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Abstract

Many times in statistics and in general in sciences one of the basic goals is the com-
parison and quantification of the distance between distributions and populations. One
very important tool is the Entropy-type measures. By using Entropy-type measures
we easily quantify the ”distance” between random processes. At the same time, many
times, researchers wish to focus on ”specific parts” of random processes. A solution to
this problem is given by the Weighted Entropy-type measures. The use of this type of
Entropy-type measures has many advantages research-wise. Moreover they can be used
in plethora of scientific fields like Financial Risk Analysis, Geosciences, Meteorology etc.
where researchers often give more attention to the tails of a distribution.
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Περίληψη

Πολλές φορές στη στατιστική αλλά και γενικά στις θετικές επιστήμες ένας από τους

βασικότερους σκοπούς είναι η σύγκριση και η ποσοτικοποίηση της απόστασης μεταξύ κα-

τανομών και πληθυσμών. ΄Ενα πάρα πολύ χρήσιμο εργαλείο είναι τα Εντροπικά Μέτρα Α-

πόκλισης. Με τη χρήση αυτών των μέτρων μπορούμε να ποσοτικοποιήσουμε την ’απόσταση’

μεταξύ τυχαίων διεργασιών. Αρκετές φορές όμως οι ερευνητές θέλουν να επικεντρωθούν

σε πιο ’ειδικά τμήματα’ των τυχαίων διεργασιών. Λύση σε αυτό το πρόβλημα έρχονται να

δώσουν τα Σταθμισμένα Εντροπικά Μέτρα Απόκλισης. Χρησιμοποιώντας αυτού του τύπου

μέτρα απόκλισης μπορεί η επιστημονική έρευνα να εκμεταλευθεί και να αξιοποιήσει τα πολλα-

πλά πλεονεκτήματά τους. Επίσης μπορούν να χρησιμοποιηθούν σε πληθώρα επιστημονικών

πεδίων όπως για παράδειγμα η Χρηματοοικονομική Ανάλυση Ρίσκου, οι Γεωεπιστήμες, η

Μετεωρολογία κλπ. όπου οι ερευνητές δίνουν συχνά περισσότερη βαρύτητα στις ουρές των

κατανομών.
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Chapter 1

Introduction

Information theory is a branch of pure and applied sciences that deals with the quantifi-
cation of information. It started as being a key player in modern communication theory
by formulating a communication system as a stochastic process. Tuller (1950) initially
and Pierce (1956) later observed the strong similarities between the underlying mech-
anisms of communication theory and information theory. The evolution of the field as
well as the mathematical rigor that governs it are attributed to three great researchers,
namely Fisher (1956), Shannon (1956) and Wiener (1956). The most fundamental mea-
sure in information theory is entropy which was first recognized, formulated and defined
in statistical mechanics (Fisher (1936), Shannon (1948), Shannon and Weaver (1949)) and
consequently triggered the enormous development of the field, in the years that follow.

In this work we review Entropy-type measures and Divergences, discuss their proper-
ties and unfold their diverse applicability. In should be noted that the concept of entropy
was used firstly in Physics, and more specifically in the field of thermodynamics (Clau-
sius, 1865) while its statistical definition was developed by Boltzmann (1872) but its
applications go beyond Physics.

In the present work we attempt to approach the entropy from a probabilistic or
stochastic viewpoint and combine it with the concept of distance which can find numerous
applications in Applied Sciences, Financial Mathematics, Engineering or Management
Sciences. The concept of divergence is fundamental in data analysis since it quantifies
the distance between two populations, two models or two functions. By combining the
two concepts and relying on Entropy-type divergences or measures we could provide
both researchers and practitioners with useful probabilistic tools for modelling purposes
in various scientific areas including Goodness of Fit in Reliability Theory or Survival
Analysis, Portfolio Selection in Financial Mathematics, decision making in Management
Sciences, Geosciences etc.

9
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Chapter 2

Literature Review

In the days of industrial age, around 1760 to around 1840, engineers try to construct
a perpetual motion machine. After many failed attempts, they formulated a law of
conservation of energy. They name it the ”First law of thermodynamics”. Engineers try
again to construct a machine that derives energy in the form of heat from a hot body and
convert it to equal amount of work. After many attempts and designs Clausius (1865)
proposed the ”Second law of thermodynamics”. This law describes that does not exist a
cyclic process that transfers heat from a cold body to a warm body (every process needs
help by external work). The existence of entropy is based inevitably on the first and
second law of thermodynamics. The role of entropy in thermodynamics is to quantify the
irreversibility of a thermodynamic process.

Boltzmann (1866) re-interpreted the second law of thermodynamics in terms of the
number of possible atomic arrangements. By this situation, Boltzmann laid the founda-
tion of statistical approach to thermodynamics. Boltzmann’s entropy is the basis to all
statistical concepts of entropy.

The sense of entropy has essential role in information, since the middle of the 20th cen-
tury, when engineers and scientists used the term ”information” to quantify something.
Theoretical information scientists and communication engineers are more interested with
transmit messages of a given form, despite the content of specified messages. Claude
Shannon (Shannon & Weaver, 1949) with his work ”The Mathematical Theory of Com-
munication” was the pioneer of the branch of information theory. The first scientist who
try to quantify the information of a message source with only two numbers was Ralph
V. Hartley (1928). In 1948 Shannon provided a generalized form of Hartley’s informa-
tion measure which represents the information (or uncertainty) on average carried by a
variable.

In that article, Shannon suggests and examines the notions of entropy and mutual
information. The entropy is a measure for quantifying the uncertainty of a random
variable. For a simple coin with probability of tails equal to p, the entropy is 1 if p = 1

2

(full uncertainty since we cannot expect one outcome over the other) and 0 if p = 0 or
p = 1 (no uncertainty since the outcome is certain). The mutual information measures the
mutual dependence between two variables by quantifying the ”amount of information”
(in unit of bit) which is collected regarding one of the variable by the observation of the
other variable. Many scientists after the definition of Shannon entropy, tried to define
other types of entropy. One particular generalization is Havrda–Charvát structural α-

11
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entropy (1967). Different values of the parameters result in distinct entropy measures.
Shannon entropy is a special case of Havrda–Charvát when this single parameter tends
to 1. Tsallis entropy (1988) introduced by Constantino Tsallis is another generalization
of Shannon entropy and is similar with Havrda–Charvát structural α-entropy (with a
different multiplying factor). Tsallis proposed to replace the usual Shannon with his
non-extensive entropy and maximize it. Tsallis entropy has plenty of applications in
astrophysics, fractal random walks, time series analysis and classification. Tsallis Relative
entropy (1998) introduced also by Tsallis is a generalization of Kullback Cross-entropy
which is one of the simplest measures for distance (see below).

The Rényi entropy (1961) that generalizes the Shannon entropy involves a single pa-
rameter called order that modifies the Rényi entropy. Also, Rényi entropy has a straight-
forward relation with Tsallis entropy. However, the axiomatic characterizations are not
so simple as Tsallis entropy. Rényi entropy has a variety of applications in many applied
fields such as Information theory, Time series, Classification and Cryptography.

The Maximum Entropy Principle which proposed by Jaynes (1957) states that the
probability distribution which describes better the dataset is that with the largest en-
tropy. That is, it is that distribution obtained by maximizing the entropy measure (i.e.
Shannon’s) subject to given constraints, a process that resorts to the familiar method
of constrained maximization using Lagrange multipliers. It has plenty of applications in
Finance.

Minimum Cross-Entropy Principle (Jeffreys, 1946) is a measure of correlation of two
probability distributions. Minimum Cross-entropy of two distributions constraints mea-
sure the closeness of two distribution according to Kullback–Leibler divergence measure
(see below). Finally, Minimum Cross-Entropy Principle has important applications to
Finance.

The relation between Information theory and Statistics was proposed by Kullback
and Leibler (1951). They extended the notion of Shannon entropy and created a measure
of divergence called Kullback-Leibler Divergence or ”Relative Entropy”. Their book
”Information Theory and Statistics” was the Beginning of a new mathematical field
called Statistical Information Theory. Before Kullback and Leibler, scientists such as
Mahalanobis (1936) and later Bhattacharyya (1943) proposed various types of divergences
but the work of Kullback and Leibler made the divergences mainstream to the scientific
community. Divergence measures have various applications in many scientific fields such
as Applied Mathematics, Probability theory, Statistics and Financial Mathematics.

With the notion of Divergence measures we established the ”distance” between sam-
ples or two distributions but, Divergence measures are not metrics with the mathematical
sense of metric because they are not symmetric and most of them do not fulfilled the
triangular inequality. At this point Jeffreys (1946) with his work ”An invariant form for
the prior probability in estimation problems” proposed the Jeffrey’s Distance which is
the symmetric version of Relative entropy.

In statistical conjectures on Entropy-type measures, divergence measures play sig-
nificant role. In the field of Model Selection, Akaike (1973) was the first scientist who
proposed in his work the Akaike Information Criterion (AIC) by constructing an unbiased
estimator of the expected Relative entropy. The use of Relative entropy is a very useful
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tool in clustering. Yang et al. (2019) used the hierarchical clustering analysis method
based on Relative entropy and their application was held on geochemical exploration
data. They observed that the Relative entropy can describe the dissimilarity of pair-
wise geochemical datasets. Mager et al. (2004) used the Relative entropy as clustering
technique to measure the Power spectral analysis of beat-to-beat heart rate variability
(HRV). The Goodness of fit tests are important tools to whether a dataset is compatible
with a theoretical probability distribution or whether two datasets share or not the same
distribution. The Relative entropy Goodness of Fit test was proposed by Song (2002).

In this work we will extend the classical Entropy-type measures to the weighted ones.
The Weighted Entropy-type measures play a very significant role in many scientific fields
as we mentioned above. The advantages of the Weighted Entropy-type measures will be
clear at the following example. If we wish to focus on a specific characteristic of two
populations more than others then, we have to give different weights on different parts of
the support of the distribution. This desire drives the scientists to re-build the original
Shannon entropy to Weighted one. Guiasu (1971) was the first who proposed Weighted
entropy and established the properties for this new type of entropy.
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Chapter 3

Entropy-type Measures

In Sections 3.1-3.3 we provide the mathematical background and the relevant definitions
associated with entropies and divergences. Section 3.4 is denoted to a brief discussion of
applications.

3.1 Mathematical Background

Definition 1. (Topological Space)

A topological space (X, T ) is a set X and a collection T ⊆ P(X) of subsets of X,
called open sets, such that

1. ∅, X ∈ T

2. if {Ua ∈ T : a ∈ I} is an arbitrary collection of open sets, then their union is open,
hence:

⋃
a∈I

Ua ∈ T

3. if {Ui ∈ T : i = 1, 2, ..., N} is a finite collection of open sets, then their intersection
is open, hence:

N⋂
i=1

Ui ∈ T

The complement of an open set in X is called a closed set, and T is called a topology
on X.

Note: P(X) is the power set of X which is the set of all possible subsets of X.

15
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Definition 2. (σ-Algebra)

A σ-algebra on a set X is a collection A of subsets of X such that:

1. ∅, X ∈ A

2. if A ∈ A then Ac ∈ A

3. if Ai ∈ A for i ∈ N then

∞⋃
i=1

Ai ∈ A,

(
or equivently

∞⋂
i=1

Ai ∈ A

)

From de Morgan’s laws, a collection of subsets is σ-algebra if it contains ∅ and is
closed under the operations of taking complements and countable unions (or, equivalently,
countable intersections).

Note: If the union of 3 is finite then the collection A of subsets is called Algebra.

Definition 3. (Borel σ-Algebra)

Let (X , T ) be a topological space. The Borel σ-algebra

B(X) = σ(T )

is the σ-algebra generated by the collection T of open sets on X.

Definition 4. (Measurable Space)

A measurable space (X,A) is a non-empty set X equipped with a σ-algebra A on X.

Definition 5. A measure µ on a measurable space (X,A) is a function

µ : A → [0,∞]

such that

a) µ(∅) = 0

b) if {Ai ∈ A : i ∈ N} is a countable disjoint collection of sets in A, then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ (Ai)
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Definition 6. (Metric)

A metric on a set X is a function d(·, ·) : X × X −→ R+ ∪ {0} that satisfies the
following conditions:

1. d(x, y) = 0 iff x = y ∀x, y ∈ X.

2. d(x, y) = d(y, x) ∀x, y ∈ X.

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

Based on the above definitions which set the basic mathematical background needed,
we are now ready to define Entropic and Divergence measures (Sections 3.2 & 3.3).

3.2 Divergence Measures

Definition 7. (Divergence Measure)

Suppose S is a space of all probability distributions with same support. Then a diver-
gence on S is a function D(·, ·) : S × S → R+ ∪ {0} satisfying:

D(P,Q) = 0, iff P = Q ∀P,Q ∈ S.

Note that divergence measures are not necessarily metrics because they do not have
to be symmetric or fulfil the triangular inequality (See Definition 6).

3.3 Entropy-type Measures

3.3.1 Shannon Entropy

Definition 8. (Shannon Entropy)

Let a stochastic source described by a discrete random variable X with distribution
PX , support SX and probability mass function pX . The entropy of X is

H(X) = E

[
log

1

PX(X)

]
=
∑
x∈SX

pX(x) log
1

pX(x)

This measure of uncertainty has many important properties which agree with our in-
tuitive notion of randomness.

1. It is always positive

2. It is zero if and only if X describes a certain event

3. It increases by adding an independent component and decreases by conditioning.
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Now, we provide the Shannon entropy for continuous distributions. A straightforward
extension is given in the following definition.

Definition 9. (Differential Entropy)

Let a stochastic source described by a continuous random variable X with distribution
FX , support SX and probability density function fX . The differential entropy of X is

H(X) = −
∫
SX

f(x) log f(x)dx

The properties for differential entropy are the following:

1. It is only defined for distributions with densities.

2. The entropy of a discrete distribution is always positive, whereas the differential
entropy of a continuous variable may take any value on the extended real line.

3. It is ”inconsistent” in the sense that the differential entropy of a uniform distribu-
tion in an interval of length α is log a, which is zero if α = 1, negative if α < 1 and
positive if α > 1.

4. The differential entropy of a continuous variable decreases by conditioning.

3.3.2 Cross Entropy

Definition 10. (Cross Entropy)

Consider two distributions P,Q with probability mass functions p˜ = (p1, . . . , pn)T and

q˜ = (q1, . . . , qn)T respectively. Then the discrete version of Cross Entropy is defined by:

H(P,Q) =
n∑
i=1

pi log
1

qi
= −

n∑
i=1

pi log qi

with properties:

1. H(P,Q) 6= H(Q,P ).

2. The Cross Entropy equals the negative log likelihood.
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3.3.3 Relative Entropy

Definition 11. (Discrete case)

Consider two distributions P,Q with probability mass functions p˜ = (p1, . . . , pn)T and

q˜ = (q1, . . . , qn)T respectively. Then the discrete version of Relative Entropy is defined

by:

D(P,Q) =
n∑
i=1

pi log

(
pi
qi

)
=

n∑
i=1

pi log (pi)−
n∑
i=1

pi log (qi)

Definition 12. (Continuous case)

Consider two distributions P,Q with probability density functions p˜ = (p1, . . . , pn)T

and q˜ = (q1, . . . , qn)T respectively. Then the continuous version of Relative Entropy is

defined by:

D(P,Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx

As we can see, the Relative entropy is not symmetric. For this case, we can define
a useful type of distance, called Jeffrey’s Distance (Jeffreys (1946)) which is symmetric
and also related to the Relative Entropy.

3.3.4 Jeffrey’s Distance

Definition 13. (Discrete case)

Consider two distributions P,Q with probability mass functions p˜ = (p1, . . . , pn)T and

q˜ = (q1, . . . , qn)T respectively. Then the discrete version of Jeffrey’s Distance is defined

by:

DJ(P,Q) =
n∑
i=1

pi log

(
pi
qi

)
+

n∑
i=1

qi log

(
qi
pi

)
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Definition 14. (Continuous case)

Consider two distributions P,Q with probability density functions p˜ = (p1, . . . , pn)T

and q˜ = (q1, . . . , qn)T respectively. Then the continuous version of Jeffrey’s Distance is

defined by:

DJ(P,Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx+

∫ ∞
−∞

q(x) log

(
q(x)

p(x)

)
dx
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3.4 Statistical Conjectures on Entropy-type measures

A few of the many uses of Entropy-type measures appear in the subsections that follow.

3.4.1 Clustering based on Entropy-type measures

The problem of clustering is related to grouping a set of objects in the same group or
classes within each of which the objects are similar (homogeneous).
Frequently, we wish to quantify the dissimilarity between two populations. The clustering
is a method that we easily distribute two populations into clusters. The greater the
number of populations the greater the number of clusters. There are many ways to
measure the dissimilarity between two clusters. We focus on the clustering with relative
entropy. The relative entropy as we saw is the notion that quantifies the distance between
two densities functions.

The Relative entropy technique is quite similar with the Mahalanobis distance (1936).
The main difference is the Relative entropy we can represent the value in terms of differ-
ence between the two clusters. With the evaluation of relative entropy we can statistically
show whether two clusters are similar or not. The use of Relative entropy is a very useful
key in clustering. Yang et al. (2019) used the hierarchical clustering analysis method
based on Relative entropy and their application was held on geochemical exploration
data. They observed that the Relative entropy can describe the dissimilarity of pair-
wise geochemical datasets. Mager et al. (2004) used the Relative entropy as clustering
technique to measure the Power spectral analysis of beat-to-beat heart rate variability
(HRV). The research concerned with the developing of an algorithm that utilizes contin-
uous wavelet transform (CWT) parameters as inputs to a Kohonen self-organizing map
(SOM) (Kohonen, 1990), providing a method of clustering.

All the above, clearly show that the Relative entropy is a powerful and useful tool for
the comparison between populations for clustering purposes.

3.4.2 Goodness of Fit based on Entropy-type measures

The Goodness of Fit tests are important tools to whether a dataset is compatible with
a theoretical probability distribution or whether two datasets share or not the same
distribution. The Relative Entropy Goodness of Fit test was proposed by Song (2002).
The relation of Goodness of Fit test and the Relative entropy will be shown below.
Assume the test hypothesis:

H0 : q = p vs H1 : q 6= p

The previous test hypothesis about the possible equality between two densities p, q is
equivalent to the following test based on the measure D(·, ·).

H0 : D(Q,P ) = 0 vs H1 : D(Q,P ) > 0.

Let A a category, Oi the frequency of results belongs to Ai and ei = E(Oi), i = 1, . . . , k
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then the maximum likelihood (ML) estimator of qi is q̂ı =
Oi

n
and pi =

ei
n

.

The ML-estimator of D(Q,P ) is:

D̂(Q,P ) =
1

n

k∑
i=1

Oi log
Oi

ei

The vector O = (O1, . . . , Ok) ∼Mk (n, (q1, . . . , qk)), where Mk is k-dimensional multi-
nomial distribution. For the very big sample size the vector O an asymptotic multivariate
normal distribution Nk (nq, n (Dp − qq′)) Dq is a diagonal matrix with diagonal elements
qi i = 1, . . . , k and q = (q1, . . . , qk). Thus

√
n

(
1

n
O − q

)
→ Nk (0, Dq − qq′)

Simple algebra shows that:

Z =
√
n

(
D̂(Q,P )−D(Q,P )

σ̂

)
→ N(0, 1)

where,

σ̂2 =
1

n

∑
i

Oi

(
log

Oi

ei

)2

−

(∑
i

Oi log
Oi

ei

)2


Now we can see from above and the asymptotic distribution of Z that we can reject
H0 : D(Q,P ) = 0 in favor of H1 : D(Q,P ) > 0 H0 if Z0 > za where,

Z0 =

√
n · D̂(Q,P )

σ̂

and za is the 1− a quantile of the standard normal distribution.

The previous result is very close to G2 which is the well-known likelihood ratio test
statistic (Neyman, Pearson 1933) but in simulations (Sharifdoost et al., 2009) it appears
to be more sensitive in G2. The goodness of fit test based on Relative entropy are
more sensitive than the usual methods for rejecting distributions which are close to the
distribution we want as (Sharifdoost et al., 2009).
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3.4.3 Model Selection based on Entropy-type measures

Model Selection is the field of statistics that allows us to select the right statistical model
from a set of candidate models. As we know, Model Selection plays important role in
Mathematical Statistics. The first scientist who studied deeply this sense was Akaike
(1973) who proposed the Akaike Information Criterion (AIC) by constructing an unbi-
ased estimator of the expected Relative entropy.

Let f be the ”reality” (i.e. the true model) and g a model used to estimate f . The
Relative entropy (in continuous case) between f and g, is:

D(f, g) =

∫
X

f(x) log
f(x)

g(x|θ)
dx

where θ a parameter associated with g for the estimation of which one uses the available
data. D(f, g) with support X, represents the information lost when g is used to estimate
f . Equivalently we can write:

D(f, g) =

∫
X

f(x) log f(x)dx−
∫
X

f(x) log(g(x|θ))dx = Ef [log f(x)]− Ef [log(g(x|θ))].

The first expectation is constant, say z, irrespectively of the model g used, so

D(f, g) = z − Ef [log(g(x|θ))]⇒ D(f, g)− z = −Ef [log(g(x|θ))].

By computing Ef [log(g(x|θ))] we easily obtain the relative distanceD(f, g)−z between
f and g. Instead of this quantity which can not be computed Akaike found that its
expectation:

Ef [Ef [log(g(x|θ))]]

can be computed. For the above quantity which is known as the expected Relative entropy
information, the asymptotically unbiased estimator is found by Akaike to be:

log(L(θ̂|x˜))− p

where p is the dimension of the parameter θ and θ̂ is a consistent estimate of θ. Then
the AIC is:

AIC = −2 log(L(θ̂|x˜)) + 2p
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where θ̂ is the maximum likelihood estimator (or equivalently the minimum Relative
entropy estimator). Selecting among various candidate models g, the model with the
smallest AIC value is related to the model with the least Relative entropy between the
true distribution f and the estimated one.

Now, we present another useful information criterion for model selection called Di-
vergence Information Criterion (DIC) (Mattheou et al., 2009). For this type of criterion
Mattheou et al. based on the same methodology as AIC criterion used the BHHJ Diver-
gence (Basu et al., 1998) for developing a new criterion.
Suppose a random sample X1, . . . , Xn from the distribution f (the true model) and a
candidate model gθ. For constructing the DIC the following formula will be useful.

Wθ = Egθ (gαθ (Z))−
(
1− α−1

)
Ef (gaθ (Z)) , a > 0

which is the same as the BHHJ divergence without the last term, which remaining con-
stant independent of the model gθ.
Now the formula which gave us an unbiased estimator is:

EWθ = E
(
Wθ | θ = θ̂

)
where θ̂ is asymptotically normal estimator of θ. We can also say that the previous
formula is the average distance between f and gθ.

Now, we present an unbiased estimator of the expected overall discrepancy

Qθ =

∫
g1+aθ (z)dz −

(
1 +

1

a

)
1

n

n∑
i=1

gaθ (Xi)

asymptotically unbiased estimator of n-times the expected overall discrepancy evaluated
at θ̂ is given by

DIC = nQθ̂ + (α + 1)(2π)−
a
2

(
1 + a

1 + 2a

)1+ p
2

p

The adjusted DIC model is given below (Mantalos et al., 2010).

DICMLE = nQθ̂ + (2π)−
a
2 (1 + a)−

p
2 p

DICC = nQθ̂ + (2π)−
a
2 (1 + a)2+

p
2 p.

We can easily observe that MLE method is faster in computations than the Basu
method. Also, the DIC criterion has highly performance of accuracy in simulations. It
could be used in applications with outlier and contaminated observations. All these give
us a powerful criterion for model selection.



Chapter 4

Weighted Entropy-type measures

4.1 Weighted Entropy-type measures

Sometimes the entropy is not as useful as expected. For example if we wish to focus
on a specific characteristic (for instance the tail part) of a distribution more than others
then, we have to give different weights on different parts of the distribution. The same
occurs if we wish to compare specific characteristics of two populations. This desire drives
scientists to re-build the original Shannon entropy to a Weighted one. Guiasu (1971) was
the first who proposed the Weighted entropy.

4.1.1 Weighted Shannon Entropy

Definition 15. (Weighted Shannon Entropy)

Let a stochastic source described by a discrete random variable X of n possible states,
with distribution PX , probability mass function p˜ = (p1, ..., pn)T and w˜ = (w1, ..., wn)T be

a vector of weights associated with these states, where wi ≥ 0, i = 1, ..., n. The weighted
Shannon entropy measure is defined by:

Hw(X) =
n∑
i=1

wipi log
1

pi
. (4.1)

The standard properties of the Weighted Shannon Entropy are:

1. Hw(X) ≥ 0.

2. If w1 = w2 = ... = wn = w, then Hw(X) = wH(X), where H(X) is the Shannon
entropy.

3. If pi = 1 for some i = 1, ..., n then Hw(X) = 0 irrespectively of the values of the
weights w˜ .

25
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This property stresses that if only one event is possible then there is no uncertainty
and does not provide any information. So the weighted Shannon entropy is equal
to zero.

4. If pi = 0, wi 6= 0 ∀i ∈ I and pj 6= 0, wj = 0 ∀j ∈ J where I ∪ J = {1, 2, ..., n},
I ∩ J = ∅, then Hw(X) = 0.

5. Hw(w1, ..., wn+1; p1, ..., pn, 0) = Hw(w1, ..., wn; p1, ..., pn) = Hw(X), for any wn+1.

6. For every non-negative, real number λ we have Hw(λw˜ ; p˜) = λHw(w˜ , p˜) = λHw(X).

w(E ∪ F ) =
p(E)w(E) + p(F )w(F )

p(E) + p(F )
(4.2)

where w(F ) is the weight of event F and p(F ) the probability of the same event.

In addition if E,F are complementary events, then:

w(E ∪ F ) = p(E)w(E) + (1− p(E))w(F ).

7. If the rule (4.2) for the weights holds, then:

Hw(w1, ..., wn, w
′, w′′; p1, ..., pn−1, p

′, p′′) = Hw(w1, ..., wn; p1, ..., pn)+pnH
w

(
w′, w′′;

p′

pn
,
p′′

pn

)

where wn =
p′w′ + p′′w′′

p′ + p
, pn = p′ + p′′.

In following two Sections we introduce the weighted version of the Relative entropy and
its symmetric counter part, Jeffrey’s Distance.

4.1.2 Weighted Relative Entropy

Definition 16. (Weighted Relative Entropy)

Consider two probability mass functions p˜ = (p1, . . . , pn)T , q˜ = (q1, . . . , qn)T and

w˜ = (w1, . . . , wn)T a vector of weights. Then the discrete version of weighted Relative
entropy is defined by:

Dw(p, q) =
n∑
i=1

wipi log

(
pi
qi

)

This form of relative entropy is not a proper distance measure (i.e. ≥ 0), because it
can take negative values.
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Proposition 1. The Relative entropy D(P,Q) between two distributions P,Q is non-
negative on average.

Proof. This proof shows the connection between Relative entropy, Cross-entropy & Shan-
non entropy and also provides a way to prove that the Relative entropy is non-negative.
We take

I = −
n∑
i=1

pi log pi

Now, we take the sum with weights w˜ = (w1, . . . , wn)T

Iw =
n∑
i=1

wipi log pi

Let, q1, . . . , qk the objective probabilities associated with the p1, . . . , pk (i.e. pi is the

estimate of the theoretical qi). We take, wi =
qi
pi

.

Then,

Iw = −
n∑
i=1

qi log pi

which coincides with the Cross-entropy. Observe that by Jensen’s inequality (Jensen,
1906)

−
n∑
i=1

qi log

(
pi
qi

)
≤ − log

(
n∑
i=1

qi
pi
qi

)
= − log

n∑
i=1

pi = − log 1 = 0

Thus, −
n∑
i=1

qi log

(
pi
qi

)
≤ 0 which implies that−

n∑
i=1

qi log pi ≤
n∑
i=1

qi log pi and finally

Relative entropy = Cross entropy - Shannon entropy =

=
n∑
i=1

qi log

(
qi
pi

)
= Eq

[
log

(
qi
pi

)]
≥ 0.

i.e. the subjective-objective measure of uncertainty is greater than the
measure of objective uncertainty.

This is due to the fact that the uncertainty of the objective probabilities qi is increased
as a result of the uncertainty associated with the estimators of the q′is by the p′is.
Of course if pi = qi then we have equality.

Similarly, for Ep

[
log

(
pi
qi

)]
where p are assumed to be the theoretical probabilities

and qi is the estimate of pi.
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4.1.3 Weighted Jeffrey’s Distance

Definition 17. (Weighted Jeffrey’s Distance)

Consider two probability mass functions p˜ = (p1, . . . , pn)T , q˜ = (q1, . . . , qn)T and

w˜ = (w1, . . . , wn)T a vector of weights. Then the discrete version of weighted Jeffrey’s
Distance is defined by:

Dw
J (P,Q) =

n∑
i=1

wipi log

(
pi
qi

)
+

n∑
i=1

wiqi log

(
qi
pi

)

Proposition 2. At least one term of Weighted Jeffrey’s Distance is non-negative.

Proof. Weighted Jeffrey’s Distance: Dw
J (P,Q) =

n∑
i=1

wipi log

(
pi
qi

)
+

n∑
i=1

wiqi log

(
qi
pi

)
The left part of the Jeffrey’s Distance is non-negative. We prove it in the previous

proposition. The right part is a complementary term of Relative entropy.

Thus, the Weighted Jeffrey’s Distance:

Dw
J (P,Q) ≥ 0 ∀x ∈ S.

Observe that some of the terms in the expressions of Dw and Dw
J may be negative and

therefore will not appropriate as distance measure if the researcher wishes to focus exclu-
sively on them. The issue is resolved below with the proposal of the Absolute Weighted
measures.
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4.2 Absolute Weighted Entropy-type measures

4.2.1 Absolute Weighted Relative Entropy (A.W.R.E)

Definition 18. (A.W.R.E)

Consider two probability mass functions p˜ = (p1, . . . , pn)T , q˜ = (q1, . . . , qn)T and

w˜ = (w1, . . . , wn)T a vector of weights. Then the discrete version of Absolute Weighted
Relative Entropy is defined by:

Dwabs(P,Q) =
n∑
i=1

∣∣∣∣wipi log

(
pi
qi

)∣∣∣∣
This modification makes the Absolute Weighted Relative Entropy (A.W.R.E) being al-
ways non-negative and provides the researcher with a useful tool. By using A.W.R.E,
we ensure the non-negativity and we are able to give more ”attention” to special parts
of the distributions that we measure. If we wish to have a measure that satisfies the
symmetric property then we could generalize the Jeffrey’s Distance by introducing the
Absolute Weighted Jeffreys Distance (A.W.J.D) defined below.

4.2.2 Absolute Weighted Jeffrey’s Distance (A.W.J.D)

Definition 19. (A.W.J.D)

Consider two probability mass functions p˜ = (p1, . . . , pn)T , q˜ = (q1, . . . , qn)T and

w˜ = (w1, . . . , wn)T a vector of weights. Then the discrete version of Absolute Weighted
Jeffrey’s Distance is defined by:

Dwabs
J (P,Q) =

n∑
i=1

∣∣∣∣wipi log

(
pi
qi

)∣∣∣∣+
n∑
i=1

∣∣∣∣wiqi log

(
qi
pi

)∣∣∣∣
The standard as well as the absolute version of the Relative Entropy and Jeffrey’s Distance
will be implemented in various scenarios in the following 2 chapters and their performance
will be evaluated via simulations and 2 case studies in Financial Mathematics and Applied
Sciences.
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Chapter 5

Simulations

In this Chapter, we analyse the theoretic content that we presented previously via simu-
lations. More specifically, we present the relation (i.e. the ”distance”) between the
standard normal distribution N(0, 1) and t-student distribution with various degrees of
freedom. For illustrative purposes we will be using k = 2, 5, 10, 30 degrees of freedom.
The results could be extended to any value.

For doing this, we used both the Weighted Relative Entropy and the Weighted Jeffrey’s
Distance. Furthermore, we apply the Absolute Weighted Relative Entropy (A.W.R.E)
and Absolute Weighted Jeffrey’s Distance (A.W.J.D) defined in the previous Chapter.

Our intention is to show that by using appropriate weights we could reveal
the differences on specific parts of the distributions under investigation. First
of all, we present a graph with the distributions to be examined.
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Figure 5.1: Comparison of Distributions

For the implementation of the proposed methodology the support of the distribution is
divided into n number of intervals (in this case n = 10).

The subintervals of the support used are:

[−∞,−3)∪[−3,−2)∪[−2,−1)∪[−1,−0.5)∪[−0.5, 0)∪[0, 0.5)∪[0.5, 1)∪[1, 2)∪[2, 3)∪[3,∞]

Now, we will present the methods.
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5.1 Standard normal - t2

We generate 10000 random numbers from standard normal and t-student with 2 degrees
of freedom respectively. The probabilities that emerged in each interval for distribution
comparison is given by the following table.

Probabilities by interval
Intervals (−∞,−3) [−3,−2) [−2,−1) [−1,−0.5) [−0.5, 0) [0, 0.5) [0.5, 1) [1, 2) [2, 3) [3,∞]
Std normal 0.001 0.022 0.133 0.153 0.188 0.190 0.151 0.137 0.019 0.001
t2 0.049 0.041 0.120 0.122 0.167 0.166 0.123 0.119 0.042 0.048

Table 5.1: Probabilities by interval N(0, 1) vs t2

5.1.1 Middle method

The method that we present now is called ”Middle method” and uses the probabilities
from the previous table for calculations. The method will be applied to the four Entropy-
type measures mentioned above and compare them.

Middle method algorithm

1. Take all the intervals and calculate the Relative entropy (weights: wi = 1 for each
interval).

2. Remove the 2 middle intervals and use the remaining by calculating the Relative
entropy (weights: wi = n

n−2 for each interval).

3. Repeat by removing 2 middle intervals at each step of the algorithm and increasing

accordingly by an equal amount the weights so that
∑

wi = n.

4. Repeat the steps 1-3 for

(a) Jeffrey’s Distance

(b) Absolute Relative Entropy

(c) Absolute Jeffrey’s Distance

Now, we furnish the following graph for the comparison of different Entropy-type
measures for the Standard normal and t2 distributions.
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Figure 5.2: Middle method N(0, 1) vs t2
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5.1.2 Left to the Right (LR) method

The method that we present now is called ”Left to the right method” or ”LR method”.
Using the probabilities of Table 5.1 we calculate the same Weighted Entropy-type mea-
sures as before.

LR method algorithm

1. Take all the intervals and calculate the Relative entropy (weights: wi = 1 for each
interval).

2. Remove the first interval from the left and use the remaining by calculating the
Relative entropy (weights: wi = n

n−1 for each interval).

3. Repeat by removing the first two intervals from the left and use the remaining by
calculating the Relative entropy. (weights: wi = n

n−2 for each interval).

4. Repeat the algorithm by removing 1 more interval from the left at each step and

increasing accordingly by an equal amount the weights so that
∑

wi = n.

5. Repeat the steps 1-4 for

(a) Jeffrey’s Distance

(b) Absolute Relative Entropy

(c) Absolute Jeffrey’s Distance

Now, we furnish the following graph for the comparison of different Entropy-type
measures for the Standard normal and t2 distributions.



36 CHAPTER 5. SIMULATIONS

Figure 5.3: LR method N(0, 1) vs t2
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5.1.3 Right to the Left (RL) method

This method is called ”Right to the Left method” or ”RL method”. The process of this
method is similar to ”LR” method but the difference is that we remove intervals from
Right to the Left by using the probabilities of the Table 5.1. for calculating Entropy-type
measures.

RL method algorithm

1. Take all the intervals and calculate the Relative entropy (weights: wi = 1 for each
interval).

2. Remove the last interval from the right and use the remaining by calculating the
Relative entropy (weights: wi = n

n−1 for each interval).

3. Repeat by removing the first two intervals from the right and use the remaining by
calculating the Relative entropy. (weights: wi = n

n−2 for each interval).

4. Repeat the algorithm by removing 1 more interval from the right at each step and

increasing accordingly by an equal amount the weights so that
∑

wi = n.

5. Repeat the steps 1-4 for

(a) Jeffrey’s Distance

(b) Absolute Relative Entropy

(c) Absolute Jeffrey’s Distance

Now, we furnish the following graph for the comparison of different Entropy-type
measures for the Standard normal and t2 distributions.
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Figure 5.4: RL method N(0, 1) vs t2
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5.2 Standard normal - t5

We generate 10000 random numbers from standard normal and t-student with 5 degrees
of freedom respectively. In this Section we compare the Standard normal and t5 based on
the data on Table 5.2. The graphs for the three methods have been obtained in exactly
same fashion as in Section 5.1.

Probabilities by interval
Intervals (−∞,−3) [−3,−2) [−2,−1) [−1,−0.5) [−0.5, 0) [0, 0.5) [0.5, 1) [1, 2) [2, 3) [3,∞]
Std normal 0.001 0.022 0.133 0.153 0.188 0.190 0.151 0.137 0.019 0.001
t5 0.014 0.033 0.128 0.134 0.178 0.182 0.143 0.129 0.036 0.018

Table 5.2: Probabilities by interval N(0, 1) vs t5

Figure 5.5: Middle method N(0, 1) vs t5
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Figure 5.6: LR method N(0, 1) vs t5

Figure 5.7: RL method N(0, 1) vs t5
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5.3 Standard normal - t10

We generate 10000 random numbers from standard normal and t-student with 10 degrees
of freedom respectively. In this Section the comparison is for Standard normal and t10
based on Table 5.3. The results are presented in Figures 5.8, 5.9 and 5.10.

Probabilities by interval
Intervals (−∞,−3) [−3,−2) [−2,−1) [−1,−0.5) [−0.5, 0) [0, 0.5) [0.5, 1) [1, 2) [2, 3) [3,∞]
Std normal 0.001 0.022 0.133 0.153 0.188 0.190 0.151 0.137 0.019 0.001
t10 0.007 0.026 0.131 0.140 0.188 0.187 0.147 0.132 0.032 0.005

Table 5.3: Probabilities by interval N(0, 1) vs t10

Figure 5.8: Middle method N(0, 1) vs t10
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Figure 5.9: LR method N(0, 1) vs t10

Figure 5.10: RL method N(0, 1) vs t10
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5.4 Standard normal - t30

We generate 10000 random numbers from standard normal and t-student with 30 degrees
of freedom respectively. In this Section the comparison is for Standard normal and t30
based on Table 5.4. The results are presented in Figures 5.11, 5.12 and 5.13.

Probabilities by interval
Intervals (−∞,−3) [−3,−2) [−2,−1) [−1,−0.5) [−0.5, 0) [0, 0.5) [0.5, 1) [1, 2) [2, 3) [3,∞]
Std normal 0.001 0.022 0.133 0.153 0.188 0.190 0.151 0.137 0.019 0.001
t30 0.002 0.021 0.130 0.144 0.192 0.193 0.146 0.139 0.027 0.002

Table 5.4: Probabilities by interval N(0, 1) vs t30

Figure 5.11: Middle method N(0, 1) vs t30
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Figure 5.12: LR method N(0, 1) vs t30

Figure 5.13: RL method N(0, 1) vs t30
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Conclusions

In Chapter 5 we used different Weighted Entropy-type measures for comparison of dis-
tributions. More specifically we focused on the tails of distributions. With the ”Middle
method”, we remove the middle intervals of the support and we calculated four Weighted
Entropy-type measure techniques. As we saw the Absolute Weighted Jeffrey’s Distance
(A.W.J.D) was the technique that gave us the larger distances among all distributions.
The Weighted Relative Entropy was the worst of all because it takes negative values and
contradicts the sense of distance.

The ”LR method” which is the method by removing from left to the right the intervals
show that the Absolute Weighted Jeffrey’s Distance (A.W.J.D) had the greater distance
values among all distributions. The Weighted Relative Entropy with the ”LR method”
takes also negative values which is meaningless for distribution comparison.

The ”RL method” which is the method by removing intervals from right to left pos-
sesses the benefits of the (A.W.J.D) technique and avoid the disadvantages of Weighted
Relative Entropy as a distance measure for all distributions examined.
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Chapter 6

Applications

In this Chapter we will present two case studies in Financial Mathematics and Geosciences
to clearly see the advantages of the Absolute Weighted Entropy-type measures as well as
the Weighted Entropy-type measures.

6.1 Case Study - Financial Mathematics

We collected from www.finance.yahoo.com logarithmic return prices of the index S&P500
and logarithmic return prices of Barrick Gold Corporation (GOLD) for a five year period
from 05/Jan/2016 until 05/Jan/2021. We try to find the relationship between these two
stocks via Absolute Weighted and Weighted Entropy-type measures. The dataset con-
tains 1258 observations for each stock.

The reason that we used logarithmic returns against closing values is because in the Port-
folio Theory the logarithmic returns follow the Normal Distribution. Thus, it has more
sense to compare the returns of the stocks via Weighted Entropy-type measures.

Firstly, we present the histograms of our data separately.

Figure 6.1: Histograms of S&P500 and GOLD

47
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For S&P500 returns the average is 0.000483 and the standard deviation is 0.012184876.
For Barrick Gold Corporation returns the average is 0.000929 and the standard deviation
is 0.025566474. Now, for our method we will divide the support of the dataset in the
following way:

(−∞,−0.08)∪[−0.08,−0.05)∪[−0.05,−0.02)∪[−0.02,−0.01)∪[−0.01, 0)∪[0, 0.01)∪[0.01, 0.02)∪

∪[0.02, 0.05) ∪ [0.05, 0.08) ∪ [0.08,∞)

The following table provides the percentage of data in every interval of the dataset.

Percentages by interval
Intervals (−∞,−0.08) [−0.08,−0.05) [−0.05,−0.02) [−0.02,−0.01) [−0.01, 0) [0, 0.01) [0.01, 0.02) [0.02, 0.05) [0.05, 0.08) [0.08,∞)
SP500 0.001 0.003 0.034 0.054 0.348 0.441 0.092 0.019 0.002 0.005
Gold 0.008 0.023 0.112 0.137 0.202 0.214 0.116 0.154 0.022 0.007

Table 6.1: Percentages by interval S&P500 vs GOLD

Recall that the main idea for cutting the support of the data is to add specific weights
on each interval. At this point we introduce our three methods for the dataset. We want
to see the relation between the stocks S&P500 and GOLD via Weighted Entropy-type
measures. Each from the three methods of the previous chapter will be applied and
examined analytically.
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6.1.1 Middle method

The first method that we will present is ”The Middle method”. The method will be
applied to four Entropy-type measures defined in Chapter 4 (Definitions 16, 17, 18 and
19) and the results will be compared. The steps of the algorithm are similar as in Chapter
5.

Now, we present the graph with the four Weighted Entropy-type techniques.

Figure 6.2: Middle method S&P500 vs GOLD

We can see that the Relative entropy takes negative values. The reason is that in
such instances, the numerator of the logarithm is smaller than the denominator and
when this happens the measure is negative. Secondly, note that the Absolute Relative
entropy is non-negative but it takes smaller values than Jeffrey’s Distance. Finally, the
biggest differences between the two stocks are reported for the Absolute Jeffrey’s Distance
method. In conclusion, we observe that the Absolute Jeffrey’s Distance gives the higher
differences of the distance between two stocks. Observe that if the Relative entropy is
used the two stocks appear to be almost equidistant.
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6.1.2 Left to the Right (LR) method

The second method is the ”LR method”. By using the appropriate theory in Chapter 4
and the presentation of the algorithm in Chapter 5 the results will be shown in the next
graph.

Figure 6.3: LR method S&P500 vs GOLD

We can see that, the Relative entropy takes again negative values. The reason is
again that the numerator of the logarithm is smaller than the denominator and when
this happens the measure is negative. Secondly, note that the Absolute Relative entropy
is non-negative but it is lower on the Y-axis than the Jeffrey’s Distance. Finally, the
biggest differences remarked on Absolute Jeffrey’s Distance method.
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6.1.3 Right to the Left (RL) method

The third method that we present is called ”RL method”. By using the theory from
Chapter 4 and the same algorithmic steps from Chapter 5 the results will be shown in
the following graph.

Figure 6.4: RL method S&P500 vs GOLD

We can see that, the Relative entropy takes again negative values. The reason is
again that the numerator of the logarithm is smaller than the denominator and when
this happens the measure is negative. Secondly, note that the Absolute Relative entropy
is non-negative but it is lower than the Jeffrey’s Distance.
Finally, the biggest differences are observed for the Absolute Jeffrey’s Distance method.

Observe that there are only minor differences among the three proposed techniques.
We can say that with three techniques when we focus on the tails the distance reduces
that means the biggest dissimilarities are observed in the middle of the datasets. The
results appear to be quite similar implying that there may be not significant differences
when applied to symmetric distributions (like Standard Normal and t-student or two
Normals as they appear in this case).
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6.2 Case Study - Geosciences

For the second example, we collected data from the Institute of Geodynamics (National
Observatory of Athens) www.gein.noa.gr. Our data concern earthquakes from 1973 to
2004 in Greece We have 5384 observations by taking the earthquakes that are below or
equal 4 (≥ 4) in Richter scale.
In this part of our work, we try to see the relationship between our data and the Shifted
Exponential Distribution which is a displacement of Exponential Distribution to the right
by 4 units. Firstly, we will present the histogram of our data and the histogram of data
with the Shifted exponential line. The histograms are the following.

Figure 6.5: Histograms of Dataset and Shifted Exponential Distribution

The average of the data is 4.280758 and the standard deviation is 0.3451494. We
suppose the distribution that fits better the data is the Shifted Exponential distribution
by 4 units with parameter λ = 4.280758.

Now, for our method we will divide the support of the dataset with the following way:

[4, 4.25)∪[4.25, 4.5)∪[4.5, 4.75)∪[4.75, 5)∪[5, 5.25)∪[5.25, 5.5)∪[5.5, 6)∪[6, 6.25)∪[6.25, 6.5)∪[6.5, 7]

The main idea for cutting the support of the data is to add specific weights on each
interval. After this addition, we will calculate some Entropy-type techniques. The fol-
lowing Table provides the percentages of data in every interval for the real data and the
Shifted Exponential distribution respectively.

Percentages by interval
Intervals [4, 4.25) [4.25, 4.5) [4.5, 4.75) [4.75, 5) [5, 5.25) [5.25, 5.5) [5.5, 6) [6, 6.25) [6.25, 6.5) [6.5, 7]
Data 0.602 0.242 0.062 0.051 0.017 0.012 0.008 0.001 0.0005 0.001
Shifted Exp 0.657 0.225 0.077 0.026 0.009 0.003 0.001 0.0001 0.00004 0.00001

Table 6.2: Percentages by interval Dataset vs Shifted Exponential Distribution
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The three methods ”Middle method”, ”LR method” and ”RL method” have been applied
in exactly the same way as in Section 6.1 and the three graphs are given below.

6.2.1 Middle method

Figure 6.6: Midle method Dataset vs Shifted Exponential Distribution

The first case with Relative entropy is not useful at all. Firstly, it is not symmetric
and secondly it gives negative values. The later is due to the fact that the numerator
of the logarithm is smaller than the denominator and when this happens the measure is
negative. The defects stated above can be resolved if one uses Jeffrey’s Distance. Observe
that Jeffrey’s measure is both symmetric and always positive.
Note though that Jeffrey’s Distance is not very useful because although each term is
positive, the elements of each term are not both positive. One is positive and one is
negative so that the result (even with the use of a large weight) will not be as extreme
as it should. The defect stated above can be resolved if one uses the case of Absolute
Jeffrey’s Distance where we combine the advantages of Jeffrey’s Distance and absolute
value.
It should be noted that the use of squares instead of the absolute value, was not going
to have the same effect since each term in each summation is less than 1 and the squares
where going to reduce the magnitude of the contribution of the most significant intervals
(terms). Observe further that the use of Jeffreys together with the absolute value increases
when we focus on the last two intervals where the difference is maximum.
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6.2.2 LR and RL method

The results of these two methods are given in graphs 6.7 and 6.8.

Figure 6.7: LR method Dataset vs Shifted Exponential Distribution

Figure 6.8: RL method Dataset vs Shifted Exponential Distribution
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Observe that for the LR method, the Relative entropy and Absolute Relative Entropy
are the same. In conclusion we observed that the three proposed methods behave dif-
ferently with the higher values obtained for the RL method (values up to ≈ 0.5 for the
Absolute Jeffrey’s Distance) followed by the Middle method (values as high as ≈ 0.25 for
the two Absolute measures).
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Chapter 7

Conclusions

The main purpose of this thesis was the comparison between Weighted Entropy-type
measures. After the presentation of the necessary theory on Divergences and Entropy,
we applied all previous theoretical results in a series of simulations and in two experi-
ments. The first experiment was to observe the relation (distance) between two stocks
and the other experiment was for observing the distance and the relation between earth-
quakes and one fitted distribution. By introducing the Absolute Weighted Entropy-type
methods we observed that the Absolute Jeffrey’s Distance gives the best results (higher
values) among all methods considered.

As we observed, the Weighted Relative Entropy technique is less accurate because it
takes negative values which violates the main idea of distance. After this we presented
the Weighted Jeffrey’s Distance which is symmetric but not accurate. The two final tech-
niques that we used are based on the previous two techniques with modifications. More
specifically, we introduced the Absolute Weighted Relative Entropy (A.W.R.E) and the
Absolute Weighted Jeffrey’s Distance (A.W.J.D). These two techniques and especially
the last one gave larger distance values between two datasets and at the same time ful-
filled the properties of symmetricity and non-negativity.

In conclusion based on the simulations and the two real applications we conclude that
the Absolute Jeffrey’s Distance appears to be the most sensitive Entropy-type measure
among all studied techniques. This means that it produces larger values when we focus
on the specific parts which otherwise have indistinguishable dissimilarities and therefore
it provides the researcher with a useful tool for many scientific fields where the interest
focusses not on the entire distribution but on specific (special) parts of it.
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[Rényi et al., 1961] Rényi, A. et al. (1961). On measures of entropy and information. In
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probabil-
ity, Volume 1: Contributions to the Theory of Statistics. The Regents of the University
of California.

[Shannon, 1956] Shannon, C. (1956). The zero error capacity of a noisy channel. IRE
Transactions on Information Theory, 2(3):8–19.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. The
Bell system technical journal, 27(3):379–423.

[Shannon and Weaver, 1949] Shannon, C. E. and Weaver, W. (1949). The Mathematical
Theory of Communication, by CE Shannon (and Recent Contributions to the Mathe-
matical Theory of Communication), W. Weaver. University of Illinois Press.

[Sharifdoost et al., 2009] Sharifdoost, M., Nematollahi, N., and Pasha, E. (2009). Good-
ness of fit test and test of independence by entropy. Journal of Mathematical Extension,
3(2):43–59.

[Song, 2002] Song, K.-S. (2002). Goodness-of-fit tests based on kullback-leibler discrim-
ination information. IEEE Transactions on Information Theory, 48(5):1103–1117.

[Tsallis, 1988] Tsallis, C. (1988). Possible generalization of boltzmann-gibbs statistics.
Journal of statistical physics, 52(1):479–487.

[Tsallis, 1998] Tsallis, C. (1998). Generalized entropy-based criterion for consistent test-
ing. Physical Review E, 58(2):1442.

[Tuller, 1950] Tuller, W. (1950). Information theory applied to system design. Transac-
tions of the American Institute of Electrical Engineers, 69(2):1612–1614.



62 BIBLIOGRAPHY

[Wiener and BeckenBach, 1956] Wiener, N. and BeckenBach, E. (1956). The theory of
prediction. Modern Mathematics for Engineers, McGraw-Hill.

[Yang et al., 2019] Yang, J., Grunsky, E., and Cheng, Q. (2019). A novel hierarchical
clustering analysis method based on kullback–leibler divergence and application on
dalaimiao geochemical exploration data. Computers & Geosciences, 123:10–19.

[Zhou et al., 2013] Zhou, R., Cai, R., and Tong, G. (2013). Applications of entropy in
finance: A review. Entropy, 15(11):4909–4931.


	Introduction
	Literature Review
	Entropy-type Measures
	Mathematical Background
	Divergence Measures
	Entropy-type Measures
	Shannon Entropy
	Cross Entropy
	Relative Entropy
	Jeffrey's Distance

	Statistical Conjectures on Entropy-type measures
	Clustering based on Entropy-type measures
	Goodness of Fit based on Entropy-type measures
	Model Selection based on Entropy-type measures


	Weighted Entropy-type measures
	Weighted Entropy-type measures
	Weighted Shannon Entropy
	Weighted Relative Entropy
	Weighted Jeffrey's Distance

	Absolute Weighted Entropy-type measures
	Absolute Weighted Relative Entropy (A.W.R.E)
	Absolute Weighted Jeffrey’s Distance (A.W.J.D)


	Simulations
	Standard normal - t2
	Middle method
	Left to the Right (LR) method
	Right to the Left (RL) method

	Standard normal - t5
	Standard normal - t10
	Standard normal - t30

	Applications
	Case Study - Financial Mathematics
	Middle method
	Left to the Right (LR) method
	Right to the Left (RL) method

	Case Study - Geosciences 
	Middle method
	LR and RL method


	Conclusions
	Bibliography

