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Synopsis 

Scope 

In this thesis we propose analytic models for the exact numerical evaluation of production-

inventory systems of practical significance. These models are used for an extensive numerical 

investigation of the respective networks with a view to gain an insight of the systems’ behavior, 

and whenever possible, to draw conclusions of managerial importance. The two main directions 

of our research are the balance between inventory levels and customer satisfaction on the one 

hand, and the detrimental effect of uncertainty on system performance on the other. 

 

Contribution 

To a great extent the existing literature either uses simplified models that can be solved 

analytically, or it employs approximate methods with more realistic assumptions. The models 

proposed here offer exact numerical solutions, while at the same time retaining a realistic level of 

system complexity. Our approach based on matrix analytic methods combines mathematic 

clarity, high precision and easily programmable algorithms. The resulting computer programs are 

powerful evaluative tools. They can be used for a preliminary analysis of real systems, for 

optimization purposes in the frame of an optimization algorithm, or as evaluative tools for the 

investigation of general system characteristics. Moreover, our analysis focuses on the effects of 

variability on system performance, addressing the ever present but hard to model problem of 

supply and demand uncertainties. 

 

Methodology 

Our analysis is based on Markov theory and the systems under consideration are modeled as 

continuous time – discrete space Markov chains. We apply matrix analytic methods, exploiting 

the characteristic structure of the infinitesimal generator matrix. We propose an algorithm for the 

construction of the infinitesimal generator matrix for any given set of parameters and the 

formulation and solution of the corresponding system of linear equations. The performance 

measures are calculated algorithmically from the stationary probabilities vector. The validity of 

each model is confirmed using a simulation model of the respective system. The investigation is 

based on the numerical evaluation of a wide range of scenarios, while optimal policies are 

determined through an exhaustive enumeration of all policies within prescribed bounds. The 

analytic solution algorithm is programmed in Matlab, while simulations are executed with Arena 

simulation package. 

 

Assumptions 

Our models take into consideration both supply and demand uncertainties in the form of 

stochastic lead times and uncertain external demand. In all models lost sales are assumed for 

external demand that cannot be met from inventory on hand. To keep a tractable level of 

complexity we make the common assumption that at most one outstanding order can be in transit 
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between any two different nodes of the system. Other general assumptions include reliable 

stations, never starving uppermost stations, and zero information lead times. 

 

The stochastic nature of the events is modelled using mainly the exponential distribution. The 

exponential distribution is known to provide good fit for real systems, it has desirable properties, 

and it is extensively used in the models found in the literature. To make our models more 

realistic, whenever appropriate, more general distributions are used. Compound Poisson has been 

used for the external demand, while phase type distributions have been used for lead times. 

Compared to real life systems, the exponential distribution may be considered a simplification, 

but its use does not impair the value of our models since it is a good approximation for many 

instances and its properties make it appropriate for the general investigation of many system 

classes. 

 

This thesis addresses three different system configurations. A serial, two stages, push-pull 

system; a serial, three stages Vendor-Managed-Inventory system; and a three tier, arborescent, 

pull system. All three systems present modeling challenges, practical interest and are the focus of 

extensive research literature. 

 

Part 1: Push-Pull system 

The scope of our research was the investigation of the interactions between the push and the pull 

segments of the system. The push-pull boundary is a strategic decision for a supply network and 

understanding the associated dynamics would be of value during the design phase of a supply 

chain. The proposed model captures relationships between variables, offers insight on key 

features of the system at hand, and can be used as a design tool for the evaluation of appropriate 

systems and the determination of optimal parameter values. 

 

We investigate a linear, horizontally integrated, push-pull system. A production station feeds a 

finite capacity buffer, which in its turn supplies a retailer working under a continuous review 

inventory control policy (s, Q). Transportation is modelled independently as a virtual station, 

while external demand is modelled as a compound poison process. 

 

The model was used to investigate the effect of different policies in balanced systems. Our 

analysis indicates that higher s values are preferable from a global perspective. When the 

analysis was based on a cost function, the optimal policies were found to be robust for a wide 

range of cost parameters values. In general the system has a dynamic behavior, especially as the 

external demand variability increases; however, under certain conditions some performance 

measures can be described with good accuracy with simple relations. The effect of demand 

variability was also studied and its detrimental effect on system operation and performance was 

documented.  
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Part 2: VMI system 

The aim of our research was to study the interrelations between the vendor and the retailer under 

different operating conditions, and how these affect overall system performance. We provide a 

quantitative model and general conclusions that can promote understanding between different 

members of the supply chain, while the model can serve as a test-bed for coordination 

mechanisms and new contracts design. 

 

We investigate a three stages, single product, serial inventory system working under the Vendor-

Managed-Inventory (VMI) logic. The vendor follows a continuous review inventory control 

policy (s, Q2) and decides based on echelon information. Moreover, it keeps track of the 

retailer’s inventory and whenever a reorder point (r) is crossed, a constant quantity replenishment 

order (Q1) is dispatched. External customers arrive according to a pure Poisson process and the 

demand of each external customer follows a discrete empirical distribution. Lead times are 

modeled using a phase type (Coxian) distribution with two phases. 

 

Systems with different relations between lead times and customer inter-arrival times were tested 

(balanced, supply constrained and demand constrained). Our investigation highlighted the 

interrelations between the decision variables and the importance of keeping inventory closer to 

the end customer. From a managerial point of view, policies with high Q1 and low Q2 values, as 

well as policies with a high value of r in relation to s were found to be preferable. The 

deleterious effect of increasing demand variance was also documented in a quantitative way. 

  

Part 3: Arborescent system 

The aim of our research was to study the dynamics of arborescent networks and offer an 

evaluative tool that could support the choice of optimal policies. Arborescent networks can be 

found in practice, but the presence of more than one member in a given echelon increases the 

complexity of the analysis. Our model offers exact solutions under relatively realistic 

assumptions and it is used in order to explore the potential for coordination between different 

network participants, and to investigate the way the network configuration may affect the 

performance of each separate member. 

 

We study a three-tier pull system of arborescent structure. A Distribution Centre orders from a 

saturated plant and supplies a Wholesaler. In its turn, the Wholesaler supplies n independent 

retailers. All members follow a continuous review inventory control policy based on local 

information. Transportation processes are modeled as virtual stations and partial orders are 

allowed. External demand is modeled as a pure Poisson process, while lead times are assumed to 

be exponentially distributed.  

 

The model was used to investigate the effect of the decision variables on the performance 

measures. Our analysis indicates a dynamic behaviour. There is inter-dependence between the 
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different members of the network and interplay between system parameters. Our analysis 

suggests that it is possible to coordinate the system in the sense that for a given desirable service 

level there can be found a combination of policies that minimizes total inventory in the system. 

As in many instances local optima were observed, the fine tuning of the system was found to be 

beneficial. The problem of optimal number of retailers was also briefly addressed. 
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1. Research motivation 

Logistics is a vital activity of the economic life. For smooth production processes and so that 

products of acceptable quality are available to the customers, raw materials must be procured and 

transferred to the manufacturing centers; intermediate products should be produced, stored and 

transported; and final products must be manufactured in a planned fashion and then moved 

through several stages (distribution centers, wholesalers, retailers) to the points where they will 

be available to the end customers. To coordinate all these processes so that they take place in a 

timely manner and in a cost effective way demands a considerable effort from the associated 

businesses and puts a severe strain on their resources. 

 

From a macroeconomic point of view, logistics can be of strategic importance for a national 

economy (Karavias and Anastasatos, 2018). It promotes economic growth (Hayaloglu, 2015), it 

contributes significantly to the National Gross Product of both developed and developing 

countries, and it employs a considerable part of the workforce (Rushton et al., 2014). 

 

With regard to individual consumers, logistics contributes significantly to the place and time 

aspects of product utility, as it is perceived by end customers (Murphy & Knemeyer, 2018). 

Moreover, it enables and supports new retail channels and it is a factor contributing to the 

expansion of consumer options. 

 

At business level, effective logistics is a prerequisite for most operations. Many companies have 

gone a step further and seek to gain a competitive advantage through their logistics functions. 

Supply Chain Management encompasses and expands logistics concepts. It adopts a more 

holistic approach that cuts through the boundaries of different organizations, and the resulting 

coordination between different stages has allowed the successful implementation of elaborate 

schemes such as Just in time, Lean management and Vendor managed Inventory. Companies are 

able to cut costs, increase revenue, improve quality, and release resources for investment, by 

making their logistics functions more efficient and more effective. As a result, supply chain 

management is the object of extensive research and a focus of interest for both academics and 

practitioners. 

 

Although the key components of logistics management (transport, inventory, warehousing) are at 

least as old as the modern mode of industrial production, the field of supply chain management is 

an evolving one. Advances in technology, organizational changes, and changes in the 

competition, all have an impact on supply chain operations. Globalization has given rise to 

longer, more complex and more susceptible to risk supply chains. Meeting rising customer 

expectations, both in terms of quality and availability, necessitates integration and coordination 

between different stages and challenges the established operating methods. Advances in 

information technology and the use of the internet facilitate information sharing and allow for 

novel modes of cooperation. Intense competition, as well as sustainability issues, compels 
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companies to eliminate waste and rethink packaging and transportation issues. Most important of 

all, the assignment of strategic importance to Supply Chain Management calls for improved 

effectiveness and higher efficiency, and creates an intense drive for innovation and change. 

 

In such an environment it is imperative to gain a deep understanding of the systems under 

consideration, to predict their behavior with changing conditions, and evaluate the effect of the 

uncertainty ingrained in all inventory networks. Towards these ends, the application of theoretic 

models can be useful. Although such models are abstractions of the real systems, by focusing on 

key features they bring forth the basic relations between quantities of interest and allow us an 

insight of the deepest workings of the systems despite their complexity. With theoretic models 

we can improve our control over systems by understanding their dynamic nature; we can 

promote supply chain integration by exposing the interconnection of supply chain members and 

the advantages of closer cooperation; we can also facilitate change and the adoption of novel 

approaches to supply chain management by exhibiting in a quantitative way the potential 

benefits for the companies. 

 

In this thesis we present three different stochastic models of inventory networks working under a 

lost sales assumption. Our study is based on Markov theory and the matrix analytic approach. 

First a short introduction to the related theory is given, and then the presentation of each model 

follows. The solution for each model is given in detail, while the resulting algorithm is 

programmed in Matlab and then used to numerically investigate the system so that conclusions 

of managerial interest can be drawn. 

 

In the next chapter we discuss briefly some key elements of modeling and we make a short 

introduction to management science and its methodology. 

 

In chapter 3 some basic concepts of supply chain management are defined. Mention is made to 

the factors that affect supply chain performance and commonly used supply network metrics are 

given. The role of inventory in supply chains and the basic inventory control policies are also 

briefly discussed. 

 

In chapter 4 the theory behind our methodology is presented. Basic definitions are given and 

elements of Markov Chains theory are briefly discussed. The outline of our methodology is also 

given. 

 

In chapter 5 we present a model of a linear, horizontally integrated, push-pull system. A 

production station feeds a finite capacity buffer, which in its turn supplies a retailer working 

under a continuous review inventory control policy. Transportation is modelled independently as 

a virtual station, while external demand is modelled as a compound poison process. The focus of 

our analysis is the interactions between the push and the pull segment of the system. The push-
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pull boundary is a strategic decision for a supply network, and understanding the associated 

dynamics would be of value during the design phase of a supply chain.  

 

In chapter 6 we investigate a three stages, single product, serial inventory system working under 

the Vendor-Managed-Inventory (VMI) logic. The vendor follows a continuous review inventory 

control policy and decides based on echelon information. External customers arrive according to 

a Poisson process and the demand of each external customer follows an empirical distribution. 

To better capture transportation uncertainties, a phase type distribution is used for lead times. A 

VMI venture means developing a strategic partnership between different supply network 

members, and the proposed model can help clarify the new role of each part and quantify the 

expected overall benefits. 

 

In chapter 7 a three-tier pull system of arborescent structure is studied. A Distribution Centre 

orders from a saturated plant and supplies a Wholesaler. In its turn, the Wholesaler supplies n 

independent retailers. All members follow a continuous review inventory control policy based on 

local information. Transportation processes are modeled as virtual stations and partial orders are 

allowed. External demand is modeled as a pure Poisson process, while lead times are assumed to 

be exponentially distributed. The model is used in order to explore the potential for coordination 

between different network participants, and to investigate the way the network configuration 

may affect the performance of each seperate member. 

 

Finally, in chapter 8 we sum up our research. Some general conclusions about the investigated 

systems are drawn, and some directions of possible future research are given. 
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2. Introduction to Models and Management  

2.1 On Models 

The modeling process is a fundamental function of the way we understand the world around us. 

Implicitly or explicitly, we continuously build models and employ them as tools to interpret the 

phenomena that confront us and define actions that we regard beneficial to our motives and 

purposes. When it comes to science, models form an integral part of the scientific method, 

creating and using them is a standard part of problem solving in science (Nersessian, 2006), 

while in certain fields models may be employed even in the absence of a related theory.  

Despite the ubiquity of models, or perhaps because of it, several important aspects of them are 

still subject to debate. Amongst others, the use of models raises semantic, ontological and 

epistemological questions, and several schools of thought have been developed to address each 

one of them (Frigg and Hartmann, 2012). 

  

Semantic questions are concerned with the representational function of models (what do they 

represent). Models may be representations of a selected part of the world, or target system. As 

such they may be models of phenomena, or models of data (Frigg and Hartmann, 2012). Models 

of phenomena are based on some kind of isomorphism with the target system, or on more 

relaxed terms, on some similarity or analogy with it. One issue that must be pointed out here is 

the fact that models cannot capture all the aspects of the target system, but focus only on those 

features that are of concern in the particular investigation. Even then, an idealization, or 

approximation process may be needed in order to build a working model. Such simplifications 

do not necessarily compromise the value of the resulting model as long as the assumptions that 

are made are consistent with the purposes of the analysis. In fact, under certain circumstances, 

these “simplified” models can be more useful than more detailed and less idealized ones 

(Batterman, 2009). 

  

On the other hand, models of data describe data that have been gathered during experiments. 

Their development usually includes a first step of data reduction and then a second step of some 

kind of curve fitting (Harris 2003). Data models may incorporate elements of theory, or they may 

even exist without an underlying theory where the mere analysis of data allows us to make 

reliable and useful predictions about the world (Napoletani et al, 2011). 

 

The nature of models is the second fundamental question that must be addressed. Physical 

objects or material models, such as scale models, are a straightforward and well defined 

category. However, for models involving more abstraction the process of defining what exactly 

is a model becomes more confused. Several points of view have been proposed. Models have 

been treated as a variety of entities including as fictional objects, set-theoretic structures, 

descriptions, equations, or even mixtures of different classes of objects (Frigg and Hartmann, 

2012). A special mention must be made to mathematical modeling. Mathematical models are 
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idealized, abstract models based on a number of different mathematical techniques which are 

deployed as suits the specific problem at hand (Giere, 1999). 

 

A final question about models is how we can use them to gain knowledge about the world. It is 

an indisputable fact that much of scientific (and non-scientific) inquiry is done on models and 

not on real systems. The process of learning through models has three stages (Frigg and 

Hartmann, 2012). First the model is constructed and its relation with the real system is 

established. Then, the characteristics and the behavior of the model are explored through its 

manipulation. The term manipulation is not strictly defined and its exact meaning obviously 

depends on the specific model under consideration. With regard to mathematical models, 

manipulation could entail the analytic solution of equations, the gathering of numerical results, 

or where intractable systems are concerned, the execution of computer simulations. In a final 

step, the knowledge about the model has to be translated back into conclusions about the real 

system under investigation. 

 

Closing the introduction on models, we must make mention to the specific functions of models 

and refer to why we model. Models are flexible in regard with the level of complexity in our 

analysis. They allow experimentation where high costs, accessibility issues, or ethical reasons 

forbid direct analysis of the real system. They are important tools for discovery allowing 

researchers to experiment with different variables, to test the behavior of a system under 

different conditions, and to explore the relationships between its various features (Truran, 2013). 

Prediction is the most obvious motive for such investigations, but it is not the only one. Epstein 

(2008) cites sixteen reasons other than prediction of why we build models, including amongst 

others to explain, to guide data collection, to discover new questions, to demonstrate tradeoffs 

and to educate. 

2.2 Models as a Management Tool 

Managing an organization is about planning, organizing, leading, and controlling of resources 

with a view to achieving the organizational goals efficiently (in terms of costs) and effectively 

(in terms of results) (Jones & George, 2015). Inevitably, the management of any complex system 

requires sound decision making at different levels, from the conception of an idea, to the 

planning of its execution, up to the details of its realization in a day to day horizon. Decisions fall 

into three broad categories depending on time scale, scope and tolerance of error. Strategic 

decisions have wide scope, a long-term impact, and they require substantial investment and 

usually a long term commitment on the part of the organization. The tactical level is in-between 

strategic and operational levels. Tactical decisions have a shorter time horizon, a more restricted 

scope, while they offer some flexibility in case corrections are required. Finally, operational 

decisions have local scope, short term impact and are relatively easy to adjust in case of error. 

Management science is the discipline that attempts to aid managerial decision making by 

applying a scientific approach to managerial problems that involve quantitative factors (Hillier 
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and Hillier, 2014). Although the first systematic approaches to management can be traced as far 

back as the work of Adam Smith in the eighteenth century, the consensus holds the birth of 

scientific management in the work of F.W. Taylor at the beginning of the twentieth century. 

Management Science in its present form originates from the second World War and the multi-

disciplinary teams established by the British military to cope with the complex problems arising 

in the operational theatres of the war. The alternative term “Operations research” is a legacy of 

this period. After the war, management science techniques found their way in the field of 

business management, while their proven effectiveness in terms of increased efficiency and 

productivity, led to an ever-expanding body of research. A major boost was the development and 

propagation of computers which allowed for the introduction of more sophisticated techniques 

based of iterative algorithms that took advantage of the increasing computational power. 

Management science is based upon organized principles of knowledge and a systematic analysis 

of empirical data so that repeatable results can be obtained (Kumar and Suresh, 2009). In the 

core of the scientific approach to management is the development of mathematical models that 

identify the variables of concern and their relations (Boddy, 2017), and allow the decision 

makers to establish the relationships between the actions they may take and the results they 

might expect (Evans, 2016). The employment of models for managerial purposes is cost 

effective, it facilitates a better understanding of the system under investigation, it promotes the 

quantification of the problem and the application of rigorous mathematical techniques, and it 

offers managers a way to evaluate what-if scenarios in a standardized manner (Stevenson, 2018). 

On the other hand, it must always be kept in mind that models do not decide, but are tools that 

support decision making, and as such, their employment must always be subject to the critical 

evaluation of the decision maker. By their very nature, models do not capture all the aspects of a 

problem, especially when qualitative factors are concerned, nor the results are always 

unambiguous. The human factor is critical, both during the development of the model and during 

the interpretation of the end-results.  

Of major importance are the model inputs, which parameters of the system will be included, as 

well as the quality of the information about them. For most models, inputs fall into three 

categories: Data, Uncontrollable variables, and Decision variables (Evans, 2016). Data include 

elements such as costs and capacities that can, with relative safety, be assumed to be constant in 

the context of the model. Uncontrollable variables are quantities that do change, but their change 

is beyond the control of the decision maker. Product demand is a typical example of such a 

quantity. Finally, decision variables are those parameters that can be directly influenced by the 

organization and whose optimal value is a usual objective of the investigation. Inventory policy 

parameters and staffing levels are examples of this kind of input. 

When all model parameters are assumed to be known with certainty, the model is characterized 

as deterministic. Deterministic models can be useful, but in many cases an oversimplification of 

the problem is required. In contrast, stochastic models use elements of probability to take into 
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consideration the uncertainty, or randomness, that is ingrained into many system parameters. 

Stochastic models are harder to build and solve, but they are significantly closer to real systems. 

In any case the appropriate level of model complexity depends on the specific objectives of the 

research. A good model is a finely tuned compromise between the conflicting objectives of the 

modeling process. It must be simple and easily understood, but at the same time it must include 

all the significant aspects of the problem at hand. It must be flexible and adaptive to reasonable 

changes of the inputs, while it should be easy to use and offer a friendly interface to the user. 

Moreover, as the model will be used to support decision making, its results must offer insights of 

the problem and have a direct bearing on the decision process, while they must be available at 

the lowest possible cost and in a time-frame appropriate for decision making (Daellenbach, 

2005). 

2.3 Methodology of Operations Research 

A successful Operational Research study requires flexibility and critical judgment on the part of 

the modeler. In practical research each problem is unique and its specific traits will dictate the 

appropriate solution approach, so a detailed prescription valid for every case cannot be given. 

The basic steps are generally agreed upon, but different researchers put emphasis on different 

aspects of the proposed method. A succession of five steps, reflecting the systematic approach to 

problem solving, can be mentioned as a general guideline of Operational Research methodology 

(Taha, 2017). The sequence is not rigid, but overlapping and loops between the steps usually 

occur. 

 

2.3.1 Definition of the problem 

Every study starts with the recognition and description of a problem, risk, or opportunity. The 

detection is based on a systematic observation of the system and draws on the experience and 

knowledge of both managers and researchers (Taylor, 2016). At this stage the problem (in a 

broad sense of the term) must be delimited and concisely defined, the relevant variables must be 

identified, and the proper level of detail should be decided. The appropriate objectives of the 

research are set, the feasible alternative courses of action are determined, and the constraints on 

the decision choices are specified. The alternatives could be in the form of a list of options, or a 

set of decision variables, while the necessary trade-offs between conflicting objectives must be 

taken into account (Daellenbach, 2005). The gathering of relevant data also occurs at this stage, a 

process that can be surprisingly challenging and time consuming, especially when too little or 

too many data are available (Hillier, 2014). 

2.3.2 Construction of the model 

The model translates the problem definition into mathematical relationships (Taha, 2017). It 

should capture the essence of the problem, abstracting relevant variables from the real system in 

a way appropriate to the objectives of the research (Kumar, 2009). The exact formulation of the 

model may fit some of the standard Operational Research techniques, or else a special-purpose 
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model may be needed. It should be noted that the complexity of most real life situations means 

that there is no single correct model, but there exist several alternative approaches for the 

solution of the same problem. Moreover, the modeling process is an evolutionary process where 

the model becomes more complete as the knowledge and the understanding of the modeler 

increases (Hillier, 2014).  

2.3.3 Solution of the model 

The solution of the model is considered the simplest phase of an operational research study since 

a wide range of well established solution techniques is available. The technique of choice 

depends on the nature of the developed model, as well as possible time and cost limitations. In 

simple cases a closed-form mathematical expression may be obtained, but in most cases the 

solution involves a systematic procedure of successive steps (algorithm) (Evans, 2016). Since for 

an iterative procedure extensive calculations may be needed, the application of the algorithm is 

usually done with a computer. An important issue about the solution of the model is sensitivity 

analysis. Given the unavoidable simplifications of the modeling process and the uncertainty that 

characterize many of the system parameters, it is important to evaluate the robustness of the 

proposed solution before any decision is implemented (Taha, 2017). 

2.3.4 Validation of the model 

Before reaching any conclusion about the system, the validity of the developed model must be 

established. First the internal validity of the model must be tested (verification). Verification 

addresses the internal consistency and the logical coherence of the model (Truran, 2013). Its aim 

is to verify that the assumed relationships are correctly represented by the respective 

mathematical expressions and that these mathematical expressions have been correctly 

implemented in the computer algorithm (Daellenbach, 2005). The manual checking of numerical 

results and the confirmation of the dimensional consistency of the model values are two methods 

that can be applied at this stage. 

On the other hand, validation or external validity seeks to establish that the model provides 

reliable information about the real system as it was intended to do. It should be ascertained that 

the model is a sufficiently accurate representation of the problem, given the objectives of our 

study. At a first stage, the behavior of the system with changing inputs can be investigated and 

any unreasonable solutions, or counter-intuitive results be evaluated. For a more thorough 

validation procedure, if possible, the results of the model are compared to historical data 

concerning the system. In the absence of such data, simulation may be used as an independent 

tool for validating the output of the mathematical model (Taha, 2017). 

2.3.5 Implementation of the solution 

By manipulating the model we can generate and evaluate alternative solutions to the problem. 

Then, using an optimization algorithm, or by exploring the set of feasible solutions (solution 

space), the most appropriate solution can be determined. In a last (but not final) step the results 

must be applied in the real world. Implementation of the solution involves the translation of the 
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results into understandable operating instructions to guide those who administer the actual 

system (Taha, 2017). The realization of the proposed changes should be audited and the actual 

results monitored. The proper use of the solution must be ensured, any deviations should be 

timely detected and corrected, and any opportunities for further performance enhancement 

should be exploited. Attention should be paid so that changes in the organization and its 

environment will not invalidate the appropriateness of the proposed solution, while it must 

always be kept in mind that improvement is a continual process and that no solution, however 

successful, should be considered final. 

2.4 Operations Research in Practice 

The effectiveness of operations research techniques in improving efficiency and productivity has 

been proven by a long string of documented success stories. As a result, over the years 

substantial effort has been expended to further the knowledge and develop the practice of 

management science. Today Operational Research is a body of well established models and 

techniques, comprising a discipline in itself (Ravi Ravindran, 2008). Its most frequently used 

tools include linear programming, integer programming, network models (including supply chain 

models), and simulation (Anderson et al., 2019). Inventory models, waiting-line and queuing 

models, and Markov Process models are also part of the standard operational research arsenal. 

Management science is applied in a variety of fields, including the military (logistical planning, 

war gaming), the government (emergency services, policy testing), and the area of healthcare 

(healthcare delivery, disease modeling) (Hillier, 2014). With regard to business and industry, the 

techniques of operational research can be employed in practically any decision involving 

quantitative factors. As examples we can mention financial services, human resources 

management, production planning and control, marketing, inventory control, and distribution 

network design. 

In this thesis we have used Markov chains to analyze inventory networks and evaluate their 

performance under different working conditions. Some basic elements of inventory networks 

will be covered in chapter 3, while a brief presentation of Markovian theory will be made in 

chapter 4.  
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3. Supply Networks 

3.1 Definitions 

Logistics management can be defined as the set of activities that “plans, implements, and 

controls the efficient, effective, forward and reverse flow and storage of goods, services and 

related information between the point of origin and the point of consumption in order to meet 

customers' requirements” (CSCMP, 2013). Typically, logistics refers to activities that occur 

within the boundaries of a single organization and focuses on procedures such as procurement, 

distribution, maintenance, and inventory management (Hugos, 2011). 

 

On the other hand, the terms “supply chain” and “supply chain management” have a wider 

scope. A supply chains extends from raw materials to the end products being available to 

consumers and includes all the parties that directly, or indirectly are involved in fulfilling a 

customer request (Chopra, 2016). A supply chain can be viewed as a “combination of processes, 

functions, activities, relationships, and pathways along which products, services, information, 

and financial transactions move in and between enterprises from original producer to ultimate 

end-user or consumer” (Murphy & Knemeyer, 2018). In the context of a supply chain each 

company focuses on its core competences and trusts in close cooperation and operative 

integration with the other members of the chain, so that the whole network can work as a single 

efficient and effective organization. 

  

Supply chain management integrates the logistics with other functional areas of an organization 

such as marketing, new product development, finance, and customer service. Compared to 

traditional logistics management Rushton et al. (2014) cites four basic differences: Supply chain 

management integrates suppliers and end users and views the whole supply chain and the 

constituent organizations as a single entity; its scope is mostly strategic than operational; it 

adopts a different view about inventory, treating it as a last resort to balance an integrated flow 

rather than as a means of decoupling successive member of the supply chain; and finally, 

decisions are based on information about the whole supply chain accessed through integrated 

information systems rather than having each member acting independently and with limited 

knowledge. 

 

The objective of supply chain management is to maximize the total value created by the supply 

chain. This is related to the profitability of the supply chain and can be defined as the difference 

between the revenue from end customers and the total cost incurred in the process of meeting 

customers’ requests. The appropriate configuration of the supply chain must take into account 

the characteristics of the product, as well as customers’ expectations (Huang, 2013). The right 

balance between the five operations performance objectives of quality, speed, dependability, 

flexibility and cost must be found (Slack et al., 2007), and the supply chain must be managed 

accordingly. Decisions must be made with a view to global optimization and they must address 
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the issues of efficient asset management and successful coordination of material, information and 

finance flows through the supply chain. Goods in various forms flow mainly downstream from 

the supplier towards the end consumer, but upstream flow of product is also possible (reverse 

logistics). Funds flow upstream, starting from the end customer who is the main source of 

revenue, and financing the successive supply chain members as they move. The flow of 

information is more complex as there must be an exchange of crucial information amongst all the 

members of the supply chain as appropriate (Taha, 2017).  

3.2 Participants in the Supply chain 

The exact configuration of a supply chain depends on both the product and the market that is 

targeted. A successfully operating supply chain consists of a combination of companies 

performing different functions in close cooperation with each other. The central role is played by 

the primary participants in a logistics channel: producers, distributors, wholesalers, retailers and 

of course end customers. In addition to them there are facilitators, or channel intermediaries, that 

play minor but essential roles (Murphy, 2018). These are usually service providers that support 

and smooth out supply chain operations, and occasionally make up for the inefficiencies in 

supply chain integration. An example of an extended supply chain is given in figure 3.1 

 

 
 

With regard to material flow, there are three basic network structures: Serial systems, assembly 

networks, and distribution systems (Figure 3.2). In serial systems every facility has at most one 

upstream supplier and one downstream customer and only one participant exists at each stage 

(echelon). It is the simplest configuration and it can be considered as a special case of both 

assembly and distribution systems. In assembly networks, each installation has at most one 

immediate successor. Each downstream facility is supplied by multiple suppliers which in turn 

have multiple suppliers themselves. Such systems are common in process industries, and at the 

end of the production chain in mechanical industries. Finally, distribution systems are systems 

where upstream facilities supply multiple downstream customers. If each facility has at most one 

Figure 3.1: Example of an extended Supply chain (Hugos, 2011) 
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supplier and many possible customers, the term arborescent distribution network is used. 

(Axsäter, 2015; Azadivar & Rangarajan, 2008). A special case of material flow is lateral supply, 

where a facility may receive products from another facility at the same stage. Such arrangements 

can usually be found in multi-location retailers. 

 

 
 

Below, the various participants of a supply chain are briefly discussed.  

 

Producers: Producers or manufacturers are those organizations that make a product in the form 

of raw material, intermediate product, or finished goods. The product may be intangible, or it 

may have the form of a service.  

 

Distributors: Distributors or wholesalers receive products in bulk from the producers and 

distribute them to other businesses typically in larger quantities than an individual consumer 

would demand. Their operations may include inventory management, warehousing, product 

transportation, as well as customer support (Hugos, 2011). A distribution centre may consolidate 

freight that comes in small shipments, it may break large shipments into smaller ones, or it may 

just re-sort goods and forward them immediately for transportation to customers (cross-docking) 

(Schroeder and Goldstein, 2016). 

Serial System 

Assembly System 

Lateral supply 

Distribution system 

Figure 3.2: Common supply network structures (Adapted from Azadivar & Rangarajan, 

2008)  
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Retailers: Retailers hold inventory and sell to the general public. As they interface with the end 

customers, they play a central role in defining demand characteristics and customer 

requirements.  

 

Customers: Customers are those organizations or individual consumers that purchase and use 

the product. The customers are the main source of revenue for the supply chain and to meet their 

requirements is one of its main objectives. Customer demand is affected by the type of the 

product, the current phase of its life-cycle and of course the competition. It may be static or it 

may vary with time and in many cases it is a significant source of uncertainty for the supply 

chain. 

 

Service providers: These organizations can be found across the supply chain. They have 

specialized in and are able to provide effectively and at low cost functions supportive to the core 

supply chain operations. Typical services offered include amongst others transportation, 

warehousing, financial services, market research and advertising, product design, legal services, 

and information technology and data collection services (Hugos, 2011). The degree that they 

participate in a supply network depends on the individual characteristics of each chain. 

3.3 Drivers of performance 

A successful supply chain must be effective in meeting customer requirements and 

simultaneously its members must operate efficiently, at the lowest cost for a given level of 

performance. In many cases conflicting needs arise and supply chain management involves much 

trading-off so that the resulting policies are consistent with the competitive strategy of the chain. 

The overall objective is to find the appropriate balance between efficiency and responsiveness. 

Chopra & Meindl (2016) cite six drivers on whose interactions the overall performance of the 

supply chain is dependent: Facilities, inventory, transportation, information, sourcing, and 

pricing. 

 

Facilities 

Facilities concern the physical locations in the supply network where goods are produced, 

processed, or stored. The level of centralization must be decided, the location of each facility 

must be determined and its role defined. For production sites, the degree of specialization must 

be decided, as well as if they will be focused on products or on specific functions. In a similar 

fashion, an appropriate warehousing approach should also be defined (Stock Keeping Unit - 

SKU storage, job lot storage, cross-docking) (Hugos, 2011). In any case, capacity issues must be 

addressed. Excess capacity offers flexibility to demand fluctuations, but it is detrimental to 

efficiency, so a suitable balance must be found. 

 

Inventory 

Inventory in the supply chain can take many forms (raw materials, work in process, finished 

goods) and some kind of inventory is kept practically by all supply chain members. Decisions 
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that must be made concern what kind of inventory must be kept, at which point of the supply 

chain, and at what levels. Inventory policies define when to reorder and how much to reorder, 

and they are commonly used to affect the efficiency-responsiveness balance. As inventory 

management has a central role in this thesis, inventory issues will be covered in greater detail in 

the next section. 

 

Transportation 

Transportation relates to how inventory should be moved from one location of the supply chain 

to another. Transportation costs can be as much as a third of the operating cost of a supply chain 

(Hugos, 2011), so careful and informed decisions are necessary. The mode of transportation must 

be decided and appropriate routes must be designed. The transportation to the point of demand 

can be direct, or intermediate consolidation points may be used (Chopra & Meindl, 2016). 

 

Information 

Information entails the collection, analysis and dissemination of data concerning facilities, 

inventory, transportation, costs, prices, and customers throughout the supply chain. Information 

provides the link between different supply chain members and it is the basis on which decisions 

about the other performance drivers are made. It enables the coordination of the supply chain and 

the optimization of its performance, while it is the only driver that can improve both efficiency 

and responsiveness simultaneously. Appropriate information is based on data that is accurate, 

timely and complete and offers a wide range of advantages: It helps to reduce variability in the 

supply chain; in enables better forecasts; it allows for the coordination of manufacturing and 

distribution systems; it promotes improved customer satisfaction; it enables a faster reaction and 

adaptation to supply problems; and it enables lead time reductions (Levi, Kaminsky & Levi, 

2004). 

 

Sourcing 

Sourcing refers to the processes required for the acquisition of the inputs that are necessary for 

the realization of the product. Outsourcing decisions also fall into this category. For each 

purchase the company must decide on the number of suppliers and the contribution of each one. 

Selection criteria must be set, as well as processes for performance monitoring and evaluation. 

The procurement process should improve efficiency and coordination in the supply chain and the 

necessary trading-offs must be made with concern to both short-term (quality, responsiveness, 

cost) and long-term (innovation, commitment, risk sharing) factors. (Chopra & Meindl, 2016; 

Hugos, 2011; Huang, 2013) 

 

Pricing 

Pricing is the process by which a firm decides how much to charge customers for its goods and 

services (Chopra & Meindl, 2016). Price is an important aspect of the competitive strategy of a 

company, it usually correlates strongly with demand, and it affects the perceived customer 

satisfaction. Price is also one of the main ways to match supply and demand on a short term 
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basis. If economies of scale occur, these must be recognized and price incentives must be given 

to customers so that an optimal output can be achieved.  

3.4 The role of inventory 

Inventory bridges the distance, in terms of both space and time, between different supply chain 

functions. All organizations, no matter the nature of their operations and their position in the 

supply chain, are forced to keep some kind of inventory. Even organizations specifically 

designed to work without inventories (Just-in-time philosophy) will in practice hold some, 

though minimal, stock.  

 

The principal reasons behind keeping inventory are the gap between supply and demand, the 

uncertainties inherent in most supply chain functions, and the drive for cost reduction. 

 

The perfect coordination of supply and demand is usually unfeasible and in many cases 

economically unwanted, so keeping inventory is necessary as a buffer for a fast response to 

customer demand, or as a way to accommodate demand variations. Inventories are indispensable 

in markets where the products must be available in anticipation of demand, as well as where the 

supply or the demand of a product has seasonal characteristics. 

 

Uncertainty concerns both ends of an operation. With regard to demand uncertainty, higher 

inventory levels can be used to avoid costly stock-outs and loss of sales and revenue. As far as 

supply uncertainty is concerned, inventory decouples successive operations and permits smooth 

production and distribution runs without delays due to raw material shortages. For critical raw 

materials, strategic inventory may be needed as a precaution against unforeseen events. 

 

Finally, economic motives for keeping inventory may relate to economies of scale or operational 

reasons. Larger replenishment orders and longer production runs are often associated with lower 

cost per unit due to inelastic re-order and set-up costs, while suppliers’ discount policies and 

price fluctuations may also favor stock accumulation. Beyond these, inventory can facilitate 

higher utilizations of a company’s resources. It upkeeps the independence of operations and it 

can be used to avert blocking or stock-out at potential bottlenecks in a process. It also allows for 

more flexible scheduling and the keeping of a given output with minimal capacity. (Rushton et 

al., 2014; Azadivar & Rangarajan, 2008; Schroeder & Goldstein, 2016; Huang, 2013) 

 

On the downside, excessive inventory can have a negative impact on an organization and its 

supply chain. Keeping inventory has associated costs and entails certain risks (section 3.4.2). 

Inventory is not productive in an economic sense and it ties up capital that could be used in a 

more efficient way. Although it hedges against uncertainties, at the same time it obscures system 

inefficiencies and obstructs the detection of problems and the initiation of corrective actions. 
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Finally, positioned between different members of a supply chain, it can insulate organizations, 

hampering effective communication and supply chain integration. 

3.4.1 Types of inventory 

Inventory in an organization may take various forms. Raw material, components, and packaging 

material are necessary inputs for manufacturing operations. Finished products are held at the end 

of the production lines, or at warehouses waiting transportation to customers. Semi-processed 

stock may build up between different manufacturing processes. Moreover, general stores and 

consumables used to support operations, as well as spare parts for critical infrastructure, may 

also have to be kept. The specific purpose of each kind of inventory designates the appropriate 

criteria for the associated decision making. So it useful to categorize inventory according to the 

characteristic role it plays for the functions of a company or a supply chain (Rushton et al.,2014; 

Sürie & Wagner, 2008) : 

 

Cycle Stock or Production lot-sizing stock: It is the inventory necessary for the satisfaction of 

normal demand between successive replenishment orders or production runs. The exact level of 

cycle stock may be decided for economic reasons, or it may be imposed by technical issues such 

as the availability of transportation, or the use of the same infrastructure for different products.  

 

Inventory in transit or Pipeline inventory: It refers to products that are en route between 

different facilities of the supply network. These products are not available to sell or use and their 

ownership is usually defined in the selling contract between supplier and buyer. Pipeline 

inventory level is a function of transportation time and demand, and it is generally independent 

of the replenishment orders quantity, or the frequency of reordering (Sürie & Wagner, 2008). 

 

Safety Stock or Buffer stock: It is kept to protect against the uncertainty stemming from 

unknown demand, unforeseen production disruptions and uncertain supplier lead times. 

Decisions about safety stock must take into account the stochastic nature of supply networks. Its 

appropriate levels depend on the desirable customer service level and the cost of an associated 

stock-out. 

 

Seasonal stock: It concerns goods whose demand has seasonal characteristics. It is used to 

satisfy expected large increases in demand and to compensate for periods when demand exceeds 

production capacity. Its accumulation helps to avoid working overtime costs and costs associated 

with unused equipment. 

 

Work in Process: It refers to products undergoing treatment, or waiting for treatment between 

the different stages of a production process. It prevents the starvation of bottleneck machines and 

allows for a smoother production flow and a higher utilization of resources. Work in Process 

relates to process Throughput (products finished per unit of time) and total time in the system 

(Cycle time) according to Little’s Law: Throughput = Work in Process / Cycle time. 
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Speculative inventory: It is inventory kept so that the company may guard against and profit 

from uncertain contingencies such as projected price increases and potential shortages of raw 

materials. The strategic inventory of critical products may also fall into this category. 

 

Phychic Stock: It refers to inventory kept in order to stimulate rather than satisfy demand. It is 

associated with retail stores and its levels have more to do with marketing than inventory 

management (Murphy & Knemeyer, 2018). 

 

Dead Stock: It is inventory that is no longer in demand. Such inventory is a liability for a 

company and may entail significant economic loss (Abbasi, 2011). 

3.4.2 Inventory costs 

Beyond its operational significance, inventory is also important from an economic point of view. 

A typical firm can have up to 30 percent of its current assets and as much as 90 percent of its 

working capital invested in inventory (Stevenson, 2018). Moreover, holding inventory entails 

significant costs that can be as high as 35 percent of its value (Jacobs & Chase, 2018). Current 

trends such as reduced product life cycles, product proliferation, rising customer expectations, 

demand volatility, extended supply chains, and just-in-time responsibilities tend to increase these 

costs (Rushton et al., 2014) and bring into focus the need for better inventory management. 

Inventory associated costs that must be taken into consideration during decision making include 

the item cost, the ordering cost, the setup cost, the holding cost, and the stock-out cost (Chopra & 

Meindl, 2016; Schroeder & Goldstein, 2016; Jacobs & Chase, 2018; Rushton et al., 2014). 

 

Item cost is the cost paid to a supplier to buy an item of a specific product (purchase cost), or in 

the case of production, the cost of producing an item of the product. It is usually the largest of 

the inventory costs. Purchase cost may vary with the order quantity as many suppliers offer 

quantity-related discounts. 

  

Ordering cost is the cost incurred when placing a purchasing order. It is generally independent 

of the order size and includes all the managerial and clerical costs. Amongst other it may account 

for buyer time, transportation costs and receiving costs. 

 

Setup cost is the cost of preparing the equipment for a production run in the case where the 

company produces its own inventory. It is analogous to the ordering cost and it refers to the 

production batch as a whole, independently of its specific size. Setup cost may include 

managerial costs as well, for example costs associated with creating a production order and 

record keeping. 

 

Holding or carrying cost is the cost incurred by physically keeping items in storage. It is the 

sum of four principal components: the cost of capital being tied up in inventories; service costs 
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associated with stock management and insurance; storage costs accounting for space occupancy, 

handling costs, and warehousing costs; and risk costs associated with obsolescence, 

deterioration, damage, or theft. The importance of each component depends on the specific 

characteristics of the stocked products, amongst others, the cost of their acquisition, their self 

life, and the need for specialized storage conditions. Holding cost is usually expressed as a 

percentage of the item cost per year. Typically values between 15 and 30 percent per year are 

quoted (Schroeder & Goldstein, 2016), but higher figures can also be found (Stevenson, 2018). 

 

Stock-out cost is the result of not having enough inventory to meet customer demand. Amongst 

others it includes lost profits due to lost sales, penalties for late deliveries, backorder costs, and 

costs due to urgent deliveries. A significant, but difficult to quantify, part of stock-out cost is the 

loss of reputation and customer goodwill which in its turn may lead to loss of future sales. When 

a product is intended for internal use, lost production and downtime due to product shortages can 

also be considered as a stock-out cost. Stock-out costs are usually difficult to measure and they 

are a major source of uncertainty for inventory decisions.  

  

The cost of inventory increases as its value increases through manufacturing and processing 

(Murphy & Knemeyer, 2018). Finished goods inventories are more expensive than raw 

materials, or work in process inventories, so there is a strong incentive to keep inventory 

upstream in a supply chain. However, such a practice can lead to longer lead times and may 

increase the probability of a stock-out. In multi-echelon inventory systems a decision must be 

made regarding the levels of safety inventories carried at different stages (Chopra & Meindl, 

2016). 

3.4.3 Inventory control policies 

The ultimate objective of an inventory replenishment system is to achieve an appropriate 

customer service level at the lowest possible cost. To do this, a trade-off between the costs 

mentioned above must take place and an inventory control policy consistent with the strategic 

objectives of the company must be defined. The two main questions about an inventory policy is 

when to order and how much to order. With regard to these questions, two main approaches 

exist: The periodic review inventory control policy and the continuous review inventory control 

policy. In both cases decisions are based on the inventory position, defined as the inventory on 

hand plus the inventory on order, minus any backorders. 

3.4.3.1 Periodic review inventory control system 

In a periodic review, or fixed order period system the inventory status is checked at fixed time 

intervals. After each review an order is placed so that the inventory position is raised to a 

specified threshold. This target level inventory must be high enough to cover demand until the 

next periodic review plus the delivery lead time, and it must take into account the appropriate 

safety stock. The time of ordering is known, but the level of the replenishment order varies. A 
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company that follows a periodic review policy must decide on two parameters: the review 

interval and the order-up-to level. 

  

Periodic review systems are simpler and easier to apply. They demand less managerial effort and 

they allow a better coordination of transportation operations. On the downside, they generally 

tend to accumulate more inventory in the system. (Chopra & Meindl, 2016; Schroeder & 

Goldstein, 2016; Jacobs & Chase, 2018) 

3.4.3.2 Continuous review inventory control system 

In a continuous review, or fixed order quantity system inventory position is monitored 

continuously, or after each transaction. Whenever the inventory position crosses a specified 

reorder point, a replenishment order of fixed quantity is placed. Continuous review systems are 

event triggered in the sense that an order is initiated when the event of reaching a specified 

inventory level occurs. The order quantity is known and can be optimized, but the time of 

ordering varies depending on how soon the reorder point is reached. The reorder point must take 

into account the projected demand during the replenishment lead time as well as the appropriate 

safety stock. 

 

Continuous review systems require up to date records, and without an information system the 

whole process of recording inventory every time that a change occurs can be time consuming. 

On the other hand, continuous systems require lower inventories to achieve a given customer 

service level. They are appropriate for high cost products, as well as for critical products whose 

management will be benefited from closer monitoring and quicker responses (Jacobs & Chase, 

2018, Schroeder & Goldstein, 2016; Chopra & Meindl, 2016; Slack et al., 2007). 

3.5 Supply networks metrics 

Performance measures are vital for effective supply chain management. They provide a clear 

picture of overall performance and they help to identify problems and their causes, as well as 

opportunities for improvement. The appropriate metrics promote understanding and provide an 

insight into the nature and workings of processes; they are an effective way of communication 

and help shape the behavior of both managers and workers; and they are an indispensable 

management tool for setting, monitoring and attaining well defined targets, consistent with the 

strategic vision of a company. The correct measurement of the right things is the basis of 

effective decision making, but to be of value information must be accurate, relevant and 

delivered in a timely manner. 

 

Traditionally five performance areas are considered critical for logistics operations: Asset 

management, cost, customer service, productivity, and quality (Fawcett et al., 2014). 
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Assets include facilities, equipment and inventories. For facilities and equipment capacity 

utilizations are used, with higher utilizations being preferable. With regard to inventory, the ratio 

of demand to available inventory (days of supply), and the inventory turnover (Cost of goods 

sold / Average inventory value) can be used. More general metrics such as Cash-to-Cash cycle 

time and return on assets are also useful from a managerial point of view. 

 

Cost relates directly to profit, so its tracking is an obvious necessity. Costs may refer at 

functional areas or at specific activities, and they may be expressed as a percentage of sales or as 

cost of goods sold. 

 

Customer service depends on product availability, responsiveness to customer demands, and 

customer satisfaction. Product availability is commonly measured with Product fill rate 

expressed as the ratio of products delivered to products ordered, and Order fill rate expressed as 

the ratio of complete orders delivered to the total number of customer orders. In make-to-order 

situations, on-time delivery is the percentage of orders delivered complete and on the date 

requested by the customer (Schroeder & Goldstein, 2016). Other measures include the frequency 

of stock-out (when the company has no inventory to meet expressed demand), the frequency and 

duration of back orders, and the average number of back-ordered items. With regard to 

responsiveness, cycle time measuring the time between order receipt and order delivery is widely 

used. The time needed to change the output volume by a fixed amount (volume flexibility) and 

the time to change the mix of delivered products (mix flexibility) are also important measures, 

especially where high levels of agility are expected. The overall satisfaction of the customer is 

usually evaluated through customer surveys, while the number of customer complaints is also a 

good, though somewhat paradoxical, indicator. (Fawcett et al., 2014; Schroeder & Goldstein, 

2016) 

 

Productivity measures the output of a process against the resources that were consumed. Labor 

productivity expressed in units produced per labor hour is a common metric, especially for labor 

intensive industries. Although it is important, a focus on productivity measurements can be 

misleading when it is not done properly. Productivity should not be measured in isolation, but 

the effect of productivity changes on other performance metrics must be taken into consideration. 

 

The definition of quality can be elusive. Usually it is defined as the conformance with customer 

requirements. With regard to products, the percentage of defective items is a common indicator. 

In the context of logistics, quality is related to service reliability. Usual metrics track the 

percentage of an activity performed correctly to the total number of times the activity was carried 

out. Examples include the frequency of wrong deliveries, the frequency of errors in invoicing 

and the percentage of damages during transportation. 
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The performance measures that are most relevant to the models developed in this thesis are 

presented below. The performance metrics are categorized according to the associated 

performance driver along the lines of Chopra and Meindl (2016): 

 

Facilities 

 Capacity: it is the maximum amount a facility can process. 

 Utilization: It measures the fraction of the capacity that is being used in the facility. In 

general, high levels of utilization are preferable from an economic standpoint, but longer 

delays and higher inventories may have to be traded off. 

 Actual average flow/cycle time: It is the average time that a product unit spends in the 

system. It includes the theoretical time due to processing and any delays that may occur.  

 Average production batch size: It measures the average amount produced in each 

production batch. 

 

Inventory 

 Average inventory: It measures the average amount of inventory carried. It can be 

measured in units, days of demand, or financial value. 

 Average replenishment batch size: It measures the average amount in each replenishment 

order.  

 Average safety inventory: It refers to the average amount of inventory on hand when a 

replenishment order arrives.  

 Order Fill rate: It measures the fraction of orders that were fully met on time from 

inventory. Fill rate should be averaged not over time but over a specified number of units 

of demand. 

 Product Fill Rate or Type II service Level: It refers to the fraction of demand in terms of 

product units that is met from inventory on hand.  

 Fraction of time out of stock: It is the fraction of time that a particular product had zero 

inventory. It can be used to estimate the lost sales during the stock-out period. 

 

Transportation 

 Average inbound transportation cost: It refers to the cost of bringing a product unit into a 

facility. 

 Average incoming shipment size: It measures the average number of units in each 

incoming shipment at a facility. 

 Average inbound transportation cost per shipment: It measures the average transportation 

cost of each incoming delivery. Along with the incoming shipment size, this metric 

allows the identification of potential economies of scale in inbound transportation. 

 Average outbound transportation cost: It is the cost of sending a product unit out of a 

facility to the customer. Usually it is measured separately for each customer. 
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 Average outbound shipment size: It measures the average number of units on each 

outbound shipment at a facility. 

 Average outbound transportation cost per shipment: It measures the average 

transportation cost of each outgoing delivery. Along with the outgoing shipment size, it 

allows the identification of potential economies of scale in outbound transportation. 

 

Information 

 Ratio of demand variability to order variability: It measures the standard deviation of 

incoming demand and supply orders placed. A ratio less than 1 may indicate the 

existence of the bullwhip effect. 

 

Sourcing 

 Average purchase price: It is the average price at which a product was purchased. It is 

obtained by weighting each price by the quantity purchased at that price. 

 Supply lead time: It measures the average time between when an order is placed and 

when the product arrives.  

 Supplier reliability: It refers to the variability of the supplier’s lead time, as well as the 

delivered quantity relative to plan.  

 

Pricing 

 Incremental fixed cost per order: It measures the incremental costs that are independent 

of the size of the order. These include changeover costs at a manufacturing plant, or order 

processing or transportation costs that are incurred independently of shipment size. 

 Incremental variable cost per unit: It measures the incremental costs that vary with the 

size of the order such as variable production costs at a manufacturing plant. 

 Average sale price: It is the average price at which a product is sold to a customer. It is 

obtained by weighting the price with the quantity sold at that price. 

 Average order size: It measures the average quantity per order placed from the customer.  

3.6 Modelling of Supply networks 

Supply networks are complex systems with multiple agents often acting according to their own 

interests. Despite its acknowledged importance, the coordination of information, material and 

finance flows is often an elusive objective. To achieve supply chain optimization, the behavior of 

the systems must be understood, and the ultimate benefits must be made clear to those who are 

called to make decisions that often seem contrary to their short-term benefit. Complexity and 

uncertainty render both prerequisites hard to get. Mathematical models have been proven useful 

tools, they provide scientific methods to address supply network management problems, and they 

can offer the necessary insight of the systems under consideration. 
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Although the advances in computing and information technology have allowed for more 

powerful models, the sheer complexity of the problems means that usually only a limited part of 

this complexity can be addressed. This does not detract from the value of the models. It is 

acknowledged that all the models are not applicable in all situations and even though real-world 

applications often use highly sophisticated methods (heuristics, simulations etc) to manage their 

operations, most of these approaches are based on theoretical, idealized models (Azadivar & 

Rangarajan, 2008). 

 

In this thesis models of inventory systems are proposed. Inventory decisions are concerned with 

inventory needs and aim to coordinate production and stocking decisions throughout the supply 

chain. Inventory models continue to receive significant attention from researchers as they are of 

practical value and represent significant theoretical challenges. Even under deterministic 

assumptions, optimal policies for multi-echelon models are lacking for many network 

configurations and their identification would be of interest. The field is even less explored in the 

case of stochastic multi-echelon inventory management and it is in such systems that this thesis 

is focused on. 
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4. Tools and Methodology 

4.1 Basic Concepts 

4.1.1 Stochastic Processes 

The concept of stochastic processes expands the concept of random variables so that time can be 

included. Stochastic processes deal with the dynamics of probability theory (Ibe, 2009) and they 

are a powerful tool to model systems that are characterized by both uncertainty and time 

evolution. They find application in the analysis of a wide range of systems, helping us to 

understand the variability inherent in the underlying processes, permitting predictions, offering 

valuable insights for effective design and control, and facilitating decision making based on 

quantitative parameters (Xu, 2008). 

 

If X a random variable, then we can define the collection, or family, of random variables 

}),({ TttX   as a stochastic process with index set T. The index t is usually interpreted as time, 

so the stochastic process could be described as a time-dependant family of X. The values of X(t) 

are called the states of the stochastic process, while the set of all possible values of X(t) forms the 

state space of the process S. 

 

Stochastic processes can be classified into four board categories depending on the nature of the 

index set T and the state space S. When T is a countable set, then the process is characterized as a 

discrete time process. On the other hand, if T is an interval of the real line the process is 

characterized as a continuous time process. In a similar fashion, when S is discrete the process is 

called a discrete state process, while in the case where S is continuous the process is called a 

continuous state process. 

  

Other characterizations of a stochastic process can be made according to its dependence on time, 

the statistical dependence of its developments over disjoint time intervals, and the influence of its 

history on its future evolvement (Beichelt, 2006).  

 

A stochastic process X(t), t≥0, is called a counting process if it represents the total number of 

“events” that have occurred in the interval [0,t). X(t) is a non-decreasing function that takes non-

negative integer values, while X(0)=0. X(t2)-X(t1) represents the number of events that occur in 

the interval [t1, t2]. 

 

A counting process is characterized as an independent increment process if the number of events 

that occur in disjoint time intervals is an independent random variable. Moreover, a counting 

process X(t) is defined to possess stationary increments if for every set of time instants 

t0=0<t1<t2<..<tn the increments X(t1)-X(t0), X(t2)-X(t1),.., X(tn)-X(tn-1) are identically distributed 

(Ibe, 2009). 
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4.1.2 Distributions of interest 

We denote f(s):the probability density function, or probability mass function, F(s):the cumulative 

density function, E(X): the mean, Var(X): the variance, StDev: the standard deviation and CV: the 

coefficient of variation. 

4.1.2.1 The exponential distribution 

The random variable X has an exponential distribution with parameter (rate) λ if its probability 

density function f(s) is given by 

         
        
     

  

 

It follows that  

         
        
     

  

     
 

 
 

       
 

  
 

         
 

 
 

     

 

One important feature of the exponential distribution is that it is the only continuous distribution 

that contains no memory. The so called memoryless property means that the time until the 

occurrence of the next event is probabilistically always the same: 

                       

 

Other useful properties of the exponential distribution are (Xu, 2008): 

 The sum of a fixed number of i.i.d exponential variables follows a Gamma (Erlang) 

distribution. If              , where Ti are iid exponential random variables 

with rate λ, then the random variable Sn has probability density function             
       

      
 , for t≥0. 

 The minimum of independent exponential variables is still an exponential random 

variable. If Ti, i=1,2,…,n  are independent exponential variables with respective rates λi, 

then the time when the first of the n event occurs, T=min(T1,T2,…,Tn), is an exponential 

random variable with rate     
 
    

 The probability that the i
th

 event is the first to occur amongst the n events is proportional 

to λi.         
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4.1.2.2 The Poisson distribution 

A random variable X follows a Poisson distribution with parameter (rate) λ, 0<λ<∞, when it has 

probability mass function 

     
     

  
  , x=0,1,… 

It follows   

       

         

The Poisson distribution is the most important distribution in stochastic modeling. Amongst 

others, it can be used as an approximation of the binomial distribution for large n (population) 

and small p (probability of occurrence in each individual) (Feldman & Flores, 2010; Blumenfeld 

2009). 

4.1.3 Poisson processes 

The counting process X(t), t≥0 is a Poisson process with rate (intensity) λ , λ>0, if 

i) X(0)=0 

ii) The process has independent increments 

iii) The number of events in any interval of length t is Poisson distributed with mean λt 

                      
     

  
, n=0,1,.. 

If o(Δt) is a function of Δt that goes to zero faster than Δt,        
     

  
  , then from the above 

definition follows: 

iv)                             : The probability of exactly one event 

within a small interval Δt is approximately λΔt 

v)                        : The probability of more than two events within a 

small time interval Δt is negligible (o(Δt)).  

vi)                               

Statements iv-vi for a counting process with stationary and independent increments can be used 

as an alternative definition of a Poisson process (Ibe, 2009). 

With regard to the mean and the variance of a Poisson process: 

           

          

 

An important property of a Poisson process with rate λ is that the inter-arrival times are 

exponentially distributed with mean time between arrivals 1/λ. Conversely, an arrival process 

with exponentially distributed inter-arrival times is a Poisson process (Feldman and Flores, 

2010). The Poisson process at any point in time probabilistically restarts itself and from any 

point on it is independent of all that has previously occurred (Ross, 2010). 
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Two other interesting properties concern the superposition and the decomposition of Poisson 

processes. The superposition property states that if Xi(t), t≥0, i=1,2,..n are independent Poisson 

processes with respective rates λi, i=1,2,..n, then the composite process {      
 
    , t ≥ 0} is a 

Poisson process with rate    
 
   . 

 

With regard to the decomposition property, we define {X(t) t≥0} a Poisson process with rate λ 

and each time an event occurs, independent of all else, we classify it as a type i event with 

probability pi,       
   . If {Xi(t), t≥0} is the arrival process of type i, then {Xi(t), t≥0}, 

i=1,2,..,n are n independent Poisson processes with respective rates λ∙pi (Xu, 2008) 

4.1.2.3 The compound Poisson Process 

We can generalize the Poisson process by relaxing the assumption that arrivals occur one at a 

time. If {N(t), t≥0} a Poisson process with arrival rate λ; {Yi, i=1,2,..} a family of independent 

and identically distributed random variables; and the Poisson process {N(t), t≥0} and the 

sequence {Yi, i=1,2,..} are independent, then the process X(t), t≥0 defined by         
    
    is 

called a compound Poisson process.  

 

The compound Poisson process involves two kinds of randomness, the randomness of the main 

process, also called the Poisson point process, and an independent randomness associated with 

its rate (Ibe, 2009). Intuitively, the compound Poisson process can be regarded as describing 

arrivals in “batches”, but the values Yi need not necessarily be integers. (Feldman and Flores, 

2010).  With regard to mean and variance: 

                 

                    

                               

4.2 Markov Processes 

A Markov Process is a stochastic process whose future is independent of its past given the 

present. More formally, a stochastic process            is called a first order Markov process 

if for any             the conditional Cumulative Density Function of X(tn) for given  

values of X(t0), X(t1),.., X(tn-1) depends only on X(tn-1): 

                                                

                          

This property of the Markov process is referred to as the Markov property (Ibe, 2009).   

 

Similarly to other stochastic processes, Markov processes can be categorized according to the 

nature of the time parameter (discrete time - continuous time) and the nature of the state space 

(discrete space - continuous space). In this thesis we are concerned with discrete state processes. 

Next such processes will be briefly discussed for discrete and continuous time.   
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4.2.1 Discrete Time Markov Chains 

The discrete process {Xk, k=0,1,2..} is called a Markov Chain if for all i,j,k,…,m: 

                                                 

pijk is called the one step transition probability and stands for the conditional probability that the 

process will be in state j at time k given that it is in state i at time k-1. When these probabilities 

depend on time then the process is called a non-homogeneous Markov Chain. On the other hand, 

when the transition probabilities are independent of time then the process is called homogeneous 

and pijk=pij.(Ibe, 2009) 

 

Since probabilities are non-negative and since the process must make a transition into some state 

it follows: 

        

      

 

 

The transition probabilities are usually given in the form a matrix P, where pij is at the i
th

 row and 

the j
th

 column. A discrete time Markov chain is completely specified by the probability transition 

matrix P and the initial distribution a={ai}, where ai=P[X0=i] is the probability that the chain 

starts in state i.(Xu, 2008) 

4.2.1.1 Transient analysis 

Transient analysis is concerned with probability statements about the possible realization of the 

discrete time Markov Chain at time n. The transition matrix gives direct information about the 

one-step transition probabilities. It can also be used as a basis to compute the n-step transition 

probabilities    
   

                       

 

The analysis is based on the Chapman-Kolmogorov equation that states that for the chain to be in 

state j at time (m+n) first it must go through some intermediate states 

   
     

     
   

    
   

 

   

 

If we denote P
(n)

 the n-step probability transition matrix,  

                 

It follows that 

                            

             

4.2.1.2 Classification of States 

The states of a Markov process can be classified based on the transition probability pij. A state j 

is accessible from state i when it is possible to travel from state i to state j with non zero 

probability in a random but finite number of steps:               . If two states i and j 



42 

 

are mutually accessible, then the two states communicate. Two states that communicate are said 

to belong in the same class, while by definition two classes of states are either identical or 

disjoint (Ross, 2010). A Markov chain whose state space is made of a unique class of states is 

characterized as irreducible. The concept of equivalent classes is helpful as many state properties 

are class properties as well. 

 

A set of states C is said to be closed when        for all CjCi  , . The interpretation of a 

closed set is that once the chain takes a value in the set C, then it can never leave C (Grimmett & 

Stirzaker, 2001).  For a closed set also holds            for all    .  An irreducible set can 

alternatively be defined as a closed set that contains no proper subset that is also closed (Feldman 

& Flores, 2010). A state that forms an irreducible set is called absorbing.  An absorbing state is 

certain to return to itself in one transition, pjj=1.  

 

Another important distinction is between transient and recurrent states (Xu, 2008; Ibe, 2009). A 

state is transient if starting from the state the process will revisit it only a finite number of times 

before eventually leaving it and never return. Equivalently, there is a positive probability that the 

process starting from the state will never return to it. On the other hand, the recurrent state will 

be surely revisited again and again, an infinite number of times. More formally, for a transient 

state: 

   
   

   
   

   

                   

Correspondingly, for a recurrent state  

   
   

   
   

   

                   

 

If starting at a recurrent state, the expected time (number of transitions) until the chain returns to 

the state is finite, then the state is said to be positive recurrent. Otherwise, the recurrent state is 

called a null recurrent state. In a finite-state, discrete-time Markov chain the recurrent states are 

also positive recurrent. 

 

A recurrent state is called periodic when the return is possible only in multiples of an integer 

period d>1.    
   

   only when              and    
   

   otherwise (d is the greatest 

common divisor of the epochs at which return is possible) (Grimmett & Stirzaker, 2001). If d=1, 

the state is called aperiodic. Positive recurrent, aperiodic states are called ergodic states, while a 

chain consisting of ergodic states is called an ergodic chain. 

 

Recurrence, transient-ness, and periodicity are all class properties. If a state has one of these 

properties, then all the states belonging in the same class will also have that property (Xu, 2008).  
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In the case when the state space S of the process includes transient states and multiple closed 

sets, S can be decomposed into disjoint sets. S can be uniquely partitioned as 

              , where T: the set of transient states and Ci: irreducible closed sets of 

recurrent states. (Grimmett & Stirzaker, 2001) 

4.2.1.3 Steady state behavior 

For many applications we are interested in the long run behavior of a Markov chain. Although a 

Markov chain Xn is inherently dynamic, under certain conditions the distribution of Xn may 

settle down. 

 

A markov chain         is said to have a limiting distribution if the limits 

   
   

             

exist and 

    
   

              

   

 

for all      , S: the state space. (Privault, 2013) 

 

Closely related, but not identical is the concept of stationary probabilities. The vector π is called 

a stationary distribution of the Markov chain if π has entries        such that: 

     for all j and         

     , or equivalently             for all j (Grimmett & Stirzaker, 2001). 

The distribution π is invariant by matrix P, in the sense that if the chain is started in the 

stationary distribution, then it will remain in that distribution at any subsequent time step 

(Privault, 2013). The stationary probabilities refer to an equilibrium state of the Markov chain 

where the mean intensity per time unit of leaving a state is equal to the mean intensity per time 

unit of arriving at the particular state. 

 

If a Discrete time Markov chain is irreducible and ergodic (positive recurrent and aperiodic), the 

limiting probabilities exist, they are independent of the initial state, and they coincide with the 

stationary probabilities. The vector π of the stationary probabilities is uniquely defined by: 

     and        (Xu, 2008; Privault, 2013). 

If μjj is the expected number of transitions until the process revisits state j (mean recurrent time,) 

then: 

 

, j ≥ 0 

4.2.2 Continuous Time Markov Chains 

The stochastic process             , with countable state space S and indexed by the half 

line T=[0,∞] is a continuous time Markov chain if it satisfies the Markov property: 

j

jj



1


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for all                and any sequence            of times (Grimmett & Stirzaker, 

2001).  

 

The Markov property means that the future development of the continuous-time Markov chain 

depends only on its present state and not on its evolution in the past. The conditional 

probabilities  

                                     

are the transitional probabilities of the Markov chain. If for all       and       the 

transitional probabilities          depend only on the difference t-s, then the Markov chain is 

characterized as homogeneous:                    . Since in homogenous chains the 

transitions depend on only one variable we can denote them as       .  

 

Similarly to the discrete time case, the transition probabilities can be given in the form of a 

matrix P(t) where probability        corresponds to the i
th

 row and j
th

 column element. The 

family            is called the transition semigroup of the chain. The entries of P(t) are non-

negative, while the sum of each row equals 1. P(t) depends on t, so different time-values specify 

different transition matrices. The following also hold: 

      , where I the identity matrix; 

                       (Chapman-Kolmogorov equations, or semigroup property) 

 

The states of a continuous time Markov chain can be classified in a way similar to that of 

discrete time Markov chains (Beichelt, 2006). The concepts of 4.2.1.2 can also be defined, 

appropriately modified for continuous time processes.      

4.2.2.1 The infinitesimal generator matrix 

Given our assumptions, the transition probabilities        are differentiable. By differentiating 

the semi-group property relation we have: 
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 is called the infinitesimal generator of the Markov 

process (Privault, 2013). The matrix Q, along with the initial distribution of the process, 

completely specify the continuous time Markov Chain (Xu, 2008) . 

The infinitesimal generator defines a set of transition rates 
h

hp
q

ij

h
ij

)(
lim

0
  and it can be easily 

proved that the sum of each row of the infinitesimal generator is equal to 0 (       ). It 

follows that 



ij

ijqq . 
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Transitions probabilities can be computed based on the equations 

                 

                 

known as the forward and backward Kolmogorov equations respectively.  

4.2.2.2 Transition and sojourn times 

Starting from       , in a short time interval (t, t+h): 

a) nothing happens with probability              

b) the chain jumps to state j≠i with probability            

Equivalently we can write that 
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The time     spent in state i before moving to state j≠i in a single step is an exponentially 

distributed random variable with parameter    : 

                         

              
         

 

 

 
 

   
     

The time    spent in state i before the next transition to a different state is an exponentially 

distributed random variable with parameter         

                   
   

                  

It follows that 

      
       

    

                       
   

   

 

 

 
 

       
  

 

   
   

 

The exponentially distributed times are in line with the memoryless property of the Markov 

chain. (Privault, 2013) 

   

Continuous time Markov chains can be defined as stochastic processes that move from state to 

state in accordance with a discrete-time Markov chain, but in such a way that the amount of time 

spent in each state, before proceeding to the next state, is exponentially distributed (Ross, 2010). 

The continuous Markov process can be described by two sets of parameters, the exponential 

sojourn time rates    and the transitions probabilities        . 
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4.2.2.3 Steady state behavior 

A probability distribution           is said to be a stationary for a Markov process with 

transition matrix P(t), if 

                   

and 

     

   

 

Equivalently the following relations can be used: 

      

     

   

 

 

If the Markov chain is irreducible and positive recurrent the stationary probabilities exist, they 

are unique and they coincide with the limiting probabilities. 

         
   

          
   

       

The equations resulting from the matrix relations above are known as the balance equations. 

They represent an equilibrium state of the Markov process where the long run rate at which the 

process leaves a particular state j is equal to the long run rate at which the process enters state j. 

(Privault, 2013; Beichelt, 2006; Xu, 2008) 

 

           
       

     

     

   

 

4.2.3 Birth and death processes 

A pure birth process is a continuous time Markov chain with state space               where 

only transitions from state i to state i+1 are possible. State n is absorbing if    . If we denote 

          the transition rates of the birth process (Beichelt, 2006): 

                                    

                                      

 

A pure death process is a continuous Markov chain with state space               where only 

transitions from state i to state i-1 are possible. If we denote           the transition rates of the 

death process (    ): 
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A continuous time Markov chain            with state space                  , is 

called a birth-and-death process if from any state i only a transition to state i-1 or state i+1 is 

possible, provided that       and      . 

      for         

          the birth rates 

          the death rates 

 

A birth-and-death process can be defined as the sum of a pure birth and a pure death process 

(Privault, 2013). The transition probabilities for state i: 

                                    

                                     

                                           

 

By the definition of the process, the time    spent in state i is an exponentially distributed random 

variable with parameter          and mean  
 

     
 . Moreover, the probability that a birth occurs 

before a death, when the process is in state i is        
  

     
. Similarly the probability that a 

death occurs before a birth, when the process is in state i, is        
  

     
 (Ibe, 2009). 

 

Birth and death processes offer a useful framework for the analysis of a wide range of systems 

and they have found practical applications in many fields, including queuing and inventory 

systems. The characteristic of their infinitesimal generator matrix is that it has a tri-diagonal 

structure, with non-zero elements only along, immediately above, and immediately below the 

diagonal.   
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4.2.4 Quasi-Birth-and-Death processes 

A Quasi-birth-and-death (QBD) process is a generalization of the simple birth-and-death process. 

QBD processes are infinite state Continuous time Markov chains with a two dimensional state 

space S. States are grouped into levels and each level    consists of    (finite of infinite) phases. 

S can be partitioned as       ;                           for    , where the term level 

denotes the whole subset   . One step transitions are allowed only within the same level or 

between adjacent levels: A transition from state (n,j) to state (n’,j’) is possible only if n’= n, n+1 

or n-1.  
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The first level may be different from the rest as it is the boundary level, while the others are 

repeating levels that usually have the same transition structure. The second level, sometimes 

referred to as the border level, may also have some slightly different structure from the other 

repeating levels. The infinitesimal generator matrix Q of a QBD process has a block tri-diagonal 

form. In the case of a homogeneous process where      for all     (assuming that    is the 

boundary level) the matrix Q has the form: 
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A0, A1, and A2 are mxm matrices, where m is the number of phases in a level that is not the 

boundary level.  A1 corresponds to transitions from a repeating level to the next higher repeating 

level, while A2 deals with the transition rates of transitions from a repeating level to the 

preceding repeating level. A0 correspond to intra-level transitions for the repeating levels. 

 

D0 is a nxn matrix, where n is the number of phases in the boundary level. It corresponds to 

intra-level transitions for the boundary level. 

 

D1 is a nxm submatrix that corresponds to transitions from the boundary level to the border level. 

 

D2 is a mxn submatrix that deals with transitions from the border level to the boundary level. 

 

In general A0 and D0 have nonnegative off-diagonal elements and strictly negative diagonal 

elements, while A1, A2, D1 and D2 are non-negative matrices (Ibe, 2009) 

 

Quasi-birth-and-death processes find a wide range of applications. One of their main advantages 

is the fact that the structural properties of their generator matrix allow the employment of 

algorithmic approaches for the evaluation of the respective systems. Finite QBD process with 

restricted state space can also be defined (Latouche, 1999), but their analysis is more 

complicated.  

4.3. Methodology 

In this thesis various production-inventory systems are analyzed as continuous time, discrete 

state Markov Chains. The state space of the processes is finite and multi-dimensional, as in all 

cases under investigation three or more dimensions are necessary to completely describe the 

respective system. The states are ordered lexicographically, starting from a basic level and 

proceeding to successive lower sub-levels. The modeling approach is based on the properties of 
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the exponential distribution. However, based on the exponential distribution, more complex 

distributions such as the Coxian and the compound Poisson are also employed. 

 

The analysis is based on the infinitesimal generator matrix of the process. More precisely, the 

infinitesimal generator Q is partitioned into recurring blocks of states (sub-matrices), each one of 

which corresponds to a specific kind of transitions. In general, matrix Q has a three-tier structure. 

Matrices on the diagonal correspond to transitions within the same basic level, sub-matrices 

above the diagonal describe “birth” transitions, and sub-matrices below the diagonal correspond 

to “death” transitions. It must be noted that here the terms “birth” and “death” have a more 

relaxed meaning than that used for birth-and-death processes. Unlike QBD processes, transitions 

in non-adjacent basic levels are generally allowed. 

 

Given the generator matrix it is easy to construct the linear system of balance equations from the 

relations given in paragraph 4.2.2.3. At this stage, the only difficulty for the solution of the 

model resides with the dimensions of the linear system. Large linear systems can be solved 

iteratively and several methods are proposed in the literature (Ching, 2006). For our applications 

we are using LU factorization with partial pivoting from the Matlab toolbox.  

 

 

Figure 4.1: Outline of methodology 

Construction of 

diagonal blocks 

(intra-level) 

Construction of 

sub-diagonal 

blocks (deaths) 

 

Construction of 

upper-diagonal 

blocks (births) 

 

Construction of 

the infinitesimal 

generator matrix 

Construction of 

the balance 

equations linear 
system 

Calculation of the 

stationary 

probabilities 

vector 

Calculation of 

performance 

measures 

algorithmically 

Definition of 

rules for states 

ordering  



50 

 

In the last step, system performance measures are computed as functions of stationary probability 

sums. For numerical results the computation is done algorithmically through an iterative process. 

The general outline of the methodology is given in figure 4.1   
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5. Analysis of a horizontally integrated Push-Pull system 

5.1 Research rationale 

Production logistics are characterized by the intelligent planning of the processes and the 

provision of products within systems of a more restricted perspective (Gleisner & Femerling, 

2013). In such a context, the working logic of the system is fundamental and bears heavily on its 

performance. The distinction between push and pull processes is one of the most basic, and it is 

commonly used in the literature for the classification of production/inventory systems. Although 

there are no universally accepted definitions (Limperopoulos, 2013), usually the timing of the 

execution of a process relatively to end customer demand is the base of characterization (Chopra 

& Meindl, 2007). 

 

In push processes execution is initiated in anticipation of customer orders. Push processes are 

often based on forecast and offer higher utilization of resources and a better ability to meet 

customer demand. On the downside, push processes are associated with higher inventory levels 

which impair the efficiency and the flexibility of the system. Traditional MRP systems fall into 

this category. 

 

On the other hand, in pull processes execution is initiated in response to end customer demand. 

Pull processes are constrained by inventory and capacity decisions. Pull systems are more 

flexible and low inventory levels can be achieved, but often at the price of creating additional 

stock-out costs and long customer lead times. Systems based on kanban philosophy are typical 

examples of this category. 

 

A third approach is the combination of push and pull processes. Three modes of integration have 

been proposed. In vertically integrated systems, one system is super-imposed on another, usually 

an MRP generating overall production plans for a system working according to Just-in-Time 

philosophy. In parallel integrated hybrid systems, both push and pull mechanisms coexist and 

work in parallel or complementarily (Cheikhrouhou, 2009). Finally, in horizontally integrated 

systems, different parts of the same system are controlled by different mechanisms. In the usual 

horizontally integrated push-pull system, production at the earlier upstream stations is push-type, 

while distribution at the later downstream stations is controlled by pull-type policies. 

 

Hybrid systems have been found to perform better than pure push, or pure pull systems, while 

they are more flexible to address growing product variety, shorter product life cycles and the 

need of keeping inventory costs as low as possible (Ghrayeb, 2009; Cuypere, 2012). Moreover, 

they have been suggested for better dynamic performance and the minimization of unwanted 

phenomena such as the Bullwhip effect (Donner, 2008). However, the analysis of such systems 

is more complicated.  
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Here a model based on Markov processes is proposed for the analysis of a linear, horizontally 

integrated, push-pull system. For more realistic assumptions a lost sales regime has been chosen. 

Lost sales are common in retail and high competition markets and may even be accepted as part 

of the business strategy in times of low demand (Kesen et al., 2010), but lost sales models are 

comparatively rare in the literature as they are more difficult to analyse and solve (Bijvank, 

2011). We suggest an algorithm based on the analysis of the infinitesimal generator matrix of the 

system. An exact numerical solution is offered and performance measures are computed for 

different combinations of the decision variables. The proposed model can be used to evaluate 

what if scenarios, to explore the dynamics of the system, or as an evaluative tool in the 

framework of an optimization model.   

5.2 Literature review 

In general, four different approaches have been employed for modelling and analyzing supply 

chains: Continuous time differential equations, discrete time difference equations, discrete event 

simulation, and classical operational research methods. The latter are the most commonly used 

and include such techniques as linear programming, queuing theory, Markov chains and dynamic 

programming (Riddalls et al., 2000). Much of the literature is focused on pure push or pure pull 

systems, the latter usually in some form of a kanban system. Although of practical importance in 

production environments, models of hybrid push-pull systems are not so common.  

 

Olhanger and Ostlund (1990) discuss the integration of push and pull strategies in the context of 

a manufacturing strategy, and examine the linkage between the push-pull boundary and system 

characteristics such as the customer order point (the point where a product is assigned to a 

specific customer), bottleneck resources and the product structure. They illustrate the potential 

benefits of integration through a case study.  

 

Takahashi and Soshiroda (1996) use difference equations to evaluate the performance of multi-

stage, horizontally integrated push-pull systems. They test two different integration strategies for 

a linear production/inventory system, with deterministic production lead times and stochastic 

demand. A configuration with upstream push-control and downstream pull-control is found to 

give persistently better results. Deterministic parameters are also used by Donner et al. (2010) 

who explore the dynamics of a linear supply chain for push, pull, and hybrid push-pull 

production control strategies. They use a fluid-dynamic input-output model to evaluate the 

stability of the respective systems. Hybrid systems are found to minimize the bullwhip effect, but 

under certain conditions they are also found to give rise to linear instabilities.   

 

Lin et al. (2012) assume deterministic times and uniform demand without stock-outs, to study 

push-pull systems in the context of mass customization. They propose the economic batch 

production model to determine the best production policies for the push segment upstream the 

decoupling point. 
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For more complex systems, simulation is preferred. Discrete Event Simulation is used by 

Cochran and Kim (1998) to study a horizontally integrated hybrid system comprised of an 

upstream series of push stations, a safety stock of semi-finished products, and a downstream pull 

sub-system. A movable junction point between the push and pull sub-systems is assumed. 

Simulated annealing is employed to find the optimal solution with regard to the safety stock at 

the junction point and the number of kanbans for the pull segment of the system.  

 

Cochran and Kaylani (2008) and Ghrayeb et al. (2009) combine discrete event simulation with a 

Genetic Algorithm to evaluate the performance of multi-stage, serial, push-pull systems. Cochran 

and Kaylani investigate a case with multiple products trying to locate the optimal location of 

junction points as well as optimal safety stocks for the push and optimal number of kanban cards 

for the pull part of the system. They report cost efficiency for the hybrid system and they propose 

locating the junction point between push and pull systems after the bottleneck of the process. 

Ghrayeb et al. use exponential processing times and a base stock policy for the pull stations of a 

single product production/inventory system. In most of the cases they test, the push-pull 

configuration works better than respective pure push or pure pull systems. 

 

Mahapatra et al. (2012) use simulation to evaluate pull and push-pull strategies in an un-

capacitated supply chain with one or multiple retailers. Demand uncertainty and lead time 

variability are taken into account and unmet end-customer demand is assumed to be lost. Pull 

stations follow a periodic review order-up-to-level inventory control policy, while push-type 

production is driven by forecasts. The optimal strategy is reported to depend on the specific 

parameters of the system and the performance measures of concern, but in general the hybrid 

policy gives better results than the pure pull policy. 

 

Kim et al. (2012) compare different supply chain strategies for a serial, multi-stage, push-pull 

system with backorders and normally distributed demand. Periodic review policies are assumed 

and multiple stock points in the pull segment are proposed. The authors formulate a nonlinear, 

mixed integer programming model with simulated annealing as the search algorithm. 

 

A significant part of the literature on hybrid systems modelling is based on Markov analysis. 

Hodgson and Wang (1991) investigate a simple assembly production/inventory system in the 

context of iron and steel processing. For each state in the system, it is possible to use a pure pull, 

a pure push, or a hybrid push/pull policy, with the objective to determine the optimal control 

policy with regard to a cost function. The model is based on a Markov Decision Process. The 

state space of the system, the policy space, the state transition mechanism and the cost structure 

are defined and a policy iteration procedure is applied. The analysis suggests that a hybrid policy 

with push upstream stages and pull downstream stages appears to have desirable operational 

properties. Geraghty and Heavy (2003) further analyze the model proposed by Hodgson and 
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Wang (1991) and conclude that the optimal push-pull policy is equivalent to a CONWIP/pull 

policy. 

 

Deleersnyder et al. (1992) study the integration of push and pull policies in multi-stage linear 

production/inventory systems under production and demand uncertainty. A kanban policy 

regulates the flow of material between successive stages, but an MRP type information flow is 

superimposed. A central controller provides production triggers to certain stations, creating 

hybrid push-pull work centres. The system is modelled as a discrete time Markov process and the 

analysis is based on the calculation of state probabilities through an iterative process. The hybrid 

approach is found to combine the benefits of both push and pull control systems. A similar 

methodology is also employed by Pandey and Khokhajaikiat (1996) for evaluating different 

combinations of inventory control policies in a four stages assembly system. Using data from a 

real system, their analysis concludes that when the upstream stages of the line are operated under 

raw material availability constraint, a hybrid policy with push control upstream stages and pull 

control downstream stages yield the best results. 

 

Ahn & Kaminsky (2005) analyze a two stage push-pull system, where downstream operations 

are initiated only to meet outstanding orders. They assume pure Poisson demand and 

exponentially distributed lead times and they model the problem as a Markov Decision Process. 

Their objective is the minimization of the long run average cost and they report counter-intuitive 

optimal policies. 

 

Cheikhrouhou et al. (2009) propose a system with two product classes with different priorities. 

They examine a single stage production system with exponentially distributed arrival/production 

times and backorders. Production control of high priority items is pull type based on kanban 

philosophy, while production of lower priority items is based on a push type MRP plan. The 

system is modelled as a Markov birth-and-death queue and an exact performance evaluation 

based on the steady state balance equations is offered. 

 

Takahashi et al. (2011) consider a two echelon, dual-channel supply chain with exponentially 

distributed setup times, Poisson demand and lost sales. A saturated manufacturer supplies a 

wholesaler, which in turn supplies a retailer, or sales directly to end customers. Production and 

delivery take place when the respective inventories fall below a minimum level and up until a 

maximum level is reached, while several product units are replenished simultaneously. The 

system is modelled as a Markov chain and an analysis based on flow balance equations provide 

numerical calculations of performance measures.  

 

Diamantidis et al. (2016) study a two echelon merge push-pull system consisting of multiple 

suppliers, a semi-finished goods buffer, a downstream station with parallel machines and a 

finished goods buffer. Processing times are exponentially distributed. Customers arrive 
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according to a Poisson process, while demand that cannot be met from inventory on hand is lost. 

The system is modelled as a continuous time - discrete space Markov process and the analysis is 

based on the calculation of the stationary probabilities. The authors propose an algorithm which 

takes advantage of the transition matrix structure and provides an analytically derived numerical 

evaluation of performance measures. 

 

Closer to our line of research are the works of Cuypere et al. (2012) and Diamantidis et al. 

(2017).  Cuypere et al. model a push-pull system with decoupling inventory and backorders. 

Production of semi-finished products starts when a threshold inventory lever is crossed. The 

system is a three-dimensional continuous-time Markov chain with infinite state space. The 

Markov process is a homogeneous quasi-birth-and-death process and the Matrix-Geometric 

technique is applied to provide the vector of stationary probabilities. The model is used to 

evaluate the performance of the system under different processing time and demand structures. 

 

Diamantidis et al. (2017) study a system where two reliable stations feed a finite buffer which in 

its turn serves two retailers working according to continuous review (s,S) inventory control 

policies. Exponentially distributed times, pure Poisson external demand, and lost sales are 

assumed. A Markov based algorithm for the numerical evaluation of the steady state probabilities 

of the system is proposed, while the analytical model is verified with simulation results.  

 

In this work, we propose an exact algorithm for the numerical evaluation of performance 

measures in a serial, push-pull inventory system. With regard to similar models found in the 

existing literature, our contribution is two-fold. Firstly, in our study transportation has been 

modelled as a virtual station. This allows us to better study the relation between inventory and 

transportation processes (Tempelmeier and Bantel, 2015) and permits more realistic 

assumptions. In most inventory systems analyzed as a Markov chain, transportation is modelled 

as a phase of the production process. However, as the interruption of a Markov process by an 

event is statistically equivalent to the restarting the process (Song, 2013), under certain 

conditions such a modelling approach can result in significant deviations from real practice. We 

address this drawback by introducing a virtual transportation station, although at the cost of 

adding more dimensions to our model. Secondly, we model external demand using compound 

Poisson. By combining random demand size with stochastic customer arrivals we gain 

significantly in flexibility and we are in a position to better evaluate the effect of the dynamic 

nature of the demand on system performance. 
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5.3 Description of the system 

 
Figure 5.1: System layout 

 

A single product, linear, push-pull supply chain is investigated (Figure 5.1). A reliable station S1 

produces (or administers in the system) product units at a rate μ1 and exponentially distributed 

production times. Finished products are stored in a finite Finished Goods Buffer (FGB). 

Inventory at buffer at time t is denoted by B(t). In the case where S1 completes processing, but on 

completion FGB is full, station S1 blocks (blocking after processing). Station S1 and the buffer 

consist the push sub-section of the system. Downstream, the retailer R holds inventory I(t) at 

time t and faces external demand with compound Poisson characteristics. External customers 

arrive with exponentially distributed inter-arrival times and each customer’s demand is 

uniformly distributed in the space [1, n].  

 

When the occurring demand is greater than the inventory on hand at the retailer, excess demand 

is lost. The retailer follows continuous review inventory control policy with parameters (s, Q). 

When inventory I(t) becomes equal to or less than the reorder point s, a replenishment order of Q 

units is placed on the buffer. The actual level of the sent order depends on the available inventory 

at the buffer. If B(t) ≥ Q, a full order is dispatched to the retailer. Otherwise, an incomplete order 

is dispatched. In the case where the FGB is empty, dispatching is suspended until one unit 

finishes processing at S1, upon which it is immediately forwarded for transportation to the 

retailer. Transportation is modelled as a virtual station T. Inventory in transit at time t is denoted 

by T(t). In the model, transportation is considered independent from both the FGB and the 

retailer. On transportation initiation, inventory T(t) is subtracted from the buffer and remains in 

the virtual station T until on transportation completion it is added to the inventory of the retailer 

I(t). Exponentially distributed times for the transportation process are assumed. 

 

To model the system, the following assumptions are also made: 

1. At any given time only one order can be in transit from the FGB to the retailer. The one-

outstanding-order assumption is common in the literature and it is necessary in order to 

maintain a tractable level of complexity. In some approaches the assumption is satisfied 

by assuming Q>s (Bijvank & Vis, 2011). In our approach the assumption is “built into” 

the transition matrix so that no constraint about s and Q is necessary. 

2. The retailer always orders Q units from the FGB. 

information 

λ 

External demand 

Push type Pull type 
Push-Pull boundary 

Production  
Station 

S1 
 

FGB 
 

Transport  
Retailer(s,Q) 
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3. There are always enough raw materials before station S1 so S1 never starves. 

4. The blocked unit at station S1 is transferred to the buffer immediately after there is 

available space and at the same time S1 resumes production. In the case where Q is 

greater than buffer capacity, the blocked unit is considered available for transportation to 

the retailer along with the inventory of the buffer (The blocked unit is considered part of 

the buffer).  

5. Transportation time is independent of the inventory in transit and there are no additional 

loading and unloading times. 

6. All stations are reliable 

5.3.1 Model variables 

As decision or design variables we denote those parameters of the system whose value a 

company can usually influence directly in order to achieve the desired outcomes. The 

determination of these values is part of the company’s planning at strategic and tactical level. In 

the problem under consideration the decision variables concern the capacity of the buffer and the 

parameters of the inventory policy at the retailer. In detail, the decision variables are: 

B: The capacity of the finished goods buffer (FGB). 

s: The reorder point at the retailer. 

Q: The quantity of the orders requested by the retailer. 

All three variables are assumed to be positive integers or zero, with the exception of Q which 

obviously cannot be zero. Although some scenarios lack physical meaning (for example when

1 BQ ), for the development of the algorithm no assumptions about the variable values are 

made. 

 

The other parameters of the model are: 

μ1: The production rate of the Station 1 (exponentially distributed production times). 

μ2: The transfer rate of a replenishment order from the buffer to the retailer 

(exponentially distributed times). 

λ: The rate of external customers’ arrivals (Poisson process). 

n: The maximum demand per external customer, assuming a uniform distribution in 

the space [1,n]. 

5.4 States definition and state transitions 

5.4.1 States definition 

The system comprises a 3-dimensional, continuous time - discrete space Markov process

}0),(),(),({ ttItTtB . At any given time t, the state of the system can be defined by a 3-

dimensional vector: 

                      

,where: 
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    : The inventory on hand at the FGB at time t.  1)(0  BtB , where the case 1)(  BtB  

corresponds to blocking. 

    : The inventory in transit from the FGB towards the retailer at time t.  QtT  )(0 . T(t)= 

0 means that there is no inventory in transit, while when T(t) = Q we have a complete order in 

transit to the retailer. QtT  )(0  corresponds to incomplete orders. 

    : The Inventory on hand at the retailer at time t. QstI  )(0 .  

 

The state space of the Markov process Ω is comprised of all the possible triplets (B(t), T(t), I(t)) 

and its dimension depends on B, s and Q. It can be easily proved that for any value of the given 

parameters, the dimension of the state space is given by: 

)2()2()1(,,  BQssN BQs  

The states are ordered linearly using the lexicographical ordering (Latouche & Ramaswami, 

1999). We take as basic level the subset of all states corresponding to a fixed buffer inventory 

B(t). Within each level the states are grouped according to the inventory in transit T(t). For fixed 

basic level and fixed inventory in transit, the states are ordered by inventory at the retailer I(t). 

To summarize: 

State (x, y, z) precedes state (x’, y’, z’) if x<x’; 

State (x, y, z) precedes state (x, y’, z’) if y<y’; 

State (x, y, z) precedes state (x, y, z’) if z<z’.   

5.4.2 State transitions 

The state of the system can be altered instantaneously by three kinds of events. For methodology 

reasons and without posing any restrictions to our model, it is assumed that no two events can 

occur at exactly the same time. In infinitesimal time dt only one event can occur. The three types 

of the events are: 

1. The completion of processing of one product unit at station S1. In this case B(t) increases by 

one unit  1)()(  tBdttB . In infinitesimal time dt, the possibility of the event occurring 

is )(1 dtOdt  , where O(dt) is an unspecified function such that 0
)(

lim 0 
dt

dtO
dt .  dtO

stands for the probability that a second event will occur in infinitesimal time dt. 

 

2. The arrival of an outstanding order at the retailer. In this case the inventory on hand of the 

retailer I(t) increases by T(t)  units  )()()( tTtIdttI  . If the value of I(t+dt)  is not 

above the reorder point s, then a new transfer from FGB is initiated. T(t+dt)  takes the value 

of the new order and B(t+dt)  decreases accordingly. In infinitesimal time dt, the possibility 

of the event occurring is )(2 dtOdt  . 
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3. The occurrence of external demand. Each customer may ask for d = 1,2,3,.. or n units. The 

inventory on hand of the retailer I(t) decreases accordingly   0,)(max)( dtIdttI  . 

If the new inventory is less than or equal to the reorder point s, a replenishment order is 

given to the FGB. T(t+dt) takes the value of the new inventory in transit and B(t+dt) 

decreases correspondingly. Each value of d has equal probability of occurrence: 

ni
n

idP  1,
1

)( . In infinitesimal time dt, the possibility of demand d occurring is 

)(dtOdt
n




 

5.5 The infinitesimal generator matrix 

The infinitesimal generator matrix Q is a matrix such that ijq is the instantaneous transition rate 

from state i to state j, i≠j, and 



ij

ijii qq (Latouche, 1999). For the system under consideration 

the infinitesimal generator can be divided into blocks of state transitions, or sub-matrices, which 

correspond to similar events. In general, there are three tiers of sub-matrices. We denote: 

),min( Qsk   

)0,max( sQf   

),1min( QBh   

5.5.1 Diagonal sub-matrices 

The diagonal tier describes transitions within the same basic level B(t) where no replenishment 

order towards the retailer is initiated and no product finishes processing at S1. 

 

The first diagonal sub-matrix D0 corresponds to the boundary states where there is no inventory 

in transit (Tt=0), It < s and Bt = 0. D0 is a )1()1(  ss block. On its diagonal, the first element 

is (–μ1) and the rest (-μ1-λ). Above the diagonal all the elements are zero. Bellow the diagonal, in 

the i
th

 row, there is λ/n from column max(2,i-n) to column i-1. In the first column, there are 

elements from row 2 to row min(s+1,n+1). The element of the i
th

 row is equal to 


n
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1D

2D

2D

2D

timesQ

4D

3D

On the diagonal, the basic repeating block D corresponds to transitions within a given basic level 

Bt. D is an QsQs  )2()2(  matrix and it can be further analysed into constituent sub-

matrices: 
 

   

 

 

 

 

 

 

 

 

 

D1 is a QQ  block on the diagonal of D. It corresponds to the occurrence of external demand 

when no replenishment order is initiated because the inventory on hand at the retailer is higher 

than the reorder point (It+dt > s). On the diagonal, the elements are equal to (-μ1-λ). Bellow the 

diagonal, in the i
th

 row there are (λ/n) elements from column max(1,i-n) to column i-1. 
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D2 is a )1()1(  ss  block. It corresponds to the occurrence of external demand when no 

replenishment order is initiated because there is already one outstanding order (Tt > 0). It is 

repeated Q times on the diagonal of D, each sub-matrix corresponding to a different value of Tt. 

The first element of the diagonal of D2 is (-μ1-μ2) and the rest diagonal elements are (-μ1-μ2-λ). 

Above the diagonal all the elements are zero. Bellow the diagonal, in the i
th

 row, there is λ/n 

from column max(2,i-n) to column i-1. In the first column, there are elements from row 2 to row 

min(s+1,n+1). The element of the i
th

 row is equal to 
n

in  )2(
 : 
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D3 is a Qsk  )1(  block, where k=min(s,Q). It is located just below D1 and corresponds to the 

arrival of a replenishment order at the retailer when the new inventory on hand exceeds the 

reorder point, sI dtt  . D3 can be divided into k blocks of Qs  )1(  dimension. The i
th

 block 

consists of (s+1-i) zero lines (corresponding to the arrival of a replenishment order when sI dtt 

) and a left aligned i×i diagonal matrix of μ2:  
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D4 occupies the left down corner of D. It occurs only when Q > s and corresponds to 

replenishment orders where Tt > s. D4 is a Qfs  )1(  sub-matrix, where )0,max( sQf  . It 

can be divided into Q-s, left aligned diagonal blocks of μ2 each one corresponding to a different 

Tt value. Each such sub-block has dimension )1()1(  ss  with the i
th

 sub-block starting from 

column i.  
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Block D is repeated B+2 times in the infinitesimal generator matrix (from Bt=0 to Bt=B+1). The 

last sub-matrix D corresponds to the boundary states where Bt = B +1. In these states the 

production station S1 is blocked and therefore there can be no arrivals at the buffer. If DI  the 

identity matrix of Qs  )2( dimension, the general structure of the diagonal tier of the 

infinitesimal generator matrix will be: 
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5.5.2 Upper-diagonal blocks 

The upper diagonal tier sub-matrices describe arrivals from S1 to the buffer. Since S1 processes 

one product unit at a time, only transitions to adjacent levels occur (skip free to the right). The 

first upper-diagonal sub-matrix corresponds to the boundary conditions where Tt  = 0, It  < s and 

Bt = 0. In these cases, the arriving unit is immediately forwarded for transportation to the retailer. 

U0 is a )1()1(  ss  diagonal block of μ1. The position of its upper left element is at (1, s+Q+2) 

of the infinitesimal generator matrix. 

 

The repeating block above the diagonal (U) is a Qs  )2( -dimensional diagonal matrix of μ1. It 

is repeated B+1 times, for buffer inventory from Bt=0 to Bt=B. 

 

The general structure of the diagonal and upper-diagonal tier of the infinitesimal generator 

matrix: 

 

 

 

 

 

 

 

 

 

 

 

5.5.3 Below the diagonal blocks 

Sub-diagonal blocks correspond to transitions where there is triggering of a replenishment order 

from the buffer towards the retailer. The events that can trigger replenishment orders are: 

1) The occurrence of external demand such that the new inventory at the retailer does not exceed 

the reorder point, sI dtt  . 

2) The arrival of a replenishment order when the updated inventory does not exceed the reorder 

point.  

 

The block below the diagonal L is a   )1()1(  sQks  matrix and can be divided into two 

segments. The first Q lines (L1) correspond to triggering due to external demand and consist of 

fractions of λ. In the i
th

 row there is λ/n from column max(2, s+1-n+i) to column s+1. In the first 

column, there are non-zero elements in the first min(Q,n-s) rows. The first column element of the 

i
th

 row is equal to 
n

isn  )1(
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The rest of the sub-matrix L (L2) corresponds to triggering due to the arrival of a replenishment 

order at the retailer when It+dt ≤ s. The second segment consists of μ2 elements. L2 is a 

  )1()1(  sks block, k=min(s,Q). It can be divided into k sub-blocks of )1()1(  ss

dimension. The i
th

 sub-block is a right aligned )1()1( isis  diagonal matrix of μ2 

followed by i zero lines: 
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Sub-diagonal blocks may describe transitions between non-adjacent levels and their exact 

position in the infinitesimal generator matrix depends on the parameters B, s and Q. Sub-matrix 

L occurs B+2 times. The first occurrence corresponds to the boundary conditions where the 

buffer is empty. In this case there can be no replenishment order triggering, but the structure of L 

is the same as in the other instances. The position of the upper left element of the first occurrence 

of L in the infinitesimal generator is at (s+2,1). 

 

The next h = min(B+1,Q) occurrences correspond to cases where Bt ≤ Q. Here there is a 

transition to level 0 (Bt=0). If i the sequencing number of the L matrix (1≤i≤h) and defining the 

position of L by the position of its upper left element (x,y): 

QsiQsx  )2()1()2(  

)1(2  siQsy  

 

The last B+1-h occurrences of L correspond to initiation of complete orders when Bt > Q. If i the 

sequencing number of L blocks for (h≤i≤ B) and (x,y) the position of each upper left element in 

the infinitesimal generator: 

QsiQsx  )2()1()2(  

shiQsQhiry  )()1)1()1(()1(  

sshQsr  )1()1(2  

5.6 Performance Measures 

Our analysis is based on the steady state solution of the system. We denote as X(i) the i
th

 element 

of the stationary probability vector, which corresponds to the i
th

 state in the hierarchy of states 

defined according to the rules of paragraph 5.4.1. If Q the infinitesimal generator matrix and X 

the vector of the stationary probabilities, then in the steady state: 

0QX        

1)(

,,

1




BQsN

i

iX                   

From the above a system of linear equations is extracted and the vector X can be computed 

numerically. Performance measures about the system can be computed algorithmically using the 

stationary probabilities and taking advantage of the infinitesimal generator matrix structure.  

5.6.1 Stock-out probability 

Stock-out probability (SO) is the probability of the Retailer having zero inventory on hand.  

))1(()1(
1

0

1

0











b

j

Q

i

sirXXSO        

QsjQsr  )2(2         
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5.6.2 Average Inventory in Transit 

If T a vector such that T(i) is the probability of inventory in transit being equal to i, then for g=0 

to g=Q-1: 




 


1

0 0

)()1(
b

j

s

i

irXgT           

QsjgsQsr  )2()1(2       

 , and the average inventory in transit WIPtransit : 





Q

i

transit iTiWIP
1

)(          

5.6.3 Utilization of transportation resource 

The utilization of transportation resource (uT) is the probability that there is inventory in transit 

to the Retailer. It can be easily computed using vector T  





Q

i

T iTu
1

)(          (9) 

5.6.4 Utilization of production station 

Blocking is described in the last (s+2)·Q states of the infinitesimal generator matrix. The 

probability that S1 is blocked (pblock) 







)2()2()1(

1)1()2()1(

)(
bQss

bQssi

block iXp         

 , and the utilization of production station S1 (uP) 

blockP pu 1           

5.6.5 Average inventory at the Finished Goods Buffer 

Without taking into consideration the cases when S1 is blocked, if Ibuffer a vector such that Ibuffer(i) 

is the probability of inventory in buffer being equal to i:  

For j=0 to B-1: 







1)2(

)()1(
Qsr

ri

buffer iXjI         

QsjQQssr  )2(1)1(1       

Taking into consideration the blocking states, the average inventory at buffer (WIPbuffer), will be 





B

i

bufferblockedbuffer iIiBpWIP
1

)(        

5.6.6 Average inventory at the Retailer 

If Iro a Q-dimensional vector recording the probability of different levels of inventory at the 

retailer while It>s, such that Iro(j) is the probability that It=s+j, for j=1 to Q: 
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





1

0

))2(1()(
b

i

ro QsijsXjI        

In a similar way, if Iru is an s-dimensional vector recording the probability of different levels of 

inventory at the retailer while I(t)≤s, such that Iru(i) is the probability that It= i, for g=1 to s: 











1

0

1

0

))1()2(2()1()(
b

j

Q

i

ru siQsjQgsXgXgI    

, and the average inventory at the retailer (WIPretailer) 





Q

i

ro

s

i

ruretailer iIisiIiWIP
11

)()()(       

Combining vectors Iru and Iro we construct vector Iretailer such that Iretailer(i) corresponds to the 

probability of inventory on hand at the retailer being i units.  

5.6.7 Order Fill Rate 

Order Fill Rate (FR) is the percentage of external customers whose demand is fully met by the 

inventory on hand at the Retailer. If C is a n-dimensional vector such that C(i) corresponds to the 

probability of It≥i, then  



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


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 
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
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
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5.6.8 Average lost sales 

Average lost sales (ALS) are the average lost sales per external order at the retailer. 

  









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i
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n

i
ALS

1

1

11 1

)]([)]([    

)1,0max(  Qsnw         

),1min( Qsny           

Average lost sales per lost order (Lost_Sales) is the average lost sales per order partially met or 

not met at all from the inventory on hand at the retailer.  

FR

ALS
SalesLost




1
_          

5.6.9 Type II Service Level 

Type II Service Level or Service Level (SL2) is the percentage of total external demand (in terms 

of product units) that is met from the inventory on hand at the retailer (Brandimarte & Zotteri, 

2007). If E the average demand per external customer, 
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5.6.10 Replenishment order rate 

The replenishment order rate (ROR) is the number of replenishment orders from the buffer to the 

retailer per unit of time. 

transit

T

WIP

uSLn
ROR






2

)1( 2
  

 

5.7 Illustrative example 

To illustrate the algorithm described above, we present the analysis for a simple example for 

buffer capacity B = 2, Reorder point s = 1, Order quantity Q = 2, and maximum demand per 

customer n=3. 

5.7.1 States definition and state transitions 

5.7.1.1 States definition 

At any given time t, the state of the system can be defined by a 3-dimensional vector: 

),,( tttt ITBS   

   is the inventory on hand at the Finished Goods Buffer at time t. }3,2,1,0{tB . Bt=3 

corresponds to blocking, when there are 2 units in the buffer and one finished unit blocked in 

station 1. 

   is the inventory in transit from FGB towards the retailer at time t.  }2,1,0{tT . Tt= 0 means 

that there is no inventory in transit, either because the inventory at the retailer exceeds the 

reorder point, or because there is stock-out at the buffer. 

   is the inventory on hand at the retailer at time t. }3,2,1,0{tI .  

 

The state space Ω of the Markov process is comprised of all permissible     vectors. In the 

example under consideration there are 26 possible states. These states are ordered linearly, using 

a lexicographical ordering and moving from lower to higher values. First the states are ordered 

according to the basic level Bt, Within each basic level the ordering is done based on inventory 

in transit Tt. Finally, for given Bt and Tt, the states are order according to the inventory at the 

retailer It. The states definition is independent of demand characteristics (n). The possible states 

and their respective hierarchy are given in figure 5.2 
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Figure 5.2: States definition and hierarchy for B=2, 

s=1, Q=2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.7.1.2 State transitions 

We assume that in infinitesimal time dt only one event may occur. The events that 

instantaneously change the state of the system are: 

1. The completion of processing of one product unit at station S1. Units are processed one at a 

time, so always the available inventory at the buffer will be increased by one unit. If Bt=0 

and It≤1, then the finished unit will immediately forwarder for transportation towards the 

retailer. Otherwise, the finished product remains at the buffer  1 tdtt BB . If the buffer is 

full (Bt=2), the finished product after processing remains in the production station which 

blocks. The instantaneous transition rate of the event is 1 .  

2. The arrival of an outstanding order at the retailer. In this case the inventory on hand of the 

retailer It increases by Tt units  ttdtt TII  . Inventory in transit can be 1 (partial 

replenishment order) or 2 (full order) product units. If the new inventory at the retailer does 

S/N State Station 1 tB  
tT  tI  

1 000 busy 0 0 0 

2 001 busy 0 0 1 

3 002 busy 0 0 2 

4 003 busy 0 0 3 

5 010 busy 0 1 0 

6 011 busy 0 1 1 

7 020 busy 0 2 0 

8 021 busy 0 2 1 

9 102 busy 1 0 2 

10 103 busy 1 0 3 

11 110 busy 1 1 0 

12 111 busy 1 1 1 

13 120 busy 1 2 0 

14 121 busy 1 2 1 

15 202 busy 2 0 2 

16 203 busy 2 0 3 

17 210 busy 2 1 0 

18 211 busy 2 1 1 

19 220 busy 2 2 0 

20 221 busy 2 2 1 

21 302 blocked 3 0 2 

22 303 blocked 3 0 3 

23 310 blocked 3 1 0 

24 311 blocked 3 1 1 

25 320 blocked 3 2 0 

26 321 blocked 3 2 1 
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not exceed s=1 and there is inventory at the buffer, a new replenishment order is initiated. 

The instantaneous transition rate of the event is 2 . 

3. The occurrence of external demand. Each customer may ask for d = 1,2, or 3 units with 

equal probability of 1/3. The inventory on hand of the retailer It decreases accordingly. If 

tId  , the external demand is partially met. If 1dttI , a replenishment order is given to 

the FGB. Tt+dt takes the value of the new inventory in transit and Bt+dt decreases 

correspondingly. The instantaneous transition rate for demand d occurring is λ/3.  

 

The transition diagram of the system under consideration: 

 

5.7.2 The Infinitesimal Generator Matrix 

1k  

1f  

2h  

5.7.2.1 Diagonal sub-matrices 
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Block D is repeated 4 times in the infinitesimal generator matrix. The last sub-matrix D 

corresponds to the boundary states where the production station is blocked, therefore μ1 is added 

to the diagonal elements.   

5.7.2.2 Upper-diagonal blocks 

U0 is a 22  diagonal block of μ1. The position of its upper left element is at (1, 5) of the 

infinitesimal generator matrix. 
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U is a 66 diagonal matrix of μ1. It is repeated 3 times. 
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5.7.2.3 Below the diagonal blocks 

L is a 24  matrix and can be divided into two segments. The first 2 lines (L1) correspond to 

triggering due to external demand. The rest of the sub-matrix L (L2) corresponds to triggering 

due to the arrival of a replenishment order at the retailer when It+dt ≤ 1 
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The overall structure of the infinitesimal generator matrix will be: 

 

 

5.7.3 Performance measures 

Stock-out probability 

)25()23()19()17()13()11()7()5()1( XXXXXXXXXSO   

 

Average Inventory in Transit 

The probability that inventory in transit towards the retailer is 1: 

)24()23()18()17()12()11()6()5()1( XXXXXXXXTp t   

The probability that inventory in transit towards the retailer is 2: 

)26()25()20()19()14()13()8()7()2( XXXXXXXXTp t   

The average inventory in transit WIPtransit : 

)2(2)1(1  tttransit TpTpWIP    

       

Utilization of transportation resource 

)2()1(  ttT TpTpu  

        (9) 

Utilization of production station 

The probability that S1 is blocked: 





26

21

)(
i

block iXp         

States 000 001 002 003 010 011 020 021 102 103 110 111 120 121 202 203 210 211 220 221 302 303 310 311 320 321

000 -μ1 μ1

001 λ -μ1-λ μ1

002 2λ/3 λ/3 -μ1-λ μ1

003 λ/3 λ/3 λ/3 -μ1-λ μ1

010 μ2 -μ1-μ2 μ1

011 μ2 λ -μ1-μ2-λ μ1

020 μ2 -μ1-μ2 μ1

021 μ2 λ -μ1-μ2-λ μ1

102 2λ/3 λ/3 -μ1-λ μ1

103 λ/3 λ/3 λ/3 -μ1-λ μ1

110 μ2 -μ1-μ2 μ1

111 μ2 λ -μ1-μ2-λ μ1

120 μ2 -μ1-μ2 μ1

121 μ2 λ -μ1-μ2-λ μ1

202 2λ/3 λ/3 -μ1-λ μ1

203 λ/3 λ/3 λ/3 -μ1-λ μ1

210 μ2 -μ1-μ2 μ1

211 μ2 λ -μ1-μ2-λ μ1

220 μ2 -μ1-μ2 μ1

221 μ2 λ -μ1-μ2-λ μ1

302 2λ/3 λ/3 -λ

303 λ/3 λ/3 λ/3 -λ

310 μ2 -μ2

311 μ2 λ -μ2-λ

320 μ2 -μ2

321 μ2 λ -μ2-λ
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 The utilization of production station S1: 

blockP pu 1   

         

Average inventory at the Finished Goods Buffer 

The probability that inventory at FGB is 1: 





14

9

)()1(
i

buffer iXIp  

Without taking into consideration the states where S1 is blocked, the probability that inventory at 

the FGB is 2: 





20

15

)()2(
i

buffer iXIp  

The average inventory at the buffer: 

)2(2)1(12  bufferbufferblockedbuffer IpIppWIP  

 

Average inventory at the Retailer 

The probability that inventory at the retailer is 1: 

)26()24()20()18()14()12()8()6()2()1( XXXXXXXXXIp r   

The probability that inventory at the retailer is 2: 

)21()15()9()3()2( XXXXIp r   

The probability that inventory at the retailer is 3: 

)22()16()10()4()3( XXXXIp r   

The average inventory at the retailer: 

)3(3)2(2)1(1  rrrretailer IpIpIpWIP       

 

Order Fill Rate 

Order Fill Rate (FR) is the percentage of external customers whose demand is fully met by the 

inventory on hand at the Retailer. The probability that the inventory at the retailer is equal to or 

greater than i, i=1,2,3: 

)3()2()1()1(  rrrr IpIpIpIp  

)3()2()2(  rrr IpIpIp  

)3()3(  rr IpIp      

)3(
3

1
)2(

3

1
)1(

3

1
 rrr IpIpIpFR        

  

Average lost sales per external order 
     )0|3(3)1|3()0|2(2)2|3()1|2()0|1(1  rrrrrr IdpIdpIdpIdpIdpIdpALS  
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The rest of the performance measures can be computed from the above through simple relations.  

5.7.4 Validation of algorithmic results 

The system of linear equations for the system was constructed manually and solved in 

Mathematica to get the vector of stationary probabilities. Then the performance measures of the 

system were calculated as described in the section 5.7.3. The results were practically identical to 

those produced algorithmically. The algorithmic results were also contrasted to simulation results 

(see section 5.8). Three replications of 2000000 time units each were used. The algorithmic 

results were within the confidence interval provided by simulation. Arithmetic values for 

parameters μ1=0.8, μ2=0.6 and λ=1, are given below: 

 

Performance measure Algorithm - Matlab Manually- Mathematica Simulation – Arena (95% C.I.) 

FR 0.235160 0.235160 0.236  ± 0.001 

SL2 0.296897 0.296897 0.297  ± 0.001 

WIPtransit 0.989656 0.989656 0.990  ± 0.001 

WIPbuffer 1.112643 1.112643 1.113  ± 0.001 

WIPretailer 0.705480 0.705479 0.706  ± 0.001 

pblock 0.257758 0.257758 0.258  ± 0.001 

     

5.8 Validation of the model  

5.8.1 Simulation Model 

Simple examples were solved manually using Mathematica and in every case the results were 

identical to those produced algorithmically. However, for a more rigorous testing of the 

algorithm such an approach is not practical. To check the validity of the developed algorithm, a 

simulation model of the system under consideration was developed. The system was modeled as 

a series of cycles, each cycle describing the interface between successive members of the 

network. The basic logic of the simulation model is given in figure 5.3. 

 

The simulation model was constructed in Arena simulation package, Version 12.00.00 – CPR 9. 

Test runs were executed to determine the specific parameters of the simulation that would give 

statistically rigorous results within a reasonable computation time. A simulation time of 2000000 

time units was deemed long enough for our purpose. To eliminate any effects of the initial 

conditions, a warm-up period of 50000 time units was also selected. 
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Figure 5.3: Simulation model logic 

 Seven different performance measures were in included in the analysis: Order fill rate (FR), 

average inventory at the retailer (WIPretailer), average inventory in transit towards the retailer 

(WIPtransit), average inventory at the buffer (WIPbuffer), the percentage of time that the production 

station is blocked (pblocked), the lost sales per lost order (LS), and the service level in terms of 

product units (SL2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8.2 Simulation Results 

In all, more than 1360 different scenarios were tested for various combinations of B, s and Q, as 

well as for different μ1, μ2 and λ relations. Simulation results were consistent with the results 

from the analytic algorithm. For the seven different performance measures that were tested, 

across all scenarios, the difference between analytic and simulation results in absolute values was 

typically of 10
-3

 order, which corresponds to the significant digits of the simulation results. The 

differences observed were well within the limits of the expected variability due to the statistical 

nature of simulation. Some results are given graphically below, while a sample of the data is 

given in the Appendix. In the diagrams we give the deviation as a percentage difference between 

the analytical method and simulation: 
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% Difference of Simulation and Analytic Results. μ1=0.5, μ2=0.2, λ=0.5, 0≤B≤6, 0≤s≤6, 1≤Q≤B+1, 1≤n≤5. 

WIPretailer SL2 

  
WIPbuffer pblocked 

  
 

% Difference of Simulation and Analytic Results. B=5, s=2, Q=3, n=2, 0.5≤ μ1≤2.5 (step:0.5), 0,5≤ 

μ2≤2.5 (step:0.5), 0.5≤ λ ≤2.5 (step:0.5), 1≤n≤5. 

WIPretailer SL2 

  
WIPtransit Lost Sales per lost order 
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5.9 Model Performance and limitations 

The algorithm was programmed in Matlab, version 2018a, 9.4.0.813654. For the runs 

commented here a computer with Core i-3-4005U CPU at 1.70 GHz processor and 4GB installed 

RAM was used. Its operating system was Windows 7 – Ultimate, 64-bit.  

 

The proposed algorithm is valid for any combination of the decision variables and for any given 

system parameters. However, as the systems under consideration become bigger and the 

dimension of the infinitesimal generator matrix increases, the algorithm becomes 

computationally demanding. This is a common drawback with models based on Markov analysis 

(Mehmood and Lu, 2011), and although the problem is alleviated with rising computational 

power, it still imposes limitations to the application of exact Markov models in real scale 

systems.  

 

The dimension N of the infinitesimal generator is a function of B, s, and Q: 

)2()2()1(  BQssN . 

In the figure below some examples are given of the number of states in relation to the decision 

variables: 

 

Figure 5.4: Number of states as a function of B,s,Q 

B=4 Q=1 

  

 

 

Computational time depends mainly on the number of possible states. The exact relation between 

the decision variables affects the number of steps that are required for the solution of the system, 

so it also has an effect on computational time. As a general trend the computational time 

increases with increasing number of states: 
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Computational time (sec) as a function of the infinitesimal generator matrix dimension 

 

 

The size of the systems that can be evaluated is restricted by RAM memory requirements, which 

in its turn depends on the dimensions of the infinitesimal generator matrix. Even in a computer 

of moderate performance, the developed model offers a satisfactory degree of flexibility as 

problems with as many as 25229 states were solve in the testing computer. Both algorithm 

efficiency (number of steps to the solution) and memory consumption can be improved by 

rephrasing the computer program and by exploiting embedded features of Matlab such as sparse 

matrices. However, at this stage our priority is the tractability of the computer program in 

relation to the theory mentioned in the preceding sections. In any case, the problem of increasing 

system states with increasing decision variable values would persist. 

 

The proposed algorithm offers certain advantages compared to alternative approaches such as 

simulation. Even for relatively big systems, the exact algorithm is significantly faster than 

simulation, in most cases the difference in computation time being several orders of magnitude. 

Moreover, the exact solution poses no limits on precision. This can be especially helpful in cases 

where low values of the performance measures are concerned, where the specific value may be 

comparable to the margin of error. Finally, the algorithm can be more easily integrated with 

other features, as for example, in the context of an optimization model.  

5.10 Numerical results 

The variables of the system can be characterized as decision variables (B, s and Q) and non-

controllable parameters (λ, n, μ1, μ2). To better focus on the effects of different policies, we limit 

our investigation in systems where the non-controllable parameters balance supply and demand. 

The average total lead time for incoming products to the retailer (1/μ1 + 1/μ2) is equal to the 

average time between successive external demands for two product units. Customers arrival rate 

λ and demand variability n are changed simultaneously so that the average external demand in 

terms of product units remains constant (λ∙E = const., E: the average demand per external 

customer). For our analysis μ1=μ2=λ∙(n+1). Some data are given in the Appendix.  
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5.10.1 The effect of the decision variables on the performance measures 

We investigate along two main directions. In 5.10.1.1 we study the joint effect of external 

demand characteristics (n) with each one of the decision variables. In each case, the other 

decision variables remain constant. In 5.10.1.2 the joint effect per two decision variables is 

studied, for given values of the third decision variable and the non-controllable parameters. We 

analyze scenarios where B, s, Q, and n take values in the range [1, 10]. Some scenarios are given 

graphically as examples. 

5.10.1.1 Joint effect of demand variability and the decision variables  

Our objective is to get insight of the effect of demand characteristics on system performance. We 

investigate the joint effect of demand variability and each of the decision variables on a range of 

system performance measures.  

Service level and Order Fill Rate 

The demand characteristics have a greater impact on Service Level than the decision variables. 

Increasing the value of B, s and Q tends to offset the effect of increased demand variability, and 

the importance of each decision variable increases with increasing n. From the decision 

variables, the reorder point s was found to have the greatest positive impact, followed by reorder 

quantity Q and then the buffer capacity B. 

 

Joint effect of n and the decision variables on Service Level 

SL2(n, Q), s=4, B=10 SL2(n, s), B=5, Q=4 SL2(n, B), s=4, Q=1 

   
 

Joint effect of n and the decision variables on Order Fill Rate 

FR(n, Q), s=4, B=10 FR(n,s), B=5, Q=4 FR(n,B), s=4, Q=1 
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Order Fill Rate exhibits a similar behavior to that of Service Level. Again, demand variability n 

is the most important parameter in determining the value of the performance measure. With 

regard to the decision variables, reorder point s has the greatest impact, followed by reorder 

quantity Q and then buffer capacity B. It should be noted that the value of Q is constrained by 

that of B, with the maximum practical Q value being B+1.  

 

In general, the ability of the system to achieve an appropriate level of customer satisfaction 

depends heavily on demand characteristics. From a managerial point of view it would be rational 

for the business to seek selling policies that smooth out demand.  

Average total inventory 

When only one decision variable is allowed to change, buffer capacity B has the greatest impact 

on WIPtotal, followed by reorder point s and then by reorder quantity Q. The effect of B can be 

described quite accurately with a linear relation (coefficient of determination R
2
 above 0.98), 

with every added slot in the buffer contributing an almost equivalent increment to total 

inventory. Increased demand variability causes WIPtotal to decrease, but this is rather a trend and 

does not hold across all scenarios. In any case, the effect of the decision variables is far more 

powerful than that of n.  

 

Joint effect of n and the decision variables on WIPtotal 

WIPtotal (n,Q), s=4, B=10 WIPtotal (n,s), B=4, Q=4 WIPtotal (n,B), s=4, Q=1 

   

Average inventory at the retailer 

The decision variables B, s, and Q are positively correlated with the average inventory at the 

retailer. The reorder point s has the greatest impact, while buffer capacity B is the least 

important. The effect of demand variability is less straightforward due to the dynamic 

relationship of the parameters of the system. The general trend is for WIPretailer to decrease with 

increasing n, but for some scenarios a minimum WIPretailer was observed for intermediate n 

values. In general, the effect of the decision variables is more important than that of demand 

variability. 
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Joint effect of n and the decision variables on WIPretailer 

WIPretailer (n, Q), s=4, B=10 WIPretailer (n, s), B=4, Q=4 WIPretailer (n, B), s=4, Q=1 

   

Utilization of Resources 

Predictably, transport resource utilization (uT) is negatively correlated with the reorder quantity 

Q, as low Q means more often replenishment orders. B is also negatively correlated with 

transport resource utilization. Higher buffer capacity allows for higher levels of inventory at the 

buffer and a corresponding decrease in the percentage of lost sales at the buffer (replenishment 

orders bellow Q) with the result that a given throughput can be achieved with fewer 

replenishment orders. The effect of n decreases with increasing Q and B values.  

 

With regard to s, there is a positive correlation with uT, possibly a result of increasing service 

level. The reorder point also affects the behavior of the performance measure with changing n. 

For low s values, transport utilization decreases with increasing n, while for higher values the 

correlation becomes positive.  

 

Joint effect of n and the decision variables on ut 

ut (n,Q), s=4, B=10 ut (n,s), B=4, Q=4 ut (n,B), s=4, Q=2 

   
 

Production station utilization (uP) is related to service level: 

2

1

SL
E

uP



      

For our analysis we have chosen parameters such that E·λ is constant, hence up is in linear 

relation with SL2. The two performance measures exhibit similar behaviour with respect to the 

effect of B, s, Q and n.  
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5.10.1.2 The joint effect of the decision variables on the performance measures 

We study the joint effect per two decision variables. In each case, different scenarios with regard 

to the value of the third decision variable and demand characteristics are investigated. For our 

analysis we use the elasticity of the performance measures with each decision variable: 

            
                               

                             
     

Service Level and Order Fill Rate 

All three decision variables are positively correlated with SL2. However, the effect of each 

parameter decreases as the value of the parameter increases (decreasing elasticities) and beyond 

a limit the impact becomes negligible. For high decision variable values service level reaches a 

plateau close to its maximum value. Predictably, the effect of B is important for higher Q values, 

while for base stock policies (Q=1) its effect is negligible. In general the reorder point s is the 

most important decision variable followed by Q. However, it should be noted that high Q 

prerequisites buffer capacity of at least Q-1 slots. For increased demand variability, maximum 

SL2 decreases and its plateau is harder to reach, but up to a point the effect of n can be 

counterbalanced. In any case, demand variability is the most decisive parameter for service level. 

 

Service Level II as a function of (s, Q) and (s, B) 

SL2(s,Q), B=10, n=10 SL2(s,B), Q=1, n=10 SL2(s,B), Q=10, n=10 

 
  

 

Service Level II as a function of (s, Q), B=5 and n=1, 5, 10 

SL2(s,Q), n=1, B=5 SL2(s,Q), n=5, B=5 SL2(s,Q), n=10, B=5 
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Service Level II as a function of (s, B), Q=5 and n=1, 5, 10 

SL2(s,B), n=1, Q=5 SL2(s,Q), n=5, Q=5 SL2(s,Q), n=10, Q=5 

   
 

The relation between Order Fill Rate (FR) and type II service level SL2 is: 

E

SalesLost

FR

SL _

1

1 2 



        

As long as lost sales per lost order (Lost_Sales) are lower than the average demand per external 

order E, SL2>FR. From the assumptions about the demand structure, in our system SL2≥FR with 

the equality holding for n=1. In the investigated scenarios the two performance measures exhibit 

a similar behavior with slightly lower values for FR. 

 

Order Fill Rate as a function of (s, Q) and (s, B) 

FR(s,Q), B=10, n=10 FR(s,B), Q=2, n=10 

  
 

Average lost sales (ALS) are directly related to Service Level (SL2) and demand variability (n) 

(paragraph 5.6.9). Demand has the greatest effect and increasing n causes ALS to rise. Increasing 

s is the most effective way to counter the effects of increased demand variability. Increasing Q 

(and if necessary B) is an alternative approach, but the effect is less pronounced.  
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ALS as a function of (s, Q) and (s, B) 

ALS(s, Q), B=10, n=10 ALS(s, B), Q=2, n=10 

  

Average Total Inventory 

All three decision variables are generally positively correlated with WIPtotal, but for high n values 

and for certain scenarios, negative correlation with Q may be observed. For low s and Q, buffer 

capacity B has the greatest impact, but as the other parameters increase, the effect of B becomes 

less pronounced and beyond a point s becomes the dominant parameter. As far as the joint effect 

of s and Q is concerned, the contour lines for given s have a positive inclination, but of a lesser 

degree than that for given Q. In comparison with reorder quantity Q, the reorder point s plays a 

more important role in the determination of WIPtotal. 

 

Average total inventory as a function of (s,Q) 

WIPtotal (s, Q), B=5, n=5 WIPtotal (s, Q), B=10, n=5 

  
 

For n=1 the effect of the decision variables can be described quite accurately using linear 

relations. With rising demand variability the system becomes more unstable and the effect of the 

decision variables moves away from linearity. However, the pattern of the relative importance of 

each decision variable remains the same. 
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Average total inventory as a function of (s, B) 

WIPtotal (s, B), Q=5, n=5 WIPtotal (s, B), Q=2, n=5 

  

 

Average total inventory as a function of (s, B) 

WIPtotal (s, B), Q=1, n=1 WIPtotal (s, B), Q=5, n=1 WIPtotal (s, B), Q=10, n=1 

   

Average inventory at the retailer 

B, s and Q are positively correlated with WIPretailer. In general, the effect of s is more important 

than that of Q. The elasticity of WIPretailer with s tends to increase with increasing s values and to 

decrease with rising Q values. Similarly, the elasticity of WIPretailer with Q tends to increase with 

increasing Q values and to decrease with increasing s values. In comparison with the other 

decision variables, the effect of B is negligible. 

 

For low demand variability the effect of s and Q can be approximated with a linear function with 

good fitting (for n=1, R
2
 above 0.99). As external demand variability increases, the effect 

becomes more dynamic and diverges from linearity. 
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Average inventory at the retailer as a function of (s,Q) and (s, B) 

WIPretailer (s, Q) WIPretailer (s, B) 

B=10, n=1 B=10, n=5 Q=2, n=5 

   

Utilization of transportation resource  

 

Transport utilization as a function of (s, Q) and (s, B) 

uT(s, Q), B=10, n=5 uT(s, B), Q=2, n=5 

  
 

The reorder point s affects transport utilization indirectly through the increase of service level 

and system output. uT increases with s and the effect is most pronounced for base stock policies 

(Q=1). With respect to buffer capacity, two counterbalancing trends are manifested. Increased B 

tends to increase uT through increased system output and at the same time suppresses reordering 

rate by allowing more complete orders towards the retailer. Initially transport utilization 

decreases with increasing B. Beyond a limit the two trends offset each other and in some cases a 

slight increase of uT with B was observed.  

 

By far the most important parameter for transport utilization is the reorder quantity Q. With 

higher Q there are fewer but bigger replenishment orders with the net effect of decreased 

transport utilization. 
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5.10.1.3 Synopsis 

In general, increased demand variability is detrimental to system performance both in terms of 

customer satisfaction and accumulation of inventory. Moreover, increasing n makes the system 

more unstable and less predictable. To offset the effect of higher n, higher values of the decision 

variables are necessary. 

 

Customer satisfaction, expressed either as Order Fill Rate, type II Service Level, or Average Lost 

Sales is heavily depended on demand variability. As far as the decision variables are concerned, 

changing reorder point s is the most effective way to enhance FR or SL2, followed by increasing 

reorder quantity Q. Buffer capacity is important as long as it is high enough to serve demand Q.  

 

To limit average total inventory (WIPtotal), decreasing buffer capacity is the most effective way, 

but it must be kept in mind that B constrains the maximum Q value. To a lesser degree, 

decreasing s can also decrease WIPtotal, while Q is the least important variable for total inventory. 

 

With regard to average inventory at the retailer (WIPretailer), reorder point s is the most important 

decision variable, followed by reorder quantity Q. B may have an effect as long as it interferes 

with Q. It should be noted that every attempt to limit WIPretailer has an adverse effect on customer 

satisfaction.  

 

Our analysis indicates that, from a managerial point of view, investing in reorder point s is the 

most efficient way to enhance the performance of the system, increasing order fill rate and 

service level while keeping total inventory at a lower level. Increased s causes greater levels of 

average inventory at the retailer, but this is the cost that must be paid for higher customer 

satisfaction. 

 

Evolution of Order Fill rate and Average total inventory. Each cycle corresponds to different 

demand variability, n={1,10} 

FR(B,n), B={1,10}, s=4, Q=2  

FR(s,n) s={1,10},B=4, Q=2 

WIPtotal(B,n), B={1,10}, s=4, Q=2 

WIPtotal(s,n), s={1,10}, B=4, Q=2 
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5.10.2 Optimal policies under service constraint 

5.10.2.1 Minimisation of system inventory (WIPtotal) for a given Fill Rate 

The aim is to determine the policy (B, s, Q) that minimizes average total inventory in the system 

(WIPtotal) under the constraint that a minimum Order Fill Rate (FRlevel) is achieved. The analysis 

is based on the exhaustive enumeration of systems for 1≤B≤10, 1≤s≤27, 1≤Q≤14, 1≤n≤10 and 

for FRlevel={0.8, 0.9, 0.95, 0.97, 0.98, 0.99, 0.995}. The results for the optimal policies are given 

in Τable 5.1 and Figure 5.5. 

 

Our analysis indicates that increasing the reorder point s is the most efficient way to increase Fill 

Rate while keeping average inventory as low as possible, irrespectively of the value of n. 

Practically in all optimal policies high safety stock values, as expressed by s, are used. The 

importance of Q and B depends on demand variability. For low n, high Q values in relation to B 

are used (keeping in mind that Q≤B+1). However, as n increases and for high Fill rate 

constraints, B higher than Q is used in the optimal policies. For high customer satisfaction under 

high demand variability, changes in the retailer’s policy are not enough, but an increase in buffer 

capacity is needed.  

 

Figure 5.5: Optimal (B, Q, s) policies for different levels of n (x-axis) and under different Fill Rate 

constraints. FRlevel={0.8, 0.9, 0.95, 0.97, 0.98, 0.99, 0.995} 
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Table 5.1: Minimum inventory policies under fill rate constraint and percentage change of Fill 

Rate and WIPtotal between successive steps. 

B s Q n FR_level FR 
WIP 
total %FR 

% 
WIP 

 
B s Q n FR_level FR 

WIP 
total %FR 

% 
WIP 

1 1 1 1 0.8 0.841 2.6753      1 6 2 6 0.8 0.825 6.7923     

1 2 1 1 0.9 0.916 3.4574 8.9% 29.2%  1 9 2 6 0.9 0.907 9.2661 10.0% 36.4% 

1 3 1 1 0.95 0.953 4.2866 4.0% 24.0%  2 10 3 6 0.95 0.951 11.6181 4.8% 25.4% 

1 3 2 1 0.97 0.974 4.7945 2.2% 11.8%  4 10 4 6 0.97 0.972 14.0666 2.2% 21.1% 

1 4 2 1 0.98 0.986 5.727 1.3% 19.4%  5 10 6 6 0.98 0.981 15.7664 0.9% 12.1% 

1 5 2 1 0.99 0.993 6.6821 0.6% 16.7%  8 10 8 6 0.99 0.99 19.4997 1.0% 23.7% 

1 6 2 1 0.995 0.996 7.653 0.3% 14.5%  9 12 7 6 0.995 0.995 22.2035 0.5% 13.9% 

1 2 1 2 0.8 0.814 3.4033      1 7 2 7 0.8 0.819 7.5516     

1 3 2 2 0.9 0.925 4.6344 13.6% 36.2%  2 9 3 7 0.9 0.91 10.5876 11.2% 40.2% 

1 4 2 2 0.95 0.952 5.5103 3.0% 18.9%  4 10 3 7 0.95 0.95 13.598 4.4% 28.4% 

2 4 3 2 0.97 0.973 6.9189 2.2% 25.6%  6 10 6 7 0.97 0.972 16.5622 2.3% 21.8% 

1 6 2 2 0.98 0.98 7.3355 0.7% 6.0%  8 10 7 7 0.98 0.981 18.9792 0.9% 14.6% 

2 6 3 2 0.99 0.991 8.8203 1.0% 20.2%  8 12 9 7 0.99 0.99 21.4766 1.0% 13.2% 

2 8 2 2 0.995 0.995 10.4032 0.5% 17.9%  8 15 8 7 0.995 0.995 24.1234 0.5% 12.3% 

1 3 2 3 0.8 0.855 4.5305      1 8 2 8 0.8 0.814 8.3125     

1 4 2 3 0.9 0.901 5.3595 5.3% 18.3%  2 10 3 8 0.9 0.901 11.3482 10.7% 36.5% 

1 6 2 3 0.95 0.952 7.0911 5.7% 32.3%  2 14 3 8 0.95 0.953 14.9055 5.8% 31.3% 

2 6 3 3 0.97 0.973 8.578 2.2% 21.0%  3 15 4 8 0.97 0.971 17.2261 1.9% 15.6% 

2 7 3 3 0.98 0.982 9.5181 0.9% 11.0%  3 17 4 8 0.98 0.98 19.1215 0.9% 11.0% 

2 9 3 3 0.99 0.991 11.4402 1.0% 20.2%  5 18 6 8 0.99 0.99 22.8733 1.1% 19.6% 

3 9 4 3 0.995 0.995 12.8644 0.4% 12.4%  7 20 4 8 0.995 0.995 26.4392 0.5% 15.6% 

1 4 2 4 0.8 0.843 5.2828      1 9 2 9 0.8 0.809 9.0747     

1 6 2 4 0.9 0.914 6.9403 8.4% 31.4%  4 9 5 9 0.9 0.902 12.8982 11.5% 42.1% 

1 8 2 4 0.95 0.951 8.6854 4.1% 25.1%  3 14 4 9 0.95 0.95 16.0996 5.3% 24.8% 

2 8 3 4 0.97 0.971 10.1956 2.1% 17.4%  3 17 4 9 0.97 0.971 18.8837 2.2% 17.3% 

3 8 4 4 0.98 0.982 11.6268 1.1% 14.0%  4 18 5 9 0.98 0.981 21.183 1.0% 12.2% 

3 10 4 4 0.99 0.991 13.5519 0.9% 16.6%  6 20 4 9 0.99 0.99 25.0437 1.0% 18.2% 

5 10 5 4 0.995 0.995 15.9974 0.5% 18.0%  6 24 4 9 0.995 0.995 28.9633 0.5% 15.7% 

1 5 2 5 0.8 0.833 6.0352      1 10 2 10 0.8 0.806 9.8377     

2 6 3 5 0.9 0.909 8.2131 9.1% 36.1%  2 13 3 10 0.9 0.902 13.7453 12.0% 39.7% 

1 10 2 5 0.95 0.951 10.2826 4.6% 25.2%  3 16 4 10 0.95 0.952 17.5883 5.5% 28.0% 

2 10 3 5 0.97 0.97 11.8209 2.1% 15.0%  4 18 4 10 0.97 0.971 20.6896 2.0% 17.6% 

4 4 4 5 0.98 0.981 13.703 1.2% 15.9%  5 19 5 10 0.98 0.98 22.9468 0.9% 10.9% 

6 10 4 5 0.99 0.99 16.455 0.9% 20.1%  4 25 4 10 0.99 0.99 27.4111 1.0% 19.5% 

8 10 7 5 0.995 0.995 19.455 0.5% 18.2%  6 27 4 10 0.995 0.995 31.5944 0.5% 15.3% 

 

As n increases all three decision variables should be increased and the system has to carry more 

inventory in order to achieve the same service level. The rise of optimal s is more dramatic and 

in practice the proposed policies may not be tenable. From a managerial point of view a 

hierarchy of steps seems appropriate if the enhancement of system performance in terms of Fill 

rate–WIPtotal is sought. Firstly changes in s should be considered, and then a parallel increase in 

Q and B taking into consideration demand variability. 

 

The dynamic nature of the system should be noted. Although general trends in the effect of the 

decision variables can be identified, there is no monotony and the sensitivity of the performance 

measures to the decision variables varies. 

5.10.2.2 Minimisation of total cost for a given Fill Rate 

As the inventory holding cost along the supply chain is not constant, the use of WIPtotal as a base 

for decision making could be problematic. To address this, we introduce a cost function that 

allows as to allocate different weights to inventory held at different stages of the network: 

SalesLostOFRhWIPhWIPhWIPhnQsBTC ransitretailerbuffer _)1(),,,( 4int321     

),,,( nQsBTC : Total cost per time unit as a function of the decision variables and demand 

variability. 

h1: Inventory holding cost per unit at buffer per time unit. 

h2: Inventory holding cost per unit on hand at the retailer per time unit. 



90 

 

h3: Inventory holding cost per unit in transit to the retailer per time unit. 

h4: Cost incurred because of lost sales, per unit of lost sales. 

 

Policies that keep inventory holding costs at a minimum tend to yield low service level. Such 

policies tend to incur high lost sales costs, especially in the cases where there is increased 

demand variability. From a managerial point of view, a balance must be stricken between the 

two opposing aims of low inventory and low lost sales. Our objective is to determine the (B, s, 

Q) policy that minimizes total cost under the constraint of a given minimum Order Fill Rate 

(FRlevel). We investigate scenarios where 1≤ B ≤10, 1≤ s ≤10, 1≤ Q ≤10, 1≤ n ≤5, and 

FRlevel={ 0.8, 0.9, 0.95, 0.97, 0.99}. 

Effect of the decision variables on total cost 

The cost parameters were h1 =1, h2 =2, h3={10, 7, 4 ,1} and h4=15. Our analysis is based on an 

exhaustive enumeration of all possible policies. The results for h3 = 4 are given in table 5.2 and 

graphically in figure 5.6.  

 

Figure 5.6: Cost minimizing policies for different Fill Rate constraints. 1≤n≤5 (x-axis) 

 

 

Table 5.2: Cost minimizing policies under Fill Rate constraint. h1 =1, h2 =2, h3=4, h4=15 
B s Q n FR_Level Total  Cost 

1 1 1 1 

0.8 

7.7078 

1 2 1 2 9.1884 

2 2 2 3 10.9455 

2 3 2 4 12.3345 

2 4 2 5 13.8549 

1 2 1 1 

0.9 

8.2619 

1 3 2 2 10.4875 

1 4 2 3 12.1159 

2 5 2 4 14.7937 

2 6 3 5 16.9497 

1 3 1 1 

0.95 

9.4256 

1 4 2 2 11.9092 

2 5 2 3 14.6477 

2 7 2 4 17.8892 

3 7 4 5 20.3144 

1 3 2 1 

0.97 

10.2566 

2 4 3 2 13.7473 

3 5 3 3 16.5127 

3 7 3 4 19.8196 

3 9 3 5 23.1379 

2 4 2 1 

0.99 

13.1482 

2 6 3 2 17.3593 

4 7 3 3 21.3353 

4 9 4 4 25.5117 

7 9 5 5 29.4308 

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
B s Q

FR=0.9 FR=0.95 FR=0.8 FR=0.99 FR=0.97 
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In general, increasing the reorder point s is the most efficient way to address both increasing 

demand variability and the need for a higher Fill Rate. Simultaneous increases in buffer capacity 

and order quantity could also be proposed, but in the optimal policies B and Q levels are 

consistently well below s.  

 

The superiority of s over B and Q can be interpreted as the optimality of accumulating system 

inventory downstream and closer to external demand. Higher reorder point s creates a safety 

stock for the system, protecting it from excessive lost sales costs. A better service level is 

achieved, though at the price of increased WIPretailer. Similarly, increased Q causes an indirect 

decrease in WIPbuffer and a downstream shift of inventory. However, Q is constrained by buffer 

capacity (Q ≤ B+1) and as no blocking costs were taken into consideration here, minimum buffer 

capacity is preferred. In practical cases where blocking causes disruptions in the production 

process, or the inventory capacity of the retailer is constrained, higher B and Q values may have 

to be chosen.  

Effect of cost parameters on the optimal policies 

Cost parameters must take into consideration vaguely defined terms, such as loss of customer 

goodwill, and unpredictable events, such as stock obsolescence. As a result, they are 

characterized by high uncertainty. We investigate the sensitivity of optimal (B, s, Q) policies 

with changing cost parameters. 

 

With regard to the effect of lost sales cost h4, we study scenarios where h1 =1, h2 =2, h3=10 και 

h4={15, 10, 7, 3}. The analysis is based on the exhaustive enumeration of all possible policies 

within the designated bounds. The optimal policies for h4=3 are given in table 5.3.  

 

Table 5.3: Optimal policies for given minimum fill rate and cost parameters h1 =1, h2 =2, h3=10 

and h4=3 
B s Q n FR_Level Total Cost 

1 1 1 1 

0,8 

8.3236 

1 2 1 2 9.8209 

2 2 2 3 11.8095 

2 3 2 4 13.2809 

2 4 2 5 14.8747 

1 2 1 1 

0,9 

10.0022 

1 3 2 2 12.5007 

1 4 2 3 13.9843 

2 5 2 4 16.7746 

2 6 3 5 18.9836 

1 3 1 1 

0,95 

11.7178 

1 4 2 2 14.2893 

2 5 2 3 17.0588 

2 7 2 4 20.3654 

3 7 4 5 22.8007 

1 3 2 1 

0,97 

12.8623 

2 4 3 2 16.4038 

3 5 3 3 19.1530 

3 7 3 4 22.4903 

3 9 3 5 25.2060 

2 4 2 1 

0,99 

16.0248 

2 6 3 2 20.2368 

4 7 3 3 24.2241 

4 9 4 4 28.4027 

7 9 5 5 32.3265 
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Changing h4 in the area between 3 and 15 does not change the optimal policy (B, s, Q) that 

minimizes total cost for a given minimum Fill rate. 

 

To study the effect of inventory holding cost, we investigate scenarios where h1={1, 2, 3, 5}, 

h2=2·h1, h3=10 και h4=15. Through exhaustive enumeration of all possible policies it was found 

that the optimal policy is robust to changes of inventory holding cost at the buffer and the 

retailer. 

 

Predictably, the in-transit cost h3 was found to have no effect on the optimal (B, s, Q) policy. 

Scenarios were h1 =1, h2 =2, h3={10, 7, 4 ,1} and h4=15 were studied. Under a Fill Rate 

constraint, system throughput is constrained, and thus WIPintransit is not allowed to vary 

considerably. Changing in-transit cost from 10 to 7, 4, and 1 does not have any effect on the cost 

minimization policies. For more realistic modeling, fixed reorder costs should also be included in 

the cost function. 

 

Our analysis indicates that under our assumptions, and as far as cost minimization is concerned, 

the optimal policy of the system depends only on external demand variability (n) and the desired 

Fill Rate level. The cost minimizing policy was found to be robust to cost parameters changes 

within a wide range of values. It should be noted that the total cost do change with changing cost 

parameters, so from a managerial point of view they are still important for efficient systems.  

5.11 Conclusions 

We have presented an exact algorithm based on Markov processes for the numerical analysis of a 

simple, single product, serial, push-pull production-inventory system. The proposed model 

captures relationships between variables, offers insight on key features of the system at hand, and 

can be used as a design tool for the evaluation of appropriate systems and the determination of 

optimal parameter values.   

 

The model was used to investigate the effect of different policies in balanced systems. Our 

analysis was based on an exhaustive enumeration and evaluation of all the possible policies (B, s, 

Q) within prescribed bounds. Under the assumptions of our analysis, increasing the reorder point 

s was found to be the most efficient and effective way to enhance system performance for most 

scenarios. High s values decrease unnecessary stock at intermediate stages and “transfer” 

inventory downstream, closer to the external customers. When the analysis was based on a cost 

function, the optimal policies were found to be robust for a wide range of cost parameters values. 

 

Under certain conditions the effect of the decision variables on some performance measures can 

be described with good accuracy by simple relations. However, in general the system has a 

dynamic behavior, especially as external demand variability increases. External demand was a 

major source of uncertainty. Increasing demand variability makes the system more unstable and 
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less predictable, causes disruptions across the network and impairs performance. To offset the 

effect of demand uncertainty, high values for the decision variables were necessary. 

 

In a further step, three directions of research are proposed: The application of phase type 

distributions (Erlang, Coxian) to model times would allow for more realistic modelling and 

greater flexibility; the investigation of different topologies would offer a better insight in the 

behaviour of push-pull systems as a general class; finally, the development of a more elaborated 

cost function and its application for the analysis of real life case studies would add value to the 

developed model and underline the practical significance of such modelling approaches. 
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5.13 Appendix 

5.13.1 Matlab algorithm 

We present the computer code for the described model. The computer algorithm is given for 

Mathworks’ Matlab, version R2018a (9.4.0.813654). The computer code essentially follows the 

lines of the presented analysis. Comments start with the symbol “%”. 

 

Important note: Some lines of the algorithm have been omitted on purpose. Their position is 

denoted with […]  

 
% ------------ Input ----------- 

%{ 

% m1: production rate at the manufacturer; m2 transportation rate from the 

buffer to the retailer; n:maximum demand per external customer (uniform  

distribution is assumed); l: external customer % arrival rate; b: buffer 

capacity; s: reorder point at the retailer; q: reorder quantity at the 

retailer 

%} 

m1=.8; 

m2=0.6; 

l=1; 

b=2; 

s=1; 

q=2; 

n=3; 

k=min(s,q); 

t=max(q-s,0); 

h=min(b+1,q); 

% ---------- Sub-matrices ------------- 

% Sub-matrix D0 

D0=zeros(s+1,s+1); 

D0(1,1)=-m1; 

for i=2:s+1 

    D0(i,i)=-m1-l; 

end 

for i=3:s+1 

    u=max(2,i-n); 

    for j=u:i-1 

        D0(i,j)=l/n; 

    end 

end 

v=min(s+1,n+1); 

for i=2:v 

    D0(i,1)=((n+2-i)*l)/n; 

end 

% Sub-matrix D1 

D1=zeros(q,q); 

for i=1:q 
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    D1(i,i)=-m1-l; 

end 

for i=1:q-1 

    D1(i+1,i)=l; 

end 

for i=2:q 

    u=max(1,i-n); 

    for j=u:i-1 

        D1(i,j)=l/n; 

    end 

end 

% Sub-matrix D2  

D2=zeros(s+1,s+1); 

D2(1,1)=-m1-m2; 

for i=2:s+1 

    D2(i,i)=-m1-m2-l; 

end 

for i=1:s 

    D2(i+1,i)=l; 

end 

for i=3:s+1 

    u=max(2,i-n); 

    for j=u:i-1 

        D2(i,j)=l/n; 

    end 

end 

v=min(s+1,n+1); 

for i=2:v 

    D2(i,1)=((n+2-i)*l)/n; 

end 

% Sub-matrix D3 

[...] 

% Sub-matrix D4 

D4=zeros((s+1)*t,q); 

for z=1:t 

    for i=1:s+1 

        D4((s+1)*(z-1)+i,z-1+i)=m2; 

    end 

end 

% Sub-matrix D 

D=zeros((s+2)*q,(s+2)*q); 

D(1:q,1:q)=D1; 

for i=0:q-1 

    D(q+1+i*(s+1):q+((i+1)*(s+1)),q+1+i*(s+1):q+((i+1)*(s+1)))=D2; 

end 

D(q+1:q+k*(s+1),1:q)=D3; 

D(q+k*(s+1)+1:q+(k+t)*(s+1),1:q)=D4; 

% Sub-matrix L 

L=zeros((s+1)*k+q,s+1); 

% Block L1 

for i=1:q 

    u=max(2,s+1-n+i); 

    for j=u:s+1 

        L(i,j)=l/n; 

    end 

end   

v=min(q,n-s); 
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for j=1:v 

    L(j,1)=((n-s-j+1)*l)/n; 

end 

 % Block L2 

[...] 

% Sub-matrix U0 

U0=zeros(s+1); 

for i=1:s+1 

    U0(i,i)=m1; 

end 

% Sub-matrix U 

U=zeros((s+2)*q,(s+2)*q); 

for i=1:(s+2)*q 

    U(i,i)=m1; 

end 

% Infinitesimal Generator Matrix 

P=zeros((s+2)*q*(b+2)+s+1); 

P(1:s+1,1:s+1)=D0; 

for i=0:b+1 

    P(s+2+i*(s+2)*q:s+1+(i+1)*(s+2)*q, s+2+i*(s+2)*q:s+1+(i+1)*(s+2)*q)=D; 

end 

% Boundary states – Blocking 

for i=(s+2)*q*(b+1)+s+2:(s+2)*q*(b+2)+s+1 

    P(i,i)=P(i,i)+m1; 

end 

P(1:s+1,s+q+2:s+q+s+2)=U0; 

for i=0:b 

    

P(s+2+i*(s+2)*q:s+1+(i+1)*(s+2)*q,(s+2)*(q+1)+i*(s+2)*q:(s+2)*(q+1)+(i+1)*(s+

2)*q-1)=U; 

end 

P(s+2:s+1+(s+1)*k+q,1:s+1)=L; 

for i=0:h-1 

    P((s+2)*(q+1)+i*(s+2)*q:(s+2)*(q+1)+i*(s+2)*q+(s+1)*k+q-1, 

s+2+q+i*(s+1):s+2+q+i*(s+1)+s)=L; 

end 

r=s+2+q+(h-1)*(s+1)+s; 

for i=h:b 

    P((s+2)*(q+1)+i*(s+2)*q:(s+2)*(q+1)+i*(s+2)*q+(s+1)*k+q-1,r+(i-

h+1)*(q+(s+1)*(q-1)+1)+ 

(i-h)*s:r+(i-h+1)*(q+(s+1)*(q-1)+1)+(i-h+1)*s)=L; 

end 

% Calculation of the stationary probabilities vector X 

Q=P'; 

for i=1:(s+2)*q*(b+2)+s+1 

    Q((s+2)*q*(b+2)+s+1,i)=1; 

end 

Y=zeros((s+2)*q*(b+2)+s+1,1); 

Y((s+2)*q*(b+2)+s+1,1)=1; 

X=linsolve(Q,Y); 

% -------   Calculation of performance measures  ------------- 

% Stock-out probability 

SO=X(1); 

for j=0:b+1 

    r=s+q+2+j*((s+1)*q+q); 

    for i=0:q-1 

        SO=SO+X(r+i*(s+1)); 
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    end 

end 

% Inventory in transit 

T=zeros(q,1); 

for g=0:q-1 

    for j=0:b+1 

        r=s+q+2+(s+1)*g+j*((s+1)*q+q); 

        for i=0:s; 

            T(g+1)=T(g+1)+X(r+i); 

        end 

    end 

end 

intransit=0; 

for i=1:q 

    intransit=intransit+i*T(i); 

end 

% Utilization of transportation resource  

utilization=0; 

for i=1:q 

    utilization=utilization+T(i); 

end 

idle=1-utilization; 

% Probability of blocking 

blocked=0; 

for i=(s+1)+(s+2)*q*(b+1)+1:(s+1)+(s+2)*q*(b+2) 

    blocked=blocked+X(i); 

end 

% Average buffer inventory 

inbuffer=zeros(b,1); 

for j=0:b-1 

    r=s+1+(s+1)*q+q+1+j*((s+2)*q); 

    for i=r:r+(s+2)*q-1 

        inbuffer(j+1)=inbuffer(j+1)+X(i); 

    end 

end 

WIPbuffer=0; 

for i=1:b 

    WIPbuffer=WIPbuffer+inbuffer(i)*i; 

end 

WIPbuffer=WIPbuffer+blocked*b; 

% Average inventory at the retailer 

overs=zeros(q,1); 

for j=1:q 

    for i=0:b+1 

        r=s+1+j+i*(s+2)*q; 

        overs(j)=overs(j)+X(r); 

    end 

end 

unders=zeros(s,1); 

for g=1:s 

    for j=0:b+1 

        r=s+2+g+q+j*(s+2)*q; 

        for i=0:q-1 

            unders(g)=unders(g)+X(r+i*(s+1)); 

        end 

    end 

end 
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for i=1:s 

    unders(i)=unders(i)+X(i+1); 

end 

Inventory=[unders;overs]; 

WIPretailer=0; 

for i=1:s+q 

    WIPretailer=WIPretailer+i*Inventory(i); 

end 

% Order Fill Rate 

CI=zeros(n,1); 

k=min(n,s+q); 

for i=1:k 

    for j=i:s+q 

        CI(i)=CI(i)+Inventory(j); 

    end 

end 

OFR=0; 

for i=1:n 

    OFR=OFR+((1/n)*CI(i)); 

end 

% Average lost sales 

ALS=0; 

w=max(0,n-s-q-1); 

for i=1:w 

    athr=SO; 

    for j=1:s+q 

        athr=athr+Inventory(j); 

    end 

    ALS=ALS+(i*athr/n); 

end 

for i=w+1:n 

    athr=SO; 

    y=min(n-1,s+q); 

    for j=1:y+w+1-i 

        athr=athr+Inventory(j); 

    end 

    ALS=ALS+(i*athr/n); 

end         

% Lost sales per lost order 

Lost_Sales=ALS/(1-OFR); 

% Service Level II 

E=0; 

for i=1:n 

    E=E+(i/n); 

end 

SL2=(E-ALS)/E; 

% Replenishment ordering rate 

ROR=(l*E*SL2*utilization)/intransit; 



101 

 

5.13.2 Arithmetic Data 

5.13.2.1 Validation data 

μ1 =0.5, μ2=0.2, λ=0.5. Simulation parameters: Run time=1x2000000, Warm-up period=50000. 

 
Input Matlab Arena 

A/A b s q n 
Order Fill 

Rate 
WIP 

Retailer 
WIP in 
transit 

WIP 
buffer 

% blocked 
Average Lost 

sales 
Service level ii 

Order Fill 
Rate 

WIP Retailer 
WIP in 
transit 

WIP 
buffer 

% 
blocked 

Average 
Lost 
sales 

Service 
level ii 

1 0 0 1 1 0.27451 0.27451 0.68627 0 0.72549 1 0.27451 0.274 0.274 0.686 0.000 0.726 1.000 0.274 

2 0 0 1 2 0.137255 0.27451 0.68627 0 0.72549 1.420455 0.18301 0.137 0.274 0.686 0.000 0.726 1.420 0.183 

3 0 0 1 3 0.091503 0.27451 0.68627 0 0.72549 1.899281 0.13725 0.091 0.274 0.686 0.000 0.726 1.898 0.137 

4 0 0 1 4 0.068627 0.27451 0.68627 0 0.72549 2.389474 0.1098 0.068 0.274 0.686 0.000 0.726 2.388 0.110 

5 0 0 1 5 0.054902 0.27451 0.68627 0 0.72549 2.883817 0.0915 0.055 0.274 0.686 0.000 0.726 2.882 0.091 

6 0 1 1 1 0.337072 0.423209 0.84268 0 0.662928 1 0.33707 0.338 0.424 0.842 0.000 0.663 1.000 0.338 

7 0 1 1 2 0.18894 0.37788 0.84853 0 0.660589 1.430954 0.22627 0.189 0.378 0.849 0.000 0.661 1.431 0.226 

8 0 1 1 3 0.121616 0.364848 0.85021 0 0.659917 1.889739 0.17004 0.122 0.365 0.850 0.000 0.660 1.890 0.170 

9 0 1 1 4 0.089666 0.358662 0.85101 0 0.659597 2.372312 0.13616 0.090 0.359 0.851 0.000 0.660 2.372 0.136 

10 0 1 1 5 0.07101 0.35505 0.85147 0 0.659411 2.862691 0.11353 0.071 0.356 0.851 0.000 0.660 2.863 0.114 

11 0 2 1 1 0.353029 0.484257 0.88257 0 0.646971 1 0.35303 0.353 0.487 0.883 0.000 0.647 1.000 0.353 

12 0 2 1 2 0.198833 0.415795 0.88591 0 0.645635 1.429958 0.23624 0.199 0.417 0.886 0.000 0.646 1.429 0.236 

13 0 2 1 3 0.130846 0.392537 0.88689 0 0.645244 1.892925 0.17738 0.131 0.394 0.887 0.000 0.645 1.893 0.178 

14 0 2 1 4 0.095554 0.382215 0.88732 0 0.645072 2.371696 0.14197 0.096 0.383 0.887 0.000 0.645 2.372 0.142 

15 0 2 1 5 0.075276 0.376382 0.88756 0 0.644975 2.860287 0.11834 0.076 0.377 0.888 0.000 0.645 2.860 0.118 

16 0 3 1 1 0.357337 0.507202 0.89334 0 0.642663 1 0.35734 0.358 0.510 0.893 0.000 0.642 1.000 0.358 

17 0 3 1 2 0.201349 0.427513 0.89471 0 0.642118 1.430059 0.23859 0.202 0.429 0.895 0.000 0.641 1.430 0.239 

18 0 3 1 3 0.132433 0.401012 0.89507 0 0.64197 1.892614 0.17901 0.133 0.403 0.895 0.000 0.641 1.892 0.179 

19 0 3 1 4 0.097182 0.38873 0.89523 0 0.641907 2.372469 0.14324 0.098 0.391 0.895 0.000 0.641 2.371 0.144 

20 0 3 1 5 0.076387 0.381937 0.89532 0 0.641872 2.860368 0.11938 0.077 0.384 0.895 0.000 0.641 2.859 0.120 

21 0 4 1 1 0.358521 0.515324 0.8963 0 0.641479 1 0.35852 0.359 0.518 0.897 0.000 0.642 1.000 0.359 

22 0 4 1 2 0.201925 0.431014 0.89679 0 0.641285 1.430047 0.23914 0.202 0.433 0.897 0.000 0.642 1.429 0.239 

23 0 4 1 3 0.132818 0.403308 0.89691 0 0.641237 1.89261 0.17938 0.133 0.404 0.898 0.000 0.642 1.892 0.179 

24 0 4 1 4 0.097444 0.390532 0.89696 0 0.641218 2.372394 0.14351 0.097 0.391 0.898 0.000 0.642 2.372 0.143 

25 0 4 1 5 0.076676 0.38338 0.89698 0 0.641207 2.860542 0.1196 0.077 0.384 0.898 0.000 0.642 2.860 0.119 

26 0 5 1 1 0.358849 0.518076 0.89712 0 0.641151 1 0.35885 0.359 0.519 0.897 0.000 0.641 1.000 0.359 

27 0 5 1 2 0.202064 0.432013 0.89728 0 0.641087 1.430048 0.23928 0.202 0.432 0.898 0.000 0.642 1.430 0.239 

28 0 5 1 3 0.132906 0.403919 0.89732 0 0.641073 1.892613 0.17946 0.133 0.405 0.898 0.000 0.642 1.893 0.179 

29 0 5 1 4 0.097506 0.390986 0.89733 0 0.641067 2.372388 0.14357 0.098 0.392 0.898 0.000 0.642 2.373 0.143 

30 0 5 1 5 0.07672 0.383755 0.89734 0 0.641065 2.860525 0.11965 0.077 0.385 0.898 0.000 0.642 2.861 0.120 

31 0 6 1 1 0.35894 0.518979 0.89735 0 0.64106 1 0.35894 0.359 0.520 0.898 0.000 0.641 1.000 0.359 

32 0 6 1 2 0.202096 0.432291 0.8974 0 0.64104 1.430048 0.23931 0.202 0.434 0.898 0.000 0.641 1.430 0.239 

33 0 6 1 3 0.132925 0.404079 0.89741 0 0.641036 1.892612 0.17948 0.133 0.405 0.898 0.000 0.641 1.893 0.180 

34 0 6 1 4 0.097519 0.3911 0.89741 0 0.641035 2.372389 0.14359 0.098 0.391 0.898 0.000 0.641 2.372 0.144 
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35 0 6 1 5 0.076731 0.383846 0.89742 0 0.641034 2.860524 0.11966 0.077 0.384 0.898 0.000 0.641 2.860 0.120 

36 1 0 1 1 0.283713 0.283713 0.70928 0.95096 0.716287 1 0.28371 0.284 0.284 0.709 0.951 0.716 1.000 0.284 

37 1 0 1 2 0.141856 0.283713 0.70928 0.95096 0.716287 1.417347 0.18914 0.142 0.284 0.709 0.951 0.716 1.416 0.190 

38 1 0 1 3 0.094571 0.283713 0.70928 0.95096 0.716287 1.895551 0.14186 0.095 0.284 0.709 0.951 0.716 1.895 0.142 

39 1 0 1 4 0.070928 0.283713 0.70928 0.95096 0.716287 2.385485 0.11349 0.071 0.284 0.709 0.951 0.716 2.384 0.114 

40 1 0 1 5 0.056743 0.283713 0.70928 0.95096 0.716287 2.879688 0.09457 0.057 0.284 0.709 0.951 0.716 2.878 0.095 

41 1 0 2 1 0.407457 0.585885 1.01864 0.77097 0.592543 1 0.40746 0.408 0.589 1.015 0.770 0.592 1.000 0.408 

42 1 0 2 2 0.262799 0.525597 1.08532 0.74881 0.56587 1.445833 0.28942 0.264 0.527 1.084 0.748 0.565 1.446 0.290 

43 1 0 2 3 0.168273 0.504819 1.10831 0.74117 0.556677 1.87162 0.22166 0.168 0.507 1.107 0.741 0.556 1.872 0.222 

44 1 0 2 4 0.123574 0.494297 1.11994 0.7373 0.552022 2.341353 0.17919 0.124 0.496 1.117 0.737 0.551 2.340 0.179 

45 1 0 2 5 0.097588 0.48794 1.12698 0.73496 0.54921 2.824885 0.15026 0.098 0.489 1.125 0.734 0.548 2.824 0.151 

46 1 1 1 1 0.353029 0.451135 0.88257 0.90851 0.646971 1 0.35303 0.352 0.450 0.883 0.909 0.648 1.000 0.352 

47 1 1 1 2 0.200009 0.400019 0.89152 0.90317 0.643391 1.429256 0.23774 0.200 0.400 0.892 0.903 0.644 1.429 0.238 

48 1 1 1 3 0.128499 0.385497 0.89406 0.90166 0.642374 1.884535 0.17881 0.128 0.386 0.894 0.902 0.642 1.884 0.179 

49 1 1 1 4 0.094658 0.378631 0.89527 0.90094 0.641893 2.365838 0.14324 0.095 0.379 0.895 0.901 0.642 2.365 0.143 

50 1 1 1 5 0.074926 0.37463 0.89597 0.90052 0.641613 2.855569 0.11946 0.075 0.375 0.896 0.900 0.641 2.854 0.119 

51 1 1 2 1 0.470007 0.790495 1.17502 0.7217 0.529993 1 0.47001 0.471 0.793 1.174 0.722 0.530 1.000 0.471 

52 1 1 2 2 0.296026 0.627244 1.20153 0.70873 0.519387 1.448046 0.32041 0.296 0.625 1.203 0.710 0.520 1.447 0.320 

53 1 1 2 3 0.190849 0.572547 1.20801 0.7054 0.516798 1.874555 0.2416 0.191 0.571 1.207 0.705 0.516 1.873 0.242 

54 1 1 2 4 0.137118 0.548471 1.21057 0.70406 0.515771 2.33609 0.19369 0.137 0.547 1.210 0.704 0.515 2.333 0.194 

55 1 1 2 5 0.106984 0.534919 1.21192 0.70335 0.515232 2.816558 0.16159 0.107 0.534 1.212 0.703 0.514 2.813 0.162 

56 1 2 1 1 0.374417 0.536918 0.93604 0.87756 0.625583 1 0.37442 0.376 0.538 0.936 0.878 0.626 1.000 0.376 

57 1 2 1 2 0.213331 0.453201 0.94186 0.87402 0.623254 1.427861 0.25116 0.214 0.454 0.942 0.874 0.624 1.428 0.252 

58 1 2 1 3 0.141313 0.42394 0.94359 0.87296 0.622563 1.889587 0.18872 0.142 0.424 0.944 0.874 0.623 1.889 0.189 

59 1 2 1 4 0.102788 0.411151 0.94434 0.87249 0.622262 2.365396 0.1511 0.103 0.411 0.945 0.873 0.623 2.363 0.152 

60 1 2 1 5 0.080796 0.40398 0.94476 0.87224 0.622094 2.852571 0.12597 0.081 0.404 0.945 0.873 0.623 2.850 0.126 

61 1 2 2 1 0.515571 1.036008 1.28893 0.68257 0.484429 1 0.51557 0.515 1.034 1.289 0.683 0.484 1.000 0.515 

62 1 2 2 2 0.325536 0.785434 1.31685 0.66821 0.473261 1.443013 0.35116 0.326 0.785 1.317 0.668 0.473 1.442 0.352 

63 1 2 2 3 0.220068 0.69002 1.32498 0.66363 0.470009 1.88479 0.265 0.220 0.690 1.326 0.665 0.471 1.884 0.265 

64 1 2 2 4 0.160913 0.643652 1.32864 0.66152 0.468546 2.346057 0.21258 0.161 0.641 1.330 0.662 0.469 2.346 0.212 

65 1 2 2 5 0.123731 0.618656 1.33064 0.66037 0.467742 2.816193 1.77E-01 0.124 0.616 1.330 0.660 0.467 2.816 0.177 

66 1 3 1 1 0.381099 0.574536 0.95275 0.86706 0.618901 1 0.3811 0.382 0.577 0.953 0.867 0.618 1.000 0.382 

67 1 3 1 2 0.217269 0.472338 0.9555 0.86535 0.6178 1.428076 0.2548 0.218 0.473 0.956 0.865 0.617 1.427 0.256 

68 1 3 1 3 0.143791 0.437691 0.95625 0.86489 0.617501 1.889142 0.19125 0.144 0.438 0.956 0.864 0.617 1.888 0.192 

69 1 3 1 4 0.105403 0.421611 0.95657 0.86469 0.617373 2.366846 0.15305 0.106 0.422 0.957 0.864 0.616 2.364 0.154 

70 1 3 1 5 0.082568 0.412838 0.95674 0.86458 0.617305 2.852859 1.28E-01 0.083 0.413 0.957 0.864 0.616 2.850 0.128 

71 1 3 2 1 0.529361 1.153536 1.3234 0.66291 0.470639 1 0.52936 0.529 1.156 1.323 0.663 0.470 1.000 0.529 

72 1 3 2 2 0.331372 0.831946 1.33849 0.65434 0.464602 1.44266 0.35693 0.332 0.833 1.338 0.654 0.464 1.442 0.357 

73 1 3 2 3 0.223501 0.718199 1.34193 0.65208 0.463227 1.884389 0.26839 0.224 0.717 1.345 0.653 0.464 1.882 0.269 

74 1 3 2 4 0.164692 0.66258 1.34327 0.65116 0.462692 2.349664 0.21492 0.165 0.661 1.344 0.652 0.463 2.348 0.215 

75 1 3 2 5 0.126556 0.632778 1.34393 0.65069 0.462426 2.819213 0.17919 0.127 0.633 1.344 0.650 0.462 2.817 0.179 

76 1 4 1 1 0.383228 0.589979 0.95807 0.86368 0.616772 1 0.38323 0.384 0.592 0.958 0.864 0.617 1.000 0.384 

77 1 4 1 2 0.218297 0.478923 0.9592 0.86297 0.616318 1.42806 0.25579 0.219 0.481 0.959 0.862 0.616 1.428 0.257 

78 1 4 1 3 0.14448 0.441963 0.95948 0.86279 0.616208 1.889153 0.1919 0.145 0.442 0.960 0.863 0.616 1.888 0.193 

79 1 4 1 4 0.10587 0.424942 0.95959 0.86272 0.616162 2.366728 0.15354 0.106 0.425 0.960 0.863 0.617 2.364 0.154 
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80 1 4 1 5 0.083096 0.415481 0.95965 0.86268 0.616139 2.853231 0.12795 0.083 0.415 0.960 0.863 0.617 2.851 0.128 

81 1 4 2 1 0.535969 1.232004 1.33992 0.65133 0.464031 1 0.53597 0.537 1.233 1.343 0.652 0.464 1.000 0.537 

82 1 4 2 2 0.334016 0.863776 1.34901 0.64584 0.460397 1.442072 0.35974 0.334 0.864 1.350 0.646 0.460 1.441 0.360 

83 1 4 2 3 0.225558 0.738439 1.35089 0.64455 0.459645 1.884771 0.27018 0.225 0.740 1.353 0.645 0.460 1.884 0.270 

84 1 4 2 4 0.166085 0.678225 1.35161 0.64404 0.459357 2.349588 0.21626 0.166 0.680 1.354 0.645 0.460 2.347 0.216 

85 1 4 2 5 0.128577 0.644898 1.35197 0.64379 0.459213 2.822065 0.18026 0.129 0.646 1.353 0.644 0.459 2.819 0.180 

86 1 5 1 1 0.383911 0.596051 0.95978 0.86259 0.616089 1 0.38391 0.384 0.597 0.960 0.862 0.616 1.000 0.384 

87 1 5 1 2 0.218582 0.481079 0.96021 0.86231 0.615915 1.428063 0.25606 0.219 0.482 0.961 0.863 0.616 1.428 0.257 

88 1 5 1 3 0.144661 0.443264 0.96031 0.86225 0.615877 1.889165 0.19206 0.146 0.444 0.961 0.862 0.616 1.889 0.193 

89 1 5 1 4 0.105995 0.4259 0.96034 0.86223 0.615862 2.366723 0.15366 0.107 0.426 0.961 0.862 0.616 2.365 0.154 

90 1 5 1 5 0.083186 0.416267 0.96036 0.86222 0.615855 2.853202 0.12805 0.084 0.416 0.961 0.863 0.616 2.852 0.128 

91 1 5 2 1 0.539097 1.277006 1.34774 0.64613 0.460903 1 0.5391 0.539 1.274 1.350 0.647 0.462 1.000 0.539 

92 1 5 2 2 0.33502 0.877157 1.35278 0.64299 0.458889 1.441983 0.36074 0.335 0.878 1.354 0.643 0.459 1.441 0.361 

93 1 5 2 3 0.226212 0.745783 1.35365 0.64237 0.45854 1.884934 0.27073 0.227 0.749 1.355 0.642 0.457 1.884 0.271 

94 1 5 2 4 0.166521 0.683319 1.35396 0.64214 0.458416 2.349687 0.21663 0.167 0.685 1.353 0.642 0.457 2.347 0.218 

95 1 5 2 5 0.128888 0.648909 1.35411 0.64203 0.458357 2.82209 0.18055 0.129 0.651 1.353 0.641 0.458 2.819 0.181 

96 1 6 1 1 0.384132 0.598365 0.96033 0.86224 0.615868 1 0.38413 0.385 0.602 0.961 0.863 0.615 1.000 0.385 

97 1 6 1 2 0.218659 0.481766 0.96049 0.86214 0.615805 1.428063 0.25613 0.220 0.484 0.961 0.863 0.616 1.428 0.257 

98 1 6 1 3 0.144705 0.443651 0.96052 0.86212 0.615793 1.889164 0.1921 0.145 0.444 0.961 0.862 0.615 1.888 0.193 

99 1 6 1 4 0.106027 0.426173 0.96053 0.86211 0.615788 2.366725 0.15368 0.107 0.427 0.961 0.862 0.615 2.364 0.154 

100 1 6 1 5 0.08321 0.416483 0.96054 0.86211 0.615786 2.8532 0.12807 0.084 0.417 0.961 0.862 0.616 2.851 0.128 

101 1 6 2 1 0.54063 1.303109 1.35157 0.64354 0.45937 1 0.54063 0.539 1.298 1.352 0.644 0.459 1.000 0.539 

102 1 6 2 2 0.335427 0.883572 1.35431 0.64179 0.458275 1.441942 0.36115 0.335 0.881 1.356 0.642 0.458 1.442 0.361 

103 1 6 2 3 0.226445 0.74913 1.35472 0.6415 0.458113 1.88495 0.27094 0.226 0.745 1.355 0.642 0.458 1.885 0.271 

104 1 6 2 4 0.166694 0.685585 1.35485 0.6414 0.458059 2.349748 0.21678 0.167 0.683 1.355 0.641 0.457 2.348 0.217 

105 1 6 2 5 0.129017 0.650657 1.35491 0.64136 0.458034 2.822137 0.18066 0.129 0.650 1.356 0.641 0.458 2.819 0.181 

106 2 0 1 1 0.285354 0.285354 0.71339 1.94016 0.714646 1 0.28535 0.285 0.285 0.713 1.941 0.716 1.000 0.285 

107 2 0 1 2 0.142677 0.285354 0.71339 1.94016 0.714646 1.416789 0.19024 0.142 0.285 0.713 1.941 0.716 1.416 0.190 

108 2 0 1 3 0.095118 0.285354 0.71339 1.94016 0.714646 1.894883 0.14268 0.094 0.285 0.713 1.941 0.716 1.894 0.142 

109 2 0 1 4 0.071339 0.285354 0.71339 1.94016 0.714646 2.384772 0.11414 0.071 0.285 0.713 1.941 0.716 2.384 0.114 

110 2 0 1 5 0.057071 0.285354 0.71339 1.94016 0.714646 2.87895 0.09512 0.057 0.285 0.713 1.941 0.716 2.878 0.095 

111 2 0 2 1 0.427297 0.627847 1.06824 1.68849 0.572703 1 0.4273 0.428 0.628 1.068 1.688 0.572 1.000 0.428 

112 2 0 2 2 0.284841 0.569682 1.16003 1.63008 0.535987 1.448611 0.30934 0.285 0.568 1.161 1.631 0.537 1.448 0.310 

113 2 0 2 3 0.182902 0.548705 1.19252 1.60923 0.52299 1.863901 0.2385 0.183 0.549 1.192 1.610 0.523 1.863 0.239 

114 2 0 2 4 0.134476 0.537904 1.20914 1.59854 0.516343 2.329621 1.93E-01 0.135 0.540 1.208 1.599 0.516 2.327 0.194 

115 2 0 2 5 0.106264 0.531322 1.21923 1.59203 0.512306 2.811017 0.16256 0.107 0.531 1.221 1.594 0.514 2.809 0.163 

116 2 0 3 1 0.500985 0.947836 1.25246 1.44488 0.499015 1 0.50098 0.502 0.949 1.253 1.445 0.499 1.000 0.502 

117 2 0 3 2 0.333916 0.81185 1.35992 1.37582 0.456033 1.435304 0.36264 0.335 0.813 1.358 1.376 0.456 1.435 0.364 

118 2 0 3 3 0.246543 0.739629 1.41831 1.3342 0.432676 1.901469 0.28366 0.247 0.740 1.421 1.335 0.433 1.900 0.284 

119 2 0 3 4 0.176196 0.704783 1.44509 1.31487 0.421965 2.333036 0.23121 0.176 0.703 1.445 1.313 0.422 2.333 0.231 

120 2 0 3 5 0.136863 0.684316 1.46035 1.30377 0.415861 2.798932 0.19471 0.137 0.681 1.461 1.303 0.416 2.798 0.195 

121 2 1 1 1 0.357337 0.458672 0.89334 1.87754 0.642663 1 0.35734 0.358 0.460 0.893 1.878 0.642 1.000 0.358 

122 2 1 1 2 0.203212 0.406423 0.90392 1.86791 0.638431 1.428774 0.24105 0.203 0.407 0.904 1.868 0.638 1.428 0.241 
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5.13.2.2 Numerical results data 

μ1=μ2=λ∙(n+1) 
A/A B s Q n Order Fill Rate WIP Retailer WIP in transit WIP buffer % blocked Average Lost sales Service level ii 

1 1 1 1 1 0.841048437 1.386725935 0.420524218 0.8680258 0.5794758 1 0.841048437 

2 1 1 1 2 0.706554375 1.41310875 0.371487325 0.873713 0.6285127 1.313831227 0.74297465 

3 1 1 1 3 0.498349533 1.495048599 0.318926076 0.8945446 0.6810739 1.443825418 0.637852152 

4 1 1 1 4 0.390734113 1.562936451 0.277315293 0.9110777 0.7226847 1.82748379 0.554630587 

5 1 1 1 5 0.323267801 1.616339003 0.244654434 0.9235944 0.7553456 2.263928625 0.489308868 

6 1 1 2 1 0.892838491 1.840906124 0.446419245 0.7379227 0.5535808 1 0.892838491 

7 1 1 2 2 0.788236709 1.804552031 0.405511915 0.7587011 0.5944881 1.338590153 0.811023829 

8 1 1 2 3 0.600360673 1.801082018 0.35525867 0.7911437 0.6447413 1.448719583 0.71051734 

9 1 1 2 4 0.456867538 1.827470151 0.308958668 0.821487 0.6910413 1.758699263 0.617917336 

10 1 1 2 5 0.370514338 1.85257169 0.27128087 0.8456471 0.7287191 2.180057248 0.54256174 

11 1 2 1 1 0.916021601 2.170752657 0.458010801 0.8286455 0.5419892 1 0.916021601 

12 1 2 1 2 0.813509113 2.154308615 0.421081494 0.8279098 0.5789185 1.269528611 0.842162989 

13 1 2 1 3 0.721922391 2.165767174 0.387269456 0.8352381 0.6127305 1.62156952 0.774538913 

14 1 2 1 4 0.559309849 2.237239397 0.34943765 0.8515165 0.6505624 1.708256355 0.6988753 

15 1 2 1 5 0.461759967 2.308799834 0.316079998 0.8667487 0.68392 2.05023771 0.632159996 

16 1 2 2 1 0.948689993 2.710350014 0.474344996 0.7129736 0.525655 1 0.948689993 

17 1 2 2 2 0.873276938 2.643853113 0.445674909 0.7229783 0.5543251 1.28607429 0.891349819 

18 1 2 2 3 0.793440794 2.59452986 0.415948467 0.7357987 0.5840515 1.627650185 0.831896935 

19 1 2 2 4 0.655263066 2.621052266 0.381866937 0.7554236 0.6181331 1.713379847 0.763733874 

20 1 2 2 5 0.534555478 2.672777389 0.347896628 0.7770977 0.6521034 1.960749757 0.695793255 

21 1 3 1 1 0.952810646 3.00202156 0.476405323 0.8081349 0.5235947 1 0.952810646 

22 1 3 1 2 0.882904907 2.918438165 0.449672015 0.7997581 0.550328 1.289413165 0.89934403 

23 1 3 1 3 0.799167909 2.90762712 0.421260722 0.8042669 0.5787393 1.568260876 0.842521444 

24 1 3 1 4 0.728405359 2.913621438 0.395253562 0.8118116 0.6047464 1.928359804 0.790507125 

25 1 3 1 5 0.595230628 2.976153139 0.366021545 0.8250578 0.6339785 1.985996921 0.732043091 

26 1 3 2 1 0.973714174 3.607264725 0.486857087 0.7003446 0.5131429 1 0.973714174 

27 1 3 2 2 0.924538424 3.465028144 0.467106654 0.7022546 0.5328933 1.307685866 0.934213309 

28 1 3 2 3 0.854940542 3.377138626 0.44277371 0.710612 0.5572263 1.578009204 0.88554742 

29 1 3 2 4 0.790366527 3.334417741 0.419336422 0.7209525 0.5806636 1.923919327 0.838672844 

30 1 3 2 5 0.670681054 3.353405269 0.391931016 0.7373064 0.608069 1.968954143 0.783862032 

31 1 4 1 1 0.972604201 3.87471993 0.4863021 0.7970037 0.5136979 1 0.972604201 

32 1 4 1 2 0.921653397 3.722975001 0.466489044 0.78301 0.533511 1.283180935 0.932978089 

33 1 4 1 3 0.856763484 3.665002443 0.444026211 0.7832549 0.5559738 1.563115058 0.888052422 

34 1 4 1 4 0.789349878 3.655521376 0.421183375 0.7890929 0.5788166 1.87079466 0.842366751 

35 1 4 1 5 0.731755805 3.658779025 0.400012362 0.7963684 0.5999876 2.236491369 0.800024724 

36 1 4 2 1 0.986123794 4.540198431 0.493061897 0.6937275 0.5069381 1 0.986123794 

37 1 4 2 2 0.952142381 4.341066458 0.479338025 0.6898478 0.520662 1.295215415 0.95867605 

38 1 4 2 3 0.900631987 4.205570034 0.461080506 0.6928347 0.5389195 1.566680978 0.922161012 

39 1 4 2 4 0.842968288 4.141170052 0.441155307 0.7004395 0.5588447 1.873656366 0.882310613 

40 1 4 2 5 0.788306598 4.104104848 0.421780537 0.7099118 0.5782195 2.216964596 0.843561074 
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41 1 5 1 1 0.98380132 4.781285086 0.49190066 0.7906992 0.5080993 1 0.98380132 

42 1 5 1 2 0.947000677 4.559313539 0.477268413 0.7722537 0.5227316 1.286710006 0.954536827 

43 1 5 1 3 0.897227896 4.450591519 0.459375684 0.7690527 0.5406243 1.581141734 0.918751368 

44 1 5 1 4 0.838296523 4.409334438 0.440097636 0.7724744 0.5599024 1.852228697 0.880195272 

45 1 5 1 5 0.782232612 4.400761541 0.421016288 0.7785955 0.5789837 2.176185694 0.842032575 

46 1 5 2 1 0.992531771 5.495449649 0.496265885 0.6903374 0.5037341 1 0.992531771 

47 1 5 2 2 0.969600841 5.241743768 0.486829607 0.6823121 0.5131704 1.299745797 0.973659214 

48 1 5 2 3 0.932308925 5.05685704 0.473026316 0.6813098 0.5269737 1.593928552 0.946052632 

49 1 5 2 4 0.883333049 4.957935225 0.456714595 0.6858877 0.5432854 1.855084278 0.91342919 

50 1 5 2 5 0.832859316 4.902000119 0.439701564 0.6935256 0.5602984 2.1645874 0.879403127 

51 2 1 1 1 0.851755617 1.414564605 0.425877809 1.8150637 0.5741222 1 0.851755617 

52 2 1 1 2 0.718285845 1.43657169 0.376716488 1.8251863 0.6232835 1.312857478 0.753432976 

53 2 1 1 3 0.504426002 1.513278006 0.322443934 1.8601973 0.6775561 1.433134645 0.644887867 

54 2 1 1 4 0.394323148 1.577292593 0.279687022 1.8862749 0.720313 1.818733677 0.559374045 

55 2 1 1 5 0.325572638 1.627863188 0.246305052 1.905033 0.7536949 2.256980919 0.492610104 

56 2 1 2 1 0.909937158 1.924775312 0.454968579 1.6426803 0.5450314 1 0.909937158 

57 2 1 2 2 0.812731009 1.881964928 0.416215777 1.6614751 0.5837842 1.342201217 0.832431555 

58 2 1 2 3 0.617427843 1.852283529 0.363669645 1.7150815 0.6363304 1.425408019 0.72733929 

59 2 1 2 4 0.465820935 1.863283738 0.314529463 1.7655733 0.6854705 1.736033376 0.629058926 

60 2 1 2 5 0.375628909 1.878144543 0.274915875 1.8038244 0.7250841 2.162984112 0.54983175 

61 2 1 3 1 0.931595312 2.375877705 0.465797656 1.483006 0.5342023 1 0.931595312 

62 2 1 3 2 0.854924643 2.363470911 0.435856563 1.5063153 0.5641434 1.326416252 0.871713126 

63 2 1 3 3 0.74490893 2.398466614 0.403133168 1.5406166 0.5968668 1.518937242 0.806266336 

64 2 1 3 4 0.607765025 2.431060099 0.366874179 1.5842286 0.6331258 1.697016189 0.733748359 

65 2 1 3 5 0.495765744 2.478828722 0.331943728 1.62749 0.6680563 1.999740444 0.663887455 

66 2 2 1 1 0.926627931 2.229503894 0.463313966 1.7512917 0.536686 1 0.926627931 

67 2 2 1 2 0.827411493 2.206438407 0.427331359 1.7481334 0.5726686 1.263154346 0.854662718 

68 2 2 1 3 0.737684008 2.213052025 0.393757174 1.7569031 0.6062428 1.620073943 0.787514348 

69 2 2 1 4 0.569770027 2.279080108 0.354846627 1.7839983 0.6451534 1.68692772 0.709693253 

70 2 2 1 5 0.469193653 2.345968267 0.320461805 1.8091409 0.6795382 2.02942029 0.64092361 

71 2 2 2 1 0.961897224 2.843897793 0.480948612 1.5975526 0.5190514 1 0.961897224 

72 2 2 2 2 0.897531125 2.7957983 0.456191909 1.590216 0.5438081 1.282577477 0.912383819 

73 2 2 2 3 0.824588138 2.749679346 0.428800769 1.5949416 0.5711992 1.623589884 0.857601538 

74 2 2 2 4 0.695610329 2.782441317 0.396646881 1.6171003 0.6033531 1.697710679 0.793293762 

75 2 2 2 5 0.567824645 2.839123227 0.362864709 1.6495672 0.6371353 1.903884004 0.725729418 

76 2 2 3 1 0.970573885 3.283911525 0.485286942 1.4507224 0.5147131 1 0.970573885 

77 2 2 3 2 0.915026667 3.179451422 0.463806718 1.4596187 0.5361933 1.277810843 0.927613436 

78 2 2 3 3 0.854166868 3.09207964 0.43978372 1.4797075 0.5602163 1.651648814 0.87956744 

79 2 2 3 4 0.723269212 3.024290304 0.406924023 1.5190737 0.593076 1.681706213 0.813848046 

80 2 2 3 5 0.598943893 2.994719465 0.371414254 1.5647113 0.6285857 1.92370709 0.742828508 

81 2 3 1 1 0.961593025 3.095285673 0.480796512 1.7152769 0.5192035 1 0.961593025 

82 2 3 1 2 0.897054206 3.004925216 0.455882185 1.6957801 0.5441178 1.285661525 0.911764369 

83 2 3 1 3 0.815244741 2.987232539 0.428087677 1.6989078 0.5719123 1.556920734 0.856175353 

84 2 3 1 4 0.746613195 2.986452781 0.402403721 1.7077312 0.5975963 1.925835862 0.804807442 

85 2 3 1 5 0.608573673 3.042868365 0.37248105 1.7294992 0.6275189 1.954681244 0.7449621 
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86 2 3 2 1 0.982605128 3.775815479 0.491302564 1.5763738 0.5086974 1 0.982605128 

87 2 3 2 2 0.943581004 3.649753748 0.475364064 1.5530892 0.5246359 1.309980898 0.950728129 

88 2 3 2 3 0.880466724 3.556230843 0.453403846 1.5483692 0.5465962 1.559269696 0.906807693 

89 2 3 2 4 0.822031184 3.501421156 0.431547443 1.5518862 0.5684526 1.923161548 0.863094887 

90 2 3 2 5 0.699978537 3.499892685 0.404035168 1.5740806 0.5959648 1.919159333 0.808070336 

91 2 3 3 1 0.986848681 4.24037272 0.49342434 1.4354069 0.5065757 1 0.986848681 

92 2 3 3 2 0.954877769 4.096635544 0.480357954 1.4275922 0.519642 1.305922515 0.960715909 

93 2 3 3 3 0.904193253 3.998473611 0.462213766 1.4368978 0.5377862 1.577602229 0.924427531 

94 2 3 3 4 0.851547034 3.898916706 0.442623362 1.4495678 0.5573766 1.932485392 0.885246725 

95 2 3 3 5 0.745458267 3.863383956 0.417914846 1.4747465 0.5820852 1.934892628 0.835829693 

96 2 4 1 1 0.979265518 4.000126583 0.489632759 1.6959811 0.5103672 1 0.979265518 

97 2 4 1 2 0.934233297 3.844723089 0.471985793 1.6642917 0.5280142 1.277890133 0.943971586 

98 2 4 1 3 0.872814921 3.778389793 0.450689622 1.658042 0.5493104 1.55082272 0.901379245 

99 2 4 1 4 0.807188544 3.760712412 0.428338627 1.6634745 0.5716614 1.858327668 0.856677255 

100 2 4 1 5 0.751183905 3.755919526 0.407480066 1.672252 0.5925199 2.231043803 0.814960131 

101 2 4 2 1 0.991775633 4.73789544 0.495887817 1.5654721 0.5041122 1 0.991775633 

102 2 4 2 2 0.96663537 4.568590698 0.485611758 1.5300626 0.5143882 1.29372708 0.971223516 

103 2 4 2 3 0.92289389 4.433665189 0.470139852 1.5129331 0.5298601 1.549041849 0.940279705 

104 2 4 2 4 0.870755199 4.36133789 0.452025823 1.5105575 0.5479742 1.855942251 0.904051645 

105 2 4 2 5 0.820793908 4.311592326 0.433994903 1.5155566 0.5660051 2.209916954 0.867989807 

106 2 4 3 1 0.993837107 5.208396136 0.496918553 1.4283195 0.5030814 1 0.993837107 

107 2 4 3 2 0.973403607 5.019221027 0.488551913 1.4111623 0.5114481 1.291312806 0.977103825 

108 2 4 3 3 0.93792775 4.870496538 0.475656213 1.4103612 0.5243438 1.568738783 0.951312427 

109 2 4 3 4 0.89124763 4.741602827 0.459357229 1.4171195 0.5406428 1.868592444 0.918714457 

110 2 4 3 5 0.845012376 4.649783808 0.442714206 1.4270357 0.5572858 2.21769169 0.885428411 

111 2 5 1 1 0.98860585 4.93466623 0.494302925 1.6855944 0.5056971 1 0.98860585 

112 2 5 1 2 0.957662574 4.715569083 0.481902821 1.6444492 0.5180972 1.282353234 0.963805643 

113 2 5 1 3 0.912237292 4.598638236 0.46549466 1.6305691 0.5345053 1.57266523 0.930989321 

114 2 5 1 4 0.855567411 4.547635425 0.447010145 1.6307153 0.5529899 1.834414787 0.894020289 

115 2 5 1 5 0.801108295 4.529676839 0.428345617 1.637186 0.5716544 2.16161001 0.856691233 

116 2 5 2 1 0.995998807 5.714347751 0.497999403 1.5604892 0.5020006 1 0.995998807 

117 2 5 2 2 0.980272153 5.503398902 0.491446472 1.517182 0.5085535 1.300729088 0.982892944 

118 2 5 2 3 0.950478448 5.322926387 0.480370928 1.4915037 0.5196291 1.585497329 0.960741856 

119 2 5 2 4 0.907145842 5.214027497 0.466031 1.4824346 0.533969 1.829158775 0.932062001 

120 2 5 2 5 0.861288887 5.143179339 0.45038508 1.4836699 0.5496149 2.146111533 0.90077016 

121 2 5 3 1 0.997026085 6.190550727 0.498513043 1.4248791 0.501487 1 0.997026085 

122 2 5 3 2 0.984372268 5.965263753 0.493237312 1.4014447 0.5067627 1.298209024 0.986474625 

123 2 5 3 3 0.960137036 5.774841628 0.484042416 1.3934206 0.5159576 1.601244052 0.968084833 

124 2 5 3 4 0.921825464 5.610342355 0.471289976 1.393572 0.52871 1.836277219 0.942579952 

125 2 5 3 5 0.880523635 5.496200768 0.456978688 1.3994971 0.5430213 2.160493181 0.913957376 

126 3 1 1 1 0.855326504 1.42384891 0.427663252 2.7940589 0.5723367 1 0.855326504 

127 3 1 1 2 0.722197009 1.444394018 0.378449039 2.8061454 0.621551 1.312631234 0.756898078 

128 3 1 1 3 0.506272384 1.518817152 0.323501091 2.8481553 0.6764989 1.429929406 0.647002182 

129 3 1 1 4 0.395325724 1.581302896 0.280340959 2.8783975 0.719659 1.81634187 0.560681918 

130 3 1 1 5 0.326172561 1.630862804 0.246728834 2.8996003 0.7532712 2.255216849 0.493457669 
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131 3 1 2 1 0.917971875 1.972044803 0.458985938 2.5808406 0.5410141 1 0.917971875 

132 3 1 2 2 0.826442496 1.933102875 0.422074988 2.5913478 0.577925 1.346960113 0.844149977 

133 3 1 2 3 0.627454291 1.882362874 0.368211515 2.6636398 0.6317885 1.41500473 0.73642303 

134 3 1 2 4 0.470471965 1.881887861 0.317293469 2.7308183 0.6827065 1.725182795 0.634586938 

135 3 1 2 5 0.377954406 1.889772031 0.276540362 2.7796922 0.7234596 2.155401214 0.553080724 

136 3 1 3 1 0.939885518 2.446627972 0.469942759 2.4095771 0.5300572 1 0.939885518 

137 3 1 3 2 0.870198529 2.447850362 0.442584204 2.4184726 0.5574158 1.327006442 0.885168408 

138 3 1 3 3 0.76792899 2.48554407 0.411963953 2.4510777 0.588036 1.517398438 0.823927906 

139 3 1 3 4 0.626923333 2.507693331 0.375519607 2.5062999 0.6244804 1.668295077 0.751039213 

140 3 1 3 5 0.509506095 2.547530477 0.339433357 2.5634898 0.6605666 1.964142362 0.678866715 

141 3 1 4 1 0.951662669 2.902873425 0.475831334 2.2320897 0.5241687 1 0.951662669 

142 3 1 4 2 0.892187357 2.877139181 0.452058064 2.2558749 0.5479419 1.334034708 0.904116128 

143 3 1 4 3 0.79327004 2.930873269 0.423697944 2.2963344 0.5763021 1.476361837 0.847395888 

144 3 1 4 4 0.716813538 2.994696476 0.398663251 2.3339703 0.6013367 1.78922304 0.797326503 

145 3 1 4 5 0.610060374 3.050301869 0.371160121 2.3811866 0.6288399 1.982458882 0.742320242 

146 3 2 1 1 0.930698226 2.252061815 0.465349113 2.7161919 0.5346509 1 0.930698226 

147 3 2 1 2 0.832985491 2.22754004 0.429842454 2.7102117 0.5701575 1.26020571 0.859684908 

148 3 2 1 3 0.743879711 2.231639133 0.396339204 2.7206429 0.6036608 1.618939239 0.792678407 

149 3 2 1 4 0.573603504 2.294414017 0.356867373 2.7551972 0.6431326 1.678398255 0.713734746 

150 3 2 1 5 0.471729267 2.358646335 0.321989263 2.7865724 0.6780107 2.021812593 0.643978527 

151 3 2 2 1 0.968190317 2.919308935 0.484095158 2.519896 0.5159048 1 0.968190317 

152 3 2 2 2 0.912128603 2.904581941 0.462365725 2.4853444 0.5376343 1.284864331 0.92473145 

153 3 2 2 3 0.845019854 2.887551277 0.437489782 2.4733192 0.5625102 1.613373566 0.874979564 

154 3 2 2 4 0.73795226 2.951809038 0.409632692 2.4835944 0.5903673 1.724252759 0.819265384 

155 3 2 2 5 0.606420114 3.03210057 0.378243254 2.518538 0.6217567 1.856142808 0.756486508 

156 3 2 3 1 0.976373589 3.379482941 0.488186795 2.3657098 0.5118132 1 0.976373589 

157 3 2 3 2 0.927724869 3.288977626 0.469310319 2.3536813 0.5306897 1.273868943 0.938620637 

158 3 2 3 3 0.872225215 3.202514368 0.447217814 2.3665066 0.5527822 1.6523506 0.894435628 

159 3 2 3 4 0.741677089 3.11163252 0.414500082 2.4160028 0.5854999 1.654903884 0.829000165 

160 3 2 3 5 0.61233565 3.061678248 0.377787546 2.4780473 0.6222125 1.891519624 0.755575091 

161 3 2 4 1 0.980846108 3.828023959 0.490423054 2.1980734 0.5095769 1 0.980846108 

162 3 2 4 2 0.941195296 3.744335398 0.474932649 2.1999227 0.5250674 1.278844159 0.949865298 

163 3 2 4 3 0.893030789 3.66767714 0.456276293 2.2167197 0.5437237 1.635001562 0.912552587 

164 3 2 4 4 0.810411499 3.643321418 0.433449258 2.2500852 0.5665507 1.755136556 0.866898517 

165 3 2 4 5 0.703090303 3.620592448 0.406362384 2.2976473 0.5936376 1.892244352 0.812724768 

166 3 3 1 1 0.965145345 3.133375351 0.482572673 2.6703208 0.5174273 1 0.965145345 

167 3 3 1 2 0.903279843 3.043021495 0.458613937 2.6413864 0.5413861 1.283684749 0.917227873 

168 3 3 1 3 0.822482808 3.022143795 0.431141054 2.6438879 0.5688589 1.551600612 0.862282108 

169 3 3 1 4 0.754653878 3.018615512 0.405594098 2.6535422 0.5944059 1.923933029 0.811188197 

170 3 3 1 5 0.614308679 3.071543395 0.375279321 2.6816088 0.6247207 1.940214973 0.750558641 

171 3 3 2 1 0.986727785 3.868963395 0.493363893 2.4931753 0.5066361 1 0.986727785 

172 3 3 2 2 0.954384682 3.774652267 0.480011587 2.4381222 0.5199884 1.31458556 0.960023174 

173 3 3 2 3 0.897310455 3.703242303 0.460348339 2.4124936 0.5396517 1.544525734 0.920696678 

174 3 3 2 4 0.844132437 3.650124241 0.440083914 2.4064944 0.5599161 1.922019094 0.880167827 

175 3 3 2 5 0.723841993 3.619209965 0.412767421 2.4352498 0.5872326 1.895275397 0.825534841 
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176 3 3 3 1 0.990453852 4.354993039 0.495226926 2.3454586 0.5047731 1 0.990453852 

177 3 3 3 2 0.964755006 4.243433925 0.48463793 2.3060944 0.5153621 1.307595876 0.969275861 

178 3 3 3 3 0.920527074 4.165522937 0.468848981 2.2998217 0.531151 1.567880841 0.937697961 

179 3 3 3 4 0.873198824 4.074919178 0.451157885 2.3010301 0.5488421 1.925933049 0.90231577 

180 3 3 3 5 0.775250409 4.045877875 0.428207198 2.3229786 0.5717928 1.91660776 0.856414397 

181 3 3 4 1 0.992173798 4.799353545 0.496086899 2.1832211 0.5039131 1 0.992173798 

182 3 3 4 2 0.970066978 4.656874133 0.48693564 2.1677055 0.5130644 1.309359261 0.97387128 

183 3 3 4 3 0.929826364 4.529744746 0.472520449 2.1733823 0.5274796 1.56637465 0.945040898 

184 3 3 4 4 0.888481892 4.414228917 0.456501612 2.1891802 0.5434984 1.95028362 0.913003224 

185 3 3 4 5 0.792744899 4.30741856 0.433864633 2.2264282 0.5661354 1.914607639 0.867729267 

186 3 4 1 1 0.981996011 4.05324698 0.490998005 2.6448712 0.509002 1 0.981996011 

187 3 4 1 2 0.939990488 3.901344098 0.474504061 2.5981752 0.5254959 1.2745949 0.949008121 

188 3 4 1 3 0.880464749 3.832270813 0.453862023 2.5867761 0.546138 1.543912012 0.907724045 

189 3 4 1 4 0.815663623 3.811242953 0.43178318 2.5915866 0.5682168 1.850335273 0.86356636 

190 3 4 1 5 0.76063446 3.8031723 0.411094139 2.6008229 0.5889059 2.228537861 0.822188277 

191 3 4 2 1 0.994284675 4.845539725 0.497142338 2.4792709 0.5028577 1 0.994284675 

192 3 4 2 2 0.974664756 4.722977701 0.489063589 2.405612 0.5109364 1.295003667 0.978127177 

193 3 4 2 3 0.937492904 4.622355978 0.475966158 2.359836 0.5240338 1.537991255 0.951932317 

194 3 4 2 4 0.890481704 4.565078788 0.459757109 2.343183 0.5402429 1.837267935 0.919514219 

195 3 4 2 5 0.845129571 4.512426345 0.443110075 2.3404742 0.5568899 2.204033099 0.88622015 

196 3 4 3 1 0.995938113 5.334099365 0.497969056 2.3370947 0.5020309 1 0.995938113 

197 3 4 3 2 0.980429539 5.185107323 0.491590655 2.2847284 0.5084093 1.289087349 0.983181311 

198 3 4 3 3 0.95086195 5.055332346 0.480848612 2.2635879 0.5191514 1.558986392 0.961697225 

199 3 4 3 4 0.908846772 4.92987579 0.466305193 2.2559631 0.5336948 1.848250891 0.932610386 

200 3 4 3 5 0.867493347 4.834943584 0.451092941 2.2547309 0.5489071 2.214548079 0.902185882 

201 3 4 4 1 0.996672412 5.785868417 0.498336206 2.176576 0.5016638 1 0.996672412 

202 3 4 4 2 0.983481018 5.620625084 0.492894089 2.1492247 0.5071059 1.290499173 0.985788179 

203 3 4 4 3 0.957373689 5.46918312 0.483394616 2.1392385 0.5166054 1.558228615 0.966789231 

204 3 4 4 4 0.92149371 5.347471676 0.470720938 2.1452777 0.5292791 1.864758988 0.941441876 

205 3 4 4 5 0.88355598 5.216039879 0.456754267 2.1549399 0.5432457 2.228318804 0.913508534 

206 3 5 1 1 0.990553366 5.000419821 0.495276683 2.6312003 0.5047233 1 0.990553366 

207 3 5 1 2 0.962614844 4.790183998 0.484055247 2.5705459 0.5159448 1.27949874 0.968110494 

208 3 5 1 3 0.919620336 4.671996344 0.468499526 2.5474734 0.5315005 1.567584258 0.936999052 

209 3 5 1 4 0.864246697 4.617539216 0.450487115 2.5442215 0.5495129 1.823634628 0.900974231 

210 3 5 1 5 0.810619277 4.595893259 0.432066307 2.5501193 0.5679337 2.152289592 0.864132614 

211 3 5 2 1 0.997455042 5.831008237 0.498727521 2.4735588 0.5012725 1 0.997455042 

212 3 5 2 2 0.985910778 5.674008577 0.493876189 2.3897088 0.5061238 1.303935202 0.987752378 

213 3 5 2 3 0.961605217 5.530246638 0.484858189 2.3317206 0.5151418 1.577486328 0.969716377 

214 3 5 2 4 0.923510146 5.429359934 0.47231846 2.3051646 0.5276815 1.809490957 0.944636921 

215 3 5 2 5 0.881227418 5.350443717 0.457904302 2.2967584 0.5420957 2.126536128 0.915808604 

216 3 5 3 1 0.998207052 6.323960099 0.499103526 2.3331568 0.5008965 1 0.998207052 

217 3 5 3 2 0.989212054 6.147443507 0.495329489 2.2723907 0.5046705 1.298813705 0.990658979 

218 3 5 3 3 0.970006583 5.980213969 0.488009848 2.2405619 0.5119902 1.599037809 0.976019696 

219 3 5 3 4 0.936541834 5.819701612 0.476985164 2.2222748 0.5230148 1.813386463 0.953970329 

220 3 5 3 5 0.89920326 5.700690255 0.464010948 2.2149554 0.5359891 2.142274765 0.928021896 
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221 3 5 4 1 0.998524303 6.776451879 0.499262152 2.1737405 0.5007378 1 0.998524303 

222 3 5 4 2 0.990862209 6.58601834 0.49604075 2.1394331 0.5039592 1.299849085 0.992081501 

223 3 5 4 3 0.973924126 6.400975137 0.489589355 2.1200253 0.5104106 1.596977305 0.979178711 

224 3 5 4 4 0.945386944 6.245490578 0.479985471 2.1168362 0.5200145 1.832394126 0.959970942 

225 3 5 4 5 0.911373201 6.091671444 0.468163965 2.1203641 0.531836 2.155287228 0.936327931 

226 4 1 1 1 0.856529065 1.426975568 0.428264532 3.7858888 0.5717355 1 0.856529065 

227 4 1 1 2 0.723491113 1.446982227 0.379023419 3.7988889 0.6209766 1.312542783 0.758046838 

228 4 1 1 3 0.506812997 1.520438992 0.323812025 3.8441482 0.676188 1.428975005 0.64762405 

229 4 1 1 4 0.395587237 1.582348946 0.280512563 3.8760912 0.7194874 1.815708158 0.561025126 

230 4 1 1 5 0.326313656 1.631568279 0.246829186 3.8981815 0.7531708 2.254795423 0.493658372 

231 4 1 2 1 0.920916839 1.987863343 0.460458419 3.5546111 0.5395416 1 0.920916839 

232 4 1 2 2 0.8315905 1.950934479 0.424302603 3.5592574 0.5756974 1.348452383 0.848605206 

233 4 1 2 3 0.630796436 1.892389307 0.369797035 3.6422498 0.630203 1.410636057 0.73959407 

234 4 1 2 4 0.471890275 1.8875611 0.318159149 3.7182906 0.6818409 1.721619983 0.636318298 

235 4 1 2 5 0.378614252 1.89307126 0.277006311 3.7720928 0.7229937 2.153190894 0.554012622 

236 4 1 3 1 0.944093017 2.490404024 0.472046508 3.358779 0.5279535 1 0.944093017 

237 4 1 3 2 0.879360044 2.509698641 0.446634808 3.3477228 0.5533652 1.327052685 0.893269615 

238 4 1 3 3 0.785196097 2.555404769 0.418147227 3.3723148 0.5818528 1.524232503 0.836294455 

239 4 1 3 4 0.642463643 2.569854574 0.382016564 3.4368213 0.6179834 1.649950196 0.764033127 

240 4 1 3 5 0.520735508 2.603677542 0.345237083 3.5067664 0.6547629 1.937505316 0.690474167 

241 4 1 4 1 0.955841802 2.963071264 0.477920901 3.1747432 0.5220791 1 0.955841802 

242 4 1 4 2 0.901123129 2.949905415 0.455995145 3.1824502 0.5440049 1.335140999 0.911990291 

243 4 1 4 3 0.808016176 3.013523778 0.429340186 3.2153501 0.5706598 1.472203484 0.858680372 

244 4 1 4 4 0.735929552 3.083531234 0.405971806 3.2491843 0.5940282 1.780361922 0.811943612 

245 4 1 4 5 0.627224611 3.136123054 0.378796145 3.3026447 0.6212039 1.950834599 0.757592291 

246 4 1 5 1 0.963194225 3.425451351 0.481597113 2.9841744 0.5184029 1 0.963194225 

247 4 1 5 2 0.916223461 3.40900359 0.462831225 3.0035109 0.5371688 1.330997025 0.925662451 

248 4 1 5 3 0.831263796 3.424893437 0.437773237 3.0505944 0.5622268 1.475125363 0.875546473 

249 4 1 5 4 0.754328915 3.513411871 0.414171335 3.0956872 0.5858287 1.746820649 0.82834267 

250 4 1 5 5 0.697790158 3.593691112 0.394458619 3.1335191 0.6055414 2.095392659 0.788917239 

251 4 2 1 1 0.932293186 2.260901715 0.466146593 3.7005342 0.5338534 1 0.932293186 

252 4 2 1 2 0.835259057 2.236124224 0.430866096 3.6926274 0.5691339 1.258956687 0.861732192 

253 4 2 1 3 0.746419474 2.239258421 0.397392172 3.7038077 0.6026078 1.618544286 0.794784344 

254 4 2 1 4 0.575110258 2.300441032 0.357654936 3.7425039 0.6423451 1.675082382 0.715309872 

255 4 2 1 5 0.472681992 2.363409962 0.322557433 3.7771456 0.6774426 2.019000649 0.645114867 
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6. Analysis of a Vendor Managed Inventory system 

with Coxian-2 transportation times and Compound 

Poisson external demand 

6.1 Research rationale 

In traditional inventory systems decisions are taken locally, with each member of the 

system seeking to maximize its benefit, often to the detriment of the overall efficiency 

of the supply chain. On the other hand, under the Vendor Managed Inventory (VMI) 

logic the downstream member (buyer or retailer) delegates the decisions concerning 

its inventory control policy to the upstream partner (vendor). Depending on the details 

of the arrangement, a number of possible variations can be found. However, two basic 

characteristics are common in all VMI systems: information sharing, and the transfer 

of decision making responsibility to the upstream partner (Choudhary & Shankar, 

2015).  

 

Since the first succesful implementations of vendor managed inventory systems in the 

late 80s, VMI has been extensively investigated as a promising alternative to the 

traditional supply chains. The potential benefits of VMI are well documented. 

Amongst others, they include higher customer service level, cost savings due to 

economies of scale, lower transportation costs, improved coordination and 

forecasting, reduced uncertainty, and a significant reduction in the bullwip effect 

(Kannan et al., 2013; Claassen et al, 2008). However, it is not always easy to apply 

VMI philosophy, nor are all VMI initiatives succesful (Kuk, 2004; Niranjan et al., 

2012). Among the problems cited are high administrative costs, high inventory costs 

for the vendor, as well as excessive stock at the buyer.  

 

Successful implementation of VMI policies requires close cooperation between 

vendors and buyers, and a sharing of costs and benefits in the quest for the global 

optimization of the supply chain. In this framework, theoretical results and 

quantitative models can be effective tools to promote understanding between different 

partners in the supply chain and to facilitate the design of effective and viable VMI 

policies (Guan & Zhao, 2010). 

6.2 Literature review 

There is a growing body of literature concerning modeling and applications of VMI 

systems (Govindan, 2013). Most works focus on the optimal costs and the potential 

benefits of VMI policies in comparison with more traditional schemes such as retailer 

managed inventory (RMI). 

  

Due to the complexity of the related models, some authors assume deterministic 

parameters. Yao et al. (2007) use analytical models to investigate the benefits of VMI 

application in a two stages inventory system with deterministic characteristics and 
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negligible lead times. Their analysis illustrates the importance of the cost parameters 

as well as the unequal distribution of benefits between the vendor and the retailer. 

Bookbinder et al. (2010) also assume deterministic parameters and zero lead times 

and investigate the benefits of VMI for a one manufacturer - one retailer system. 

Torres et al. (2014) analyze the performance of a manufacturer-buyer system with 

synchronized replenishment cycles. They assume deterministic demand and periodic 

replenishments and offer closed form solutions for the optimal parameters. Choudhary 

et al. (2014) assume deterministic demand that varies with time and they employ 

integer linear programming models to compare VMI policies with other schemes of 

manufacturer-retailer cooperation for a two echelon chain. Tat et al. (2015) 

investigate a two stage supply network of a deteriorating product in a deterministic 

setting. They study two scenarios, one system with no shortages and one with 

backorders. They analyze the problem based on EOQ models and report on the 

superiority of VMI logic over the traditional approach in terms of coordination and 

total cost. Rahim et al. (2016) are concerned with more complex topologies and 

propose a deterministic model for a system with one warehouse and multiple retailers. 

 

Deterministic parameters are rarely realistic, so most authors include stochastic 

elements in their models. Both periodic review and continuous review inventory 

policies can be found. 

 

Lee et al. (2000) investigate the benefits of information sharing in a two echelon 

system with auto-correlated external demand. Excess demand at the retailer is back-

logged, while the supplier always finds inventory to meet retailers demand. Periodic 

review and order-up-to policies with changing parameters are assumed. The authors 

develop analytic models for their analysis and conclude on the importance of the lead 

times and the characteristics of the demand process for the potential benefits of 

information sharing. Yao and Dresner (2008) and Kalpakam et al. (2014) expand the 

model of Lee et al. (2000). Yao and Dresner (2008) also report on the significance of 

the demand process and logistics parameters on the potential benefits of VMI and 

discuss the allocation of these benefits. Kalpakam et al. (2014) analyze multi-stages 

serial systems and propose that the benefits of information sharing increase as the 

number of installations in the supply chain increases. 

 

Song and Dinwoodie (2008) consider Integrated Inventory Management and VMI 

policies in a three stages, serial supply chain, with exponentially distributed lead 

times, Poisson demand and backorders. Order-up-to and base-stock policies are 

investigated. The authors employ stochastic dynamic programming to evaluate the 

respective systems with regard to their cost effectiveness. 

 

Kiesmuller and Broekmeulen (2010) analyze the benefits of VMI strategies in a two 

echelon periodic review system with multiple products. They assume stochastic 

demand (Bernouli or Poisson) with backorders and constant lead times. In the case of 
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VMI strategies they use simulation to obtain estimates for the expectations of average 

cost.   

 

Savaşaneril and Erkip (2010) investigate a system consisting of a manufacturer with 

finite manufacturing capacity and a retailer with service level constraints and periodic 

review inventory control policy. They assume stochastic demand with backordering 

and they model the system as a Markov Decision Process.  

 

Choudhary et al. (2016) study the benefit of implementing full VMI instead of simple 

information sharing in a two echelon serial system. They assume periodic review 

policies with a normally distributed dynamic external demand. They define the 

problem as a shortest path problem and they develop a mixed integer programming 

formulation. 

 

With regard to continuous review systems, Ching and Tai (2005) investigate a system 

where a vendor supplies multiple retailers facing external demand with Poisson 

characteristics and zero lead times. They propose a mixed time and quantity based 

dispatching strategy. They base their analysis on renewal theory and offer a closed 

form solution for the optimal dispatching policy. 

 

Bichescu and Fry (2009) examine a system with deterministic production rate, 

positive lead time and normally distributed demand during lead time. Customer 

demand that cannot be satisfied from the available inventory at the retailer is 

backordered, while the manufacturer in the case of insufficient inventory on hand can 

procure extra inventory at a cost penalty. The authors analyze the costs for traditional 

and VMI policies and employ a game theoretic approach to investigate the effect of 

different channel power scenarios. 

 

Guan and Zhao (2010) employ a cost function to find the best contract for a serial 

supply chain with deterministic lead times, stochastic demand and backordering. 

Razmi et al. (2010) develop an iterative procedure based also on cost to evaluate a 

two echelon supply chain with lead times varying with lot size, stochastic demand, 

and continuous review inventory control policy. They assume backorders for the 

buyer and no shortages for the vendor. 

 

Salzarulo and Jacobs (2014) investigate the performance of VMI, MTO and MTS 

policies in a two stage, serial supply chain with stochastic demand, constant lead 

times and back-ordering of excessive demand. They develop probability models based 

on renewal theory and conclude that VMI systems consistently provide results 

superior, or at least equal, to those of MTO and MTS systems.  

 

Lee and Cho (2014) consider a two installations continuous review system where the 

manufacturer does not hold inventory but follows a consignment stock policy. They 

compare traditional and VMI policies under specific contracts and examine both 
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deterministic and stochastic (Poisson) demand with backorders. Based on the EOQ 

model with allowed shortages they develop a model to compute the optimal inventory 

policies as well as the optimal contract parameters and compare the average costs 

under Retailer Managed Inventory and VMI. 

 

Yu et al. (2015) propose an EOQ based model for the evaluation of VMI benefits in a 

one supplier - one retailer system with stochastic demand at the retailer and exchange 

rate uncertainty for the vendor. They assume a continuous review inventory policy 

with backorders. They find that VMI is not always preferable to traditional policies 

and report on the demand fluctuation effect. 

 

In this section we present an analytic model for the exact numerical evaluation of a 

two echelon, continuous review, inventory system working according to VMI logic. 

The system is modeled as a continuous time Markov Process and our analysis is based 

on the Infinitesimal Generator Matrix characteristic structure. Compared to the 

existing literature the contribution of our work is threefold. Firstly, our model makes 

more generic assumptions for both supply and demand uncertainty. Lead times are 

modeled using Coxian distribution with two phases, while the external demand is 

described as a compound Poisson process. These assumptions allow us greater 

modeling flexibility and permit us to describe more accurately realistic situations. 

Secondly, unlike most of the literature models, we assume that demand that cannot be 

met from inventory on hand is lost. Lost sales are common for commodity products 

and in highly competitive markets, so despite their complexity, lost sales models are 

important from a practical point of view. Finally, our investigation is focused not so 

much on the optimal policies, but on the general behavior of the system. Supply 

chains are dynamic systems with complex interrelations and they operate in a fluid 

environment where optimal policies may cannot be defined or followed, or may vary 

with time. Our purpose is to investigate and understand the underlying relationships 

between the decision variables and the performance measures so that a better 

understanding of the overall system can be achieved. 

6.3 Description of the system 

 

Figure 6.1: System Lay-out 

 
 

We investigate a three stages, single product, serial inventory system working under 

Vendor-Managed-Inventory (VMI) logic (Figure 6.1). The wholesaler has real time 

information about and controls the inventory of the downstream retailer. The retailer 

coxian-2 coxian-2 λ 

μ21, μ22, d22 μ11, μ12, d12 

 
Manufacturer 

 
Wholesaler  (2) 

(s, Q2) 

 
Retailer (1) 
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holds inventory )(1 tI  and faces external demand with compound Poisson 

characteristics. Customers arrive according to a Poisson process with rate λ, and the 

demand of each customer follows an empirical distribution (dm1,dm2,...,dmmd), where 

dmi is the probability that the customer will ask for exactly i product units. The 

demand that cannot be met from the inventory on hand at the retailer is lost. The 

wholesaler continuously reviews the inventory at the retailer and whenever )(1 tI  

reaches the reorder point r, a replenishment order of Q1 product units is dispatched. 

 

The wholesaler also holds inventory )(2 tI  and decides its replenishment orders based 

on echelon information. Echelon inventory of stage i is the sum of the inventory 

between stage i and the final customer (Chopra and Meindl, 2007). Whenever the 

echelon inventory (the inventory on hand at the wholesaler plus the inventory in 

transit to the retailer plus the inventory on hand at the retailer) reaches the echelon 

reorder point s, a replenishment order of Q2 units is asked upstream from the 

manufacturer. 

 

Transportation times are independent of the amount of the replenishment order and 

are modeled using Coxian-2 distribution (Fig. 6.2). For transportation towards node i 

there is a first phase with exponentially distributed processing times and transition 

rate μi1. Then, with probability di2, follows a second phase with exponentially 

distributed processing times and rate μi2. The transportation is accomplished after one 

phase with probability 1-di2. di2=1 corresponds to Erlang distribution with two phases, 

while di2=0 corresponds to a simple exponential distribution. Practically any empirical 

distribution can be approximated by a Coxian distribution with the appropriate 

number of phases. In our model, the use of a phase type distribution offers greater 

flexibility and allows more realistic modelling of practical situations. Moreover it 

enables us to better capture variability, allowing for a wide range for the Coefficient 

of Variance.  

 

Figure 6.2: The general logic of the Coxian-2 distribution 

  
The following assumptions are also made about the system: 

1. The manufacturer has always enough inventory on hand to cover the vendor’s 

demand. All replenishment orders towards the wholesaler are of Q2 units. 

2. Only complete orders of Q1 are sent from the vendor to the retailer. If the 

inventory on hand at the vendor is not enough ( 12 )( QtI  ), dispatching is 

deferred until a replenishment order is received from the manufacturer.  

d2 

1-d2 

1st 

phase 

(μ1) 

Exit 
2nd 

phase 

(μ2) 
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3. At any given moment there can be only one outstanding order in transit from 

the vendor to the retailer. Similarly, there can be only one outstanding order in 

transit from the manufacturer to the vendor. The one outstanding order 

assumption is common in supply chain modeling and is necessary to keep a 

tractable level of complexity (Bijvank & Vis, 2011). 

4. Q2 is a multiple of Q1 such that Q2=nQ1, where n a positive integer. It is a 

logical assumption about the inventory control policies given assumption 2. 

For our modeling approach, this assumption is necessary to ensure a unique 

class of recurrent states. However, this assumption is common in modeling 

VMI systems, while it has been found that under certain conditions such 

policies are optimal (Chen, 2000). 

5. Inventory in transit belongs to the upstream node. This assumption is made to 

facilitate the definition of system states and does not pose any restrictions to 

the model. 

6. All stations are reliable 

7. Lead time for the information flow is zero. 

8. At any time t, there can be at most one event changing the state of the system. 

This assumption is necessary for reasons of methodology, so that we can 

model the system as a Markov chain and do not pose any restrictions to our 

model. 

6.3.1 Model variables 

We denote as decision or design variables those parameters of the system whose value 

a company can usually influence directly in order to achieve the desired outcomes. 

The determination of these values is part of the company’s planning at strategic and 

tactical level. For the system under consideration the decision variables concern the 

parameters of the inventory policies at the vendor and the retailer. More precisely, the 

decision variables are: 

r: the reorder point at the retailer.  

Q1: the quantity of the replenishment orders towards the retailer.  

s: the echelon reorder point at the vendor.  

n=Q2/Q1: the parameter defining the quantity of the replenishment orders towards the 

vendor. We have assumed Q2≥Q1 ,or n≥1. 

These parameters also define the dimension and structure of the infinitesimal 

generator matrix that corresponds to the system (section 5). 

 

The other parameters of the system include:  

μij: the transition rate of the jth phase during transportation towards the ith node. 

i,j={1,2} 

dij: the probability that during transportation to the ith node there will be exactly j 

phases. i,j={1,2} 

λ: the arrival rate of external customers (exponentially distributed inter-arrival times) 

dm(i):The probability that an external customer will ask exactly i product units from 

the retailer. To simplify our notation we assume mdiidm  ,0)( . 
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 md: The maximum possible demand of an external customer 

 

From the description of the system it follows that the maximum number of product 

units in the system is s+Q2. s+Q2 ≥ r+Q1, or s+Q2-Q1≥r . When r>s we use the 

equivalent r* value where r*=s+Q2-Q1. In any case, it would be an extreme scenario 

to have a VMI system where the reorder point of the retailer is greater than the 

echelon reorder point of the vendor. 

),min( 12 QQsrr   

6.4 States definition and state transitions 

6.4.1 States definition 

The whole system is a 4-dimensional continuous time Markov chain: 

                               

At any time t, the state of the system can be defined by a four dimensional vector 

                               

, where: 

I2(t): The vendor’s inventory at time t. I2(t) includes inventory on hand at the vendor 

plus any inventory in transit to the retailer.              . By the definition of 

the system, I2(t) is a multiple of Q1. 

p2(t): The phase of the replenishment order towards the vendor. If there is no 

inventory in transit towards the vendor, p2(t)=0. In general, the permissible values for 

p2(t) are 0,1, or 2. 

I1(t): The inventory on hand at the retailer at time t.              

p1(t): The phase of the replenishment order towards the retailer. If there is no 

inventory in transit towards the retailer, p1(t)=0. In general, the permissible values for 

p2(t) are 0,1, or 2. 

 

The state space of the Markov process Ω is comprised of all the possible vectors 

    and its dimension can be computed as a function of the design variables through an 

iterative process. The states are ordered lexicographically. As basic level we define 

the set of all the states corresponding to a fixed vendor inventory I2. Within each basic 

level, states are ordered according to the transition phase towards node 2 (p2). For 

fixed I2 and p2, the states are ordered by retailer inventory I1, and finally for fixed I2, 

p2 and I1, states are ordered by p1. To summarize: 

State (w, x, y, z) precedes state (w’, x’, y’, z’) if w<w’; 

State (w, x, y, z) precedes state (w, x’, y’, z’) if x<x’; 

State (w, x, y, z) precedes state (w, x, y’, z’) if y<y’. 

State (w, x, y, z) precedes state (w, x, y, z’) if z<z’.  

6.4.2 State transitions 

The state of the system can be altered instantaneously by five kinds of events. As we 

already mentioned, for methodology reasons and without posing any restrictions to 
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our model, it is assumed that no two events can occur at exactly the same time. In 

infinitesimal time dt only one event can occur. The five classes of the events are: 

1. The transition from the first phase to the second phase of the Coxian for an 

order in transit towards the vendor                     . The 

probability of such a transition happening in infinitesimal time    is 

)(2122 dtOdtd   , where       is an unspecified function such that 

       
     

  
  .  dtO stands for the probability that a second event will 

occur in infinitesimal time dt. 

2. The arrival of an outstanding order at the vendor. The incoming order 

increases the inventory at the vendor ( 122 )()( QntIdttI  ). If 12 )( QtI   and

rtI )(1 , on replenishment order arrival, Q1 units are immediately forwarded 

for transportation towards the retailer ( 1)(1  dttp ). The arrival of the 

replenishment order can be from the first or the second Coxian phase. In the 

first case, the probability of the event happening in infinitesimal time    is 

)(2121 dtOdtd   . In the second case, the respective probability is 

)(22 dtOdt  . 

3. The transition from the first phase to the second phase of the Coxian for an 

order in transit towards the retailer                     . The 

probability of such a transition happening in infinitesimal time dt is

)(1112 dtOdtd   . 

4. The arrival of an outstanding order at the retailer. Q1 units possessed by the 

vendor (assumption 5, section 6.3) are transferred to the retailer. The inventory 

on hand at the retailer increases by Q1 units ( 111 )()( QtIdttI  ), while the 

inventory of the vendor decreases correspondingly ( 122 )()( QtIdttI  ). If

rdttI  )(1 , the vendor initiates a new order towards the retailer. The arrival of 

the replenishment order can be from the first or the second Coxian phase. In 

the first case, the probability of the event happening in infinitesimal time dt is 

)(1111 dtOdtd   . In the second case, the respective probability is

)(12 dtOdt  . 

5. The occurrence of external demand at the retailer. The demand of each 

external customer follows an empirical distribution which can be described 

with a vector ),...,,( 21 mddmdmdmdm  , 1 idm , where dmi is the probability 

that an external customer will ask for exactly i product units. The inventory on 

hand at the retailer decreases correspondingly, while any excessive demand is 

lost. If rdttI  )(1  and 0)(1 tp , a new replenishment order is sent from the 

vendor )1)(( 1  dttp . If sdttIdttI  )()( 21  and 0)(2 tp , a new 

replenishment order is asked from the manufacturer )1)(( 2  dttp . The 

probability that in infinitesimal time    external demand of i product units will 

occur is )(dtOdtdmi  . 
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6.5 The infinitesimal generator matrix 

The infinitesimal generator matrix Q is a matrix such that ijq is the instantaneous 

transition rate from state i to state j, i≠j, and 



ij

ijii qq . Similar transitions or events 

correspond to similar patterns or sub-matrices. These blocks are divided into three 

categories, those along the diagonal, those above the diagonal and those below the 

diagonal. 

 

To facilitate our analysis we define the following characteristic values of the system: 

 

f: it is the lowest basic level where the system reaches its maximum capacity. The 

maximum number of product units in the system is s+Q2 . 

211 QsQrQf   => 

rQQnsQf  111  => 

1
)(

1




 n
Q

rs
f  

Since f is an integer: 

n
Q

rs
f 







 


1

int  

(s-r) could be described as the vendor’s “safety stock”.  

 

k: is the lowest basic level where the inventory at the vendor exceeds the echelon 

reorder point s. The structure of certain sub-matrices changes at this level. Moreover, 

from basic level k and above there can be no replenishment order towards the 

wholesaler. 

sQk  1  









 1int

1Q

s
k  

 

h: is the lowest basic level for which the echelon inventory may exceed the echelon 

reorder point (when s>r+Q1). For level below h, there is a replenishment order 

towards the wholesaler for any value of the retailer’s inventory. 

sQrQh  11 => 

1
1





Q

rs
h  

Since h is an integer: 








 


1

int
Q

rs
h  

 

Nl: It is the highest basic level.  
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



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

 


1

2int
Q

Qs
Nl  

As we start with level “0”, the number of basic levels will be Nl+1. At basic level Nl, 

the inventory at the vendor will have its maximum value 12 )( QNltI  . 

 

We also define a vector rd such that the i
th

 element of the vector rdi is equal to the 

probability that the demand of an external customer will be equal to or more than i. If 

md is the maximum possible demand of an external customer:   





md

ij

ji dmrd  

To simplify our notation we assume that mdirdi  ,0 . 

 

Finally we denote: 

d11=1-d12 : the probability that during transportation of a replenishment order towards 

the retailer there will be only one phase. 

d21=1-d22 : the probability that during transportation of a replenishment order towards 

the vendor there will be only one phase. 

6.5.1 Diagonal blocks 

Sub-matrices along the diagonal are square blocks that describe transitions within the 

same basic level (I2(t)=const). They correspond to transitions in the transportation 

phase or the occurrence of external demand. Each diagonal sub-matrix can be further 

analyzed into smaller blocks describing transitions between the same or different sub-

levels. The general structure a diagonal block D: 

 

6.5.1.1 Dimension of sub-blocks  

It is convenient for each basic Level L (L>0) to denote: 

  
 : the dimension of the sub-matrix of level L that corresponds to      and      

  
 : the dimension of the sub-matrix of level L that corresponds to      and      

  
 : the dimension of the sub-matrix of level L that corresponds to      and      

  
 : the dimension of the sub-matrix of level L that corresponds to      and      

0D

1D

2D

1U

0U
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Z1 states 

With increasing basic level L, the number of Z1 states increases, as the echelon 

inventory L∙Q1+I1 exceeds the echelon reorder point s for lower values of I1. With 

every basic level, Z1 increases by 2∙Q1 states until it takes its maximum value 2∙(r+1) 

for L=k.  

 

Beyond level L=f, the number of permissible Z1 states decreases as for higher values 

of I1, the echelon inventory exceeds s+Q2. For every level beyond L=f+1, the number 

of the permissible states decreases by  112 QLsQnr   states. 

 

If we define an index inf indicating if L>f and an index inh indicating if L>h 

 









fL

fL
in f

,1

,0
  

 










hL

hL
inh

,1

,0
 

 

,then the number of permissible Z1 states for level L is 

 

   hf inQLsQnrinrQLsrZ  )(2)1(2,2)(2min 1111  

 

The first part of above equation corresponds to the increase in the number of Z1 states 

with increasing L until L=k. The second part of the equation corresponds to the 

decrease in the number of states for L>f. If L≤h, then p2>0 and Z1=0. 

Z2 states 

Z2 states correspond to I1>r when p2=0. For basic level L<h, the echelon inventory 

Iech<s for every possible value of I1, so p2>0 and Z2=0. 

 

For basic level L=h, the echelon inventory for the first time exceeds s for the higher 

values of I1: 112 QLsQrZ  . Since between successive basic levels I2 increases 

by Q1 units, Z2<Q1 . 

  

When h<L<f, Z2 takes its maximum value Z2=Q1 

 

For L=f, for some values of I1, Iech>s+Q2 (non-permissible states). The number of Z2 

states will be less than Q1: rsQLnZ  12 )(  

 

When L>f, given the restriction that Iech≤ s+Q2, for the all the permissible values I1≤r 

and  Z2=0. 

 

Summing up: 



121 

 

 























fLrsQLn

fLhQ

hLQLsQr

fLorhL

Z

,)(

,

,

,0

1

1

11

2  

 

O1 states 

O1 states correspond to      and     . The possible values of p2 are 1 or 2. When 

L≤h, the O1 has its maximum value )1(21  rO . 

 

When h<L<k, the number of O1 states decreases with each successive basic level, as 

the number of states where Iech≤s decreases. For basic level L: 

)(2)1(2 11 QLsrrO   

)1(2 11  QLsO  

With every successive level the number of permissible states decreases by 2∙Q1. 

 

When L≥k, there can be no inventory in transit towards the vendor (p2=0), and O1=0. 

 

Summing up: 

















kL

kLhQLs

hLr

O

,0

),1(2

),1(2

11

 

O2 states 

O2 states correspond to      and     . The number of possible states: 

 

















hL

hLQLrs

hLQ

O

,0

,

,

1

1

2

 
 

6.5.1.2 Block D0  

D0 is Z1+Z2 dimension square block corresponding to transitions within the same 

basic level and the same sub-level when there is no batch in transit to the wholesaler 

(Iech>s, p2=0). To facilitate the analysis, D0 can further be reduced to constituent 

blocks: 











020

001

0
DS

ND
D  
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D01 is a 11 ZZ   block that corresponds to transitions where I1≤r. If we assume

mdjjdm  ,0)( , for L<k: 
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When L≥k, the first two columns of D01 correspond to I1=0. If we assume

mdjjrd  ,0)( , the general structure of D01: 
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D02 is a 22 ZZ   block that corresponds to transitions where I1>r. Its general structure: 
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S0 is a 12 ZZ   block that corresponds to the triggering of a replenishment order 

towards the retailer. Here we have transitions from Z2 states (I1>r) to Z1 states (I1≤r). 

When L<k and assuming mdjjdm  ,0)( : 
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When L≥k, the first two columns of S0 correspond to I1=0. If we assume

mdjjrd  ,0)( , the general structure of S0: 
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N0 is a null matrix of 21 ZZ  dimensions.  

6.5.1.3 Block D1  

D1 is square block of 21 OO   dimension. It describes transitions within the same basic 

level and in the same sub-level when there is a batch in transit towards the wholesaler 

in the first Coxian phase. To facilitate the analysis, D1 can be further reduced into 

constituent blocks: 
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D11 is a 11 OO   block describing transitions between states where I1≤r.  The first two 

columns correspond to I1=0. The general structure of D11: 
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D12 is a 22 OO   block corresponding to transitions between states where I1>r. Its 

general structure: 
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S1 describes triggering of a replenishment order towards the retailer. Here we have 

transitions from states where I1>r (O2) to states where I1≤r (O1). S1 is a 12 OO  block 

with general structure: 

 



























0)(0)1(0)32/(0)22/(0)12/(

0)2(0)3(0)32/(0)2/(0)12/(

0)1(0)2(0)22/(0)12/(0)2/(

22212121

111

111

1







OdmOdmOOdmOOdmOOrd

dmdmOdmOdmOrd

dmdmOdmOdmOrd

S









 

Finally, N1 is a zero block of 21 OO  dimensions. 

6.5.1.4 Block D2  

D2 describes transitions within the same basic level and within the same sub-level 

where there is an order in transit towards the wholesaler in the second Coxian phase 

(p2=2). It is a 21 OO  dimensional square block and can be further analyzed into 

constituent sub-blocks: 
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D21 is a 11 OO   block describing transitions between states where I1≤r, with the first 

two columns corresponding to I1=0. The general structure of D21: 
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D22 is a 22 OO   block corresponding to transitions between states where I1>r. Its 

general structure: 
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S2 describes transitions from states where I1>r (O2) to states where I1≤r (O1). It 

corresponds to triggering of a replenishment order towards the retailer. S2 is a 12 OO 

block identical to block S1 described above: 
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N2 is a zero block of 21 OO  dimensions. 

6.5.1.5 Block U0  

U0 describes triggering of a replenishment order towards the vendor. It corresponds to 

transitions from states where p2=0 (there is no order in transit towards the vendor) to 

states where p2=1. The only event that causes a decrease in echelon inventory and 

may cause such triggering is the occurrence of external demand. There can be three 

kinds of transitions: 

From states Z1 to states O1: Here there is triggering of a replenishment order towards 

the wholesaler while there is an outstanding order towards the retailer (p1>0). 

From states Z2 to states O2: In this case there is triggering of a replenishment order 

towards the wholesaler while there is no outstanding order towards the retailer (p1=0). 

From states Z2 to states O1: Here there is triggering of replenishment orders towards 

both the wholesaler and the retailer. 

The exact structure of U0 depends on which kind of transition occurs. Generally, the 

dimensions of the block are )()( 2121 OOZZ  . When there are transitions from Z2 

to O1 and O2: 
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When there are transitions from Z1 and Z2 to O1: 

 

O1 O2 

Z2 
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6.5.1.6 Block U1  

Sub-matrix U1 describes transitions from the first to the second phase of 

transportation towards the wholesaler. It is a 21 OO   dimensional, diagonal block of

2122 d . 
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6.5.1.7 Boundary states (L=0) 

For the boundary states where 02 I (L=0) there can be no transit towards the retailer. 

The rules for the construction of the diagonal block are similar to but slightly different 

from those used for L>0. With regard to the dimensions of the constituent blocks: 
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Block D0 is constructed according to the rules described in 6.5.1.2. Since 01 Z , it is 

a 22 ZZ   matrix: 

Z1 

Z2 

O1 
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D1 

Block D1 is a )()( 2121 OOOO   matrix that can be divided into four sub-matrices in 

a way similar to that described in 6.5.1.3: 
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D11 is a 11 OO   block with general structure:  
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D12 is a 22 OO   block:  
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S1 describes the crossing of reorder point r. Here we have transitions from states 

where I1>r (O2) to states where I1≤r (O1). S1 is a 12 OO  block with general structure: 
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Finally, O1 is a zero block of 21 OO  dimensions 

D2 

D2 block has dimensions )()( 2121 OOOO 
 and its structure is similar to that of D1: 
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D21 is a 11 OO   block with general structure:  
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D22 is a 22 OO   block:  
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S2 describes the crossing of reorder point r. Here we have transitions from states 

where I1>r (O2) to states where I1≤r (O1). S2 is a 12 OO  block with general structure: 

 

 

Finally, O2 is a zero block of 21 OO  dimensions 
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U0 corresponds to triggering of a replenishment order towards the vendor. It describes 

transitions from states where p2=0 (there is no order in transit towards the vendor) to 

states where p2=1. U0 is a )( 212 OOZ  block with general structure: 
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U1 

U1 describes transitions from the first to the second phase of transportation towards 

the wholesaler. It is a 21 OO   dimensional, diagonal block of 2122 d . 
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6.5.2 Upper-diagonal blocks 

To simplify our analysis, we define 
Llp  the position of the last state of basic level L 

in the ordering of states that was defined in paragraph 6.4.1. 
Llp can be easily 

computed as the parameters  
LZ1 , 

LZ2 , 
LO1 and 

LO2 are known for every basic level.  

 



L

i

iiiiL OOZZlp
0

2121 )(2  

 

Upper-diagonal blocks describe transitions from Level L1 (L1>0) to Level L2=L1+n. 

They correspond to the arrival of a replenishment order at the vendor. We denote: 

1

1

L
O : The number of O1 states for level L1 

1

2

L
O : The number of O2 states for level L1 

2

1

L
O : The number of O1 states for level L2 

2

2

L
O : The number of O2 states for level L2 

2

1

L
Z : The number of Z1 states for level L2 

2

2

L
Z : The number of Z2 states for level L2 

 

In general, we can define two kinds of upper-diagonal blocks, depending on whether 

the arrival of the replenishment order is from the first (UD1), or the second (UD2) 

phase of the Coxian-2 transportation.  
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UD1 corresponds to transitions to a higher basic level due to the arrival of a 

replenishment order at the wholesaler when the particular order exhibits only one 

transportation phase. In a sense, UD1 is “complementary” to sub-block U1. Its 

dimensions are )()( 222211

212121

LLLLLL
OOZZOO  . 

 

UD1 occurs for levels where sQL  11̀  , or from level 1 to level k-1 (k is the basic 

level where sQk  1 ). Its exact structure can be defined taking into consideration the 

following: 

 If there is a state ),,1,( 2 yxL , then there is also a state ),,1,( 1 yxL  and a 

corresponding transition  ),,1,(),,1,( 21 yxLyxL   with probability 2121 d . 

 From a state ),,1,( 1 yxL  there can be a transition to a state ),,0,( 2 yxL , or 

),,1,( 2 yxL . 

 If there is a state )1,,0,( 2 xL  and there is a transition from level L1=0, then there 

will exist a state )0,,1,0( x where the retailer asks for a replenishment order but 

the wholesaler has no inventory on hand and the corresponding transition

)1,,0,()0,,1,0( 2 xLx  with probability 2121 d . 

 

The general structure of sub-matrix UD1 for L1>0: 

 

 















































00

00

00

00

00

00

2121

2121

2121

2121

2121

2121

1





























d

d

d

d

d

d

UD  

 

 

 

If (x,y) the position of the upper left element of UD1: 
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In the boundary conditions where L1=0, the structure of UD1: 
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In this case : 
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A similar analysis holds for UD2. UD2 describes the arrival of a replenishment order 

to the vendor from the second phase of transportation. It is a block of 

)()( 222211

212121

LLLLLL
OOZZOO  dimensions and its structure is the same as that of 

UD1 with μ22 substituting d21m21. For L>1: 
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If (x,y) the position of the upper left element of UD2: 
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When we start from the boundary states where basic level L1=0, the general structure 

of UD2 will be: 
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In this case, if (x,y) the position of the upper left element of UD2  : 

11111

2121 
LLLL
OOZZx  

11  nlpy  

6.5.3 Below-the-diagonal blocks 

Blocks below the diagonal (LD0 and LD1) correspond to the arrival of a replenishment 

order at the retailer. There is a transfer of inventory from the possession of the vendor 

(I2) to the retailer (I1). Since the replenishment order is always of Q1 units, there is 

always a transition to the left side adjacent basic level (L2=L1-1, skip free to the left):

122 )()( QtIdttI   and 111 )()( QtIdttI   

 In general, the possible transitions are: 

1

1

L
Z  → 2

1

L
Z  or 2

2

L
Z  

1

1

L
O  → 2

1

L
O  or 2

2

L
O  

6.5.3.1 General case (L1>1)  

LD0 corresponds to transitions when p2=0 and has dimensions )( 221

211

LLL
ZZZ  . 

 

In the case when rQ 1 the possible transitions are 1

1

L
Z → 2

1

L
Z   or 1

1

L
Z  → 2

2

L
Z . The 

first columns of LD0 are columns of zero. Their number depends on the value of I1 

that corresponds to the first Z1 state (p2=0, Iech>s, I1≤r) of levels L1 ( 11,

1

LZ
I ) and L2 

)( 21,

1

LZ
I . For basic level L≥k the first Z1 state corresponds to I1=0, while for L=k-1 the 

first Z1 state corresponds to 111  QLsI . In the case when L1<k, the difference 

between 11,

1

LZ
I and 21,

1

LZ
I  is Q1. If w the number of the first zero columns of LD0:   
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If Q1>r, we have only transitions 1

1

L
Z  → 2

2

L
Z  and the first 2

1

L
Z columns will have only 

elements of zero. Depending on the inventory at the retailer (I1) for the first Z2 state, 

zero columns will extend beyond the first 2

1

L
Z  columns. If we denote with z the 

number of these zero columns after the first 2

1

L
Z columns of LD0: 
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The general structure of LD0 when rQ 1 : 
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The general structure of LD0 when rQ 1 : 
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With regard to the position of LD0 blocks in the infinitesimal generator matrix, if (x,y) 

is the position of the upper left element of block LD0 corresponding to transition 

L1→L2: 

1
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LD1 corresponds to transitions when p2=1 or p2=2. Its dimensions are )( 221

211

LLL
OOO  . 

When rQ 1 , since the first O1 state corresponds to I1=0 and the replenishment order 

is always Q1 units, the first 2∙Q1 columns of LD1 will have only elements of zero. 

When Q1>r, we have only transitions 1

1

L
O  → 2

2

L
O  and the first 2

1

L
O columns contain 

only “0” elements. In such cases there will also be 11  rQz  zero columns beyond 

the first 2

1

L
O columns. 

 

The general structure of LD1 when rQ 1 : 
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The general structure of LD1 when rQ 1 : 
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If (x1,y1) the position of the upper left element of block LD1 that corresponds to p2=1 

and transition L1→L2: 
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If (x2,y2) the position of the upper left element of block LD1 that corresponds to p2=2 

and transition L1→L2: 
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6.5.3.2 Boundary states (L1=1, L2=0)  

We investigate the boundary transitions from level L1=1 to level L2=0. For L2=0 there 

can be no inventory in transit towards the retailer, so the dimensions of the sub-blocks 

are different. 

 

With regard to LD0: 

 

 

 

The general structure of LD0: 
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If the position of the upper left element of block 
0

0
2LLD in the infinitesimal generator 

matrix is (x,y): 

10  lpx  

1y  

With regard to LD1, the general structure of the block will be: 
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If (x1,y1) the position of 
0

1
2LLD block that corresponds to p2=1: 
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6.5.4 General structure of the infinitesimal generator matrix 

Having defined the exact structure and position of each substituent block, we can 

construct the infinitesimal generator matrix Q. Summing-up our previous analysis, 

there are in total 1Nl diagonal blocks, the first one corresponding to the boundary 

conditions where I2=0. 

 

Below the diagonal blocks occur for transitions from every basic level, except from 

basic level 0. In general, for every diagonal block of level L>0 there are three below 

the diagonal blocks, each one describing transitions for different p2 sublevels. LD0 

corresponds to p2=0, the first LD1 block corresponds to p2=1 and the second LD1 

block to p2=2. Below the diagonal blocks always describe transitions to the adjacent 

left side basic level. 

 

Upper diagonal blocks occur from basic level L=0 to basic level L=k-1. For every 

basic level there are two upper-diagonal blocks, the first corresponding to p2=1 and 

the second to p2=2. Between a diagonal block and the respective upper diagonal block 

there is an interval of n-1 basic levels. 

 

Without taking into consideration the fact that the dimensions of the various blocks 

are different for different basic levels, the outlay of the infinitesimal generator matrix 

can be given schematically: 

 

 

6.6 Performance Measures 

Having constructed the infinitesimal generator matrix, we can compute the stationary 

probabilities for each possible state of the system. We denote as X the vector of the 

stationary probabilities and X(i) the i
th

 element of the vector which corresponds to the 

i
th

 state in the hierarchy of states defined according to the rules of paragraph 6.4.1. If 

Q the infinitesimal generator matrix, then in the steady state: 
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0QX        

1)( 
i

iX                   

From the above, a system of linear equations can be extracted and the vector X can be 

computed numerically. Performance measures about the system are computed 

algorithmically using the stationary probabilities and taking advantage of the 

hierarchy of states.  

 

As already mentioned, we define 
Llp  the position of the last state of basic level L in 

the ordering of states that was defined in paragraph 6.4.1: 

  



L
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iiiiL OOZZlp
0

2121 )(2  

6.6.1 Average Inventory at the Wholesaler (WIP2) 

WIP2 is the average inventory at the possession of the vendor. It includes both 

inventory on hand at the vendor and inventory in transit towards the Retailer. It can be 

computed iteratively: 

 
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6.6.2 Stock-out probability at the retailer (SO) 

Stock-out probability at the retailer is the probability that external demand will occur, 

but the retailer will have no inventory on hand to meet it even partially. As the 

external demand is assumed to be independent and identically distributed, SO is the 

probability that I1=0. In general for L>0, zero inventory at the retailer corresponds to 

the first two O1 states of D1 sub-matrices, to the first two O1 states of D2 blocks, and 

when L≥k to the first two Z1 states of D0 sub-matrices. In the case of L=0, zero 

inventory at the retailer corresponds to the first O1 state of D1 and the first O1 state of 

D2 blocks. 
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6.6.3 Average inventory at the retailer (WIP1) 

We define a 1Qr  dimensional vector IR such that its i
th

 element is equal to the 

probability of the inventory at the retailer being i units  )()( 1 iIprobiIR  . The 

values of IR(i) can be calculated iteratively. The iterative process is outlined below. 

 

For basic level L=0: 

For the states corresponding to p2=0, for 1i  to 
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For basic level L, 1≤ L≤Nl 
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For the states corresponding to p2=1: 
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For the states corresponding to p2=2: 
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Having constructed vector RI , we can easily calculate the average inventory on hand 

at the retailer as a simple sum: 







1

1

1 )(
Qr

i

R iIiWIP  

6.6.4 Throughput 

Throughput is the number of product units sold by the retailer per unit of time. 

Essentially, it expresses the flow of products through the system. 

 

We define a 1Qr  dimensional vector IRO such that its i
th

 element is equal to the 

probability that the inventory at the retailer is equal to or greater than i units 

 )()( 1 iIprobiIRO  . Vector IRO can be calculated using vector IR (paragraph 6.6.3).  
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We define an md-dimensional vector met such that the i
th

 element )(imet  is equal to 

the probability that external demand of i units occurs while the inventory on hand at 

the retailer is equal to or greater than i: 
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Since the external demand is independent of the inventory at the retailer: 
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141 

 

Similarly, we define an r+Q1 dimensional vector unmet such that the ith element 

)(iunmet  is equal to the probability that the inventory on hand at the retailer is exactly 

i and external demand in excess of i occurs: 

)|()( 1 idiIprobiunmet   

Since the external demand is independent of the inventory at the retailer: 

  )()()()( iIidmirdiunmet R  

 

The total output is the sum of the output when external demand is fully met and the 

output when external demand is partially met. 

 

 





),min(

1

1

)()(
dmdQr

i

iunmetimetiThroughput   

6.6.5 Order Fill Rate (OFR) 

Order Fill Rate is the percentage of external customers whose demand is fully met by 

the inventory on hand at the retailer. 

 

    
                                                 

                                       
 

 

)(...)2()1(

)()(...)2()2()1()1( 111

mddprobdprobdprob

mdIprobmddprobIprobdprobIprobdprob
OFR






 

OFR can be calculated using vector met from paragraph 6.6.4: 

 







),min(

1

1

)(
dmdQr

i

imetOFR  

6.6.6 Service level (SL) 

Service level is the percentage of external demand, in terms of product units, that is 

met from the inventory on hand at the retailer. 

The average demand Ed: 





md

i

d idmiE
1

)(  

And service level SL: 

dE

Throughput
SL





 

6.6.7 Average lost sales 

Average lost sales per unit of time (ALStime) can be easily computed using service 

level and the average demand: 

dtime ESLALS  )1(  
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To calculate the average lost sales per lost order (order partially met or totally lost), 

order fill rate must be taken into account: 

)1( OFR

ALS
ALS time

order


  

6.6.8 Average inventory in transit towards the retailer (Intransit1) 

First we calculate the utilization of the resource for transportation towards the retailer 

(u1). It can be expressed as the percentage of time that there is a replenishment order 

in transit towards the retailer (p1>0): 

  
  




















Nl

L

O

i

O

i

LLLLLLLL
Z

i

L

L LL

iOOZZlpXiZZlpXilpXu
1 1 1

2121

1

21

1

1

1

1

1 11

)()()(

 

Since only full replenishment orders of Q1 units are sent to the retailer: 

111 QuIntransit   

6.6.9 Average inventory in transit towards the vendor (Intransit2) 

First we calculate the utilization of the resource for transportation towards the vendor 

(u2). It can be expressed as the percentage of time that there is a replenishment order 

in transit towards the vendor (p2>0): 

 

 













Nl

L

lplp

ZZi

L
lp

ZZi

LL

LL

ilpXiXu
1 1

1

1

2

1

21

0

0
2

0
1

)()(  

 

Since we have assumed that the Manufacturer is saturated and always full 

replenishment orders of Q2 units are sent to the vendor: 

 

222 QuIntransit   

 

6.7 Illustrative example 

To illustrate the algorithm described above, we present the analysis for a simple 

example with echelon reorder point s=4, vendor’s replenishment order Q2=8, 

retailer’s reorder point r=2, and retailer’s replenishment order Q1=4. Each external 

customer may ask from 1 to 4 product units with a respective probability dmi for each 

case  4md .  

6.7.1 States definition and state transitions 

6.7.1.1 States definition 

The system is a continuous time Markov Process. At any time t, the state of the 

system can be defined by a four dimensional vector 
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I2(t) is the vendor’s inventory at time t. According to the assumptions made, I2(t) 

includes the inventory on hand at the vendor as well as any inventory in transit 

towards the retailer. The possible values of I2(t) are multiples of Q1=4, while its 

maximum value is s+Q2=12. The permissible values:                   

 

p2(t) is the phase of the replenishment order towards the vendor. Its possible values 

are                . In order for a replenishment order to be in transit towards the 

wholesaler ( 0)(2 tp ), the echelon inventory must be equal to or less than the echelon 

reorder point  stItI  )()( 21 . Correspondingly, 0)(2 tp  only when the echelon 

inventory is greater than the echelon reorder point  stItI  )()( 21 . 

 

I1(t) is the inventory on hand at the retailer at time t. Its maximum permissible value is 

r+Q1=6 and its possible values are                       

 

p1(t) is the phase of the replenishment order towards the retailer.  Its possible values 

are              . 0)(1 tp  as long as the inventory at the retailer is equal to or less 

than the reorder point r  rtI )(1 . Correspondingly, 0)(1 tp  when the retailer’s 

inventory is greater than the reorder point r  rtI )(1 . An exception occurs for the 

boundary conditions when 0)(2 tI , in which case 0)(2 tp  for any value of )(1 tI .  

 

The state space of the Markov process is comprised of all the possible vectors 

    and its dimension can be computed as a function of the design variables through an 

iterative process. For the system under consideration there are 34 possible states. 

These states are ordered linearly, using a lexicographical ordering and moving from 

lower to higher values. First the states are ordered according to )(2 tI (basic levels). 

Within each basic level the ordering is done based on the transportation phase towards 

the vendor )(2 tp , then according to inventory at the retailer )(1 tI , and finally 

according to the transportation phase towards the retailer )(1 tp . The possible states 

and their respective hierarchy are given in figure 6.3 
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Figure 6.3: States for s=4, Q2=8, r=2, Q1=4 

s/n State I2(t) Transportation towards the vendor - p2(t) I1(t) Transportation towards the retailer - p1(t) 

1 0050 0 no 5 no 

2 0060 0 no 6 no 

3 0100 0 1st phase 0 no 

4 0110 0 1st phase 1 no 

5 0120 0 1st phase 2 no 

6 0130 0 1st phase 3 no 

7 0140 0 1st phase 4 no 

8 0200 0 2nd phase 0 no 

9 0210 0 2nd phase 1 no 

10 0220 0 2nd phase 2 no 

11 0230 0 2nd phase 3 no 

12 0240 0 2nd phase 4 no 

13 4011 4 no 1 1st phase 

14 4012 4 no 1 2nd phase 

15 4021 4 no 2 1st phase 

16 4022 4 no 2 2nd phase 

17 4030 4 no 3 no 

18 4040 4 no 4 no 

19 4050 4 no 5 no 

20 4060 4 no 6 no 

21 4101 4 1st phase 0 1st phase 

22 4102 4 1st phase 0 2nd phase 

23 4201 4 2nd phase 0 1st phase 

24 4202 4 2nd phase 0 2nd phase 

25 8001 8 no 0 1st phase 

26 8002 8 no 0 2nd phase 

27 8011 8 no 1 1st phase 

28 8012 8 no 1 2nd phase 

29 8021 8 no 2 1st phase 

30 8022 8 no 2 2nd phase 

31 8030 8 no 3 no 

32 8040 8 no 4 no 

33 d001 12 no 0 1st phase 

34 d002 12 no 0 2nd phase 

6.7.1.2 State transitions 

With the methodological restriction that in infinitesimal time dt only one event may 

occur, the state of the system can be altered instantaneously by five kinds of events:  

1. The transition from the first to the second phase of the Coxian-2 transportation 

towards the vendor.                   . The instantaneous 

transition rate of such transitions is 2122 d .  

2. The arrival of an outstanding order at the vendor. The incoming order 

increases the inventory at the vendor by Q2=8 product units

 222 )()( QtIdttI  . Since in the example under consideration Q2>s, there can 

be no reordering from the vendor 0)(2  dttp . If 0)(2 tI  and 2)(1 tI , on 

replenishment order arrival, Q1=4 units are immediately forwarded for 

transportation towards the retailer ( 1)(1  dttp ). Nominally, these units are 

still in the possession of the vendor, so 22 )( QdttI  . In general, the arrival of 

the replenishment order can be from the first or the second Coxian phase. In 

the first case the instantaneous transition rate is 2121 d , while in the second 

case the respective transition rate is 22 . 
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3. The transition from the first to the second phase of the Coxian-2 transportation 

towards the retailer. The corresponding transition is         

           and the respective instantaneous transition rate is 1112 d . 

4. The arrival of an outstanding order at the retailer. On arrival Q1=4 product 

units are transferred from the possession of the vendor to the retailer. The 

inventory on hand at the retailer increases by Q1 units such that

111 )()( QtIdttI  , while the inventory of the vendor decreases 

correspondingly: 122 )()( QtIdttI  . In the example under consideration Q1>r 

so there can be no reordering from the retailer  0)(1  dttp . In general, the 

arrival of the replenishment order can be from the first or the second Coxian 

phase. In the first case, the instantaneous transition rate is 1111 d . In the 

second case, the respective rate is 12 . 

5. The occurrence of external demand at the retailer. Each customer may ask 

from 1 to 4 units with respective probability dm(i). The inventory on hand at 

the retailer decreases correspondingly, while any excessive demand is lost. If 

2)(1  dttI , 0)(1 tp  and 4)(2  dttI , a new replenishment order is sent from 

the vendor )1)(( 1  dttp . If sdttIdttI  )()( 21  and 0)(2 tp , a new 

replenishment order is asked by the vendor from the manufacturer 

)1)(( 2  dttp . The instantaneous transition rate for external demand i is 

idm . 

The transition diagram for the system under consideration is given in figure 6.4.  
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6.7.2 The Infinitesimal Generator Matrix 

2f : Basic Level L=2 is the lowest level at which the system may reach its 

maximum capacity  

 

2k : Basic level L=2 is lowest basic level where the inventory at the vendor 

exceeds the echelon reorder point 

 

0h : The echelon inventory may exceed the echelon reorder point even for basic 

level L=0  

 

0050 0060 

d001 

0100 0110 0120 0130 0140 

0200 0210 0220 0230 0240 

4011 4012 4021 4022 4030 4040 4050 4060 

4101 4102 4201 4202 

8001 8002 8011 8012 8021 8022 8030 8040 

d002 

dmi∙λ 

d22∙μ21 

d12∙μ12 

d21∙μ21 or μ22 

d11∙μ11 or μ12 

Figure 6.4: Transition diagram: s=4, Q2=8, r=2, Q1=4 
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3Nl : Basic level L=3 is the highest basic level. The maximum value of the 

inventory at the vendor is 3∙Q1=12. The total number of basic levels is 3+1=4 (3 

levels for L>0 plus level L=0) 

 

1)4()3()2()1(1  dmdmdmdmrd  

)4()3()2(2 dmdmdmrd   

)4()3(3 dmdmrd   

)4(4 dmrd   

6.7.2.1 Diagonal blocks 

The diagonal blocks D are analyzed into constituent blocks: 

 



















2

11

00

D

UD

UD

D  

Basic Level L=0 

00

1 Z    

20

2 Z  

30

1 O  

20

2 O  

 

Block D0 is a 22  block: 



















1

0

0

dm
D

  

Block D1 is a 55  matrix that can be divided into four sub-matrices: 

 













































21

21

21

21

21

1

)1()2()3()4(

0)1()2()3(

00)1()2(

000)1(

0000

dmdmdmrd

dmdmrd

dmrd

rd

D

  

D2 is also a 55  block: 
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











































22

22

22

22

22

2

)1()2()3()4(

0)1()2()3(

00)1()2(

000)1(

0000

dmdmdmrd

dmdmrd

dmrd

rd

D  

 

U0 is a 52 block : 

 



















)2()3()4(00

)1()2()3()4(0
0

dmdmdm

dmdmdmdm
U

 

 

U1 is a 55  diagonal block of 2122 d . 

 



































2122

2122

2122

2122

2122

1

0000

0000

0000

0000

0000











d

d

d

d

d

U

 

Basic Level L=1 

41

1 Z    

41

2 Z  

21

1 O  

01

2 O  

 

D0 is         block  

 



































































)1()2()3(0)4(00

0)1()2(0)3(0)4(

00)1(0)2(0)3(

0000)1(0)2(

00000)1(0

00000)1(

0000000

000000

12

111211

12

111211

0

dmdmdmdm

dmdmdmdm

dmdmdm

dmdm

dm

ddm

d

D
 

 

D1 and D2 are 22  blocks: 

 

88
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













1221

11121121

1
0 

 d
D  

 















1222

11121122

2
0 

 d
D  

 

U0 is a 28  block: 
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


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


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






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0












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rd

rd

rd

rd

rd
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Finally, U1 is a 22 diagonal block of 2122 d  

Basic Level L=2 

62

1 Z    

22

2 Z  

02

1 O  

02

2 O  

 

D0 is 88 block: 

 
























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


















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

)1(0)2(0)3(0)4(

00)1(0)2(0)3(

000)1(0)2(0

000)1(0)2(

00000)1(0

00000)1(

0000000

000000
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111211

12

111211

12

111211

0

dmdmdmrd

dmdmrd

dmrd

ddmrd

rd

drd

d

D

 

Since 02

1 O  and 02

2 O , blocks D1, D2, U0, and U1 do not occur for L=2.  
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Basic Level L=3 

23

1 Z    

03

2 Z  

03

1 O  

03

2 O  

 

D0 is a          block 

 















12

111211

0
0 

 d
D  

 

Since 03

1 O  and 03

2 O , the rest of the blocks do not occur for L=3. 

6.7.2.2 Upper-diagonal blocks 

Upper diagonal blocks describe transitions from basic level L1 to basic level L2=L1+2. 

From basic level L1=0 

UD1 is a 85  block with the upper left element at position (3, 25): 

 



































2121

2121

2121

2121

2121

1

0

00

00

0











d

d

d

d

d

UD  

 

Similarly, UD2 is a 85  block with the upper left element at position (8, 25): 
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
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From basic level L1=1 

UD1 is a 22  block with its upper left element at position (21, 33): 

 















2121

2121

1
0

0





d

d
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22
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UD2 is also a 22  block with the upper left element at position (23, 33) 











22

22

2
0

0




UD  

6.7.2.3 Below the diagonal blocks 

From basic level L1=1 

LD0 is a 24  block with its upper left element at position (13, 1) of the infinitesimal 

generator matrix: 

 

























12

1111
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1111

0

0

0

0

0




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

d

d
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LD1 is a 52  block: 

 








 


12

1111

1
0000

0000



d
LD  

 

The upper left element of LD1 for transitions from p2=1 is at position (21, 3) of the 

infinitesimal generator matrix. For transitions from p2=2, the position of the 

respective element is at (23, 8)  

From basic level L1=2 

Since Q1≥r+1, we have only transitions 
2

1Z  → 
1

2Z  and the first 
1

1Z columns will have 

only elements of zero. 

1z  

LD0 is a 86  block: 

 



































12

1111

12

1111

12

1111

0

0000000

0000000
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





d

d

d

LD  

 

The position of the upper left element is at (25, 13) 

 

Since for basic level L=2 there are no O1 states, there are no corresponding LD1 

matrices.  

0w



152 

 

From basic level L1=3 

LD0 is a 82  block: 

1z  








 


12
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0000000
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The position of the upper left element is at (33, 25)  

 

Since for basic level L=3 there are no O1 states, there are no corresponding LD1 

matrices. The complete structure of the infinitesimal generator matrix is given in 

figure 6.5. 

6.7.3 Performance measures 

We denote X(i) the stationary probability for the i
th

 state. 

Average inventory at the possession of the vendor - WIP2 





34

33

32

25

24

12

2 )(12)(8)(4
iii

iXiXiXWIP  

Stock-out probability at the retailer – SO 

)8()3(0 XXSO   

)34()33()26()25( XXXXSOZ   

)22()21(1 XXSOO   

)24()23(2 XXSOO   

210 OOZ SOSOSOSOSO   

Average inventory at the retailer – WIP1 

)28()27()14()13()9()4()1( XXXXXXIR   

)30()29()16()15()10()5()2( XXXXXXIR   

)31()17()11()6()3( XXXXIR   

)32()18()12()7()4( XXXXIR   

)19()1()5( XXIR   

)20()2()6( XXIR   





6

1

1 )(
i

R iIiWIP

 

 



153 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

state 0050 0060 0100 0110 0120 0130 0140 0200 0210 0220 0230 0240 4011 4012 4021 4022 4030 4040 4050 4060 4101 4102 4201 4202 8001 8002 8011 8012 8021 8022 8030 8040 d001 d002

1 0050 -λ dm(4)*λ dm(3)*λ dm(2)*λ dm(1)*λ

2 0060 dm(1)*λ -λ dm(4)*λ dm(3)*λ dm(2)*λ

3 0100 -μ21 d22*μ21 d21*μ21

4 0110 λ -μ21-λ d22*μ21 d21*μ21

5 0120 rd(2)*λ dm(1)*λ -μ21-λ d22*μ21 d21*μ21

6 0130 rd(3)*λ dm(2)*λ dm(1)*λ -μ21-λ d22*μ21 d21*μ21

7 0140 rd(4)*λ dm(3)*λ dm(2)*λ dm(1)*λ -μ21-λ d22*μ21 d21*μ21

8 0200 -μ22 μ22

9 0210 λ -μ22-λ μ22

10 0220 rd(2)*λ dm(1)*λ -μ22-λ μ22

11 0230 rd(3)*λ dm(2)*λ dm(1)*λ -μ22-λ μ22

12 0240 rd(4)*λ dm(3)*λ dm(2)*λ dm(1)*λ -μ22-λ μ22

13 4011 d11*μ11 -μ11-λ d12*μ11 λ

14 4012 μ12 -μ12-λ λ

15 4021 d11*μ11 dm(1)*λ -μ11-λ d12*μ11 rd(2)*λ

16 4022 μ12 dm(1)*λ -μ12-λ rd(2)*λ

17 4030 dm(2)*λ dm(1)*λ -λ rd(3)*λ

18 4040 dm(3)*λ dm(2)*λ dm(1)*λ -λ rd(4)*λ

19 4050 dm(4)*λ dm(3)*λ dm(2)*λ dm(1)*λ -λ

20 4060 dm(4)*λ dm(3)*λ dm(2)*λ dm(1)*λ -λ

21 4101 d11*μ11 -μ21-μ11 d12*μ11 d22*μ21 d21*μ21

22 4102 μ12 -μ21-μ12 d22*μ21 d21*μ21

23 4201 d11*μ11 -μ22-μ11 d12*μ11 μ22

24 4202 μ12 -μ22-μ12 μ22

25 8001 d11*μ11 -μ11 d12*μ11

26 8002 μ12 -μ12

27 8011 d11*μ11 λ -μ11-λ d12*μ11

28 8012 μ12 λ -μ12-λ

29 8021 d11*μ11 rd(2)*λ dm(1)*λ -μ11-λ d12*μ11

30 8022 μ12 rd(2)*λ dm(1)*λ -μ12-λ

31 8030 rd(3)*λ dm(2)*λ dm(1)*λ -λ

32 8040 rd(4)*λ dm(3)*λ dm(2)*λ dm(1)*λ -λ

33 d001 d11*μ11 -μ11 d12*μ11

34 d002 μ12 -μ12

Figure 6.5: The infinitesimal generator matrix for s=4, Q2=8, r=2, Q1=4 and maximum demand per external customer md=4 
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Utilization of transportation resource towards the Vendor 
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The rest of the performance measures can be calculated from the above metrics 

through simple relations. 

6.7.4 Validation of the algorithmic results 

The system of linear equations that describes the system was constructed manually 

and solved in Mathematica to get the vector of stationary probabilities. Then the 

performance measures of the system were calculated as described in section 6.7.3. 

The results were practically identical to those produced algorithmically. The 

algorithmic results were also contrasted to simulation results (see section 6.8). Five 

replications of 2000000 time units each were used. The algorithmic results were 

within the confidence interval provided by simulation. In the table below are given the 

results for μ11=2.0, μ12=0.4, d12=0.2, μ21=1.25, μ22=0.5, d22=0.1, λ=0.5, and 

 4.0,3.0,2.0,1.0dm . 
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Figure 6.6: Simulation model logic 

Performance measure Algorithm - Matlab Manually- Mathematica Simulation – Arena (95% C.I.) 

OFR 0.659517 0.659517 0.660 ± 0.001   

SL 0.717521 0.717521 0.718  ± 0.001   

WIP1 3.106957 3.106959 3.107  ± 0.001   

WIP2 4.748908 4.748911 4.751  ± 0.001   

Throuput 1.076281 1.076281 1.077  ± 0.001   

Intransit1 1.076281 1.076281 1.076  ± 0.001   

 

6.8 Validation of the model 

6.8.1 Simulation model 

Several simple scenarios we solved manually using Mathematica and in every case 

the results were identical to those produced algorithmically. However, such an 

approach is not practical for a more thorough validation of the developed algorithm 

since for bigger systems several thousand states may be involved. For a more 

vigorous testing of the algorithm, a simulation model of the system under 

consideration was developed. The system was modeled as a series of cycles, each 

cycle describing the interface between successive members of the network. The basic 

logic of the simulation model is given in figure 6.6. 
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The simulation model was constructed in Arena simulation package, Version 12.00.00 

– CPR 9. Test runs were executed to determine the specific parameters of the 

simulation runs that would give statistically rigorous results within a reasonable 

computation time. A simulation time of 1600000 time units was selected as it was 

deemed long enough to provide statistically acceptable results. To eliminate any 

effects of the initial conditions, a warm-up period of 100000 time units was also 

selected. 

 

Eight different performance measures were included in the analysis: Order Fill Rate 

(OFR), Service Level (SL), Average inventory at the retailer (WIP1), Average 

inventory at the possession of the vendor (WIP2),  Average inventory in transit 

towards the retailer (Intransit1), Average inventory in transit towards the Vendor 

(Intransit2), the average lost sales per lost customer (ALSorder), and the Throughput.  

6.8.2 Simulation results 

 

Figure 6.7: % Difference of Simulation and Analytic Results. λ=0.5, μ11=2, μ12=0.4, d12=0.2, 

μ21=1.25, μ22=0.5, d22=0.1, ]1.0,2.0,3.0,4.0[dm , 0≤ s≤5, 1≤n≤5, 0≤r≤s, 1≤Q1≤5 
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More than 1400 scenarios were tested for different combinations of system 

parameters. Balanced, supply constrained, and demand constrained systems were 

included in the analysis. Simulation results were found to be consistent with the 

results of the analytic algorithm. The observed deviation was well within the limits of 

the expected variability due to the statistical nature of simulation.  

 

Some examples of the comparison between the analytic solution and the simulation 

results are given in Fig. 6.7. In the graphs the deviation is given as the percentage 

difference between the analytical method and simulation: 

 

 

                
                   

        
 

 

 

Some of the corresponding data are given in the Appendix. 

6.9 Model Performance and limitations 

The algorithm was programmed in Matlab, version 2018a, 9.4.0.813654. For the runs 

commented here a computer with Core i-3-4005U CPU at 1.70 GHz processor and 

4GB installed RAM was used. Its operating system was Windows 7 – Ultimate, 64-

bit.  

 

The proposed algorithm is valid for any combination of the decision variables and for 

any given system parameters. However, as the system under consideration becomes 

bigger, the dimension of the infinitesimal generator matrix increases and the 

algorithm may become computationally demanding. The number of the possible states 

depends on the relation of Q1 with r and s, as well as the absolute values of r, s, and n 

(Q2=n∙Q1). In general, higher numbers of states are observed for low Q1 values and 

high s, r and n values. It must be noted that due to the assumptions that have been 

made about the system, the number of states remains relatively low over a wide range 

of the decision variable values, allowing us flexibility to model a wide range of 

problems. Some examples of the number of states as a function of the decision 

variables are given in figure 6.8.  

 

The multiplication of problem’s dimensions is a common drawback with models 

based on Markov analysis (Mehmood and Lu, 2011) and restricts the application of 

exact Markov models in real scale systems. Rising computational power tends to 

alleviate the problem, but it still remains one of the main drawbacks of such 

approaches.  
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Figure 6.8: Number of states as a function of the decision variables 

s=20, n=2 r=4, Q1=2 

  

 

Computational time depends mainly on the number of possible states. The exact 

relation between the decision variables affects the number of steps that are required 

for the solution of the system, so it also has an effect. An example of computational 

time as a function of the infinitesimal generator’s dimensions is given in figure 6.9. 

 

Figure 6.9: Computational time (sec) as a function of the infinitesimal generator 

matrix dimension 

 

 

The main practical limitation of the model is the required RAM memory, which in its 

turn depends on the dimensions of the infinitesimal generator matrix. Even in a 

computer of moderate performance, the developed model offers a satisfactory degree 

of flexibility. The biggest problem solved in the testing computer comprised of 22902 

states (s=90, n=40, r=80, Q1=1). At this stage of our research priority was given to the 

tractability of the algorithm in relation to the theory, so neither algorithmic efficiency 

(number of steps to the solution), nor memory consumption were taken into 

consideration during the development of the computer program. Both could be 

improved by rephrasing the program code and by exploiting embedded features of 

Matlab such as sparse matrices.  

 

The proposed algorithm offers certain advantages compared to alternative approaches 

such as simulation. Firstly, the analytic approach gives better results in terms of 
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speed. Even for relatively big systems, the exact algorithm is significantly faster than 

simulation and in most cases the difference in computation time is several orders of 

magnitude. Secondly, the exact algorithm poses no limits on precision. In contrast, 

simulation provides results in the form of confidence intervals and this can be 

problematic especially when low values of the performance measures are concerned 

where the specific value is comparable to the margin of error. Finally, the exact 

algorithm is easier to integrate in a more comprehensive scheme, as for example, in 

the context of an optimization model.  

6.10 Numerical Results 

6.10.1 Balanced systems 

We examine balanced systems where the average time between successive arrivals of 

external customers is equal to both the average transportation time from the 

manufacturer to the vendor and the average transportation time from the vendor to the 

retailer: 
12

12

1122

22

21

11111


 dd

 
For the examples presented below we use μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, 

d22=0.2, λ=0.5 and )4.0,6.0(dm (there is 0.6 probability that an external customer 

will ask 1 product unit and 0.4 probability that he will ask 2 units).

 
6.10.1.1 The effect of the decision variables on the performance measures 

We investigate the effect of each decision variable on the performance measures.  

Retailer’s reorder point – r 

We investigate the effect of the retailer’s reorder point (r) on the performance 

measures.  

Order Fill rate and Service Level 

Order Fill Rate as a function of reorder point r 

s=6, Q2=6 s=10, Q2=4 

 
 

 

By increasing r we can increase OFR but with decreasing elasticity. The higher the 

value of r, the more difficult it is to affect OFR through it. Beyond a point, the effect 

of the retailer’s reorder point becomes negligible as OFR reaches a plateau. In 

general, the value of r is more important for lower Q1 values, but demand 

characteristics may also have an effect. 

 

Service Level (SL) is related to Order Fill Rate (OFR): 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

r

OFR

Q1=3, n=2

Q1=2, n=3

Q1=1, n=6

Q1=6, n=1 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12

r

OFR

Q1=4, n=1

Q1=2, n=2

Q1=1, n=4



160 

 

x

order

E

ALS

FR

SL






1

1
 

 

For the given demand characteristics, both performance measures exhibit a similar 

behavior. 

 

Service Level as a function of reorder point r 

s=6, Q2=6 s=10, Q2=4 

  

Average inventories 

Retailer’s WIP as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

Increasing r causes an almost linear increase in retailer’s inventory. The effect of r on 

WIP1 is less pronounced in the case of base stock policy (Q1=1). 

 

Wholesaler’s WIP as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

The increase of r for a given echelon inventory policy (s,Q2) causes an almost linear 

decrease in wholesaler’s inventory. The effect is less pronounced in the case of base 

stock policy (Q1=1). 

 

For low r values total inventory decreases with increasing r, but beyond a point the 

effect becomes negligible. In effect, for a given echelon inventory policy (s, Q2) the 

increase of r causes a transfer of system inventory downstream from the wholesaler to 

the retailer. 
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Total average inventory as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  

Utilization of resources 

Utilization of transportation resource towards the retailer as a function of reorder 

point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

By the definition of balanced systems, utilization for transportation towards the 

retailer is in a linear relation with the utilization for transportation towards the 

wholesaler:  

2211 nutilizatioQnutilizatioQ   

For low r values, increasing r tends to increase utilization and their relation can be 

described with good precision as logarithmic. For high r values or high Q1 values the 

effect becomes negligible. The effect of the retailer’s reorder point is most important 

in the case of base stock policies. 

Retailer’s replenishment order – Q1 

We investigate the effect of the retailer’s replenishment order (Q1) on the performance 

measures.  

Order Fill rate and Service Level 

Increasing Q1 causes OFR to increase, but with decreasing elasticity. The behavior of 

OFR with changing Q1 is similar for all tested reorder point r values, while when both 

Q1 and Q2 are allowed to change simultaneously (n=constant), predictably the effect 

of Q1 is more important. 

 

As has already been explained, the behavior of SL with changing Q1 is similar to that 

of OFR.  
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Order Fill Rate as a function of replenishment order Q1 (Q2=const) 

s=4, Q2=12 s=10, Q2=8  

  
 

Order Fill Rate as a function of replenishment order Q1 (n=const) 

s=4, r=2 s=6, r=4 

  
 

Service level as a function of replenishment order Q1 (Q2=const) 

s=4, Q2=12  s=10, Q2=8  

  
 

Service level as a function of replenishment order Q1 (n=const) 

s=4, r=2  s=6, r=4  

  

Average inventories 

For a given vendor’s policy, an increase in Q1 causes an increase in WIP1 and a 

corresponding decrease in WIP2. The effect in total WIP is the sum of these changes. 

The effect of Q1 in WIP total depends on the specific values of the decision variables, 

and in certain scenarios local minima were observed. In any case, the change in total 

average inventory was relatively small. 
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When Q2 is allowed to change along with Q1 (n=constant), increasing Q1 causes a 

significant increase in all average inventories.   

 

Average inventory at the retailer as a function of the replenishment order Q1 

(Q2=const) 

s=4, Q2=12  s=10, Q2=8  

  
 

Average inventory at the retailer as a function of the replenishment order Q1 (n=const) 

s=4, r=2  s=6, r=4  

  
 

Average inventory at the vendor as a function of replenishment order Q1 (Q2=const) 

s=4, Q2=12 s=10, Q2=8  

  
 

Average inventory at the vendor as a function of replenishment order Q1 (n=const) 

s=4, r=2  s=6, r=4  
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Average total inventory as a function of replenishment order Q1 (Q2=const) 

s=4, Q2=12  s=10, Q2=8  

  
s=8, Q2=8 s=4, Q2=6 

  
 

Average total inventory as a function of replenishment order Q1 (n=const) 

s=4, r=2 s=6, r=4 

  

Utilization of resources 

Predictably, the utilization of the transportation resource towards the retailer 

decreases as the amount of the replenishment orders increases (less replenishment 

orders are required to transfer a given amount of inventory). In comparison with the 

effect of Q1, the effect of Q2 is negligible.   

 

Utilization of transportation resource towards the retailer as a function of 

replenishment order Q1 (Q2=const) 

s=4, Q2=12 s=10, Q2=8 
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Utilization of transportation resource towards the retailer as a function of 

replenishment order Q1 (n=const) 

s=4, r=2 s=6, r=4 

  

Echelon reorder point – s 

We investigate the effect of the echelon reorder point (s) on the performance 

measures. 

Order Fill rate and Service Level 

Order Fill Rate as a function of echelon reorder point s for different Q1 values 

r=2, Q2=6 r=3, Q2=10 

  
r=0, Q2=8 r=2, Q2=2 

  
 

Order Fill Rate as a function of echelon reorder point s for different Q2 values 

r=2, Q1=2 r=4, Q1=2 

  
 

OFR can be increased by increasing echelon reorder point but the enhancement of 

OFR that can be achieved is limited. The importance of s depends on the Q2 value, the 

effect of s being more pronounced for low Q2.  
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For the given demand characteristics, the behavior of SL with changing s is similar to 

that of OFR. 

 

Service Level as a function of echelon reorder point s 

r=2, Q2=6 r=3, Q2=10 

  
r=2, Q1=2 r=4, Q1=2 

  

Average inventories 

The increase of s initially causes a relatively mild increase in the average retailer’s 

inventory and for higher s values the effect become negligible. In contrast, increasing 

s causes an almost linear increase in the average inventory of the wholesaler. As a 

result, the average total inventory increases significantly with s.  

 

Average inventory at the retailer as a function of echelon reorder point s 

r=2, Q2=6 r=3, Q2=10 

  
r=2, Q1=2 r=4, Q1=2 
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Average inventory at the wholesaler as a function of echelon reorder point s 

r=2, Q2=6 r=3, Q2=10 

  
r=2, Q1=2 r=4, Q1=2 

  
 

Average total inventory as a function of echelon reorder point s 

r=2, Q2=6 r=3, Q2=10 

  
r=2, Q1=2 r=4, Q1=2 

  

Utilization of resources 

Utilization of transportation resource towards the retailer as a function of echelon 

reorder point s 

r=2, Q2=6 r=2, Q1=2 
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Utilization of transportation resource towards the retailer tends to increase mildly with 

increasing s. The effect becomes less important for high Q2 values. 

Vendor’s replenishment order – Q2 

We investigate the effect of the vendor’s replenishment order (Q2) on the performance 

measures.  

Order Fill rate and Service Level 

Order Fill Rate as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

For low s values OFR can be increased by increasing the echelon replenishment order 

Q2. However, beyond a point, the effect becomes negligible. The behavior of OFR 

with changing Q2 is not affected by s or Q1 values (The Q2-OFR curves have similar 

shape for different s values and different Q1 values). 

 

As already explained, for the given demand characteristics, SL exhibits a similar 

behavior. 

 

Service level as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  

Average inventories 

Average inventory at the retailer as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 
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The average inventory at the retailer is affected mildly by Q2, and only where the 

lowest possible Q2 values are concerned. In contrast, the average inventory at the 

wholesaler increases with Q2 according to a relation that can be described with good 

precision as linear. Total system inventory, as the sum of WIP1 and WIP2, increases 

almost linearly with increasing Q2. 

 

Average inventory at the wholesaler as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

Total average inventory as a function of replenishment order Q2 

r=2, Q1=2 r=3, Q1=1 

  
s=4, r=2 s=6, r=5 

  

Utilization of resources 

Order Fill Rate as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

Increasing the echelon replenishment order Q2, causes an increase in transportation 

resource utilization. The effect is mild and reflects the increase in Service Level and 

the corresponding increase of output. 
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6.10.1.2 Combined Effect of the decision variables on the performance measures 

Expanding the analysis of the previous section, we investigate the behavior of the 

performance measures when two of the decision variables are changed 

simultaneously.  

 

As explained in 6.10.1.1. SL and OFR are related to each other. For the demand 

characteristics that were used for the analysis (low variance), Order Fill Rate and 

Service Level exhibit a similar behavior with OFR taking slightly lower values in 

comparison with SL. Moreover, utilization of resources is in linear relation with SL 

through system Output. If T1 the average replenishment time for the retailer and T2 the 

average replenishment time for the wholesaler: 
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For the above reasons, and so as to economize space, OFR and utilizations are not 

included in the following analysis.  

Retailer’s inventory policy 

We investigate the simultaneous change of both parameters of the retailer’s inventory 

policy (r,Q1). 

 

s=8, Q2=12, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

Both r and Q1 are important for customer satisfaction. Service level and Order Fill 

Rate can be increased by increasing r or Q1. For both parameters the effect is more 

important when low parameter values are concerned. In most of the tested cases the 

effect of Q1 is slightly more important than that of r.  

 

Average inventory in the system tends to decrease with increasing r and Q1, but in 

either case the effect is mild. In most scenarios Q1 was more effective in decreasing 
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WIP total, and in some cases local minima where observed for intermediate Q1 

values. 

 

s=8, Q2=6, dm=(0.6, 0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

s=8, Q2=12, dm=(0.4,0.6) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

In general, a policy of high r and high Q1 is desirable as it increases the performance 

of the system while actually decreasing the total inventory in the system. On the 

downside, increasing r or Q1 will cause a significant increase in the average inventory 

of the retailer, Q1 having a greater effect on WIP1 than r. 

 

Slight changes in the external demand characteristics do not affect the behavior of the 

system. 
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s=4, Q2=6, dm=(0.4,0.6) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   

Echelon inventory policy 

We investigate the simultaneous change of vendor’s inventory policy parameters s 

and Q2. 

 

r=4, Q1=1, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 
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r=4, Q1=2, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

 

r=6, Q1=3, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

Both echelon reorder point s and echelon replenishment order Q2 are positively 

correlated with OFR and SL, but in general the effect of s is more important than that 

of Q2. With respect to average inventories, the contribution of s is greater for both 

WIP1 and WIP2. As a result, s is also more important for the total average inventory in 

the system. As a conclusion, echelon inventory policy can be used to enhance 

customer satisfaction, but any improvement of service level must be compensated 

with higher inventories in the system. The effect of each parameter is affected by the 

value of the other. In general, the lower the value of the one parameter, the stronger 

the effect of the other. 

 



174 

 

r=4, Q1=3, dm=(0.4,0.6) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

Slight changes in the characteristics of the external demand do not alter the behavior 

of the system. 

Replenishment orders 

We investigate the effect of the simultaneous change of the replenishment orders 

towards the vendor (Q2) and the retailer (Q1) for given reorder points. 

 

Q2 is of some significance for OFR and SL only when the lowest possible values of 

Q2 are concerned. In any case its effect is negligible in relation to that of Q1.  

 

r=3, s=6, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 
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r=2, s=6, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

r=3, s=6, dm=(0.4,0.6) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

With respect to average inventories, average inventory at the retailer depends 

strongly, but in a concave fashion, on Q1. In contrast, increasing Q2 causes a slight 

increase of WIP1, a change that reflects the higher availability of inventory at the 

retailer. Average inventory at the wholesaler rises significantly with Q2, while on the 

other hand, raising Q1 causes a decrease in WIP2.   

 

With regard to average total inventory, the increase of Q1 may actually decrease WIP 

total, while Q2 has an almost linear contribution. In conclusion, for an efficient 

inventory policy for the system, high Q1 and low Q2 values must be employed. It 

should be reminded that by the assumptions of the system Q2 is a multiple of Q1. 
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Small changes in the external demand characteristics do not alter the general behavior 

of the system. 

Reorder points 

We investigate the simultaneous change of the echelon reorder point s and the 

retailer’s reorder point r for given replenishment orders (Q1, Q2) 

 

Q1=3,Q2=6, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

Q1=1, Q2=5, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

The effect on Order Fill Rate and Service Level is similar for both r and s. The 

performance measures are increasing with increasing values of the reorder points, but 

the elasticities are decreasing. 
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Q1=4, Q2=4, dm=(0.6,0.4) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

With respect to retailer’s inventory, both r and s are positively correlated with WIP1. 

Predictably, r is important only for higher s values. Conversely, s is more important 

for higher r values. 

 

As far as WIP2 is concerned, s is positively correlated with the average inventory at 

the wholesaler and its effect is more significant for lower r values. Increasing r causes 

WIP2 to fall, with the decrease being more pronounced for high s values. 

  

Q1=2, Q2=4, dm=(0.4,0.6) 

OFR SL WIP total 

   
Utilization1 WIP1 WIP2 

   
 

For given values of the other decision variables, average total inventory is only 

slightly affected by the retailers reorder point and only for low r values. For higher r 
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values the effect is almost negligible. On the other hand, echelon reorder point s is 

strongly positively correlated with WIP total. 

 

From our analysis we conclude that in general a high value of r in relation to s is 

desirable for a system which achieves high customer satisfaction with minimal 

inventories. 

 

Small changes in the external demand characteristics do not alter the general behavior 

of the system. 

6.10.1.3 Effect of the demand characteristics on the performance measures 

We investigate the effect of external demand variability on the performance measures. 

Different scenarios are explored where the average external demand remains constant, 

but its variance is changed. 
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Some results are given below both in the form of a table and graphically. 

 

Performance measures as a function of external demand variance. s=8, Q2=8, r=4, 

Q1=4, Ex=1.8, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, λ=0.5 
dm(1) dm(2) dm(3) dm(4) dm(5) dm(6) Var OFR SL WIPtotal WIP1 WIP2 util1 

0.2 0.8 0 0 0 0 0.16 0.819 0.832 11.189 4.493 6.696 0.374 

0.45 0.3 0.25 0 0 0 0.66 0.811 0.820 11.184 4.474 6.710 0.369 

0.39 0.45 0.15 0 0 0.01 0.66 0.811 0.820 11.187 4.479 6.708 0.369 

0.48 0.28 0.2 0.04 0 0 0.8 0.809 0.818 11.197 4.485 6.712 0.368 

0.6 0 0.4 0 0 0 0.96 0.808 0.815 11.208 4.498 6.710 0.367 

0.65 0.1 0.1 0.1 0.05 0 1.56 0.802 0.803 11.251 4.524 6.727 0.361 

0.7 0.1 0 0.1 0.1 0 1.96 0.796 0.794 11.273 4.534 6.739 0.357 

0.7 0.05 0.15 0.02 0.01 0.07 2.1 0.793 0.789 11.286 4.556 6.730 0.355 

0.82 0 0 0 0.1 0.08 2.96 0.780 0.771 11.341 4.577 6.764 0.347 

0.84 0 0 0 0 0.16 3.36 0.772 0.761 11.379 4.610 6.769 0.343 

 

Performance measures as a function of external demand variance. s=4, Q2=4, r=4, 

Q1=2, Ex=1.8, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, λ=0.5 
dm(1) dm(2) dm(3) dm(4) dm(5) dm(6) Var OFR SL WIPtotal WIP1 WIP2 util1 

0.2 0.8 0 0 0 0 0.16 0.624 0.644 5.422 2.477 2.944 0.579 

0.45 0.3 0.25 0 0 0 0.66 0.605 0.628 5.385 2.486 2.898 0.566 

0.39 0.45 0.15 0 0 0.01 0.66 0.611 0.630 5.390 2.493 2.897 0.567 

0.48 0.28 0.2 0.04 0 0 0.8 0.607 0.626 5.390 2.500 2.890 0.563 

0.6 0 0.4 0 0 0 0.96 0.599 0.621 5.393 2.509 2.884 0.559 

0.65 0.1 0.1 0.1 0.05 0 1.56 0.611 0.611 5.410 2.570 2.839 0.550 

0.7 0.1 0 0.1 0.1 0 1.96 0.615 0.603 5.418 2.609 2.809 0.543 

0.7 0.05 0.15 0.02 0.01 0.07 2.1 0.614 0.601 5.421 2.629 2.792 0.541 

0.82 0 0 0 0.1 0.08 2.96 0.614 0.584 5.440 2.715 2.724 0.526 

0.84 0 0 0 0 0.16 3.36 0.615 0.576 5.454 2.768 2.686 0.519 

 

With regard to Order Fill Rate (the percentage of external orders that are fully met), 

the exact values of the external demand parameters are more important than demand 

variance, and no safe prediction can be made. On the other hand, service level (the 

percentage of external demand in terms of product units that is met from inventory on 

hand) consistently decreases with increasing variance.  
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Average inventory at the retailer also tends to increase with increased demand 

variance. This is somewhat paradoxical, as service level decreases. Demand 

variability disrupts the system in such a way that inventory at the retailer increases at 

the same time when customer satisfaction decreases. 

  

Average inventory at the wholesaler is less affected by external demand variance, and 

the effect depends on the specific values of the system parameters. For average total 

inventory, changes in WIP1 dominate, so WIP total also tends to increase with 

increased variance.  

 

The utilization of transportation resources is directly related to service level and 

predictably exhibits the same behavior. 

 

In conclusion, increasing the variance of external demand is detrimental to the 

performance of the system. The effects are more pronounced to the retailer and 

include both accumulation of inventory and lower service levels and ultimately lower 

system output.  

 

The effect of external demand variance on the performance measures. s=8, Q2=8 ,r=4, 

Q1=4, Average demand Ex=1.8, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, 

λ=0.5 
OFR  

  
WIP total WIP1 

  
WIP2 Utilization1 
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The effect of external demand variance on the performance measures. s=4, Q2=4 ,r=4, 

Q1=2, Average demand Ex=1.8, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, 

λ=0.5 
OFR SL 

  
WIP total WIP1 

  
WIP2 Utilization1 

  

6.10.1.4 Effect of the lead time variance on the performance measures 

We use the parameters of the Coxian distribution to investigate the effect of the 

retailer’s lead time variance on the performance of the system. For our analysis we 

kept constant the transportation time parameters for transportation from the 

manufacturer to the vendor, and changed the time parameters for transportation from 

the vendor to the retailer. The average transportation time from the vendor to the 

retailer (T1) was kept constant, but its variance changed according to the Coxian-2 

parameters: 
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The effect of retailer’s Lead time Variance on performance measures. s=8, Q2=8, r=4, Q1=4, 

dm=(0.6, 0.4), μ21=2/3, μ22=2/3, d22=1/3, λ=0.5, T1=2 

  

  

  
 

The increase in the Retailer’s lead time variance is detrimental to the performance of 

the system. OFR and SL decrease. The average inventory at the retailer also tends to 

decrease, but in general WIP1 is the least affected performance measure and for many 

scenarios, in absolute values the changes are negligible. The effect is stronger for 

WIP2 which increases as the variance increases. As a result, total average inventory 

also increases with increasing variance. In most cases the changes in all examined 

performance measures can be captured quite accurately with simple linear relations 

(in most cases an R
2
 value above 0.99 is observed for linear fit). As was the case for 

external demand variance, the increase of lead time variance causes customer 

satisfaction to fall and at the same time more inventory is accumulated in the system. 

 

Some of the corresponding numerical data are given in appendix 6.13 
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The effect of retailer’s Lead time Variance on performance measures. s=4, Q2=4, r=4, Q1=2, 

dm=(0.6, 0.4), μ21=2/3, μ22=2/3, d22=1/3, λ=0.5, T1=2 

  

  

  
 

6.10.2 Supply Constrained systems 

In supply constrained systems the average transportation time from the manufacturer 

to the vendor is longer than the average transportation time from the vendor to the 

retailer, which in its turn is longer than the average time between successive arrivals 

of external customers:
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For the examples presented below we use μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, 

d22= 0.4, λ=0.5 and )4.0,6.0(dm (there is 0.6 probability that an external customer 

will ask 1 product unit and 0.4 probability that he will ask 2 units). 

6.10.2.1 The effect of the decision variables on the performance measures 

In comparison with balanced systems, for given external demand characteristics, 

supply constrained systems exhibit slightly lower Order Fill rates and Service Levels, 

as well as lower average inventories at the retailer. For average inventory at the 

wholesaler, as well as for average total inventory, both higher and lower values were 

observed, depending on the specific values of the decision variables for the scenario 
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under consideration. In any case the behavior of the system (the shape of the 

respective curves) for changing decision variables is the same for both balanced and 

supply constrained systems. 

 

Retailer’s WIP as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

 

Wholesaler’s WIP as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

 

Total average inventory as function of reorder point r 

s=5 Q2=4 s=10 , Q2=4 

  
 

 

Service level as a function of replenishment order Q1  

s=4, Q2=12 s=6, r=4 (n=const) 
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Average inventory at the retailer as a function of replenishment order Q1  

s=4, Q2=12 s=10, Q2=8 

  
 

 

Average inventory at the vendor as a function of replenishment order Q1  

s=4, Q2=12 s=10, Q2=8 

  
 

 

Average total inventory as a function of replenishment order Q1  

s=4, Q2=12 s=10, Q2=8 

  
 

 

Service Level as a function of echelon reorder point s 

r=2, Q2=6 r=4, Q1=2 
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Average inventory at the retailer as a function of echelon reorder point s 

r=2, Q2=6 r=2, Q1=2 

  
 

 

Average inventory at the wholesaler as a function of echelon reorder point s 

r=2, Q2=6 r=4, Q1=2 

  
 

 

Average total inventory as a function of echelon reorder point s 

r=2, Q2=6 r=2, Q1=2 

  
 

 

Service level as a function of replenishment order Q2 (Q1=const) 

r=2, Q1=2 s=4, r=2 
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Average inventory at the retailer as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

Average inventory at the wholesaler as a function of replenishment order Q2 

(Q1=const) 

r=2, Q1=2 s=4, r=2 

  
 

Total average inventory as a function of replenishment order Q2  

r=2, Q1=2 r=3, Q1=1 

  
 

In general, the behavior of the system is similar to that for balanced systems also 

when the combined effect of the decision variables is investigated. The conclusions 

outlined in 6.10.1.2 for balanced systems also hold for supply constrained systems. 

6.10.2.2 Effect of demand characteristics on the performance measures 

 

Performance measures as a function of external demand variance. s=8, Q2=8, r=4, 

Q1=4, Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.4, λ=0.5 
dm(1) dm(2) dm(3) dm(4) dm(5) dm(6) Var OFR SL WIPtotal WIP1 WIP2 util1 

0.2 0.8 0 0 0 0 0.16 0.754 0.768 10.637 3.998 6.639 0.432 

0.45 0.3 0.25 0 0 0 0.66 0.746 0.757 10.639 3.989 6.650 0.426 

0.39 0.45 0.15 0 0 0.01 0.66 0.746 0.757 10.641 3.993 6.647 0.426 

0.48 0.28 0.2 0.04 0 0 0.8 0.745 0.755 10.653 4.002 6.651 0.425 

0.6 0 0.4 0 0 0 0.96 0.745 0.752 10.667 4.018 6.649 0.423 
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0.82 0 0 0 0.1 0.08 2.96 0.724 0.713 10.823 4.132 6.691 0.401 

0.84 0 0 0 0 0.16 3.36 0.720 0.704 10.863 4.168 6.694 0.396 
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Performance measures as a function of external demand variance. s=4, Q2=4, r=4, 

Q1=2, Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.4, λ=0.5 
dm(1) dm(2) dm(3) dm(4) dm(5) dm(6) Var OFR SL WIPtotal WIP1 WIP2 util1 

0.2 0.8 0 0 0 0 0.16 0.528 0.548 5.056 1.959 3.097 0.616 

0.45 0.3 0.25 0 0 0 0.66 0.511 0.536 5.028 1.991 3.037 0.603 

0.39 0.45 0.15 0 0 0.01 0.66 0.517 0.537 5.033 1.993 3.040 0.604 

0.48 0.28 0.2 0.04 0 0 0.8 0.514 0.534 5.034 2.006 3.028 0.601 

0.6 0 0.4 0 0 0 0.96 0.507 0.530 5.038 2.022 3.016 0.596 

0.65 0.1 0.1 0.1 0.05 0 1.56 0.525 0.523 5.056 2.084 2.972 0.588 

0.7 0.1 0 0.1 0.1 0 1.96 0.532 0.518 5.065 2.125 2.940 0.582 

0.7 0.05 0.15 0.02 0.01 0.07 2.1 0.532 0.517 5.068 2.139 2.929 0.581 

0.82 0 0 0 0.1 0.08 2.96 0.542 0.504 5.090 2.233 2.857 0.567 

0.84 0 0 0 0 0.16 3.36 0.548 0.499 5.104 2.281 2.823 0.562 

 

We investigate the effect of external demand variability on the performance measures. 

Different scenarios are explored where average external demand remains constant, but 

its variance Var is changed. Some results are given both in the form of a table and 

graphically. 

 

The effect of external demand variance on the performance measures. s=8, Q2=8 ,r=4, 

Q1=4, Average demand Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.4, 

λ=0.5 
OFR SL 

  
WIP total WIP1 

  
WIP2 Utilization1 

  
 

With regard to Order Fill Rate (the percentage of external orders that are fully met), 

the exact values of the external demand parameters are more important than demand 

variance, and no safe prediction can be made. For low r and Q1 values increasing 
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variance may cause an increase in Order Fill Rate, while for higher retailer’s policy 

parameters OFR tends to decrease. On the other hand, service level (the percentage of 

external demand in terms of product units that is met from inventory on hand) 

consistently decreases with increasing variance.  

 

Average inventory at the retailer also tends to increase with increasing demand 

variance, which is somewhat paradoxical as service level also decreases. The effect on 

average inventory at the wholesaler is less straightforward and depends on the specific 

values of the system parameters. For the average total inventory, changes in WIP1 

dominate and WIP total tends to increase with increased variance.  

 

In conclusion, increasing the variance of external demand is detrimental to the 

performance of the system. The effects are more pronounced at the retailer and 

include both accumulation of inventory and lower service level and ultimately lower 

system output. The behavior of the system is similar to that observed in the case of 

balanced systems. 

 

The effect of external demand variance on the performance measures. s=4, Q2=4, r=4, 

Q1=2, Average demand Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.4, 

λ=0.5 
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6.10.2.3 Effect of lead time variance on the performance measures 

With regard to the effect of lead time variance, the effect on WIP1 depends on the 

specific scenario under investigation, and in some scenarios a consistent increase in 

WIP1 with increasing variance is observed. For the rest of the performance measures, 

the general behavior is similar to that observed for balanced systems. The assumption 

of linear dependence between lead time variance and the performance measures is no 

longer accurate. 

 

 

 

The effect of retailer’s Lead time Variance on performance measures. s=4, Q2=4, r=4, 

Q1=2, dm=(0.6, 0.4), μ21=1, μ22=0.2, d22=0.3, λ=2/3, and T1=2 
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The effect of Retailer’s Lead time Variance on performance measures. s=8, Q2=8, 

r=4, Q1=4, dm=(0.6, 0.4), μ21=1, μ22=0.2, d22=0.3, λ=2/3, T1=2 

  

  

  
 

6.10.3 Demand constrained systems 

In demand constrained systems the average time between successive arrivals of 

external customers is longer than the average transportation time from the vendor to 

the retailer, which in its turn is longer than the average transportation time from the 

manufacturer to the vendor: 
22
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For the examples presented below we use μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, 

d22= 0.2, λ=1/3 and )4.0,6.0(dm (there is 0.6 probability that an external customer 

will ask 1 product unit and 0.4 probability that he will ask 2 units). 

6.10.3.1 The effect of the decision variables on the performance measures 

Compared to balanced systems, demand constrained systems present higher Order Fill 

Rates and Service Levels. However more inventory is accumulated in the system and 

although inventory at the vendor may decrease, such a decrease is more than offset by 

an increase in the retailer’s inventory (WIP1).  
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Service Level as a function of reorder point r 

s=6, Q2=6 s=10, Q2=4 

  
 

Retailer’s WIP as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

Wholesaler’s WIP as a function of reorder point r 

s=6, Q2=6 s=10 , Q2=4 

  
 

Total average inventory as function of reorder point r 

s=5 Q2=4 s=10 , Q2=4 

  
s=10, Q2=8 s=6, Q2=6 
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Service level as a function of replenishment order Q1  

s=4, Q2=12 s=6, r=4 (n=const) 

  
 

Average inventory at the retailer as a function of replenishment order Q1  

s=4, Q2=12 s=6, r=4 

  
 

Average inventory at the vendor as a function of replenishment order Q1  

s=4, Q2=12 s=6, r=4 (n=const) 

  
 

Average total inventory as a function of replenishment order Q1  

s=4, Q2=12 s=10, Q2=8 

  
s=8, Q2=8 s=4, Q2=6 
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Average total inventory as a function of replenishment order Q1 (n=const) 

s=4, r=2 s=6, r=4 

  
 

 

Service Level as a function of echelon reorder point s 

r=2, Q2=6 r=4, Q1=2 

  
 

 

Average inventory at the retailer as a function of echelon reorder point s 

r=2, Q2=6 r=4, Q1=2 

  
 

 

Average inventory at the wholesaler as a function of echelon reorder point s 

r=2, Q2=6 r=4, Q1=2 
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Average total inventory as a function of echelon reorder point s 

r=2, Q2=6 r=4, Q1=2 

  
 

 

Service level as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

 

Average inventory at the retailer as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

 

Average inventory at the wholesaler as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

The general behavior of the performance measures with changing values of the 

decision variables is the same as to that of balanced system. The only exception that 
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absolute terms very small numerical differences were concerned. Both r-WIP2 and s-

WIP2 curves have a greater grade in demand constrained systems. 

 

Total average inventory as a function of replenishment order Q2  

r=2, Q1=2 s=4, r=2 

  
 

The behavior of demand constrained systems is similar to that of balanced system also 

when the combined effect of the decision variables is concerned. The conclusions 

outlined in 6.10.1.2 for balanced systems also hold for demand constrained systems. 

6.10.3.2 Effect of demand characteristics on the performance measures 

We investigate the effect of external demand variability on the performance measures. 

Different scenarios are explored where the average external demand remains constant, 

but its variance is changed. Some results are given below both in the form of a table 

and graphically. 

 

Both Order Fill rate (the percentage of external orders that are fully met) and Service 

Level (the percentage of external demand in terms of product units that is met from 

inventory on hand) tend to decrease with increasing variance. 

 

Average inventory at the retailer as well as average total inventory tends to increase 

with increasing variance. The effect on vendor’s inventory is less straightforward and 

depends on the specific scenario under consideration. 

 

Increased demand variability is detrimental to the performance of system. For most 

scenarios the behavior of the system is similar to that of balanced systems, with some 

minor exceptions for OFR.  

 

 

Performance measures as a function of external demand variance. s=8, Q2=8, r=4, 

Q1=4, Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.2, λ=1/3 
dm(1) dm(2) dm(3) dm(4) dm(5) dm(6) Var OFR SL WIPtotal WIP1 WIP2 util1 

0.2 0.8 0 0 0 0 0.16 0.870 0.882 11.622 4.880 6.742 0.331 

0.45 0.3 0.25 0 0 0 0.66 0.862 0.871 11.612 4.856 6.756 0.326 

0.39 0.45 0.15 0 0 0.01 0.66 0.861 0.870 11.615 4.861 6.754 0.326 

0.48 0.28 0.2 0.04 0 0 0.8 0.860 0.868 11.622 4.865 6.758 0.325 

0.6 0 0.4 0 0 0 0.96 0.858 0.865 11.632 4.876 6.756 0.324 

0.65 0.1 0.1 0.1 0.05 0 1.56 0.851 0.852 11.668 4.894 6.774 0.320 

0.7 0.1 0 0.1 0.1 0 1.96 0.845 0.843 11.685 4.898 6.787 0.316 

0.7 0.05 0.15 0.02 0.01 0.07 2.1 0.840 0.837 11.697 4.919 6.778 0.314 

0.82 0 0 0 0.1 0.08 2.96 0.825 0.819 11.741 4.929 6.812 0.307 

0.84 0 0 0 0 0.16 3.36 0.815 0.807 11.775 4.958 6.817 0.303 
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The effect of external demand variance on the performance measures. s=8, Q2=8, 

r=4, Q1=4, Average demand Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 

0.2, λ=1/3 
OFR SL 

  
WIP total WIP1 

  
WIP2 Utilization1 

  
 

 

 

Performance measures as a function of external demand variance. s=4, Q2=4, r=4, 

Q1=2, Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.2, λ=1/3 
dm(1) dm(2) dm(3) dm(4) dm(5) dm(6) Var OFR SL WIPtotal WIP1 WIP2 util1 

0.2 0.8 0 0 0 0 0.16 0.711 0.730 5.754 2.957 2.797 0.547 

0.45 0.3 0.25 0 0 0 0.66 0.690 0.712 5.708 2.944 2.764 0.534 

0.39 0.45 0.15 0 0 0.01 0.66 0.695 0.713 5.714 2.955 2.759 0.535 

0.48 0.28 0.2 0.04 0 0 0.8 0.690 0.708 5.713 2.956 2.757 0.531 

0.6 0 0.4 0 0 0 0.96 0.682 0.703 5.713 2.958 2.755 0.527 

0.65 0.1 0.1 0.1 0.05 0 1.56 0.690 0.690 5.726 3.014 2.713 0.517 

0.7 0.1 0 0.1 0.1 0 1.96 0.690 0.680 5.732 3.047 2.685 0.510 

0.7 0.05 0.15 0.02 0.01 0.07 2.1 0.687 0.677 5.735 3.071 2.664 0.508 

0.82 0 0 0 0.1 0.08 2.96 0.681 0.656 5.748 3.144 2.604 0.492 

0.84 0 0 0 0 0.16 3.36 0.677 0.646 5.762 3.198 2.564 0.484 
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The effect of external demand variance on the performance measures. s=4, Q2=4, r=4, 

Q1=2, Average demand Ex=1.8, μ11=1, μ12=0.2, d12=0.3, μ21=1, μ22=0.2, d22= 0.2, 

λ=1/3 
OFR SL 

  
WIP total WIP1 

  
WIP2 Utilization1 

  
 

6.10.3.3 Effect of lead time variance on the performance measures 

The behavior of the system with changing retailer’s lead time variance is similar to 

that observed for balanced systems. Demand constrained systems are in general more 

stable for lead time variance changes, and the dependence of the performance 

measures can be described quite accurately with simple linear relations. 

 

The effect of Retailer’s Lead time Variance on performance measures s=4, Q2=4 r=4, 

Q1=2, l=0.4. T1=2, dm=(0.6, 0.4), μ21=2, μ22=0.5, d22=0.5 
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The effect of Retailer’s Lead time Variance on performance measures s=4,Q2=4 r=4, 

Q1=2, l=0.4. T1=2, dm=(0.6, 0.4), μ21=2, μ22=0.5, d22=0.5 

  

  
 

 

The effect of Retailer’s Lead time Variance on performance measures. s=8,Q2=8 r=4, 

Q1=4, l=0.4. T1=2, dm=(0.6, 0.4), μ21=2, μ22=0.5, d22=0.5 
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6.11 Conclusions 

An algorithm based on matrix analytic methods was presented for the exact numerical 

performance evaluation of a two echelon inventory system working according to 

Vendor Managed Inventory Logic. A lost sales regime was assumed and attention was 

paid to the stochastic characteristics of the system. Uncertainties about lead times 

were captured using a phase type, Coxian distribution with two phases. Moreover, the 

stochastic nature of external demand was modeled using a compound Poisson 

distribution comprised of a Pure Poisson arrival process and a discrete empirical 

distribution for the demand of individual customers. These assumptions allow for 

more realistic modeling, permit us to better capture and analyze the uncertainties 

which are integral to inventory networks, and constitute our basic contribution with 

regard to VMI models found in the literature. 

 

A model based on the algorithm was developed in Matlab and was used to investigate 

the effect of different policies under different operating conditions. Our analysis was 

based on the numerical evaluation of the system performance measures and systems 

with different relations between lead times and customer inter-arrival times were 

tested.  

 

In balanced systems all four decision variables (r, Q1, s, Q2) affect the performance 

measures and could under certain conditions be used to guide the system towards the 

desired targets. The effect of each parameter depends on the values of the others, so 

the interplay between variables must always be taken into consideration.  

 

To increase customer satisfaction, as it is expressed through OFR and SL, any of the 

decision variables could be used. Changing the echelon inventory policy by increasing 

s or Q2 has the side-effect of significantly increasing the inventory accumulated in the 

system and thus mitigates any gains in system performance. In general s has a greater 

effect than Q2 on both OFR/SL and average inventory, while Q2 is important mainly 

when the lowest Q2 values are concerned. 

 

On the other hand, by increasing the retailer’s policy parameters r or Q1 we can 

enhance customer satisfaction without any increase in total inventory (actually in 

some cases a diminished total inventory was observed). In general, Q1 is more 

important than r, but when Q1 is changed it must be kept in mind that local minima 

for total average inventory may be observed for intermediate values. 

   

From the vendors point of view a policy of high r and high Q1 is desirable, but in 

practice there may be constraints about the inventory at the retailer as many retailers 

put contractual limits on the inventory at their premises. Our analysis also indicates 

that high Q1 and low Q2 values are preferable, while a high value of r in relation to s 

is desirable.  

 

Small changes in the external demand characteristics do not alter the behaviour of the 

system with changing decision variable values. However, the increased variance of 

the external demand is detrimental for system performance both in terms of customer 

satisfaction and inventory accumulation. For rising demand variance the somewhat 
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paradoxical effect of rising retailer’s inventory and falling of service level was 

observed.  

 

Supply constrained systems, in general, exhibit the same behaviour as the balanced 

systems and the conclusions mentioned above also hold. In comparison with balanced 

systems, for the same design variables values, supply constrained systems present 

lower Order Fill Rates and Service Levels, as well as lower average inventories at the 

retailer. For average inventory at the wholesaler, as well as for average total 

inventory, both higher and lower values were observed, depending on the specific 

scenarios under consideration. Average total inventory (WIP total) and average 

inventory at the retailer (WIP1) were found to be more sensitive for changing demand 

variability.  

 

Demand constrained systems are more dynamic and less predictable than balanced 

systems when more than one decision variables are changed. In general, the 

performance measures curves are similar in shape with those of balanced systems. In 

comparison with balanced systems, for the same design variables values, higher OFR 

and SL are achieved, but on the downside more inventory is accumulated in the 

system. For demand constrained systems, OFR and SL are more sensitive to changes 

of external demand variability.  

 

With regard to further research, the expansion of the model for more Coxian phases 

would allow for greater flexibility with regard to lead times and would offer a better 

insight in the effect of replenishment time uncertainty. In a further step, the 

investigation of different topologies, and especially the investigation of an arborescent 

lay-out with more than one retailers, would also be of interest as it would bring our 

analysis closer to real practice. Finally, a third approach to expand our research would 

be the combination of the developed evaluative algorithm with a heuristic algorithm 

in a greater framework of an optimization model. 
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6.13 Appendix 

6.13.1 Matlab algorithm 

We present the computer code for the described model. The computer algorithm is 

given for Mathworks’ Matlab, version R2018a (9.4.0.813654). The computer code 

essentially follows the lines of the presented analysis. Some parts of the model that 

are used repetitively have been modeled as sub-routines (functions) that are stored 

separately and called whenever necessary. Such functions are given separately from 

the main body of the algorithm. Comments start with the symbol “%”. 

 

Important note: Some lines of the algorithm have been omitted on purpose. Their 

position is denoted with […]  

6.13.1.1 Main body algorithm 

%-------------------------- Input -------------------------------- 

% r: Reorder point of the retailer 
% Q1:The quantity of orders sent from the wholesaler to the retailer 
% s: Reorder point of the wholesaler (refers to echelon stock) 
% n: Q2=nQ1, where n a natural number 
% mij: the tranportation rate of the jth phase for transportation 

towards the ith station  
% dij: the probability that transportation towards ith station will 

have j phases 
% dm(i)= the probability that the external demand will be i units of 

1 unit, p2  

s=2; 

n=2; 

r=1; 

Q1=1; 

Q2=n*Q1; 

% when r>s we use the equivalent r value. 

r=min(r,s+Q2-Q1); 

l=0.3; 

m11=2; 

m12=0.4; 

d12=0.2; 

m21=1.25; 

m22=0.5; 

d22=0.1; 

dm=[0.3;0.55;0.0]; 

%   Useful computations 

d11=1-d12; 

d21=1-d22; 

dmd=length(dm); 

% rd(i): the probability that demand will be equal to or more than i 

rd=zeros(1,dmd); 

for i=1:dmd 

    for j=i:dmd 

        rd(i)=rd(i)+dm(j); 

    end 

end 

h=floor((s-r)/Q1); 

k=floor(s/Q1+1); 

f=floor((s-r)/Q1)+n; 



204 

 

Nl=floor((s+Q2)/Q1); 

% dimension(L+1): A vector recording the dimension of the diagonal 

submatrix 

dimension=zeros(1,Nl+1); 

% --------------------- Creation of sub-matrices ------------ 

%   * Diagonal sub matrix for level L=0 ( 

L=0; 

Z1=0; 

if h>0 

    Z2=0; 

else 

    Z2=r-s+Q1; 

end 

O1=r+1; 

if h>0 

    O2=Q1; 

else 

    O2=s-r; 

end 

dimension(1)=Z1+Z2+2*(O1+O2); 

dimensionZ1(1)=Z1; 

dimensionZ2(1)=Z2; 

dimensionO1(1)=O1; 

dimensionO2(1)=O2; 

%Submatrix "D0" 

D00=Diagonal0(Z1,Z2,m11,m12,l,d12,k,L,dm,rd,dmd); 

%Sub-matrix "D1" 

D01=zeros(O1+O2); 

D01(1,1)=-m21; 

for i=2:O1+O2 

    D01(i,i)=-m21-l; 

end 

for i=2:O1+O2-1 

    for j=1:min(O1+O2-i,dmd) 

        D01(i+j,i)=dm(j)*l; 

    end 

end 

for i=1:min(O1+O2-1,dmd) 

    D01(i+1,1)=rd(i)*l; 

end 

%Sub-matrix "D2" 

D02=zeros(O1+O2); 

D02(1,1)=-m22; 

for i=2:O1+O2 

    D02(i,i)=-m22-l; 

end 

for i=2:O1+O2-1 

    for j=1:min(O1+O2-i,dmd) 

        D02(i+j,i)=dm(j)*l; 

    end 

end 

for i=1:min(O1+O2-1,dmd) 

    D02(i+1,1)=rd(i)*l; 

end 

%Sub-matrix U1 

U0=Upper(O1,O2,d22,m21) ; 

%Sub-sub matrix U0 

UZ0=zeros(Z2,O1+O2); 

for i=1:min(O1+O2-1,dmd) 

    for j=1:min(Z2,dmd-i+1) 

        UZ0(j,O1+O2-i+1)=dm(i+j-1)*l; 
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    end 

end 

for i=1:min(Z2, dmd-O1-O2+1)   

    UZ0(i,1)=rd(O1+O2+i-1)*l; 

end 

% Diagonal sub-matrix for level 0 

DZ=zeros(Z2+O1+O2); 

DZ(1:Z1+Z2,1:Z1+Z2)=D00; 

DZ(Z1+Z2+1:Z1+Z2+O1+O2,Z1+Z2+1:Z1+Z2+O1+O2)=D01; 

DZ(Z1+Z2+O1+O2+1:Z1+Z2+2*(O1+O2),Z1+Z2+O1+O2+1:Z1+Z2+2*(O1+O2))=D02; 

DZ(Z1+Z2+1:Z1+Z2+O1+O2,Z1+Z2+O1+O2+1:Z1+Z2+2*(O1+O2))=U0; 

DZ(1:Z1+Z2,Z1+Z2+1:Z1+Z2+O1+O2)=UZ0; 

P=DZ; 

lp=dimension(1); 

LP(1)=lp; 

%Iterative process to construct the diagonal sub-matrices for levels 

1 to Nl 

for L=1:Nl 

% inf = an index indicating if L>f 

if L<=f  

    inf=0; 

else 

    inf=1; 

end 

% inh = an index indicating if L>h 

if L<=h 

    inh=0; 

else 

    inh=1; 

end 

Z1=(min(2*(r-s)+2*L*Q1, 2*(r+1))-inf*2*(r-n*Q1-s+L*Q1))*inh; 

if h<L && L<f 

    Z2=Q1; 

elseif L==h 

    Z2=r+Q1-s+L*Q1; 

elseif L==f 

    Z2=(n-L)*Q1+s-r; 

else 

    Z2=0; 

end 

% Sub matrix "D0" 

D0=Diagonal0(Z1,Z2,m11,m12,l,d12,k,L,dm,rd,dmd); 

if L<=h 

    O1=2*(r+1); 

elseif h<L && L<k 

    O1=max(2*(s-L*Q1+1),0); 

else 

    O1=0; 

end 

if L<h 

    O2=Q1; 

elseif L==h 

    O2=s-r-L*Q1; 

else 

    O2=0; 

end 

% Sub-matrix "D1" 

D1=Diagonal1(O1,O2,m11,m12,m21,l,d12,dm,rd,dmd); 

% Create sub-matrix "D2" 

D2=Diagonal2(O1,O2,m11,m12,m22,l,d12,dm,rd,dmd); 

% Create sub-matrix U1 
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U=Upper(O1,O2,d22,m21); 

% Create sub-matrix U0 

UZ=UpperZ(O1,O2,Z1,Z2,l,dm,rd,dmd); 

% Create diagonal submatrix D for level L 

D=zeros(Z1+Z2+O1+O2); 

D(1:Z1+Z2,1:Z1+Z2)=D0; 

D(Z1+Z2+1:Z1+Z2+O1+O2,Z1+Z2+1:Z1+Z2+O1+O2)=D1; 

D(Z1+Z2+O1+O2+1:Z1+Z2+2*(O1+O2),Z1+Z2+O1+O2+1:Z1+Z2+2*(O1+O2))=D2; 

D(Z1+Z2+1:Z1+Z2+O1+O2,Z1+Z2+O1+O2+1:Z1+Z2+2*(O1+O2))=U; 

D(1:Z1+Z2,Z1+Z2+1:Z1+Z2+O1+O2)=UZ; 

%Record dimensions for submatrices 

dimension(L+1)=Z1+Z2+2*(O1+O2); 

dimensionZ1(L+1)=Z1; 

dimensionZ2(L+1)=Z2; 

dimensionO1(L+1)=O1; 

dimensionO2(L+1)=O2; 

%lp:last position 

P(lp+1:lp+dimension(L+1),lp+1:lp+dimension(L+1))=D; 

lp=lp+dimension(L+1); 

LP(L+1)=lp; 

end 

%Submatrix UD1 and UD2 for level 0 

L=0; 

Z1L2=dimensionZ1(n+1); 

Z2L2=dimensionZ2(n+1); 

O1L2=dimensionO1(n+1); 

O2L2=dimensionO2(n+1); 

Z1L1=dimensionZ1(1); 

Z2L1=dimensionZ2(1); 

O1L1=dimensionO1(1); 

O2L1=dimensionO2(1); 

D1=zeros(O1L1+O2L1,Z1L2+Z2L2+O1L2+O2L2); 

D2=zeros(O1L1+O2L1,Z1L2+Z2L2+O1L2+O2L2); 

for i=1:O1L2/2 

    D1(i,Z1L2+Z2L2+2*i-1)=d21*m21; 

    D2(i,Z1L2+Z2L2+2*i-1)=m22; 

end 

for i=O1L2/2+1:(O1L2/2)+O2L2 

    D1(i,Z1L2+Z2L2+(O1L2)/2+i)=d21*m21; 

    D2(i,Z1L2+Z2L2+(O1L2)/2+i)=m22; 

end 

j=(O1L2/2)+O2L2+1; 

for i=j:j+Z1L2/2-1 

    D1(i,2*(i-j)+1)=d21*m21; 

    D2(i,2*(i-j)+1)=m22; 

end 

for i=j+Z1L2/2:O1L1+O2L1 

    D1(i,Z1L2+(i-j-Z1L2/2)+1)=d21*m21; 

    D2(i,Z1L2+(i-j-Z1L2/2)+1)=m22; 

end 

P(Z1L1+Z2L1+1:Z1L1+Z2L1+O1L1+O2L1,LP(n)+1:LP(n)+Z1L2+Z2L2+O1L2+O2L2)=

D1; 

P(O1L1+O2L1+Z1L1+Z2L1+1:O1L1+O2L1+Z1L1+Z2L1+O1L1+O2L1,LP(n)+1:LP(n)+Z

1L2+Z2L2+O1L2+O2L2)=D2; 

% Iterative process to create the sub-matrices above the diagonal, 

% UD1 and UD2 

for L=1:k-1 

Z1L2=dimensionZ1(L+n+1); 

Z2L2=dimensionZ2(L+n+1); 

O1L2=dimensionO1(L+n+1); 

O2L2=dimensionO2(L+n+1); 
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Z1L1=dimensionZ1(L+1); 

Z2L1=dimensionZ2(L+1); 

O1L1=dimensionO1(L+1); 

O2L1=dimensionO2(L+1); 

P(LP(L)+Z1L1+Z2L1+1:LP(L)+Z1L1+Z2L1+O1L1+O2L1,LP(L+n)+1:LP(L+n)+Z1L2+

Z2L2+O1L2+O2L2)= UpperD1(Z1L2,Z2L2,O1L2,O2L2,O1L1,O2L1,d21,m21); 

P(LP(L)+Z1L1+Z2L1+O1L1+O2L1+1:LP(L)+Z1L1+Z2L1+2*(O1L1+O2L1),LP(L+n)+1

:LP(L+n)+Z1L2+Z2L2+O1L2+O2L2)= 

UpperD2(Z1L2,Z2L2,O1L2,O2L2,O1L1,O2L1,m22); 

end 

%Sub-matrices below the diagonal  

L=1; 

Z1L2=dimensionZ1(L); 

Z2L2=dimensionZ2(L); 

O1L2=dimensionO1(L); 

O2L2=dimensionO2(L); 

Z1L1=dimensionZ1(L+1); 

Z2L1=dimensionZ2(L+1); 

O1L1=dimensionO1(L+1); 

O2L1=dimensionO2(L+1); 

if O1L1>0 

    D=zeros(O1L1,O1L2+O2L2); 

    for i=1:2:O1L1-1 

        D(i,(i+1)/2+Q1)=d11*m11; 

        D(i+1,(i+1)/2+Q1)=m12; 

    end 

P(LP(L)+Z1L1+Z2L1+1:LP(L)+Z1L1+Z2L1+O1L1, 

Z1L2+Z2L2+1:Z1L2+Z2L2+O1L2+O2L2)=D; 

P(LP(L)+Z1L1+Z2L1+O1L1+O2L1+1:LP(L)+Z1L1+Z2L1+O1L1+O2L1+O1L1, 

Z1L2+Z2L2+O1L2+O2L2+1:Z1L2+Z2L2+O1L2+O2L2+O1L2+O2L2)=D; 

end 

if Z1L1>0 

    if L<k 

        x=0; 

    elseif L==k 

        x=Q1-(s-(L-1)*Q1+1); 

    end 

    D=zeros(Z1L1,Z1L2+Z2L2); 

    for i=1:2:Z1L1-1 

        D(i,x+(i+1)/2)=d11*m11; 

        D(i+1,x+(i+1)/2)=m12; 

    end 

    P(LP(L)+1:LP(L)+Z1L1,1:Z1L2+Z2L2)=D; 

end 

% Iterative process to create the sub-matrices below the diagonal 

for L=2:Nl 

Z1L2=dimensionZ1(L); 

Z2L2=dimensionZ2(L); 

O1L2=dimensionO1(L); 

O2L2=dimensionO2(L); 

Z1L1=dimensionZ1(L+1); 

Z2L1=dimensionZ2(L+1); 

O1L1=dimensionO1(L+1); 

O2L1=dimensionO2(L+1); 

% Submatrices coresponding to transitions from Z1 states  

x=0; 

z=0; 

if Z1L1>0 

    if L<k 

        x=0; 

    elseif L==k 
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        x=2*Q1-2*(s-(L-1)*Q1+1); 

    elseif L>k 

        x=2*Q1; 

    end 

    if Q1>r 

        if L<k 

            z=0; 

        elseif L==k 

            z=min(Q1-(s-(L-1)*Q1+1),Q1-r-1); 

        elseif L>k 

            z=Q1-r-1; 

        end 

    end     

    P(LP(L)+1:LP(L)+Z1L1, LP(L-1)+1:LP(L-

1)+Z1L2+Z2L2)=LowerD0(Z1L1,Z1L2,Z2L2,d11,m11,m12,x,z); 

end 

% Submatrices corresponding to transitions from O1 and T1 states 

if O1L1>0 

[...] 

[...] 

end 

end 

%----------- Calculation of stationary Probabilities Vector X --- 

Q=P'; 

ns=LP(Nl+1); 

for i=1:ns 

    Q(ns,i)=1; 

end 

Y=zeros(ns,1); 

Y(ns,1)=1; 

X=linsolve(Q,Y); 

%--------------- Calculation of performance measures ---------------- 

%   * Average inventory at wholesaler - WIP2  

WIP2=0; 

for L=1:Nl 

    for j=LP(L)+1:LP(L+1) 

        WIP2=WIP2+L*Q1*X(j); 

    end 

end 

%   * Stockout probability - SO 

SO=0; 

Z1=dimensionZ1(1); 

Z2=dimensionZ2(1); 

O1=dimensionO1(1); 

O2=dimensionO2(1); 

SO=SO+X(Z1+Z2+1); 

SO=SO+X(Z1+Z2+O1+O2+1); 

for L=1:Nl 

    Z1=dimensionZ1(L+1); 

    Z2=dimensionZ2(L+1); 

    O1=dimensionO1(L+1); 

    O2=dimensionO2(L+1); 

    if Z1>0 && L>=k 

        SO=SO+X(LP(L)+1)+X(LP(L)+2); 

    end 

    if O1>0 

    SO=SO+X(LP(L)+Z1+Z2+1)+X(LP(L)+Z1+Z2+2); 

    SO=SO+X(LP(L)+Z1+Z2+O1+O2+1)+X(LP(L)+Z1+Z2+O1+O2+2); 

    end 

end 

%   * WIP retailer 
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% IR(i) is the probability of I1 being i units 

IR=zeros(r+Q1,1); 

    %L=0 

for i=1:dimensionZ1(1)+dimensionZ2(1) 

    IR(s+i)=IR(s+i)+X(i); 

end 

for i=2:dimensionO1(1)+dimensionO2(1) 

    IR(i-1)=IR(i-1)+X(dimensionZ1(1)+dimensionZ2(1)+i); 

end 

for i=2:dimensionO1(1)+dimensionO2(1) 

    IR(i-1)=IR(i-

1)+X(dimensionZ1(1)+dimensionZ2(1)+dimensionO1(1)+dimensionO2(1)+i); 

end    

    %L=1 to NL 

for L=1:Nl 

    if L<k 

        for i=1:2:dimensionZ1(L+1)-1 

          IR(s-L*Q1+((i+1)/2))=IR(s-L*Q1+((i+1)/2))+ 

X(LP(L)+i)+X(LP(L)+i+1); 

        end 

    else 

        for i=3:2:dimensionZ1(L+1)-1 

           IR((i-1)/2)=IR((i-1)/2)+X(LP(L)+i)+X(LP(L)+i+1); 

        end 

    end 

    if L==h 

        for i=1:dimensionZ2(L+1) 

            IR(s-L*Q1+i)=IR(s-L*Q1+i)+X(LP(L)+dimensionZ1(L+1)+i); 

        end 

    else 

        for i=1:dimensionZ2(L+1) 

            IR(r+i)=IR(r+i)+X(LP(L)+dimensionZ1(L+1)+i); 

        end 

    end 

    for i=3:2:dimensionO1(L+1) 

        IR((i-1)/2)=IR((i-

1)/2)+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+i)+X(LP(L)+dimensionZ

1(L+1)+dimensionZ2(L+1)+i+1); 

    end 

    for i=1:dimensionO2(L+1) 

IR(r+i)=IR(r+i)+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+dimensionO1

(L+1)+i); 

    end 

    for i=3:2:dimensionO1(L+1) 

        IR((i-1)/2)= IR((i-

1)/2)+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+dimensionO1(L+1)+dime

nsionO2(L+1)+i)+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+dimensionO1

(L+1)+dimensionO2(L+1)+i+1); 

    end 

    for i=1:dimensionO2(L+1) 

IR(r+i)=IR(r+i)+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+dimensionO1

(L+1)+dimensionO2(L+1)+dimensionO1(L+1)+i); 

    end    
end  
WIP1=0; 
for i=1:r+Q1 
    WIP1=WIP1+i*IR(i); 
end 
% IRO(i):the probability that the inventory at the retailer I1 is 

equal to or % greater than i 
IRO=zeros(r+Q1,1); 
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for i =1:r+Q1 
    for j=i:r+Q1 
        IRO(i)=IRO(i)+IR(j); 
    end 
end 
% met(i):the probability that d=i and I1>=i 
met=zeros(dmd); 
for i=1:min(r+Q1,dmd) 
    met(i)=dm(i)*IRO(i); 
end 
% unmet(i):the probability that I1=i and d>i 
unmet=zeros(r+Q1); 
for i=1:min(r+Q1,dmd) 
    unmet(i)=IR(i)*(rd(i)-dm(i)); 
end 

%   Throughput 
Output=0; 
for i=1:min(r+Q1,dmd) 
    Output=Output+i*(met(i)+unmet(i)); 
end 
Throughput=Output*l; 
%   Order Fill Rate - OFR 
OFR=0; 
for i=1:min(r+Q1,dmd) 
    OFR=OFR+met(i); 
end 
%   * Service level II - SL2 
Ex=0; 
for i=1:dmd 
    Ex=Ex+i*dm(i); 
end 
SL2=Output/Ex; 
%   Average lost sales 
ALS=Ex-(SL2*Ex); 
%   Average lost sales per lost order 
Lost=ALS/(1-OFR); 
%   WIP in transit to the retailer 
utilization1=0; 
for L=1:Nl 
    for i=1:dimensionZ1(L+1) 
        utilization1=utilization1+X(LP(L)+i); 
    end 
    for i=1:dimensionO1(L+1) 
      

utilization1=utilization1+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+i

); 
    end 
    for i=1:dimensionO1(L+1)      

utilization1=utilization1+X(LP(L)+dimensionZ1(L+1)+dimensionZ2(L+1)+d

imensionO1(L+1)+dimensionO2(L+1)+i); 
    end 
 end 
Intransit1=utilization1*Q1; 
% WIP in transit to the Wholesaler 
utilization2=0; 
    for i=dimensionZ1(1)+dimensionZ2(1)+1:dimension(1) 
        utilization2=utilization2+X(i); 
    end 
for L=1:Nl 
    for i=dimensionZ1(L+1)+dimensionZ2(L+1)+1:dimension(L+1) 
        utilization2=utilization2+X(LP(L)+i); 
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    end 
end 
Intransit2=utilization2*Q2; 

6.13.1.2 Functions 

Diagonal0(Z1,Z2,m11,m12,l,d12,k,L,dm,rd,dmd) 

function [D] = D0(Z1,Z2,m11,m12,l,d12,k,L,dm,rd,dmd) 
D=zeros(Z1+Z2); 
for i=1:2:Z1-1 
    D(i,i)=-m11-l; 
    D(i+1,i+1)=-m12-l; 
    D(i,i+1)=d12*m11; 
end 
if L>=k && Z1>0 
    D(1,1)=D(1,1)+l; 
    D(2,2)=D(2,2)+l; 
end 
for i=1:Z1-2 
    for j=1:min((Z1-i)/2,dmd) 
        D(2*j+i,i)=dm(j)*l; 
    end 
end 
if L>=k && Z1>0 
    for i=1:2 
        for j=1:min((Z1-i)/2,dmd) 
            D(2*j+i,i)=rd(j)*l; 
        end 
    end 
end 
for i=Z1+1:Z1+Z2 
    D(i,i)=-l; 
end 
for i=1:Z2-1 
    for j=1:min((Z2-i),dmd) 
        D(Z1+j+i,Z1+i)=dm(j)*l; 
    end 
end 
for i=1:2:Z1-1 
    for j=1:min(Z2,dmd-(Z1-i-1)/2) 
        D(Z1+j,i)=dm((Z1-i-1)/2+j)*l; 
    end 
end 
if L>=k 
    for j=1:min(Z2,dmd-(Z1-2)/2) 
        D(Z1+j,1)=rd((Z1-2)/2+j)*l; 
    end 
end 
end 

Upper(O1,O2,d22,m21) 

function [U] = U( O1,O2,d22,m21 ) 
U=zeros(O1+O2); 
for i=1:O1+O2 
    U(i,i)=d22*m21; 
end 
end 

Diagonal1(O1,O2,m11,m12,m21,l,d12,dm,rd,dmd) 

function [D] = D1(O1,O2,m11,m12,m21,l,d12,dm,rd,dmd) 
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D=zeros(O1+O2); 
if O1>0 
    D(1,1)=-m21-m11; 
    D(2,2)=-m21-m12; 
    D(1,2)=d12*m11; 
    for i=3:2:O1-1 
        D(i,i)=-m21-m11-l; 
        D(i+1,i+1)=-m21-m12-l; 
        D(i,i+1)=d12*m11; 
    end 
    for i=1:2 
        [...]  
    end 
    for i=3:O1-2 
        for j=1:min((O1-i)/2,dmd) 
            D(2*j+i,i)=dm(j)*l; 
        end 
    end 
    for i=O1+1:O1+O2 
        D(i,i)=-m21-l; 
    end 
    for i=1:O2-1 
        for j=1:min((O2-i),dmd) 
            D(O1+j+i,O1+i)=dm(j)*l; 
        end 
    end 
    for j=1:min(O2,dmd-(O1-2)/2) 
        D(O1+j,1)=rd((O1-2)/2+j)*l; 
    end 
    for i=3:2:O1-1 
        for j=1:min(O2,dmd-(O1-i-1)/2) 
            D(O1+j,i)=dm((O1-i-1)/2+j)*l; 
        end 
    end 
end 
end 

Diagonal2(O1,O2,m11,m12,m22,l,d12,dm,rd,dmd) 

function [D] = D2(O1,O2,m11,m12,m22,l,d12,dm,rd,dmd) 
D=zeros(O1+O2); 
if O1>0 
    D(1,1)=-m22-m11; 
    D(2,2)=-m22-m12; 
    D(1,2)=d12*m11; 
    for i=3:2:O1-1 
        D(i,i)=-m22-m11-l; 
        D(i+1,i+1)=-m22-m12-l; 
        D(i,i+1)=d12*m11; 
    end 
    for i=1:2 
        for j=1:min((O1-i)/2,dmd) 
            D(2*j+i,i)=rd(j)*l; 
        end 
    end 
    for i=3:O1-2 
        for j=1:min((O1-i)/2,dmd) 
            D(2*j+i,i)=dm(j)*l; 
        end 
    end 
    for i=O1+1:O1+O2 
        D(i,i)=-m22-l; 
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    end 
    for i=1:O2-1 
        for j=1:min((O2-i),dmd) 
            D(O1+j+i,O1+i)=dm(j)*l; 
        end 
    end 
    for j=1:min(O2,dmd-(O1-2)/2) 
        D(O1+j,1)=rd((O1-2)/2+j)*l; 
    end 
    for i=3:2:O1-1 
        for j=1:min(O2,dmd-(O1-i-1)/2) 
            [...] 
        end 
    end   
end 
end 

UpperZ(O1,O2,Z1,Z2,l,dm,rd,dmd) 

[…] 

UpperD1(Z1L2,Z2L2,O1L2,O2L2,O1L1,O2L1,d21,m21); 

function [D] = UpperD1(Z1L2,Z2L2,O1L2,O2L2,O1L1,O2L1,d21,m21); 
D=zeros(O1L1+O2L1,Z1L2+Z2L2+O1L2+O2L2); 
for i=1:O1L2+O2L2 
    D(i,Z1L2+Z2L2+i)=d21*m21; 
end 
for i=O1L2+O2L2+1:O1L1+O2L1 
    D(i,i-O1L2-O2L2)=d21*m21; 
end 
end 

UpperD2(Z1L2,Z2L2,O1L2,O2L2,O1L1,O2L1,m22) 

function [D] = UpperD2(Z1L2,Z2L2,O1L2,O2L2,O1L1,O2L1,m22); 
D=zeros(O1L1+O2L1,Z1L2+Z2L2+O1L2+O2L2); 
for i=1:O1L2+O2L2 
    D(i,Z1L2+Z2L2+i)=m22; 
end 
for i=O1L2+O2L2+1:O1L1+O2L1 
    D(i,i-O1L2-O2L2)=m22; 
end 
end 

LowerD0(Z1L1,Z1L2,Z2L2,d11,m11,m12,x,z); 

function [D] = LowerD0(Z1L1,Z1L2,Z2L2,d11,m11,m12,x,z) 
D=zeros(Z1L1,Z1L2+Z2L2); 
for i=x+1:2:Z1L2-1 
    D(i-x,i)=d11*m11; 
    D(i+1-x,i)=m12; 
end 
for i=1:(Z1L1-max((Z1L2-x)*(Z1L2>0),0))/2 
    D(max(Z1L2-x,0)+2*i-1,Z1L2+z+i)=d11*m11; 
    D(max(Z1L2-x,0)+2*i,Z1L2+z+i)=m12; 
end 
end 

LowerD1(O1L1,O1L2,O2L2,Q1,d11,m11,m12,r) 

function [D] = LowerD1(O1L1,O1L2,O2L2,Q1,d11,m11,m12,r) 

[...] 
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6.13.2 Validation data 

λ=0.5, μ11=2, μ12=0.4, d12=0.2, μ21=1.25, μ22=0.5, d22=0.1, dm(1)=0.4, dm(2)=03, dm(3)=0.2, dm(4)=0.1. One replication of 1600000 time units. 

 
Input Matlab Arena 

 
s n r Q1 OFR SL2 WIP1 WIP2 Intransit1 Intransit2 Throughput OFR SL2 WIP1 WIP2 Intransit1 Intransit2 Throughput 

1 0 1 0 1 0.20000 0.25000 0.50000 0.25000 0.25000 0.25000 0.25000 0.200 0.250 0.499 0.251 0.251 0.250 0.250 

2 0 1 0 2 0.35833 0.41667 1.00000 0.41667 0.41667 0.41667 0.41667 0.358 0.416 0.999 0.418 0.418 0.416 0.416 

3 0 1 0 3 0.47692 0.52448 1.48951 0.52448 0.52448 0.52448 0.52448 0.476 0.524 1.487 0.527 0.527 0.524 0.524 

4 0 1 0 4 0.55993 0.59453 1.96908 0.59453 0.59453 0.59453 0.59453 0.561 0.594 1.966 0.596 0.596 0.594 0.595 

5 0 1 0 5 0.61145 0.64373 2.44814 0.64373 0.64373 0.64373 0.64373 0.612 0.644 2.450 0.643 0.643 0.644 0.644 

6 0 2 0 1 0.22857 0.28571 0.57143 0.71429 0.28571 0.28571 0.28571 0.228 0.286 0.571 0.714 0.286 0.287 0.286 

7 0 2 0 2 0.40000 0.46512 1.11628 1.34884 0.46512 0.46512 0.46512 0.401 0.466 1.115 1.350 0.467 0.464 0.466 

8 0 2 0 3 0.52261 0.57471 1.63218 1.93103 0.57471 0.57471 0.57471 0.523 0.575 1.634 1.931 0.573 0.573 0.574 

9 0 2 0 4 0.60488 0.64226 2.12717 2.48170 0.64226 0.64226 0.64226 0.605 0.643 2.127 2.483 0.645 0.641 0.643 

10 0 2 0 5 0.65352 0.68802 2.61658 3.01602 0.68802 0.68802 0.68802 0.653 0.687 2.616 3.016 0.688 0.689 0.689 

11 0 3 0 1 0.24000 0.30000 0.60000 1.20000 0.30000 0.30000 0.30000 0.240 0.300 0.600 1.202 0.301 0.299 0.300 

12 0 3 0 2 0.41613 0.48387 1.16129 2.32258 0.48387 0.48387 0.48387 0.418 0.485 1.161 2.322 0.483 0.485 0.485 

13 0 3 0 3 0.53984 0.59367 1.68602 3.39578 0.59367 0.59367 0.59367 0.540 0.594 1.687 3.396 0.593 0.592 0.593 

14 0 3 0 4 0.62151 0.65992 2.18566 4.43995 0.65992 0.65992 0.65992 0.622 0.660 2.186 4.439 0.657 0.663 0.659 

15 0 3 0 5 0.66886 0.70417 2.67800 5.46945 0.70417 0.70417 0.70417 0.670 0.706 2.679 5.466 0.703 0.702 0.704 

16 0 4 0 1 0.24615 0.30769 0.61538 1.69231 0.30769 0.30769 0.30769 0.247 0.308 0.615 1.692 0.308 0.307 0.308 

17 0 4 0 2 0.42469 0.49383 1.18519 3.30864 0.49383 0.49383 0.49383 0.425 0.494 1.185 3.312 0.494 0.494 0.494 

18 0 4 0 3 0.54889 0.60362 1.71429 4.87726 0.60362 0.60362 0.60362 0.548 0.602 1.713 4.884 0.606 0.602 0.603 

19 0 4 0 4 0.63018 0.66912 2.21613 6.41820 0.66912 0.66912 0.66912 0.630 0.669 2.217 6.416 0.670 0.667 0.669 

20 0 4 0 5 0.67681 0.71253 2.70980 7.94533 0.71253 0.71253 0.71253 0.677 0.713 2.710 7.943 0.713 0.710 0.711 

21 0 5 0 1 0.25000 0.31250 0.62500 2.18750 0.31250 0.31250 0.31250 0.250 0.313 0.625 2.187 0.313 0.309 0.313 

22 0 5 0 2 0.43000 0.50000 1.20000 4.30000 0.50000 0.50000 0.50000 0.431 0.500 1.200 4.295 0.499 0.501 0.501 

23 0 5 0 3 0.55447 0.60976 1.73171 6.36585 0.60976 0.60976 0.60976 0.554 0.610 1.732 6.367 0.609 0.608 0.610 

24 0 5 0 4 0.63549 0.67476 2.23482 8.40486 0.67476 0.67476 0.67476 0.635 0.675 2.234 8.401 0.675 0.675 0.674 

25 0 5 0 5 0.68166 0.71765 2.72925 10.43059 0.71765 0.71765 0.71765 0.682 0.718 2.728 10.412 0.719 0.717 0.718 

26 1 1 0 1 0.24860 0.31075 0.62151 1.00000 0.31075 0.31075 0.31075 0.249 0.311 0.621 1.001 0.312 0.311 0.311 

27 1 1 0 2 0.37862 0.44025 1.05660 0.67925 0.44025 0.44025 0.44025 0.379 0.440 1.056 0.680 0.441 0.441 0.441 

28 1 1 0 3 0.50292 0.55307 1.57071 0.89834 0.55307 0.55307 0.55307 0.504 0.554 1.570 0.900 0.555 0.552 0.554 

29 1 1 0 4 0.58826 0.62461 2.06871 1.05184 0.62461 0.62461 0.62461 0.588 0.624 2.068 1.055 0.626 0.625 0.625 

30 1 1 0 5 0.63893 0.67266 2.55815 1.14700 0.67266 0.67266 0.67266 0.639 0.673 2.558 1.146 0.674 0.673 0.673 

31 1 1 1 1 0.32878 0.38657 0.90328 0.54249 0.38657 0.38657 0.38657 0.329 0.386 0.902 0.544 0.387 0.387 0.387 

32 1 1 1 2 0.42350 0.48088 1.23632 0.48088 0.48088 0.48088 0.48088 0.423 0.480 1.233 0.485 0.485 0.480 0.481 

33 1 1 1 3 0.55549 0.59896 1.82458 0.59896 0.59896 0.59896 0.59896 0.555 0.598 1.824 0.600 0.600 0.599 0.599 
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34 1 1 1 4 0.63882 0.67035 2.37492 0.67035 0.67035 0.67035 0.67035 0.639 0.671 2.373 0.672 0.672 0.669 0.671 

35 1 1 1 5 0.68694 0.71582 2.89044 0.71582 0.71582 0.71582 0.71582 0.687 0.716 2.889 0.717 0.717 0.716 0.717 

36 1 2 0 1 0.25732 0.32165 0.64330 1.51753 0.32165 0.32165 0.32165 0.258 0.322 0.643 1.517 0.322 0.323 0.322 

37 1 2 0 2 0.41233 0.47945 1.15068 1.65068 0.47945 0.47945 0.47945 0.414 0.480 1.149 1.653 0.480 0.481 0.480 

38 1 2 0 3 0.53784 0.59147 1.67976 2.35657 0.59147 0.59147 0.59147 0.538 0.592 1.681 2.350 0.589 0.594 0.591 

39 1 2 0 4 0.62104 0.65941 2.18398 2.99901 0.65941 0.65941 0.65941 0.621 0.659 2.184 2.996 0.662 0.658 0.659 

40 1 2 0 5 0.66890 0.70421 2.67813 3.58355 0.70421 0.70421 0.70421 0.670 0.704 2.679 3.584 0.703 0.707 0.705 

41 1 2 1 1 0.36850 0.43078 1.02071 0.95498 0.43078 0.43078 0.43078 0.368 0.430 1.021 0.955 0.431 0.431 0.431 

42 1 2 1 2 0.47905 0.54086 1.41308 1.39574 0.54086 0.54086 0.54086 0.480 0.541 1.413 1.400 0.543 0.539 0.541 

43 1 2 1 3 0.61314 0.65802 2.03732 1.97759 0.65802 0.65802 0.65802 0.614 0.658 2.037 1.979 0.659 0.657 0.659 

44 1 2 1 4 0.69173 0.72386 2.60434 2.52188 0.72386 0.72386 0.72386 0.692 0.724 2.603 2.517 0.723 0.722 0.723 

45 1 2 1 5 0.73487 0.76393 3.12667 3.04937 0.76393 0.76393 0.76393 0.735 0.764 3.126 3.054 0.768 0.762 0.764 

46 1 3 0 1 0.26036 0.32545 0.65090 2.02365 0.32545 0.32545 0.32545 0.261 0.326 0.651 2.023 0.326 0.325 0.325 

47 1 3 0 2 0.42494 0.49412 1.18588 2.64000 0.49412 0.49412 0.49412 0.426 0.494 1.184 2.643 0.495 0.493 0.495 

48 1 3 0 3 0.55058 0.60548 1.71956 3.84133 0.60548 0.60548 0.60548 0.551 0.606 1.721 3.839 0.605 0.603 0.605 

49 1 3 0 4 0.63279 0.67189 2.22531 4.98007 0.67189 0.67189 0.67189 0.633 0.672 2.224 4.980 0.673 0.671 0.672 

50 1 3 0 5 0.67952 0.71539 2.72066 6.06105 0.71539 0.71539 0.71539 0.681 0.717 2.725 6.057 0.710 0.711 0.715 

51 1 3 1 1 0.38903 0.45406 1.08000 1.48452 0.45406 0.45406 0.45406 0.389 0.454 1.079 1.487 0.454 0.456 0.453 

52 1 3 1 2 0.50075 0.56427 1.48229 2.36183 0.56427 0.56427 0.56427 0.502 0.565 1.484 2.366 0.565 0.563 0.564 

53 1 3 1 3 0.63494 0.68033 2.11793 3.43093 0.68033 0.68033 0.68033 0.636 0.681 2.117 3.430 0.681 0.681 0.680 

54 1 3 1 4 0.71128 0.74362 2.68920 4.46665 0.74362 0.74362 0.74362 0.711 0.743 2.685 4.465 0.747 0.746 0.743 

55 1 3 1 5 0.75233 0.78148 3.21257 5.48949 0.78148 0.78148 0.78148 0.754 0.783 3.220 5.474 0.775 0.781 0.780 

56 1 4 0 1 0.26191 0.32739 0.65477 2.52676 0.32739 0.32739 0.32739 0.263 0.328 0.655 2.528 0.327 0.328 0.327 

57 1 4 0 2 0.43154 0.50179 1.20430 3.63441 0.50179 0.50179 0.50179 0.432 0.502 1.203 3.638 0.502 0.500 0.502 

58 1 4 0 3 0.55718 0.61274 1.74017 5.33343 0.61274 0.61274 0.61274 0.557 0.612 1.738 5.337 0.614 0.613 0.612 

59 1 4 0 4 0.63883 0.67831 2.24657 6.97032 0.67831 0.67831 0.67831 0.639 0.679 2.247 6.970 0.677 0.678 0.678 

60 1 4 0 5 0.68496 0.72112 2.74243 8.54954 0.72112 0.72112 0.72112 0.686 0.722 2.741 8.564 0.719 0.719 0.722 

61 1 4 1 1 0.39813 0.46425 1.10669 1.96514 0.46425 0.46425 0.46425 0.399 0.465 1.105 1.968 0.465 0.465 0.465 

62 1 4 1 2 0.51233 0.57674 1.51919 3.34372 0.57674 0.57674 0.57674 0.514 0.577 1.520 3.343 0.577 0.574 0.576 

63 1 4 1 3 0.64640 0.69206 2.16032 4.90636 0.69206 0.69206 0.69206 0.647 0.692 2.159 4.911 0.693 0.690 0.692 

64 1 4 1 4 0.72146 0.75392 2.73339 6.43788 0.75392 0.75392 0.75392 0.722 0.754 2.732 6.444 0.754 0.754 0.754 

65 1 4 1 5 0.76136 0.79055 3.25702 7.95848 0.79055 0.79055 0.79055 0.762 0.791 3.256 7.967 0.792 0.788 0.790 

66 1 5 0 1 0.26285 0.32856 0.65712 3.02865 0.32856 0.32856 0.32856 0.263 0.329 0.656 3.027 0.329 0.329 0.329 

67 1 5 0 2 0.43560 0.50651 1.21563 4.63097 0.50651 0.50651 0.50651 0.437 0.508 1.217 4.625 0.505 0.504 0.506 

68 1 5 0 3 0.56122 0.61718 1.75278 6.82860 0.61718 0.61718 0.61718 0.560 0.617 1.752 6.825 0.619 0.616 0.618 

69 1 5 0 4 0.64252 0.68222 2.25952 8.96439 0.68222 0.68222 0.68222 0.643 0.682 2.260 8.962 0.680 0.686 0.682 

70 1 5 0 5 0.68826 0.72460 2.75567 11.04254 0.72460 0.72460 0.72460 0.689 0.725 2.756 11.053 0.726 0.717 0.725 

71 1 5 1 1 0.40444 0.47137 1.12502 2.46895 0.47137 0.47137 0.47137 0.405 0.472 1.124 2.468 0.472 0.471 0.471 

72 1 5 1 2 0.51952 0.58450 1.54212 4.33246 0.58450 0.58450 0.58450 0.519 0.584 1.541 4.334 0.586 0.585 0.584 
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73 1 5 1 3 0.65347 0.69929 2.18647 6.39121 0.69929 0.69929 0.69929 0.655 0.700 2.189 6.395 0.698 0.695 0.698 

74 1 5 1 4 0.72771 0.76023 2.76050 8.42023 0.76023 0.76023 0.76023 0.727 0.760 2.759 8.419 0.760 0.759 0.759 

75 1 5 1 5 0.76689 0.79610 3.28419 10.43953 0.79610 0.79610 0.79610 0.766 0.795 3.279 10.447 0.799 0.805 0.795 

76 2 1 0 1 0.26085 0.32606 0.65213 1.91338 0.32606 0.32606 0.32606 0.261 0.326 0.651 1.914 0.327 0.327 0.327 

77 2 1 0 2 0.43370 0.50430 1.21033 2.00000 0.50430 0.50430 0.50430 0.434 0.505 1.209 1.999 0.505 0.506 0.506 

78 2 1 0 3 0.52112 0.57308 1.62754 1.28077 0.57308 0.57308 0.57308 0.521 0.573 1.626 1.281 0.575 0.574 0.573 

79 2 1 0 4 0.60897 0.64660 2.14154 1.54292 0.64660 0.64660 0.64660 0.609 0.647 2.143 1.541 0.647 0.647 0.647 

80 2 1 0 5 0.66012 0.69497 2.64300 1.71974 0.69497 0.69497 0.69497 0.661 0.695 2.643 1.722 0.695 0.695 0.694 

81 2 1 1 1 0.37880 0.44340 1.04736 1.19634 0.44340 0.44340 0.44340 0.378 0.443 1.045 1.196 0.444 0.444 0.444 

82 2 1 1 2 0.49831 0.56170 1.47417 1.58766 0.56170 0.56170 0.56170 0.499 0.562 1.473 1.586 0.562 0.564 0.562 

83 2 1 1 3 0.58514 0.62956 1.93239 0.98425 0.62956 0.62956 0.62956 0.585 0.630 1.931 0.984 0.632 0.630 0.630 

84 2 1 1 4 0.67055 0.70269 2.50843 1.15285 0.70269 0.70269 0.70269 0.671 0.703 2.508 1.154 0.705 0.702 0.703 

85 2 1 1 5 0.71817 0.74743 3.03952 1.26306 0.74743 0.74743 0.74743 0.718 0.747 3.038 1.266 0.748 0.749 0.747 

86 2 1 2 1 0.42390 0.47562 1.27975 0.84539 0.47562 0.47562 0.47562 0.423 0.475 1.280 0.845 0.475 0.475 0.476 

87 2 1 2 2 0.59119 0.62963 2.03704 0.84443 0.62963 0.62963 0.62963 0.591 0.630 2.035 0.845 0.630 0.630 0.630 

88 2 1 2 3 0.62833 0.66422 2.26852 0.66422 0.66422 0.66422 0.66422 0.628 0.663 2.265 0.667 0.667 0.664 0.665 

89 2 1 2 4 0.71097 0.73585 2.90851 0.73585 0.73585 0.73585 0.73585 0.711 0.736 2.905 0.740 0.740 0.734 0.736 

90 2 1 2 5 0.75633 0.77846 3.47811 0.77846 0.77846 0.77846 0.77846 0.755 0.778 3.478 0.781 0.781 0.779 0.777 

91 2 2 0 1 0.26416 0.33020 0.66040 2.49530 0.33020 0.33020 0.33020 0.265 0.331 0.660 2.495 0.330 0.330 0.331 

92 2 2 0 2 0.44296 0.51508 1.23618 3.02136 0.51508 0.51508 0.51508 0.444 0.515 1.235 3.022 0.517 0.517 0.516 

93 2 2 0 3 0.54807 0.60272 1.71172 2.76943 0.60272 0.60272 0.60272 0.549 0.604 1.713 2.769 0.602 0.603 0.603 

94 2 2 0 4 0.63239 0.67147 2.22390 3.52534 0.67147 0.67147 0.67147 0.632 0.671 2.223 3.525 0.671 0.670 0.672 

95 2 2 0 5 0.68033 0.71624 2.72390 4.19585 0.71624 0.71624 0.71624 0.681 0.717 2.726 4.186 0.715 0.719 0.717 

96 2 2 1 1 0.40701 0.47458 1.13146 1.86346 0.47458 0.47458 0.47458 0.408 0.475 1.132 1.862 0.474 0.476 0.475 

97 2 2 1 2 0.52180 0.58701 1.54914 2.57041 0.58701 0.58701 0.58701 0.523 0.588 1.549 2.570 0.588 0.586 0.587 

98 2 2 1 3 0.63084 0.67627 2.10184 2.42588 0.67627 0.67627 0.67627 0.631 0.677 2.101 2.427 0.677 0.677 0.676 

99 2 2 1 4 0.70998 0.74245 2.68135 3.07689 0.74245 0.74245 0.74245 0.710 0.743 2.679 3.080 0.744 0.743 0.742 

100 2 2 1 5 0.75236 0.78163 3.21027 3.67315 0.78163 0.78163 0.78163 0.753 0.782 3.208 3.673 0.785 0.780 0.783 

101 2 2 2 1 0.48015 0.53266 1.47729 1.41658 0.53266 0.53266 0.53266 0.481 0.533 1.478 1.419 0.533 0.531 0.532 

102 2 2 2 2 0.64374 0.68007 2.25510 1.64330 0.68007 0.68007 0.68007 0.644 0.680 2.254 1.649 0.682 0.677 0.681 

103 2 2 2 3 0.69252 0.72623 2.57252 2.00809 0.72623 0.72623 0.72623 0.692 0.726 2.571 2.011 0.730 0.724 0.726 

104 2 2 2 4 0.76608 0.78886 3.22480 2.54143 0.78886 0.78886 0.78886 0.767 0.789 3.224 2.534 0.787 0.794 0.788 

105 2 2 2 5 0.80435 0.82431 3.79431 3.05839 0.82431 0.82431 0.82431 0.805 0.824 3.797 3.051 0.822 0.824 0.823 

106 2 3 0 1 0.26499 0.33124 0.66247 3.00000 0.33124 0.33124 0.33124 0.266 0.332 0.662 3.001 0.332 0.331 0.331 

107 2 3 0 2 0.44614 0.51877 1.24504 4.02868 0.51877 0.51877 0.51877 0.447 0.519 1.245 4.025 0.520 0.522 0.520 

108 2 3 0 3 0.55769 0.61329 1.74175 4.26538 0.61329 0.61329 0.61329 0.559 0.613 1.742 4.273 0.614 0.610 0.613 
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6.13.3 Numerical Results data 

Effect of r: λ=0.5, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, dm=(0.6, 0.4) 
s n r Q1 Q2 OFR SL WIP retailer WIP Wholealer WIP total utilization1 utilization2 Lost saler per lost customer 

6 1 0 6 6 0.751173 0.765698 2.90909012 6 8.90909012 0.17866294 0.178662945 1.31827649 

6 1 1 6 6 0.814576 0.821721 3.433781123 5.221206244 8.654987367 0.19173497 0.191734966 1.346047642 

6 1 2 6 6 0.850963 0.856472 4.105624179 4.395175858 8.500800037 0.19984354 0.199843535 1.348243353 

6 1 3 6 6 0.874851 0.878757 4.821469213 3.580326563 8.401795776 0.20504339 0.205043393 1.356299571 

6 1 4 6 6 0.890226 0.893443 5.55286381 2.78428425 8.33714806 0.20847015 0.20847015 1.358971848 

6 1 5 6 6 0.89939 0.902202 6.180990115 2.117723661 8.298713776 0.2105137 0.210513705 1.360876806 

6 1 6 6 6 0.905606 0.90819 6.773691141 1.498848939 8.27254008 0.21191106 0.21191106 1.36166886 

6 2 0 3 6 0.605229 0.630797 1.460085821 7.483635593 8.943721414 0.29437214 0.147186071 1.309325499 

6 2 1 3 6 0.707407 0.719796 1.949928162 6.754459112 8.704387273 0.33590465 0.167952327 1.340724659 

6 2 2 3 6 0.764895 0.77463 2.567558759 5.991346245 8.558905003 0.36149403 0.180747014 1.342031053 

6 2 3 3 6 0.813172 0.819486 3.381883415 5.060479508 8.442362923 0.38242671 0.191213357 1.352683756 

6 2 4 3 6 0.837344 0.842532 4.033470701 4.347753125 8.381223826 0.39318167 0.196590836 1.35534447 

6 2 5 3 6 0.8538 0.858232 4.655194598 3.686471844 8.341666441 0.40050848 0.20025424 1.357556125 

6 2 6 3 6 0.865359 0.869351 5.246652483 3.06817457 8.314827053 0.40569726 0.202848631 1.358489493 

6 3 0 2 6 0.519423 0.545612 0.993013639 7.986027278 8.979040917 0.38192832 0.127309441 1.323706124 

6 3 1 2 6 0.618574 0.63308 1.377199803 7.401011375 8.778211178 0.44315578 0.147718593 1.346757252 

6 3 2 2 6 0.705505 0.716503 2.089483677 6.510141892 8.599625569 0.50155212 0.167184039 1.347714958 

6 3 3 2 6 0.747349 0.755588 2.633054024 5.880717681 8.513771705 0.52891146 0.176303821 1.354348192 

6 3 4 2 6 0.780492 0.78729 3.278329557 5.168673082 8.447002639 0.55110296 0.183700988 1.356643448 

6 3 5 2 6 0.80045 0.80639 3.814181655 4.593878058 8.408059714 0.56447285 0.188157617 1.358325977 

6 3 6 2 6 0.81511 0.820519 4.329556197 4.051464865 8.381021062 0.57436308 0.191454359 1.359048313 

6 6 0 1 6 0.299631 0.356704 0.499385088 8.496925441 8.996310529 0.49938509 0.083230848 1.285914967 

6 6 1 1 6 0.457674 0.484843 0.867803343 7.938938819 8.806742162 0.67878078 0.11313013 1.329864074 

6 6 2 1 6 0.521354 0.54525 1.226002331 7.490390948 8.716393279 0.76335065 0.127225108 1.330104761 

6 6 3 1 6 0.561519 0.581915 1.552041266 7.109703145 8.661744411 0.81468044 0.135780073 1.334880673 

6 6 4 1 6 0.58716 0.605984 1.845783137 6.780280497 8.626063634 0.84837698 0.141396163 1.336165414 

6 6 5 1 6 0.604452 0.622246 2.099125216 6.503622583 8.602747799 0.87114506 0.145190843 1.337019761 

6 6 6 1 6 0.615493 0.632701 2.299981719 6.289328243 8.589309962 0.88578165 0.147630275 1.337344171 
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Effect of Q1: λ=0.5, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, dm=(0.6, 0.4) 
s n r Q1 Q2 OFR SL WIP retailer WIP Wholealer WIP total utilization1 utilization2 Lost saler per lost customer 

4 1 0 12 12 0.845512 0.853642 5.798378969 3.732025525 9.530404494 0.099591588 0.099591588 1.326326096 

4 2 0 6 12 0.748111 0.762576 2.897228736 6.2941966 9.191425336 0.177934473 0.088967237 1.319599354 

4 3 0 4 12 0.674938 0.694266 1.947833684 8.057677933 10.00551162 0.242993224 0.080997741 1.316755192 

4 4 0 3 12 0.604063 0.629582 1.457272142 8.227545504 9.684817646 0.293804867 0.073451217 1.30976682 

4 6 0 2 12 0.518894 0.545057 0.9920038 9.023988601 10.0159924 0.381539923 0.063589987 1.323867391 

4 12 0 1 12 0.299356 0.356376 0.498926964 9.50536518 10.00429214 0.498926964 0.041577247 1.286064343 

4 1 1 12 12 0.882115 0.886331 6.334311772 3.098423465 9.432735237 0.10340524 0.10340524 1.349935018 

4 2 1 6 12 0.81294 0.820169 3.423711731 5.770234947 9.193946678 0.19137279 0.095686395 1.345894459 

4 3 1 4 12 0.757338 0.767011 2.443277673 7.341639211 9.784916884 0.268453773 0.089484591 1.344195211 

4 4 1 3 12 0.707007 0.719428 1.948279161 7.597451929 9.54573109 0.335732907 0.083933227 1.34065164 

4 6 1 2 12 0.618072 0.63259 1.375796439 8.460190064 9.835986502 0.442812992 0.073802165 1.346780932 

4 12 1 1 12 0.456964 0.484126 0.866392814 8.966488383 9.832881197 0.677776329 0.056481361 1.329972676 

4 1 2 12 12 0.901375 0.904753 6.959821133 2.418873896 9.37869503 0.105554535 0.105554535 1.352050123 

4 2 2 6 12 0.850415 0.856018 4.092511044 5.116391048 9.208902092 0.199737571 0.099868785 1.347560761 

4 3 2 4 12 0.808988 0.816408 3.124998743 6.514804675 9.639803418 0.285742661 0.095247554 1.345617786 

4 4 2 3 12 0.764521 0.77432 2.562813662 6.910987436 9.473801098 0.361349169 0.090337292 1.341743321 

4 6 2 2 12 0.705384 0.716413 2.087690856 7.59114042 9.678831276 0.501489449 0.083581575 1.347587231 

4 12 2 1 12 0.520424 0.544333 1.223227223 8.531513946 9.754741169 0.76206678 0.063505565 1.330202577 

4 1 3 12 12 0.912345 0.915026 7.544442463 1.803950253 9.348392716 0.106753015 0.106753015 1.357181156 

4 2 3 6 12 0.874388 0.878443 4.783873454 4.438255639 9.222129093 0.204970028 0.102485014 1.354810794 

4 3 3 4 12 0.841941 0.84717 3.822506318 5.724941038 9.547447356 0.296509617 0.098836539 1.353677409 

4 4 3 3 12 0.812512 0.818952 3.365286263 6.051359279 9.416645542 0.382177707 0.095544427 1.351908225 

4 6 3 2 12 0.746739 0.755069 2.622583542 6.982465659 9.605049201 0.528548599 0.088091433 1.353948427 

4 12 3 1 12 0.560177 0.58063 1.545833378 8.163030396 9.708863773 0.812881735 0.067740145 1.334895187 

4 1 4 12 12 0.918188 0.920616 8.043133163 1.288862379 9.331995541 0.107405198 0.107405198 1.358453943 

4 2 4 6 12 0.889544 0.892939 5.474841697 3.762050693 9.23689239 0.208352386 0.104176193 1.356975416 

4 3 4 4 12 0.866186 0.870346 4.626311762 4.85489691 9.481208672 0.304621061 0.101540354 1.356474383 

4 4 4 3 12 0.836354 0.841707 3.993212561 5.395940788 9.389153349 0.392796662 0.098199165 1.354199575 

4 6 4 2 12 0.778962 0.785912 3.247083281 6.300522391 9.547605672 0.550138619 0.09168977 1.355979832 

4 12 4 1 12 0.584736 0.603697 1.828041907 7.851395856 9.679437763 0.845175666 0.070431305 1.336075576 
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Effect of s: λ=0.5, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, dm=(0.6, 0.4) 
s n r Q1 Q2 OFR SL WIP retailer WIP Wholealer WIP total utilization1 utilization2 Lost saler per lost customer 

1 6 2 1 6 0.465704 0.490623 1.045117363 2.929495236 3.974612599 0.686871836 0.114478639 1.334707059 

2 6 2 1 6 0.493346 0.51765 1.142884924 3.661372248 4.804257173 0.724710069 0.120785012 1.332843498 

3 6 2 1 6 0.507109 0.531097 1.184849388 4.553513444 5.738362832 0.743535828 0.123922638 1.331864359 

4 6 2 1 6 0.514339 0.538253 1.206155675 5.506335114 6.712490789 0.753553835 0.125592306 1.331064772 

5 6 2 1 6 0.518614 0.542512 1.218326131 6.486594844 7.704920975 0.7595168 0.126586133 1.330499337 

6 6 2 1 6 0.521354 0.54525 1.226002331 7.490390948 8.716393279 0.76335065 0.127225108 1.330104761 

7 6 2 1 6 0.523093 0.546992 1.230840648 8.468294955 9.699135603 0.765788108 0.127631351 1.329844497 

8 6 2 1 6 0.524257 0.548157 1.23406809 9.45549658 10.68956467 0.767419928 0.127903321 1.329667208 

9 6 2 1 6 0.525039 0.54894 1.236234028 10.44819348 11.68442751 0.768516663 0.128086111 1.329547022 

10 6 2 1 6 0.525565 0.549468 1.237690629 11.44406856 12.68175919 0.769254662 0.12820911 1.329465777 

11 6 2 1 6 0.525919 0.549822 1.238670856 12.44186122 13.68053208 0.76975142 0.128291903 1.329410949 

12 6 2 1 6 0.526157 0.550061 1.239330772 13.44105547 14.68038624 0.770085884 0.128347647 1.329373976 

1 3 2 2 6 0.600875 0.613893 1.631632025 2.133215638 3.764847663 0.42972539 0.143241797 1.354336172 

2 3 2 2 6 0.652703 0.664628 1.880979571 2.877713129 4.758692701 0.465239851 0.15507995 1.351926816 

3 3 2 2 6 0.671366 0.682824 1.954808635 3.416404675 5.37121331 0.477976868 0.159325623 1.351188088 

4 3 2 2 6 0.690294 0.701452 2.031905971 4.569233961 6.601139932 0.491016487 0.163672162 1.349561742 

5 3 2 2 6 0.697282 0.708356 2.058736671 5.216441158 7.27517783 0.495849515 0.165283172 1.348785337 

6 3 2 2 6 0.705505 0.716503 2.089483677 6.510141892 8.599625569 0.501552116 0.167184039 1.347714958 

7 3 2 2 6 0.70871 0.719684 2.101212192 7.167504461 9.268716653 0.503778499 0.167926166 1.347256646 

8 3 2 2 6 0.712637 0.723585 2.115437533 8.424919014 10.54035655 0.506509166 0.168836389 1.346665384 

9 3 2 2 6 0.714346 0.725283 2.121590323 9.104895828 11.22648615 0.507698114 0.169232705 1.346399134 

10 3 2 2 6 0.716473 0.727396 2.12922205 10.38787254 12.51709459 0.509177348 0.169725783 1.346061233 

11 3 2 2 6 0.717405 0.728323 2.132561934 11.07696353 13.20952547 0.509825812 0.169941937 1.345910976 

12 3 2 2 6 0.718571 0.729482 2.136737711 12.37384228 14.51057999 0.510637196 0.170212399 1.345721267 

1 2 2 3 6 0.647189 0.659962 1.932349234 1.91373333 3.846082564 0.307982404 0.153991202 1.349315787 

2 2 2 3 6 0.690494 0.702088 2.203295796 2.175192619 4.378488415 0.327640931 0.163820465 1.347557919 

3 2 2 3 6 0.726905 0.737399 2.38288373 3.240267016 5.623150746 0.344119522 0.172059761 1.346204344 

4 2 2 3 6 0.743706 0.753818 2.469599994 3.916414757 6.386014752 0.351781645 0.175890823 1.344762846 

5 2 2 3 6 0.754185 0.764084 2.519309299 4.592305439 7.111614738 0.35657253 0.178286265 1.343622767 

6 2 2 3 6 0.764895 0.77463 2.567558759 5.991346245 8.558905003 0.361494028 0.180747014 1.342031053 

7 2 2 3 6 0.769754 0.77942 2.589064719 6.743156295 9.332221013 0.363729454 0.181864727 1.341225758 

8 2 2 3 6 0.773291 0.782912 2.604519777 7.463339899 10.06785968 0.365358727 0.182679363 1.340591856 

9 2 2 3 6 0.777284 0.786857 2.621749788 8.843738069 11.46548786 0.367199869 0.183599935 1.339826923 

10 2 2 3 6 0.779304 0.788853 2.630443279 9.638152782 12.26859606 0.368131522 0.184065761 1.339426562 

11 2 2 3 6 0.780805 0.790337 2.636886154 10.38554931 13.02243546 0.368823728 0.184411864 1.339122613 

12 2 2 3 6 0.782539 0.792051 2.644316279 11.79943024 14.44374652 0.369623658 0.184811829 1.33876448 
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Effect of Q2: λ=0.5, μ11=1, μ12=0.2, d12=0.2, μ21=1, μ22=0.2, d22=0.2, dm=(0.6, 0.4) 
s n r Q1 Q2 OFR SL WIP retailer WIP Wholealer WIP total utilization1 utilization2 Lost saler per lost customer 

1 2 2 2 4 0.554036 0.567876 1.430687797 1.280433318 2.711121115 0.397513393 0.198756696 1.356553191 

1 3 2 2 6 0.600875 0.613893 1.631632025 2.133215638 3.764847663 0.42972539 0.143241797 1.354336172 

1 4 2 2 8 0.627149 0.639703 1.744006798 3.050453276 4.794460075 0.447792439 0.11194811 1.352859066 

1 5 2 2 10 0.643997 0.656254 1.81605776 3.99736616 5.81342392 0.459378143 0.091875629 1.351797464 

1 6 2 2 12 0.655722 0.667773 1.866198485 4.960421456 6.826619941 0.467440766 0.077906794 1.35099738 

1 7 2 2 14 0.664352 0.67625 1.903104524 5.933228292 7.836332816 0.473375254 0.067625036 1.350372766 

1 8 2 2 16 0.67097 0.682751 1.931404933 6.91237594 8.843780873 0.477925958 0.059740745 1.349871601 

1 9 2 2 18 0.676206 0.687895 1.953795379 7.895878175 9.849673555 0.48152634 0.053502927 1.349460578 

1 10 2 2 20 0.680452 0.692066 1.971952101 8.882499911 10.85445201 0.48444594 0.048444594 1.349117384 

2 1 2 2 2 0.557481 0.570656 1.50877134 1.118839647 2.627610986 0.399459227 0.399459227 1.358318484 

2 2 2 2 4 0.62285 0.635221 1.765020589 1.914045156 3.679065745 0.444654747 0.222327374 1.354076491 

2 3 2 2 6 0.652703 0.664628 1.880979571 2.877713129 4.758692701 0.465239851 0.15507995 1.351926816 

2 4 2 2 8 0.668601 0.680287 1.942538245 3.85643848 5.798976724 0.476201055 0.119050264 1.350630826 

2 5 2 2 10 0.678502 0.690039 1.980868379 4.843092913 6.823961293 0.483027224 0.096605445 1.349759195 

2 6 2 2 12 0.685261 0.696697 2.007037616 5.833977046 7.841014662 0.487687708 0.081281285 1.349132606 

2 7 2 2 14 0.69017 0.701532 2.026041229 6.827357085 8.853398314 0.491072067 0.070153152 1.348660453 

2 8 2 2 16 0.693896 0.705202 2.040467933 7.822331494 9.862799427 0.493641322 0.061705165 1.348291903 

2 9 2 2 18 0.696822 0.708083 2.051793496 8.818386196 10.87017969 0.495658294 0.055073144 1.347996229 

2 10 2 2 20 0.699179 0.710405 2.060920802 9.815206669 11.87612747 0.497283779 0.049728378 1.347753759 

3 1 2 2 2 0.590021 0.602345 1.639455739 1.46067734 3.100133079 0.421641586 0.421641586 1.357915543 

3 2 2 2 4 0.64839 0.66011 1.866253096 2.414486544 4.28073964 0.462076985 0.231038493 1.353333088 

3 3 2 2 6 0.671366 0.682824 1.954808635 3.416404675 5.37121331 0.477976868 0.159325623 1.351188088 

3 4 2 2 8 0.683177 0.694502 2.000169203 4.41129239 6.411461593 0.486151108 0.121537777 1.349958096 

3 5 2 2 10 0.690451 0.701693 2.02809876 5.407844057 7.435942817 0.491185139 0.098237028 1.349153716 

3 6 2 2 12 0.695384 0.70657 2.047040743 6.405492042 8.452532784 0.494599278 0.082433213 1.348586307 

3 7 2 2 14 0.698949 0.710096 2.06073271 7.403791352 9.464524062 0.497067146 0.071009592 1.348164585 

3 8 2 2 16 0.701647 0.712763 2.071091688 8.402504631 10.47359632 0.498934269 0.062366784 1.347838822 

3 9 2 2 18 0.70376 0.714852 2.079202631 9.401497145 11.48069978 0.500396202 0.055599578 1.347579613 

3 10 2 2 20 0.705458 0.716531 2.08572569 10.4006869 12.48641259 0.501571931 0.050157193 1.347368451 

4 1 2 2 2 0.630375 0.642054 1.806139119 2.37947922 4.185618339 0.449438083 0.449438083 1.355763307 

4 2 2 2 4 0.676741 0.68801 1.981926564 3.606809407 5.588735971 0.481606811 0.240803406 1.351195379 

4 3 2 2 6 0.690294 0.701452 2.031905971 4.569233961 6.601139932 0.491016487 0.163672162 1.349561742 

4 4 2 2 8 0.697767 0.708861 2.059532789 5.580909136 7.640441926 0.496202752 0.124050688 1.348608616 

4 5 2 2 10 0.702318 0.713373 2.076356603 6.587047705 8.663404308 0.499361427 0.099872285 1.348004649 

4 6 2 2 12 0.705384 0.716413 2.087690856 7.59114042 9.678831276 0.501489449 0.083581575 1.347587231 

4 7 2 2 14 0.70759 0.718601 2.095846037 8.594083383 10.68992942 0.503020596 0.071860085 1.347281476 

4 8 2 2 16 0.709253 0.72025 2.101995177 9.59630235 11.69829753 0.504175106 0.063021888 1.347047864 

4 9 2 2 18 0.710552 0.721538 2.106797391 10.59803526 12.70483266 0.505076729 0.056119637 1.346863556 

4 10 2 2 20 0.711595 0.722572 2.110651547 11.59942607 13.71007761 0.505800352 0.050580035 1.346714433 
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Effect of Lead time Variance on system performance – Balanced systems: s=8,Q2=8 r=4, Q1=4, l=0.5. T1=2, dm=(0.6, 0.4), μ21=2/3, μ22=2/3, 

d22=1/3, λ=0.5, T1=2 

 
μ11 d12 μ12 μ21 d22 μ22 Var OFR SL WIP total WIP1 WIP2 util1 

0.666667 0.5 1 0.666667 0.333333 0.666667 3 0.941007 0.944603 11.25982 5.011106 6.248709 0.330611 

2 0.5 0.333333 0.666667 0.333333 0.666667 7 0.911808 0.915514 11.3438 4.98323 6.360569 0.32043 

0.666667 0.4 0.8 0.666667 0.333333 0.666667 3.25 0.938856 0.942483 11.26598 5.009498 6.256481 0.329869 

0.533333 0.25 2 0.666667 0.333333 0.666667 3.625 0.935927 0.93955 11.27441 5.006371 6.268039 0.328843 

0.75 0.4 0.6 0.666667 0.333333 0.666667 3.555556 0.936351 0.939997 11.27317 5.007273 6.2659 0.328999 

0.666667 0.333333 0.666667 0.666667 0.333333 0.666667 3.5 0.936783 0.940428 11.27193 5.007707 6.264225 0.32915 

1 0.333333 0.333333 0.666667 0.333333 0.666667 6 0.919312 0.922926 11.32226 4.989105 6.333157 0.323024 

0.555556 0.1 0.5 0.666667 0.333333 0.666667 4 0.932927 0.93658 11.28303 5.003878 6.279147 0.327803 

0.533333 0.1 0.8 0.666667 0.333333 0.666667 3.8125 0.93435 0.938001 11.27893 5.005312 6.273618 0.3283 

1.5 0.8 0.6 0.666667 0.333333 0.666667 3.111111 0.940145 0.943728 11.2623 5.009949 6.252355 0.330305 

0.8 0.75 1 0.666667 0.333333 0.666667 2.5 0.945337 0.948871 11.2474 5.014346 6.233056 0.332105 

0.666667 0.75 1.5 0.666667 0.333333 0.666667 2.666667 0.943933 0.947462 11.25144 5.012773 6.23867 0.331612 

0.5 0 1 0.666667 0.333333 0.666667 4 0.932927 0.93658 11.28303 5.003878 6.279147 0.327803 

1 1 1 0.666667 0.333333 0.666667 2 0.949807 0.953248 11.23461 5.017096 6.217515 0.333637 

0.714286 0.2 0.333333 0.666667 0.333333 0.666667 5.2 0.925054 0.928658 11.30574 4.994828 6.310911 0.32503 

0.645161 0.15 0.333333 0.666667 0.333333 0.666667 4.9 0.927111 0.930722 11.29981 4.997074 6.302738 0.325753 

 

 

Effect of Lead time Variance on system performance – Supply constrained systems: s=8,Q2=8 r=4, Q1=4, l=2/3. T1=2, dm=(0.6, 0.4), μ21=1, 

μ22=0.2, d22=0.3 
m11 d12 m12 m21 d22 m22 Tavg Var1 OFR SL WIP total WIP1 WIP2 util1 

0.666667 0.5 1 1 0.3 0.2 2 3 0.857678 0.86307 10.51302 4.289549 6.223472 0.402766 

2 0.5 0.333333 1 0.3 0.2 2 7 0.824142 0.829212 10.65115 4.285 6.366155 0.386965 

0.666667 0.4 0.8 1 0.3 0.2 2 3.25 0.85504 0.860432 10.52404 4.289851 6.234188 0.401535 

0.533333 0.25 2 1 0.3 0.2 2 3.625 0.851735 0.85707 10.5376 4.288939 6.248662 0.399966 

0.75 0.4 0.6 1 0.3 0.2 2 3.555556 0.85208 0.85745 10.53631 4.289705 6.246606 0.400144 

0.666667 0.333333 0.666667 1 0.3 0.2 2 3.5 0.852573 0.85795 10.53428 4.289803 6.244482 0.400376 

1 0.333333 0.333333 1 0.3 0.2 2 6 0.833087 0.838162 10.61393 4.284357 6.329575 0.391142 

0.555556 0.1 0.5 1 0.3 0.2 2 4 0.848155 0.853478 10.55246 4.289005 6.26346 0.39829 

0.533333 0.1 0.8 1 0.3 0.2 2 3.8125 0.849778 0.855121 10.5458 4.289328 6.256467 0.399057 

1.5 0.8 0.6 1 0.3 0.2 2 3.111111 0.856767 0.862127 10.5167 4.288947 6.227755 0.402326 

0.8 0.75 1 1 0.3 0.2 2 2.5 0.862999 0.868392 10.49079 4.288938 6.201855 0.40525 

0.666667 0.75 1.5 1 0.3 0.2 2 2.666667 0.861413 0.866773 10.4973 4.288399 6.208902 0.404494 

0.5 0 1 1 0.3 0.2 2 4 0.848155 0.853478 10.55246 4.289005 6.26346 0.39829 

1 1 1 1 0.3 0.2 2 2 0.868676 0.874034 10.46694 4.287464 6.179474 0.407882 

0.714286 0.2 0.333333 1 0.3 0.2 2 5.2 0.839602 0.844756 10.58716 4.285595 6.301561 0.394219 

0.645161 0.15 0.333333 1 0.3 0.2 2 4.9 0.841876 0.847068 10.57788 4.286315 6.291567 0.395298 
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Effect of Lead time Variance on system performance – Demand constrained systems: s=8,Q2=8 r=4, Q1=4, l=0.4. T1=2, dm=(0.6, 0.4), μ21=2, 

μ22=0.5, d22=0.5 

 
m11 d12 m12 m21 d22 m22 Tavg Var1 OFR SL WIP total WIP1 WIP2 util1 

0.666667 0.5 1 2 0.5 0.5 2 3 0.964606 0.967152 11.73731 5.330525 6.40679 0.270803 

2 0.5 0.333333 2 0.5 0.5 2 7 0.942837 0.945681 11.7878 5.305529 6.482268 0.264791 

0.666667 0.4 0.8 2 0.5 0.5 2 3.25 0.963097 0.965683 11.7408 5.329087 6.41171 0.270391 

0.533333 0.25 2 2 0.5 0.5 2 3.625 0.960912 0.963519 11.74587 5.326421 6.419449 0.269785 

0.75 0.4 0.6 2 0.5 0.5 2 3.555556 0.961289 0.963907 11.74498 5.327142 6.417842 0.269894 

0.666667 0.333333 0.666667 2 0.5 0.5 2 3.5 0.961608 0.964223 11.74424 5.327519 6.416723 0.269983 

1 0.333333 0.333333 2 0.5 0.5 2 6 0.948293 0.951015 11.77518 5.311017 6.464163 0.266284 

0.555556 0.1 0.5 2 0.5 0.5 2 4 0.958749 0.961401 11.75087 5.324178 6.426695 0.269192 

0.533333 0.1 0.8 2 0.5 0.5 2 3.8125 0.95981 0.962449 11.74841 5.325432 6.42298 0.269486 

1.5 0.8 0.6 2 0.5 0.5 2 3.111111 0.96394 0.966486 11.73886 5.329585 6.409279 0.270616 

0.8 0.75 1 2 0.5 0.5 2 2.5 0.967637 0.970105 11.73032 5.333416 6.396899 0.27163 

0.666667 0.75 1.5 2 0.5 0.5 2 2.666667 0.966601 0.969079 11.73272 5.33213 6.400589 0.271342 

0.5 0 1 2 0.5 0.5 2 4 0.958749 0.961401 11.75087 5.324178 6.426695 0.269192 

1 1 1 2 0.5 0.5 2 2 0.970688 0.973057 11.72329 5.335976 6.38731 0.272456 

0.714286 0.2 0.333333 2 0.5 0.5 2 5.2 0.952613 0.955284 11.76516 5.316118 6.449039 0.26748 

0.645161 0.15 0.333333 2 0.5 0.5 2 4.9 0.954192 0.956853 11.76149 5.318111 6.443374 0.267919 
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7. Analysis of a three stages arborescent system 

7.1 Research rationale 

Real life supply chains may deviate from the linear configuration and more general 

topologies, such as assembly systems and arborescent networks can be found in 

practice. The presence of more than one member in a given echelon increases the 

complexity of the analysis. The behavior of the systems is more difficult to predict 

and the choice of optimal policies becomes a challenging task. Modeling becomes 

even harder when multi echelon inventory systems are concerned: Different 

installations cannot be treated separately, but must be analyzed together as an 

integrated system; the effect of each member on the performance of the others must 

be understood and evaluated; and the global optimal policies may not (and usually 

not) coincide with the local optimal policies of each separate member, creating 

conflicting interests within the network. 

 

Multi-echelon inventory systems of an arborescent structure have practical 

importance. Divergent configurations are common at the end of a supply network 

where one central wholesaler supplies multiple local retailers, or at the end of a 

production line where a semi-finished product is sent to different processes. 

Understanding the dynamics of such systems is important for effective decision 

making, but realistic models are usually highly complex, sometimes even to the point 

of mathematical intractability. In general, to tackle complexity either simplifying 

assumptions must be made (deterministic parameters, no stock-outs, nested policies), 

or approximate methods have to be employed. Both approaches have their respective 

drawbacks, and there is an ongoing need for more realistic models that could capture 

to a greater extent the characteristics of the real systems and that would allow us to 

assess the dynamics of longer and more complex supply chains.     

7.2 Literature review 

A great part of the literature on divergent systems is concerned with two echelon 

systems with one wholesaler and multiple retailers (OWMR). An introduction to the 

evaluation of such systems is given in Axsäter (2015). Amongst others are included a 

generalization of the Scarf-Clark model for distribution systems, a METRIC 

approximation approach, and a recursive procedure to determine the inventory level 

distribution when (S-1, S) policies are concerned.   

 

In the simplest cases, single cycle models are investigated. Yang and Wee (2001) 

formulate a mathematical model to compute the optimal number of deliveries in a 

single cycle for an OWMR system. They provide a closed form solution for a system 

with two retailers under the assumptions of constant demand with no shortages 

allowed, and instantaneous replenishment times. Hsiao (2018) investigates the 

optimal single cycle policies of a system with one warehouse and multiple retailers 
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under deterministic assumptions, negligible lead times, and no shortages allowed. 

Similar assumptions are also used by Solyalı and Süral (2011) who analyze different 

integer programming formulations for the OWMR problem on a finite horizon basis. 

 

Most models in the literature are concerned with periodic review policies. A more 

systematic review of such systems can be found at Agrawal and Smith (2015). Geng 

et al. (2010) compare the performance of an OWMR system for different operating 

scenarios concerning information sharing. They consider a system that is observed 

periodically and is operated for a finite planning horizon and they assume zero lead 

times and lost sales. System costs are obtained using approximate dynamic 

programming (ADP) and stochastic dynamic programming.  

 

Helper et al. (2010) and Panda et al. (2010) investigate more complex demand 

patterns. Helper et al. analyze a system with one supplier and two retailers with 

correlated demand and lost sales. They describe their problem as a restricted 

observation Markov Decision Process and use their model to evaluate the effect of 

different information sharing schemes.  Panda et al. (2010) analyze an OWMR system 

in the context of an imprecise environment where demand is correlated with available 

inventory and price. They formulate a model for a basic period policy with no 

shortages and they employ a genetic algorithm and fuzzy simulation to propose near 

optimal solutions. 

 

Gayon et al. (2016) analyze the OWMR problem in a deterministic setting. They use 

decomposition into single echelon sub-systems and propose an approximation 

approach to give a solution along with lower bounds for both back-orders and lost 

sales systems. For the lost sales case, the proposed policy gives total cost of up to two 

times the optimal cost.  

 

In many cases stricter assumptions are made about the inventory policies of the 

various installations. Yao and Wang (2006) and Abdul-Jalbar et al. (2006) assume 

stationary nested policies (Each facility orders at equally spaced points in time and in 

equal amounts, while each facility orders every time any of each immediate supplier 

does and perhaps at other times as well). Yao and Wang analyze the characteristics of 

the optimal cost curve and they propose a search algorithm for the optimal solution of 

the respective lot sizing problem, while Abdul-Jalbar et al. develop a heuristic for a 

deterministic system with no shortages and negligible lead times.  

 

Abdul Jalbar et al.  (2010) and Wang (2013) investigate integer-ratio policies (the 

replenishment interval at the wholesaler is a multiple of the replenishment interval at 

the retailer or vice versa). Abdul Jalbar et al.  (2010) propose an iterative procedure 

for a system with deterministic demand, no shortages, and negligible lead times.  

Wang (2013) develops an exact optimal inventory control policy assuming identical 

retailers and synchronized ordering activities. The retailers face Poisson external 

demand with backordering in case of stock-out, while the wholesaler follows an 
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echelon-stock, order-up-to policy. The analysis is based on the fact that each 

warehouse replenishment forms a regenerative cycle for the system. The author 

investigates the structural properties of the system cost function and proposes a 

procedure to identify an optimal solution. 

 

Tayebi et al. (2018) propose an heuristic procedure for the optimal policies of a 

system with one warehouse which works as a cross-docking terminal and multiple 

non-identical retailers which follow a (1,T) policy (replenishment orders of one unit 

every period T). They assume constant lead times, Poisson external demand and lost 

sales for stock-outs. 

 

Tempelmeier (2013) studies a system with one wholesaler, n retailers and a factory 

working according to make-to-order logic. The retailers follow a base stock policy 

with a daily review and a service level constraint, while the wholesaler follows a 

periodic (s,nq) inventory control policy. Partial orders from the wholesaler are 

allowed but unmet demand is backordered.  The system is analyzed through 

decomposition and the analysis is based on the waiting times between the different 

stages of supply network. The author formulates the overall optimization problem and 

stresses the importance of the upstream stages of the network on overall performance. 

 

Ahire and Schmidt (1996) investigate a two echelon system, with one Wholesaler and 

multiple retailers, that follows a mixed Continuous-Periodic review policy. The 

retailers follow continuous review policies but their replenishment orders are 

reviewed by the wholesaler periodically. The model assumes backordering, Poisson 

external demand and deterministic lead times. Under their assumptions the authors 

establish the equivalence of the continuous policy with a periodic review policy and 

propose an approximation method to estimate system performance measures. The 

approximation is found to be accurate for high values of Fill rate. The authors propose 

a closed form expression for warehouse demand variance based on renewal theory. 

 

With regard to continuous review policies, Huang and Iravani (2006) analyze the 

effect of different production and rationing policies in a system with one manufacturer 

and two retailers that follow (R,Q) policies and face pure Poisson external demand. 

Exponentially distributed production times and negligible lead times are assumed.  

The manufacturer’s production and rationing decisions are formulated as a Markov 

Decision Process. 

 

Guan and Zhao (2011) investigate a OWMR system where the retailers follow 

continuous review (R,Q) policies and face stochastic demand in the form of a Poisson 

process. Their assumptions include constant lead times for the replenishment orders, 

and backlogging of the unmet demand. The authors focus on both inventory 

management and pricing decisions and they investigate scenarios for centralized and 

decentralized decision making based on approximate optimal solutions. 
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Seifbarghy et al. (2013) propose a statistical method and simulation for the estimation 

of the optimal policies of a two-echelon inventory system with one central warehouse 

and multiple non-identical retailers. All nodes follow continuous review (R,Q) 

inventory control policies. Unmet demand at the wholesaler is back-ordered. The 

retailers face external demand with pure Poisson characteristics and lost sales, while 

all transportation times are assumed to be constant.  

 

Divergent systems with more than two echelons are less common. Gonzalez et al. 

(1995) analyze a multi echelon system with general arborescent topology. They 

assume backordering, demand with Poisson characteristics and zero lead times. They 

define the system as a Markov process and characterize the optimal cost applying 

dynamic programming that provides numerical approximations for global 

optimization. 

  

Yang et al. (2006) consider replenishment and pricing policies in an arborescent 

network with one producer, one distributor and multiple retailers. They investigate a 

system following periodic review policies and they assume that the demand is 

constant and the replenishment times are negligible. The authors formulate a model 

for different levels of integration and they apply a genetic algorithm for optimization. 

 

Wu et al. (2012) investigate a system with multiple stocking echelons and multiple 

retailers. They formulate a model for a mixed produce-to-order and produce-in-

advance inventory system and seek to determine the optimal inventory at each 

installation on a single period basis. They analyze the system for uniform and normal 

external demand with allowed transshipments between the retailers, and they 

conclude that in both cases the problem can be solved as a constrained optimization 

problem. 

  

Islam et al. (2017) develop a model for a three tier system with one supplier, one 

manufacturer and multiple retailers. The retailers’ demands are random variables with 

generic probability density functions and lost sales are allowed. The model is based 

on a single cycle basis and a procedure for its solution is proposed. The authors focus 

on the comparison of traditional policies, where every node acts independently, to 

consignment policies where the retailers and the supplier are subordinates of the 

manufacturer.  

 

In this thesis we propose an algorithm for the exact numerical evaluation of a three 

echelons system consisting of a distribution center, a wholesaler, and multiple 

retailers. Taking into consideration the widespread implementation of information 

systems providing real time information, as well as the general trend towards lean 

systems and just in time practices, we assume continuous review inventory policies. 

Each installation follows a separate (r,Q) policy and no restrictions are assumed about 

policy parameters. To make the model more realistic, both demand and transportation 
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times are assumed to be stochastic, while demand that cannot be met from inventory 

on hand is assumed to be lost. 

 

The system is modeled as a continuous time Markov chain and the analysis is based 

on the infinitesimal generator matrix. Although the model does not offer optimal 

policies, its value is based on the fact that it can offer an insight into the dynamics of 

divergent systems. Optimal policies may not always be applicable and sub-optimal 

choices may have to be made so it is important to understand the effect of small 

changes in structural and operational parameters on the overall system performance. 

The proposed algorithm could be used as the evaluative tool in the context of a more 

general optimization model.   

7.3 Description of the system 

We investigate an arborescent pull system of 3 tiers. A Distribution Centre (DC) 

orders from a saturated plant and supplies a Wholesaler. In its turn, the Wholesaler 

supplies n independent retailers (fig. 7.1). The retailers hold inventory (Ir) and face 

external demand with pure Poisson characteristics. At each retailer, inter-arrival times 

for external customers are exponentially distributed and each customer asks for 

exactly one product unit. Demand that cannot be met from inventory on hand at each 

retailer is lost. The retailers follow a continuous review inventory control policy with 

parameters (si, Qi). Whenever inventory on hand at the retailer i becomes equal to or 

less than si, a replenishment order of Qi units is ordered from the Wholesaler. When 

the inventory at the Wholesaler is not enough, then a partial order is sent. 

 

The Wholesaler holds inventory and follows a continuous review inventory control 

policy based on local information with parameters (sw, Qw). Whenever inventory on 

hand at the Wholesaler becomes equal to or less than sw, a replenishment order of Qw 

units is ordered upstream from the Distribution Centre (DC). When inventory at the 

DC is less than Qw, then a partial order is sent. When there is a stock-out at the 

Wholesaler (  
   ) and the wholesaler faces demand from multiple retailers, on 

replenishment order arrival, the highest indexed retailer has always priority (retailer i 

has priority over retailer i-1). Only when the highest priority demand is fully met, is 

the next highest priority demand addressed with the remaining inventory. There is no 

restriction on how many retailers may be served at the same moment. 

 

The DC also follows a continuous review inventory control police with parameters 

(sd, Qd) and based on local information. Whenever the inventory on hand at the DC 

becomes less than or equal to sd, a replenishment order is requested upstream from the 

Plant. As the plant is assumed to be saturated, always complete orders of Qd units are 

sent towards the DC on request.  

 

The following assumptions are also made: 

 Transportation times are exponentially distributed and independent of 

replenishment order quantity. 
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 At any given time at most one order can be in-transit towards any given node 

(one outstanding order assumption). Such an assumption is common in 

analytic models and is necessary in order to maintain a tractable level of 

complexity. (Bijvank & Vis, 2011). 

 The transportation process is modeled as an independent station. On 

replenishment order initiation, the respective inventory is subtracted from the 

upstream node and remains “in transit” until its delivery to the downstream 

node. 

 Transportation is reliable and there are no extra loading and unloading times. 

 Lead time for the information flow is zero 

 

 

7.3.1 Model variables 

We denote as the decision variables the parameters concerning the topology of the 

system and the inventory control policies at each node. The decisions variables in our 

model include: 

n: The number of retailers 

sd: The reorder point at the Distribution Centre 

Qd: The replenishment order quantity at the Distribution Centre 

sw: The reorder point at the Wholesaler 

Qw: The replenishment order quantity at the Wholesaler 

si: The reorder point at Retailer (i) 

Qi: the replenishment order quantity at Retailer (i) 

 

The other parameters that are necessary to completely define the system are: 

μd: The transportation rate for orders from the Plant towards the Distribution Centre 

μw: The transportation rate for orders from the Distribution Centre towards the 

Wholesaler 

μi: The transportation rate for orders from the Wholesaler towards retailer (i) 

λi: The arrival rate of external customers at Retailer (i) 

Plant DC 

(sd,Qd) 

Wholesaler 

(sw,Qw) 

Retailer 1 

(s1,Q1) 

Retailer 1 

(s2,Q2) 

Retailer 1 

(sn,Qn) 

Inventory flow 

Information flow 

μd μw 

λ1 

λ2 

λn 
μn 

μ2 

μ1 

Figure 7.1: System layout 
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7.4 States definition and state transitions 

7.4.1. States definition 

The whole system is a (2n+3) dimensional continuous time Markov chain 

}0,,,...,,,,,,,{ 1111  tITITITITI ttt

n

t

n

t

n

t

n

t

w

t

w

t

d  

At any given time, the state of the system can be defined by a 2n+3 dimensional 

vector 

       
     

   
    

    
      

      
      

    
     

,where: 

  
 : The inventory on hand at the Distribution Centre at time t. 0 ≤   

 
 ≤ sd+Qd  

  
 : The inventory in transit towards the Wholesaler at time t. 0≤  

 ≤Qw 

  
 : The inventory on hand at the Wholesaler at time t. 0 ≤   

 
 ≤ sw+Qw  

  
 : The inventory in transit towards retailer i at time t. 0≤  

 ≤Qi 

  
 : The inventory on hand at retailer i at time t. 0≤  

 ≤si+Qi 

 

By the definition of the system, certain restrictions hold about the relations between 

the decision variables. If wdd QQs  , the inventory on hand at the Distribution 

Centre cannot take values between 0 and 1dQ  . To exclude the associated transient 

states and save computational power, the equivalent value 0ds  
can be used. 

Moreover, Qw cannot exceed sd+Qd, while Qi cannot exceed sw+Qw, 1≤i≤n.  

 

The possible values for the inventory at the Distribution Centre (Id) depend on the 

specific values of Qd and Qw. More specifically, Id will be a multiple of the Greatest 

Common Divisor of Qd and Qw. If bsd the basic incremental step for inventory at the 

DC: 

),( wd QQGCDbsd   

Inventory in transit towards the wholesaler will also be a multiple of bsd. 

 

Possible Inventory on hand at the Wholesaler (Iw) values will be multiples of the 

Greatest Common Divisor of bsd, Q1, Q2,…,Qn. If bsw the basic incremental step for 

Wholesaler inventory values: 

),..,,,( 21 nQQQbsdGCDbsw  

Inventory in transit towards the retailers will also be a multiple of bsw. 

 

The state space Ω of the Markov process is comprised of all permissible     vectors. Its 

dimension depends on the values of the decision variables and can be calculated 

recursively as will be explained in section 7.5. It must be noted that transient states 

may still be included in Ω. Transient states have zero stationary probabilities and 

although their inclusion costs in terms of computational power, it also significantly 

simplifies the modeling approach. 
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The states are ordered linearly using the lexicographical ordering. The subset of all 

states corresponding to fixed inventory at the Distribution Centre (Id) is taken as a 

basic level and the basic levels are ordered from lower to higher. Within each basic 

level, the states are grouped according to the inventory in transit towards the 

Wholesaler (Tw). Again the sublevels are ordered from lower to higher values. For 

fixed basic level and fixed inventory in transit towards the Wholesaler, the states are 

ordered by inventory at the wholesaler (Iw). Lower sub-levels concern the states at the 

retailers. They are ordered according Ti and Ii with higher priority retailers preceding 

lower priority ones, and lower inventory values preceding higher ones.  

7.4.2. State transitions 

The state of the system can be altered instantaneously by four kinds of events. For 

methodology reasons and without posing any restrictions to our model, it is assumed 

that no two events can occur at exactly the same time. In infinitesimal time dt only 

one event can occur. The four classes of the events are: 

 

1. The arrival of an outstanding order from the Plant to the Distribution Centre 

(DC). As it is assumed that the Plant is saturated, always Qd units are delivered 

at the DC. If there is no outstanding demand from the Wholesaler, Id increases 

by Qd units. When 0tdI and there is demand from the Wholesaler, part or all 

of the incoming order is forwarded to the Wholesaler. In infinitesimal time dt 

the possibility of the event occurring is  dtOdtd  , where  dtO  is an 

unspecified function such that 0
)(

lim 0 
dt

dtO
dt .  dtO stands for the 

probability that a second event will occur in infinitesimal time dt. 

 

2. The arrival of an outstanding order from the DC to the Wholesaler. 1 to Qw 

units may be delivered at the wholesaler, depending on the availability of 

inventory at the DC at the time of replenishment order initiation ( w

t

w QT 1 ). 

If there is no outstanding demand from the retailers, Iw increases by t

dT  units. 

When Iw=0 and there is demand from the retailers, part or all of the incoming 

order is forwarded to the respective retailers, starting from the highest priority 

retailer. In infinitesimal time dt the possibility of the event occurring is 

 dtOdtw  . 

 

3. The arrival of an outstanding order at retailer i. In this case the inventory on 

hand at the retailer increases by t

iT units ( t

i

t

i

dtt

i TII  ). If the new inventory at 

the retailer i is not above the reorder point si, then a new replenishment order 

is asked from the wholesaler. dtt

iT
  takes the value of this new order and Iw 

decreases accordingly. In infinitesimal time dt, the possibility of the event 

occurring is  dtOdti  . 
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4. The occurrence of external demand at retailer i. Since we assume unitary 

demand, inventory on hand of the retailer decreases by one unit ( 1 t

i

dtt

i II ). 

If the new inventory is less than or equal to the reorder point si and 0tiT , a 

replenishment order is asked from the wholesaler. dtt

iT
 takes the new value of 

inventory in transit and Iw decreases correspondingly. In infinitesimal time dt, 

the possibility of external demand occurring is  dtOdti   

7.5 The infinitesimal Generator Matrix 

The infinitesimal generator matrix P is a matrix such that ijp is the instantaneous 

transition rate from state i to state j, i≠j, and 



ij

ijii pp . 

We take as basic level the Inventory at the Distribution Centre (DC) t

dI . As explained 

in 7.4.1, the inventory on hand at the DC, as well as the inventory in transit towards 

the wholesaler, are multiples of bsd: 

),( wd QQGCDbsd   

If NLd the number of basic levels where Id>0, and nQw the number of levels for 

inventory in transit towards the wholesaler when 0twT : 

 






 


bsd

Qs
floorNLd dd

 











bsd

Q
floornQ w

w  

)(xfloor : The integer produced by rounding x downwards. 

The maximum value of t

dI  will be bsdNLd  . 

 

Inventory on hand at the Wholesaler t

wI  
and inventory in transit towards the retailers 

t

iT  are both multiples of bsw: 

),..,,,( 21 nQQQbsdGCDbsw
 

If NLw is the number of levels of inventory on hand at the Wholesaler for 0twI , and 

nQi the number of the permissible values for inventory in transit towards retailer i 

when 0tiT : 








 


bsw

Qs
floorNLw ww  











bsw

Q
floornQ i

i  

The maximum value of inventory at retailer i will be bswnQsI iii max . 
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zB1

pB1

pB1

pB1

timesnQ1

1M

We also define nsw as the greatest t

wI  level where the wholesaler asks for a 

replenishment order from the DC: 











bsw

s
floornsw w  

 

The state at each retailer at time t is defined by two variables, t

iT : the inventory in 

transit towards retailer i, and t

iI :the inventory on hand at retailer i.  

7.5.1 Diagonal sub-matrices 

We use as basic building blocks for the diagonal sub-matrices the blocks that describe 

transitions in the retailers for a given state of the upstream part of the system. The 

structure of these blocks can be defined recursively. We use as "seed" the sub-matrix 

describing transitions for the lowest priority retailer (Stage 1 - Retailer 1) and its 

associated transport station. Each stage (retailer) sub-matrix is constructed using as 

"building block" the sub-matrix of the previous stage and according to rules that hold 

for all stages. The specific structure for each such matrix depends on whether it 

corresponds to 0twI  or  0twI . 

7.5.1.1 Iw=0  

Retailer 1 

Block B1 comprises the possible states of Retailer 1 (lowest priority) for a given state 

of the rest of the system. B1 is a square matrix and describes transitions where only 

the state of retailer 1 is changed (
tI1  or 

tT1 ). The dimension of the block is 

)1()1( 11111  snQQsBl  

In the first (s1+Q1+1) states there is no inventory in transit towards retailer 1 ( 01 tT ). 

In the next )1( 11  snQ  states there is inventory in transit towards retailer 1 ( 01 tT ). 

B1 can be further reduced into smaller blocks: 
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zB1 is a )1()1( 1111  QsQs block corresponding to 01 tT . Omitting the zero 

elements: 

 

 

 

 

 

 

 
pB1 is a )1()1( 11  ss  matrix corresponding to 01 tT . There are 1nQ  blocks of 

pB1 , 

each one corresponding to a different value of 
tT1 : 

 

 

 

 

 

 

 

 

M1 describes the arrival of an outstanding replenishment order at Retailer 1 and is a 

)1()1( 1111  QssnQ matrix. It can be divided into nQ1 )1()1( 111  Qss matrices, 

each one corresponding to a different 
tT1  level: 
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Retailer 2 

Block B2 comprises the possible states for retailers with priority up to 2 (lowest 

priority retailer 1 and retailer 2) for a given state of the rest of the system. B2 
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zB2

pB2

pB2

pB2

timesnQ2

2M

describes transitions where only the state of retailers 1 and 2 is changed (
tT2 , 

tI2 , 
tT1 , 

tI1 ). For every state of Retailer 2 (
tT2 , 

tI2 ), there are Bl1 states of Retailer 1. The 

dimension of block B2 is 

1221222 )1()1( BlsnQBlQsBl   

In the first (s2+Q2+1)∙Bl1 states there is no inventory in transit towards retailer 2 

)0( 2 tT . In the next nQ2∙(s2+1)∙Bl1 states there is inventory in transit towards retailer 2 

( 02 
tT ). B2 can be further analyzed into smaller blocks: 

 

  

 

 

 

 

 

 

 

 

We denote I1: the identity matrix of Bl1 dimension, and O1: a zero square matrix of 

Bl1 dimension. 

 
zB2  is a  122122 )1()1( BlQsBlQs   matrix corresponding to 02 

tT : 

 

 

 

 

 

 

 
pB2  is a 1212 )1()1( BlsBls    matrix corresponding to 02 

tT . Each 
pB2 block 

corresponds to a different value of 
tT2 : 

 

 

 

 

 

 

 

M2 is a 122122 )1()1( BlQsBlsnQ   matrix. It can be divided into 2nQ  blocks 

of 12212 )1()1( BlQsBls    dimensions, each one corresponding to a different 
tT2

value: 
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Retailer i 

Following the same approach, the structure of block Bi can be defined (i>2). Block Bi 

comprises the possible states for retailers with priority up to i (retailers 1 to i) for a 

given state of the rest of the system. Bi describes transitions where only the state of 

retailers 1, 2,..,i is changed ( t

iT , 
t

iI  , t

iT 1 , 
t

iI 1 ,…, 
tT1 , 

tI1 ). For every state of retailer i (

t

iT , 
t

iI ), correspond 1iBl  states of lower priority retailers: 

2112111 )1()1(   iiiiiii BlsnQBlQsBl  

The dimension of block Bi is 

11 )1()1(   iiiiiii BlsnQBlQsBl  

In the first 1)1(  iii BlQs  states there is no inventory in transit towards retailer i 

)0( tiT . In the next 1)1(  iii BlsnQ  states there is inventory in transit towards 

retailer i ( 0tiT ). We denote: 

1iI :the identity matrix of 1iBl  dimension 

1iO :a zero square matrix of 1iBl  dimension, 

The structure of Bi is: 

 

  

 

 

 

 

 

 

 

 

1Blbsw 

12 Blbsw 

12 BlbswnQ 



236 

 

z

iB  
is a 11 )1()1(   iiiiii BlQsBlQs  matrix corresponding to 0tiT : 

 

 

 

 

 

 

 

 
p

iB is a 11 )1()1(   iiii BlsBls  matrix corresponding to 0tiT . Each 
p

iB  block 

corresponds to a different level of t

iT : 

 

 

 

 

 

 

 

 

iM  
describes the arrival of an outstanding replenishment order at retailer i and it is a 

11 )1()1(   iiiiii BlQsBlsnQ  matrix. It can be divided into inQ  blocks of 

11 )1()1(   iiiii BlQsBls  dimensions, each one corresponding to a different t

iT  

value: 
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zC1

pC1

pC1

pC1

timesnQ1

CM1

7.5.1.2 Iw>0  

Retailer 1 

Block C1 comprises the possible states of retailer 1 (lowest priority retailer) for a 

given state of the rest of the system. C1 describes transitions where only the state of 

retailer 1 is changed (
tI1  or 

tT1 ). It is a square matrix of 1Cl dimension 

)1( 1111  snQQCl  
C1 can be further reduced into smaller blocks of states: 

 

 

 

 

 

 

 

 

 

 

 

In the first Q1 states of C1 there is no inventory in transit towards retailer 1 ( 01 tT ,

11 sI t  ). 
zC1 is a 11 QQ   matrix corresponding to these states: 

 

 

 

 

 

 

 

 

 

 
pC1 is a )1()1( 11  ss matrix that corresponds to states where 01 tT . Each 

pC1 block 

corresponds to a different 
tT1  value. 
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zC2

pC2

pC2

pC2

timesnQ2

CM2

CM1 is a 111 )1( QsnQ  matrix and describes the arrival of an outstanding 

replenishment order at Retailer 1 when there is no need for a new replenishment order 

( 11 sI dtt 
). It can be divided into nQ1 sub-matrices of 11 )1( Qs  dimension (

CsM1 ), 

each one corresponding to a different 
tT1  value: 
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Retailer 2 

Block C2 comprises the possible states for the retailers with up to 2 priority (retailers 

1 and 2) for a given state of the rest of the system. It describes transitions where only 

the state of retailer 1 or retailer 2 is changed (
tT2 , 

tI2 , 
tT1 , 

tI1 ). For every state of 

retailer 2 (
tT2 , 

tI2  fixed) correspond 1Cl  possible states of retailer 1. C2 is a square 

matrix with dimension 

122122 )1( ClsnQClQCl   
In the first Q2∙Cl1 states there is no inventory in transit towards retailer 2, while in the 

rest nQ2∙(s2+1)∙Cl1 states T2>0. C2 can be analyzed into smaller blocks of states: 
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If I1: the identity matrix of Cl1 dimension, and O1: a zero square matrix of Cl1 

dimension: 

 
zC2 is a 1212 ClQClQ   matrix corresponding to states where  02 

tT , 22 sI t  : 

 

 

 

 

 

 

 
pC2 is a square matrix of 12 )1( Cls   dimension corresponding to 02 

tT . Each 
pC2  

block corresponds to a different 
tT2  level. 

 

 

 

 

 

 

 
CM2 describes the arrival of an outstanding replenishment order at retailer 2, when 

there is no need for a new replenishment order )( 22 sI dtt 
. It is a 

12122 )1( ClQClsnQ  matrix and can be divided into nQ2 sub-matrices of 

1212 )1( ClQCls  dimensions  CsM2 , each one corresponding to a different 
tT2  value: 
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z

iC

p

iC

p

iC

p

iC

timesnQi

C

iM

Retailer i 

In general, block Ci (i>2) comprises the possible states for the retailers with priority 

up to i (retailers 1,2,…,i) for a given state of the rest of the system. Ci describes 

transitions where only the state at retailers 1 to i is changed ( t

iT , 
t

iI  , t

iT 1 , 
t

iI 1 ,…, 
tT1 , 

tI1 ). For every state of retailer i ( t

iT , 
t

iI  fixed) correspond 1iCl  states of the retailers 

with lower priority. 

211211 )1(   iiiiii ClsnQClQCl  

Ci will be a square matrix with dimension 

11 )1(   iiiiii ClsnQClQCl  

and general structure 

 

 

 

 

 

 

 

 

 

 

 

If 1iI : the identity matrix of 1iCl dimension, and 1iO : a zero square matrix of 1iCl  

dimension: 

 
z

iC is a 11   iiii ClQClQ matrix corresponding to states where 0tiT , i

t

i sI  . 
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iC is a square matrix of 1)1(  ii Cls  dimension corresponding to 0tiT . Each 
p

iC  

sub-matrix corresponds to a different t

iT  level. 
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C

iM describes the arrival of an outstanding replenishment order at retailer i, when 

there is no need for a new replenishment order  idtt

i sI  . C

iM  is a 

11)1(   iiiii ClQClsnQ matrix. It can be further divided into nQi sub-matrices of 

11)1(   iiii ClQCls dimensions ( Cs

iM ), each one corresponding to a different t

iT  

level: 
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7.5.1.3 General Structure of the Diagonal Tier  

The sub-matrices along the diagonal describe transitions within a given level of Id 

(basic level). The first basic level diagonal sub-matrix D0 corresponds to the boundary 

conditions where Id=0, and then follow NLd blocks D1 corresponding to different 

values of Id.  

Basic Level: L=0 

Sub-matrix D0 is a square block with dimensions: 

  )(0 nnwnn ClnswBlnQClNLwBlL   

and it can be further analyzed into smaller blocks: 
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zD0 is a  nn ClNLwBl  - dimension block corresponding to states where 0tdI  and 

0twT : 
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In is the identity matrix of Bln or Cln dimension, as appropriate. 

 
pD0 is a  nn ClnswBl  - dimension block corresponding to states where 0tdI  and 

0twT . In each D0 matrix there are nQw blocks of pD0 , each one corresponding to a 

different t

wT  value. 
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Basic Level: L>0 

D1 is a square block with dimensions )()(1 nnwn ClnswBlnQClnswNLwL 

and can be further analyzed into smaller blocks: 
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zD1 is a nClnswNLw  )( - dimension block corresponding to states where 0tdI  and 

0twT : 
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pD1 is a  nn ClnswBl  - dimension block corresponding to states where 0tdI  and 

0twT . In each D1 matrix there are nQw blocks of 
pD1 , each one corresponding to a 

different t

wT  value. 
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General diagonal structure of the infinitesimal generator 

Replenishment orders from the Plant occur only as long as  

bsd

s
LevelsbsdLevelsI d

dd

t

d   

 If )/( bsdsfloornsd d and ID the identity matrix of L1 dimension, the general 

structure of the diagonal sub-matrices of the Infinitesimal Generator Matrix will be: 

 

 

 

 

 

 

 

 

 

 

7.5.2 Upper-diagonal elements 

The elements above the diagonal describe the arrival of a replenishment order at the 

Distribution Centre (DC). Since we assume that the Plant is saturated, always Qd units 

are delivered. An outstanding replenishment order from the plant to the DC occurs as 

long as d

t

d sI  , so there are elements above the diagonal from basic level “0” to basic 

level nsd. We define nn ClnswBlb   the dimension of blocks 
pD0  and 

pD1 . 

7.5.2.1 Id>0  

Here there is no demand from the wholesaler and the incoming order increases the 

available inventory on hand at the DC: 

d
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The position of the upper-diagonal elements (μd) is 1LnQd  states to the right with 

respect to the diagonal elements, 

bsd

Q
nQ d

d   

7.5.2.2 Id=0  

Here there is a possibility of DC stock-out, when there is demand for a replenishment 

order from the Wholesaler, but inventory on hand at the DC is zero ( 0twT , w

t

w sI  ). 

In such a case part or all of the incoming replenishment order Qd will be immediately 

forwarded towards the Wholesaler. The block corresponding to these transitions U0 is 

a bb  diagonal matrix of μd. The position of the upper left element of U0 in the 

infinitesimal generator is (1, step0), where: 

1)1()(1
)(
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Lstep wn
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ClNLwBlstep d

nn , if Qd≤Qw. 

 

To the states where 0twT  and w

t

w sI  , corresponds a 

nn ClnswNLwClnswNLw  )()( diagonal matrix of μd (U1). Its upper left element 

will be at position (b+1, step1) of the infinitesimal generator, where 

11 101 
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 L
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Q
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Finally, to the states where 0twT corresponds a bb diagonal matrix of μd (U3). 

There are nQw such blocks, each one corresponding to a different t

wT  Level. The upper 

left element of each such matrix is at position (x, y) of the infinitesimal generator 

where: 
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The structure of the infinitesimal generator matrix, taking account of diagonal and 

upper diagonal blocks will be: 
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7.5.3 Below the diagonal sub-matrices 

7.5.3.1 Arrival of a replenishment order at the Wholesaler 

These elements (μw) describe the arrival of a replenishment order at the wholesaler 

and occur as long as w

t

w sI  . A full or a partial order may be delivered at the 

wholesaler )1( w

t

w nQbsdT  . We work state-wise to define the exact position of 

each element in the infinitesimal generator matrix. 

Id=0, Iw=0 

When 0twI there is the possibility of wholesaler stock-out, when there is demand for 

a replenishment order from one or multiple retailers, but inventory on hand at the 

wholesaler is zero. Part, or all of the incoming replenishment order t

wT  may be 

forwarded towards the retailers, according to the priority of each retailer. The 

inventory that is not sent immediately to the retailers increases the inventory on hand 

at the wholesaler. We code this information in a matrix D. 

 

For every t

wT  value we define a )1(  nBln  
matrix D  such that: 

1),( jiD , 1≤j≤n, if at state i, product units from a replenishment order will be 

forwarded towards retailer j. For this to happen, retailer j must ask for a replenishment 

order ( j

t

j sI  ), and there must be enough product units to cover possible demand 

from higher priority retailers. 

0),( jiD , 1≤j≤n, if at state i, on replenishment order arrival at the wholesaler, no 

product is forwarded towards retailer j. This may be either because retailer j does not 

ask for a replenishment order ( j

t

j sI  ), or because no inventory is left after meeting 

demand from higher priority retailers. 

0)1,( niD , when at state i total demand from the retailers is equal to or more than 

Qw. In this case, inventory on hand at the wholesaler remains zero ( 0dtt

wI ). 

tdTniD t

w  )1,( , when total demand from the retailers (td) is less than Qw. In this 

case, inventory on hand at the wholesaler increases ( tdTI t

w

dtt

w  ). 

timesnsd
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Matrix D can be computed recursively knowing that in every Bi block there is demand 

for a replenishment order from retailer i in the first si+1 states, and taking into account 

the priority rule for the retailers.  

 

We denote as state the sequence number of the state in the Bn block under 

consideration. First we examine the case where the incoming order is less than or 

equal to the total retailers’ demand tdT t

w . In such cases inventory at the wholesaler 

remains zero. The step to the right for a particular state depends on the number of the 

retailers whose outstanding demand is met from the incoming replenishment order of 
t

wT  units. If (x,y) the position of μw in the infinitesimal generator for a particular 

state: 
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0y is the step to the right due to the initiation of a replenishment order towards retailer 

1. 

 

isumQ  corresponds to the product units that are needed to meet the demand for 

retailers i+1 to n.  

 

When tdT t

w  
the inventory on hand at the wholesaler increases. The jump to the right 

because of the change in t

wI  
will be: 
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Here we have transition from B-blocks to C-blocks. The exact position of μw in the C 

type block depends on the hierarchy of the initial state in the B-type block. To 

calculate the states jumped to the right at a particular state, first we must determine 

the position of each B block (psi) that corresponds to the state under consideration. 

This can be done recursively: 
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The jump to the right because of the position of a particular state in the hierarchy of 

states in B-type blocks will be: 
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The total jump to the right for the cases where there is no initiation of a replenishment 

order toward the retailer will be: 
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The total jump to the right for the cases where there is initiation of a replenishment 

order toward the retailer will be:  
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If (x,y) the position of μw in the infinitesimal generator matrix: 
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Id=0, Iw>0 

Here the incoming order 
t

wT  increases the inventory on hand at the wholesaler

)( t

w

t

w
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These transitions correspond to a diagonal matrix of μw of nClnsw
 
dimensions. If 

(x,y) the position of the upper left element: 
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Id>0, Iw=0 

Here, on the arrival of the replenishment order at the wholesaler, if w

dtt

w sI  , a new 

replenishment order will be initiated and the inventory at the DC will decrease 
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correspondingly. We work state-wise and denote as state the sequence number of the 

state under consideration in the Bn block. 

 

First we examine the case where the incoming order is less than or equal to the total 

retailers’ demand tdT t

w . In such cases inventory at the wholesaler remains zero and 

obviously a new replenishment order is initiated towards the wholesaler. 

 

If w

t

d QI   then there is a jump to the right (counting from column 1) corresponding to 

the new value of dtt
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there is a jump to the right because of the new value of dtt
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 : 
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With regard to transitions inside the retailers’ sub-matrix, the step to the right depends 

on the number of the retailers whose outstanding demand is met from the incoming 

replenishment order of 
t

wT  units. If (x,y) the position of μw in the infinitesimal 

generator for a particular state: 

stateb
bsd

T
ClnswNLwL

bsd

I
Lx

t

w
n

t

d 
















 1)(1 10

 











































n

i

iiii

t

w
iid istateDBlsnQsumQ

bsw

T
Qsyyy

2

10 ),()1(1,min1  

)1,()1(1,min)1( 111110 stateDsnQsumQ
bsw

T
Qsy

t

w 
















  





n

ij

ji jstateDnQsumQ
1

),(1 , 11  ni  

1nsumQ  

 

0y  
is the step to the right due to the initiation of a replenishment order towards 

retailer 1. 

 

isumQ  corresponds to the product units that are needed to address the demand for 

retailers i+1 to n.  

 

When tdT t

w , the inventory on hand at the wholesaler increases. If w

dtt

w sI  , there is 

no new replenishment order. The jump to the right (from column 1) because of the 

change of inventory at the wholesaler will be: 
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If w

dtt

w sI  , a new replenishment order is initiated from the DC towards the 

Wholesaler and the inventory at the DC decreases. If w

t

d QI  , the jump to the right 

corresponding to dtt

dI
 and dtt

wT
 will be : 
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The jump to the right because of the new dtt
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 value: 
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With regard to transitions in the state of the retailers, we have transition from B-

blocks to C-blocks. The exact position of μw in the C type block depends on the 

hierarchy of the initial state in the B-type block. To calculate the states jumped to the 

right at a particular state, first we must determine the position of each B block (psi) 

that corresponds to the state under consideration. This can be done recursively: 
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The jump to the right because of the position of a particular state in the hierarchy of 

states in B-type blocks will be: 
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The total jump to the right corresponding to the cases where there is no initiation of a 

replenishment order toward the retailers will be: 
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The total jump to the right corresponding to the cases where there is initiation of a 

replenishment order toward the retailers will be:  
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If (x,y) the position of μw in the infinitesimal generator matrix: 
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These transitions correspond to a diagonal matrix of μw of nCl dimensions. If (x,y) the 

position of the upper left element of this block: 
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If w

dtt

w sI  , there is no re-ordering from the wholesaler: 
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7.5.3.2 Triggering of a replenishment order towards the retailers  

Triggering of a replenishment order towards a retailer can occur when: 

 a) 1 i

t

i sI
 
and external demand occurs (instantaneous transition rate λi) 

 b) A replenishment order arrives at the retailer i and the updated dtt

iI
  is less than or 

equal to si. 

With the dispatched replenishment order the wholesaler sends part, or whole of the 

inventory he held on hand. If w

dtt

w sI  , 0twT , and 0tdI  
there will also be triggering 

of a replenishment order from the DC towards the wholesaler. 

Transitions to state where Iw>0  0dtt

wI  

In these cases there is more than enough inventory to meet the retailer's demand.  

 

 

Retailer 1 
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Triggering of a replenishment order because of external demand can occur in the first 

state of each C1 block, as this state corresponds to 111  sI t  . 

The sub-diagonal block 
MS1 describing triggering of a replenishment order after the 

arrival of a previous replenishment order is a 111 )1( sks  matrix. bswk 1  is the 

maximum 
tT1 value for which there can be reordering: 
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MS1 can be divided into k1 11 )1( ss   sub-blocks, each one corresponding to a different 

value of the incoming replenishment order 
tT1 . 

 

The sub-diagonal block for triggering of a replenishment order towards retailer 1 (S1) 

will be a   1111 )1( sksQ   matrix: 
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The position of S1 in the infinitesimal generator matrix can be defined iteratively. We 

define (x,y) the position of λ1, j the sequence number of C1 block counting from the 

first occurrence of C1 at given level t
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Here there may be initiated a replenishment order from the DC towards the 
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Retailers 2 - n 

For a higher priority retailer i (i>1), the below-the-diagonal block is a 
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Triggering of a replenishment order because of external demand can occur in the first 

1iCl  states of each Ci block, as these states correspond to 1 i

t

i sI . 

 

The sub-diagonal block M

iS describing triggering of a replenishment order towards 

retailer i after the arrival of a previous replenishment order is a 
11)1(   iiiii ClsClks

matrix. M

iS can be divided into ki 11)1(   iiii ClsCls sub-blocks, each one 

corresponding to a different value of the incoming replenishment order t

iT . 

 

If 1iI the identity matrix of 1iCl dimension, the sub-diagonal block describing 

replenishment order triggering towards retailer i )( iS  will be a 
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







































































































1

1

1

1

1

1

1

1

1

ii

ii

ii

ii

ii

ii

ii

ii

ii

i

I

I

I

I

I

I

I

I

I

S































 

 

The position of each sub-diagonal block Sr in the infinitesimal generator matrix can 

be defined recursively. We define (x,y) the position of the top left λr element, j the 
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sequence number of Cr block counting from the first occurrence of Cr at given level 

t
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Here there may be initiated a replenishment order from the DC towards the 

Wholesaler.  
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w sI  , there will be a replenishment order from the DC. 
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In these cases there is just enough or not enough inventory to meet the retailer's 

demand. The replenishment order towards the retailer may be partial, while dtt

wI


becomes zero. Here we have transitions from states that belong to C-type blocks to 

states belonging to B-type blocks. We define
isumS
 
such that: 

iinnnni BlsBlsBlssumS   )1(...)1()1( 1211    , 1 ≤ i ≤ n-1  

0nsumS    

 

Retailer 1 

Triggering of a replenishment order towards retailer 1 because of external demand can 

occur in the first state of each C1 block, as this state corresponds to 111  sI t . 

 

The sub-diagonal block 
MS1 describing triggering of a replenishment order after the 

arrival of a previous replenishment order is a 111 )1( sks  matrix, where









 )(,min 1

11
bsw

s
floornQk . The structure of the sub-diagonal block (S1) which 

describes triggering of a replenishment order towards retailer 1 is the same as that 

described for transition to state where 0dtt

wI  : 
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w
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d QI 

w

t

d QI 

The position of S1 in the infinitesimal generator matrix can be defined iteratively. We 

define (x,y) the position of λ1 element in the infinitesimal generator, i the sequence 

number of C1 block counting from the first occurrence of C1 at a given level t

wI , 

bsw

I
Level

t

w
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T
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w
T  , and 
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I
Level

t

d
D   

 

Bi blocks are 1)1(  ii Bls
 
states longer than Ci blocks. Every time we change Ci (i≥2) 

block in the rows of the Infinitesimal Generator Matrix, there is a further step of 

1)1(  ii Bls  in the columns. The sum of these jumps will be:  


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jps has to do with the position of the C1 block under consideration and depends on 

the block sequence number i counting from the first occurrence of C1 in each t

wI  

Level. 

 

If (x,y) the position of λ1 element in the infinitesimal generator: 
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A replenishment order from the DC towards the Wholesaler will be initiated.  
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Retailers 2 to n 

We define )(rS Lr the sub-diagonal block describing triggering of a replenishment order 

because of external demand at retailer r. Such transitions occur in the first Clr-1 states 

of each Cr block, as these states correspond to 1 r

t

r sI . )(rS Li  is a 
11   ii BlCl  matrix. 

The first  2)1(  ii Bls  columns correspond to states where 0tiT  and i

t

i sI   and as a 

result they have only zero elements. The structure of the block can be defined 

recursively. If 2iO  
a zero matrix of 22   ii BlCl dimensions, we define )(rS Li such that 

for i=2: 
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,and for i>2: 
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The position of )(rS Lr blocks in the infinitesimal generator matrix is defined 

iteratively. We define z the sequence number of Cr block counting from the first 
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occurrence of Cr at a given level t
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Since Bi blocks are 1)1(  ii Bls states longer than Ci blocks, every time we change Ci 

block in the rows of the Infinitesimal Generator Matrix, there is a further step of 

1)1(  ii Bls  states in the columns (i>r). The sum of these jumps will be  
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ips  is related to the position of the Cr block under consideration and depends on 

block sequence number z: 
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If (xL,yL) the position of the upper left element of )(rS Lr : 
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The sub-diagonal block 
M

rS describing triggering of a replenishment order towards 

retailer r at the arrival of a previous replenishment order can also be defined 

recursively. We define a 11 BlCl  matrix )(2 rM such that: 
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The first 11 s  columns of )(2 rM correspond to states where 01 tT  and 
11 sI t   and so 

they have only elements of zero.   

 

For i>2, if 2iO a zero matrix of 22   ii BlCl dimensions, )(rM i is a 
11   ii BlCl matrix 

such that: 
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The first 21 )1(   ii Bls columns correspond to states where 01 
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Block 
M

rS describing the triggering of a replenishment order towards retailer r after 

the arrival of a previous replenishment order is a   11)1(   rrrrr BlsClks  matrix, 

where 
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The position of 
M

rS blocks in the infinitesimal generator Matrix can be defined 

relatively to that of )(rS Lr  blocks. If (xM, yM) the position of the upper left element of 

M

rS , then: 

1 rrLM ClQxx  

11:   rrrLM BlBlsyy  

7.6 Performance Measures 

Our analysis is based on the steady state solution of the system. If we denote P: the 

infinitesimal generator matrix, and p


: the vector of stationary probabilities with the 

i
th

 element of the vector )(ip  corresponding to the i
th

 state in the hierarchy of states 

defined according to the rules of paragraph 7.4.1, then in the steady state: 

0Pp

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From the above a system of linear equations is extracted and the vector p


 can be 

computed numerically. Performance measures about the system can be computed 

algorithmically using the stationary probabilities and taking advantage of the 

infinitesimal generator matrix structure. 

 

To facilitate the analysis, the performance measures concerning the retailers are 

computed for each Bn and Cn block separately. We denote L0: the dimension of Basic 

Level for Id=0; and L1: the dimension of Basic Levels for Id>0. If lp+1 the number of 

the first state of the Bn or Cn block under consideration: 

 

Bn blocks 
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7.6.1 Average inventory at the Distribution Centre – WIPd 

WIPd is the average inventory on hand at the Distribution Centre. Inventory at the DC 

)( t

dI  is designated as the basic level during modeling and WIPd can be computed as 

the sum: 
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7.6.2 Utilization of resource for transportation towards the Wholesaler – uw 

Utilization of the resource for transportation towards the wholesaler is the percentage 

of time that there is a replenishment order in transit towards the Wholesaler. To 

calculate uw we sum the stationary probabilities of states corresponding to 0twT . 
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7.6.3 Average inventory at the wholesaler - WIPw 

WIPw is the average inventory on hand at the wholesaler. We define a vector W such 

that the i
th

 element W(i) is the probability of bswiI tw  . We define Level , TLevel , 

and DLevel  positive integers. 
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Having constructed vector W, WIPw can be easily calculated as the sum: 
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7.6.4 Average inventory at the retailers – WIPr 

WIPr is the average inventory on hand at the retailer r. We calculate WIPr for each Bn 

and Cn block separately. 

7.6.4.1 B-type blocks )0( twI  

Retailer 1 

In B1 blocks, for the states where 01 tT , positive inventory at retailer 1 corresponds 

to s1+Q1 states. For 01 tT , there are nQ1 different levels of T1, while in each level s1 

states correspond to 01 
tI . If 11 / BlBlb n  the number of B1 blocks in Bn, and lp+1 

the number of the first state of the Bn block under consideration 

   

Retailers 2 to n 

With the same iterative approach we can calculate the average inventory on hand for 

higher priority retailers. In Br blocks, for each state of retailer r correspond Blr-1 states 

of the lower priority retailers. In B-type blocks, for the states where 0trT , inventory 

at retailer r can take sr+Qr values. For 0trT , there are nQr different levels of 
t

rT , 

while in each level sr values correspond to 0trI . If rnr BlBlb /  and lp+1 the 

number of the first state of the Bn block under consideration: 
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7.6.4.2 C-type blocks )0( twI  

Retailer 1 

When 01 tT , there are Q1 different states where 01 
tI . For 01 tT , there are nQ1 

different levels of 
tT1 , and in each level s1 states correspond to 01 

tI . If  11 /ClClc n   

the number of C1 blocks in Cn, counting from the first occurrence of C1 in each t

wI

level and lp+1 the number of the first state of the Cn block under consideration 
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Retailers 2 to n 

In Cr blocks each state of retailer r corresponds to Clr-1 states of the lower priority 

retailers. When 0trT , there are Qr different values for 0trI . For 0trT , there are 

nQr different levels of 
t

rT , while in each level correspond sr different levels of positive 

t

rI . If  rnr ClClc /   the number of Cr blocks in Cn:    
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7.6.4.3 WIPr 

The average inventory at retailer r (1≤r≤n) will be the sum 
lpB

rWIP ,
for Bn blocks and 

lpC

rWIP ,
for Cn blocks.
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7.6.5 Stock-out probability for the retailers – SOr 

SOr is the probability that the external demand at retailer r will become lost sales. 

Since external demand at the retailers is independent and uniformly distributed in 

time, SOr will be same as the probability of inventory on hand at retailer r being zero. 

The calculation of SOr is done for each Bn and Cn block separately. We denote lp+1 

the number of the first state of each Bn/Cn block.  

7.6.5.1 B-type blocks )0( twI  

Retailer 1 
tI1  is zero in the first state of each B1 block of states, where also 01 tT . For 01 tT , tI1  

is zero in the first state of each (s1+1)-dimension sub-blocks corresponding to 

different 
tT1  values. If 11 / BlBlb n  
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Retailers 2 to n 

In Br blocks, each retailer r state (r>1) corresponds to Blr-1 states of the lower priority 

retailers. t

rI  is zero in the first Blr-1 states of each Br block of states, where 
t

rT is also 

zero. For 0trT , 0trI  in the first Blr-1 states of each (sr+1)∙Blr-1 dimension sub-block 

corresponding to a particular 
t

rT value. If rnr BlBlb /  : 
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7.6.5.2 C-type blocks )0( twI  

Retailer 1 

In C1 blocks 01 
tI  only when 01 tT  and in the first state of each of (s1+1)-dimension 

sub-blocks corresponding to different 
tT1  values. If  11 /ClClc n    
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Retailers 2 to n 

In Cr blocks each retailer r state corresponds to Clr-1 states of the lower priority 

retailers. 0trI  only when 0trT  and in the first state of each (sr+1)∙Blr-1 dimension 

sub-block corresponding to a particular 
t

rT value. If  rnr ClClc /    
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7.6.5.3 SOr 

Stock out probability for retailer r (1≤r≤n) will be the sum lpB

rSO , for Bn blocks and 

lpC

rSO , for Cn blocks.
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7.6.6 Stock-out probability for the Wholesaler – SOwr 

Stock-out at the wholesaler with regard to retailer r is the probability that the 

wholesaler will have no inventory to respond to retailer’s r demand for a 

replenishment order. It is the probability that 0twI , given that 
r

t

r sI  and 0trT . Only 

Bn blocks are of concern. SOwr is calculated iteratively for each Bln block. We denote 

rnr BlBlb /
 
and lp+1 the number of the first state of each Bn block. 

 

For retailer 1, 01 tT  while 
11 sI t   occurs only in the first (s1+1) states of each B1 

block. For higher priority retailers, 0trT  while 
r

t

r sI   occurs in the first (sr+1)∙Blr-1 

states of each Br block of states. 
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The Stock-out probability for the wholesaler with regard to retailer r (1≤r≤n) will be 

the sum lp

rSOw for all Bn blocks. 
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7.6.7 Stock-out probability for the DC – SOd 

Stock-out probability at the DC is the probability that the DC will have no inventory 

to respond to wholesaler’s demand for a replenishment order. It is the probability that 

0tdI , given that w

t

w sI  and 0twT .  
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7.6.8 Utilization of transportation resource towards the retailers – ur 

Utilization of the transportation resource towards retailer r is the percentage of time 

that there is a replenishment order in transit towards retailer r. To calculate ur we sum 
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the stationary probabilities of states corresponding to 0trT . We calculate ur in each 

Bn and Cn block iteratively. We denote rnr BlBlb / ,
 rnr ClClc /  and lp+1 the 

number of the first state of each Bn block. 

 

Bn blocks 

For Retailer 1: 
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For higher priority retailers 2 to n: 
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Cn blocks 

For Retailer 1: 
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For higher priority retailers 2 to n: 
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The Utilization ur for retailer r (1≤r≤n) will be the sum of 
lpB

ru
,

of Bn blocks and 
lpC

ru
,

of 

Cn blocks.
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7.6.9 Fill rate at the retailers – FRr 

Fill rate is the percentage of external customers arriving at retailer r whose demand is 

met from inventory on hand at the retailer. 

rr SOFR 1  

7.6.10 Throughput at the retailers – Thrr 

Throughput is the number of product-units per time-unit that flow through retailer r. 

Alternatively, Thrr could be defined as the rate of sales at retailer r. 

rrr FRThr    

7.6.11 Average inventory in transit - WIPtrr 

WIPtrr is the average (in time) inventory in transit from the wholesaler towards 

retailer r. It can be calculate through Little’s Law: 
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7.6.12 Average replenishment order - AROr 

AROr is the average number of product units per replenishment order sent to retailer 

r. Along with SOwr it allows us to evaluate the performance of the wholesaler. 

r

r
r

u
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7.6.13 Total Throughput – Thrtotal 

Total Throughput is the number of product-units per time-unit that flow through the 

system. It can be easily calculated using the retailers’ Throughput. 
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7.6.14 Average inventory in transit towards the wholesaler - WIPtrw 

WIPtrw is the average (in time) inventory in transit from the DC towards the 

wholesaler. It can be calculate through Little’s Law: 
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7.6.15 Average replenishment order towards the Wholesaler – AROw 

AROw is the average number of product units per replenishment order sent from the 

DC to the Wholesaler. Along with SOd it allows us to evaluate the performance of the 

DC. 
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7.7 Illustrative example 

To illustrate the algorithmic steps described above, we present the analysis for a 

simple example with two retailers and parameters sd=0, Qd=2 ,sw=0, Qw=2, s1=2, 

Q1=2, s2=0, Q2=1.  

7.7.1 States definition and states transitions 

7.7.1.1 States definition 

The system is a 7-dimensional continuous time Markov chain 

}0,,,,,,,{ 1122 tITITITI ttttt

w

t

w

t

d  and at any given time the state of the system can be 

defined by the 7-dimensional vector         
    

    
    

    
    

    
    , where: 

 

  
 : The Inventory on hand at the Distribution Centre (DC) at time t. 0 ≤   

 
 ≤ 2 

  
 : The Inventory in transit towards the Wholesaler at time t. 0≤  

 ≤2 

  
 : The Inventory on hand at the Wholesaler at time t. 0 ≤   

 
 ≤ 2 

  
 : The Inventory in transit towards the Retailer 2 at time t. 0≤  

 ≤1 

  
 : The Inventory on hand at retailer 2 at time t. 0≤  

 ≤1 
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 : The Inventory in transit towards retailer 1 at time t. 0≤  

 ≤2 

  
 : The Inventory on hand at retailer 1 at time t. 0≤  

 ≤4 

 

Since we assume the Plant to be saturated, the inventory at the Distribution Centre 

always increases by Qd=2 units. At the same time, the wholesaler always asks for 

replenishment orders of Qw=2 units. Even if the system started with 1tdI , this state 

would be transient and in the long term the possible values for the inventory on hand 

at the DC will be 0 and 2 (bsd=2). The possible values for inventory in transit towards 

the wholesaler will also be 0 and 2. 

 

The inventory at the wholesaler always increases by Qw=2, while the retailers ask for 

1 (Q2) or 2 (Q1) units per order. The possible values for the inventory on hand at the 

wholesaler will be 0, 1 and 2 (bsw=1). Inventories in transit towards the retailers will 

also be multiples of bsw. Summing up the possible values for each system variable: 

 

}2,0{tdI  

}2,0{twT  

}2,1,0{twI  

}1,0{2 
tT  

}1,0{2 
tI  

}2,1,0{1 tT  

}4,3,2,1,0{1 
tI  

 

The state space Ω of the Markov process is comprised of all permissible     vectors. In 

the example under consideration there are 163 possible states. These states are 

ordered linearly, using a lexicographical ordering. We use as basic level the inventory 

at the DC t

dI , and the basic levels are ordered from lower to higher values. Within a 

basic level, the states are ordered according to t

wT  and then t

wI . Again the ordering is 

from lower to higher values. For fixed values of t

dI , t

wT , and t

wI , the states are grouped 

in increasing order of 
tT2 , 

tI2 , 
tT1 , and 

tI1 . The possible states for our example and 

their respective ordering are given in figure 7.2. 
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Figure 7.2: States definition and hierarchy for sd=0, Qd=2, sw=0, Qw=2, s2=1, Q2=1, 

s1=2, Q1=2 
S/N State t

dI
 

t

wT
 

t

wI  
tT2

 

tI2  
tT1

 

tI1  
 S/N State t

dI
 

t

wT
 

t

wI  
tT2

 

tI2  
tT1

 

tI1  

1 000-00.00 0 0 0 0 0 0 0  83 020-01.11 0 2 0 0 1 1 1 

2 000-00.01 0 0 0 0 0 0 1  84 020-01.12 0 2 0 0 1 1 2 

3 000-00.02 0 0 0 0 0 0 2  85 020-01.20 0 2 0 0 1 2 0 

4 000-00.03 0 0 0 0 0 0 3  86 020-01.21 0 2 0 0 1 2 1 

5 000-00.04 0 0 0 0 0 0 4  87 020-01.22 0 2 0 0 1 2 2 

6 000-00.10 0 0 0 0 0 1 0  88 020-10.00 0 2 0 1 0 0 0 

7 000-00.11 0 0 0 0 0 1 1  89 020-10.01 0 2 0 1 0 0 1 

8 000-00.12 0 0 0 0 0 1 2  90 020-10.02 0 2 0 1 0 0 2 

9 000-00.20 0 0 0 0 0 2 0  91 020-10.03 0 2 0 1 0 0 3 

10 000-00.21 0 0 0 0 0 2 1  92 020-10.04 0 2 0 1 0 0 4 

11 000-00.22 0 0 0 0 0 2 2  93 020-10.10 0 2 0 1 0 1 0 

12 000-01.00 0 0 0 0 1 0 0  94 020-10.11 0 2 0 1 0 1 1 

13 000-01.01 0 0 0 0 1 0 1  95 020-10.12 0 2 0 1 0 1 2 

14 000-01.02 0 0 0 0 1 0 2  96 020-10.20 0 2 0 1 0 2 0 

15 000-01.03 0 0 0 0 1 0 3  97 020-10.21 0 2 0 1 0 2 1 

16 000-01.04 0 0 0 0 1 0 4  98 020-10.22 0 2 0 1 0 2 2 

17 000-01.10 0 0 0 0 1 1 0  99 201-01.03 2 0 1 0 1 0 3 

18 000-01.11 0 0 0 0 1 1 1  100 201-01.04 2 0 1 0 1 0 4 

19 000-01.12 0 0 0 0 1 1 2  101 201-01.10 2 0 1 0 1 1 0 

20 000-01.20 0 0 0 0 1 2 0  102 201-01.11 2 0 1 0 1 1 1 

21 000-01.21 0 0 0 0 1 2 1  103 201-01.12 2 0 1 0 1 1 2 

22 000-01.22 0 0 0 0 1 2 2  104 201-01.20 2 0 1 0 1 2 0 

23 000-10.00 0 0 0 1 0 0 0  105 201-01.21 2 0 1 0 1 2 1 

24 000-10.01 0 0 0 1 0 0 1  106 201-01.22 2 0 1 0 1 2 2 

25 000-10.02 0 0 0 1 0 0 2  107 201-10.03 2 0 1 1 0 0 3 

26 000-10.03 0 0 0 1 0 0 3  108 201-10.04 2 0 1 1 0 0 4 

27 000-10.04 0 0 0 1 0 0 4  109 201-10.10 2 0 1 1 0 1 0 

28 000-10.10 0 0 0 1 0 1 0  110 201-10.11 2 0 1 1 0 1 1 

29 000-10.11 0 0 0 1 0 1 1  111 201-10.12 2 0 1 1 0 1 2 

30 000-10.12 0 0 0 1 0 1 2  112 201-10.20 2 0 1 1 0 2 0 

31 000-10.20 0 0 0 1 0 2 0  113 201-10.21 2 0 1 1 0 2 1 

32 000-10.21 0 0 0 1 0 2 1  114 201-10.22 2 0 1 1 0 2 2 

33 000-10.22 0 0 0 1 0 2 2  115 202-01.03 2 0 2 0 1 0 3 

34 001-01.03 0 0 1 0 1 0 3  116 202-01.04 2 0 2 0 1 0 4 

35 001-01.04 0 0 1 0 1 0 4  117 202-01.10 2 0 2 0 1 1 0 

36 001-01.10 0 0 1 0 1 1 0  118 202-01.11 2 0 2 0 1 1 1 

37 001-01.11 0 0 1 0 1 1 1  119 202-01.12 2 0 2 0 1 1 2 

38 001-01.12 0 0 1 0 1 1 2  120 202-01.20 2 0 2 0 1 2 0 

39 001-01.20 0 0 1 0 1 2 0  121 202-01.21 2 0 2 0 1 2 1 

40 001-01.21 0 0 1 0 1 2 1  122 202-01.22 2 0 2 0 1 2 2 

41 001-01.22 0 0 1 0 1 2 2  123 202-10.03 2 0 2 1 0 0 3 

42 001-10.03 0 0 1 1 0 0 3  124 202-10.04 2 0 2 1 0 0 4 

43 001-10.04 0 0 1 1 0 0 4  125 202-10.10 2 0 2 1 0 1 0 

44 001-10.10 0 0 1 1 0 1 0  126 202-10.11 2 0 2 1 0 1 1 

45 001-10.11 0 0 1 1 0 1 1  127 202-10.12 2 0 2 1 0 1 2 

46 001-10.12 0 0 1 1 0 1 2  128 202-10.20 2 0 2 1 0 2 0 

47 001-10.20 0 0 1 1 0 2 0  129 202-10.21 2 0 2 1 0 2 1 

48 001-10.21 0 0 1 1 0 2 1  130 202-10.22 2 0 2 1 0 2 2 

49 001-10.22 0 0 1 1 0 2 2  131 220-00.00 2 2 0 0 0 0 0 

50 002-01.03 0 0 2 0 1 0 3  132 220-00.01 2 2 0 0 0 0 1 

51 002-01.04 0 0 2 0 1 0 4  133 220-00.02 2 2 0 0 0 0 2 

52 002-01.10 0 0 2 0 1 1 0  134 220-00.03 2 2 0 0 0 0 3 

53 002-01.11 0 0 2 0 1 1 1  135 220-00.04 2 2 0 0 0 0 4 

54 002-01.12 0 0 2 0 1 1 2  136 220-00.10 2 2 0 0 0 1 0 
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55 002-01.20 0 0 2 0 1 2 0  137 220-00.11 2 2 0 0 0 1 1 

56 002-01.21 0 0 2 0 1 2 1  138 220-00.12 2 2 0 0 0 1 2 

57 002-01.22 0 0 2 0 1 2 2  139 220-00.20 2 2 0 0 0 2 0 

58 002-10.03 0 0 2 1 0 0 3  140 220-00.21 2 2 0 0 0 2 1 

59 002-10.04 0 0 2 1 0 0 4  141 220-00.22 2 2 0 0 0 2 2 

60 002-10.10 0 0 2 1 0 1 0  142 220-01.00 2 2 0 0 1 0 0 

61 002-10.11 0 0 2 1 0 1 1  143 220-01.01 2 2 0 0 1 0 1 

62 002-10.12 0 0 2 1 0 1 2  144 220-01.02 2 2 0 0 1 0 2 

63 002-10.20 0 0 2 1 0 2 0  145 220-01.03 2 2 0 0 1 0 3 

64 002-10.21 0 0 2 1 0 2 1  146 220-01.04 2 2 0 0 1 0 4 

65 002-10.22 0 0 2 1 0 2 2  147 220-01.10 2 2 0 0 1 1 0 

66 020-00.00 0 2 0 0 0 0 0  148 220-01.11 2 2 0 0 1 1 1 

67 020-00.01 0 2 0 0 0 0 1  149 220-01.12 2 2 0 0 1 1 2 

68 020-00.02 0 2 0 0 0 0 2  150 220-01.20 2 2 0 0 1 2 0 

69 020-00.03 0 2 0 0 0 0 3  151 220-01.21 2 2 0 0 1 2 1 

70 020-00.04 0 2 0 0 0 0 4  152 220-01.22 2 2 0 0 1 2 2 

71 020-00.10 0 2 0 0 0 1 0  153 220-10.00 2 2 0 1 0 0 0 

72 020-00.11 0 2 0 0 0 1 1  154 220-10.01 2 2 0 1 0 0 1 

73 020-00.12 0 2 0 0 0 1 2  155 220-10.02 2 2 0 1 0 0 2 

74 020-00.20 0 2 0 0 0 2 0  156 220-10.03 2 2 0 1 0 0 3 

75 020-00.21 0 2 0 0 0 2 1  157 220-10.04 2 2 0 1 0 0 4 

76 020-00.22 0 2 0 0 0 2 2  158 220-10.10 2 2 0 1 0 1 0 

77 020-01.00 0 2 0 0 1 0 0  159 220-10.11 2 2 0 1 0 1 1 

78 020-01.01 0 2 0 0 1 0 1  160 220-10.12 2 2 0 1 0 1 2 

79 020-01.02 0 2 0 0 1 0 2  161 220-10.20 2 2 0 1 0 2 0 

80 020-01.03 0 2 0 0 1 0 3  162 220-10.21 2 2 0 1 0 2 1 

81 020-01.04 0 2 0 0 1 0 4  163 220-10.22 2 2 0 1 0 2 2 

82 020-01.10 0 2 0 0 1 1 0           

7.7.1.2 State transitions 

The state of the system can be altered instantaneously by four kinds of events: 

1. The arrival of an outstanding order from the Plant at the Distribution Centre 

(DC). Such orders occur when 0tdI  and always Qd=2 units are delivered. If 

there is no outstanding demand from the Wholesaler )2( twI , then the 

inventory at the DC increases )2( dtt

dI . When there is demand from the 

Wholesaler )0( twI , the incoming order is forwarded to the Wholesaler 

)2( dtt

wT . The instantaneous transition rate of the event is d . 

2. The arrival of an outstanding order from the DC at the Wholesaler. Such 

orders occur when 0twI and always Qw=2 units are delivered. If there is no 

outstanding demand from the retailers, inventory at the wholesaler increases

)2( dtt

wI . When there is demand only from retailer 1, the incoming order is 

immediately forwarded )2( 1 dttT . If there is demand only from retailer 2, one 

unit is forwarded )1( 2 dttT and one unit remains at the wholesaler )1( dtt

wI . 

If there is demand from both the retailers, first the demand from the higher 

priority retailer 2 is met )1( 2 dttT  and then a partial order is sent to retailer 1 

)1( 1 dttT  . The instantaneous transition rate of such events is w . 
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3. The arrival of an outstanding order at one of the retailers. The inventory on 

hand at the respective retailer increases accordingly. In the case of retailer 2, 

since s2=0, there can be no reordering on arrival. In the case of retailer 1, if 

21 dttI , a new replenishment order is initiated. 
dttT 

1  depends on the available 

inventory at the wholesaler t

wI . The instantaneous transition rate for these 

transitions is μ1 and μ2 for retailer 1 and 2 respectively.  

4. The occurrence of external demand at one of the retailers. Since we assume 

unitary demand, inventory on hand of the retailer always decreases by one unit 

)1(  t

i

dtt

i II . In the case of retailer 2, the occurrence of external demand will 

always trigger a replenishment order (base-stock policy). In the case of retailer 

1, a new order is asked from the wholesaler when 21 dttI . 
dttT 

1 depends on 

the available inventory at the wholesaler t

wI . The instantaneous rate for these 

transitions will be λ1 and λ2 for retailer 1 and 2 respectively.  

7.7.2 The Infinitesimal Generator Matrix 

7.7.2.1 Diagonal elements 

2),(  wd QQGCDbsd , 1),,( 21  QQbsdGCDbsw  

21
1 
bsw

Q
nQ , 12

2 
bsw

Q
nQ  

We use as building blocks the sub-matrices describing transitions in the state of the 

retailers for a given state of the upstream nodes (B2, C2). 

B-type Blocks (Iw=0) 

In the case where 0twI  (B-blocks), Bl1 = 11, Bl2 = 33. 

Retailer 1 
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
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1
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


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
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wd

wd

wd

wd

wd
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



















111

111

1

1

0

0
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wd

wd

wd
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



























1

1

1

1

1

1

1

0000

0000

0000

0000

0000

0000













M

 
 

 

 

 

 

1B  

 

 

 

 

Retailer 2 
zB2  is a  22 x 22 block corresponding to 02 

tT . If IB1 the 11 x 11 identity matrix and 

O1 an 11 x 11 zero matrix: 

 

 

 

 
pB2
 is an 11 x 11 matrix corresponding to 12 

tT : 

 

 

 

 

 

 

pB2  
 

 

 

 

 

M2 is an 11 x 22 matrix. 

 

 1212 BIOM    

 

If  1122O  a zero matrix of 22 x 11 dimensions, the overall structure of block B2 will be 

-μd-μw 0 0 0 0 0 0 0 0 0 0

λ1 -μd-μw-λ1 0 0 0 0 0 0 0 0 0

0 λ1 -μd-μw-λ1 0 0 0 0 0 0 0 0

0 0 λ1 -μd-μw-λ1 0 0 0 0 0 0 0

0 0 0 λ1 -μd-μw-λ1 0 0 0 0 0 0

0 μ1 0 0 0 -μd-μw-μ1 0 0 0 0 0

0 0 μ1 0 0 λ1 -μd-μw-μ1-λ1 0 0 0 0

0 0 0 μ1 0 0 λ1 -μd-μw-μ1-λ1 0 0 0

0 0 μ1 0 0 0 0 0 -μd-μw-μ1 0 0

0 0 0 μ1 0 0 0 0 λ1 -μd-μw-μ1-λ1 0

0 0 0 0 μ1 0 0 0 0 λ1 -μd-μw-μ1-λ1













12112

11

2

BB

z

IBI

OB
B



1212 B

p IBB  

-μd-μw-μ2 0 0 0 0 0 0 0 0 0 0

λ1 -μd-μw-μ2-λ1 0 0 0 0 0 0 0 0 0

0 λ1 -μd-μw-μ2-λ1 0 0 0 0 0 0 0 0

0 0 λ1 -μd-μw-μ2-λ1 0 0 0 0 0 0 0

0 0 0 λ1 -μd-μw-μ2-λ1 0 0 0 0 0 0

0 μ1 0 0 0 -μd-μw-μ2-μ1 0 0 0 0 0

0 0 μ1 0 0 λ1 -μd-μw-μ2-μ1-λ1 0 0 0 0

0 0 0 μ1 0 0 λ1 -μd-μw-μ2-μ1-λ1 0 0 0

0 0 μ1 0 0 0 0 0 -μd-μw-μ2-μ1 0 0

0 0 0 μ1 0 0 0 0 λ1 -μd-μw-μ2-μ1-λ1 0

0 0 0 0 μ1 0 0 0 0 λ1 -μd-μw-μ2-μ1-λ1
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
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
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
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p

z

BM

OB
B

22

11222

2
 

C-type Blocks (Iw>0) 

In the case where 0twI  (C-blocks), Cl1 = 8, Cl2 = 16. 

 

Retailer 1 

Block C1 is an 8x8 block  
 

zC1 is an 2x2 block : 

 















121

12

1

0





wd

wdzC  

 
pC1
is a 3x3 matrix that corresponds to states where 01 tT . There are two pC1  blocks 

in C1, one corresponding to 11 tT  and the other to 21 tT . 
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
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
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
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CM1 is an 6x2 matrix: 





























1

1

1

1

0

0

00

0

00

00






CM  

 

The overall structure of C1 will be 

 

 

 

 

1C  
 

 

 

 

-μd-μw-λ2-λ1 0 0 0 0 0 0 0

λ1 -μd-μw-λ2-λ1 0 0 0 0 0 0

0 0 -μd-μw-λ2-μ1 0 0 0 0 0

0 0 λ1 -μd-μw-λ2-μ1-λ1 0 0 0 0

μ1 0 0 λ1 -μd-μw-λ2-μ1-λ1 0 0 0

0 0 0 0 0 -μd-μw-λ2-μ1 0 0

μ1 0 0 0 0 λ1 -μd-μw-λ2-μ1-λ1 0

0 μ1 0 0 0 0 λ1 -μd-μw-λ2-μ1-λ1
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Retailer 2 

C2 is a 16x16 matrix. We denote I1b the identity matrix of 8x8 dimensions and O1 a 

zero square matrix of 8x8 dimensions. 
zC2  is an 8x8 matrix corresponding to states 

where  02 
tT , 12 

tI . In the example under consideration, since Q2=1, 
zC2  is identical 

to 1C : 

 

 
pC2  is an 8x8 matrix corresponding to 12 

tT  and 02 
tI  

 

 

 
CM2 is an 8x8 diagonal matrix of μ2: 

b

C IM 122    

 

Having constructed the constituent matrices: 

 









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pC

z

CM

OC
C

22

12

2
 

General structure of the diagonal tier 

nQw=1 

nsw=0 

NLw=2 

NLd=1 

nsd=0 

We also denote I2b the identity matrix of 33 dimension, and I2c the identity matrix 16 

dimension.  

 

The sub-matrix D0 corresponding to basic level where 0tdI  is a 98x98 block 

(L0=98): 

 


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b
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For basic levels where 0tdI , the corresponding block D1 is a 65x65 block (L1=65) : 











p

z

D

D
D

1

1

1

 

,where 

 















cw

cwz

IC

IC
D

22

22

1




  

21 BD p   
 

If IL the identity matrix of L1=65 dimension, the infinitesimal generator matrix P will 

be: 

 













Ld ID

D
P

1

0
 

 

7.7.2.2 Sub-Diagonal elements 

Retailer 1 

Given the parameters of the system, whenever there is triggering of a replenishment 

order the inventory on hand at the wholesaler will become zero  0dtt

wI .  k1=2. The 

block S1 which describes triggering of a replenishment order towards retailer 1 is a 

8x2 matrix: 
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S  

Retailer 2 

Since s2=0, there cannot be reordering on the arrival of a previous replenishment 

order. In sub-diagonal blocks there are no μ2 elements. k2=0. 

 

When there is transition to states where 0dtt

wI , S2 is 8x8 diagonal matrix of λ2 .  
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In the case where 0dtt

wI , the block )(rS Lr that describes triggering of a replenishment 

order towards retailer 2 , is a 8x11 matrix: 
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

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The general structure of the infinitesimal generator matrix is given in figure 7.3 

 

7.7.3 Performance Measures 

The performance measures are computed arithmetically based on the stationary 

probabilities. We denote p the vector of the stationary probabilities and p(i) its i
th

 

element according the hierarchy of states laid out in 7.7.1.1. 
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Figure 7.3: General structure of the infinitesimal generator matrix sd=0, Qd=2, sw=0, Qw=2, s2=1, Q2=1, s1=2, Q1=2. Different shades denote 

different blocks 
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BSO1

Average inventory at the retailers 

Retailer 1: 

BWIP1
1∙[ p(2)+p(7)+p(10)+p(13)+p(18)+p(21)+p(24)+p(29)+p(32) + 

              p(67)+p(72)+p(75)+p(78)+p(83)+p(86)+p(89)+p(94)+p(97) + 

              p(132)+p(137)+p(140)+p(143)+p(148)+p(151)+p(154)+p(159)+p(162)] + 

            2∙[ p(3)+p(8)+p(11)+p(14)+p(19)+p(22)+p(25)+p(30)+p(33) + 
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              4∙[ p(35)+p(43)+p(51)+p(59)+p(100)+p(108)+p(116)+p(124)]  
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Stock-out probability for the retailers 
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Retailer 2: 
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Stock-out probability for the Distribution Centre 
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Utilization of transportation resource towards the retailers 
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The other performance measures can be calculated from the above using simple 

relations.  

7.7.4 Validation of algorithmic results 

The infinitesimal generator matrix of the system was constructed manually and the 

linear system of equations was solved in Mathematica to get the vector of stationary 

probabilities. Then the performance measures of the system were calculated as 

described in the previous section. The results were identical to those produced 

algorithmically. The algorithmic results were also contrasted to simulation results (see 

section 7.8). Three replications of 2000000 time units each were used. Arithmetic 

values for parameters μd=0.9 μw=1.8, μ1=1, μ2=1.2, λ1=0.9, λ2=0.7 are given below. 
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Performance 

measure 

Algorithm - 

Matlab 

Manually - 

Mathematica 

Simulation - 

Arena 

FR1 0.786822 0.786822 0.787  ± 0.001 

FR2 0.527915 0.527915 0.528  ± 0.001 

WIPr1 1.852801 1.852801 1.853  ± 0.001   

WIPr2 0.527915 0.527915 0.528 ± 0.001 

WIPtr1 0.708140 0.708140 0.708  ± 0.001 

WIPtr2 0.307950 0.307950 0.308  ± 0.001 

WIPw 0.732491 0.732491 0.732  ± 0.001 

WIPd 0.802578 0.802578 0.803  ± 0.001 

SOw1 0.166467 0.166467 0.167  ± 0.001 

SOw2 0.164135 0.164135 0.164 ± 0.001  

SOd 0.225061 0.225061 0.225 ± 0.001 

7.8 Validation of the model 

7.8.1 Simulation Model 

Infinitesimal Generator Matrices for simple scenarios were constructed manually and 

the resulting systems of equations were solved in Mathematica. All the results were 

found to be identical to those of the algorithm.  

 

For a more rigorous testing such an approach is not practical, as for bigger systems 

models of several thousand states may be involved. To check the validity of the 

developed algorithm, a simulation model of the system under consideration was 

developed. The system was modeled as a series of cycles, each cycle describing the 

interface between successive members of the supply network. The basic logic of the 

simulation model is given in figure 7.4. 

 

The simulation model was constructed in Arena simulation package. Test runs were 

executed to determine the specific parameters of the simulation that would give 

statistically rigorous results within a reasonable computation time. A warm-up period 

of 10000 time units was deemed enough to ensure that any initial conditions effects 

are eliminated. A run time of 2000000 time units was selected as it was found to give 

results with an appropriate margin of error.    
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Figure 7.4: Simulation model logic 
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7.8.2 Arithmetic results 

Scenarios with one to five retailers where tested. In all cases the difference between 

analytic results and simulation results was within the expected deviation attributed to 

the experimental nature of the simulation approach. In total, more than 900 different 

scenarios were tested for various parameter relations. The analysis included ten 

different performance measures (FRr, WIPrr, WIPw, WIPd, WIPtrr, WIPtrw, AROr , 

AROw, SOwr and SOd. Some results for two and five retailers are given in the figures 

below and a sample of validation data is given in the appendix. In the diagrams we 

give the deviation as a percentage of the analytical value: 

 

                
                   

        
 

 

% deviation between algorithmic solution and simulation results for a system with two 

retailers, sd=2, Qd=2, sw=2, Qw={2,3,4}, s1={0,1,2}, Q1={1,2,3,4}, s2={0,1,2}, Q2={1,2,3,4} 

and parameters μd=0.4 μw=0.6, μ1=1, μ2=2, λ1=1.5, λ2=2.5. Simulation parameters: One 

replication of 2000000 time units with a warm up period of 10000 time units. 
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% deviation between algorithmic solution and simulation results for a system with five 

retailers, sd={2,4}, Qd=2, sw=0, Qw=2, s1=0, Q1=1, s2=1, Q2=1, s3=0, Q3={1,2}, s4=0, 

Q4={1,2}, 0≤s5≤3, 1≤Q5≤2 and parameters μd =2.5, μw=3.6, μ1=1,  μ2=1.2, μ3=1.4, μ4=1.6, 

μ5=1.8, λ1=0.5, λ2=0.7 λ3=0.9, λ4=1.2 λ5=1.5. Simulation parameters: One replication of 

2000000 time units with a warm up period of 10000 time units. 

FR1 WIP1 

  
FR5 WIP5 

  
WIPw WIPd 

  

7.9 Model Performance and limitations 

The algorithm was programmed in Matlab, version 2018a, 9.4.0.813654. For the runs 

commented here a computer with Core i-3-4005U CPU at 1.70 GHz processor and 

4GB installed RAM was used. Its operating system was Windows 7 – Ultimate, 64-

bit.  

 

The proposed algorithm is valid for any combination of input variables, but as the 

systems under consideration become more complex, the dimension of the 

infinitesimal generator increases and the solution of the model becomes 

computationally demanding. The increasing number of states for big systems is a 

common problem of Markovian models (Mehmood and Lu, 2011) and although it is 
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alleviated with rising computational power, it still imposes limitations to the 

application of exact Markov models in real-life scale systems. 

 

In the proposed model the exact size of the infinitesimal generator matrix depends on 

the number of the retailers and the specific values of the inventory policy parameters 

at each member of the network. The number of possible states depends on the relation 

between the decision variables, but as a general trend, the dimension of the 

infinitesimal generator increases with increasing number of retailers and increasing 

values of the inventory policy parameters. The exact number of states (ns) can be 

computed as: 

 

 )()()( nnwnnnwnwn ClnswBlnQClnswNLwNLdClnswBlnQClNLBlns   
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



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

 
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bsd

Qs
floorNLd dd  

                                   

                                          

 

In the tables below some examples are given of the number of states in relation to the 

decision variables: 

 

n=4, sd=0, Qd=2,  sw=0, Qw=2, s1=0, Q1=1, s2=1, Q2=2, s3=1, Q3=1 

s4 Q4 Number of states 

0 1 1368 

0 2 2376 

1 1 2232 

1 2 3744 

2 1 3096 

2 2 5112 

3 1 3960 

3 2 6480 

4 1 4824 

4 2 7848 
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n=2, sd=0, Qd=4, sw=0, Qw=4, s1=2, Q1=3 

s2 Q2 Number of states 

0 1 327 

0 2 609 

0 3 891 

0 4 1173 

1 1 513 

1 2 936 

1 3 1359 

1 4 1782 

2 1 699 

2 2 1263 

2 3 1827 

2 4 2391 

3 1 885 

3 2 1590 

3 3 2295 

3 4 3000 

4 1 1071 

4 2 1917 

4 3 2763 

4 4 3609 

 

sd=0, Qd=4, sw=0, Qw=4, all retailers (i) follow policy si=0,Qi=1   

Number of retailers 1 2 3 4 5 6 7 

Number of states 17 43 113 307 857 2443 7073 

 

Computational time depends mainly on the number of possible states. Below, the 

computational time in relation to the infinitesimal generator dimension is given for 

systems of 2 and 5 retailers: 

 

Computational time (sec) as a function of generator matrix dimension 

n=2 n=5 

  

 

The main limitation of the Matlab model is the required RAM memory. The demand 

for RAM depends on the size of the infinitesimal generator matrix. A problem with 

18112 states was the biggest problem that was solved in the aforementioned 
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computer. It must be noted that during program development our priority was clarity 

and transparency with regard to the translation of the theory into a computer program. 

Algorithmic efficiency issues were not concerned. Both algorithm efficiency (number 

of steps to the solution) and memory consumption can be improved by rephrasing the 

computer program and by exploiting embedded features of Matlab such as sparse 

matrices. However, in any case, the problem of increasing system states with 

increasing decision variable values would persist. 

 

Despite size limitations, the proposed algorithm still offers certain advantages. The 

exact algorithm is significantly faster than simulation. In some cases the difference in 

computation time is several orders of magnitude, as for high precision results a typical 

simulation run of several minutes was required. Moreover, the exact solution poses no 

limits on precision in contrast to simulation where the results are always in the form 

of a confidence interval. This can be especially helpful in cases where low values of 

the performance measures are concerned, where the specific value is comparable to 

the last significant digit. Finally, the proposed algorithm can be easily integrated with 

other components in the framework of a more generic model, as for example in the 

context of an optimization model. 

7.10 Numerical Results 

7.10.1 Effect of the design variables – Balanced systems 

We investigate the performance of a system with two retailers (n=2). As we want to 

focus on the effect of the inventory policies we limit our investigation to a “balanced” 

system where
22

2121
dw 

   . 

Some of the related data are given in the Appendix. 

7.10.1.1 Distribution Centre’s policy (sd, Qd) 

The effect of sd on system performance measures 

Qd=2, sw=2, Qw=2, s1=1, Q1=2, s2=1, Q2=2 

   

Qd=2, sw=2, Qw=1, s1=1, Q1=2, s2=1, Q2=1 
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The effect of Qd on system performance measures 

sd=2, sw=2, Qw=2, s1=1, Q1=2, s2=1, Q2=2 

   

sd=2, sw=2, Qw=1, s1=1, Q1=2, s2=1, Q2=1 

   

 

The performance of the retailers increases with increasing sd, but at the cost of an 

almost linear increase in the average total inventory of the system. Depending on the 

values of Qd and Qw, small changes in sd may have no impact on the performance of 

the system. 

 

The effect of Qd depends on the value of the other parameters. The Fill rate at the 

retailers in general tends to increase. Total inventory also increases with Qd, but the 

effect is less pronounced compared to that of sd. The behavior of the system is 

dynamic, and in some cases local minima were observed for Fill rate and WIP total. 

(WIP total is the average inventory from the DC and downstream) 
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Compound effect of DC policy: sw=2, Qw=2, s1=2, Q1=3, s2=2, Q2=1 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

 

DC policy is important for the retailers’ performance only for low sd and Qd values 

when the Distribution Center is the “bottleneck” of the system. The presence of some 

safety stock at the DC seems preferable, as for sd=0 the system is less stable and more 

difficult to predict. WIP total tends to increase with increasing sd and Qd, but often 

local minima and maxima are observed. It is possible that with minor policy 

adjustments lower total inventory can be achieved without any serious negative effect 

in retailers’ performance.  

7.10.1.2 Wholesaler policy (sw, Qw) 
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The effect of Qw on system performance measures 

sd=6, Qd=2, sw=2, s1=1, Q1=2, s2=1, Q2=1 

   

sd=4, Qd=4, sw=2, s1=1, Q1=2, s2=1, Q2=2 

   

 

By increasing sw we can achieve better service levels at the retailers, but at the cost of 

an almost linear increase in the average total inventory. There is interplay between the 

parameters and for certain Qd, Q1 and Q2 values, small changes in sw do not have any 

effect on the performance of the system.  

 

Compound effect of wholesaler’s policy: sd=2, Qd=6, s1=1, Q1=2, s2=1, Q2=2 
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WIP2 WIPw WIP total 

   

 

The effect of Qw is less straightforward. In general, Fill rates and average inventories 

at the retailers tend to increase with increasing Qw. In some cases small decreases 

were observed in total WIP, so that the performance of the retailers could be enhanced 

while actually decreasing the average inventory in the system. There is strong 

interplay between the parameters and for certain scenarios, incremental increases in 

Qw caused small decreases in fill rates.  
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Both sw and Qw are more important when low values are concerned. The presence of 

some safety stock is advantageous. When sw=0, the behavior of the system is more 

erratic and less predictable. In general the wholesaler’s policy can be used to enhance 

the performance of the system in terms of customer satisfaction, but the upper limit 

for the Fill rate is still depended on the retailers’ policy.     

 

Compound effect of wholesaler’s policy: sd=3, Qd=5, s1=1, Q1=2, s2=1, Q2=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

7.10.1.3 Retailer 1 policy (s1, Q1) 

 

The effect of s1 on system performance measures: sd=2, Qd=2, sw=2, Qw=2, Q1=1, 

s2=1, Q2=2 

   

   

 

Predictably, Fill rate at retailer 1 increases with increasing s1 but at the cost of a 

practically linear increase in the average inventory at Retailer 1. Both average 

inventory at the DC and average inventory at the wholesaler are negatively correlated 

with s1. The overall effect on WIP total is an almost linear increase, but of a lower 
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inclination compared to WIP1. Up to a point, the increase of the reorder point at 

retailer 1 causes a transfer of available inventory downstream. This has a negative 

effect on the performance of retailer 2. 

 

The effect of s1 on system performance measures: sd=4, Qd=2, sw=2, Qw=4, Q1=2, 

s2=1, Q2=2 

   

   

 

The effect of Q1 on system performance measures: sd=0, Qd=4, sw=4, Qw=4, s1=1, 

s2=1, Q2=3 

   

   

 

The effect of Q1 on system performance measures: sd=2, Qd=2, sw=6, Qw=2, s1=2, 

s2=1, Q2=2 
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Fill rate at retailer 1 increases with increasing Q1, but at the cost of an increasing 

inventory at retailer 1. The effect on wholesaler’s inventory is more dynamic. In 

general WIP wholesaler tends to decrease with increasing Q1, but local maxima and 

minima may be observed. Average inventory at the distribution Centre decreases with 

Q1. The average total inventory in the system is generally positively correlated with 

Q1, but due to the WIP wholesaler contribution a jagged pattern may be observed. As 

was the case with s1, the increase of Q1 causes a downstream transfer of available 

inventory and this has a negative effect on the performance of the second retailer.    

 

Compound effect of retailers’ 1 policy: sd=2, Qd=6, sw=2, Qw=4, s2=1, Q2=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

 

Compound effect of retailer’s 1 policy: sd=3, Qd=3, sw=3, Qw=3, s2=2, Q2=1 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 
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The managerial implication of the dynamic system behavior is that there are good 

reasons for the fine-tuning of the system. Small changes in inventory policies may 

achieve an enhanced performance in terms of both customer satisfaction and total 

system inventory. 

7.10.1.4 Retailer 2 policy (s2,Q2) 

 

The effect of s2 on system performance measures: sd=2, Qd=2, sw=2, Qw=2, s1=1, 

Q1=2, Q2=1 

   

   

 

The behavior of retailer 2 with changing s2 is similar to that of retailer 1 with 

changing s1. For the higher priority retailer the elasticities of the performance 

measures with changing s2 take slightly higher values (greater curve grades).  

 

The effect of s2 on system performance measures: sd=4, Qd=2, sw=2, Qw=4, s1=1, 

Q1=2, Q2=2 

   

   

 

The effect of Q2 on the performance measures is similar to that of Q1. Numerically the 

results for Q1 and Q2 are close and the importance of each parameter depends on the 

specific scenario under investigation.  

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

s2

FR2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10

s2

WIP2

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

0 2 4 6 8 10

s2

WIP Wholesaler

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

0 2 4 6 8 10

s2

WIP DC

8

9

10

11

12

13

14

0 2 4 6 8 10

s2

WIP total

0.778

0.78

0.782

0.784

0.786

0.788

0.79

0.792

0.794

0 2 4 6 8 10

s2

FR1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10

s2

FR2

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

s2

WIP2

3.95

4

4.05

4.1

4.15

4.2

4.25

0 2 4 6 8 10

s2

WIP Wholesaler

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

0 2 4 6 8 10

s2

WIP DC

10

12

14

16

18

20

22

0 2 4 6 8 10

s2

WIP total

0.795

0.7955

0.796

0.7965

0.797

0.7975

0.798

0.7985

0 2 4 6 8 10

s2

FR1



295 

 

The effect of Q2 on system performance measures: sd=0, Qd=4, sw=4, Qw=4, s1=1, 

Q1=3, s2=1 

   

   

 

The effect of Q2 on system performance measures: sd=2, Qd=2, sw=6, Qw=2, s1=1, 

Q1=2, s2=2 

   

   

 

Compound effect of retailer’s 2 policy: sd=2, Qd=6, sw=2, Qw=4, s1=1, Q1=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 
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Compound effect of retailer’s 2 policy: sd=3, Qd=3, sw=3, Qw=3, s1=2, Q1=1 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

 

7.10.2 Effect of the design variables – Supply constrained systems 

We investigate a supply constrained system where
dw   2121

. For 

the numerical examples that follow the parameters were λ1=λ2=3, μ1=μ2=2, μw=1, and 

μd=0.8.
 

7.10.2.1 Distribution Centre’s policy (sd, Qd) 

 

Compound effect of DC policy: sw=1, Qw=4, s1=1, Q1=2, s2=1, Q2=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 
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In general the re-order quantity Qd has a greater effect on the performance measures. 

Depending on the specific scenario under consideration, local minima and maxima 

may occur, so attention should be given in fine-tuning the system. Compared to 

balanced systems, in supply constrained systems the retailers are more sensitive to DC 

policy changes. At the same time there is greater scope for performance improvement, 

as the system is harder to reach maximum fill rates.  

7.10.2.2 Wholesaler policy (sw, Qw) 

 

Compound effect of wholesaler’s policy: sd=2, Qd=6, s1=1, Q1=2, s2=1, Q2=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

Compound effect of DC policy: sw=2, Qw=2, s1=2, Q1=3, s2=2, Q2=1 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 
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Compound effect of wholesaler’s policy: sd=3, Qd=5, s1=1, Q1=2, s2=1, Q2=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

 

In general the effect of reorder quantity Qw is more important than the reorder point 

sw. Jagged patterns in the performance measures may occur, while compared to 

balanced systems, supply constrained systems are “sensitive” to a wider range of 

parameter values. Wholesaler’s policy can be an effective way to enhance the 

retailers’ performance. Higher sw and Qw values lead to higher availability of product 

at the wholesaler and a better service towards the retailers. This causes an increase in 

average inventories not only at the wholesaler, but also downstream at the retailers. 

7.10.2.3 Retailer 1 policy (s1, Q1) 

Compound effect of Retailer’s 1 policy: sd=2, Qd=6, sw=2, Qw=4, s2=1, Q2=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   



299 

 

Compound effect of Retailer’s 1 policy : sd=3, Qd=3, sw=3, Qw=3, s2=2, Q2=1 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

 

Both policy parameters have an impact on the performance measures. Increasing s1 

and Q1 causes a transfer of available inventory downstream, but total average 

inventories also increase. High demand smoothes out the interplay between the 

parameters and for certain scenarios the jagged pattern observed in balanced systems 

does not occur. As the system is supply constrained, the increases in average 

inventories are not as dramatic as those observed for balanced systems.  

7.10.2.4 Retailer 2 policy (s2,Q2) 

 

Compound effect of retailer’s 2 policy: sd=2, Qd=6, sw=2, Qw=4, s1=1, Q1=2 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 
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Compound effect of retailer’s 2 policy: sd=3, Qd=3, sw=3, Qw=3, s1=2, Q1=1 

OFR1 WIP1 OFR2 

   
WIP2 WIPw WIP total 

   

 

The general trends for higher priority retailer 2 are the same to those in the case of 

lower priority retailer 1. In general greater elasticities are observed (for the same 

changes in parameter values there are greater changes in the performance measures). 

With regard to total inventory, local minima may be observed at intermediate values 

of s2 and Q2.  

7.10.3 Interplay between the retailers 

Each retailer acts independently from the others and no demand correlation is 

assumed. However, since all retailers are supplied by a finite capacity Wholesaler it is 

expected that some interplay amongst them occurs. We study a system with three 

retailers and we investigate how the inventory policy of one retailer affects the 

performance of the others. 

7.10.3.1 Balanced systems 

We assume 

33
321321

dw 
 

 

Lowest priority retailer 

The policy of the lowest priority retailer 1 has a weak effect on the performance of the 

highest priority retailer 3. Increasing s1 causes a small but consistent decrease in FR3 

and WIP3. The effect can be described with good precision with a linear relation. In 

the investigated scenarios the unitary increase of s1 caused a decreased in FR3 that did 

not exceed 0.15%. 
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Effect of lowest priority retailer – s1   

sd=0, Qd=4, sw=2, Qw=2, Q1=1 s2=1, Q2=2, s3=1, Q3=2

 

  
sd=0, Qd=4, sw=2, Qw=4, Q1=2, s2=1, Q2=2, s3=1, Q3=2

 

  
sd=2, Qd=2, sw=2, Qw=2, Q1=2, s2=1, Q2=1, s3=1, Q3=1

 

  

 

 

The effect of Q1 on the performance of the highest priority retailer is more dynamic. 

Q1 directly affects the availability of inventory at the wholesaler, and thus the ability 

of the wholesaler to respond to demand from the other retailers. In some cases FR3 

increased slightly with increasing Q1, simultaneously with an increase in FR1. Such 

cases indicate the coordination between the inventory policies of the various network 

members and are of interest from a managerial point of view. For a unitary change of 

Q1 changes in FR3 up to 1.25% were observed. 
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Effect of lowest priority retailer – Q1   

sd=0, Qd=4, sw=2, Qw=2, s1=1 s2=1, Q2=2, s3=1, Q3=2

 

  
sd=0, Qd=4, sw=2, Qw=4, s1=1, s2=1, Q2=2, s3=1, Q3=2

 

  
sd=2, Qd=2, sw=4, Qw=2, s1=1, s2=1, Q2=1, s3=1, Q3=1

 

  

 

Highest priority retailer 

 

Increasing s3 causes FR1 to decrease. In general the effect is weak, but stronger than 

the effect of s1 on FR3. The changes can be described with good accuracy by a 

logarithmic relation, while for a unitary change of s3 changes in FR1 up to 0.2 % 

where observed.  
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Effect of highest priority retailer – s3   

sd=0, Qd=4, sw=2, Qw=2, s1=1, Q1=2 s2=1, Q2=2, Q3=1

 

  
sd=0, Qd=4, sw=2, Qw=4, s1=1, Q1=2, s2=1, Q2=2, Q3=2

 

  
sd=2, Qd=2, sw=2, Qw=2, s1=1, Q1=1, s2=1, Q2=1, Q3=2

 

  

 

 

The effect of Q3 on FR1 is more dynamic. In some cases FR1 decreases with 

increasing Q3, but in some scenarios local maxima and minima were observed. The 

effect is similar to, but somewhat stronger than the effect of Q1 on FR3. In the 

investigated scenarios and for unitary changes in Q3, changes of up to 1.36% in FR1 

were observed.  
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Effect of highest priority retailer – Q3   

sd=0, Qd=4, sw=2, Qw=2, s1=1, Q1=2, s2=1, Q2=2, s3=1

 

  
sd=0, Qd=4, sw=2, Qw=4, s1=1, Q1=2, s2=1, Q2=2, s3=1

 

  
sd=2, Qd=2, sw=4, Qw=2, s1=1, Q1=1, s2=1, Q2=1, s3=1

 

  

 

7.10.3.2 Unbalanced systems 

We investigate a system where
dw   321321

. Such a system 

is considered supply constrained and a greater competition between the retailers for 

the resources of the wholesaler is to be expected. We use the values λ1=λ2=λ3=3, 

μ1=μ2=μ3=2, μw=1, and μd=0.8. 

 

Lowest priority retailer 

 

The increase of s1 causes FR3 to decrease. The effect becomes less important as s1 

increases. In the investigated scenarios and for unitary increases in s1, the greatest 

change in FR3 that was observed was 2.7%. 
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Effect of lowest priority retailer – s1   

sd=0, Qd=4, sw=2, Qw=2, Q1=1 s2=1, Q2=2, s3=1, Q3=2

 

  
sd=0, Qd=4, sw=2, Qw=4, Q1=2, s2=1, Q2=2, s3=1, Q3=2

 

  
sd=2, Qd=2, sw=2, Qw=2, Q1=2, s2=1, Q2=1, s3=1, Q3=1

 

  

 

 

With regard to the Q1 effect, increasing Q1 causes a decrease in FR3. In general, the 

effect is more pronounced for low Q1 values. Q1 is more important than s1. For the 

investigated scenarios and for unitary increases in Q1, the greatest decrease of FR3 

that was observed was 4.7%. 
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Effect of lowest priority retailer – Q1   

sd=0, Qd=4, sw=2, Qw=2, s1=1 s2=1, Q2=2, s3=1, Q3=2

 

  
sd=0, Qd=4, sw=2, Qw=4, s1=1, s2=1, Q2=2, s3=1, Q3=2

 

  
sd=2, Qd=2, sw=4, Qw=2, s1=1, s2=1, Q2=1, s3=1, Q3=1

 

  

Highest priority retailer 

The increase of s3 causes FR1 to decrease, with the effect being more important for 

low s3 values. Compared to the effect of s1 to FR3, the lowest priority retailer is more 

sensitive to s3 changes. In the investigated scenarios, for changes from s3=1 to s3=2 

changes in FR1 of up to 24% were observed.  
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Effect of highest priority retailer – s3   

sd=0, Qd=4, sw=2, Qw=2, s1=1, Q1=2 s2=1, Q2=2, Q3=1

 

  
sd=0, Qd=4, sw=2, Qw=4, s1=1, Q1=2, s2=1, Q2=2, Q3=2

 

  
sd=2, Qd=2, sw=2, Qw=2, s1=1, Q1=1, s2=1, Q2=1, Q3=2

 

  

 

 

FR1 decreases with increasing Q3, with the decrease mirroring the decrease in the 

average wholesaler inventory. The effect decreases with increasing Q3 values and 

beyond a point it becomes negligible. In general, Q3 is more important than s3 for FR1. 

In the investigated scenarios, the greatest decrease in FR1 for unitary increase in Q3 

was 60%. 
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Effect of highest priority retailer – Q3   

sd=0, Qd=4, sw=2, Qw=2, s1=1, Q1=2, s2=1, Q2=2, s3=1

 

  
sd=0, Qd=4, sw=2, Qw=4, s1=1, Q1=2, s2=1, Q2=2, s3=1

 

  
sd=2, Qd=2, sw=4, Qw=2, s1=1, Q1=1, s2=1, Q2=1, s3=1

 

  

7.10.4 Effect of retailer addition to the system 

We investigate the behavior of the system with increasing number of Retailers 

supplied by the same Wholesaler. For better focus, all retailers are assumed to follow 

the same inventory control policy, while replenishment times are also the same for all 

retailers.     

 

Order Fill rate of the highest and lowest priority retailers as a function of the number of 

retailers. sd=0, Qd=2, sw=0, Qw=2, si=0, Qi=1 ,i=[1,7]. λ=1, μd=μw=4 

μ(i)=1, i=[1,7] μ(i)=4, i=[1,7] 
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Order Fill rate of the highest and lowest priority retailers as a function of the number of 

retailers. sd=0, Qd=2, sw=1, Qw=2, si=0, Qi=1 ,i=[1,7]. λ=1, μd=μw=4 

μ(i)=1, i=[1,7] μ(i)=4, i=[1,7] 

  

 

Increasing the number of the retailers causes the Fill rates to decrease as the available 

inventory at the wholesaler decreases. Initially the effect is almost the same for all 

retailers, irrespectively of their designated priority. The antagonism between the 

retailers becomes pronounced at some intermediate n value, where the stock-out 

probability for the wholesaler becomes important, and priorities start to have an effect 

on retailers’ performance. 

 

Considering total system performance, by increasing the number of retailers we 

increase the total output, but at the same time total lost sales also increase. The ratio 

of lost sales to output increases with n. For every extra retailer the marginal output 

increases, but marginal lost sales also increase. The changes in the ratio also depend 

on the other parameters of the system and they are more important for higher retailer 

transportation rates. 

 

Ratio of lost sales to output as a function of the number of retailers. 

sd=0, Qd=2, sw=0, Qw=2, si=0, Qi=1 ,i=[1,7]. 

λ=1, μd=μw=4 

sd=0, Qd=2, sw=1, Qw=2, si=0, Qi=1 ,i=[1,7]. 

λ=1, μd=μw=4 

  

7.10.5 Synopsis 

The inventory policies of the upstream nodes can be used to enhance the performance 

of the system, but the limit of the attainable Fill rates depends on the retailers’ 

respective policies. The unavoidable increase in average inventory is centered on the 

node whose policy is changed. 
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In the case of the Distribution Center policy, the inventory increase is observed at the 

DC and to a lesser extent at the Wholesaler. This may be preferable in cases where the 

cost of inventory increases as it moves downstream towards the end customers. 

Moreover, the benefits of more available inventory are shared amongst the retailers.  

 

In a similar manner, the wholesaler’s policy can also be used to enhance the 

performance of the retailers. Average inventories increase at the Wholesaler and the 

retailers. Under certain conditions and when Qw is changed there may be a decrease in 

the upstream DC inventory, so the Wholesaler’s policy can be used as a means to 

“transfer” available inventory downstream. In the investigated scenarios the presence 

of some safety stock at the DC and the Wholesaler is advantageous as it renders the 

system less sensitive to changes in the replenishment orders. 

 

Both reorder points and reorder quantities have an impact on the performance 

measures. The effect of reorder points is in general more predictable. To choose the 

reorder point, the reorder quantities of the adjacent upstream and downstream nodes, 

and the possible values of inventory on hand must be taken into account. In certain 

scenarios small changes in the reorder point may be irrelevant. In regard with 

replenishment quantities, their effect is more dynamic. In some cases the performance 

measures exhibit a “jagged” pattern with local maxima and minima, so the fine tuning 

of the system may be beneficial. 

 

The behavior of the system depends strongly on demand characteristics. Increased 

demand makes the system more sensitive to changing parameters. Moreover, reorder 

points become less important. If higher demand is to be met successfully, larger 

replenishment orders are needed. The interplay between the parameters becomes less 

important with higher demand as its relatively small effects are overridden by the lack 

of available inventory. High demand also keeps average inventories low over a wider 

parameter range. 

 

The system has a dynamic nature. Our analysis indicates that the coordination of the 

inventory policies is possible. For a given desirable service level there can be found a 

combination of policies that minimizes total inventory in the system. There is also 

correlation in the performance of different nodes of the system. With regard to the 

retailers, higher priority retailers have a greater impact on the system, but the priority 

effect is not important as long as the stock-out probability for the wholesaler remains 

low. Adding retailers to the network causes fill rates to fall and this fall is more 

intense when higher initial service levels are concerned. The optimal number of 

retailers will depend on the specific costs parameters.  

7.11 Conclusions 

In this section we have presented a model based on Markov processes for the exact 

numerical analysis of a single product, three echelon, arborescent inventory system. A 
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solution algorithm based on the properties of the infinitesimal generator matrix was 

developed, and the respective computer program was coded in Matlab. In comparison 

to existing models, we investigate a longer network, under more realistic, stochastic 

conditions, and we offer an exact solution without recourse to approximate methods.  

 

The model was used to investigate the effect of the decision variables on the 

performance measures. Our analysis indicates a dynamic behaviour, especially when 

replenishment quantities are concerned. There is inter-dependence between the 

different members of the network and interplay between system parameters. More 

importantly, from a managerial point of view, our analysis also indicates that it is 

possible to coordinate the system. In many instances local optimal policies were 

observed, so it is possible to enhance performance with only minor adjustments in 

inventory policies. 

  

As a further step, three directions of research are proposed. With regard to external 

demand, more general demand distributions can be investigated. Although the Poisson 

distribution is commonly used to model demand in inventory systems, it may not be 

appropriate to describe more complex, and more realistic cases. A compound Poisson 

distribution combining Poisson arrivals for customers with an empirical distribution 

for individual demand would offer more modelling flexibility and it would be 

relatively easy to integrate in the presented model. In a second direction, more general 

distributions can be used for replenishment times. The application of phase type 

distributions (Erlang, Coxian) to model times would allow for more realistic 

modelling, but it must be kept in mind that the total number of states, and so the 

computing requirements, would increase. Finally the development of a realistic cost 

function would allow the model to be used for optimization purposes. This could be 

done either through an exhaustive enumeration of possible policy combinations, or by 

combining the evaluative algorithm with an optimization heuristic.  
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7.13 Appendix 

7.13.1. Matlab algorithm 

Below we present the program code for the three echelon arborescent system. The 

computer algorithm is given for Mathworks’ Matlab, version R2018a (9.4.0.813654). 

The code essentially follows the lines of the analysis presented in chapter 7. Some 

parts of the model that are used repetitively have been defined as sub-routines 

(functions) that are stored separately and called whenever necessary. Such functions 

are given separately from the main body of the algorithm. Comments start with the 

symbol %. 

Important note: Some lines of the algorithm have been omitted on purpose. Their 

position is denoted with […]  

Main body algorithm 

%{ 
--------------- Input ------------------------ 
n: The number of retailers 
sdc: Reorder Point at the Distribution Centre (DC) 
Qd: Replenishment order Quantity at the Distribution Centre(DC) 
sw: Reorder Point at the Wholesaler (W) 
Qwh: Replenishment order Quantity at the Wholesaler(W) 
s(i): Reorder Point at Retailer (i) 
Qr(i): Replenishment Order Quantity at Retailer (i) 
md: Transportation rate for orders towards the DC 
mw: Transportation rate for orders towards the Wholesaler 
m(i): Transportation rate for orders towards retailer i 
l(i): Arrival rate of external customers at Retailer i 
s: The vector of reorder points for the Retailers. The first element 

refers to Retailer 1, etc 

Q: The vector of the replenishment quantities for the retailers 

%}  
n=7; 

sdc=0; 

Qd=2; 

sw=0; 

Qwh=2; 

s=[0;0;0;0;0;0;0]; 

Qr=[1;1;1;1;1;1;1]; 

md=0.9; 

mw=1.8; 

m=[1;1.2;1.4;1.6;1.8;1;1]; 

l=[0.9;0.7;0.9;1.2;1.5;1;1]; 

if sdc<Qd & Qd<=Qwh 

    sd=0; 

else 

    sd=sdc; 

end 

Qw=min(Qwh,sd+Qd); 

for i=1:n 

    Q(i)=min(Qr(i),sw+Qw); 

end 

% ---------- Infinitesimal Generator Matrix --------------------- 

bsd=gcd(Qd,Qw); 

NLd=floor(((sd+Qd)/bsd)); 

bsw=gcd(bsd,Q(1)); 

for i=2:n 

    bsw=gcd(bsw,Q(i)); 

end 
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NLw=floor(((sw+Qw)/bsw)); 

nQ=zeros(n,1); 

for i=1:n 

    nQ(i)=floor(Q(i)/bsw); 

end 

nQw=floor(Qw/bsd); 

nsw=floor(sw/bsw); 

%                    * * *  Diagonal sub-matrices  * * *     

% Iw=0 

[B,Bl]=eIwz(n,s,Q,nQ,m,l,sw,Qw,md,mw,bsw ); 

% Iw>0 

[C,Cl]=eIwp(n,s,Q,nQ,m,l,md,mw,bsw); 

% Construction of the diagonal tier of the Infinitesimal Generator 

Matrix   

P=zeros(1); 

% Id=0 

%       Tw=0 

%           Iw=0 

P(1:Bl(n),1:Bl(n))=B+mw*eye(Bl(n)); 

%           Iw>0 

for i=1:NLw 

    P(Bl(n)+(i-1)*Cl(n)+1:Bl(n)+i*Cl(n),Bl(n)+(i-

1)*Cl(n)+1:Bl(n)+i*Cl(n))=C+mw*eye(Cl(n)); 

    lp=Bl(n)+i*Cl(n); 

end 

%       Tw>0 

for i= 1:nQw 

%           Iw=0 

    P(lp+1:lp+Bl(n),lp+1:lp+Bl(n))=B; 

    lp=lp+Bl(n); 

%           Iw>0 

    for j=1:nsw 

        P(lp+1:lp+Cl(n),lp+1:lp+Cl(n))=C; 

        lp=lp+Cl(n); 

    end 

end 

L0=lp; 

% Id>0 

for i=1:NLd 

%       Tw=0 

    for j=1:NLw-nsw 

        P(lp+1:lp+Cl(n),lp+1:lp+Cl(n))=C+mw*eye(Cl(n)); 

        lp=lp+Cl(n); 

    end 

%       Tw>0 

    for i=1:nQw 

%           Iw=0 

        P(lp+1:lp+Bl(n),lp+1:lp+Bl(n))=B; 

    lp=lp+Bl(n); 

%           Iw>0 

        for j=1:nsw 

            P(lp+1:lp+Cl(n),lp+1:lp+Cl(n))=C; 

            lp=lp+Cl(n); 

        end 

    end 

end 

% ns: number of states 

ns=length(P); 

% L1: the length of Basic Levels where Id>0 

L1=(ns-L0)/NLd; 

for i=L0+floor(sd/bsd)*L1+1:ns 
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    P(i,i)=P(i,i)+md; 

end 

%        * * * Upper-Diagonal sub-matrices * * *  

b=Bl(n)+nsw*Cl(n); 

% Id=0 

%     Tw=0 

%         Iw<=sw 

if Qd>Qw 

    step=L0+((Qd-Qw)/bsd-1)*L1+(NLw-nsw)*Cl(n)+(nQw-1)*b; 

else 

    step=Bl(n)+NLw*Cl(n)+((Qd/bsd)-1)*b; 

end 

P(1:b,step+1:step+b)=md*eye(b); 

%        Iw>sw   

P(b+1:b+(NLw-nsw)*Cl(n),L0+(Qd/bsd-1)*L1+1: L0+(Qd/bsd-1)*L1+(NLw-

nsw)*Cl(n))=md*eye((NLw-nsw)*Cl(n)); 

%    Tw>0 

for i=1:nQw 

    step=L0+(Qd/bsd-1)*L1+(NLw-nsw)*Cl(n)+(i-1)*b; 

    P(Bl(n)+NLw*Cl(n)+(i-

1)*b+1:Bl(n)+NLw*Cl(n)+i*b,step+1:step+b)=md*eye(b); 

end 

% Id>0 

for i=1:floor(sd/bsd) 

    x=L0+(i-1)*L1; 

    y=L0+(i+(Qd/bsd)-1)*L1; 

    P(x+1:x+L1,y+1:y+L1)=md*eye(L1); 

end 

%      * * * Sub-Diagonal sub-matrices * * *  

% Id=0 

%     Iw=0 

for Lw=1:nQw 

    Tw=Lw*bsd;   

    inD=indexDemand(Tw,Bl,s,Q,n); 

    for state=1:Bl(n) 

        if inD(state,n+1)==0 

            sumQ=zeros(n,1); 

            sum=1; 

            sumQ(n)=sum; 

                for i=1:n-1 

                    sum=sum+inD(state,n-i+1)*nQ(n-i+1); 

                    sumQ(n-i)=sum; 

                end 

            step=((s(1)+Q(1)+1)+min(Tw/bsw-sumQ(1),nQ(1)-

1)*(s(1)+1))*inD(state,1); 

                for i=2:n 

                    step=step+((s(i)+Q(i)+1)+min(Tw/bsw-

sumQ(i),nQ(i)-1)*(s(i)+1))*Bl(i-1)*inD(state,i); 

                end 

            x0=Bl(n)+NLw*Cl(n)+(Lw-1)*b+state; 

            y0=step+state; 

            P(x0,y0)=mw; 

        else    

            step=Bl(n)+(inD(state,n+1)/bsw-1)*Cl(n); 

            nstate=state; 

            for i=1:n-1 

                p=ceil(nstate/Bl(n-i)); 

                nstate=nstate-(p-1)*Bl(n-i); 

                step=step+(p-1-s(n-i+1)-1)*Cl(n-i)*(1-inD(state,n-

i+1)); 

            end 
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            step=step+(nstate-s(1)-1)*(1-inD(state,1)); 

            for i=2:n 

                step=step+(Q(i)+(nQ(i)-1)*(s(i)+1))*Cl(i-

1)*inD(state,i); 

            end 

            step=step+(Q(1)+(nQ(1)-1)*(s(1)+1))*inD(state,1); 

            nstate=state; 

            for i=1:n-1 

            p=ceil(nstate/Bl(n-i)); 

            nstate=nstate-(p-1)*Bl(n-i); 

            step=step+(p-1)*Cl(n-i)*inD(state,n-i+1); 

            end 

       step=step+(nstate)*inD(state,1); 

       x0=Bl(n)+NLw*Cl(n)+(Lw-1)*b+state; 

       y0=step; 

       P(x0,y0)=mw;             

       end 

    end 

%     Iw>0 

    x0=Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n); 

    y0=Bl(n)+(Tw/bsw)*Cl(n); 

    P(x0+1:x0+nsw*Cl(n),y0+1:y0+nsw*Cl(n))=mw*eye(nsw*Cl(n)); 

end   

% Id>0 

%     Iw=0 

for Ld=1:NLd 

    Id=Ld*bsd; 

    for Lw=1:nQw 

        Tw=Lw*bsd;   

        inD=indexDemand(Tw,Bl,s,Q,n); 

        for state=1:Bl(n) 

            if inD(state,n+1)==0 

                if Id>Qw 

                    step=L0+((Id-Qw)/bsd-1)*L1;    

                    step=[...] 

                else 

                    step=0; 

                    step=[...] 

                end 

            sumQ=zeros(n,1); 

            sum=1; 

            sumQ(n)=sum; 

                for i=1:n-1 

                    sum=sum+inD(state,n-i+1)*nQ(n-i+1); 

                    sumQ(n-i)=sum; 

                end 

            step=step+((s(1)+Q(1)+1)+min(Tw/bsw-sumQ(1),nQ(1)-

1)*(s(1)+1))*inD(state,1); 

                for i=2:n 

                    step=[...] 

                end 

            x0=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+state; 

            y0=step+state; 

            P(x0,y0)=mw; 

            else     

                if inD(state,n+1)>sw 

                    step= L0+(Ld-1)*L1+((inD(state,n+1)/bsw)-nsw-

1)*Cl(n); 

                else 

                    if Id>Qw 

                        step=L0+((Id-Qw)/bsd-1)*L1;    
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                        step=step+(NLw-nsw)*Cl(n)+ ((Qw/bsd)-1)*b; 

                    else 

                        step=0; 

                        step=step+Bl(n)+NLw*Cl(n)+(Id/bsd-1)*b; 

                    end 

            

                step=step+Bl(n)+(inD(state,n+1)/bsw-1)*Cl(n);      

                end  

                nstate=state; 

                for i=1:n-1 

                    p=ceil(nstate/Bl(n-i)); 

                    nstate=nstate-(p-1)*Bl(n-i); 

                    step=step+(p-1-s(n-i+1)-1)*Cl(n-i)*(1-

inD(state,n-i+1)); 

                end 

                step=step+(nstate-s(1)-1)*(1-inD(state,1)); 

                for i=2:n 

                    step=step+(Q(i)+(nQ(i)-1)*(s(i)+1))*Cl(i-

1)*inD(state,i); 

                end 

                step=step+(Q(1)+(nQ(1)-1)*(s(1)+1))*inD(state,1); 

                nstate=state; 

                for i=1:n-1 

                    p=ceil(nstate/Bl(n-i)); 

                    nstate=nstate-(p-1)*Bl(n-i); 

                    step=step+(p-1)*Cl(n-i)*inD(state,n-i+1); 

                end 

                step=step+(nstate)*inD(state,1); 

                x0=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+state; 

                y0=step; 

                P(x0,y0)=mw;             

            end 

        end       

% Iw>0 

        for i=1:nsw 

            if Tw+i*bsw>sw 

                step= L0+(Ld-1)*L1+((Tw+i*bsw)/bsw-nsw-1)*Cl(n) ;  

            else 

                if Id>Qw 

                    step=L0+((Id-Qw)/bsd-1)*L1;    

                    step=step+(NLw-nsw)*Cl(n)+ ((Qw/bsd)-1)*b; 

                    step=step+Bl(n)+((Tw+i*bsw)/bsw-1)*Cl(n); 

                else 

                    step=0; 

                    step=step+Bl(n)+NLw*Cl(n)+((Id/bsd)-

1)*b+Bl(n)+((Tw+i*bsw)/bsw-1)*Cl(n); 

                end 

            end  

            x0=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+Bl(n)+(i-

1)*Cl(n); 

            y0=step; 

            P(x0+1:x0+Cl(n),y0+1:y0+Cl(n))=mw*eye(Cl(n)); 

        end 

    end 

end   

% Sub-Diagonal sub-matrices  

%     Transitions to level where Iw>0 

%         Retailer 1  

k=min(nQ(1),floor(s(1)/bsw)); 

L=zeros((s(1)+1)*k,s(1)); 

for z=1:k 
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    for i=1:s(1)+1-z*bsw 

        L((s(1)+1)*(z-1)+i,i+z*bsw-1)=m(1); 

    end 

end 

% Id=0 Tw=0 

for Level=nQ(1)+1:NLw 

    for j=1:Cl(n)/Cl(1) 

        x=Bl(n)+(Level-1)*Cl(n)+(j-1)*Cl(1)+1; 

        y=[...] 

        P(x,y)=l(1); 

        if k>0 & s(1)>0 

            P(x+Q(1):x+Q(1)+k*(s(1)+1)-1, y-s(1)+1:y)=L; 
        end 

    end 

end 

% Id=0 Tw>0 

for Lw=1:nQw 

    for Level=nQ(1)+1:nsw 

        for j=1:Cl(n)/Cl(1) 

            x=Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-1)*Cl(n)+(j-

1)*Cl(1)+1; 

            y=Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-nQ(1)-

1)*Cl(n)+(j-1)*Cl(1)+(Q(1)+(nQ(1)-1)*(s(1)+1)+s(1))+1; 

            P(x,y)=l(1); 

            if k>0 & s(1)>0 

                P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-s(1)+1:y)=L; 

            end 

        end 

    end 

end 

% Id>0  

for Ld=1:NLd 

 %   Tw=0 

    for Level=max(nQ(1),nsw)+1:NLw 

        for j=1:Cl(n)/Cl(1)    

            x=L0+(Ld-1)*L1+(Level-nsw-1)*Cl(n)+(j-1)*Cl(1)+1; 

            if Level-nQ(1)>nsw 

                step=L0+(Ld-1)*L1+(Level-nQ(1)-nsw-1)*Cl(n); 

            else 

                Id=Ld*bsd; 

                if Id>Qw 

                    step=L0+((Id-Qw)/bsd-1)*L1  ;  

                    step=step+(NLw-nsw)*Cl(n)+ ((Qw/bsd)-1)*b; 

                    Iw0=Level-nQ(1); 

                    step=step+Bl(n)+(Iw0-1)*Cl(n); 

                else 

                    step=0; 

                    step=step+Bl(n)+NLw*Cl(n)+((Id/bsd)-1)*b; 

                    Iw0=Level-nQ(1); 

                    step=step+Bl(n)+(Iw0-1)*Cl(n); 

                end 

            end 

            y=step+(j-1)*Cl(1)+(Q(1)+(nQ(1)-1)*(s(1)+1)+s(1))+1; 

            P(x,y)=l(1); 

            if k>0 & s(1)>0   

                P(x+Q(1):x+Q(1)+k*(s(1)+1)-1, y-s(1)+1:y)=L;   

            end 

        end  

    end 

% Tw>0 

    for Lw=1:nQw 
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        for Level=nQ(1)+1:nsw    

            for j=1:Cl(n)/Cl(1) 

                x=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+Bl(n)+(Level-

1)*Cl(n)+(j-1)*Cl(1)+1; 

                y=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+Bl(n)+(Level-

nQ(1)-1)*Cl(n)+(j-1)*Cl(1)+(Q(1)+(nQ(1)-1)*(s(1)+1)+s(1))+1; 

                P(x,y)=l(1); 

                    if k>0 & s(1)>0 

                        P(x+Q(1):x+Q(1)+k*(s(1)+1)-1, y-s(1)+1:y)=L; 

                    end 

            end 

        end 

    end 

end 

%   Retailers 2 to n 

for r=2:n 

    k=min(nQ(r),floor(s(r)/bsw)); 

    L=esubMp(s,m,Cl,bsw,r,k); 

%Id=0 Tw=0 

    for Level=nQ(r)+1:NLw 

        for j=1:Cl(n)/Cl(r) 

            x=Bl(n)+(Level-1)*Cl(n)+(j-1)*Cl(r); 

            y=Bl(n)+(Level-nQ(r)-1)*Cl(n)+(j-1)*Cl(r)+(Q(r)+(nQ(r)-

1)*(s(r)+1)+s(r))*Cl(r-1); 

            P(x+1:x+Cl(r-1),y+1:y+Cl(r-1))=P(x+1:x+Cl(r-

1),y+1:y+Cl(r-1))+l(r)*eye(Cl(r-1)); 

            if (k>0) & (s(r)>0) 

                x=x+Q(r)*Cl(r-1); 

                y=y+Cl(r-1)-s(r)*Cl(r-1); 

                P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-

1))=P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-1))+L; 

            end 

        end 

     end 

%Id=0, Tw>0 

    for Lw=1:nQw 

        for Level=nQ(r)+1:nsw 

            for j=1:Cl(n)/Cl(r) 

                x=Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-1)*Cl(n)+(j-

1)*Cl(r); 

                y=Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-nQ(r)-

1)*Cl(n)+(j-1)*Cl(r)+(Q(r)+(nQ(r)-1)*(s(r)+1)+s(r))*Cl(r-1); 

                P(x+1:x+Cl(r-1),y+1:y+Cl(r-1))=P(x+1:x+Cl(r-

1),y+1:y+Cl(r-1))+l(r)*eye(Cl(r-1)); 

                if (k>0) & (s(r)>0) 

                    x=x+Q(r)*Cl(r-1); 

                    y=y+Cl(r-1)-s(r)*Cl(r-1); 

                    P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-

1))=P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-1))+L; 

                end 

            end 

        end 

    end 

% Id>0  

    for Ld=1:NLd 

%     Tw=0 

        for Level=max(nQ(r),nsw)+1:NLw    

            for j=1:Cl(n)/Cl(r)             

                x=L0+(Ld-1)*L1+(Level-nsw-1)*Cl(n)+(j-1)*Cl(r); 

                if (Level-nQ(r))*bsw>sw 

                    step=L0+(Ld-1)*L1+(Level-nQ(r)-nsw-1)*Cl(n); 
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                else 

                    Id=Ld*bsd; 

                    if Id>Qw 

                        step=L0+((Id-Qw)/bsd-1)*L1 ;  

                        step=step+(NLw-nsw)*Cl(n)+ ((Qw/bsd)-1)*b; 

                        step=step+Bl(n)+(Level-nQ(r)-1)*Cl(n); 

                    else 

                        step=0; 

                        step=step+Bl(n)+NLw*Cl(n)+((Id/bsd)-1)*b; 

                        step=step+Bl(n)+(Level-nQ(r)-1)*Cl(n); 

                    end 

                end 

                y=step+(j-1)*Cl(r)+(Q(r)+(nQ(r)-

1)*(s(r)+1)+s(r))*Cl(r-1); 

                P(x+1:x+Cl(r-1),y+1:y+Cl(r-1))=P(x+1:x+Cl(r-

1),y+1:y+Cl(r-1))+l(r)*eye(Cl(r-1)); 

                if (k>0) & (s(r)>0) 

                    x=x+Q(r)*Cl(r-1); 

                    y=y+Cl(r-1)-s(r)*Cl(r-1); 

                    P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-

1))=P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-1))+L;  

                end 

            end  

        end 

% Tw>0      

        for Lw=1:nQw 

            for Level=nQ(r)+1:nsw   

                for j=1:Cl(n)/Cl(r) 

                    x=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-

1)*b+Bl(n)+(Level-1)*Cl(n)+(j-1)*Cl(r); 

                    y=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-

1)*b+Bl(n)+(Level-nQ(r)-1)*Cl(n)+(j-1)*Cl(r)+(Q(r)+(nQ(r)-

1)*(s(r)+1)+s(r))*Cl(r-1); 

                    P(x+1:x+Cl(r-1),y+1:y+Cl(r-1))=P(x+1:x+Cl(r-

1),y+1:y+Cl(r-1))+l(r)*eye(Cl(r-1)); 

                    if (k>0) & (s(r)>0) 

                        x=x+Q(r)*Cl(r-1); 

                        y=y+Cl(r-1)-s(r)*Cl(r-1); 

                        P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-

1))=P(x+1:x+(k*(s(r)+1))*Cl(r-1),y+1:y+s(r)*Cl(r-1))+L;  

                    end 

                end 

            end          

        end  

    end 

end 

%        Transitions to level where Iw=0 

sum=0; 

sumQ(n)=sum; 

for j=1:n-1 

    sum=sum+(s(n-j+1)+1)*Bl(n-j); 

    sumQ(n-j)=sum; 

end 

% Retailer 1 

k=min(nQ(1),floor(s(1)/bsw)); 

L=zeros((s(1)+1)*k,s(1)); 

for z=1:k 

    for i=1:s(1)+1-z*bsw 

        L((s(1)+1)*(z-1)+i,i+z*bsw-1)=m(1); 

    end 

end 
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% Id=0, Tw=0 

for Level=1:nQ(1) 

    for i=1:Cl(n)/Cl(1) 

        x=Bl(n)+(Level-1)*Cl(n)+(i-1)*Cl(1)+1; 

        sum=0;  

        for j=2:n-1 

            p=ceil((i*Cl(1))/Cl(n-j+1)); 

            sum= sum+(p-1)*(s(n-j+1)+1)*Bl(n-j); 

        end 

        y=sumQ(1)+(s(1)+Q(1)+1)+(min(Level,nQ(1))-

1)*(s(1)+1)+s(1)+1+(i-1)*Bl(1)+sum; 

        P(x,y)=l(1); 

        if k>0 & s(1)>0 

            P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-

s(1)+1:y)=P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-s(1)+1:y)+L; 

        end 

    end 

end 

% Id=0, Tw>0 

for Lw=1:nQw 

    for Level=1:min(nQ(1),nsw) 

        for i=1:Cl(n)/Cl(1) 

            x=Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-1)*Cl(n)+(i-

1)*Cl(1)+1; 

            sum=0;  

            for j=2:n-1 

                p=ceil((i*Cl(1))/Cl(n-j+1)); 

                sum= sum+(p-1)*(s(n-j+1)+1)*Bl(n-j); 

            end 

            y=Bl(n)+NLw*Cl(n)+(Lw-1)*b+  

sumQ(1)+(s(1)+Q(1)+1)+(min(Level,nQ(1))-1)*(s(1)+1)+s(1)+1+(i-

1)*Bl(1)+sum; 

            P(x,y)=l(1); 

            if k>0 & s(1)>0 

                P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-

s(1)+1:y)=P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-s(1)+1:y)+L; 

            end 

        end 

    end     

end  

% Id>0 

for Ld=1:NLd 

%     Tw=0 

    for Level=nsw+1:nQ(1)    

        for i=1:Cl(n)/Cl(1) 

            x=L0+(Ld-1)*L1+(Level-nsw-1)*Cl(n)+(i-1)*Cl(1); 

            sum=0;  

            for j=2:n-1 

                p=ceil((i*Cl(1))/Cl(n-j+1)); 

                sum= sum+(p-1)*(s(n-j+1)+1)*Bl(n-j); 

            end 

            Id=Ld*bsd; 

            if Id>Qw 

                step=L0+((Id-Qw)/bsd-1)*L1  ;  

                step=step+(NLw-nsw)*Cl(n)+ ((Qw/bsd)-1)*b; 

            else 

                step=0; 

                step=step+Bl(n)+NLw*Cl(n)+((Id/bsd)-1)*b; 

            end 

            y=step+ sumQ(1)+(s(1)+Q(1)+1)+(Level-

1)*(s(1)+1)+s(1)+1+(i-1)*Bl(1)+sum; 
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            P(x+1,y)=l(1); 

            if k>0 & s(1)>0 

                P(x+1+Q(1):x+1+Q(1)+k*(s(1)+1)-1,y-

s(1)+1:y)=P(x+1+Q(1):x++1+Q(1)+k*(s(1)+1)-1,y-s(1)+1:y)+L; 

            end 

        end 

    end 

%    Tw>0 

    for Lw=1:nQw 

        for Level=1:min(nQ(1),nsw) 

            for i=1:Cl(n)/Cl(1) 

                x=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+Bl(n)+(Level-

1)*Cl(n)+(i-1)*Cl(1)+1; 

                sum=0;  

                for j=2:n-1 

                    p=ceil((i*Cl(1))/Cl(n-j+1)); 

                    sum= sum+(p-1)*(s(n-j+1)+1)*Bl(n-j); 

                end 

                y=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-

1)*b+sumQ(1)+(s(1)+Q(1)+1)+(Level-1)*(s(1)+1)+s(1)+1+(i-1)*Bl(1)+sum; 

                P(x,y)=l(1); 

                if k>0 & s(1)>0 

                    P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-

s(1)+1:y)=P(x+Q(1):x+Q(1)+k*(s(1)+1)-1,y-s(1)+1:y)+L; 

                end 

            end 

        end 

    end 

end 

%               --- Retailers 2 to n --- 

for r=2:n 

    k=min(nQ(r),floor(s(r)/bsw)); 

    L=esubLz(s,l,Cl,Bl,r); 

    M=esubMz(s,m,Cl,Bl,r,k,bsw); 

% Id=0, Tw=0 

    for Level=1:nQ(r) 

        for z=1:Cl(n)/Cl(r) 

            x=Bl(n)+(Level-1)*Cl(n)+(z-1)*Cl(r);        

            sum=0;  

            for i=r+1:n-1 

                p=ceil((z*Cl(r))/Cl(n-i+r)); 

                sum= sum+(p-1)*(s(n-i+r)+1)*Bl(n-i+r-1); 

            end  

            y=[...] 

            P(x+1:x+Cl(r-1),y+1:y+Bl(r-1))= P(x+1:x+Cl(r-

1),y+1:y+Bl(r-1))+L; 

            if (s(r)+1)*k*Cl(r-1)>0 & s(r)*Cl(r-1)>0 

                P(x+Q(r)*Cl(r-1)+1:x+Q(r)*Cl(r-1)+k*(s(r)+1)*Cl(r-

1),y-s(r)*Bl(r-1)+Bl(r-1)+1:y+Bl(r-1))= P(x+Q(r)*Cl(r-

1)+1:x+Q(r)*Cl(r-1)+k*(s(r)+1)*Cl(r-1),y-s(r)*Bl(r-1)+Bl(r-

1)+1:y+Bl(r-1))+M; 

            end 

        end 

    end 

% Id=0, Tw>0 

    for Lw=1:nQw 

        for Level=1:min(nQ(r),nsw) 

            for z=1:Cl(n)/Cl(r)         

               x=Bl(n)+NLw*Cl(n)+(Lw-1)*b+ Bl(n)+(Level-1)*Cl(n)+(z-

1)*Cl(r); 

               sum=0;  
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               for i=r+1:n-1 

                   p=ceil((z*Cl(r))/Cl(n-i+r)); 

                   sum= sum+(p-1)*(s(n-i+r)+1)*Bl(n-i+r-1); 

               end  

               y=[...] 

               P(x+1:x+Cl(r-1),y+1:y+Bl(r-1))= P(x+1:x+Cl(r-

1),y+1:y+Bl(r-1))+L; 

               if (s(r)+1)*k*Cl(r-1)>0 & s(r)*Cl(r-1)>0 

                   P(x+Q(r)*Cl(r-1)+1:x+Q(r)*Cl(r-1)+k*(s(r)+1)*Cl(r-

1),y-s(r)*Bl(r-1)+Bl(r-1)+1:y+Bl(r-1))= P(x+Q(r)*Cl(r-

1)+1:x+Q(r)*Cl(r-1)+k*(s(r)+1)*Cl(r-1),y-s(r)*Bl(r-1)+Bl(r-

1)+1:y+Bl(r-1))+M; 

               end 

            end 

        end 

    end 

% Id>0 

    for Ld=1:NLd 

% Id>0, Tw=0 

        for Level=nsw+1:nQ(r) 

            for z=1:Cl(n)/Cl(r) 

                x=L0+(Ld-1)*L1+(Level-nsw-1)*Cl(n)+(z-1)*Cl(r);   

                sum=0;  

                for i=r+1:n-1 

                    p=ceil((z*Cl(r))/Cl(n-i+r)); 

                    sum= sum+(p-1)*(s(n-i+r)+1)*Bl(n-i+r-1); 

                end  

                Id=Ld*bsd; 

                if Id>Qw 

                    step=L0+((Id-Qw)/bsd-1)*L1  ;  

                    step=step+(NLw-nsw)*Cl(n)+ ((Qw/bsd)-1)*b; 

                else 

                    step=0; 

                    step=step+Bl(n)+NLw*Cl(n)+((Id/bsd)-1)*b; 

                end 

                y= step+sumQ(r)+(s(r)+Q(r)+1)*Bl(r-

1)+(min(Level,nQ(r))-1)*(s(r)+1)*Bl(r-1)+ s(r)*Bl(r-1)+(z-

1)*Bl(r)+sum; 

                P(x+1:x+Cl(r-1),y+1:y+Bl(r-1))= P(x+1:x+Cl(r-

1),y+1:y+Bl(r-1))+L; 

                if (s(r)+1)*k*Cl(r-1)>0 & s(r)*Cl(r-1)>0 

                    P(x+Q(r)*Cl(r-1)+1:x+Q(r)*Cl(r-

1)+k*(s(r)+1)*Cl(r-1),y-s(r)*Bl(r-1)+Bl(r-1)+1:y+Bl(r-1))= 

P(x+Q(r)*Cl(r-1)+1:x+Q(r)*Cl(r-1)+k*(s(r)+1)*Cl(r-1),y-s(r)*Bl(r-

1)+Bl(r-1)+1:y+Bl(r-1))+M; 

                end 

            end 

        end 

% Id>0, Tw>0 

        for Lw=1:nQw 

            for Level=1:min(nsw,nQ(r)) 

                for z=1:Cl(n)/Cl(r)         

                    x= L0+(Ld-1)*L1+(NLw-nsw)*Cl(n) +(Lw-

1)*b+Bl(n)+(Level-1)*Cl(n)+(z-1)*Cl(r); 

                    sum=0;  

                    for i=r+1:n-1 

                        p=ceil((z*Cl(r))/Cl(n-i+r)); 

                        sum= sum+(p-1)*(s(n-i+r)+1)*Bl(n-i+r-1); 

                    end  

                    y=[...] 
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                    P(x+1:x+Cl(r-1),y+1:y+Bl(r-1))= P(x+1:x+Cl(r-

1),y+1:y+Bl(r-1))+L; 

                    if (s(r)+1)*k*Cl(r-1)>0 & s(r)*Cl(r-1)>0 

                        P(x+Q(r)*Cl(r-1)+1:x+Q(r)*Cl(r-

1)+k*(s(r)+1)*Cl(r-1),y-s(r)*Bl(r-1)+Bl(r-1)+1:y+Bl(r-1))= 

P(x+Q(r)*Cl(r-1)+1:x+Q(r)*Cl(r-1)+k*(s(r)+1)*Cl(r-1),y-s(r)*Bl(r-

1)+Bl(r-1)+1:y+Bl(r-1))+M; 

                    end 

                end 

            end   

        end  

    end 

end 

%   ----- Calculation of Stationary Probabilities Vector X ----------

- 

R=P'; 

for i=1:ns 

    R(ns,i)=1; 
end 
Y=zeros(ns,1); 
Y(ns,1)=1; 
X=linsolve(R,Y);  
%  ---------------- Performance Measures ------------------        
% WIPd: Average inventory on hand at the Distribution Centre  

% utilizationd: utilization of the resource for transportation 

towards the 
wholesaler (P(Tw>0)) 
WIPd=0; 
utilizationd=0; 
for i=Bl(n)+NLw*Cl(n)+1:L0 
    utilizationd=utilizationd+X(i); 
end 
for i=1:NLd 
    sum=0; 
    for j=(NLw-nsw)*Cl(n)+1:L1 
        utilizationd=utilizationd+X(L0+(i-1)*L1+j); 
    end 
    for j=1:L1 
        sum=sum+X(L0+(i-1)*L1+j); 
    end 
    WIPd=WIPd+i*bsd*sum; 
end 
% Average inventory on hand at the Wholesaler - WIPw 
% Iw(i): the probability of Iw=i 
Iw=0; 
for Level=1:NLw 
    sum=0; 
    for i=1:Cl(n) 
        sum=sum+X(Bl(n)+(Level-1)*Cl(n)+i); 
    end 
    Iw(Level)=sum; 
end 
for Lw=1:nQw 
    for Level=1:nsw 
        sum=0; 
        for i=1:Cl(n) 
            sum=sum+X(Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-

1)*Cl(n)+i); 
        end 
        Iw(Level)=Iw(Level)+sum; 
    end 
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end 
for Ld=1:NLd 
    for Level=1:NLw-nsw 
        sum=0; 
        for i=1:Cl(n) 
            sum=sum+X(L0+(Ld-1)*L1+(Level-1)*Cl(n)+i); 
        end 
        Iw(Level+nsw)=Iw(Level+nsw)+sum; 
    end 
    for Lw=1:nQw 
        for Level=1:nsw 
            sum=0; 
            for i=1:Cl(n) 
                sum=sum+X(L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-

1)*b+Bl(n)+(Level-1)*Cl(n)+i); 
            end 
            Iw(Level)=Iw(Level)+sum; 
        end 
    end 
end 
WIPw=0; 
for i=1:NLw 
    WIPw=WIPw+i*bsw*Iw(i); 
end 
% WIP(i): Average inventory on hand at Retailer i, 
% SO(i): stockout probability for retailer i 
% utilization(i): utilization for transportation towards retailer i 
% SOw: stockout probability for the wholesaler 
%    Bl- block 
% Id=0,Tw=0 
lp=0; 
[WIP,SO,utilization,SOw]=perfB(n,Bl,s,Q,nQ,X,lp); 
% Id=0, Tw>0 
for Lw=1:nQw 
    lp=Bl(n)+NLw*Cl(n)+(Lw-1)*b; 
    [p1,p2,p3,p4]=perfB(n,Bl,s,Q,nQ,X,lp); 
    WIP=WIP+p1; 
    SO=SO+p2; 
    utilization=utilization+p3; 
    SOw=SOw+p4; 
end 
%Id>0, Tw>0 
for Ld=1:NLd 
    for Lw=1:nQw 
        lp=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b; 
        [p1,p2,p3,p4]= perfB(n,Bl,s,Q,nQ,X,lp); 
        WIP=WIP+p1; 
        SO=SO+p2; 
        utilization=utilization+p3; 
        SOw=SOw+p4; 
    end 
end 
%    Cl - Block 
% Retailer 1 
% Id=0, Tw=0 
for Level=1:NLw 
    lp=Bl(n)+(Level-1)*Cl(n); 
    [p1,p2,p3]= perfC(n,Cl,s,Q,nQ,X,lp); 
    WIP=WIP+p1; 
    SO=SO+p2; 
    utilization=utilization+p3; 
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end 
% Id=0, Tw>0 
for Lw=1:nQw 
    for Level=1:nsw 
        lp= Bl(n)+NLw*Cl(n)+(Lw-1)*b+Bl(n)+(Level-1)*Cl(n); 
        [p1,p2,p3]= perfC(n,Cl,s,Q,nQ,X,lp); 
        WIP=WIP+p1; 
        SO=SO+p2; 
        utilization=utilization+p3;  
    end 
end 
% Id>0 
for Ld=1:NLd 
%     Tw=0 
    for Level=1:NLw-nsw 
        lp=L0+(Ld-1)*L1+(Level-1)*Cl(n); 
        [p1,p2,p3]= perfC(n,Cl,s,Q,nQ,X,lp); 
        WIP=WIP+p1; 
        SO=SO+p2; 
        utilization=utilization+p3;  
    end 
%    Tw>0 
    for Lw=1:nQw 
        for Level=1:nsw 
            lp=L0+(Ld-1)*L1+(NLw-nsw)*Cl(n)+(Lw-1)*b+Bl(n)+(Level-

1)*Cl(n); 
            [p1,p2,p3]= perfC(n,Cl,s,Q,nQ,X,lp); 
            WIP=WIP+p1; 
            SO=SO+p2; 
            utilization=utilization+p3; 
        end  
    end 
end 
% FR(i): Fill rate at Retailer i  
% Thr(i): Throughput at retailer i 
% WIPtr(i): Average inventory in transit towards retailer i 
% ARO(i): Average replenishment orders sent to retailer(i) 
% WIPtrw: Average inventory in transit towards the Wholesaler 
% AROd: Average number of units in replenishment orders sent to the 

Wholesaler 
% SOd: Stockout probability for the DC 
Throughput=0; 
for i=1:n 
    FR(i)=1-SO(i); 
    Thr(i)=l(i)*FR(i); 
    WIPtr(i)=Thr(i)/m(i); 
    ARO(i)=WIPtr(i)/utilization(i); 
    Throughput=Throughput+Thr(i); 
end  
WIPtrw=Throughput/mw; 
AROw=WIPtrw/utilizationd; 
SOd=0; 
for i=1:Bl(n)+nsw*Cl(n) 
    SOd=SOd+X(i); 
end 

Defined functions     

eIwz(n,s,Q,nQ,m,l,sw,Qw,md,mw,bsw ) 

function [ B1,Bl ] = Iwz( n,s,Q,nQ,m,l,sw,Qw,md,mw,bsw ) 
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% Recursive process to construct the diagonal sub-matrix for all 

retailers and for Iw=0 
% Level 1 (seed) 
z=s(1)+Q(1)+1; 
B1=zeros(s(1)+Q(1)+1+nQ(1)*(s(1)+1)); 
B1(1,1)=-md-mw; 
for i=2:z 
    B1(i,i)=-md-mw-l(1); 
    B1(i,i-1)=l(1); 
end 
for j=1:nQ(1) 
    B1(z+(j-1)*(s(1)+1)+1,z+(j-1)*(s(1)+1)+1)=-md-mw-m(1); 
    for i=2:s(1)+1 
        B1(z+(j-1)*(s(1)+1)+i,z+(j-1)*(s(1)+1)+i)=-md-mw-m(1)-l(1);  
        B1(z+(j-1)*(s(1)+1)+i,z+(j-1)*(s(1)+1)+i-1)=l(1); 
    end 
end 
for j=1:nQ(1) 
    for i=1:s(1)+1 
        B1(z+(j-1)*(s(1)+1)+i,j*bsw+i)=m(1); 
    end 
end 
%Bl:A vector recording the dimension of each level submatrix 
Bl(1)=length(B1); 
% Recursive construction of higher levels 
for i=2:n 
    B=B1; 

    z=s(i)+Q(i)+1; 
    B1=zeros((z+nQ(i)*(s(i)+1))*Bl(i-1)); 
    B1(1:Bl(i-1),1:Bl(i-1))=B; 
    L=l(i)*eye(Bl(i-1)); 
    M=m(i)*eye(Bl(i-1)); 
    for k=2:z 
        B1(1+(k-1)*Bl(i-1):k*Bl(i-1),1+(k-1)*Bl(i-1):k*Bl(i-1))=B-L; 
        B1((k-1)*Bl(i-1)+1:k*Bl(i-1),(k-2)*Bl(i-1)+1:(k-1)*Bl(i-

1))=L; 
    end 
    for j=1:nQ(i) 
        B1((z+(j-1)*(s(i)+1))*Bl(i-1)+1:(z+(j-1)*(s(i)+1)+1)*Bl(i-

1),(z+(j-1)*(s(i)+1))*Bl(i-1)+1:(z+(j-1)*(s(i)+1)+1)*Bl(i-1))=B-M; 
        for k=1:s(i) 
            B1((z+(j-1)*(s(i)+1)+k)*Bl(i-1)+1:(z+(j-

1)*(s(i)+1)+k+1)*Bl(i-1),(z+(j-1)*(s(i)+1)+k)*Bl(i-1)+1:(z+(j-

1)*(s(i)+1)+k+1)*Bl(i-1))=B-M-L; 
            B1((z+(j-1)*(s(i)+1)+k)*Bl(i-1)+1:(z+(j-

1)*(s(i)+1)+k+1)*Bl(i-1),(z+(j-1)*(s(i)+1)+k-1)*Bl(i-1)+1:(z+(j-

1)*(s(i)+1)+k)*Bl(i-1))=L; 
        end 
    end    
    for j=1:nQ(i) 
        for k=1:s(i)+1 
            B1((z+(j-1)*(s(i)+1)+k-1)*Bl(i-1)+1:(z+(j-

1)*(s(i)+1)+k)*Bl(i-1),(j*bsw+k-1)*Bl(i-1)+1:(j*bsw+k)*Bl(i-1))=M;    
        end 
    end 
    Bl(i)=length(B1); 
end 
end 

eIwp(n,s,Q,nQ,m,l,md,mw,bsw) 

function [C1,Cl] = eIwp(n,s,Q,nQ,m,l,md,mw,bsw ) 
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% Recursive process to construct the diagonal sub-matrix for all 

retailers 
% for Iw>0 
% Level 1 (seed) 
suml=0; 
for i=1:n 
    suml=suml+l(i); 
end 
C1=zeros(Q(1)+nQ(1)*(s(1)+1)); 
for i=1:Q(1) 
    C1(i,i)=-md-mw-suml; 
end 
for i=2:Q(1) 
    C1(i,i-1)=l(1);  
end 
for j=1:nQ(1) 
    C1(Q(1)+(j-1)*(s(1)+1)+1,Q(1)+(j-1)*(s(1)+1)+1)=-md-mw-suml-

m(1)+l(1); 
    for i=2:s(1)+1 
        C1(Q(1)+(j-1)*(s(1)+1)+i,Q(1)+(j-1)*(s(1)+1)+i)=-md-mw-suml-

m(1);  
        C1(Q(1)+(j-1)*(s(1)+1)+i,Q(1)+(j-1)*(s(1)+1)+i-1)=l(1); 
    end 
end 
for j=1:nQ(1) 
    x0=max(s(1)+1-j*bsw,0); 
    y0=max(j*bsw-s(1)-1,0); 
    for i=1:s(1)+1-x0 
        C1(Q(1)+(j-1)*(s(1)+1)+x0+i,y0+i)=m(1); 
    end 
end 
%Cl:A vector recording the dimension of each stage submatrix 
Cl(1)=length(C1); 
% Recursive construction of higher levels 
for i=2:n 
    C=C1; 
    C1=zeros((Q(i)+nQ(i)*(s(i)+1))*Cl(i-1)); 
    C1(1:Cl(i-1),1:Cl(i-1))=C; 
    L=l(i)*eye(Cl(i-1)); 
    M=m(i)*eye(Cl(i-1)); 
    for k=2:Q(i) 
        […] 

        […] 
    end 
    for j=1:nQ(i) 
        C1((Q(i)+(j-1)*(s(i)+1))*Cl(i-1)+1:(Q(i)+(j-

1)*(s(i)+1)+1)*Cl(i-1),(Q(i)+(j-1)*(s(i)+1))*Cl(i-1)+1:(Q(i)+(j-

1)*(s(i)+1)+1)*Cl(i-1))=C+L-M; 
        for k=1:s(i) 
            C1((Q(i)+(j-1)*(s(i)+1)+k)*Cl(i-1)+1:(Q(i)+(j-

1)*(s(i)+1)+k+1)*Cl(i-1),(Q(i)+(j-1)*(s(i)+1)+k)*Cl(i-1)+1:(Q(i)+(j-

1)*(s(i)+1)+k+1)*Cl(i-1))=C-M; 
            C1((Q(i)+(j-1)*(s(i)+1)+k)*Cl(i-1)+1:(Q(i)+(j-

1)*(s(i)+1)+k+1)*Cl(i-1),(Q(i)+(j-1)*(s(i)+1)+k-1)*Cl(i-

1)+1:(Q(i)+(j-1)*(s(i)+1)+k)*Cl(i-1))=L; 
        end 
    end   
    for j=1:nQ(i) 
        x0=max(s(i)+1-j*bsw,0); 
        y0=max(j*bsw-s(i)-1,0); 
        for k=1:s(i)+1-x0 
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            C1((Q(i)+(j-1)*(s(i)+1)+x0+k-1)*Cl(i-1)+1:(Q(i)+(j-

1)*(s(i)+1)+x0+k)*Cl(i-1),(y0+k-1)*Cl(i-1)+1:(y0+k)*Cl(i-1))=M; 
        end 
    end      
    Cl(i)=length(C1); 
end 
end  

indexDemand(Tw,Bl,s,Q,n) 

function [inD] = indexDemand(Tw,Bl,s,Q,n) 
%{ 
Function to construct a table with elements indicating to which of 

the 
retailers an incoming order at the wholesaler will be forwarded. 
inA(i,j): A table with elements indicating which retailers ask for a  
replenishment order in each state  
inA(i,j)=1 if there is demand for a replenishment order,I(j)<=s(j) 
inA(i,j)=0 if there is no demand for replenishment order, I(j)>s(j) 

or T(j)>0 
%} 
inA=zeros(Bl(n),n); 
% Retailer 1 
block1=zeros(Bl(1),1); 
for i=1:s(1)+1 
    block1(i,1)=1; 
end 
for j=1:Bl(n)/Bl(1) 
    inA((j-1)*Bl(1)+1:j*Bl(1),1:1)=block1; 
end 
% Recursive process for the rest of the retailers 
for j=2:n 
    block1=zeros(Bl(j),1); 
    for i=1:(s(j)+1)*Bl(j-1) 
        block1(i,1)=1; 
    end 
    for i=1:Bl(n)/Bl(j) 
    inA((i-1)*Bl(j)+1:i*Bl(j),j:j)=block1; 
    end 
end 
%{ 
inB(i,j): indicates whether in the i state the j retailer will 

receive 
product from an incoming order at the wholesaler 
inB(i,j)=1: the j retailer will receive product, inB(i,j)=0 the j 

retailer 
will not receive product. Retailers that don't ask for replenishment 

may 
also have an index of 1. 

%} 
inB=zeros(Bl(n),n+1); 
for i=1:Bl(n) 
    td=0; 
    for j=1:n 
        if Tw>td 
            inB(i,n-j+1)=1;  
            td=td+inA(i,n-j+1)*Q(n-j+1); 
        end  
    end 
    if Tw>td 
        inB(i,n+1)=Tw-td; 
    end 
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end 
%{ 
inD(i,j):A table with elements indicating to which of the retailers 

an incoming order at the wholesaler will be forwarded. The last 

column indicates if Qw exceeds total demand. inD(i,j)=1:if at state i 

a replenishment order arrives at the wholesaler some product will be 

forwarded to retailer j 
%} 
inD=inB; 
for j=1:n 
    for i=1:Bl(n) 
        inD(i,j)=inA(i,j)*inB(i,j); 
    end 
end 

esubMp(s,m,Cl,bsw,r,k) 

function [L] = esubMp(s,m,Cl,bsw,r,k) 
L=zeros((s(r)+1)*k*Cl(r-1),s(r)*Cl(r-1)); 
for z=1:k 
    for i=1:(s(r)+1-z*bsw)*Cl(r-1) 
        L((s(r)+1)*(z-1)*Cl(r-1)+i,i+(z*bsw-1)*Cl(r-1))=m(r); 
    end 
end 

esubLz(s,l,Cl,Bl,r) 

function [L] = esubLz(s,l,Cl,Bl,r) 
L=zeros(Cl(1),Bl(1)); 
for i=1:Cl(1) 
    L(i,s(1)+1+i)=l(r); 
end 
for i=3:r 
    L2=zeros(Cl(i-1),Bl(i-1)); 
    for j=1:Cl(i-1)/Cl(i-2) 
        L2((j-1)*Cl(i-2)+1:j*Cl(i-2),(s(i-1)+1)*Bl(i-2)+(j-1)*Bl(i-

2)+1:(s(i-1)+1)*Bl(i-2)+(j-1)*Bl(i-2)+Bl(i-2))=L; 
    end 
    L=L2; 
end 
end 

esubMz(s,m,Cl,Bl,r,k,bsw) 

function [M] = esubMz(s,m,Cl,Bl,r,k,bsw) 
M1=zeros(Cl(1),Bl(1)); 
for i=1:Cl(1) 
    M1(i,s(1)+1+i)=m(r); 
end 
for i=3:r 
    M2=zeros(Cl(i-1),Bl(i-1)); 
    for j=1:Cl(i-1)/Cl(i-2) 
        M2((j-1)*Cl(i-2)+1:j*Cl(i-2),(s(i-1)+1)*Bl(i-2)+(j-1)*Bl(i-

2)+1:(s(i-1)+1)*Bl(i-2)+(j-1)*Bl(i-2)+Bl(i-2))=M1; 
    end 
    M1=M2; 
end 
M=zeros((s(r)+1)*k*Cl(r-1),s(r)*Bl(r-1)); 
for i=1:k 
    for j=1:s(r)+1-i*bsw 
        x=(i-1)*(s(r)+1)*Cl(r-1)+(j-1)*Cl(r-1); 
        y=(i*bsw-1)*Bl(r-1)+(j-1)*Bl(r-1); 
        M(x+1:x+Cl(r-1),y+1:y+Bl(r-1))=M1; 
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    end 
end 
end 

perfB(n,Bl,s,Q,nQ,X,lp) 

function [WIP,SO,utilization,SOw] = perfB(n,Bl,s,Q,nQ,X,lp) 

% Bl- block 

%    Retailer 1 

sum=0; 

sum2=0; 

sum3=0; 

sum4=0; 

for i=1:Bl(n)/Bl(1) 

% states where T1=0 

% Stockout probability  

    sum2=sum2+X(lp+(i-1)*Bl(1)+1); 

% WIP  

    for j=1:s(1)+Q(1) 

        sum=sum+j*X(lp+(i-1)*Bl(1)+1+j); 

    end 

% Wholesaler Stockout 

    for j=1:s(1)+1 

        sum4=sum4+X(lp+(i-1)*Bl(1)+j); 

    end 

% states where T1>0 

    for j=1:nQ(1) 

        sum2=sum2+X(lp+(i-1)*Bl(1)+s(1)+Q(1)+1+(j-1)*(s(1)+1)+1); 

        for z=1:s(1) 

            sum=sum+z*X(lp+(i-1)*Bl(1)+s(1)+Q(1)+1+(j-

1)*(s(1)+1)+z+1); 

            sum3=sum3+X(lp+(i-1)*Bl(1)+s(1)+Q(1)+1+(j-1)*(s(1)+1)+z); 

        end 

        sum3=sum3+X(lp+(i-1)*Bl(1)+s(1)+Q(1)+1+(j-

1)*(s(1)+1)+s(1)+1); 

    end         

end 

WIP(1)=sum; 

SO(1)=sum2; 

utilization(1)=sum3; 

SOw(1)=sum4; 

% Retailers 2:n 

for r=2:n 

    sum=0; 

    sum2=0; 

    sum3=0; 

    sum4=0; 

    for i=1:Bl(n)/Bl(r) 

% states where Tr=0 

        for j=1:Bl(r-1) 

            sum2=sum2+X(lp+(i-1)*Bl(r)+j); 

        end 

        for j=1:s(r)+Q(r) 

            for z=1:Bl(r-1) 

                sum=sum+j*X(lp+(i-1)*Bl(r)+Bl(r-1)+(j-1)*Bl(r-1)+z); 

            end 

        end 

        for j=1:s(r)+1 

            for z=1:Bl(r-1) 

                sum4=sum4+X(lp+(i-1)*Bl(r)+(j-1)*Bl(r-1)+z); 

            end 

        end 
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% states where Tr>0 

        for j=1:nQ(r) 

            for z=1:Bl(r-1) 

                sum2=sum2+X(lp+(i-1)*Bl(r)+(s(r)+Q(r)+1)*Bl(r-1)+(j-

1)*(s(r)+1)*Bl(r-1)+z); 

            end 

            for z=1:s(r) 

                for y=1:Bl(r-1) 

                    sum=sum+z*X(lp+(i-1)*Bl(r)+(s(r)+Q(r)+1)*Bl(r-

1)+(j-1)*(s(r)+1)*Bl(r-1)+Bl(r-1)+(z-1)*Bl(r-1)+y); 

                    sum3=sum3+X(lp+(i-1)*Bl(r)+(s(r)+Q(r)+1)*Bl(r-

1)+(j-1)*(s(r)+1)*Bl(r-1)+(z-1)*Bl(r-1)+y);  

                end 

            end 

            for y=1:Bl(r-1) 

                sum3=sum3+X(lp+(i-1)*Bl(r)+(s(r)+Q(r)+1)*Bl(r-1)+(j-

1)*(s(r)+1)*Bl(r-1)+s(r)*Bl(r-1)+y); 

            end 

        end   

    end 

    WIP(r)=sum; 

    SO(r)=sum2; 

    utilization(r)=sum3; 

    SOw(r)=sum4; 

end    

end 

perfC(n,Cl,s,Q,nQ,X,lp) 

function [WIP,SO,utilization] = perfC(n,Cl,s,Q,nQ,X,lp) 

% Cl- block , Iw>0 

%    Retailer 1 

sum=0; 

sum2=0; 

sum3=0; 

sum4=0; 

for j=1:Cl(n)/Cl(1) 

% States where T1=0 

% WIP 

    for z=1:Q(1) 

        sum=sum+(z+s(1))*X(lp+(j-1)*Cl(1)+z); 

    end 

% States where T1>0  

    for z=1:nQ(1) 

% Stockout  

        sum2=sum2+X(lp+(j-1)*Cl(1)+Q(1)+(z-1)*(s(1)+1)+1); 

% WIP  

        for y=1:s(1) 

            sum=sum+y*X(lp+(j-1)*Cl(1)+Q(1)+(z-1)*(s(1)+1)+1+y); 

            sum3=sum3+X(lp+(j-1)*Cl(1)+Q(1)+(z-1)*(s(1)+1)+y); 

        end 

% Utilization 

        sum3=sum3+X(lp+(j-1)*Cl(1)+Q(1)+(z-1)*(s(1)+1)+s(1)+1); 

    end 

end 

WIP(1)=sum; 

SO(1)=sum2; 

utilization(1)=sum3; 

% Retailers 2:n 

[…]
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7.13.2. Validation Data 

n=2, sd=2, Qd=2, sw=2, Qw=2, μd=0.4 μw=0.6, μ1=1,  μ2=2, λ1=1.5, λ2=2.5. Simulation parameters: One replication of 2000000 time units with a 

warm up period of 10000 time units. 

 
Input  Matlab Arena 

 
s1 Q1 s2 Q2 FR1 FR2 WIP1 WIP2 WIPw WIPd FR1 FR2 WIP1 WIP2 WIPw WIPd 

1 0 1 0 1 0.193127 0.163348 0.193127 0.163348 0.256287 0.89998 0.193 0.163 0.193 0.164 0.256 0.899 

2 0 1 0 2 0.083568 0.229886 0.083568 0.332957 0.132107 0.878607 0.084 0.23 0.084 0.333 0.132 0.878 

3 0 1 0 3 0.08003 0.232081 0.08003 0.345843 0.118211 0.876566 0.08 0.232 0.08 0.346 0.118 0.877 

4 0 1 0 4 0.079406 0.232466 0.079406 0.348525 0.116221 0.876255 0.079 0.232 0.079 0.349 0.117 0.878 

5 0 1 1 1 0.177719 0.173415 0.177719 0.207884 0.151391 0.878432 0.178 0.174 0.178 0.208 0.152 0.88 

6 0 1 1 2 0.061219 0.243618 0.061219 0.383223 0.078053 0.869611 0.061 0.244 0.061 0.383 0.078 0.87 

7 0 1 1 3 0.059187 0.244865 0.059187 0.392109 0.070614 0.86877 0.059 0.245 0.059 0.393 0.071 0.869 

8 0 1 1 4 0.058867 0.245061 0.058867 0.393665 0.069663 0.868646 0.059 0.245 0.059 0.394 0.069 0.868 

9 0 1 2 1 0.173994 0.175775 0.173994 0.225417 0.129102 0.874891 0.174 0.176 0.174 0.225 0.129 0.874 

10 0 1 2 2 0.040367 0.256287 0.040367 0.446473 0.041908 0.86493 0.04 0.256 0.04 0.447 0.042 0.866 

11 0 1 2 3 0.03933 0.256919 0.03933 0.451853 0.038229 0.864602 0.039 0.257 0.039 0.452 0.038 0.866 

12 0 1 2 4 0.039172 0.257016 0.039172 0.452707 0.037783 0.864552 0.039 0.257 0.039 0.452 0.038 0.865 

13 0 2 0 1 0.213996 0.151217 0.247753 0.151217 0.206376 0.88967 0.214 0.151 0.248 0.151 0.206 0.89 

14 0 2 0 2 0.118443 0.209466 0.177665 0.314199 0.044928 0.864017 0.118 0.21 0.178 0.314 0.045 0.868 

15 0 2 0 3 0.117793 0.209852 0.176241 0.31626 0.042787 0.864133 0.118 0.21 0.176 0.316 0.043 0.866 

16 0 2 0 4 0.117204 0.210223 0.175806 0.319316 0.04002 0.863628 0.117 0.21 0.176 0.319 0.04 0.862 

17 0 2 1 1 0.190722 0.16574 0.210105 0.196144 0.128905 0.874867 0.191 0.166 0.21 0.196 0.129 0.874 

18 0 2 1 2 0.092613 0.225015 0.138919 0.354247 0.023635 0.862554 0.093 0.225 0.139 0.354 0.024 0.864 

19 0 2 1 3 0.092321 0.225188 0.138257 0.355381 0.022722 0.862621 0.092 0.225 0.138 0.355 0.023 0.86 

20 0 2 1 4 0.092043 0.225361 0.138064 0.357099 0.021396 0.862416 0.092 0.225 0.138 0.357 0.021 0.864 

21 0 2 2 1 0.1856 0.168905 0.202315 0.21293 0.111991 0.872256 0.186 0.169 0.202 0.213 0.112 0.873 

22 0 2 2 2 0.063791 0.24233 0.095686 0.413746 0.010185 0.861886 0.064 0.242 0.096 0.414 0.01 0.864 

23 0 2 2 3 0.063688 0.242391 0.095441 0.414245 0.009861 0.861915 0.064 0.242 0.095 0.413 0.01 0.863 

24 0 2 2 4 0.063575 0.242461 0.095363 0.415043 0.009326 0.861842 0.064 0.242 0.096 0.415 0.009 0.862 

25 0 3 0 1 0.21947 0.148001 0.270145 0.148001 0.193766 0.887789 0.219 0.148 0.27 0.148 0.193 0.889 

26 0 3 0 2 0.11896 0.209155 0.179621 0.313521 0.044034 0.864036 0.119 0.209 0.179 0.313 0.044 0.864 

27 0 3 0 3 0.11834 0.209526 0.178324 0.315628 0.0418 0.864066 0.118 0.21 0.179 0.316 0.042 0.865 

28 0 3 0 4 0.117671 0.209943 0.177514 0.318622 0.039374 0.863635 0.118 0.21 0.177 0.318 0.039 0.863 

29 0 3 1 1 0.194058 0.163759 0.222803 0.193121 0.123467 0.874257 0.194 0.164 0.223 0.193 0.123 0.877 

30 0 3 1 2 0.092852 0.224871 0.139787 0.35386 0.023287 0.862557 0.093 0.225 0.14 0.354 0.023 0.863 

31 0 3 1 3 0.092579 0.225033 0.139195 0.355 0.022334 0.862598 0.092 0.225 0.139 0.355 0.022 0.861 

32 0 3 1 4 0.092259 0.225232 0.13883 0.356716 0.021132 0.862417 0.092 0.225 0.139 0.357 0.021 0.864 

33 0 3 2 1 0.188459 0.167204 0.212935 0.209853 0.107958 0.871837 0.188 0.167 0.213 0.21 0.107 0.87 

34 0 3 2 2 0.063881 0.242276 0.096001 0.413551 0.010079 0.861887 0.064 0.242 0.096 0.413 0.01 0.862 

35 0 3 2 3 0.063786 0.242332 0.095785 0.414049 0.009738 0.861908 0.064 0.242 0.096 0.414 0.01 0.862 

36 0 3 2 4 0.063656 0.242412 0.095642 0.414857 0.009244 0.861843 0.064 0.242 0.096 0.414 0.009 0.861 

37 0 4 0 1 0.221065 0.147055 0.278291 0.147055 0.191262 0.887496 0.221 0.147 0.278 0.147 0.191 0.888 

38 0 4 0 2 0.119542 0.208812 0.182463 0.313218 0.042946 0.863869 0.12 0.209 0.182 0.313 0.043 0.864 

39 0 4 0 3 0.118851 0.209222 0.180722 0.315264 0.041053 0.863967 0.119 0.209 0.18 0.316 0.041 0.865 

40 0 4 0 4 0.118194 0.209633 0.179967 0.318251 0.038594 0.863529 0.118 0.21 0.18 0.318 0.039 0.863 

41 0 4 1 1 0.194855 0.163285 0.226695 0.192399 0.122475 0.87416 0.195 0.163 0.226 0.192 0.123 0.874 

42 0 4 1 2 0.093129 0.224707 0.141054 0.353609 0.022901 0.862509 0.093 0.225 0.141 0.353 0.023 0.864 

43 0 4 1 3 0.09282 0.22489 0.140272 0.354746 0.022058 0.862567 0.093 0.225 0.14 0.355 0.022 0.862 
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n=5, Qd=2, sw=0, Qw=2, s1=0, Q1=1, s2=1, Q2=1, s3=0, s4=0, μd =2.5, μw=3.6, μ1=1,  μ2=1.2, μ3=1.4, μ4=1.6, μ5=1.8, λ1=0.5, λ2=0.7 λ3=0.9, 

λ4=1.2 λ5=1.5. Simulation parameters: One replication of 2000000 time units with a warm up period of 10000 time units. 
  Input Matlab Arena 

  sd Q3 Q4 s5 Q5 FR1 FR3 FR5 WIP1 WIP3 WIP5 WIPw WIPd FR1 FR3 FR5 WIP1 WIP3 WIP5 WIPw WIPd 

1 2 1 1 0 1 0.624808 0.564852 0.498695 0.624808 0.564852 0.498695 0.774947 2.502065 0.624 0.566 0.498 0.625 0.565 0.498 0.775 2.501 

2 2 1 1 0 2 0.614029 0.554899 0.616102 0.614029 0.554899 0.852735 0.751091 2.374281 0.614 0.554 0.616 0.614 0.555 0.852 0.751 2.375 

3 2 1 1 1 1 0.613888 0.55577 0.664071 0.613888 0.55577 0.978973 0.699338 2.324867 0.614 0.557 0.665 0.615 0.557 0.980 0.700 2.326 

4 2 1 1 1 2 0.601691 0.544131 0.763987 0.601691 0.544131 1.413704 0.687238 2.220037 0.602 0.545 0.764 0.601 0.544 1.414 0.687 2.219 

5 2 1 1 2 1 0.608032 0.550997 0.743028 0.608032 0.550997 1.438498 0.661059 2.235519 0.608 0.551 0.743 0.608 0.550 1.437 0.661 2.235 

6 2 1 1 2 2 0.590631 0.535105 0.859257 0.590631 0.535105 2.158342 0.643671 2.121687 0.591 0.535 0.860 0.591 0.534 2.160 0.643 2.120 

7 2 1 1 3 1 0.604448 0.548039 0.788676 0.604448 0.548039 1.881012 0.638098 2.183086 0.605 0.548 0.789 0.605 0.548 1.883 0.638 2.185 

8 2 1 1 3 2 0.584333 0.529974 0.9102 0.584333 0.529974 2.905608 0.618853 2.068146 0.584 0.530 0.910 0.584 0.530 2.903 0.618 2.066 

9 2 1 2 0 1 0.618212 0.557228 0.49415 0.618212 0.557228 0.49415 0.76219 2.412259 0.618 0.558 0.494 0.618 0.558 0.494 0.762 2.412 

10 2 1 2 0 2 0.599528 0.534376 0.619105 0.599528 0.534376 0.869763 0.730568 2.256926 0.600 0.535 0.620 0.599 0.535 0.870 0.730 2.257 

11 2 1 2 1 1 0.607056 0.548827 0.658591 0.607056 0.548827 0.966824 0.682883 2.241327 0.607 0.549 0.659 0.607 0.549 0.966 0.683 2.240 

12 2 1 2 1 2 0.583918 0.519581 0.764055 0.583918 0.519581 1.423786 0.662008 2.10525 0.584 0.520 0.764 0.584 0.520 1.424 0.662 2.104 

13 2 1 2 2 1 0.601174 0.544309 0.737121 0.601174 0.544309 1.417056 0.644229 2.155814 0.601 0.545 0.738 0.602 0.545 1.418 0.644 2.158 

14 2 1 2 2 2 0.569815 0.506953 0.859707 0.569815 0.506953 2.171839 0.615386 2.008125 0.570 0.507 0.860 0.569 0.507 2.172 0.615 2.008 

15 2 1 2 3 1 0.597636 0.541551 0.782415 0.597636 0.541551 1.84812 0.621061 2.105918 0.598 0.541 0.783 0.598 0.541 1.850 0.621 2.106 

16 2 1 2 3 2 0.56193 0.499936 0.910392 0.56193 0.499936 2.916437 0.589271 1.956005 0.562 0.499 0.911 0.562 0.499 2.915 0.589 1.955 

17 2 2 1 0 1 0.619803 0.656089 0.495339 0.619803 0.867559 0.495339 0.76614 2.435666 0.620 0.656 0.496 0.620 0.867 0.496 0.767 2.436 

18 2 2 1 0 2 0.607511 0.652933 0.618805 0.607511 0.875711 0.866056 0.742693 2.298482 0.608 0.653 0.619 0.608 0.875 0.867 0.743 2.298 

19 2 2 1 1 1 0.608126 0.643769 0.659784 0.608126 0.844471 0.969499 0.686971 2.261684 0.608 0.644 0.660 0.608 0.844 0.970 0.688 2.261 

20 2 2 1 1 2 0.594343 0.642027 0.764667 0.594343 0.860149 1.42312 0.676204 2.147094 0.594 0.642 0.764 0.594 0.859 1.422 0.675 2.144 

21 2 2 1 2 1 0.602035 0.637371 0.738269 0.602035 0.832645 1.421398 0.648014 2.174518 0.603 0.638 0.738 0.602 0.832 1.421 0.647 2.173 

22 2 2 1 2 2 0.582598 0.632124 0.860141 0.582598 0.845204 2.17152 0.630923 2.050102 0.583 0.632 0.860 0.582 0.845 2.170 0.631 2.050 

23 2 2 1 3 1 0.598353 0.633418 0.783562 0.598353 0.825403 1.854502 0.624642 2.123497 0.599 0.633 0.784 0.599 0.825 1.855 0.625 2.124 

24 2 2 1 3 2 0.576014 0.626276 0.910855 0.576014 0.836045 2.91857 0.60543 1.997912 0.577 0.627 0.910 0.577 0.837 2.917 0.606 1.998 

25 2 2 2 0 1 0.611764 0.660481 0.489744 0.611764 0.895799 0.489744 0.752129 2.335431 0.611 0.660 0.490 0.612 0.897 0.489 0.752 2.337 

26 2 2 2 0 2 0.591441 0.665804 0.622446 0.591441 0.952316 0.887219 0.717183 2.156142 0.591 0.666 0.622 0.592 0.952 0.887 0.716 2.156 

27 2 2 2 1 1 0.600081 0.645899 0.653374 0.600081 0.864018 0.955298 0.668928 2.170709 0.601 0.646 0.653 0.600 0.863 0.955 0.670 2.170 

28 2 2 2 1 2 0.575476 0.654518 0.764508 0.575476 0.940874 1.434779 0.644514 2.008415 0.575 0.654 0.765 0.575 0.939 1.435 0.644 2.008 

29 2 2 2 2 1 0.594067 0.639149 0.731456 0.594067 0.85055 1.396884 0.629849 2.087928 0.595 0.640 0.731 0.594 0.851 1.396 0.630 2.089 

30 4 1 1 0 1 0.632656 0.571812 0.505362 0.632656 0.571812 0.505362 0.820717 4.319622 0.633 0.572 0.505 0.633 0.572 0.505 0.820 4.320 

31 4 1 1 0 2 0.624972 0.564183 0.621029 0.624972 0.564183 0.856281 0.809903 4.1328 0.625 0.563 0.621 0.625 0.564 0.856 0.811 4.133 

32 4 1 1 1 1 0.624776 0.564959 0.674826 0.624776 0.564959 1.001661 0.75506 4.063401 0.625 0.565 0.675 0.625 0.565 1.003 0.755 4.063 

33 4 1 1 1 2 0.615906 0.555873 0.771292 0.615906 0.555873 1.43196 0.755078 3.900098 0.616 0.556 0.771 0.616 0.556 1.432 0.756 3.904 

34 4 1 1 2 1 0.620445 0.561271 0.756289 0.620445 0.561271 1.485254 0.721639 3.927329 0.621 0.561 0.756 0.621 0.561 1.485 0.721 3.924 

35 4 1 1 2 2 0.607955 0.548987 0.865604 0.607955 0.548987 2.188235 0.717654 3.74542 0.608 0.549 0.866 0.608 0.549 2.188 0.718 3.744 

36 4 1 1 3 1 0.617725 0.558944 0.803642 0.617725 0.558944 1.959679 0.701272 3.844723 0.618 0.559 0.804 0.617 0.559 1.958 0.701 3.845 

37 4 1 1 3 2 0.603305 0.544989 0.915832 0.603305 0.544989 2.953637 0.69592 3.659088 0.604 0.545 0.916 0.603 0.545 2.955 0.697 3.665 

38 4 1 2 0 1 0.62796 0.565941 0.502064 0.62796 0.565941 0.502064 0.816964 4.186968 0.627 0.566 0.502 0.627 0.566 0.502 0.816 4.189 

39 4 1 2 0 2 0.61509 0.548849 0.625424 0.61509 0.548849 0.875409 0.802582 3.952247 0.615 0.548 0.626 0.615 0.548 0.876 0.803 3.953 

40 4 1 2 1 1 0.619718 0.559421 0.670702 0.619718 0.559421 0.99234 0.746172 3.932055 0.620 0.559 0.671 0.619 0.560 0.993 0.745 3.928 

41 4 1 2 1 2 0.603562 0.537289 0.772813 0.603562 0.537289 1.446623 0.742078 3.714506 0.603 0.537 0.772 0.604 0.537 1.446 0.742 3.717 

42 4 1 2 2 1 0.615244 0.555826 0.7518 0.615244 0.555826 1.468512 0.711566 3.798165 0.615 0.555 0.753 0.615 0.555 1.470 0.712 3.798 

43 4 1 2 2 2 0.593284 0.527547 0.867176 0.593284 0.527547 2.208469 0.700641 3.556638 0.594 0.527 0.867 0.594 0.527 2.207 0.700 3.554 

44 4 1 2 3 1 0.612468 0.55358 0.798867 0.612468 0.55358 1.933562 0.690413 3.717517 0.612 0.554 0.799 0.613 0.553 1.933 0.691 3.716 
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7.13.3. Numerical Results Data 

Effect of Qd for balanced systems. sw=2, s1=1, Q1=2, s2=1 
  sd Qd Qw Q2 FR1 FR2 WIP1 WIP2 WIPw WIPd WIPtr1 WIPtr2 WIPtrw ARO1 ARO2 AROw SOw1 SOw2 SOd WIPtotal 

1 2 1 1 1 0.7052 0.6278 1.2901 0.9139 1.3623 1.7217 0.7052 0.6278 0.6665 1.5713 1.0000 1.0000 0.0945 0.0861 0.0850 7.2877 

2 2 2 1 1 0.7286 0.6376 1.3586 0.9349 1.5333 2.7199 0.7286 0.6376 0.6831 1.6376 1.0000 1.0000 0.0670 0.0651 0.0192 8.5961 

3 2 3 1 1 0.7309 0.6386 1.3656 0.9371 1.5537 3.3019 0.7309 0.6386 0.6848 1.6455 1.0000 1.0000 0.0644 0.0629 0.0111 9.2126 

4 2 4 1 1 0.7317 0.6390 1.3680 0.9378 1.5609 3.8118 0.7317 0.6390 0.6853 1.6482 1.0000 1.0000 0.0636 0.0622 0.0083 9.7344 

5 2 5 1 1 0.7321 0.6392 1.3694 0.9382 1.5651 4.3166 0.7321 0.6392 0.6856 1.6498 1.0000 1.0000 0.0631 0.0618 0.0066 10.2463 

6 2 6 1 1 0.7324 0.6393 1.3703 0.9385 1.5678 4.8189 0.7324 0.6393 0.6859 1.6508 1.0000 1.0000 0.0628 0.0615 0.0055 10.7531 

7 2 7 1 1 0.7326 0.6394 1.3709 0.9387 1.5698 5.3202 0.7326 0.6394 0.6860 1.6516 1.0000 1.0000 0.0626 0.0613 0.0047 11.2576 

8 2 8 1 1 0.7327 0.6395 1.3714 0.9389 1.5712 5.8211 0.7327 0.6395 0.6861 1.6521 1.0000 1.0000 0.0624 0.0611 0.0041 11.7609 

9 2 1 2 2 0.7360 0.7451 1.3893 1.4040 1.7959 1.3596 0.7360 0.7451 0.7406 1.7391 1.7068 1.5176 0.0705 0.0534 0.1162 8.1706 

10 2 2 2 2 0.7910 0.7931 1.5726 1.5777 2.9266 3.0076 0.7910 0.7931 0.7920 2.0000 2.0000 2.0000 0.0160 0.0129 0.0194 11.4606 

11 2 3 2 2 0.7849 0.7874 1.5478 1.5538 2.6771 3.1256 0.7849 0.7874 0.7862 1.9432 1.9428 1.9259 0.0186 0.0148 0.0116 11.2627 

12 2 4 2 2 0.7921 0.7939 1.5758 1.5801 2.9671 4.1976 0.7921 0.7939 0.7930 2.0000 2.0000 2.0000 0.0141 0.0115 0.0066 12.6995 

13 2 5 2 2 0.7878 0.7899 1.5585 1.5637 2.7849 4.1737 0.7878 0.7899 0.7888 1.9629 1.9625 1.9562 0.0164 0.0132 0.0062 12.4474 

14 2 6 2 2 0.7922 0.7940 1.5762 1.5805 2.9740 5.2102 0.7922 0.7940 0.7931 2.0000 2.0000 2.0000 0.0138 0.0113 0.0043 13.7202 

15 2 7 2 2 0.7890 0.7910 1.5634 1.5682 2.8363 5.1889 0.7890 0.7910 0.7900 1.9722 1.9720 1.9688 0.0155 0.0126 0.0041 13.5269 

16 2 8 2 2 0.7923 0.7940 1.5764 1.5806 2.9774 6.2131 0.7923 0.7940 0.7932 2.0000 2.0000 2.0000 0.0137 0.0112 0.0032 14.7270 

17 3 1 2 2 0.7553 0.7619 1.4521 1.4637 2.1432 1.9942 0.7553 0.7619 0.7586 1.8197 1.7981 1.6696 0.0503 0.0385 0.0782 9.3291 

18 3 2 2 2 0.7910 0.7931 1.5726 1.5777 2.9266 3.0076 0.7910 0.7931 0.7920 2.0000 2.0000 2.0000 0.0160 0.0129 0.0194 11.4606 

19 3 3 2 2 0.7905 0.7924 1.5694 1.5741 2.9012 4.1222 0.7905 0.7924 0.7915 1.9858 1.9858 1.9846 0.0149 0.0121 0.0056 12.5413 

20 3 4 2 2 0.7921 0.7939 1.5758 1.5801 2.9671 4.1976 0.7921 0.7939 0.7930 2.0000 2.0000 2.0000 0.0141 0.0115 0.0066 12.6995 

21 3 5 2 2 0.7916 0.7934 1.5734 1.5778 2.9449 5.2096 0.7916 0.7934 0.7925 1.9934 1.9933 1.9932 0.0141 0.0115 0.0030 13.6831 

22 3 6 2 2 0.7922 0.7940 1.5762 1.5805 2.9740 5.2102 0.7922 0.7940 0.7931 2.0000 2.0000 2.0000 0.0138 0.0113 0.0043 13.7202 

23 3 7 2 2 0.7919 0.7936 1.5745 1.5788 2.9571 6.2176 0.7919 0.7936 0.7927 1.9953 1.9953 1.9952 0.0139 0.0113 0.0021 14.7062 

24 3 8 2 2 0.7923 0.7940 1.5764 1.5806 2.9774 6.2131 0.7923 0.7940 0.7932 2.0000 2.0000 2.0000 0.0137 0.0112 0.0032 14.7270 

 
Effect of sw for balanced systems. s1=1, Q1=2, s2=1 
  sd Qd sw Qw s2 Q2 FR1 FR2 WIP1 WIP2 WIPw WIPd WIPtr1 WIPtr2 WIPtrw ARO1 ARO2 AROw SOw1 SOw2 SOd WIPtotal 

1 2 2 0 1 1 1 0.5709 0.6026 0.8028 0.8561 0.4056 2.8635 0.5709 0.6026 0.5867 1.0000 1.0000 1.0000 0.1972 0.1439 0.0076 6.6882 

2 2 2 1 1 1 1 0.6869 0.6193 1.2148 0.8938 0.9088 2.7667 0.6869 0.6193 0.6531 1.4481 1.0000 1.0000 0.1040 0.1062 0.0145 7.7435 

3 2 2 2 1 1 1 0.7286 0.6376 1.3586 0.9349 1.5333 2.7199 0.7286 0.6376 0.6831 1.6376 1.0000 1.0000 0.0670 0.0651 0.0192 8.5961 

4 2 2 3 1 1 1 0.7521 0.6475 1.4373 0.9571 2.2428 2.6935 0.7521 0.6475 0.6998 1.7458 1.0000 1.0000 0.0446 0.0429 0.0225 9.4301 

5 2 2 4 1 1 1 0.7672 0.6535 1.4890 0.9705 3.0071 2.6768 0.7672 0.6535 0.7104 1.8226 1.0000 1.0000 0.0305 0.0295 0.0246 10.2746 

6 2 2 5 1 1 1 0.7772 0.6575 1.5228 0.9795 3.8178 2.6659 0.7772 0.6575 0.7174 1.8749 1.0000 1.0000 0.0212 0.0205 0.0260 11.1382 

7 2 2 6 1 1 1 0.7840 0.6602 1.5458 0.9856 4.6664 2.6586 0.7840 0.6602 0.7221 1.9112 1.0000 1.0000 0.0149 0.0144 0.0269 12.0228 

8 2 2 7 1 1 1 0.7887 0.6621 1.5617 0.9898 5.5460 2.6535 0.7887 0.6621 0.7254 1.9367 1.0000 1.0000 0.0105 0.0102 0.0276 12.9272 

9 2 2 8 1 1 1 0.7920 0.6634 1.5728 0.9928 6.4507 2.6500 0.7920 0.6634 0.7277 1.9548 1.0000 1.0000 0.0075 0.0072 0.0280 13.8493 

10 2 2 0 2 1 1 0.7207 0.6280 1.2909 0.9133 0.9839 3.2117 0.7207 0.6280 0.6744 1.4874 1.0000 2.0000 0.0553 0.0867 0.0070 8.4229 

11 2 2 1 2 1 1 0.7706 0.6445 1.4872 0.9504 1.6949 3.1569 0.7706 0.6445 0.7075 1.7971 1.0000 2.0000 0.0225 0.0496 0.0095 9.4120 

12 2 2 2 2 1 1 0.7880 0.6577 1.5548 0.9799 2.6054 3.1247 0.7880 0.6577 0.7229 1.9196 1.0000 2.0000 0.0101 0.0201 0.0116 10.4333 

13 2 2 3 2 1 1 0.7944 0.6628 1.5786 0.9913 3.5472 3.1137 0.7944 0.6628 0.7286 1.9604 1.0000 2.0000 0.0045 0.0087 0.0126 11.4166 

14 2 2 4 2 1 1 0.7975 0.6649 1.5905 0.9960 4.5211 3.1075 0.7975 0.6649 0.7312 1.9823 1.0000 2.0000 0.0020 0.0040 0.0134 12.4087 

15 2 2 5 2 1 1 0.7989 0.6659 1.5957 0.9982 5.5064 3.1051 0.7989 0.6659 0.7324 1.9921 1.0000 2.0000 0.0009 0.0018 0.0137 13.4026 
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16 2 2 6 2 1 1 0.7995 0.6663 1.5981 0.9992 6.4993 3.1039 0.7995 0.6663 0.7329 1.9964 1.0000 2.0000 0.0004 0.0008 0.0139 14.3992 

17 2 2 7 2 1 1 0.7998 0.6665 1.5991 0.9996 7.4957 3.1034 0.7998 0.6665 0.7331 1.9984 1.0000 2.0000 0.0002 0.0004 0.0140 15.3973 

18 2 2 8 2 1 1 0.7999 0.6666 1.5996 0.9998 8.4939 3.1032 0.7999 0.6666 0.7332 1.9993 1.0000 2.0000 0.0001 0.0002 0.0140 16.3963 

19 2 2 0 2 1 2 0.7637 0.7718 1.4892 1.5088 1.2022 3.0542 0.7637 0.7718 0.7677 2.0000 2.0000 2.0000 0.0645 0.0526 0.0151 9.5576 

20 2 2 1 2 1 2 0.7637 0.7718 1.4892 1.5088 1.2022 3.0542 0.7637 0.7718 0.7677 2.0000 2.0000 2.0000 0.0645 0.0526 0.0151 9.5576 

21 2 2 2 2 1 2 0.7910 0.7931 1.5726 1.5777 2.9266 3.0076 0.7910 0.7931 0.7920 2.0000 2.0000 2.0000 0.0160 0.0129 0.0194 11.4606 

22 2 2 3 2 1 2 0.7910 0.7931 1.5726 1.5777 2.9266 3.0076 0.7910 0.7931 0.7920 2.0000 2.0000 2.0000 0.0160 0.0129 0.0194 11.4606 

23 2 2 4 2 1 2 0.7977 0.7982 1.5929 1.5942 4.8455 2.9955 0.7977 0.7982 0.7979 2.0000 2.0000 2.0000 0.0041 0.0033 0.0211 13.4219 

24 2 2 5 2 1 2 0.7977 0.7982 1.5929 1.5942 4.8455 2.9955 0.7977 0.7982 0.7979 2.0000 2.0000 2.0000 0.0041 0.0033 0.0211 13.4219 

25 2 2 6 2 1 2 0.7994 0.7995 1.5981 1.5985 6.8205 2.9922 0.7994 0.7995 0.7995 2.0000 2.0000 2.0000 0.0011 0.0009 0.0216 15.4077 

26 2 2 7 2 1 2 0.7994 0.7995 1.5981 1.5985 6.8205 2.9922 0.7994 0.7995 0.7995 2.0000 2.0000 2.0000 0.0011 0.0009 0.0216 15.4077 

27 2 2 8 2 1 2 0.7998 0.7999 1.5995 1.5996 8.8128 2.9914 0.7998 0.7999 0.7999 2.0000 2.0000 2.0000 0.0003 0.0002 0.0217 17.4029 

28 0 4 0 2 1 2 0.7603 0.7692 1.4797 1.5010 1.1642 2.2869 0.7603 0.7692 0.7647 2.0000 2.0000 2.0000 0.0701 0.0572 0.0355 8.7261 

29 0 4 1 2 1 2 0.7603 0.7692 1.4797 1.5010 1.1642 2.2869 0.7603 0.7692 0.7647 2.0000 2.0000 2.0000 0.0701 0.0572 0.0355 8.7261 

30 0 4 2 2 1 2 0.7897 0.7920 1.5688 1.5745 2.8650 2.2653 0.7897 0.7920 0.7909 2.0000 2.0000 2.0000 0.0182 0.0147 0.0399 10.6462 

31 0 4 3 2 1 2 0.7897 0.7920 1.5688 1.5745 2.8650 2.2653 0.7897 0.7920 0.7909 2.0000 2.0000 2.0000 0.0182 0.0147 0.0399 10.6462 

32 0 4 4 2 1 2 0.7973 0.7979 1.5917 1.5932 4.7740 2.2597 0.7973 0.7979 0.7976 2.0000 2.0000 2.0000 0.0048 0.0039 0.0411 12.6113 

33 0 4 5 2 1 2 0.7973 0.7979 1.5917 1.5932 4.7740 2.2597 0.7973 0.7979 0.7976 2.0000 2.0000 2.0000 0.0048 0.0039 0.0411 12.6113 

34 0 4 6 2 1 2 0.7993 0.7994 1.5978 1.5982 6.7455 2.2582 0.7993 0.7994 0.7993 2.0000 2.0000 2.0000 0.0013 0.0011 0.0414 14.5978 

35 0 4 7 2 1 2 0.7993 0.7994 1.5978 1.5982 6.7455 2.2582 0.7993 0.7994 0.7993 2.0000 2.0000 2.0000 0.0013 0.0011 0.0414 14.5978 

36 0 4 8 2 1 2 0.7998 0.7998 1.5994 1.5995 8.7368 2.2578 0.7998 0.7998 0.7998 2.0000 2.0000 2.0000 0.0003 0.0003 0.0415 16.5930 

 
Effect of Qw for balanced systems 
  sd Qd sw Qw s1 Q1 s2 Q2 FR1 FR2 WIP1 WIP2 WIPw WIPd WIPtr1 WIPtr2 WIPtrw ARO1 ARO2 AROw SOw1 SOw2 Sod WIPtotal 

1 2 4 2 1 1 2 1 2 0.7130 0.7240 1.2973 1.3158 1.4022 3.7782 0.7130 0.7240 0.7185 1.5369 1.5243 1.0000 0.0763 0.0578 0.0102 9.9489 

2 2 4 2 2 1 2 1 2 0.7921 0.7939 1.5758 1.5801 2.9671 4.1976 0.7921 0.7939 0.7930 2.0000 2.0000 2.0000 0.0141 0.0115 0.0066 12.6995 

3 2 4 2 3 1 2 1 2 0.7872 0.7884 1.5497 1.5537 3.0514 3.7394 0.7872 0.7884 0.7878 1.9032 1.9145 2.9241 0.0089 0.0084 0.0083 12.2577 

4 2 4 2 4 1 2 1 2 0.7976 0.7976 1.5923 1.5923 4.1618 3.2024 0.7976 0.7976 0.7976 2.0000 2.0000 4.0000 0.0044 0.0044 0.0068 12.9417 

5 2 4 2 5 1 2 1 2 0.7976 0.7976 1.5923 1.5923 4.1618 3.2024 0.7976 0.7976 0.7976 2.0000 2.0000 4.0000 0.0044 0.0044 0.0068 12.9417 

6 2 4 2 6 1 2 1 2 0.7976 0.7976 1.5923 1.5923 4.1618 3.2024 0.7976 0.7976 0.7976 2.0000 2.0000 4.0000 0.0044 0.0044 0.0068 12.9417 

7 4 4 2 1 1 2 1 2 0.7153 0.7259 1.3043 1.3221 1.4231 5.7668 0.7153 0.7259 0.7206 1.5437 1.5314 1.0000 0.0736 0.0557 0.0013 11.9781 

8 4 4 2 2 1 2 1 2 0.7925 0.7941 1.5768 1.5810 2.9836 6.1814 0.7925 0.7941 0.7933 2.0000 2.0000 2.0000 0.0135 0.0110 0.0011 14.7028 

9 4 4 2 3 1 2 1 2 0.7880 0.7891 1.5526 1.5563 3.0941 5.6395 0.7880 0.7891 0.7886 1.9073 1.9179 2.9718 0.0081 0.0077 0.0014 14.2082 

10 4 4 2 4 1 2 1 2 0.7979 0.7979 1.5930 1.5930 4.1893 7.1741 0.7979 0.7979 0.7979 2.0000 2.0000 4.0000 0.0040 0.0040 0.0002 16.9430 

11 4 4 2 5 1 2 1 2 0.7939 0.7939 1.5752 1.5752 4.1683 5.5642 0.7939 0.7939 0.7939 1.9526 1.9526 4.9433 0.0043 0.0043 0.0010 15.2645 

12 4 4 2 6 1 2 1 2 0.7986 0.7986 1.5954 1.5954 5.1912 5.9391 0.7986 0.7986 0.7986 2.0000 2.0000 5.9576 0.0027 0.0027 0.0005 16.7168 

13 4 4 2 7 1 2 1 2 0.7949 0.7949 1.5793 1.5793 4.7354 5.2154 0.7949 0.7949 0.7949 1.9603 1.9603 5.9241 0.0036 0.0036 0.0013 15.4939 

14 4 4 2 8 1 2 1 2 0.7989 0.7989 1.5966 1.5966 6.1986 6.8003 0.7989 0.7989 0.7989 2.0000 2.0000 7.9748 0.0020 0.0020 0.0001 18.5890 

15 2 6 2 1 1 2 1 1 0.7324 0.6393 1.3703 0.9385 1.5678 4.8189 0.7324 0.6393 0.6859 1.6508 1.0000 1.0000 0.0628 0.0615 0.0055 10.7531 

16 2 6 2 2 1 2 1 1 0.7888 0.6583 1.5576 0.9813 2.6290 5.2789 0.7888 0.6583 0.7236 1.9238 1.0000 2.0000 0.0093 0.0187 0.0027 12.6175 

17 2 6 2 3 1 2 1 1 0.7946 0.6615 1.5793 0.9883 3.2106 3.7909 0.7946 0.6615 0.7280 1.9687 1.0000 3.0000 0.0054 0.0117 0.0074 11.7531 

18 2 6 2 4 1 2 1 1 0.7962 0.6632 1.5854 0.9923 3.7562 5.2846 0.7962 0.6632 0.7297 1.9771 1.0000 3.9834 0.0037 0.0077 0.0016 13.8076 

19 2 6 2 5 1 2 1 1 0.7966 0.6635 1.5869 0.9930 4.0917 5.2756 0.7966 0.6635 0.7301 1.9797 1.0000 4.4881 0.0033 0.0070 0.0025 14.1374 

20 2 6 2 6 1 2 1 1 0.7975 0.6644 1.5905 0.9950 4.7764 5.2690 0.7975 0.6644 0.7310 1.9852 1.0000 6.0000 0.0024 0.0050 0.0004 14.8239 

21 2 6 2 7 1 2 1 1 0.7975 0.6644 1.5905 0.9950 4.7764 5.2690 0.7975 0.6644 0.7310 1.9852 1.0000 6.0000 0.0024 0.0050 0.0004 14.8239 

22 2 6 2 8 1 2 1 1 0.7975 0.6644 1.5905 0.9950 4.7764 5.2690 0.7975 0.6644 0.7310 1.9852 1.0000 6.0000 0.0024 0.0050 0.0004 14.8239 

23 6 2 2 1 1 2 1 1 0.7337 0.6399 1.3744 0.9398 1.5804 6.6741 0.7337 0.6399 0.6868 1.6556 1.0000 1.0000 0.0614 0.0602 0.0004 12.6291 

24 6 2 2 2 1 2 1 1 0.7890 0.6585 1.5582 0.9816 2.6350 7.0901 0.7890 0.6585 0.7237 1.9247 1.0000 2.0000 0.0091 0.0184 0.0003 14.4361 

25 6 2 2 3 1 2 1 1 0.7949 0.6618 1.5804 0.9891 3.2292 6.4067 0.7949 0.6618 0.7284 1.9698 1.0000 2.9902 0.0050 0.0109 0.0005 14.3904 
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26 6 2 2 4 1 2 1 1 0.7963 0.6633 1.5856 0.9924 3.7643 6.8083 0.7963 0.6633 0.7298 1.9774 1.0000 3.9894 0.0036 0.0076 0.0003 15.3400 

27 6 2 2 5 1 2 1 1 0.7970 0.6640 1.5885 0.9939 4.2640 6.1303 0.7970 0.6640 0.7305 1.9819 1.0000 4.9365 0.0029 0.0061 0.0004 15.1682 

28 6 2 2 6 1 2 1 1 0.7975 0.6644 1.5904 0.9949 4.7586 6.4959 0.7975 0.6644 0.7310 1.9850 1.0000 5.9360 0.0024 0.0051 0.0002 16.0327 

29 6 2 2 7 1 2 1 1 0.7978 0.6647 1.5917 0.9956 5.2378 5.8190 0.7978 0.6647 0.7313 1.9869 1.0000 6.8693 0.0021 0.0044 0.0003 15.8379 

30 6 2 2 8 1 2 1 1 0.7981 0.6650 1.5928 0.9962 5.7446 6.1599 0.7981 0.6650 0.7315 1.9886 1.0000 7.8807 0.0018 0.0038 0.0002 16.6881 

 
Effect of s1 for balanced systems 
  sd Qd sw Qw s1 Q1 s2 Q2 FR1 FR2 WIP1 WIP2 WIPw WIPd WIPtr1 WIPtr2 WIPtrw ARO1 ARO2 AROw SOw1 SOw2 Sod WIPtotal 

1 4 2 2 4 0 2 1 1 0.6631 0.6639 0.9914 0.9937 3.8106 4.9540 0.6631 0.6639 0.6635 1.9808 1.0000 3.9452 0.0022 0.0063 0.0007 12.7402 

2 4 2 2 4 1 2 1 1 0.7961 0.6631 1.5849 0.9921 3.7352 4.8305 0.7961 0.6631 0.7296 1.9761 1.0000 3.9196 0.0038 0.0079 0.0013 13.3314 

3 4 2 2 4 2 2 1 1 0.8849 0.6626 2.4165 0.9908 3.6807 4.7438 0.8849 0.6626 0.7737 1.9717 1.0000 3.8978 0.0051 0.0092 0.0020 14.1530 

4 4 2 2 4 3 2 1 1 0.9299 0.6621 3.2261 0.9898 3.6504 4.6966 0.9299 0.6621 0.7960 1.9675 1.0000 3.8816 0.0063 0.0102 0.0026 14.9509 

5 4 2 2 4 4 2 1 1 0.9571 0.6617 4.1042 0.9889 3.6294 4.6657 0.9571 0.6617 0.8094 1.9628 1.0000 3.8676 0.0073 0.0111 0.0031 15.8164 

6 4 2 2 4 5 2 1 1 0.9733 0.6615 5.0045 0.9885 3.6172 4.6466 0.9733 0.6615 0.8174 1.9607 1.0000 3.8576 0.0080 0.0115 0.0035 16.7089 

7 4 2 2 4 6 2 1 1 0.9832 0.6614 5.9336 0.9881 3.6086 4.6343 0.9832 0.6614 0.8223 1.9590 1.0000 3.8503 0.0085 0.0119 0.0038 17.6314 

8 4 2 2 4 7 2 1 1 0.9895 0.6612 6.8809 0.9878 3.6032 4.6267 0.9895 0.6612 0.8254 1.9580 1.0000 3.8457 0.0088 0.0122 0.0040 18.5747 

9 4 2 2 4 8 2 1 1 0.9933 0.6612 7.8434 0.9877 3.5997 4.6218 0.9933 0.6612 0.8273 1.9573 1.0000 3.8426 0.0091 0.0123 0.0042 19.5343 

10 4 2 2 4 0 2 1 2 0.6648 0.7982 0.9972 1.5941 4.2214 4.8219 0.6648 0.7982 0.7315 2.0000 2.0000 3.9104 0.0028 0.0034 0.0016 13.8292 

11 4 2 2 4 1 2 1 2 0.7975 0.7976 1.5921 1.5923 4.1351 4.6919 0.7975 0.7976 0.7976 2.0000 2.0000 3.8778 0.0046 0.0044 0.0028 14.4041 

12 4 2 2 4 2 2 1 2 0.8866 0.7971 2.4307 1.5908 4.0731 4.5997 0.8866 0.7971 0.8419 2.0000 2.0000 3.8503 0.0063 0.0053 0.0039 15.2199 

13 4 2 2 4 3 2 1 2 0.9314 0.7968 3.2455 1.5896 4.0379 4.5498 0.9314 0.7968 0.8641 2.0000 2.0000 3.8313 0.0076 0.0060 0.0048 16.0152 

14 4 2 2 4 4 2 1 2 0.9584 0.7964 4.1314 1.5885 4.0132 4.5170 0.9584 0.7964 0.8774 2.0000 2.0000 3.8150 0.0088 0.0066 0.0055 16.8825 

15 4 2 2 4 5 2 1 2 0.9744 0.7963 5.0373 1.5879 3.9983 4.4972 0.9744 0.7963 0.8853 2.0000 2.0000 3.8043 0.0096 0.0070 0.0061 17.7767 

16 4 2 2 4 6 2 1 2 0.9842 0.7961 5.9724 1.5875 3.9881 4.4844 0.9842 0.7961 0.8901 2.0000 2.0000 3.7963 0.0103 0.0072 0.0065 18.7027 

17 4 2 2 4 7 2 1 2 0.9901 0.7960 6.9243 1.5872 3.9818 4.4765 0.9901 0.7960 0.8931 2.0000 2.0000 3.7913 0.0107 0.0074 0.0068 19.6490 

18 4 2 2 4 8 2 1 2 0.9939 0.7960 7.8906 1.5870 3.9776 4.4716 0.9939 0.7960 0.8949 2.0000 2.0000 3.7880 0.0110 0.0075 0.0070 20.6115 

19 2 4 2 2 0 2 1 2 0.6609 0.7954 0.9914 1.5850 3.0786 4.2649 0.6609 0.7954 0.7281 2.0000 2.0000 2.0000 0.0086 0.0087 0.0047 12.1043 

20 2 4 2 2 1 2 1 2 0.7921 0.7939 1.5758 1.5801 2.9671 4.1976 0.7921 0.7939 0.7930 2.0000 2.0000 2.0000 0.0141 0.0115 0.0066 12.6995 

21 2 4 2 2 2 2 1 2 0.8813 0.7926 2.4015 1.5760 2.8863 4.1516 0.8813 0.7926 0.8370 2.0000 2.0000 2.0000 0.0196 0.0139 0.0082 13.5263 

22 2 4 2 2 3 2 1 2 0.9266 0.7917 3.2006 1.5731 2.8413 4.1281 0.9266 0.7917 0.8592 2.0000 2.0000 2.0000 0.0233 0.0155 0.0093 14.3207 

23 2 4 2 2 4 2 1 2 0.9545 0.7909 4.0706 1.5706 2.8093 4.1135 0.9545 0.7909 0.8727 2.0000 2.0000 2.0000 0.0266 0.0170 0.0101 15.1821 

24 2 4 2 2 5 2 1 2 0.9713 0.7905 4.9607 1.5692 2.7906 4.1048 0.9713 0.7905 0.8809 2.0000 2.0000 2.0000 0.0288 0.0178 0.0106 16.0679 

25 2 4 2 2 6 2 1 2 0.9817 0.7902 5.8815 1.5682 2.7783 4.0993 0.9817 0.7902 0.8860 2.0000 2.0000 2.0000 0.0306 0.0184 0.0110 16.9851 

26 2 4 2 2 7 2 1 2 0.9883 0.7900 6.8212 1.5676 2.7707 4.0958 0.9883 0.7900 0.8892 2.0000 2.0000 2.0000 0.0316 0.0187 0.0112 17.9228 

27 2 4 2 2 8 2 1 2 0.9925 0.7899 7.7775 1.5672 2.7658 4.0936 0.9925 0.7899 0.8912 2.0000 2.0000 2.0000 0.0323 0.0189 0.0114 18.8776 

28 2 2 2 2 0 1 1 2 0.4934 0.7928 0.4934 1.5722 2.7278 3.2432 0.4934 0.7928 0.6431 1.0000 1.9546 2.0000 0.0131 0.0065 0.0070 9.9660 

29 2 2 2 2 1 1 1 2 0.6557 0.7902 0.9766 1.5624 2.6027 3.1246 0.6557 0.7902 0.7230 1.0000 1.9416 2.0000 0.0234 0.0094 0.0116 10.4351 

30 2 2 2 2 2 1 1 2 0.7360 0.7882 1.4484 1.5547 2.5363 3.0624 0.7360 0.7882 0.7621 1.0000 1.9307 2.0000 0.0310 0.0115 0.0149 10.8880 

31 2 2 2 2 3 1 1 2 0.7836 0.7868 1.9079 1.5497 2.4919 3.0233 0.7836 0.7868 0.7852 1.0000 1.9250 2.0000 0.0365 0.0131 0.0175 11.3284 

32 2 2 2 2 4 1 1 2 0.8149 0.7859 2.3552 1.5464 2.4623 2.9972 0.8149 0.7859 0.8004 1.0000 1.9212 2.0000 0.0406 0.0142 0.0193 11.7623 

33 2 2 2 2 5 1 1 2 0.8370 0.7852 2.7906 1.5439 2.4409 2.9787 0.8370 0.7852 0.8111 1.0000 1.9185 2.0000 0.0436 0.0151 0.0207 12.1876 

34 2 2 2 2 6 1 1 2 0.8535 0.7847 3.2147 1.5420 2.4250 2.9650 0.8535 0.7847 0.8191 1.0000 1.9165 2.0000 0.0459 0.0157 0.0217 12.6040 

35 2 2 2 2 7 1 1 2 0.8661 0.7843 3.6276 1.5406 2.4127 2.9543 0.8661 0.7843 0.8252 1.0000 1.9149 2.0000 0.0477 0.0162 0.0225 13.0110 

36 2 2 2 2 8 1 1 2 0.8762 0.7840 4.0296 1.5395 2.4030 2.9459 0.8762 0.7840 0.8301 1.0000 1.9137 2.0000 0.0491 0.0166 0.0231 13.4083 
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Effect of Q1 for balanced systems 
  sd Qd sw Qw s1 Q1 s2 Q2 FR1 FR2 WIP1 WIP2 WIPw WIPd WIPtr1 WIPtr2 WIPtrw ARO1 ARO2 AROw SOw1 SOw2 Sod WIPtotal 

1 2 2 6 2 2 1 1 2 0.7493 0.7994 1.4974 1.5975 6.3990 3.0360 0.7493 0.7994 0.7743 1.0000 1.9961 2.0000 0.0016 0.0006 0.0181 14.8529 

2 2 2 6 2 2 2 1 2 0.8881 0.7992 2.4401 1.5976 6.6925 2.9167 0.8881 0.7992 0.8437 2.0000 2.0000 2.0000 0.0020 0.0014 0.0273 16.1779 

3 2 2 6 2 2 3 1 2 0.9210 0.7981 2.9783 1.5931 5.9804 2.8503 0.9210 0.7981 0.8595 2.9590 1.9924 2.0000 0.0025 0.0024 0.0373 15.9807 

4 2 2 6 2 2 4 1 2 0.9395 0.7986 3.5061 1.5954 6.3474 2.8141 0.9395 0.7986 0.8691 3.9358 2.0000 2.0000 0.0017 0.0027 0.0422 16.8701 

5 2 2 6 2 2 5 1 2 0.9498 0.7966 3.9892 1.5877 5.6788 2.7881 0.9498 0.7966 0.8732 4.8189 1.9880 2.0000 0.0020 0.0046 0.0521 16.6634 

6 2 2 6 2 2 6 1 2 0.9580 0.7971 4.4992 1.5907 6.0091 2.7676 0.9580 0.7971 0.8776 5.7872 2.0000 2.0000 0.0014 0.0054 0.0589 17.4993 

7 2 2 6 2 2 7 1 2 0.9618 0.7911 4.8706 1.5674 5.5097 2.7615 0.9618 0.7911 0.8765 6.4140 1.9617 2.0000 0.0015 0.0108 0.0631 17.3386 

8 2 2 6 2 2 8 1 2 0.9663 0.7916 5.3309 1.5727 5.7507 2.7491 0.9663 0.7916 0.8789 7.2714 2.0000 2.0000 0.0010 0.0157 0.0677 18.0403 

9 0 4 4 4 3 1 1 1 0.7996 0.6663 1.9973 0.9991 5.7367 3.2671 0.7996 0.6663 0.7329 1.0000 1.0000 4.0000 0.0011 0.0009 0.0039 14.1989 

10 0 4 4 4 3 2 1 1 0.9327 0.6659 3.2595 0.9982 5.6459 3.2007 0.9327 0.6659 0.7993 1.9940 1.0000 4.0000 0.0011 0.0018 0.0070 15.5022 

11 0 4 4 4 3 3 1 1 0.9594 0.6655 3.9486 0.9975 5.6230 3.1875 0.9594 0.6655 0.8125 2.9804 1.0000 4.0000 0.0008 0.0025 0.0094 16.1940 

12 0 4 4 4 3 4 1 1 0.9692 0.6644 4.4682 0.9950 5.5434 3.1832 0.9692 0.6644 0.8168 3.9595 1.0000 4.0000 0.0006 0.0050 0.0169 16.6401 

13 0 4 4 4 3 5 1 1 0.9748 0.6619 4.9503 0.9893 5.4614 3.1816 0.9748 0.6619 0.8184 4.8687 1.0000 4.0000 0.0004 0.0107 0.0256 17.0377 

14 0 4 4 4 3 6 1 1 0.9779 0.6597 5.3273 0.9843 5.4597 3.1812 0.9779 0.6597 0.8188 5.5461 1.0000 4.0000 0.0003 0.0157 0.0334 17.4088 

15 0 4 4 4 3 7 1 1 0.9793 0.6575 5.5748 0.9794 5.4517 3.1816 0.9793 0.6575 0.8184 5.9400 1.0000 4.0000 0.0003 0.0206 0.0397 17.6425 

16 0 4 4 4 3 8 1 1 0.9798 0.6559 5.6930 0.9758 5.4343 3.1822 0.9798 0.6559 0.8178 6.1000 1.0000 4.0000 0.0003 0.0242 0.0424 17.7388 

17 0 4 4 4 1 1 1 3 0.6658 0.8563 0.9981 2.1371 5.6853 3.2390 0.6658 0.8563 0.7610 1.0000 2.9855 4.0000 0.0019 0.0005 0.0075 14.3425 

18 0 4 4 4 1 2 1 3 0.7982 0.8558 1.5933 2.1340 5.5525 3.1730 0.7982 0.8558 0.8270 1.9905 2.9793 4.0000 0.0020 0.0009 0.0141 14.9338 

19 0 4 4 4 1 3 1 3 0.8540 0.8542 2.1203 2.1211 5.4653 3.1459 0.8540 0.8542 0.8541 2.9452 2.9488 4.0000 0.0015 0.0014 0.0183 15.4150 

20 0 4 4 4 1 4 1 3 0.8846 0.8517 2.6188 2.1080 5.3603 3.1319 0.8846 0.8517 0.8681 3.8563 2.9018 4.0000 0.0011 0.0023 0.0205 15.8235 

21 0 4 4 4 1 5 1 3 0.9040 0.8509 3.1027 2.1087 5.2893 3.1225 0.9040 0.8509 0.8775 4.7371 2.9325 4.0000 0.0008 0.0060 0.0311 16.2557 

22 0 4 4 4 1 6 1 3 0.9129 0.8496 3.4216 2.1035 5.1062 3.1187 0.9129 0.8496 0.8813 5.2689 2.9417 4.0000 0.0007 0.0089 0.0371 16.3937 

23 0 4 4 4 1 7 1 3 0.9164 0.8490 3.5980 2.1040 5.0015 3.1173 0.9164 0.8490 0.8827 5.5159 2.9496 4.0000 0.0007 0.0106 0.0410 16.4689 

24 0 4 4 4 1 8 1 3 0.9179 0.8492 3.6958 2.1075 4.9824 3.1164 0.9179 0.8492 0.8836 5.6255 2.9821 4.0000 0.0007 0.0125 0.0447 16.5529 

 

 

 

 

 

 

 

 

 

 

 

 

 



340 

 

8. Conclusions 

In this thesis three different kinds of production-inventory systems were investigated. 

The systems were modeled as Continuous time Markov Chains and algorithms were 

provided for the numerical evaluation of performance measures. The respective 

computer programs were built in Matlab and extensive numerical experiments were 

carried out in order to understand the effects of the input parameters on the 

performance measures and the overall system behavior. The conclusions of our 

analysis and proposals of possible managerial concern are given in each respective 

chapter. Here we give some more abstract inferences, drawn from the sum of our 

investigation. Moreover, we propose directions of further research that would build on 

our analysis and underline the contribution of our work. 

8.1 General conclusions 

Production-inventory systems are of dynamic nature and are characterized by the 

interrelation between their parameters. Even relatively simple and straightforward 

systems, such as the linear push-pull system, have complex dynamics that pose 

difficulties in their analysis. On the one hand, this interplay of parameters should be a 

source of concern when performance measures are estimated. Particularly where 

optimal solutions are sought, a sensitivity analysis encompassing a wide range of 

variables must follow. On the other hand, this complexity highlights the need for 

studied simplifications, especially when large systems with many parameters are 

concerned. 

 

Somewhat contrary to the above, under certain conditions, the behavior of many 

performance measures with changing decision variables values were found to be 

described quite accurately by simple relations (for example linear or logarithmic). In 

most cases this presupposed that most of the other parameters were kept constant, and 

that only a limited range of values was investigated. However, the potential remains 

that for practical problems of limited scope, complex models may not be necessary 

and that satisfactory results may be obtained without recourse to extensive theoretical 

research. 

 

A final general conclusion has to do with the deleterious effect of variability. We 

focused mainly on external demand variability and in almost every case the increase 

in variability impaired performance in terms of inventory-fill rate balance. Moreover, 

increased demand uncertainty made the systems more unpredictable, while the effects 

were observable even in the upstream members of the supply networks. 

8.2 Further research 

The proposed algorithms are evaluative tools, estimating the performance measures of 

systems of given structure for various combinations of input parameters. Any 

investigation of optimal solutions was made through an exhaustive enumeration of all 
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possible policies over a prescribed range of the decision variables, and was based on 

the balance between inventory levels and service levels. The developed models can be 

used as the evaluative part of a more general optimization model. The proposed 

performance measures cover a wide range of metrics and are available for all 

members of the supply networks, so the algorithm offers a good basis for realistic and 

flexible cost estimation. Moreover, short computation times and the analytic nature of 

the models facilitate their integration with heuristic algorithms that would offer a 

more structured approach to optimal solutions. 

 

With regard to the limitations on model size, it must be noted that during the 

development of the computer algorithms the main concern was transparency and 

tractability with the corresponding theory, so little attention was given to algorithmic 

and computational efficiency. Significant gains in computational time and required 

memory can be made by “rephrasing” and “shortcutting” the existing computer code. 

The employment of some Matlab features, such as the use of sparse matrices, could 

also be useful. Alternatively, if deemed advantageous, the proposed algorithms can be 

modeled in some other programming language. A different approach for the handling 

of large models would be to try to represent the systems as stochastic automata 

networks, but in such a case extensive remodeling would be required. 

 

Finally, the proposed algorithms can be used as a starting point for the study of more 

generalized versions of the investigated systems. A possible approach would be to 

relax the assumption of exponentially distributed times and reinterpret the proposed 

transition matrices as describing the embedded Markov chains of a semi Markov 

process. 
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