of portability between platforms, they miss to

recognize novel instances of malware or variations of known ones. Thus, the detection

ability of a misuse detection system, as the one examined in this subsection, primarily

depends on the newness of the detection rules the system has been configured with.

In the context of Androtomist, this type of detection involves comparing the features

collected during static and dynamic analysis for a new (“unknown”) app against those

already stored in the DB for all the malicious apps encountered so far. Put differently, to

Chapter 5. Dual-level Android malware detection 79

assess signature-based detection against the three datasets mentioned in section 5.2.3, a

sufficient mass of malware samples had to be analyzed beforehand to create signatures.

Therefore, by using the sample reduction technique explained in Section 5.2.3, 1902

random malware samples were chosen (correspondingly 499, 1403 from Drebin, and

VirusShare) and being both statically and dynamically analyzed to collect features. This

number pertains to those malware samples that (a) are not included in the reduced

datasets presented in Section 5.2.3, and (b) have been filtered to prune duplicate malware

families by using each app’s package name and hash signature.

The derived signatures comprise combinations of features collected from both static and

dynamic analysis. A combination incorporates at least one feature from minimum two

different categories of features, namely permissions, intents, API calls, network traffic,

java classes, and triggered intents. When a new app is analyzed, Androtomist checks

for a possible signature match. If the analyzed app yields results that match with two

or more signatures, then the app is flagged as malicious.

On top of that, individual features which are spotted regularly among malware, but

rarely among goodware are also being labeled as suspicious in the Androtomist’s analysis

report. Specifically, as an indication, the left column of Table 5.2 lists the top 15 most

frequent permissions detected in the utilized set of 1902 malware samples. The right

column, on the other hand, contains another 15 permissions which were observed in the

same set of samples, but they were scarce or nonexistent in the set of 120 goodware

apps selected from Google Play Store. Both these columns are ordered by percentage

of occurrence in the set of 1902 pieces of malware. Finally, Table 5.3 contains the 15

most frequent permissions detected in the utilized sample of 120 apps downloaded from

Google Play.

Chapter 5. Dual-level Android malware detection 80

Most Common in Malware % Least Common in Goodware %

android.permission.INTERNET 96.2 com.android.browser.permission.READ HISTORY BOOKMARKS 12.2

android.permission.READ PHONE STATE 91.8 com.android.browser.permission.WRITE HISTORY BOOKMARKS 11.9

android.permission.WRITE EXTERNAL STORAGE 85.7 android.permission.WRITE 11.4

android.permission.ACCESS NETWORK STATE 59.0 android.permission.ACCESS LOCATION EXTRA COMMANDS 9.8

android.permission.ACCESS WIFI STATE 46.3 android.permission.INSTALL PACKAGES 5.8

android.permission.ACCESS COARSE LOCATION 42.6 com.android.launcher.permission.READ SETTINGS 5.5

android.permission.ACCESS FINE LOCATION 37.7 android.permission.MOUNT UNMOUNT FILESYSTEMS 5.4

android.permission.WAKE LOCK 26.5 android.permission.RESTART PACKAGES 4.5

android.permission.VIBRATE 25.3 android.permission.WRITE APN SETTINGS 4.1

android.permission.RECEIVE BOOT COMPLETED 24.2 android.permission.CHANGE CONFIGURATION 2.2

com.android.launcher.permission.INSTALL SHORTCUT 23.3 android.permission.WRITE SECURE SETTINGS 1.8

android.permission.CHANGE WIFI STATE 19.9 android.permission.ACCESS COARSE UPDATES 1.7

android.permission.CALL PHONE 16.9 android.permission.DELETE PACKAGES 1.5

android.permission.GET TASKS 14.9 android.permission.READ SETTINGS 0.8

android.permission.SEND SMS 14.8 android.permission.RECEIVE WAP PUSH 0.5

Table 5.2: Top 30 suspicious permissions.

Most Common in Goodware %

android.permission.INTERNET 100%

android.permission.ACCESS NETWORK STATE 96%

android.permission.RECEIVE BOOT COMPLETED 86%

android.permission.GET ACCOUNTS 85%

android.permission.USE CREDENTIALS 85%

android.permission.WRITE EXTERNAL STORAGE 85%

android.permission.WAKE LOCK 82%

com.google.android.c2dm.permission.RECEIVE 78%

android.permission.MANAGE ACCOUNTS 77%

android.permission.CAMERA 76%

android.permission.AUTHENTICATE ACCOUNTS 76%

android.permission.READ EXTERNAL STORAGE 72%

android.permission.WRITE SYNC SETTINGS 70%

android.permission.READ SYNC SETTINGS 70%

android.permission.ACCESS WIFI STATE 68%

Table 5.3: Top 15 permissions in goodware.

Furthermore, dynamic instrumentation reveals a certain pattern in Java classes used

among malware. Especially, several malware apps, i.e., correspondingly 9%, 2%, and

1% of the instances in our AndrooZoo, VirusShare, and Drebin datasets, instantiate the

DexClassLoader class [134]. This class is used to load other classes from jar and apk

type of files containing a classes.dex entry. This class loader can be exploited to execute

Chapter 5. Dual-level Android malware detection 81

code which is not installed as part of the app per se. Another interesting observation

is that the java.net.Socket [135] class was found quite frequently in malware instances,

that is, 15% in AndrooZoo, and 10% in VirusShare and Drebin.

For the sake of comparison, Table 5.4 summarizes the results obtained when the detec-

tion engine is (a) fed only with signatures created during static analysis, and (b) signa-

tures created during hybrid analysis. As observed, when the features of static analysis

are fused with those acquired via dynamic instrumentation, the detection rate is corre-

spondingly increased by 10%, 3%, 6% for “unknown” apps in the AndroZoo, VirusShare,

and Drebin dataset. Obviously, this is because the number and variety of features have

increased, thus allowing more of them to match against malicious signatures.

Dataset True Positive Rate (TPR) Improvement Rate

Static Hybrid (Hybrid)

AndroZoo 86.6 94.1 +7.5

VirusShare 96 99 +3

Drebin 88 94 +6

Table 5.4: Signature-based detection scores (%).

5.3.2 Anomaly-based detection

The vectors of features derived from both static and dynamic analysis over the datasets

described in subsection 5.2.3 were utilized to conduct anomaly-based detection. To do

so, we exploited the open source data mining tool Orange [136]. As detailed in subsection

5.2.4, we employed seven ML algorithms used extensively in the related literature. The

selected sampling technique was 10-fold cross-validation.

Table 5.5 provides a comparative overview of the classification performance scores

yielded from static analysis against those obtained from hybrid analysis. The best score

per metric in the table is underlined. It seems that the proposed approach based on

hybrid analysis constantly outperforms the static method when the performance of AUC

as well as the effectiveness of binary measures (CA, P, R, and F1) is considered. As can

be observed, in almost all cases of all three datasets, hybrid analysis is more effective

Chapter 5. Dual-level Android malware detection 82

than static one; only in Derbin corpora static outperforms hybrid when Näıve Bayes

and LR models are applied. This shows that the proposed hybrid analysis is clearly a

better option than static one.

Logistic Regression and AdaBoost hybrid models seem to be the overall best performing

models for AndroZoo dataset. Moreover, a larger number of the examined classifiers,

namely LR, Random Forest, AdaBoost and SVM help hybrid to achieve exceptional

results in comparison to static method for the VirusShare dataset. However, the vast

majority of the examined hybrid models seems to be exceptionally successful (the only

exception is the Näıve Bayes model) in the Drebin dataset. In general, the hybrid

approach achieves more stable performance across all three datasets in comparison to

the method based on static analysis. It is also remarkable that the biggest improvement

of hybrid models is achieved in AndroZoo corpus. It is noticeable that the improvement

in performance in terms of AUC of the best hybrid models with respect to that of the

best static ones is higher than 10% when the AndroZoo corpora is considered. All these

indicate that the hybrid approach is much more reliable and effective in more challenging

malware cases where there are new and more sophisticated malware conditions.

The version of our method based on static analysis is also very effective achieving the best

results in VirusShare as well as Drebin corpus. As concerns the AndroZoo dataset, static

analysis performs poorly. Figures 5.5, 5.6 and 5.7 and Figures 5.8, 5.9 and 5.10 depict

the effectiveness of ROC curves when the LR classifier is applied on each dataset for the

presented version of the hybrid as well as the version of static analysis, respectively.

Chapter 5. Dual-level Android malware detection 83

AUC CA F1 Precision Recall

Dataset ML Classifier Static Hybrid Static Hybrid Static Hybrid Static Hybrid Static Hybrid

Logistic Regression 0.870 0.978 0.888 0.888 0.894 0.888 0.906 0.890 0.888 0.888

Näıve Bayes 0.777 0.941 0.811 0.854 0.825 0.854 0.852 0.855 0.811 0.854

Random Forest 0.938 0.972 0.895 0.888 0.900 0.888 0.910 0.889 0.895 0.888

AndroZoo k-NN 0.914 0.954 0.867 0.871 0.868 0.871 0.869 0.874 0.867 0.871

AdaBoost 0.915 0.971 0.909 0.901 0.913 0.901 0.923 0.901 0.909 0.901

SGD 0.808 0.918 0.881 0.918 0.882 0.918 0.883 0.918 0.881 0.918

SVM 0.900 0.930 0.846 0.850 0.856 0.849 0.880 0.858 0.846 0.850

Logistic Regression 0.993 1.000 0.975 1.000 0.975 1.000 0.975 1.000 0.975 1.000

Näıve Bayes 0.975 0.997 0.910 0.965 0.910 0.965 0.910 0.967 0.910 0.965

Random Forest 0.994 1.000 0.975 0.995 0.975 0.995 0.975 0.995 0.975 0.995

VirusShare k-NN 0.990 0.995 0.980 0.990 0.980 0.990 0.981 0.990 0.980 0.990

AdaBoost 0.965 1.000 0.965 1.000 0.965 1.000 0.965 1.000 0.965 1.000

SGD 0.955 0.990 0.955 0.990 0.955 0.990 0.957 0.990 0.955 0.990

SVM 0.983 1.000 0.950 0.995 0.950 0.995 0.955 0.995 0.950 0.995

Logistic Regression 0.998 0.990 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989

Näıve Bayes 0.986 0.970 0.923 0.967 0.924 0.967 0.924 0.967 0.923 0.967

Random Forest 0.998 1.000 0.984 0.995 0.984 0.995 0.984 0.995 0.984 0.995

Drebin k-NN 0.982 0.995 0.962 0.995 0.962 0.995 0.965 0.955 0.962 0.995

AdaBoost 0.973 1.000 0.973 1.000 0.973 1.000 0.973 1.000 0.973 1.000

SGD 0.990 1.000 0.989 1.000 0.989 1.000 0.989 1.000 0.989 1.000

SVM 0.999 1.000 0.984 1.000 0.984 1.000 0.984 1.000 0.984 1.000

Table 5.5: Results per dataset and classification performance metric.

5.4 Discussion

Regarding signature-based detection, the scores in Table 5.4 suggest that when static

analysis is combined with dynamic instrumentation into a hybrid approach, the detection

rate can be augmented by at least 3% and up to 10%. Another salient observation is that

the classification performance differs significantly among the three datasets. Specifically,

as observed from the same Table, the detection rate vary considerably from 87% to

96% for static analysis, but this divergence is much lesser, from 94% to 99%, for the

hybrid scheme. This also support the view that hybrid analysis by means of dynamic

instrumentation leads to more robust classification results. Particularly, the detection

rate for - the more challenging - AndroZoo dataset, is the lowest among all scores when

using only static analysis, but it augments by +10% when is backed up by the results

of dynamic instrumentation. The same observation stands true for the VirusShare or

Drebin datasets. This results actually do not come as a surprise, and is verified by

relevant works in the literature [137].

Chapter 5. Dual-level Android malware detection 84

The same general inference is deduced from Table 5.5 with respect to the results obtained

from anomaly-based detection. That is, in their vast majority, the scores regarding

the most two important classification performance metrics, namely AUC and F1, are

superior when hybrid analysis is involved, irrespective of the dataset and the ML classifier

used.

To further demonstrate the usefulness of the examined approaches, Figure 5.4 depicts

the evaluation results (AUC) of hybrid and static analysis in the employed datasets

when applying the seven classifiers. As can be clearly seen, the basic patterns are the

same across all the datasets. The proposed hybrid method is more effective, surpassing

the approach based on static analysis in almost all cases. As already pointed out in

subsection 5.3.2, the only exceptions are LR and Näıve bays in the Drebin dataset. In

both VirusShare and Drebin corpora, the static method is also very effective in all cases.

With respect to the results on AndroZoo corpora, the results suggest that the use of

hybrid analysis helps the approach to become more stable. As can be seen, the proposed

hybrid approach outperforms in all cases the static method, by a large margin (more

than 10%). Recall from subsection 5.2.3 that the AndroZoo dataset embraces newer

instances of malware in contrast to VirusShare and Drebin ones. It seems therefore that

this challenging condition significantly affects the performance of static models. The

same patterns are provided in case where F1 measure is considered as it is illustrated in

Figure 8 in the Appendix.

In addition, we also consider the combination of the base classification models (seven

classifiers) by averaging their answers per sample on each dataset separately. Figure 5.12

demonstrates the percentage in performance (AUC) of both these ensemble methods

based on the hybrid and static analysis, respectively. Especially, vis-à-vis the results

of Table 5.5, the effectiveness of both the ensemble approaches in terms of AUC, is

better than that of any single base classifier in the vast majority of the cases. Although,

the version of static analysis is effective enough, the version based on hybrid analysis

consistently outperforms its performance. Overall, as can be observed, the proposed

hybrid ensemble is the most effective one surpassing that of static analysis and improving

the reported results of all base classifiers across all the three datasets considered. With

respect to the results on AndroZoo corpora, the proposed hybrid ensemble clearly seems

to be the top-performing model which achieves the best results not only among all

Chapter 5. Dual-level Android malware detection 85

base models, but also in comparison with the static one. The improvement in average

performance of the hybrid ensemble model with respect to that of the static is higher

than 4%.

Figure 5.4: The performance (AUC) of the proposed static and hybrid analysis on
AndroZoo, VirusShare, and Drebin corpora for different classification models

Chapter 5. Dual-level Android malware detection 86

Figure 5.5: AndroZoo: ROC (Static Analysis)

Figure 5.6: VirusShare: ROC (Static Analysis)

Chapter 5. Dual-level Android malware detection 87

Figure 5.7: Drebin: ROC (Static Analysis)

Figure 5.8: AndroZoo: ROC (Hybrid Analysis)

Chapter 5. Dual-level Android malware detection 88

Figure 5.9: VirusShare: ROC (Hybrid Analysis)

Figure 5.10: Drebin: ROC (Hybrid Analysis)

Chapter 5. Dual-level Android malware detection 89

Figure 5.11: The performance (F1) of the proposed static and hybrid analysis on
AndroZoo, VirusShare, and Drebin corpora for different classification models

Figure 5.12: The percentage in performance (AUC) of hybrid and static methods by
averaging the output of the base classifiers on the three datasets

Table 5.6 demonstrates the improvement in performance, i.e., difference of AUC scores,

of the individual and ensemble models when the hybrid analysis is considered in com-

parison to the case where only the static one is used. Statistical significance of these

differences is estimated using an approximate randomization test [138]. The null hypoth-

esis is that there is no difference between the two cases and we reject this hypothesis

Chapter 5. Dual-level Android malware detection 90

when p <0.05. As can be seen, in most of the cases, the models extracted from the

hybrid analysis are significantly (p <0.05) better than static ones. Notable exception is

Näıve Bayes on Derbin dataset where the variance with the corresponding static model

is slightly decreased. In AndroZoo dataset, all hybrid base models are more improved

than the corresponding static ones as well as the hybrid ensemble model gains more than

the static one. This indicates that hybrid analysis is superior, able to handle challenging

datasets and better suits more sophisticated malware.

On the other hand, the differences between the hybrid and static ensembles are not

statistically significant on the VirusShare and Drebin data sets. As concerns the indi-

vidual models, in the first corpus, the results of Näıve Bayes, AdaBoost and SGD are

improved the most, while in the latter only the difference in results of k-NN and SGD

models appears to be significant. The betterment of base models based on static analysis

seems not to be correlated with the relative increase in the number of malware samples

used to extract the static classification models. Apparently, an increasing number of

malware instances on AndroZoo corpus does not help static analysis to achieve better

performance.

Data Set LR Näıve Bayes Random Forest k-NN AdaBoost SGD SVM Ensemble

AndroZoo 0.108 0.164 0.034 0.040 0.056 0.110 0.030 0.042

VirusShare 0.007 0.022 0.006 0.005 0.035 0.035 0.017 0.009

Drebin -0.008 -0.016 0.002 0.013 0.027 0.010 0.001 0.002

Table 5.6: Improvement in performance (difference in AUC) between methods us-
ing hybrid analysis (base models and ensemble) and static analysis (base models and
ensemble). Statistically significant differences (p < 0.05) are indicated in boldface. A

negative value means a decrease in performance.

A key factor that affects the performance of malware detection methods is the impor-

tance of features contained in malware samples. To study which feature matters more

for detecting malware in both the static and hybrid method, we concentrate on the Lo-

gistic Regression model, which according to Table 5.5, seems to be the top performer

across all datasets. To this end, Figure 5.13 illustrates the average feature importance

scores on all three datasets when Logistic Regression is applied for both hybrid and static

method. As feature importance scores have been directly used the average coefficients of

each feature category explored following a linear regression algorithm. More specifically,

the features importance scores are assigned by coefficients calculated as part of a linear

regression model per set of features.

Chapter 5. Dual-level Android malware detection 91

Figure 5.13: Average Feature Importance scores of static and hybrid analysis on all
three datasets for a varying set of feature categories.

As already mentioned, six categories of features are explored in total; permissions, in-

tents, API calls, network traffic, inter-app communication and Java classes, where only

the first three apply to static analysis. In general, from Figure 5.13 it is observed that

the API calls category is more influential and tends to improve both static and hybrid

methods. It is also noteworthy that the category of Java classes achieves also signif-

icantly high average importance scores enhancing the effectiveness of hybrid method

on all three datasets. On the other hand, the contribution of both intents and permis-

sions categories is lower not only in static, but also in hybrid method. Lastly, network

traffic is a category that includes features with slightly better coefficients than intents

and permissions categories when hybrid analysis is considered. The case of inter-app

communication category seems also to be of particular importance for hybrid method.

However, its average coefficient scores similar to intents and permissions categories are

significantly smaller than those of both API calls and Java classes categories on hybrid

approach.

For the sake of completeness, Table 5.7 provides a comparison of the best-case accuracy

performance between HADM [139], SAMADroid [67], Bridemaid [140], Surendran et al

[141], and Androtomist. The comparison reveals that in all the applicable cases Andro-

tomist is able to improve the best results per matching dataset. Precisely, Androtomist

surpasses the rest of the state-of-the-art detection systems when using malware from

Chapter 5. Dual-level Android malware detection 92

the Drebin or VirusShare datasets. A direct comparison with Bridemaid is not feasible

because this system was evaluated using a mixture of malware samples from different

datasets, i.e., Genome, which is not shared anymore, and Contagio which is considered

obsolete. Naturally, as a rule of thumb, the performance of any detection model depends

on the malware samples used during both its evaluation and testing phases [142].

For easy reference, the same Table lists the different kind of features collected during

the analysis phase per detection system. Recall from section 5.2.1 that during static

analysis, Androtomist gathers the most common features seen in the relevant work,

namely permissions, intents, and API calls. The same static features are collected in

[139, 67]. On the other hand, for dynamic analysis, Androtomist relies on dynamic

instrumentation, enabling the extraction of a wide variety of features. Contrariwise

to other schemes included in Table 5.7, system calls are consciously neglected as a

feature, since its exploitation has been significantly restricted from Android v.7.0 onward

[143]. Precisely, similar to SELinux [144], Android uses the Seccomp kernel module

[18] to further limit access to the kernel by blocking certain system calls. Put simply,

starting from Android v.7.0, Seccomp kernel has been applied to processes in the media

frameworks. Moreover, as of v.8.0, a Seccomp filter is installed into the zygote, i.e.,

the forking handling process from which all Android apps are derived. Seccomp blocks

access to certain system calls, such as swapon/swapoff, which were the root cause for

certain security attacks [145]. Additionally, Seccomp blocks key control system calls,

which are not useful to apps. Therefore, when analysing newer Android apps, as those

in the AndroZoo dataset, the merit of system calls as a feature in malware detection

schemes has been greatly diminished. Last but not least, some of these tools such as

SAMADroid are intended to run on the smartphone. In this case, the app’s features are

locally collected when the user interacts with it. Then, the collected features are sent

to a remote host in which a decision is made about the app. Androtomist on the other

hand only runs on a remote host, and therefore the app must be analysed prior to its

installation.

5.5 Related Work

As of today, the topic of mobile malware detection via the use of hybrid schemes has

received significant attention in the Android security literature [6, 9]. This section along

Chapter 5. Dual-level Android malware detection 93

Detection System Groups of features collected Accuracy (AC) achieved per dataset

Drebin Virusshare AndroZoo Mixed

HADM [139] API calls, Permissions,
Intents, System calls

N/A 94.70% N/A N/A

SAMADroid
[67]

API calls, Permissions,
Intents, System calls

99.07% N/A N/A N/A

Bridemaid
[140]

n-grams classification,
SMS, System calls,

N/A N/A N/A 99.70%

Admin privileges

Surendran et
al [141]

Permissions, API calls,
System calls

99.00% N/A N/A 97.00%

API calls, Permissions,
Intents,

Androtomist Network traffic, Java
classes,

100% 100% 91.80% N/A

Inter-process commu-
nication

Table 5.7: Comparison of state-of-the-art hybrid systems in terms of collected fea-
tures and classification accuracy (best case). “Mixed” means a mixed, but not strictly

defined dataset, containing records from Drebin, Genome, and Contagio datasets

with Table 5.8 offer a succinct chronologically arranged review of the most notable and

recent works on this topic. Specifically, we concentrate on contributions published over

the last four years, that is, from 2015 to 2020.

Patel et al. [146] proposed a hybrid approach for mobile malware detection, which

combines app analysis and ML techniques to classify apps as benign or malicious. The

features collected vary from app’s permissions, intents, and API calls during static anal-

ysis to network traffic in the course of dynamic analysis. According to the authors,

it takes around 8 to 11 min to scan an app. Cam et al. [128] presented uitHyDroid.

Their system firstly uses static analysis to collect user’s interface elements, followed by

dynamic analysis to capture possible inter-app communication and link partial sensitive

data flows stemming from static analysis. However, their proposed system has been

evaluated with a rather small dataset of 23 apps.

Tuan et al. [147] proposed eDSDroid, an analysis tool which uses both static and

dynamic analysis to identify malware targeting inter-app communication. Specifically,

at a first stage, static analysis detects information leakage, while dynamic analysis is

employed to help eliminate the false positives of the first stage. On the downside,

Chapter 5. Dual-level Android malware detection 94

their approach has only been evaluated with a tiny corpus of 3 apps. Martinelli et al.

[140] introduced BRIDEMAID. Their system operates in three consequent steps, namely

static, meta-data, and dynamic. During static analysis, BRIDEMAID decompiles the

apk and analyzes the source code for finding possible similarities in the executed actions.

This is done with the help of n-grams. Dynamic analysis exploits both ML classifiers

and security policies to control suspicious activities related to text messages, system call

invocations, and administrator privilege abuses. In their evaluations, the authors used

the Drebin dataset, which by now is mostly considered outdated.

Xu et al. [139] proposed HADM. With HADM, the features extracted during static anal-

ysis are converted into vector-based representations, while those fetched during dynamic

analysis, namely system call invocations, are converted into vector-based and graph-

based representations. Deep learning techniques were used to train a neural network

for each of the vector sets. Finally, the hierarchical multiple kernel learning technique

was applied with the purpose of combining different kernel learning results from diverse

features, and thus improve the classification accuracy. According to the authors, their

model is weak against code obfuscation techniques because dynamic analysis is guided

based on the results obtained from static analysis.

Ali-Gombe et al. [129] presented AspectDroid an hybrid analysis system, which analyzes

Android apps to detect unwanted or suspicious activities. The proposed system employs

static bytecode instrumentation to provide efficient dataflow analysis. However, static

instrumentation is unable to detect apps which use anti-unpacking and anti-repackaging

obfuscation mechanisms. Furthermore, the authors used the Drebin dataset to evaluate

their model, which is mostly considered obsolete nowadays. Finally, their tests were

conducted on an outdated Android version (ver. 6.0).

Arshad et al. [67] introduced a hybrid malware detection scheme, namely SAMADroid.

According to the authors, SAMADroid delivers high detection accuracy by combining

static and dynamic analysis, which run both in a local and remote fashion. ML is used

to detect malicious behavior of unknown apps and to correctly classify them. On the

negative side, their scheme was tested on an outdated Android version (ver. 5.1).

Tsutano et al. [148] contributed an Android analysis framework called JITANA. Ac-

cording to the authors, JITANA can be used to identify inter-app communications as

well as potential malicious collaborations among apps. A number of tests conducted

Chapter 5. Dual-level Android malware detection 95

by the authors demonstrated the effectiveness of JITANA in three different Android

devices with multiple installed apps. On the negative side, the authors neither provide

the detection rate and precision achieved nor any result about malicious apps which do

not use intents.

Wang et al. [130] proposed a hybrid approach coined DirectDroid, which combines

fuzzy logic with a new type of app testing process called “on-demand forced execution”.

According to the authors, by using this technique one can trigger more hidden malicious

behaviors. On top of that, DirectDroid avoids app crashes with the use of fuzzy logic and

static instrumentation. DirectDroid was evaluated against 951 malware samples from 3

datasets, namely Drebin, GitHub, and AMD, and it is reported that it can detect more

malicious behaviors via a method called “augmenting fuzzing”. Nevertheless, given that

code obfuscation techniques render detection harder for virtually any static approach,

DirectDroid cannot detect malware which employs code obfuscation or have malicious

code in native payload. Put simply, any obfuscated code is invisible to DirectDroid’s

static analyzer.

Fang et al. [149] suggested a hybrid analysis method which performs dynamic analysis

on the results of static analysis. During the static analysis phase, they decompiled the

app’s APK file to extract permissions from the manifest file as well as any occurrence

of API features existing in smali files. Regarding dynamic analysis, they generated user

input and logged the system calls. Finally, they used ML algorithms to classify apps.

After experimentation, they reported a detection accuracy of 94.6% using a balanced

dataset of 4,000 benign and 4,000 malicious apps.

Lately, Surendran et al. [141] implemented a Tree Augmented Naive Bayes (TAN) model

that combines the classifier output variables pertaining to static and dynamic features,

namely API calls, permissions and system calls, to detect malicious behavior. Their

experiments showed an accuracy of up to 97%. The authors did not provide information

about the Android version they employed or about how they generated user input events

for the purposes of dynamic analysis.

As observed from Table 5.8, scarce research is hitherto conducted toward the use of dy-

namic instrumentation in hybrid detection approaches, as none of the above mentioned

contributions exploits such a scheme. Furthermore, none of the previous work capitalises

on information stemming from hooking Java classes. Moreover, none of them is offered

Chapter 5. Dual-level Android malware detection 96

Work Year Method Dataset Limitations

[146] 2015 Permissions, intents, API calls, net-
work traffic.

DroidKin, Slow (8 to 10 min to analyze an app)

Employs ML to classify apps. Contagio

[128] 2017 Analyzes APK to fetch possible data
flows.

DroidBench Small dataset (23 samples)

Analyzes UI elements.

Detects inter-app communication.

[147] 2017 Analyzes APK to retrieve API calls
and data flows.

ToyApps Small dataset (3 samples)

Detects inter-app communication and
data leakage.

[140] 2017 Logs system calls, privileges, and text
messages.

Drebin,
Genome,

Outdated dataset

Uses n-gram classification. Contagio

[139] 2018 Combines app’s features with others
derived by deep learning

VirusShare Unable to detect malware

collected during static and dynamic
analysis to classify an app.

which uses obfuscation techniques

[129] 2018 Uses static bytecode instrumentation
and dataflow analysis.

Drebin Small dataset (100 samples)

Outdated Android version (6.0)

[67] 2018 Creates feature vectors from permis-
sions, intents, API calls,

Drebin Outdated Android version (5.1)

system calls, and uses ML to classify
apps.

[148] 2019 Detects inter-app communication. Unspecified Metrics and results are insufficient

[130] 2019 Augments fuzzing with on-demand
forced execution

Drebin,
AMD,

Uses obsolete Android version (4.4)

GitHub Weak against obfuscation techniques

[149] 2019 Analyzes permissions, API references,
and system calls

VirusShare Limited information is given about the

examined malware samples collected

[141] 2020 Analyzes permissions, API references,
and system calls

Drebin,
AMD

Android version is not provided

and uses TAN to predict malicious be-
havior

AndroZoo,
Github

User input method is not provided

Table 5.8: Outline of the related work

as a web app and only the work in [148] is open source. ML techniques are exploited

in half of the works included in the Table, namely [146, 140, 139, 67, 149]. Finally, it is

worth mentioning that there exists a number of free online Android app analysis tools,

including AMAaaS [150] and VirusTotal [151], which reportedly apply hybrid analysis.

Unfortunately, AMAaaS’s source code is kept private, and the tool provides insufficient

Chapter 5. Dual-level Android malware detection 97

information regarding its analysis and classification engines. On the other hand, Virus-

Total is not an apk analysis tool, but rather a vote-based system that leverages analysis

from multiple engines.

5.6 Conclusions

This chapter introduced Androtomist, an automated and configurable hybrid analy-

sis tool, which combines static analysis with dynamic instrumentation to analyse app

behavior in the Android platform. The results over three different datasets show that

this dual analysis of mobile apps can significantly enhance the detection capabilities of

a detection model. Furthermore, a comparison between static and hybrid analysis by

means of instrumentation reveals asymmetry, that is, the latter is able to yield better

classification results even throughout diverse datasets. By collating the performance

of our proposal vis-à-vis similar state-of-the-art detection systems we demonstrate its

superiority. Ultimately, Androtomist not only offers an easy-to-use environment for vir-

tually everyone to analyze mobile apps, but it is also configurable to the point where

researchers can import custom dynamic instrumentation hooks and scripts.

In the introduced work, both the proposed approaches use a randomly chosen subset of

malware samples per dataset, a typical choice in similar studies. It could be interesting

to investigate how this selection process can be optimized by means of clustering toward

including a set of the best possible representative malware samples showing a common

behavioural pattern. Both the heterogeneous ensemble approaches rely on base models

with default parameter settings. This could be used to further enrich the pool of our

base verifiers considering several versions of the same approach with different fixed and

tuned parameter settings. Another future work direction could focus on combining the

methods based on hybrid and static analysis in a more complex approach.

Chapter 6

Improving Android malware

detection through dimensionality

reduction techniques

6.1 Introduction

Up to now, state-of-the-art mobile malware detection approaches in the literature have

been evaluated using older datasets, including Contagio mobile [81], MalGenome [105],

and Drebin [102]. As previously stated in Chapters 4 and 5, this raises an issue of

whether such schemes can accurately detect current pieces of malware. In this chapter,

we use a wide range of base verifiers covering the most prominent classification algo-

rithms in the relevant literature. Moreover, we apply and compare two of the most

common dimensionality reduction techniques, namely Principal Component Analysis

(PCA) and t-distributed stochastic neighbor embedding (t-SNE) on a collection of con-

current malware from the AndroZoo dataset [104], dated from 2017 to 2020. Then, we

propose two ensemble learning approaches. First, a simple ensemble which combines

the outputs of base models. These outputs are extracted dealing exclusively with either

the original or a transformed feature set, respectively. Second, a more complicated en-

semble approach that aggregates the answers of a larger size and possibly heterogeneous

set of base models constructed from both original and transformed (Original, PCA and

98

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 99

t-SNE) feature sets. Experimental results on Andozoo benchmark dataset exhibit the

effectiveness of both the aforementioned approaches.

The main contributions of this study are:

• We propose a simple ensemble approach by aggregating the output of each instance

separately, for a number of malware detection base models. The combination of

base models achieves the best results in comparison to each particular base model

on the Androzoo corpus examined. This evidently demonstrates that an ensemble

of classifiers based on a larger size and probably heterogeneous base models is the

most appropriate and able to handle challenging malware detection scenarios, and

thus can further improve the performance of each individual base classifiers.

• We examine the usefulness of two well-known dimensionality reduction technique

namely, PCA and t-SNE when exclusively applied on malware detection base ver-

ifiers as well as ensembles, respectively. It is demonstrated that both transfor-

mations are able to considerably increase the performance of each base model as

well as the proposed ensembles. However, the implementation of t-SNE is more

effective than PCA transformation and assists base models and malware detection

ensemble methods to further increase their effectiveness in all the examined cases.

• We report detailed experimental results on malware detection under the Andro-

zoo dataset that are directly compared with state-of-the-art methods under the

same settings. The performance of the approaches presented in this chapter is

quite competitive to the best results reported so far for this malware detection

corpus, demonstrating that the proposed methods can be an efficient and effective

alternative toward more sophisticated malware detection systems.

6.2 The Proposed Method

The core idea of our proposed approach is to exploit powerful low-level features, like

app’s permissions and intents and apply common techniques toward reducing dimen-

sionality and extracting more compact and less sparse representations of samples. In

a more detailed description, we use a set of popular and widely used classification al-

gorithms as malware detection base models. More, specifically, we implemented eight

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 100

classifiers handling the dataset examined either based only on the original feature set

or utilizing entirely the transformed set of features accrued by applying dimensionality

reduction techniques. Then, simple heterogeneous ensemble approaches are proposed by

fusing the output of all base models for each instance separately. These meta-models

are developed exploring two options. The first one is to use exclusively the available

base models extracted from either the initial feature set of data or the modified set of

features. The second option concerns to enrich the meta learner with a larger and possi-

bly heterogeneous set of base models. Thus, we consider the answers of all the available

malware detection base models extracted (based on both the Original and reduced fea-

ture set). In this way, a heterogeneous ensemble included a mixed set of base models is

formed.

6.2.1 Dimensionality Reduction

Dimensionality reduction is one of the most useful processes that decisively contributes

to analyze large volumes of data providing a simple way to transform them from the

original high-dimensional and sparse feature space into a small set of new features.

Several algebraic techniques have been applied in time series analysis for dimensionality

reduction providing a less sparse representation of signals. This way, the reduced space

is less redundant, and the resulting data are more compact and less noisy. In this study,

we consider the two most widely used dimensionality reduction techniques, namely PCA

and t-SNE.

• Principal Component Analysis (PCA) is one of the simpler and well-known linear

transformation techniques. Specifically, it is one of the most multivariate and state-

of-the-art statistical techniques in the field of dimensionality reduction achieving

to reduce the dimensions of a d-dimensional dataset by projecting it onto a new(k)-

dimensional subspace (where k < d) following some of the most important linear

algebra concepts in order to increase the computational efficiency, while retaining

most of the information. More specifically, PCA analysis aims to identify patterns

in data detecting the correlation between variables and yielding the directions or

eigenvectors (the principal components) that maximize the variance of the data. In

other words, by applying PCA the observations are represented by their projections

as well as the set of variables are represented by their correlations. It is also

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 101

worth noticing that PCA based on a deterministic technique in a consequence of

utilizing a strictly mathematical approach. To make it clearer, it is important

to be mentioned that in the approximation of a small dimensional space, PCA

can be accomplished by a matrix algebra technique obtaining the eigenvectors and

eigenvalues from the covariance matrix or correlation matrix [152]. In this way,

a less sparse matrix with significantly lower dimension in comparison with the

original matrix is built.

• t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear dimension-

ality reduction technique which leads to a powerful and flexible visualization of

high-dimensional data. It uses the local relationships between points to create

a low-dimensional mapping. This allows it to capture non-linear structure. It

creates a probability distribution using the Gaussian distribution that defines the

relationships between the points in high-dimensional space. Then, it employs the

Student t-distribution to recreate the probability distribution in low-dimensional

space. Unlike methods like PCA, t-SNE is non-convex, meaning it has multiple

local minimal and is therefore much more difficult to optimize. This technique

enables the correct visualization of data which lie on curved manifolds or which

incorporate clusters of complex shape. In this way, t-SNE opens the way towards

a visual inspection of nonlinear phenomena in the given data. t-SNE is a more

recent DR technique that belongs to the class of non-parameric techniques [153].

6.3 Experiments

6.3.1 Description of Data

In the context of malware detection between 2010 and 2019, several corpora were built

covering multiple degrees of difficulty and incorporating older or newer malware/good-

ware instances. These corpora are usually exploited to evaluate new malware detection

approaches. In this chapter, we consider the most contemporary benchmark corpora,

namely AndroZoo [104]. This is a well-known and widely used real-world collection of

Android apps collected from assorted sources, including the official Google Play app

market [30]. Particularly, the collection of AndroZoo apps we used in the context of

this chapter is dated from 2017 to 2020 and enclosed 1K malware apps, each of which

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 102

has been cross-examined by a large number of antivirus products. It is important to be

mentioned that AndroZoo can be considered as a challenging corpora since it includes

new and more sophisticated malware samples in comparison to older datasets, namely

Drebin [102]. We also chose a set of 1K benign apps from Google Play.

Static analysis was performed on all the collected apps using the open-source tool An-

drotomist [10]. Specifically, each app was decompiled to get the Manifest.xml file and

log permissions and intents to create a feature vector. Each vector is a binary represen-

tation of each distinct feature. For example, given two apps, a1 and a2, where the first

uses permissions p1, p2, p3, and intent i1 and the second uses permissions p2, p3, p4

and intents i1, i2, the analysis leads to a 6-dimensional feature vector (p1, p2, p3, p4,

i1, i2), and thus the feature vectors for these two apps will be (1, 1, 1, 0, 1, 0) and (0,

1, 1, 1, 1, 1), respectively. Naturally, the scrutiny of a real-world app results to a much

more lengthy vector. Precisely, the analysis of the largest set of malware and benign

apps used in our experiments, i.e., 1K malware instances along with all of the 1K benign

apps collected from Google Play, yielded 1,002-dimensional feature vectors.

6.3.2 Experimental Setup

As already pointed out, the entire dataset of malware apps used contains a collection of

1K malware apps randomly selected by AndroZoo corpus. Moreover, 1K benign apps

were downloaded by the Google Play to comprise the negative category.

To set the base malware detection models eight well-known classifiers were applied,

namely AdaBoost, k-nearest neighbors (k-NN), Logistic Regression (LR), Naive Bayes

(NB), Multilayer Perceptron (MLP), Stochastic Gradient Descent (SGD), Support Vec-

tor Machine (SVM) and Random forests (RF). It is important to note that seven of these

classification algorithms applied fall under eager learning. In this category, supervised

learning algorithms attempt to construct a general model of the malware detection sam-

ples, building upon the training data. Apparently, the effectiveness of such classifiers is

completely determined by the size, quality and representative of the training set. On the

other hand, k-NN is a weak learner (known as lazy learner) as that makes a decision in

terms of information extracted per sample separately without needing the training part

of data to construct a general model. The construction of each eager classification model

is built following the 10-fold cross-validation technique. In this technique, a number of

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 103

10 different randomly segmented and equally sized sub-datasets is generated from the

initial set of data. To extract each malware detection base model we consider the set of

parameter settings with the default values.

As already mentioned, apart from the original samples, two very popular and widely

used dimensionality reduction technique is applied, namely PCA and t-SNE. Each base

model is evaluated on either PCA or t-SNE new feature set. In this way, we examine

the performance of the eight base models considered by handling the Original, PCA and

t-SNE set of features, separately.

A simple meta-model is developed combining the output of all base classifiers applied

following two options: in the former, we combine the answers of the 8 base models (Ad-

aBoost, k-NN, LR, NB, MLP, SGD, SVM and RF) based exclusively on the Original,

PCA and t-SNE representations, separately. In the latter, a complicated and possibly

more heterogeneous ensemble model is constructed to combine the outputs of all mal-

ware detection base models. More specifically, the answers of 24 base models based

on Original, PCA and t-SNE representations are totally combined to build a mixed

meta-model. For each one of the above ensemble malware detection models presented,

the outputs of base models is merged per instance separately by following two common

aggregate functions namely, average (AVG) and majority vote (MV) technique.

The vast majority of the state-of-the-art methods in the detection of malware cases are

mainly evaluated by using binary measures of correctness. Noticeably, these measures

always provide a binary answer, either a positive (malware class) or a negative (benign

class) one for each examined instance separately. This indicates that the information

about the distribution of positive and negative instances is necessary for the sake of set-

ting a threshold value. In this chapter, we follow exactly the same evaluation procedure

to achieve compatibility of comparison with previously reported results. More specifi-

cally, the classification performance measure of accuracy is considered, where TP, TN,

FP, and FN represent correspondingly True Positives, True Negatives, False Positives,

and False Negatives.

• Accuracy : TP+TN
TP+TN+FP+FN . The number of correctly classified patterns over the

total number of patterns in the sample.

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 104

For each dataset, the set of the extracted scores based on the test instances are nor-

malized in the interval of [0,1] per classification model per examined method. To this

direction, the estimation of the threshold is set equal to 0.5. Moreover, we use the AUC

of the receiver-operating characteristic curve as the main evaluation measure [154].

• Area Under Curve (AUC): The higher positive-over-negative value ranking capa-

bility of a classifier.

The AUC metric quantifies the effectiveness of each examined approach considering all

possible threshold values. In general, the AUC value is extracted by examining the

ranking scores rather than their exact values produced when a method is applied to

a dataset. Noticeably, the estimation of the AUC measure is based on all possible

thresholds.

6.3.3 Results

To evaluate the improvement in classification effectiveness when dimensionality reduc-

tion techniques are in force, we employ 8 well-known classifiers as well as ensemble

approaches on benchmark Androzoo corpora following two options. The first one is to

use the entire set of features on the dataset used (the case of a=1). The second option is

to select a random subspace of the initial feature set. In this case, we use a fix rate equal

to 0.5 (a=0.5). Table 6.1 reports the results of AUC and Accuracy (AC) measures of all

malware detection base models (AdaBoost, k-NN, LR, NB, MLP, SGD, RF and SVM),

utilizing either Original or transformed (based on PCA or t-SNE techniques) feature

sets of data when a=1 or a=0.5, respectively.

As concerns the performance of dimensional reduction techniques, it seems that the

proposed malware detection base models based on PCA or t-SNE transformation are

particularly effective and outperform the corresponding original ones in the most of the

cases, especially when the whole feature set is considered (a=1). It is discernible that

t-SNE aids malware base models to achieve improved results in comparison to PCA

transformation when a=1.

On the other hand, we also observe that the performance of both PCA and t-SNE models

is negatively affected by utilizing the fixed rate of features (a=0.5). It seems that these

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 105

very challenging conditions significantly affect the performance of transformed models.

However, the important improvement in the original models when a=0.5 in almost all

cases (except of LR and SVM models) verifies the previous outcome that dimensionality

reduction techniques are better able to handle a larger size of feature set than the original

ones. The same patterns are consistent in both the examined performance measures.

Clearly, the top-performing model seems to be the k-NN, which achieves the best results

in both the examined performance metrics, especially when combined with the t-SNE

technique. In particular, the use of t-SNE assists the k-NN model to become more

stable surpassing all other base models. The same pattern applies to both AUC and AC

performance measures.

DR method AdaBoost k-NN LR NB MLP RF SGD SVM

AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA AUC CA

Original 0.864 0.806 0.812 0.767 0.866 0.794 0.835 0.720 0.877 0.803 0.875 0.814 0.767 0.763 0.504 0.501

Original (50%) 0.876 0.807 0.840 0.772 0.862 0.782 0.842 0.731 0.881 0.809 0.880 0.801 0.823 0.799 0.499 0.480

PCA 0.861 0.805 0.814 0.774 0.866 0.729 0.835 0.690 0.878 0.771 0.880 0.800 0.769 0.704 0.505 0.484

PCA (50%) 0.873 0.810 0.870 0.800 0.816 0.790 0.755 0.708 0.827 0.788 0.880 0.812 0.714 0.692 0.591 0.589

t-SNE 0.883 0.820 0.885 0.844 0.820 0.799 0.792 0.770 0.849 0.803 0.882 0.837 0.799 0.744 0.619 0.604

t-SNE (50%) 0.867 0.802 0.867 0.809 0.736 0.690 0.755 0.701 0.820 0.800 0.882 0.804 0.678 0.678 0.564 0.538

Table 6.1: AUC scores of the proposed malware detection base models on the Andro-
zoo corpora

In addition, we also consider the combination of the base models by fusing their answers

for each sample separately. More specifically, two fusion functions are applied namely,

average (AV G) and Majority Vote (MV) technique. Table 6.2 shows the effectiveness

in terms of AUC and AC measures of the proposed ensemble malware detection models

when either AV G or MV functions are considered on our AndroZoo dataset. Note that

the ensemble approaches are not only tested on the original (AV Goriginal, MVoriginal),

but also on transformed (in terms of PCA (AV GPCA, MVPCA) and t-NSE (AV GtSNE ,

MVt−SNE)techniques) feature sets when a=1 and a=0.5, respectively. Moreover, the

AV GMixed, MVMixed ensemble models are examined. These models are extracted by

combining the entire set of base models (Original, PCA and t-SNE) when either a=1

or a=0.5. In this case, the output of 24 malware detection base models is combined

according to AV G and MV aggregate functions.

As can be seen in Table 6.2, the proposed AV GMixed model is the most effective one in

all cases improving the best reported results for the specific dataset. Its performance

is higher when a=1 in comparison to the case where a fix rate of features is considered

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 106

(a = 0.5). This sounds reasonable since transformed base models are less enhanced in

smaller feature set. Nevertheless, in case of a=0.5, AV GMixed also provides very good

results. This indicates that the size of base models is an important factor that influences

the performance of the presented ensemble methods. Given that our ensembles include

the entire set of base models, it seems rational that their performance is improved when

the number of base models augments.

It is important to be mentioned that ensemble models seem to be positively influenced

when dimensionality reduction transformation are considered. Ensembles based on PCA

and t-SNE base models are better than the corresponding ones based on original models

for both a=1 and a=0.5. Again, t-SNE models surpass PCA models with a wide margin

in the most of the cases. This shows that the proposed t-SNE ensemble models are

better able to handle malware detection cases and are clearly better options than PCA

ones. These patterns are consistent in both the evaluation measures.

In general, the version of ensemble models based on AV G is the most effective in all

cases achieving more balanced performance on both AUC and AC measures. On the

other hand, the performance of MV models seems not to be highly competitive. At the

same time, MV ensemble models is competitive enough achieving its best performance

when the output of mixed malware detection base models is considered. It appears again

that combining the output of mixed base models achieves the best performance. This

verifies that ensembles of classifiers based on multiple, possibly heterogeneous models,

can further improve the performance of individual malware detection models.

DR method Ensemble (AVG) Ensemble (MV)

AUC CA AUC CA

Original 0.878 0.821 0.815 0.755

Original (50%) 0.879 0.821 0.819 0.767

PCA 0.892 0.840 0.854 0.796

PCA (50%) 0.886 0.836 0.838 0.799

t-SNE 0.940 0.910 0.897 0.855

t-SNE (50%) 0.900 0.840 0.887 0.830

mixed 0.951 0.917 0.912 0.877

mixed (50%) 0.942 0.899 0.890 0.862

Table 6.2: Comparison of the AUC of both ensemble methods

Figure 6.1 illustrates the performance (AUC) of AV G and MV ensemble models when

malware detection base models are based on Original, PCA, t-SNE representations for

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 107

a=1 and a=0.5, respectively. The AV GMixed and MVMixed ensemble models are also

reported.

Apparently, the best performing model not only for the whole feature set but also when

a fixed rate of features is randomly selected (a=0.5), is the AV GMixed model constructed

by averaging the output of mixed malware detection base models (Original, PCA and

t-SNE models). Given that these ensembles include the set of both the Original, PCA

and t-SNE enhanced base models, this means that increasing the size of base models it

has a positive effect on the efficiency of the proposed ensemble methods.

Again, ensembles based on original base models are outperformed by the ensembles

using dimensionality reduction transformation when a=1. This clearly shows that in-

creasing the feature set helps PCA and t-SNE techniques to improve their performance.

Apparently, t-SNE ensemble models are better and more stable alternative than PCA

ones with a noticeable margin in all cases indicating that t-SNE models better suits in

malware detection cases.

In general, averaging the output of base malware detection models seems to be the best

and more stable option achieving more balanced performance both on AUC and AC

measures. This strongly indicates that the vast majority of these base models provide

commonly improper votes on similar malware detection cases. Both MVoriginal and

MVPCA perform poorly. However, it should be underlined that MVt−SNE and MVMixed

models are very effective surpassing the best performing base model which is based on

t-SNE transformation. Again, this can be explained since the meta-learner needs as

accurate base models as possible and t-SNE models are more stable and reliable than

PCA ones. Moreover, it clearly demonstrates the contribution of t-SNE technique on

malware detection cases.

6.3.4 Comparison with the state-of-the-art

In the course of our experiments, the performance on the Androzoo corpus is measured by

the area under the receiver-operating characteristic curve as well as accuracy measures.

This makes our reported results directly comparable to the ones obtained by others

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 108

Figure 6.1: The performance (AUC) of the examined ensembles when a=1 and a=0.5,
using either AVG (left) or MV (right) fusion techniques, on Androzoo dataset for vary-
ing types of base models, respectively. The performance of the best base model is also

depicted.

published works in the framework of malware detection task. The following state-of-the-

art methods (ranked in chronological order) are used to estimate the competitiveness of

the proposed AV GMixed model when a=1:

• Milosevic et al. [155]: This work concentrates on the extraction of non-trivial and

beneficial malicious patterns examining the usefulness of source code as well as the

permissions set of features when combined with either classification or common

used clustering techniques, respectively. In the experiments, the M0Droid corpus

is considered and two categories of features namely, permissions and source code

are utilized.

• Kouliaridis et al. [10]: In this study, a simple heterogeneous malware detection

ensemble method is proposed on Adrozoo dataset. More specifically, a meta-model

is constructed by averaging the output of several base models based on either static

or hybrid analysis. During static analysis the authors collected features from

three categories, namely permissions, intents, and API calls. The performance

of this method is evaluated on several datasets, namely Drebin, VirusShare and

AndroZoo.

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 109

Detection method Year Dataset Groups of Features Collected AUC AC

Milosevic et al. [155] 2017 M0Droid permissions, source code N/A 95.60

Kouliaridis et al. [10]* 2020 AndroZoo permissions, intents, API calls 93.57 90.90

AV Gt−SNE 2020 AndroZoo permissions, intents 94.00 91.00

AV GMixed 2020 AndroZoo permissions, intents 95.10 91.70

Table 6.3: Comparison of the proposed approach with state-of-the-art detection works
in terms of collected features, accuracy and AUC score (* For this work, we only consider

the results stemming from static analysis on Androzoo corpus)

Note that the published results for some of the above methods only refer to either

Androzoo or M0Droid datasets. Moreover, in some works, the evaluation results are not

provided on both performance measures (AUC and accuracy). Thus, we use the values

of the two evaluation metrics. Table 6.3 demonstrates the effectiveness of the state-of-

the-art methods per dataset and on AUC and AC evaluation measures, respectively.

Clearly, both the AV GMixed and AV Gt−SNE models examined in this study are the most

effective, surpassing the reported results of Kouliaridis et al. [10]*, which also employs

the AndroZoo benchmark dataset. In addition, the resulted evaluation values in [10]

were extracted by averaging the answers of 8 base classification models. Under these

settings, it is important to mention that these classifiers are similar to those combined for

AV Gt−SNE model. In this way, it can be concluded that t-SNE transformation better

suits in demanding malware detection cases and caters for an effective model handling

only two feature categories (permissions and intents). Moreover, when the AV GMixed

model is applied, the improved evaluation results in the challenging Androzoo dataset

indicate that the examined model is not easily confused in challenging conditions and the

combination of a larger set and mixed base models has a positive effect on the efficiency

of the proposed model.

On the other hand, taking into consideration the work of Milosevic et al. [155] examined

on a different dataset and feature set, it seems that the performance of both AV GMixed

and AV Gt−SNE models is not so competitive. To the best of our knowledge, the M0Droid

corpus is not available, therefore it is not possible for our proposed models to be tested

on this corpora in order to be directly comparable. Nevertheless, the improved results of

the proposed AV GMixed and AV Gt−SNE models in the challenging AndroZoo corpora

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 110

demonstrate that the presented models are not easily confused in demanding malware

conditions and can capture useful malware information.

6.4 Previous Work

So far, several corpora have been used in the literature to evaluate mobile malware

detection approaches. This chapter offers a review of works published from 2015 to 2020,

categorized in three benchmark datasets, namely Drebin, VirusShare, and AndroZoo.

Note that the focus is on works that present classification results based on features

stemming from static analysis.

Drebin [102] is one of the oldest datasets, used in various state-of-the-art mobile malware

detection approaches [156]. On the downside, Drebin is outdated and therefore newer

malware samples are needed to accurately assess detection performance. Below are some

notable works which employed this dataset.

• Ali-Gombe et al. [129] presented AspectDroid an hybrid analysis system, which an-

alyzes Android apps to detect unwanted or suspicious activities. The proposed sys-

tem employs static bytecode instrumentation to provide efficient dataflow analysis.

However, static instrumentation is unable to detect apps which use anti-unpacking

and anti-repackaging obfuscation mechanisms.

• Arshad et al. [67] introduced a hybrid malware detection scheme, namely

SAMADroid. According to the authors, SAMADroid delivers high detection ac-

curacy by combining static and dynamic analysis, which run both in a local and

remote fashion. Machine Learning (ML) were used to detect malicious behavior

of unknown apps and to correctly classify them.

VirusShare is another well-known dataset containing not only mobile malware samples,

but also others from various platforms, including Windows and Linux. It is updated

regularly and contains samples dated from 2012 onward.

• Xu et al. [139] proposed HADM. Their method converted classification features

extracted during static analysis into vector-based representations. Other fea-

tures fetched during dynamic analysis, namely system calls, were transformed into

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 111

vector-based and graph-based representations. Deep learning techniques were used

to train a neural network for each of the vector sets. Finally, the hierarchical multi-

ple kernel learning technique were applied with the purpose of combining different

kernel learning results from diverse features, and thus improve the classification

accuracy.

• Fang et al. [149] suggested a hybrid analysis method which performs dynamic

analysis on the results of static analysis. During the static analysis phase, they

decompiled the app’s APK file to extract permissions from the manifest file as

well as any occurrence of API features existing in smali files. Regarding dynamic

analysis, they generated user input and logged the system calls. The authors used

ML to classify apps.

Much like VirusShare, AndroZoo [104] is a growing collection of Android apps collected

from diverse sources, including the official Google Play store. AndroZoo is updated reg-

ularly and it currently contains over 12M samples. To our knowledge, the only work that

exploits this dataset for conducting among other static analysis is given by Kouliaridis

et al. [10]. Specifically, they introduced an online open-source tool called Androtomist,

which performs hybrid analysis on Android apps. The authors focused on the impor-

tance of dynamic instrumentation, as well as the improvement in detection achieved

when hybrid scrutiny is used vis-à-vis to static analysis. In their experiments, the au-

thors compared feature importance between three datasets, namely Drebin, VirusShare,

and AndroZoo. Finally, they elaborated on features which seem to be commonly ex-

ploited in malware and seldom in benign apps.

Several works in the literature use a mixed dataset, i.e., one containing samples from

two or more corpora, to evaluate their approach. Below, we refer to the most important

ones.

• Martinelli et al. [140] introduced BRIDEMAID. Their system operates in three

consequent steps, namely static, meta-data, and dynamic. During static analysis,

BRIDEMAID decompiles the apk and analyzes the source code for finding pos-

sible similarities in the executed actions. This is done with the help of n-grams.

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 112

Dynamic analysis exploits both ML classifiers and security policies to control suspi-

cious activities related to text messages, system call invocations, and administrator

privilege abuses.

• Surendran et al. [141] implemented a Tree Augmented Naive Bayes (TAN) model

that combines the classifier output variables pertaining to static and dynamic fea-

tures, namely API calls, permissions and system calls, to detect malicious behavior.

Their experiments showed an accuracy of up to 97%.

Overall, the effect of dimensionality reduction techniques on Android malware detection,

which is the focus of the current chapter, has hitherto received scarce attention in the

literature. We were able to only pick out the work of Vega et al. [157] who collected and

analyzed malware samples from the Malgenome dataset with six dimensionality reduc-

tion techniques, namely Principal Component Analysis, Maximum Likelihood Hebbian

Learning, Cooperative Maximum Likelihood Hebbian Learning, Curvilinear Component

Analysis, and Isomap and Self Organizing Map. On the other hand, the authors did not

evaluate the classification performance of these methods.

6.5 Conclusion

This chapter introduces new insights on malware detection approaches based on ensem-

ble learning. We utilize eight popular and extensively used base classifiers namely, eager

(AdaBoost, LR, NB, MLP, SGD, SVM and RF) as well as lazy (k-NN) algorithms. This

collection of verifiers provides a pluralism of malware detection scores and we attempt to

take advantage of their correlations by constructing two ensembles. In this way, we ex-

plore two options. The first one is consisted by a set of homogeneous malware detection

base models and learns patterns of agreement or disagreement among not only original

feature set but also Principal Component Analysis (PCA) and t-distributed stochastic

neighbor embedding (t-SNE) dimensionality reduction techniques. In other words, it

learns dealing with the output of base models extracted utilizing exclusively the origi-

nal feature set of malware detection cases or only a reduced set of features resulted by

applying either the PCA or t-SNE transformation, respectively.

The second option is more knotty, handling the output of a larger and probably more

heterogeneous set of base verifiers aggregating all the examined malware detection base

Chapter 6. Improving Android malware detection through dimensionality reduction
techniques 113

models together (Original, PCA and t-SNE base models). Both the ensemble approaches

outperform a set of strong base malware detection models in the most of the cases in

terms of experiments developed on benchmark Androzoo corpora. This suggests that

our ensembles are able to handle demanding malware detection scenarios and are more

robust than individual models. Moreover, it seems that a relatively large and mixed size

of base malware detection models is required to achieve high performance.

For each of the above ensemble variation, the output of base models is combined consid-

ering two simple fusion functions namely, average (AV G) and Majority Voting (MV)

technique. Except of the initial feature set, we examine the alternative of using a fixed

rate equal to 0.5 of the initial feature set. This demonstrates that it is important to

be defined which set of features will be retrieved and how many base classifiers will be

considered. Our experiments show that both AV G and MV work better with mixed

base models. This indicates that ensembles based on a large and heterogeneous set of

base models are the best option and they provide a more stable performance. That is,

in general, AV G are always the best performing models surpassing the corresponding

MV ones. This strongly manifests that the vast majority of these base models provide

commonly improper votes on similar malware detection cases.

We also focused on the use of two prominent dimensionality reduction techniques namely,

PCA and t-SNE, dealing with either the whole initial feature set or a subspace randomly

selected. It is demonstrated that the performance of both transformed malware detection

models is notably reinforced than the original one when the entire number of features

is handled. This verifies that these techniques are negatively affected when a smaller

feature set is available. In general, t-SNE models are more effective and competitive than

PCA ones indicating that t-SNE transformation helps malware detection approaches to

become more stable.

The development of more sophisticated ensembles exploiting a larger set of dimensional-

ity reduction techniques to achieve high diversity is an open research direction. Another

possible future work direction is to try to further enrich the pool of our base verifiers

considering not only a richer set of classification algorithms, but also several versions of

the same approach with different fixed and tuned parameter settings.

Chapter 7

An Extrinsic Random-based

Ensemble Approach for Malware

Detection

7.1 Introduction

As already pointed out in Section 1, a great mass of mobile malware detection systems

and methodologies leans towards static anomaly-based techniques, which employ ML to

identify malicious apps [111], [7], [158], [5], [61]. Concerning performance, static analysis

requires less resources, and therefore is faster than dynamic analysis. Furthermore,

static analysis does not require a mobile device or a VM to run the app, thus it is

straightforward to implement. However, as previously mentioned in chapters 4, 5, and 6,

many state-of-the-art models have been built using outdated mobile malware datasets,

which raises a question on whether features stemming from static analysis alone are

sufficient to create models which can detect concurrent mobile malware.

The state-of-the-art works either compare multiple classification models to determine

the best performer, or use ensemble methods, which combine multiple classifiers to ob-

tain better predictive performance. This chapter goes one step further by proposing

a dynamic ensemble selection method that concentrates on the most effective models

for each malware detection case separately. That is, our method is able to take ad-

vantage of the case when multiple external malware instances are available and notably

114

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 115

enhances state-of-the-art performance. In particular, we present an extensive study

of one dynamic method based on the best performing model and meticulously study

its properties and performance. This method enriches the information that is kept in

each iteration when building the random subspace ensemble. Based on an extensive

experimental study using benchmark datasets that cover several malware genres, and

degrees of difficulty, we show that the proposed method is more effective in most of the

cases. Furthermore, we demonstrate the effect of a random subspace of features in the

performance of the proposed models.

A typical malware detection problem includes a set of malware cases (or instances),

all derived by the same dataset or a mixed set collected by various corpora to build

the positive class. A set of benign instances are sampled to construct the negative

class. A malware detection method should be able to decide whether or not the instance

under examination is a malware case or benign. Apart from a binary (yes/no) answer,

malware detection methods usually produce a score in [0,1] that can be viewed as a

confidence estimation. Essentially, malware detection problem can be defined as a one-

class classification task since only labelled samples from the positive class are available.

However, there are extrinsic approaches adopted that attempt to transform it to a

binary classification task by sampling the negative class, i.e., all benign instances selected

by other sources. In most cases, the negative class can be huge and heterogeneous

since it compromises all other possible benign apps. It is important to mention that

the performance of such methods heavily depends on the quality and properties of the

collected external benign instances.

In this study, we handle the malware detection problem from another point of view.

In particular, we build predefined positive and negative classes composed by a set of

malware and goodware apps, respectively. Moreover, we treat each test instance (either

malware or benign) separately by building a random subspace ensemble where in a fix

number of iterations randomly choosing a subset of features and a subset of external

instances (either of the positive or negative class). In each repetition, the output of

three classification binary algorithms is aggregated and a negative or positive answer is

provided. Experimental results on AndroZoo [104] benchmark dataset examining differ-

ent sizes and genre of external instances demonstrate the effectiveness of the proposed

extrinsic approach especially in challenging cases where the set of available external

instances is of limited size and in cross-genre conditions with respect to the test set.

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 116

The main contributions of this study are:

• We adopt predifined categories of external malware and benign instances and pro-

pose a more sophisticated extrinsic ensemble approach, which provides a positive

or negative answer by averaging the output of the base models for each test in-

stance separately. It is demonstrated that ensemble models can further improve

the performance of each individual base classifier.

• We examine the effect of external instances when an ensemble malware detection

method is provided combining different sizes and types of external instances. It

is demonstrated that ensembles based on a larger and possibly homogeneous size

of external instances are exceptionally effective alternative to ensembles included

smaller sizes and feasibly more heterogeneous external instances.

• We examine the effect of using either the entire feature set or a random subspace of

features of instances in each iteration and it is demonstrated that the latter assists

an extrinsic malware detection ensemble to further increase its effectiveness.

• We report experimental results on contemporary benchmark datasets and directly

compare them against state-of-the-art methods under the same settings. The

performance of the method presented in this study is quite competitive to the best

results reported so far for these datasets, demonstrating that an extrinsic ensemble

method is much more reliable and effective for the malware detection task.

7.2 Methodology

To handle challenging malware detection cases, we propose essentially a random sub-

space ensemble taking into consideration a set of multiple malware and benign test in-

stances (Testinstances). We coin this method Extrinsic Random-based Ensemble (ERBE),

and describe it in Algorithm 1. ERBE examines each test instance (Testinstance)

separately. That is, within an iterative process, a subset of classification features

stemming from static analysis, say, permissions, intents, etc., along with a subset

of available malware and goodware samples (they are called as external instances,

Externalsrepetition) are randomly selected in each repetition. Note that exactly the

same number of Externalsrepetition both from malware or benign (Externalmalware and

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 117

Externalbenign) samples are considered per repetition to serve as a positive and nega-

tive class, respectively. The classificationScore of a Testinstance with both the selected

Externalsrepetition (both malware and benign) samples is calculated in terms of three

classification algorithms. That is, in each repetition, three scores (Scoreinstance) of a

test sample are recorded. Then, a malicious detection MalwareDetectionScore is cal-

culated based on an aggregation function that combines all scores corresponding to the

test sample for a number of iterations. Note that the set of classifiers applied to estimate

malware detection scores per test instance and the aggregate function that combines the

scores of all three classifiers for a number of repetitions can be selected among several

alternatives to optimize performance in a set of preliminary experiments taken place.

As shown in Algorithm 1, the proposed method has two important parameters,

Externalsrepetition, and the rate. The former determines the size of the set of the

selected external instances of both two categories. Always, an equal number of posi-

tive and negative instances are selected either from Externalmalware or Externalbenign.

The latter parameter affects the number of selected features considered for all instances

(either positive or negative) examined. If it is set equal to 1, the entire set of features

is utilised to represent each instance vector per iteration in order to provide the final

answer (the final MalwareDetectionScore). On the other hand, if it is set equal to 0.5

then exactly a half amount of the initial set of features is randomly selected and used

to represent a malware instance examined. In more detail, when there is exactly a fixed

rate equal to 0.5, then a random 50% percent of the initial feature set is considered

within the set of all investigated instances. As concerns the number of base learners

(i) applied to estimate the Scoreinstance(i) per iteration can also be used as a signifi-

cant parameter of ERBE method. Note also that the proposed approach is a stochastic

algorithm since it makes some random choices of features as well as both positive and

negative instances for each tested sample.

7.3 Experimental Study

7.3.1 Description of Data

In this section, we considered a benchmark corpora, namely AndroZoo [104] built in the

framework of malware detection task. This is a widely used and continuously spreading

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 118

Data: Testinstances, Externalmalware, Externalbenign
Parameters: repetitions, |Externalsrepetition|, rate
Result: MalwareDetectionScore

1 for each Testinstance ∈ Testinstances do
2 Set Score(Testinstance) = 0;

repeatrepetitions times
3 Select Externalsrepetition ⊂ Externalmalware randomly;

Select Externalsrepetition ⊂ Externalbenign randomly;
Select rate % of features randomly;
Scoreinstance(i) = ClassificationLearner (Testinstance, Externalsrepetition,
learner(i));
ClassificationScore = aggregate (Scoreinstance(:));

4 end;
5 Score(Testinstance) = Score (Testinstance) + ClassificationScore / repetitions;

6 end
7 MalwareDetectionScore = aggregate (Score(:));

Algorithm 1: The proposed Extrinsic Random-based Ensemble method.

real-world collection of Android apps selected from assorted sources, including the official

Google Play app market [30]. Particularly, the collection of AndroZoo apps we used in

the context of this chapter is dated from 2017 to 2020 and enclosed 1K malware apps,

each of which has been cross-examined by a large number of antivirus products. It is

important to note that AndroZoo is a challenging corpora since it includes new and more

sophisticated malware samples in comparison to other datasets, including VirusShare

[103] and Drebin [102]. We also chose a set of 1K benign apps from Google Play.

External cases: As already pointed out in section 7.2, given that the proposed method

follows the extrinsic paradigm, it needs a set of external both malware and benign

instances per each examined test instance. In this way, we follow the practice of con-

structing two categories to collect such a set of instances. In particular, we use a set

of 800 malware cases contained in AndroZoo dataset to compose the positive category.

This set of instances is randomly selected from the initial set of 1K samples in our partial

AndroZoo dataset. Following the same strategy, the negative category is constructed

by a randomly selected subset of 800 benign apps from the initial 1K benign cases. It

should be noted that the external instances either Externalmalware or Externalbenign

are unique and not duplicated in test set, so that they do not affect the performance

scores of base models.

Feature Selection: Static analysis was performed on all the apps mentioned in subsection

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 119

7.3.1 using the open-source tool Androtomist [10]. Specifically, each app was decompiled

to get the Manifest.xml file and log permissions and intents to create a feature vector.

Each vector is a binary representation of each distinct feature. For example, think of

two apps, app1 and app2. The first uses permissions p1, p2, and intent i1, while the

latter uses permissions p1, p3, and intents i2, i3. This leads to the 6-dimensional feature

vector (p1, p2, p3, i1, i2, i3), and thus the feature vectors for these two apps will be (1,

1, 0, 1, 0, 0) and (1, 0, 1, 0, 1, 1), respectively. Typically, the analysis of a real-world

app yields a far more lengthy vector. Precisely, the analysis of the largest set of malware

and benign apps used in our experiments, that is, 1K malware instances along with all

of the 1K benign apps collected from Google Play, produced 1,002-dimensional feature

vectors.

7.3.2 Experimental Setup

As already pointed out, the full dataset used comprises a collection of 1K malware apps

randomly selected by AndroZoo corpus. Moreover, 1K benign apps were downloaded

by the Google Play to comprise the negative category. The test set is constructed

by randomly selecting 200 malware and 200 benign individual apps by this initial set

of positive and negative instances, respectively. As already mentioned, the remaining

apps per category, i.e., 800 malware and 800 benign apps, compose an initial pool of

Externalmalware and Externalbenign samples, respectively. This way, external instances

(either malware or benign) are unique and distinct with respect to the specific instances

included within the test set.

As per Algorithm 1, the set of external samples (Externalsrepetition) is constructed by

randomly selecting a fixed number of k samples per iteration from this initial pool of

Externalmalware and Externalbenign instances, respectively. As can be observed from

Algorithm 1, the ERBE method has several parameters that need to be tuned for a

particular dataset. In this section using AndroZoo benchmark data, all these parameters

were tuned based on the training set.

Specifically, to simplify and make this process more efficient, we attempt to reduce

independent parameters by setting fixed parameter values. In particular, we focus on

fine-tuning parameter k = |Externalsrepetition| by selecting k ∈ {50, 100,..., 300} external

samples per repetition optimizing the performance in the training set. Then, we set

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 120

repetitions = 5 based on some preliminary tests. A slight, though not consistent,

difference with respect to the performance of repetitions = 15 and repetitions = 5 was

noticed. As concerns the features selected, in this section, we explore two options. The

first one is to use exclusively the entire set of features by setting rate = a = 1. This

indicates that the entire vector of each instance examined is considered per iteration.

The second option is to fix rate of a = 0.5 indicating that a percent of 50% of the initial

set of features are selected in each repetition. Again, doing some preliminary testing,

considering a = 0.5 and a = 0.75, a significant improvement in the effectiveness of the

ERBE method in comparison to the case where a = 1 is observed.

Moreover, three well-known and widely used supervised ML algorithms were applied,

namely Logistic Regression (LR), Multiple Layer Perception (MLP), and Stochastic Gra-

dient Descent (SGD). In a more detailed description, the entire set of the classification

algorithms employed falls under eager learning. In this category, supervised learning

algorithms attempt to build a general model of the malicious instances, based on the

training set. Obviously, the performance of such classifiers strongly depends on the size,

quality and representative of the training data. For each classifier applied, the default

values of the parameter settings are used. The general model of each eager classifier

is built following the 10-fold cross-validation technique, where the original dataset is

randomly partitioned into 10 equal sized sub-datasets. A single sub-dataset is retained

for the testing, while the remaining 9 are used for training. This process is repeated

10 times, and each time using a different sub-dataset for testing. The results are then

averaged to produce a single estimation.

Our main evaluation measure is the Area Under the Receiver Operating Characteristic

(ROC) curve (AUC) that quantifies the effectiveness of an examined approach for all

possible malware detection score thresholds [131]. Moreover, this evaluation measure

does not depend on the distribution of positive/negative instances. This is extracted

by examining the ranking of malware detection scores (rather than their exact values)

produced when a method is applied to a dataset. However, when one has to decide

about a specific malware case, the malware detection score has to be transformed to a

binary answer: either a positive (malware class) or a negative (benign class) one. To

this direction, a threshold can be applied to the malware detection score - actually,

the calculation of AUC is based on all possible thresholds. To set this threshold, in-

formation about the distribution of positive and negative malware detection instances

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 121

is paramount. In our dataset, positive and negative instances are equally distributed.

To transform malware detection scores to binary answers, we follow exactly the same

evaluation procedure to achieve compatibility of comparison with previously reported

results. In a more detailed description, the set of the extracted scores based on the test

instances are normalized in the interval of [0,1] per classification model per examined

method. To this direction, the estimation of the threshold is set equal to 0.5. Then, all

malware detection scores of the test dataset that are lower/higher than this threshold

are transformed to negative/positive answers. This is in accordance to the setup of

previously reported results.

Finally, we select the aggregation function used in ERBE method among average, mini-

mum, and maximum that optimizes performance in the training set. Most of the times,

average is selected. Since the proposed ERBE method makes stochastic choices in each

repetition, each experiment is repeated five times and we report average performance.

7.4 Results

The following classification performance metrics are used to achieve compatibility of

comparison with stare-of-the-art methods, where TP, TN, FP, and FN represent corre-

spondingly True Positives, True Negatives, False Positives, and False Negatives.

• Accuracy (CA) : TP+TN
TP+TN+FP+FN . The number of correctly classified patterns over

the total number of patterns in the sample.

• Precision (P) : TP
TP+FP . The ratio of TP values over the sum of TP and FP.

• Recall (R) : TP
TP+FN . The ratio of TP over the sum of TP and FN.

• Area Under Curve (AUC): The higher positive-over-negative value ranking capa-

bility of a classifier.

• F1 : 2 ∗ P∗R
P+R .

To demonstrate the usefulness of legacy base models in ERBE approach, figure 7.1

depicts the performance of ERBELR, ERBEMLP and ERBESGD on the Androzoo

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 122

Figure 7.1: The performance (AUC) of the examined base models, using either a = 0.5
(left) or a = 1 (right) on AndroZoo dataset.

corpus for varying sizes of external instances (k) when a = 0.5 (left) and a = 1 (right)

used for each examined instance per iteration.

As can be clearly seen, ERBEMLP model is the best option in all cases of the examined

size values of the external instances on Androzoo corpora. Not only in case where a

percent of 50% on the initial feature set is randomly selected, but also when the entire

set of features is handled, it is more effective providing a more stable performance than

the two others. Moreover, the effectiveness of ERBELR model is stable and seems to

be competitive enough acquiring remarkable performance when k ≥ 200 especially in

both cases. On the other hand, the effectiveness of SGD classifier is negatively affected

when a = 0.5. Then, ERBESGD model seems not to be a very stable option since its

performance vary for different values of k with a large margin. It seems to get improved

a lot when k increases. In particular, it achieves its best results for k=200, while in the

case of shorter k values its performance seems to be especially poor. All these indicate

that ERBESGD models are in need of a more fixed and accurate set of features to be

valid. Moreover, these results demonstrate that both ERBELR and ERBEMLP are

better and reliable models for multiple values of k while ERBEMLP is always superior.

Table 7.1 reports the evaluation results of ERBE method and the performance of the

best base model on multiple evaluation measures over the AndroZoo dataset. Moreover,

the version of ERBE when a=1 and the corresponding best performing base models,

ERBEMLP for k = 200, are also reported. As can be seen, ERBE is the most effective

one in all cases improving always the reported results of the best base models for the

specific dataset. This verifies that ensembles of classifiers based on multiple, possibly

heterogeneous models, can further improve the performance of individual malware de-

tection base models. From the obtained results, it is also clear that the performance of

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 123

ERBE is higher when a random subspace of the initial feature set is used (in case of

a = 0.5) in comparison to the version where the entire set of features (case of ERBEa=1)

is considered in all the examined cases. It clearly seems that ERBE method is positively

affected by a random rate selection of features on examined samples per iteration. In

other words, when the number of features decreases and the size of vectors in examined

instances is reduced then the performance of ERBE is increased. This indicates that

ERBE approach is much more reliable and effective in difficult malware cases where

there are irregular and incidental subsets of features which belong to different domains

in each iteration.

AUC Accuracy Precision Recall F1

ERBEMLP,a=1 0.936 0.917 0.903 0.930 0.916

ERBEMLP 0.947 0.923 0.886 0.937 0.911

ERBEa=1 0.978 0.950 0.940 0.959 0.949

ERBE 0.994 0.983 0.970 0.976 0.973

Table 7.1: Scores of all evaluation measures examined in ERBE malware detection
method and the best performing base models with a = 0.5 and a = 1 for k = 200 on

AndroZoo dataset.

7.4.1 Contribution of a random subspace set of features

Next, we examined the contribution of the factor |a| related to the number of features

considered in the proposed ensemble malware detection method ERBE. To isolate the

contribution of this factor, beyond of the value of a = 0.5, we also used the value of the

initial set of features, a = 1. In this way, ERBE was applied with and without considering

the entire feature set for varying values of parameter k. Note that each version of the

examined method was performed to the AndroZoo dataset and the aggregation function

was fixed to average for this experiment.

Figure 7.2 shows the corresponding performance of ERBE method for comparative pur-

poses. Apparently, the contribution of random selection of features is significant and

assists the present ensemble method to enhance its effectiveness for all k values. The

performance of ERBE without random collected features, ERBEa=1 is also competitive

enough, especially when the k value is increased (k > 150). In addition, ERBE is clearly

better than the best base model, ERBEMLP for the whole range of the examined k

values. It is noticeable that the contribution of random feature selection is stronger not

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 124

Figure 7.2: The performance of AUC of the proposed ERBE and ERBEa=1. The
best performing base model, ERBEMLP is also shown.

only for low but also for large values of k (i.e., k > 150), while the version of ERBE

without random feature selection (when a=1) is weaker enough for relatively low values

of k (up to 150).This means that k should be set to a relatively large value to reinforce

the effectiveness of ERBEa=1. In other words, this strongly suggests that when there

are challenging conditions, the information of the entire feature set is less crucial for

ERBE method. On the other hand, ERBE is proved to be particularly enhanced in the

case where sporadic and inconstant features are selected on examined instances in each

iteration.

Additionally, we examined the statistical significance of pairwise differences of both the

tested versions of ERBE and base malware detection models, respectively. Table 7.2

demonstrates the improvement in performance (difference of AUC scores) of both the

examined ERBE versions as well as the base classification models with a = 0.5 and a =

1 on AndroZoo dataset, respectively. The statistical significance of these differences is

estimated using an approximate randomization test [138]. The null hypothesis is that

there is no difference between the two cases, and we reject this hypothesis when p < .05.

As can be seen, in general the models extracted from the random selected feature set are

more effective and clearly better options. In particular, ERBE models based on a = 0.5

are more improved and gain more than the corresponding ones belonging in case of

a = 1 for all k values. As concerns the individual base models, the results of ERBELR

and ERBEMLP are improved the most, while notable exceptions are ERBESGD base

models, where the random selection of features per iteration is not significantly better

than the case of the entire feature set (case of a = 1). This does not seem to correlate with

the relative increase in the number of external malware instances used per repetition.

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 125

k ERBELR ERBEMLP ERBESGD ERBE

50 0.024 0.020 -0.035 0.011

100 0.024 0.027 -0.026 0.019

150 0.013 0.021 -0.018 0.012

200 0.010 0.011 -0.039 0.016

250 0.023 0.014 -0.037 0.012

300 0.023 0.011 -0.032 0.015

Table 7.2: Improvement in performance (difference in AUC) between ensemble meth-
ods as well as base models using a = 0.5 and a = 1 on AndroZoo dataset.

7.4.2 Comparison with the state-of-the-art

In all our experiments, the performance on the evaluation data set is measured by various

evaluation measures. In this way, our reported results can directly be compared with the

ones of other published methods followed the static analysis that use exactly the same

evaluation measures in the framework of malware detection task. The following state-of-

the-art methods, ranked in chronological order, are used to estimate the competitiveness

of the proposed method:

• Yerima et al. (2015): This is an ensemble malware detection method focuses on

the extraction of critical Android and Java API calls from the source code, as

well as the app permissions extracted from the manifest file. In all experiments,

McAfee’s internal dataset is considered.

• Milosevic et al. (2017): This method concentrates on the extraction of non-trivial

and beneficial malicious patterns examining the usefulness of source code as well as

the permissions set of features when combined with either classification or common

used clustering techniques, respectively. In all experiments, the M0Droid corpus

[159] is considered.

• Idrees et al. (2017): This is also a malware detection method based on ensemble

learning to boost the effectiveness of base models followed a static app analysis.

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 126

This method considers a mix set of features including app’s permissions and in-

tents derived from Contagio dump, MalGenome, theZoo, Malshare, and Virushare

datasets.

• Kouliaridis et al. (2020): This is a simple heterogeneous ensemble malware de-

tection method. A meta-model is constructed by averaging the output of several

base models based on either static or hybrid analysis. The feature set comprises

multiple categories, such as permissions, intents and API calls. The performance

of this method is evaluated on several datasets, namely Drebin, VirusShare and

AndroZoo. For this work, we consider the results stemming from static analysis.

Table 7.3 demonstrates the effectiveness of the state-of-the-art methods per dataset on

both AUC and Accuracy measures of evaluation. Note that the published results for

some of the above methods are only provided on either AUC or Accuracy Performance

measures (i.e. the work of Milosevic et al. [155]). Moreover, they are not tested on

AndroZoo corpus, but only refer to a mixture of datasets. To the best of our knowledge,

these mixed corpus are not accessible since they have generated by individual research

groups and they are not shared with the public. As can be seen, the proposed malware

detection method based on extrinsic ensemble learning, ERBE is particularly effective

and outperforms the vast majority of baseline methods and simultaneously the study of

Yerima et al., [160] based also on ensemble learning. In addition, ERBE seems to be

highly competitive with the approach of Idrees et al., [161] examined on a similar feature

set. However, the improved results of the proposed ERBE method in the challenging

AndroZoo corpus indicate that the examined method is not easily confused in demanding

malware conditions and the extracted extrinsic ensemble models can capture useful

malware information.

Moreover, the improvement in performance of ERBE model with respect to that of the

simple ensemble baseline [10] is higher than 5% on the AndroZoo dataset. All in all,

given that both ERBE and simple meta-model are exclusively applied on the demanding

AndroZoo dataset, it can be concluded that an extrinsic ensemble provides an effective

approach in malware detection when it is fine-tuned and appropriately combined with

suitable base models.

In addition, the proposed ERBE malware detection model is also very effective and

clearly better option in comparison to Milosevic et al., [155] approach. The improvement

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 127

Detection method Year Feature set AUC per dataset Accuracy per dataset

AndroZoo Other AndroZoo Other

Yerima et al. 2015 permissions, API calls N/A 0.993 N/A 0.975

Milosevic et al. 2017 permissions, source code N/A N/A N/A 0.956

Idrees et al. 2017 permissions, intents N/A 0.998 N/A 0.998

Kouliaridis et al. 2020 permissions, intents, API calls 0.936 N/A 0.909 N/A

ERBE 2020 permissions, intents 0.994 N/A 0.983 N/A

Table 7.3: Comparison of state-of-the-art methods with the proposed ERBE malware
detection method of this study.

in performance is higher than 2%. With respect to the categories of features applied, the

method of Milosevic et al., does not seem to be positively influenced when a feature set

of both app permissions and source code is available. Taking also into consideration the

corresponding results of both Milosevic et al., [155] and Idrees et al., [161] methods, we

notably reinforce the aforementioned outcome as a feature set of both app’s permission

and intents is better able to handle challenging malware conditions.

7.4.3 Genre of External cases

So far, in all the experiments the set of external instances required by the examined

method stem from the AndrooZoo dataset. This means that the genre of these instances

most probably match a lot to the one of the test instances in question. Taking into

account that the genre of all instances is the same, the performance of the proposed

method can take a significant advantage and can be probably considerably improved.

This section uses another prior released corpus that will allow us to examine this effect.

As concerns the set of external malware instances required by ERBE, we explored two

alternatives. First, we followed the approach used in the previous experiments selecting

external instances from the rather outdated Drebin corpus. We call this alternative

as ERBEDerbin. Second, we used the VirusShare corpus to collect the set of external

instances. VirusShare comprises newer and more challenging apps dated from 2014 to

2017. This second alternative is defined as ERBEV irusShare. For each of the above corpus

examined, 200 malware apps are randomly selected per iteration by a large pool of 1K

malware samples. The benign apps included in the set of external instances are similar

to those applied in ERBE and were collected from Google Play [30]. In each repetition,

a set of 200 goodware apps are also randomly selected to use as external instances.

Again, both the malware and benign part of the external instances was balanced with

200 positive and 200 negative cases. The parameters of the methods presented in this

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 128

AUC Accuracy Precision Recall F1

ERBEAndroZoo 0.994 0.973 0.970 0.976 0.973

ERBEDerbin 0.971 0.938 0.936 0.940 0.938

ERBEV irusShare 0.976 0.945 0.941 0.950 0.945

ERBEmixed 0.987 0.941 0.925 0.960 0.942

Table 7.4: Scores of all evaluation measures examined of ERBE method when k = 200
based on different genre of external instances

study were estimated based on the training part of the corpus as described in section

7.3.2.

In addition, similar to the previous experiments, we examined a case of extracting the

external malware instances by randomly selecting a similar number of apps from all

three datasets. That way, a set of 900 mix external instances was obtained by extracting

malware cases including all corpora examined (AndroZoo, Drebin, and VirusShare). In

other words, in the case of external malware instances, the enriched collection comprises

a mix of genres. This is called as ERBEmixed alternative. Again, in each repetition, 200

malware apps are randomly collected by a mix pool of malware external instances. We

call each one of the above alternatives as “genre-agnostic” because of different genre of

the set of external malware instances.

Table 7.4 shows the results on various evaluation measures of the examined ERBE

malware detection method on different genres of external malware instances selected

in each iteration. From the obtained results, the best results so far are obtained by

the presented ERBE model. As expected, the set of AndroZoo external malware in-

stances assists the proposed ensemble method to achieve higher scores in comparison

to cases where genre-agnostic external instances are used. This sounds reasonable since

AndroZoo is a demanding corpus including new and challenging apps. In this way, it

is demonstrated that the meta-learner needs as accurate base models as possible and

learning models exclusively on AndroZoo samples are more likely to be more accurate

than models with learning on completely different genre of external malware samples.

This is verified when genre-agnostic external malware instances are concerned since

then this difference is more evident. Comparing the performance of ERBEDerbin and

ERBEV irusShare models, we see that the contribution of the latter is stronger, while the

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 129

version of the ERBEDerbin is the most weak. This indicates that when there are cross-

genre malware conditions, the information of the outdated external malware instances of

Derbin corpus is less crucial on ensemble learning and inadequate to handle test instances

of AndroZoo dataset. It is also remarkable that information in ensemble learning models

belonging to a mix of genres can be useful to define malware cases. The ERBEmixed

model is better than all other variations (both ERBEDerbin and ERBEV irusShare varia-

tions) in all the examined cases.

7.5 Related Work

As of today, the topic of mobile app classification via the use of ML has received signifi-

cant attention in the Android security literature [111], [7], [158], [8], [9], [162], [11]. This

section offers a chronologically arranged review of the most notable and recent works on

this topic. Specifically, we concentrate on contributions published over the last six years,

that is, from 2014 to 2020. We only consider highly relevant works to ours, namely those

which propose or employ some type of ensemble learning.

Yerima et al. [160] contributed an approach which uses ensemble learning for Android

malware detection. According to the authors, their method combines advantages from

static analysis with ensemble learning to improve detection accuracy. Their results

showed that the proposed method is capable of achieving 97.3 to 99% detection accuracy

with low false positive rates.

Coronado-De-Alba et al. [163] presented an approach which analyzes data obtained

through static analysis. According to the authors their results provided explicit evidence

for classification improvement. Even more, a comparative analysis of various ensembles

were presented to find the best combination of classifiers based on the evaluation of

their classification results. Idrees et al. [161] presented PIndroid, a framework which

uses permissions and intents in conjunction with ensemble learning to identify Android

malware. The authors evaluated their approach by applying it to 1,745 real world apps

and their results showed 99.8% accuracy.

Milosevic et al. [155] presented two ML-aided approaches for static analysis of Android

apps. The first one is based on permissions and the other on source code analysis based

on a “bag-of-words” representation model. The authors evaluated both these approaches

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 130

Work ML methodology Dataset

[160] Ensemble Learning McAfee’s internal repository [165]

[163] Ensemble Learning Drebin [102]

[161] Ensemble Learning Contagio [81], Genome [105], theZoo [166],
MalShare [167], VirusShare [103]

[155] Ensemble learning M0Droid [159]

[164] Ensemble Clustering and Classification Drebin [102]

[10] Ensemble Learning Drebin [102], VirusShare [103], AndroZoo
[104]

Table 7.5: Outline of the related work

using base classification models, as well as ensemble learning along with various com-

binations of the selected base models. Their results showed an F-score of 95.1% and

F-measure of 89% for the source code-based and permission-based classification models,

respectively.

Chakraborty et al. [164] presented Ensemble Clustering and Classification (EC2), an

algorithm for identifying Android malware families. Furthermore, the authors offered a

performance comparison of several classification and clustering algorithms on the Drebin

dataset and used the output of both supervised classifiers and unsupervised clustering

to design EC2. Their experimental results on both the Drebin and other more recent

malware datasets showed that EC2 is able to accurately detect malware families, out-

performing several comparative baselines. According to the authors, EC2 presents an

early warning system for new malware families, as well as a predictor of known families

to which a malware sample belongs.

Kouliaridis et al. [10] introduced Androtomist, a novel tool capable of utilizing both

static and dynamic analysis on Android apps. The authors concentrated on the results of

static analysis when combined with dynamic instrumentation. Moreover, they proposed

an ensemble approach by averaging the output of several base models for each malware

instance separately. Finally, the authors evaluated their work against three well-known

datasets and their results designated that Androtomist is superior to previous state-of-

the-art mobile malware detection solutions.

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 131

7.6 Discussion

This chapter presents an extrinsic malware detection method based on ensemble learn-

ing. By utilizing a set of three well-known as well as widely used base verifiers, we

attempt to take advantage of their correlations by building a more sophisticated Extrin-

sic Random-based Ensemble (ERBE) based on a random subspace of external instances

and features for each test instance separately. The experimental results based on An-

droZoo benchmark dataset demonstrate that ERBE’s performance is better than any

single base model and is highly competitive when compared with state-of-the-art meth-

ods. The contribution of the random subspace of features, used in ERBE, is a crucial

factor to improve performance. This enables ERBE to take advantage of all the exam-

ined sizes of external instances. The extrinsic ensemble approach outperforms a set of

strong baselines tested on either the benchmark AndroZoo corpus or mixed datasets.

The performance of ERBE is more than 5% better than an ensemble learning baseline

implemented on the challenging AndroZoo dataset too. In comparison to the best base-

line (note that this method is tested on a mixed dataset), ERBE is competitive enough

in terms of accuracy measure.

All extrinsic methods strongly depend on the appropriate selection of external instances.

We used a set of malware instances randomly selected by AndroZoo corpus ensuring

that there are similarities with the test instances under examination. Certainly, this

procedure can be improved by taking into account the genre of instances. To this

direction, we examined the effectiveness of ERBE method following a couple of options.

In the first one, the external malware instances were exclusively collected by different

malware corpora in comparison to test set. In the second, a mixed set of external

malware instances derived from multiple malware corpora was considered. As it is

demonstrated, ideally, the external malware instances should be sampled from the same

source as the one from which the test instances are drawn. For instance, if the instance

under examination belongs to AndroZoo dataset, then there is strong indication that the

external instances should also be part from that dataset to ensure similarity in genre,

format and edition of instances. This can be explained since the meta-model needs as

accurate and reliable base models as possible. However, information about the source

of test malware instances may not be available in the most of the real-world cases.

Chapter 7. An Extrinsic Random-based Ensemble Approach for Malware Detection 132

The current scheme uses three well-known classifiers as base models. An interesting

future work direction could focus on a richer set of classification models, comprising

eager and lazy algorithms, that can be adapted to each malware case separately. This

heterogeneous ensemble approach relies on base models with default parameter settings.

This could be used to further enrich the pool of our base verifiers considering several

versions of the same approach with different fixed and tuned parameter settings. An-

other future work direction could concentrate on combining multiple malware detection

methods based on hybrid and static analysis in a more complex approach. Lastly but not

least, although in this work ERBE has been evaluated using Android malware datasets,

it is evident that it can be easily applied for malware detection on any platform.

Chapter 8

A mapping of machine learning

techniques for Android malware

detection and a converging

scheme

8.1 Introduction

According to a recent report from McAfee [12], 2020 was the year of mobile sneak attacks.

Namely, cyber criminals and state-sponsored actors are constantly looking for ingenious

ways to acquire user data. Likewise, malware writers continue to come up with new

ways of hiding their attacks and frauds, making them increasingly difficult to identify

and neutralize. On the positive side, new mobile malware detection techniques are also

evolving to counter these threats. Indeed, Machine learning (ML) has long proved its

decisive role in this ecosystem given that the vast majority of mobile malware detection

solutions proposed in the literature so far are based on some kind of ML-driven scheme.

Traditionally, ML is exploited in anomaly-based detection methods. Anomaly-based

detection comprises two basic phases, namely the training and the detection or testing

one. That is, such solutions employ ML to detect malicious behavior, i.e., deviation

from a model built during the training phase. Anomaly-based detection can be further

categorized depending on the type of analysis, i.e., static, dynamic, and hybrid. Static

133

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 134

analysis is performed in a non-runtime environment, which analyzes an app’s internal

structure. Dynamic analysis on the other hand adopts the opposite approach, taking

place during the app’s normal operation.

As shown in Table 8.1, various app features can be extracted depending on the anal-

ysis type, either static, dynamic, or hybrid. Each of these features has its advantages

and limitations. That is, features stemming from static analysis have proven efficient

against older malware apps [168], but tent to be ineffective against code obfuscation and

encryption techniques [169].

Analysis type Feature extraction method Features extracted

Manifest analysis Package name, Permissions, Intents,

Activities, Services, Providers

Static Code analysis API calls, Information flow, Taint

tracking, Opcodes, Native code,

Cleartext analysis

Network traffic analysis URLs, IPs, Network Protocols, Cer-

tificates, Non-encrypted data

Code instrumentation Java classes, intents, network traffic

Dynamic System calls analysis System calls

System resources analysis CPU, Memory, and Battery usage,

Process reports, Network usage

User interaction analysis Buttons, Icons, Actions/Events

Table 8.1: Feature extraction options per analysis method

When feeding additional features extracted through dynamic analysis to malware de-

tection models, they can typically cope significantly better with the newest and more

challenging pieces of malware [10]. However, hybrid analysis systems are inherently

more complex, due to the several extra components needed by dynamic analysis, such

as a virtual or real platform, and a user event and input emulator to exercise the app.

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 135

On top of that, some sophisticated malicious apps can recognize when being executed

in emulated environments and avoid detection [170].

Classification is the process of categorizing data into classes. This process starts with

predicting the class of given data points. The classes are often referred to as target, label,

or categories. From an ML model’s perspective, classification requires a training dataset

with multiple instances from which the chosen ML model learns. Much like app analysis

methods, each ML model also has its pros and cons based on the supplied data [171]. As

detailed in section 8.2 the majority of mobile malware detection works in the literature

advertise a different ML algorithm as best performer for mobile malware detection. For

this reason, several performance optimization techniques have been used throughout the

literature to further enhance classification performance. These techniques include:

• Feature ranking and selection by calculating feature importance scores.

• Dimensionality reduction transforms features into a lower dimension to reduce bias

and noise.

• Ensemble models combine the output of multiple base models to improve the

overall classification performance and can be used in conjunction with any of the

previous two techniques.

Given the growing impact of ML-aided mobile malware detection schemes, deeper lit-

erature review is needed considering all state-of-the-art works available and exploring

the details behind each efficient detection model. Unfortunately, while there are many

contributions in the literature leveraging on ML for mobile malware detection on the

Android platform, most of them rely on diverse metrics, classification models, and per-

formance improvement techniques. The absence of a common baseline on this field can

cause confusion, lead to half-true or even incorrect generalizations, and mislead future

research. In an effort to mitigate these issues, the work at hand aims to:

• Provide a detailed mapping of the contemporary ML techniques regarding Android

malware detection proposed in the literature during the last 7 years.

• Categorize each contribution based on four distinct criteria, namely the chosen

metrics, dataset, classification models, and performance improvement techniques.

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 136

• Introduce a converging, i.e., decision-making scheme to guide future work in this

ecosystem.

The remainder of this chapter is organized in the following manner. Section 8.2 details on

the relevant literature and categorizes each work based on the employed ML techniques.

Section 8.3 provides a discussion on the findings and introduces the proposed scheme.

Section 8.4 discusses the related work. Section 8.5 draws a conclusion.

8.2 Survey of works

This section provides a detailed review on major published works devoted to the de-

tection of Android malware in the last 7 years. Table 8.2 categorizes each work in

chronological order based on the following criteria, while Table 8.3 offers condensed

view of the common criteria.

• The analysis type, namely static, dynamic, or hybrid.

• The feature extraction method, namely Manifest Analysis (MA), source Code

Analysis (CA), Network Traffic Analysis (NTA), Code Instrumentation (CI), Sys-

tem Calls Analysis (SCA), System Resources Analysis (SRA), and User Interaction

Analysis (UIA).

• The features collected, as it has been listed in Table 8.1.

• The classification approach, i.e., base models and possible performance improve-

ment techniques, including Feature importance (FI) metrics, Dimensionality Re-

duction (DR), and Ensemble Learning (EL).

Shabtai et al. [51] presented a system for detecting meaningful deviations in a mobile

app’s network behavior. That is, the system monitors the running apps to create their

“normal” network behavior. Then, it is able to detect deviations from the learned

patterns. The authors’ main goal was “to learn user-specific network traffic patterns

for each app and determine if meaningful changes occur”. To evaluate their model, the

authors employed the C4.5 algorithm, achieving an accuracy of up to 94%.

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 137

Canfora et al. [46] proposed a mobile malware detection approach which analyzes op-

code frequency histograms. Precisely, their approach classifies malware by focusing

on the number of occurrences of a specific group of op-codes. They used a detection

technique, which capitalizes on a vector of features obtained from eight Dalvik op-codes.

These op-codes are usually used to alter the app’s control flow. Six classification models

were used during evaluation, namely LadTree, NBTree, RandomForest, RandomTree

and RepTree. The model were applied separately to the eight features and the three

groups of features. The first group includes the move and the jump features, the second

involves two well-known distance metrics, namely Manhattan and Euclidean distance,

and the last embraces all the four features (move, jump, Manhattan and Euclidean

features). The proposed method was evaluated on the Drebin dataset using several

classifiers, namely J48, LadTree, NBTree, Random Forest, Random Tree and RepTree,

and achieved an accuracy of 95%.

Jang et al. [53] developed Andro-AutoPsy, an anti-malware system based on Android

malware similarity matching. To train the proposed model, the authors gathered both

malware-centric and malware creator-centric information from anti-virus technical re-

ports, malware repositories, community sites, and other via web crawling. They chose

five footprints as features, namely the serial number of a certificate, API call sequence,

permissions, intents, and system commands. According to the authors, Andro-AutoPsy

can detect zero-day malware. Andro-AutoPsy was evaluated with nearly 1K malware

apps obtained from the VirusShare [103] and Contagio mobile datasets [81] and more

than 109K benign samples collected from Google Play [30].

Yerima et al. [160] proposed an ensemble malware detection method concentrating on the

extraction of critical Android and Java API calls from the source code, as well as the app

permissions extracted from the manifest file. In all the experiments, McAfee’s internal

(not public) dataset was considered. During the evaluation phase, several classifiers

were employed, namely Naive Bayes, Simple Logistic, Decision Tree and Random Tree,

scoring an AUC of up to 99.3% and accuracy of 97.5%.

Coronado-De-Alba et al. [163] presented a method which introduces a meta-ensemble

algorithm. They employed static analysis on a dataset of 1,531 malware apps collected

from the Drebin dataset [102] and 765 benign apps, to obtain permissions and intents.

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 138

The authors employed the RandomForest and RandomCommittee algorithms, achieving

an accuracy of up to 97.5% with the use of the former.

Milosevic et al. [155] proposed a detection method which concentrates on the extraction

of non-trivial and beneficial malicious patterns. This is done by examining the useful-

ness of source code as well as the permissions set of features when combined with either

classification or common used clustering techniques, respectively. In their experiments,

the M0Droid corpus [159] was considered. Several classifiers were used during the eval-

uation process, such as the C4.5, Random forest, Naive Bayes, Support Vector Machine

(SVM), JRip, and Logistic Regression. Their results showed an accuracy of up to 95.6%.

Idrees et al. [161] proposed an Android malware detection method based on ensemble

learning to boost the effectiveness of base classification models followed a static app

analysis. This method considers a mixture of features, including app’s permissions and

intents derived from Contagio dump, MalGenome [105], theZoo [166], Malshare [167],

and Virushare [103] datasets. The features with the highest feature importance score,

calculated using the information gain (IG) algorithm, were selected to train the model.

The authors employed the Naive Bayes, Decision Tree, Decision Table, Random Forest,

and Multilayer perceptron (MLP) classifiers. Their evaluation tests demonstrated a best

both AUC and accuracy score of up to 99.8%.

Alam et al. [57] contributed DroidNative for the detection of both bytecode and native

code Android malware. According to the authors, DroidNative is the first scheme to

build cross-platform (x86 and ARM) semantic-based signatures for Android and operates

at the native code level. When apps are analyzed, bytecode components are passed to

an Android Runtime (ART) [172] compiler to produce a native binary. The binary code

is disassembled and translated into Malware Analysis Intermediate Language (MAIL)

code. To evaluate their approach, the authors collected over 5,490 malware from the

Drebin and Contagio mobile corpora. Their results showed a detection rate of up to

93.57% and an AUC score ranging from 97.86% to 99.56%.

Kouliaridis et al. [55] proposed Mal-warehouse, an open source tool performing data

collection-as-a-service for Android malware behavioral patterns. An open source tool

called “MIET” was developed, which extracts usage information over a period of time

from Android devices. Mal-warehouse is enhanced with a detection module, which the

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 139

authors evaluated via the use of a series of base models, namely k-NN, Random Forest,

SVM, Naive Bayes and AdaBoost, and achieved a top AUC score of 85.4%.

Tao et al. [49] introduced MalPat, an automated malware detection system which scans

for malicious patterns in Android apps. MalPat detects malicious patters by analyzing

API calls. The authors collected 31,195 benign apps and 15,336 malware samples. A

repeated process was followed to evaluate MalPat using the Random Forest model, in

which they randomly selected a percentage of both malicious and benign datasets as the

training set, and the remaining part was regarded as the testing set. In their evaluations,

MalPat achieved a 98.24% F1 score using the SVM classifier.

Shen et al. [50] suggested an approach based on information flow analysis. They intro-

duced complex-flow as a new representation scheme for information flows. According to

the authors, complex-flow is a set of simple flows that share a common portion of code.

For example, if an app is able to read contacts, store them and then send them over the

Internet, then these two flows would be (contact, storage) and (contact, network). The

authors state that their approach can detect if an information flow is malicious or not

based on the app’s behavior along the flow. That is, when a new app is installed, their

system compares its behavior patterns, obtained from the complex-flows representation

of the app, to decide whether it is more similar to benign or malicious apps from the

training set using two-class SVM classification. To test the performance of their method,

the authors used four different datasets, totaling 8,598 apps. Their model achieved a

best accuracy of 94.5%.

Wang et al. [56] proposed a method which employs network traffic analysis and uses

a c4.5 ML algorithm. According to the authors, c4.5 is capable of identifying Android

malware with very high accuracy. The authors tested their model on the Drebin dataset

[102]. The obtained results showed that the proposed model performs well when com-

pared with state-of-the-art approaches and achieves a detection rate of up to 97.89%

with the aforementioned algorithm.

Kouliaridis et al. [10] proposed a simple heterogeneous ensemble malware detection

method. The ensemble model is created by averaging the output of several base models

based on either static or hybrid analysis. The features extracted pertain to permissions,

intents and API calls, Java classes, network traffic, and inter-process communications.

The performance of this method is evaluated against several datasets, namely Drebin

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 140

[102], VirusShare [103], and AndroZoo [104]. The authors evaluated their model using

several classifiers, namely Logistic Regression, Naive Bayes, Random Forest, k-NN, Ad-

aBoost, Stochastic Gradient Descent (SGD), and SVM. Additionally, the authors used

the most challenging dataset, i.e., AndroZoo, and achieved an accuracy and AUC score

of 97.8% and 97.7%, respectively. Finally, feature importance is calculated for each

dataset and feature.

Potha et al. [173] examined the effect of an ensemble model when external instances

of different sizes and types are used. The ensemble model works by combining the

output of several base models, namely Logistic Regression, MLP, and SGD. Their results

demonstrated that ensemble models based on a larger and possibly homogeneous size

of external instances are exceptionally effective alternative to ensemble models which

comprise smaller sizes, and feasibly more heterogeneous external instances. Additionally,

they examined the effect of using either the entire feature set or a random sub-space

of features of instances, and showed that the latter aids an extrinsic ensemble model

to further augment its performance. The authors reported 99.4%, 99.3%, and 99.7%

AUC and 98.3%, 98.7%, and 99.1% accuracy on the AndroZoo, VirusShare, and Drebin

datasets, respectively.

Alzaylaee et al. [174] proposed DL-Droid, a deep learning system which detects mali-

cious Android apps with dynamic analysis using stateful input generation. The authors

collected more than 31K apps of which more than 11K being malware. DL-Droid runs

using an automated platform, which is able to perform both static and dynamic analysis.

The evaluation was carried out using a real Android device and the reported required

time to analyze each app was approximately 190 sec. DL-Droid achieved a detection rate

of up to 97.8% when using only features stemming from dynamic analysis and 99.6%

when adding features stemming from static analysis, using the Random Forest classifier.

Taheri et al. [175] developed four malware detection methods based on Hamming dis-

tance. Their models aim to detect similarities between samples which are first nearest

neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN),

and k-medoid based nearest neighbors (KMNN). The authors extracted permissions, in-

tents and API Calls from three datasets, namely Drebin [102], Contagio mobile [81], and

MalGenome [105]. Using a Random Forest Regressor feature selection algorithm, the

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 141

authors selected 300 important features. Evaluation was carried out using several classi-

fiers, namely SVM, Decision Tree, Random Forest, and MLP, and achieved an accuracy

between 90% and 99%.

Millar et al. [176] presented DANdroid, a mobile malware detection model which uses

deep learning to classify apps. DANdroid capitalizes on a triad of features, namely

Opcodes, permissions, and API calls. Their model was evaluated with apps from the

Drebin dataset, obfuscated with five techniques, which produced a total of nearly 70K

apps. Their results demonstrated a F-score of up to 97.3% using the CNN algorithm.

Cai et al. [177] proposed JOWMDroid, an Android malware detection scheme based on

feature weighting, with the joint optimization of weight-mapping and classifier param-

eters. Eight feature categories were extracted from Android apps, and then the most

important features were selected using the IG algorithm. The proposed model calculates

weights per feature with three base models, and then five weight-mapping models are

designed to map the initial weights to the final ones. Finally, the parameters of the

weight-mapping model and the base model are jointly optimized by the differential evo-

lution algorithm. The authors collected malware from two datasets, namely Drebin and

AMD. They used several classifiers to evaluate their approach, namely SVM, Random

Forest, and Logistic Regression, scoring a best accuracy of 98.1%.

Kouliaridis et al. [168] examined the effect of two well-known dimensionality reduction

techniques, namely PCA and t-SNE, when applied on base models as well as ensembles.

It was demonstrated that both these transformations are able to considerably increase

the performance of each base model as well as the constructed ensembles. Static analysis

was employed to extract permissions and intents from of 1K apps of the AndroZoo

dataset. The authors evaluated their model using several classifiers, namely AdaBoost,

k-NN, Logistic Regression, Naive Bayes, MLP, SGD, Random Forest and SVM, and

achieved a 95.1% and 91.7% AUC and accuracy scores, respectively.

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 142

Work Year Analysis Method(s) Feature(s) Dataset(s) ML technique(s)

[51] 2014 Dynamic NTA Network traffic N/A Base models

[46] 2015 Static CA Opcodes Drebin Base models, DR

[53] 2015 Static MA, CA Package name, Permissions,

API calls, Intents, Opcodes

Contagio Mobile,

VirusShare

Base models

[160] 2015 Static CA Permissions, API Calls McAfee EL

[163] 2016 Static CA Permissions, Intents Drebin EL

[155] 2017 Static CA Permissions, Source code M0Droid EL

[161] 2017 Static CA Permissions, Intents Contagio,

MalGenome,

theZoo, Malshare,

VirusShare

FI, EL

[57] 2017 Static CA Native code Contagio Mobile,

Drebin

Base models

[55] 2018 Dynamic SRA CPU, Memory, and Battery us-

age, Process reports, Network

usage

N/A Base models

[49] 2018 Static CA API calls N/A Base models

[50] 2018 Static CA Information flow N/A Base models

[56] 2019 Dynamic NTA Network traffic Drebin Base models

[10] 2020 Hybrid MA, CA, CI Permissions, Intents, API

calls, Java classes, inter-

process communication,

network traffic

Drebin,

VirusShare, An-

droZoo

Base models, FI, EL

[173] 2020 Static MA Permissions, Intents Drebin,

VirusShare, An-

droZoo

Base models, EL

[174] 2020 Hybrid MA, CA, UIA Permissions, Intents, API

Calls, Actions/Events

McAfee Base models, FI

[175] 2020 Static MA, CA Permissions, Intents, API Calls Drebin, Con-

tagio mobile,

MalGenome

Base models, FI

[176] 2020 Static MA, CA Permissions, Opcodes, API

Calls

Drebin Base models

[177] 2021 Static MA, CA Permissions, Intents, Features,

Components, API Calls, In-

tents, Shell commands

Drebin, AMD Base models plus

weighted-mapping, FI

[168] 2021 Static MA Permissions, Intents AndroZoo Base models, EL, DR

Table 8.2: Outline of the surveyed works

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 143

Category Option No. of works

Static 14

Analysis type Dynamic 3

Hybrid 2

Source Code analysis 14

Manifest analysis 8

Feature extraction method Network traffic analysis 2

Code instrumentation 1

System resources analysis 1

User interaction analysis 1

2010 to 2014 11

Dataset age 2015 to 2016 5

2017 to 2020 3

Base models 15

ML techniques Ensemble learning 7

Feature importance 5

Dimensionality reduction 2

Accuracy as a metric 13

Metrics AUC as a metric 7

Other metric 4

Table 8.3: Summary of key characteristics observed across the surveyed works

8.3 Discussion

This section wraps up a number of key findings based on the surveyed works in section

8.2. Precisely, as shown in Tables 8.2 and 8.3, most contributions, i.e., 14 out of 19,

rely on static analysis alone, while only 3 and 2 apply dynamic and hybrid analysis,

respectively. Additionally, the following important observations can be made about

performance optimization techniques:

• Ensemble models are considered by 7 works.

• Feature importance scores are calculated in 5 works.

• Dimensionality reduction techniques are used in 2 works.

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 144

Ensemble models have started to appear in the relevant literature after 2015. Specifically,

such models are used in 6 out of 11 works employing static analysis from 2015 to 2020,

and in all of the works in the same year span, which employ a regularly updated malware

dataset, namely VirusShare or AndroZoo.

As shown in Table 8.3, source code analysis is the most common analysis technique used

in the surveyed literature. Moreover, the most widespread classification features among

the surveyed works are Permissions, Intents, and API Calls, used in 12, 9, and 7 works,

respectively.

Also, as shown in Table 8.3, when focusing on the datasets employed, it is deduced

that numerous works rely on outdated (and not updated) datasets. Specifically, Drebin,

dated back to 2012, is the most used dataset, utilized in almost half of the surveyed

works. On the other hand, Contagio Mobile and MalGenome are used in 4 and 2

works, respectively. However, the former is dated back to 2010, while the latter to 2012.

Recall that previous work has shown that feature importance changes across datasets of

different age [171, 156].

Additionally, previous work has demonstrated that when extracting multiple feature

categories from a large collection of apps, the number of features substantially increases

[10], as does the computational cost and risk of overfitting due to resulting model com-

plexity. Therefore, when evaluating a mobile malware detection approach, the choice

of dataset should play a key role in choosing the classification models and performance

enhancing techniques, such as ensemble learning. On the positive side, works dated after

2015 seem to also employ newer datasets, such as VirusShare and AndroZoo, which are

regularly updated.

Another important factor when assessing an ML-based approach is the primary metric

used to evaluate its classification performance. The top used metrics shown in table 8.3

reveal that the Accuracy and AUC are the most commonly used. However, by inspecting

the works included in section 8.2, one can conclude that a wide variety of metrics has

been utilized to measure classification performance, namely detection rate (DR), true

positive rate (TPR), Precision, Recall, F1, Accuracy, and Area Under the Curve (AUC).

This assortment can cause a series of issues, including (a) inability to compare with

state-of-the-art when the same metric is not available, (b) incorrect metrics can produce

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 145

inaccurate or over-estimated results, as in the case when using the accuracy metric with

imbalanced datasets [10].

Finally, Figure 8.1 illustrates the most popular base classification models among the

surveyed works. The Random forest seems to be the most popular classifier used in 11

works, followed by SVM and Naive Bayes used in 8 and 6 works, respectively.

Figure 8.1: Number of works utilizing each base classification model per year

In an effort to address the aforementioned issues, we introduce a converging parameter

selection scheme shown in Figure 8.2. Precisely, the proposed scheme aims to aid future

mobile malware detection methodologies, by suggesting a unified baseline for designing

more comparable and well-engineered ML-based malware detection solutions. This is

achieved by considering all four key parameters into a unified typology. Simply put, the

“parameters” term here refer to feature importance across datasets of different age, the

increase in performance when using ensemble models instead of base models, the merit

of dimensionality reduction techniques in mobile malware detection, and the advantages

of each of the classification metrics. Under this mindset, Figure 8.2 comprises four steps,

namely dataset age selection, analysis method selection, ML techniques selection, and

performance metrics selection.

Specifically, the proposed scheme guides one in selecting optimal ML techniques based

on the dataset age and analysis method chosen in the first and second step, respectively.

Namely, the first two steps associate the age of the dataset used for evaluation with one

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 146

of the three analysis methods. The third step indicates the ML classification techniques

to be used based on the selection made during the preceding steps. The final step

depends on whether the dataset used is balanced in terms of malware and benign apps.

This will determine if accuracy is indeed a trustworthy metric. In all cases however, the

AUC metric is preferable, as it constitutes a more conclusive and realistic evaluation of

models, even when substantially imbalanced datasets are utilized [131]. Generally, AUC

quantifies the effectiveness of each examined approach for all possible score thresholds.

As a rule, the value of AUC is extracted by examining the ranking of scores rather than

their exact values produced when a method is applied to a dataset. And on top of

everything else, AUC does not depend on the equality of distribution between positive

and negative classes.

Figure 8.2: Baseline scheme for mobile malware detection models

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 147

8.4 Related work

As of today, the topic of Android malware detection has received plenty of attention

in the literature. However, few works focus on the ML methodologies employed and,

to the best of our knowledge, none of them provides a clear classification of mobile

malware detection systems based on the metrics and ML techniques used. Focusing

on a period spanning from 2017 to 2021, this section chronologically identifies such

literature contributions and places them vis-à-vis the current work.

Yan et al. [178] offered a thorough survey on dynamic mobile malware detection ap-

proaches, summarizing a number of criteria and performance evaluation metrics for mo-

bile malware detection. Additionally, the authors analyzed and compared the theretofore

existing mobile malware detection systems based on the analysis methods and evalua-

tion results. Finally, the authors pointed out open issues in the field and future research

directions.

Odusami et al. [179] surveyed mobile malware detection techniques in an effort to iden-

tify gaps and provide insight for effective measures against unknown Android malware.

Their work showed that approaches which rely on ML to detect malicious apps were

more promising and produced higher detection accuracy as opposed to signature-based

techniques.

Kouliaridis et al. [180] provided a holistic review of works on the topic of mobile malware

detection and categorized each of them under a unique classification scheme. Precisely,

the latter groups each work based on it target platform, feature selection method, and

detection techniques, namely signature-based or anomaly-based detection.

Liu et al. [181] presented a comprehensive survey of Android malware detection ap-

proaches which utilize ML techniques. The authors analyzed and summarized several

key topics, including sample acquisition, data preprocessing, feature selection, ML mod-

els, algorithms, and the detection performance. Finally, they elaborated on limitations

of ML approaches and offered insights for potential future directions.

Gibert et al. [182] surveyed popular ML techniques for malware detection and in particu-

lar, deep learning techniques. The authors explained research challenges and limitations

of legacy ML techniques and analyzed recent trends and developments in the field with

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 148

a focus on deep learning schemes. They categorized the surveyed works in three groups,

namely static, dynamic, and hybrid.

As shown in Table 8.4, none of the above works offers a complete classification of each

approach based on the features listed in section 8.1, namely metrics, classification mod-

els, and performance improvement techniques. Furthermore, none of them concentrate

on performance improvement techniques for ML-based detection systems. The cur-

rent work aspires to fill this gap and additionally introduce a decision-making scheme

which will potentially guide future ML-based methodologies on deciding which analysis

method, ML performance optimization technique, and metric is most fitting based on

the employed dataset.

Work Year Performance PEM DT ML AM FE DL Datasets ML PI

[178] 2017 + + - - - - - - -

[179] 2018 - + + + - - - - -

[180] 2020 + - + - + + - - -

[181] 2020 + - - + - + - + -

[182] 2020 - - - + - - + - -

Current 2021 + + + + + + - + +

Table 8.4: Important topics addressed by the related works. PEM: Performance
evaluation metrics, DT: Detection techniques, ML: Machine learning, AM: Analysis
methods, FE: Features and feature extraction, DL: Deep learning, ML PI: ML perfor-

mance improvement

8.5 Conclusions

This chapter provides a state-of-the-art survey on ML-powered Android malware detec-

tion techniques. To do so, we categorize and succinctly analyze state-of-the-art works in

the literature during the last 7 years, i.e., from 2014 to 2021, based on the analysis type,

feature extraction method, dataset, ML classification techniques, and metrics used in

their performance evaluation. Additionally, we elaborate on our findings and research

trends, as well as possible issues and future directions. From the results, it becomes

Chapter 8. A mapping of machine learning techniques for Android malware detection
and a converging scheme 149

obvious that the majority of the approaches embrace a different set of basic parameters,

including the dataset, the analysis (feature collection), and detection evaluation metrics.

To moderate this issue, we proposed a converging scheme to serve as a baseline for future

mobile ML-based Android malware detection approaches.

Chapter 9

Conclusions and Future

Directions

9.1 Conclusions

Mobile devices are currently dominating the marketing world. Since the day the first

Android phone appeared in 2008 [183], smartphones have mushroomed into an everyday

necessity. Indeed, handheld devices are almost an indispensable part of who we are

and how we communicate with the world today. But along with the increased use

comes an explosion of mobile malware designed to target smartphones and tablets.

Hence, it is an urgent need to investigate for malware detection methods which not

only achieve high detection efficacy, but they are also able to support the decision

making in critical situations. Reaching to the end of this doctoral thesis, it becomes

clear that mobile malware detection is a highly active research area as the popularity

of mobile devices constantly increases, spurred also by the proliferation of the new

generation cellular networks, i.e., 5G and beyond. Focusing on the popular Android

platform, throughout our research, we investigated the current state-of-the-art in mobile

malware detection approaches, while we also introduced novel detection methodologies

for providing optimal security countermeasures.

More specifically, as described in chapter 2, mobile malware detection is a research field

which encompasses various techniques. Through an extensive analysis, we revealed a

gamut of open research challenges, and we provide future directions and best practices

150

Chapter 9. Conclusions and Future Directions 151

for building reliable mobile malware classification methodologies. That said, as explained

in chapters 6 and 7, the present doctoral thesis introduced two novel methodologies for

improving the state-of-the-art in mobile malware detection.

Also, Chapter 3, demonstrated how mobile malware behavioral patterns can be col-

lected in an open cloud database. Specifically, using reverse engineering techniques we

gathered CPU, memory and network usage, as well as process and network statistics,

and used machine learning to identify behavioral patterns which can be used to detect

mobile malware. Chapter 4 attempted to answer a rudimentary but decisive question;

do new mobile malware families require additional feature categories to be extracted

during analysis? If yes, which feature category can produce optimal results and how

feature importance is related to the age of the mobile app. To answer this matter, we

meticulously analysed several well-known mobile apps datasets, dated from 2010 to 2020

to gain insight on feature importance when static analysis is involved.

In Chapter 5, we focused on extracting new feature categories such as java classes and

inter-process communication, along with well-known feature categories, such as network

traffic by means of dynamic instrumentation. These additional feature categories not

only augmented the overall classification performance, but were also used to further

examine feature importance among these categories. Chapter 6 assessed the merit of

two low-level static features, namely permissions and intents, as well as their contribu-

tion on the use of two well-known dimensionality reduction techniques, i.e., Principal

Component Analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE).

Finally, Chapter 7 introduced an extrinsic malware detection method based on ensemble

learning. We employed static analysis to get two well-known feature categories, namely

permissions and intents. Next we used three classifiers as base models, and measured the

correlation among mobile malware by building a more sophisticated Extrinsic random-

based ensemble.

9.2 Thesis Contributions

In accordance to the objectives presented in chapter 1, this doctoral thesis aimed to shed

light to the state-of-the-art methodologies, which aim to provide optimal and robust

counteraction to the mobile malware threat. Additionally, with a focus on the Android

Chapter 9. Conclusions and Future Directions 152

platform, the thesis concentrated on the deployment of advanced ML techniques to tackle

known limitations of the mobile malware detection literature. A side-by-side comparison

of the thesis objectives and our contributions in terms of publications in peer-reviewed

venues is given in Table 9.1.

Objective Chapter Contribution Publication

Obj. 1 2 A Survey on Mobile Malware Detection Techniques [55]

Obj. 2 3 Mal-warehouse: A data collection-as-a-service of mo-

bile malware behavioral patterns

[6]

Obj. 2 4 Feature importance in Android malware detection [156]

Obj. 2 5 Two anatomists are better than one - Dual-level An-

droid malware detection

[10]

Obj. 2 5 Androtomist tool [122]

Obj. 3 6 Improving Android malware detection through dimen-

sionality reduction techniques

[168]

Obj. 3 7 An Extrinsic Random-based Ensemble Approach for

Malware Detection

[173]

Obj. 1 8 A comprehensive survey on machine learning tech-

niques for Android malware detection

Submitted

Table 9.1: Overall PhD Thesis Contribution.

Precisely, in accordance to the first objective of this thesis, chapter 2 offered detailed

information on current mobile malware, as well as an overview of the different machine

learning algorithms, evaluation metrics, and performance enhancing techniques used

to counter mobile malware. Furthermore, it provided an extensive analysis of mobile

malware detection techniques resulting the following research challenges, which remain

widely open among the reviewed literature.

• Lack of guiding data on classification feature importance.

• Lack of new feature categories, which may improve the classification efficacy.

Chapter 9. Conclusions and Future Directions 153

• Limited evaluation data regarding newest datasets, which include more challenging

(advanced) malware instances.

• Limited research towards robust hybrid malware detection approaches.

Given the aforementioned challenges, our work advocates that the topic of mobile mal-

ware detection has still many steps to take for reaching the point of providing complete

counteraction and security to smartphone users. Based on the analysis provided in chap-

ter 2 and [6], it becomes clear that there is a need for re-evaluating the merit of current

classification feature categories, as well as the precise contribution of static analysis

techniques. In this direction, this doctoral thesis analyzed the top three used datasets

in the literature to identify the feature importance of the most widely used static feature

categories, namely permissions and intents. Furthermore, we were able to find major

differences in the most recent and challenging dataset, i.e., AndroZoo. This PhD thesis

also developed and meticulously assessed a methodology for mobile malware detection,

by combining static analysis with dynamic instrumentation into a hybrid open source

solution. This methodology has been succesfully tested against the most challenging

datasets, consisting of the latest mobile malware. Our work also evaluated the feature

importance of each classification feature category, for both static and dynamic analy-

sis, and for each of the three utilized mobile malware corpora. The feature importance

ranking was achieved via a linear regression algorithm. According to the evaluation

results presented in chapter 5 and [10], our approach was able to surpass state-of-the-art

mobile detection solutions in terms performance metrics over three distinct benchmark

datasets, namely Drebin, VirusShare, and AndroZoo.

In this direction and in accordance to the third objective of this doctoral thesis, we

were able to solve the issues presented in 4, by introducing two novel methodologies

for reliable mobile malware detection using classification features stemming from static

analysis. First, based on the results provided in chapter 6, we examined the effect of di-

mensionality reduction techniques in mobile malware detection. Precisely, we analyzed

the effect of two well-known methods namely, PCA and t-SNE when exclusively applied

on malware detection base verifiers as well as ensembles, respectively. By doing so, we

were able to demonstrate that both transformations are able to considerably increase the

performance of each base model as well as the proposed ensembles. Secondly, we pro-

posed a more sophisticated extrinsic ensemble approach, which provides accurate mobile

Chapter 9. Conclusions and Future Directions 154

malware classification, by averaging the output of the base models for each test instance

separately. Our method was tested against benchmark datasets, i.e., VirusShare and

AndroZoo and is directly comparable with other state-of-the-art detection approaches.

9.3 Future Research Directions

This Phd thesis has mainly contributed to the field of mobile malware detection by

introducing versatile methodologies with an eye towards addressing key limitations in

this field of research. Additionally, a significant step was taken in the direction of

mobile malware detection, by reporting and decomposing methodologies which have

been proposed in the literature so far. Undoubtedly, the quest for novel malware analysis

and detection schemes is one of the pillars of the future of mobile security. Overall, it

became clear that several steps need to be taken for introducing more robust and reliable

malware analysis and detection techniques that can bring the advantage to the defensive

side. To this end, possible research directions to this line of research are as follows.

• Feature importance - As mobile apps continue to evolve, research towards under-

standing a ML models logic is required for reliable and more robust classification

by focusing only on the variables (features) that matter the most.

• Additional feature categories - By taking into consideration the research challenges

in the field, as well as the continued security enhancements in the Android OS,

it is worth of investigating additional feature categories, in which future detection

systems can rely on to reliably detect future, more insidiously-engineered instances

of mobile malware.

• Dimensionality reduction approaches - A ML model trained on a large number of

features gets increasingly dependent on the volume of data it was trained on, re-

sulting in an over-fitted model, which in turn lead to poor performance on real-case

scenarios. In Chapter 6, we demonstrated how dimensionality reduction techniques

successfully improve the performance of ML models.

• Ensemble learning approaches - As shown in [10] ensemble learning techniques

in ML classification combine the result of multiple models, and thus are able to

produce superior performance in terms of prediction accuracy as compared to using

Chapter 9. Conclusions and Future Directions 155

a single base model. The investigation of ensemble learning approaches can still

significantly benefit the effectiveness of mobile malware detection approaches.

• New challenging datasets - It has been widely reported in the literature that the

community lacks of contemporary datasets that reflect the modern network condi-

tions and malware attack characteristics. Hence, an aspirant future direction is to

design multidisciplinary mobile malware datasets that combine malware families

from various realms like IoT devices and smart devices, and investigate for unified

and interoperable detection solutions.

Bibliography

[1] Y. D. Lin, C. Y. Huang, M. Wright, and G. Kambourakis. Mobile application

security. Mobile Application Security, 47(6):21–23, 2014.

[2] mobile os market share. https://gs.statcounter.com/os-market-share/

mobile/worldwide. Accessed: 2020-09-10.

[3] Mobile malware evolution 2020. https://securelist.com/

mobile-malware-evolution-2020/101029/. Accessed: 2020-09-01.

[4] Mobile threat report. https://www.mcafee.com/content/dam/consumer/

en-us/docs/2020-Mobile-Threat-Report.pdf, . Accessed: 2020-09-01.

[5] F.A. Narudin, A. Feizollah, N.B. Anuar, and A. Gani. Evaluation of machine

learning classifiers for mobile malware detection. Soft Comput, 20:343–357, 2016.

[6] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen. A survey on

mobile malware detection techniques. IEICE Transactions on Information and

Systems, E103.D(2):204–211, 2020.

[7] P. Yan and Z. Yan. A survey on dynamic mobile malware detection. Software

Quality Journal, 26:891–919, 2018.

[8] A. Souri and R. Hosseini. A state-of-the-art survey of malware detection ap-

proaches using data mining technique. Human-centric Computing and Information

Sciences, 8:3, 2018.

[9] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius, and

R. Maskeliunas. Android malware detection: A survey. Applied Informatics, pages

255–266, 2018.

156

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf

Bibliography 157

[10] Vasileios Kouliaridis, Georgios Kambourakis, Dimitris Geneiatakis, and Nektaria

Potha. Two anatomists are better than one-dual-level android malware detection.

Symmetry, 12(7):1128, 2020.

[11] D. Papamartzivanos, D. Damopoulos, and G. Kambourakis. A cloud-based archi-

tecture to crowdsource mobile app privacy leaks. PCI ’14, 2014.

[12] Mobile threat report. https://www.mcafee.com/content/dam/consumer/

en-us/docs/2020-Mobile-Threat-Report.pdf, . Accessed: 2020-09-01.

[13] Sophos 2020 threat report. https://www.sophos.com/en-us/medialibrary/

pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf. Ac-

cessed: 2021-03-10.

[14] Permissions on android. https://developer.android.com/guide/topics/

permissions/overview, . Accessed: 2020-09-01.

[15] Interprocess communication. https://developer.android.com/guide/

components/processes-and-threads, . Accessed: 2020-09-01.

[16] Intent. https://developer.android.com/reference/android/content/

Intent, . Accessed: 2020-09-01.

[17] Security-enhanced linux in android. https://source.android.com/security/

selinux, . Accessed: 2020-09-01.

[18] Seccomp bpf. https://www.kernel.org/doc/html/v4.16/userspace-api/

seccomp_filter.html, . Accessed: 2020-09-01.

[19] Google android enterprise security whitepaper 2018. https://source.android.

com/security/reports/Google_Android_Enterprise_Security_Whitepaper_

2018.pdf, . Accessed: 2020-09-01.

[20] Trusty. https://source.android.com/security/trusty, . Accessed: 2020-09-

01.

[21] Android verified boot. https://source.android.com/security/verifiedboot,

. Accessed: 2020-09-01.

https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/trusty
https://source.android.com/security/verifiedboot

Bibliography 158

[22] S. Peng, G. Wang, and S. Yu. Modeling the dynamics of worm propagation us-

ing two-dimensional cellular automata in smartphones. Journal of Computer and

System Sciences, 79(5):586 – 595, 2013. ISSN 0022-0000.

[23] M. Anagnostopoulos, G. Kambourakis, and S. Gritzalis. New facets of mobile bot-

net: Architecture and evaluation. International Journal of Information Security,

12 2015.

[24] Bankbot returns on play store. https://thehackernews.com/2017/11/

bankbot-android-malware.html. Accessed: 2020-09-01.

[25] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode. Rootkits on smart

phones: Attacks, implications and opportunities. pages 49–54, 02 2010.

[26] Mobile threat report. https://www.mcafee.com/enterprise/en-us/assets/

reports/rp-mobile-threat-report-2018.pdf. Accessed: 2020-09-01.

[27] Hidden miners on google play. https://www.kaspersky.com/blog/

google-play-hidden-miners/21882/. Accessed: 2020-09-01.

[28] A.Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile malware

in the wild. Proceedings of the ACM Conference on Computer and Communica-

tions Security, 10 2011.

[29] Nickyspy. https://fortiguard.com/encyclopedia/virus/2971289/

android-nickispy-a-tr-spy. Accessed: 2020-09-01.

[30] Google play. https://play.google.com/. Accessed: 2020-09-01.

[31] Apktool. https://ibotpeaches.github.io/Apktool/. Accessed: 2020-09-01.

[32] Sdk build tools. https://developer.android.com/studio/releases/

build-tools, . Accessed: 2020-09-01.

[33] j.R. Vacca. Computer and information security handbook. Morgan Kaufmann,

2017.

[34] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appcontext: Dif-

ferentiating malicious and benign mobile app behaviors using context. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, vol-

ume 1, pages 303–313, 2015.

https://thehackernews.com/2017/11/bankbot-android-malware.html
https://thehackernews.com/2017/11/bankbot-android-malware.html
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.kaspersky.com/blog/google-play-hidden-miners/21882/
https://www.kaspersky.com/blog/google-play-hidden-miners/21882/
https://fortiguard.com/encyclopedia/virus/2971289/android-nickispy-a-tr-spy
https://fortiguard.com/encyclopedia/virus/2971289/android-nickispy-a-tr-spy
https://play.google.com/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/releases/build-tools
https://developer.android.com/studio/releases/build-tools

Bibliography 159

[35] M. La Polla, F. Martinelli, and D. Sgandurra. A survey on security for mobile

devices. IEEE Communications Surveys & Tutorials, 15(1):446–471, 2013.

[36] E. Gandotra, D. Bansal, and S. Sofat. Malware analysis and classification: A

survey. Journal of Information Security, pages 56–64, 2014.

[37] P. Yan and Z. Yan. A survey on dynamic mobile malware detection. Software

Quality Journal, 26:891–919, 2018.

[38] N. Idika and M. Aditya. A survey of malware detection techniques. Purdue Uni-

versity, 03 2007.

[39] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application

certification. Proceedings of 16th ACM Conference on Computer and Communi-

cations Security, pages 235–245, 2009.

[40] C. Chen, G. Lai, and J. Lin. Identifying threat patterns of android applications.

AsiaJCIS, pages 69–74, 2017.

[41] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu. Droidmat: Android

malware detection through manifest and api calls tracing. AsiaJCIS, pages 62–69,

2012.

[42] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Garcia Bringas, and G. Al-

varez. Puma: Permission usage to detect malware in android. Advances in Intel-

ligent Systems and Computing, 189:289–298, 2013.

[43] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Garcia Bringas, and G. Al-

varez. Machine learning for android malware detection using permission and api

calls. 2013 IEEE 25th International Conference on Tools with Artificial Intelli-

gence, pages 300–305, 2013.

[44] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Garcia Bringas, and G. Al-

varez. Mast: Triage for market-scale mobile malware analysis. Proceedings of the

6th ACM Conference on Security and Privacy in Wireless and Mobile Networks,

2013.

[45] S. Liang and X. Du. Permission-combination-based scheme for android mobile

malware detection. IEEE International Conference on Communications, pages

2301–2306, 2014.

Bibliography 160

[46] G. Canfora, F. Mercaldo, and C. A. Visaggio. Permission-combination-based

scheme for android mobile malware detection. 12th International Joint Conference

on e-Business and Telecommunications, pages 27–38, 2015.

[47] M. Yusof, M. M. Saudi, and F. Ridzuan. A new mobile botnet classification

based on permission and api calls. Seventh International Conference on Emerging

Security Technologies, pages 122–127, 2017.

[48] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye. Significant permission identifi-

cation for machine-learning-based android malware detection. IEEE Transactions

on Industrial Informatics, 14(7):3216–3225, 2018.

[49] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu. Malpat: Mining patterns of mali-

cious and benign android apps via permission-related apis. IEEE Transactions on

Reliability, 67(1):355–369, 2018.

[50] F. Shen, J. Del Vecchio, A. Mohaisen, S. Ko, and L. Ziarek. Android malware

detection using complex-flows. IEEE Transactions on Mobile Computing, 2018.

[51] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and

Y. Elovici. Mobile malware detection through analysis of deviations in application

network behavior. Computers & Security, 43, 2014.

[52] D. Damopoulos, G. Kambourakis, and G. Portokalidis. The best of both worlds.

a framework for the synergistic operation of host and cloud anomaly-based ids for

smartphones. EuroSec, 2014.

[53] J.-W. Jang, H. Kang, J. Woo, A. Mohaisen, , and H. K. Kim. Andro-autopsy: Anti-

malware system based on similarity matching of malware and malware creator-

centric information. Digital Investigation, 14:17–35, 2015.

[54] Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, , and B. Yang. Machine

learning based mobile malware detection using highly imbalanced network traffic.

Information Sciences, 433-434:346–364, 2018.

[55] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and G. Wang. Mal-warehouse:

A data collection-as-a-service of mobile malware behavioral patterns. IEEE Smart-

World, pages 1503–1508, 2018.

Bibliography 161

[56] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia. A mobile malware

detection method using behavior features in network traffic. Journal of Network

and Computer Applications, 133:15–25, 2019.

[57] S. Alam, Z. Qu, R. Riley, Y. Chen, , and V. Rastogi. Droidnative: Automating

and optimizing detection of android native code malware variants. Computers and

Security, pages 230–246, 2017.

[58] Android runtime. https://source.android.com/devices/tech/dalvik, . Ac-

cessed: 2020-09-01.

[59] T. Fei and Y. Zheng. A hybrid approach of mobile malware detection in android.

Journal of Parallel and Distributed Computing, 103:22–31, 2017.

[60] Z. Hanlin, P. Khanh, C. Yevgeniy, G. Linqiang, W. Sixiao, Y. Wei, L. Chao,

C. Genshe, S. Dan, and Blasch. Scanme mobile: a cloud-based android malware

analysis service. ACM SIGAPP Applied Computing Review, 16:36–49, 2016.

[61] D. Damopoulos, G. Kambourakis, S. Gritzalis, and S. O.Park. Exposing mobile

malware from the inside (or what is your mobile app really doing?). Peer-to-Peer

Networking and Applications, 7:687–697, 2014.

[62] C. Miller, D. Blazakis, D. Daizovi, S. Esser, V. Lozzo, , and R.P. Weinmann. A

hybrid approach of mobile malware detection in android. Indianapolis: John Wiley

& Sons, 2012.

[63] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis.

Rage against the virtual machine: Hindering dynamic analysis of android malware.

EuroSec, pages 1–12, 2014.

[64] A. Damodaran, F. Di Troia, C. Aaron Visaggio, T. H. Austin, and M. Stamp. A

comparison of static, dynamic, and hybrid analysis for malware detection. Journal

of Computer Virology and Hacking Techniques, pages 1–12, 2017.

[65] Q. Zhou, F. Feng, Z. Shen, R. Zhou, M. Y. Hsieh, and K. C. Li. A novel approach

for mobile malware classification and detection in android systems. Multimedia

Tools and Applications, 2019.

https://source.android.com/devices/tech/dalvik

Bibliography 162

[66] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail, and M. M. Hassan. Mal-

ware threats and detection for industrial mobile-iot networks. IEEE Access, pages

15941–15957, 2018.

[67] I. Ali-Gombe, B. Saltaformaggio, J. R. Ramanujam, D. Xu, and G. G. Richard.

Samadroid: A novel 3-level hybrid malware detection model for android operating

system. IEEE Access, 6:4321–4339, 2018.

[68] S. Kotsiantis. Supervised machine learning: A review of classification techniques.

Informatica (Slovenia), 31:249–268, 01 2007.

[69] I. Rish. An empirical study of the naive bayes classifier. Technical report, 2001.

[70] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13(1):21–27, 1967.

[71] D.W. Hosmer and S. Lemeshow. Applied Logistic Regression. Wiley, 2004. ISBN

9780471654025.

[72] J. R. Quinlan. Induction of decision trees. MACH. LEARN, 1:81–106, 1986.

[73] P. Burman. Estimation of optimal transformations using v-fold cross validation

and repeated learning-testing methods. The Indian Journal of Statistics, Series

A, 52(3):314–345, 1990.

[74] T.G. Dietterich. Ensemble methods in machine learning. In Multiple Classifier

Systems, pages 1–15, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[75] L. Van Der Maaten E. Postma and J. Van den Herik. Dimensionality reduction:

a comparative review. J Mach Learn Res, 10:66–71, 2009.

[76] Z. Cheng and Z. Lu. A novel efficient feature dimensionality reduction method

and its application in engineering. Complexity, 2018:1–14, 10 2018.

[77] Cyber security report 2017. https://fsecurepressglobal.files.wordpress.

com/2017/02/cyber-security-report-2017.pdf. Accessed: 2020-09-01.

[78] Android debug bridge (adb). https://developer.android.com/studio/

command-line/adb. Accessed: 2020-09-01.

[79] Sdk platform tools release notes. https://developer.android.com/studio/

releases/platform-tools, . Accessed: 2020-09-01.

https://fsecurepressglobal.files.wordpress.com/2017/02/cyber-security-report-2017.pdf
https://fsecurepressglobal.files.wordpress.com/2017/02/cyber-security-report-2017.pdf
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/releases/platform-tools

Bibliography 163

[80] Tutorial: Root shield tablet k1 (nougat). http://nvidiashieldzone.

com/shield-tablet/shield-tablet-k1/android-7-nougat/

root-shield-tablet-k1-nougat/. Accessed: 2020-09-01.

[81] Contagio. http://contagiominidump.blogspot.com/. Accessed: 2020-09-10.

[82] android-malware - collection of android malware sam-

ples. https://www.welivesecurity.com/2017/02/14/

new-android-trojan-mimics-user-clicks-download-dangerous-malware/.

Accessed: 2020-09-01.

[83] Android armour. https://nakedsecurity.sophos.com/2013/01/10/

a-chink-in-android-armour/. Accessed: 2020-09-01.

[84] Badnews. https://www.infosecurity-magazine.com/news/

badnews-android-malware-pushes-fraud-schemes/. Accessed: 2020-09-

01.

[85] Akamai. https://blogs.akamai.com/2014/12/

ios-and-android-os-targeted-by-man-in-the-middle-attacks.html.

Accessed: 2020-09-01.

[86] Akamai. https://www.f-secure.com/v-descs/backdoor_iphoneos_xsser.

shtml. Accessed: 2020-09-01.

[87] Coinkrypt. https://blog.lookout.com/coinkrypt. Accessed: 2020-09-01.

[88] Notcompatible. https://www.f-secure.com/v-descs/trojan-proxy_android_

notcompatible.shtml. Accessed: 2020-09-01.

[89] Nickyspy. https://fortiguard.com/encyclopedia/virus/2971289/

android-nickispy-a-tr-spy. Accessed: 2020-09-01.

[90] Spamsoldier. https://www.adaptivemobile.com/blog/

mobile-malware-spam-bot-spamsoldier-returns. Accessed: 2020-09-01.

[91] Angry birds - lena. https://thehackernews.com/2012/04/

legacy-native-malware-in-angry-birds.html. Accessed: 2020-09-01.

[92] Doctor web. https://www.drweb.com/. Accessed: 2020-09-01.

http://nvidiashieldzone.com/shield-tablet/shield-tablet-k1/android-7-nougat/root-shield-tablet-k1-nougat/
http://nvidiashieldzone.com/shield-tablet/shield-tablet-k1/android-7-nougat/root-shield-tablet-k1-nougat/
http://nvidiashieldzone.com/shield-tablet/shield-tablet-k1/android-7-nougat/root-shield-tablet-k1-nougat/
http://contagiominidump.blogspot.com/
https://www.welivesecurity.com/2017/02/14/new-android-trojan-mimics-user-clicks-download-dangerous-malware/
https://www.welivesecurity.com/2017/02/14/new-android-trojan-mimics-user-clicks-download-dangerous-malware/
https://nakedsecurity.sophos.com/2013/01/10/a-chink-in-android-armour/
https://nakedsecurity.sophos.com/2013/01/10/a-chink-in-android-armour/
https://www.infosecurity-magazine.com/news/badnews-android-malware-pushes-fraud-schemes/
https://www.infosecurity-magazine.com/news/badnews-android-malware-pushes-fraud-schemes/
https://blogs.akamai.com/2014/12/ios-and-android-os-targeted-by-man-in-the-middle-attacks.html
https://blogs.akamai.com/2014/12/ios-and-android-os-targeted-by-man-in-the-middle-attacks.html
https://www.f-secure.com/v-descs/backdoor_iphoneos_xsser.shtml
https://www.f-secure.com/v-descs/backdoor_iphoneos_xsser.shtml
https://blog.lookout.com/coinkrypt
https://www.f-secure.com/v-descs/trojan-proxy_android_notcompatible.shtml
https://www.f-secure.com/v-descs/trojan-proxy_android_notcompatible.shtml
https://fortiguard.com/encyclopedia/virus/2971289/android-nickispy-a-tr-spy
https://fortiguard.com/encyclopedia/virus/2971289/android-nickispy-a-tr-spy
https://www.adaptivemobile.com/blog/mobile-malware-spam-bot-spamsoldier-returns
https://www.adaptivemobile.com/blog/mobile-malware-spam-bot-spamsoldier-returns
https://thehackernews.com/2012/04/legacy-native-malware-in-angry-birds.html
https://thehackernews.com/2012/04/legacy-native-malware-in-angry-birds.html
https://www.drweb.com/

Bibliography 164

[93] Angry birds transformers. http://news.softpedia.com/news/

New-Android-Malware-Poses-As-Angry-Bird-Transformers-Wipes-Device-Clean-460997.

shtml. Accessed: 2020-09-01.

[94] Feabme. http://www.virusradar.com/en/Android_Spy.Feabme.C/

description. Accessed: 2020-09-01.

[95] Rumms. https://www.fireeye.com/blog/threat-research/2016/04/

rumms-android-malware.htm. Accessed: 2020-09-01.

[96] Trojandownloader.agent.ji. https://www.welivesecurity.com/2017/02/14/

new-android-trojan-mimics-user-clicks-download-dangerous-malware/.

Accessed: 2020-09-01.

[97] Orange data mining tool. https://orange.biolab.si/, . Accessed: 2020-09-01.

[98] M. Christodorescu and S. Jha. Static analysis of executables to detect malicious

patterns. 12th USENIX Security Symposium, USENIX Security Symposium, pages

169–186, 2003.

[99] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious ex-

ecutables in the wild. Journal of Machine Learning Research, page 2721–2744,

2006.

[100] T. Blasing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak. An android

application sandbox system for suspicious software detection. 5th International

Conference on Malicious and Unwanted Software, 5:55–62, 2010.

[101] D. Damopoulos, S. A. Menesidou, G. Kambourakis, M. Papadaki, N. Clarke, and

S. Gritzalis. Evaluation of anomaly-based ids for mobile devices using machine

learning classifiers. Security and Communication Networks, 5:3–14, 2012.

[102] D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon, and K. Rieck. Drebin: Effi-

cient and explainable detection of android malware in your pocket. 21th Annual

Network and Distributed System Security Symposium (NDSS), 12(7):1128, 2014.

[103] Virus share. https://virusshare.com, . Accessed: 2020-09-01.

http://news.softpedia.com/news/New-Android-Malware-Poses-As-Angry-Bird-Transformers-Wipes-Device-Clean-460997.shtml
http://news.softpedia.com/news/New-Android-Malware-Poses-As-Angry-Bird-Transformers-Wipes-Device-Clean-460997.shtml
http://news.softpedia.com/news/New-Android-Malware-Poses-As-Angry-Bird-Transformers-Wipes-Device-Clean-460997.shtml
http://www.virusradar.com/en/Android_Spy.Feabme.C/description
http://www.virusradar.com/en/Android_Spy.Feabme.C/description
https://www.fireeye.com/blog/threat-research/2016/04/rumms-android-malware.htm
https://www.fireeye.com/blog/threat-research/2016/04/rumms-android-malware.htm
https://www.welivesecurity.com/2017/02/14/new-android-trojan-mimics-user-clicks-download-dangerous-malware/
https://www.welivesecurity.com/2017/02/14/new-android-trojan-mimics-user-clicks-download-dangerous-malware/
https://orange.biolab.si/
https://virusshare.com

Bibliography 165

[104] K. Allix, T.Bissyandé F., J. Klein, and Y. Le Traon. Androzoo: Collecting mil-

lions of android apps for the research community. In Proceedings of the 13th Inter-

national Conference on Mining Software Repositories, MSR ’16, pages 468–471.

ACM, 2016.

[105] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolu-

tion. Proceedings of the 33rd IEEE Symposium on Security and Privacy, 12(7),

2012.

[106] Droidbench. https://github.com/secure-software-engineering/

DroidBench. Accessed: 2020-09-10.

[107] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto. Stealth attacks: an

extended insight into the obfuscation effects on android malware. Computers and

Security, 51:16–31, 2015.

[108] N. Kiss, J. Lalande, M. Leslous, and V. Viet Triem Tong. Kharon dataset: Android

malware under a microscope. In Learning from Authoritative Security Experiment

Results, San Jose, United States, May 2016. The USENIX Association. URL

https://hal-univ-orleans.archives-ouvertes.fr/hal-01300752.

[109] A.H. Lashkari, A.F. A.Kadir, H. Gonzalez, K.F. Mbah, and A. A. Ghorbani. To-

wards a network-based framework for android malware detection and characteri-

zation. In 2017 15th Annual Conference on Privacy, Security and Trust (PST),

pages 233–23309, 2017.

[110] Amd malware dataset. http://amd.arguslab.org/. Accessed: 2020-09-10.

[111] V. Kouliaridis, G. Kambourakis, D. Geneiatakis, and N. Potha. Two anatomists

are better than one-dual-level android malware detection. Symmetry, 12(7):1128,

2020.

[112] S. Lei. A feature selection method based on information gain and genetic algo-

rithm. In 2012 International Conference on Computer Science and Electronics

Engineering, volume 2, pages 355–358, 2012.

[113] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27(3):379–423, 1948.

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://hal-univ-orleans.archives-ouvertes.fr/hal-01300752
http://amd.arguslab.org/

Bibliography 166

[114] W.K. Ehrlich, k. Futamura, and D. Liu. An Entropy Based Method to Detect

Spoofed Denial of Service (Dos) Attacks, pages 101–122. Springer US, 2008.

[115] Zisis Tsiatsikas, Dimitris Geneiatakis, Georgios Kambourakis, and Angelos D.

Keromytis. An efficient and easily deployable method for dealing with dos in sip

services. Computer Communications, 57:50 – 63, 2015.

[116] Z. Tsiatsikas, A. Fakis, D. Papamartzivanos, D. Geneiatakis, G. Kambourakis,

and C. Kolias. Battling against ddos in sip: Is machine learning-based detection

an effective weapon? In 2015 12th International Joint Conference on e-Business

and Telecommunications (ICETE), volume 04, pages 301–308, 2015.

[117] A. Feizollah, N.B. Anuar, R. Salleh, and A.W.A. Wahab. A review on feature

selection in mobile malware detection. Digital Investigation, 13:22 – 37, 2015.

ISSN 1742-2876.

[118] K. Zhao, D. Zhang, X. Su, and W. Li. Fest: A feature extraction and selection

tool for android malware detection. In 2015 IEEE Symposium on Computers and

Communication (ISCC), pages 714–720, 2015.

[119] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang. Exploring permission-

induced risk in android applications for malicious application detection. IEEE

Transactions on Information Forensics and Security, 9(11):1869–1882, 2014.

[120] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-level features for robust

malware detection in android. International Conference on Security and Privacy

in Communication Systems, 2013.

[121] D. Damopoulos, G. Kambourakis, and G. Portokalidis. The best of both worlds:

A framework for the synergistic operation of host and cloud anomaly-based ids

for smartphones. In proceedings of the Seventh European Workshop on System

Security (EuroSec), (6), 2014.

[122] Androtomist. https://androtomist.com/, . Accessed: 2020-09-01.

[123] Virtualbox. https://virtualbox.com/. Accessed: 2020-09-01.

[124] Androtomist’s source code. https://github.com/billkoul/Androtomist, . Ac-

cessed: 2020-09-01.

https://androtomist.com/
https://virtualbox.com/
https://github.com/billkoul/Androtomist

Bibliography 167

[125] European union public licence. https://ec.europa.eu/info/

european-union-public-licence_en. Accessed: 2020-09-01.

[126] Frida. https://frida.re/. Accessed: 2020-09-01.

[127] Monkey. https://developer.android.com/studio/test/monkey. Accessed:

2020-09-01.

[128] N. T. Cam, V.-H. Pham, , and T. Nguyen. Detecting sensitive data leakage via

inter-applications on android using a hybrid analysis technique. Cluster Comput-

ing, 22:1055–1064, 2017.

[129] I. Ali-Gombe, B. Saltaformaggio, J. R. Ramanujam, D. Xu, and G. G. Richard. To-

ward a more dependable hybrid analysis of android malware using aspect-oriented

programming. Computers & Security, 73:235–248, 2018.

[130] X. Wang, Y. Yang, and S. Zhu. Automated hybrid analysis of android malware

through augmenting fuzzing with forced execution. IEEE Transactions on Mobile

Computing, 12:2768 – 2782, 2019.

[131] T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27:861–

874, 2006.

[132] F. Idrees, M. Rajarajan, M. Conti, R. Rahulamathavan, and T. Chen. Pindroid:

A novel android malware detection system using ensemble learning. Computers

and Security, 68:36–46, 2017.

[133] N. Milosevic, A. Dehghantanha, and K-K. R. Choo. Machine learning aided an-

droid malware classification. Comput. Electr. Eng. Int. J., 61:266–274, 2017.

[134] Dexclassloader. https://developer.android.com/reference/dalvik/system/

DexClassLoader. Accessed: 2020-09-01.

[135] java.net.socket. https://developer.android.com/reference/java/net/

Socket. Accessed: 2020-09-01.

[136] Orange. https://orange.biolab.si/, . Accessed: 2020-09-01.

[137] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb. Maldozer: Automatic

framework for android malware detection using deep learning. Digital Investiga-

tion, 24:S48–S59, 2018.

https://ec.europa.eu/info/european-union-public-licence_en
https://ec.europa.eu/info/european-union-public-licence_en
https://frida.re/
https://developer.android.com/studio/test/monkey
https://developer.android.com/reference/dalvik/system/DexClassLoader
https://developer.android.com/reference/dalvik/system/DexClassLoader
https://developer.android.com/reference/java/net/Socket
https://developer.android.com/reference/java/net/Socket
https://orange.biolab.si/

Bibliography 168

[138] E. Noreen. Computer-intensive methods for testing hypotheses: An introduction.

New York: Wiley, 1989.

[139] L. Xu, D. Zhang, N. Jayasen, and J. Cavazos. Hadm: Hybrid analysis for detection

of malware. Proceedings of SAI Intelligent Systems Conference 2016 Lecture Notes

in Networks and Systems, pages 702–724, 2018.

[140] F. Martinelli, F. Mercaldo, and A. Saracino. Bridemaid: An hybrid tool for accu-

rate detection of android malware. Proceedings of the 2017 ACM on Asia Confer-

ence on Computer and Communications Security - ASIA CCS 17, 2017.

[141] X. Wang, Y. Yang, and S. Zhu. A tan based hybrid model for android malware

detection. Journal of Information Security and Applications, 54, 2020.

[142] K. Allix, T.F. Bissyande, and Q. Jerome et al. Empirical assessment of machine

learning-based malware detectors for android. Digital Investigation, 21(1):183–211,

2016.

[143] Android enterprise security whitepaper 2018. https://source.android.

com/security/reports/Google_Android_Enterprise_Security_Whitepaper_

2018.pdf. Accessed: 2020-09-01.

[144] Selinux. https://source.android.com/security/selinux. Accessed: 2020-09-

01.

[145] Seccomp filter. https://android-developers.googleblog.com/2017/07/

seccomp-filter-in-android-o.html, . Accessed: 2020-09-01.

[146] K. Patel and B. Buddadev. Detection and mitigation of android malware through

hybrid approach. Applied Informatics, pages 455–463, 2015.

[147] L. H. Tuan, N. T. Cam, and V.-H. Pham. Enhancing the accuracy of static analysis

for detecting sensitive data leakage in android by using dynamic analysis. Cluster

Computing, 22:1079–1085, 2017.

[148] Y. Tsutano, S. Bachala, W. Srisa-An, G. Rothermel, and J. Dinh. Jitana: A

modern hybrid program analysis framework for android platforms. Journal of

Computer Languages, 52:55–71, 2019.

https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/selinux
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html

Bibliography 169

[149] X. Wang, Y. Yang, and S. Zhu. A hybrid detection method for android malware,”

2019 ieee 3rd information technology. 2019 IEEE 3rd Information Technology,

Networking, Electronic and Automation Control Conference, 2019.

[150] Amaaas. https://amaaas.com/. Accessed: 2020-09-01.

[151] Virustotal. https://virustotal.com/, . Accessed: 2020-09-01.

[152] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American

society for information science, 41(6):391–407, 1990.

[153] Kerstin Bunte, Michael Biehl, and Barbara Hammer. A general framework for

dimensionality-reducing data visualization mapping. Neural Computation, 24(3):

771–804, 2012.

[154] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):

861–874, 2006.

[155] N. Milosevic, A. Dehghantanha, and K-K. R. Choo. Machine learning aided an-

droid malware classification. Computers & Electrical Engineering, 61:266–274,

2017.

[156] V. Kouliaridis, G. Kambourakis, and T. Peng. Feature importance in android

malware detection. In 2020 IEEE 19th International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom), pages 1449–1454,

2020.

[157] Rafael Vega Vega, Héctor Quintián, José Lúıs Calvo-Rolle, Álvaro Herrero, and

Emilio Corchado. Gaining deep knowledge of Android malware families through

dimensionality reduction techniques. Logic Journal of the IGPL, 27(2):160–176,

2018.

[158] M. La Polla, F. Martinelli, and D. Sgandurra. A survey on security for mobile

devices. IEEE Communications Surveys Tutorials, 15(1):446–471, 2013.

[159] Mohsen Damshenas, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Ram-

lan Mahmud. M0droid: An android behavioral-based malware detection model.

Journal of Information Privacy and Security, 11(3):141–157, 2015.

https://amaaas.com/
https://virustotal.com/

Bibliography 170

[160] S. Y. Yerima, S. Sezer, and I. Muttik. High accuracy android malware detection

using ensemble learning. IET Information Security, 9(6):313–320, 2015.

[161] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan. Pindroid:

A novel android malware detection system using ensemble learning methods. Com-

puters & Security, 68:36–46, 2017.

[162] D. Geneiatakis, G. Baldini, I.N. Fovino, and I. Vakalis. Towards a mobile malware

detection framework with the support of machine learning. Security in Computer

and Information Sciences, pages 119–129, 2018.

[163] L. D. Coronado-De-Alba, A. Rodŕıguez-Mota, and P. J. Escamilla-Ambrosio. Fea-

ture selection and ensemble of classifiers for android malware detection. pages 1–6,

2016.

[164] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian. Ec2: Ensemble clustering

and classification for predicting android malware families. IEEE Transactions on

Dependable and Secure Computing, 17(2):262–277, 2020.

[165] Mcafee. https://www.mcafee.com/en-us/index.html. Accessed: 2021-03-10.

[166] thezoo aka malware db. https://thezoo.morirt.com/. Accessed: 2021-03-10.

[167] Malshare project. https://malshare.com/about.php. Accessed: 2021-03-10.

[168] Vasileios Kouliaridis, Nektaria Potha, and Georgios Kambourakis. Improving an-

droid malware detection through dimensionality reduction techniques. Machine

Learning for Networking, page 57–72, 2021.

[169] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo, and C.A. Visaggio.

Impact of code obfuscation on android malware detection based on static and

dynamic analysis. pages 379–385, 01 2018. doi: 10.5220/0006642503790385.

[170] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioanni-

dis. Rage against the virtual machine. In Proceedings of the Seventh Eu-

ropean Workshop on System Security - EuroSec ’14. ACM Press, 2014. doi:

10.1145/2592791.2592796.

[171] S. Roy, J. DeLoach, Y. Li, N. Herndon D., Caragea, X. Ou, V.P. Ranganath,

H. Li, and N. Guevara. Experimental study with real-world data for android app

https://www.mcafee.com/en-us/index.html
https://thezoo.morirt.com/
https://malshare.com/about.php

Bibliography 171

security analysis using machine learning. In Proceedings of the 31st Annual Com-

puter Security Applications Conference, ACSAC 2015, page 81–90. Association for

Computing Machinery, 2015. doi: 10.1145/2818000.2818038.

[172] Android runtime (art) and dalvik. https://source.android.com/devices/

tech/dalvik, . Accessed: 2020-09-10.

[173] N. Potha, V. Kouliaridis, and G. Kambourakis. An extrinsic random-based en-

semble approach for android malware detection. Connection Science, page 1–17,

Dec 2020. doi: 10.1080/09540091.2020.1853056.

[174] M K. Alzaylaee, S. Y. Yerima, and S. Sezer. Dl-droid: Deep learning based android

malware detection using real devices. Computers & Security, 89:101663, 2020. doi:

https://doi.org/10.1016/j.cose.2019.101663.

[175] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and M. Conti.

Similarity-based android malware detection using hamming distance of static bi-

nary features. Future Generation Computer Systems, 105:230–247, 2020. doi:

https://doi.org/10.1016/j.future.2019.11.034.

[176] S. Millar, N. McLaughlin, J. Martinez del Rincon, P. Miller, and Z. Zhao.

Dandroid: A multi-view discriminative adversarial network for obfuscated an-

droid malware detection. Association for Computing Machinery, 2020. doi:

10.1145/3374664.3375746.

[177] L. Cai, Y. Li, and Z. Xiong. Jowmdroid: Android malware detection based on

feature weighting with joint optimization of weight-mapping and classifier param-

eters. Computers & Security, 100:102086, 2021. doi: https://doi.org/10.1016/j.

cose.2020.102086.

[178] P. Yan and Z. Yan. A survey on dynamic mobile malware detection. Software

Quality Journal, 26(3):891–919, May 2017. doi: 10.1007/s11219-017-9368-4.

[179] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius, and

R. Maskeliunas. Android Malware Detection: A Survey, page 255–266. Springer

International Publishing, 2018. doi: 10.1007/978-3-030-01535-0 19.

https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik

Bibliography 172

[180] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen. A survey on

mobile malware detection techniques. IEICE Transactions on Information and

Systems, E103.D(2):204–211, Feb 2020. doi: 10.1587/transinf.2019ini0003.

[181] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu. A review of android malware

detection approaches based on machine learning. IEEE Access, 8:124579–124607,

2020. doi: 10.1109/ACCESS.2020.3006143.

[182] D. Gibert, C. Mateu, and J. Planes. The rise of machine learning for detection and

classification of malware: Research developments, trends and challenges. Journal

of Network and Computer Applications, 153:102526, Mar 2020. doi: 10.1016/j.

jnca.2019.102526.

[183] J. Gozalvez. First google’s android phone launched [mobile radio]. IEEE Vehicular

Technology Magazine, 3(4):3–69, 2008.

	Greek Declaration of Authorship
	Declaration of Authorship
	Advising Committee of this Doctoral Thesis
	Approved by the Examining Committee
	Copyright
	Abstract
	Extended Abstract in Greek
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Contributions
	1.3 Thesis Structure

	2 Background
	2.1 Android’s Security Model
	2.1.1 Application Sandboxing
	2.1.2 Permissions
	2.1.3 Inter-Process Communication
	2.1.4 SELinux
	2.1.5 Application Signing
	2.1.6 Trusty Trusted Execution Environment (TEE)
	2.1.7 Verified Boot

	2.2 Mobile Malware
	2.2.1 Trojans
	2.2.2 Worms
	2.2.3 Rootkit
	2.2.4 Botnet
	2.2.5 Cryptocurrency Mining
	2.2.6 Spyware
	2.2.7 Ransomware
	2.2.8 Hybrid

	2.3 Mobile Malware Penetration Techniques
	2.3.1 Repackaging
	2.3.2 Drive by download
	2.3.3 Dynamic payloads
	2.3.4 Stealthy malware techniques

	2.4 Mobile Malware Detection Techniques
	2.4.1 Introduction
	2.4.2 Mobile malware detection classification
	2.4.3 Survey of works
	2.4.4 Discussion and future directions
	2.4.5 Conclusions

	2.5 Machine Learning-based Classification
	2.5.1 Machine learning classifiers
	2.5.2 Evaluation metrics
	2.5.3 Training and validation
	2.5.4 Ensemble learning
	2.5.5 Dimensionality reduction

	3 Mal-warehouse: A data collection-as-a-service of mobile malware behavioral patterns
	3.1 Introduction
	3.2 Proposed Methodology
	3.2.1 Data Collection
	3.2.2 List of Malware

	3.3 Evaluation
	3.3.1 Machine Learning Results
	3.3.2 CPU Usage Results
	3.3.3 Memory Usage Results

	3.4 Discussion
	3.5 Related Work
	3.6 Conclusions

	4 Feature importance in Android malware detection
	4.1 Introduction
	4.2 Datasets
	4.3 Feature importance
	4.4 Related work
	4.5 Conclusions

	5 Two anatomists are better than one - Dual-level Android malware detection
	5.1 Introduction
	5.2 Proposed Methodology
	5.2.1 Androtomist
	5.2.2 Extraction of features and feature modeling
	5.2.3 Dataset
	5.2.4 Classifiers and metrics

	5.3 Evaluation
	5.3.1 Signature-based detection
	5.3.2 Anomaly-based detection

	5.4 Discussion
	5.5 Related Work
	5.6 Conclusions

	6 Improving Android malware detection through dimensionality reduction techniques
	6.1 Introduction
	6.2 The Proposed Method
	6.2.1 Dimensionality Reduction

	6.3 Experiments
	6.3.1 Description of Data
	6.3.2 Experimental Setup
	6.3.3 Results
	6.3.4 Comparison with the state-of-the-art

	6.4 Previous Work
	6.5 Conclusion

	7 An Extrinsic Random-based Ensemble Approach for Malware Detection
	7.1 Introduction
	7.2 Methodology
	7.3 Experimental Study
	7.3.1 Description of Data
	7.3.2 Experimental Setup

	7.4 Results
	7.4.1 Contribution of a random subspace set of features
	7.4.2 Comparison with the state-of-the-art
	7.4.3 Genre of External cases

	7.5 Related Work
	7.6 Discussion

	8 A mapping of machine learning techniques for Android malware detection and a converging scheme
	8.1 Introduction
	8.2 Survey of works
	8.3 Discussion
	8.4 Related work
	8.5 Conclusions

	9 Conclusions and Future Directions
	9.1 Conclusions
	9.2 Thesis Contributions
	9.3 Future Research Directions

	Bibliography

