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Abstract 

Branching processes are stochastic processes with main difference among other stochastic 

processes that the systems that they can model have a special construction: a single individual lives for a 

unit of time and by its death produces 𝑛 identical copies of itself. According to that principle and based 

on the relevant branching literature, branching processes are considered as a classical approximation for 

epidemics, biology, physics etc. The aim of this master thesis is to study in depth a type of stochastic 

processes, the branching processes, and focus on the existing applications, which would allow us to 

examine how these processes specifically are implemented and detect the strengths of branching 

processes comparing to other stochastic models. Additionally, primary scope constitutes the 

implementation of those processes in two different application areas. 

After an extensive search of the relevant branching processes’ literature, we obtained that 

modeling and evaluating system reliability by using these processes seems to be poorly documented. This 

is the reason why the first part of this research focuses on the application of branching process on system 

reliability. In particular, we examine a refinery pump system reliability through branching processes. A 

Markov model is used to formulate real data from a petrochemical industry and be able to use them as 

inputs to the branching model. Through this application, a refinery pump system availability is discussed 

in an alternative perspective than in typical reliability theory. The probability of ultimate extinction of that 

peculiar population consisting of pumps as well as the failure probability of the system during a year are 

estimated as typical properties of branching processes. Among other findings, that are concentrated to 

system availability, is that comparing to other stochastic models, a branching process approximation of 

the system reliability could be profitable for the maintenance departments, as an alternative perspective, 

because through the expected number of working components and the probability of extinction, the 

reliability of an entire industry unit is discussed.  

Moreove, motivated by the sudden outbreak of the Covid-19 pandemic incidence and based on 

the fact that branches processes are extensively used to model dynamics of epidemics, another 

application these processes, refering to a typical branching approximation of the coronavirus (covid-19) 

spread in Greece is also presented. For this epidemiology model application, by using branching processes 

and their main properties, important factors are estimated for the virus transmission in Greece, such as 

the basic and effective reproduction numbers along with the probabilities of the extinction and an 

outbreak. Based on these factors and on an additional non-mitigation scenario, the effectiveness of 

control measures is discussed. Overviewing the results revealed that the virus transmission was 

aggressive, however the control measures were effective. This statement is supported by the values of 

the aforementioned indicators. 

 In general, the contribution of this research is based οn three pillars. First of all, an analytical 

theoretical framework of branching processes is presented. Secondly, it provides knowledge about how 

to formulate and provide reliable results of a real problem in an alternative area of application for these 

processes, such as the mechanical system reliability. Finally, based on the fact that the presented 

branching models are consisting of different populations and thus the notion of parameters such as the 

expected number of population and the probability of extinction differ, we can assume that this research 

gives a comprehensive view of branching processes dynamics compared to other stochastic processes. 
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Finally, according to the findings of those implementations, ideas for future work are extensively 

presented 
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Chapter 1: Introduction. 

In probability theory, there exist numerous models and processes concerned with the analysis of 

evolution of random phenomena. The basic and most crucial function of models is to formulate all the 

knowledge we have about a system, so to analyze it and provide useful information or solutions to 

contemporary problems in a specific field (Haccou, Jagers and Vatutin (2007)). On the contrary to verbal 

models, that usually involve the risk of not being undrestood by people of different cultures and usually 

may disregard important factors, mathematical models present a stable, globaly understood, basis for the 

majority of scientists (e.g. statitians, engineers, computer scientists, biologists, social scientists etc.) 

regardless their field of research (Haccou, Jagers and Vatutin (2007); Lange (2010)). Especially when the 

examined system consists of populations, the analysis becomes a complex task and the notion of 

stochasticity is introduced because of the randomness of populations’ evolution. For instance, the 

evolution of a population consisting of individuals is based on the stochastic fate of individuals and 

whereas the result of a random event (such as the birth/reproduction or death of a particle) may be only 

one of the possible results, the actual event is determined by chance (Haccou, Jagers and Vatutin (2007); 

Siegmund (2020)). Thus, stochastic processes are commonly used to model and analyze systems whose 

operation is characterized by random factors. Branching processes, among other stochastic processes, 

form a typical field of applied probability and are considered as a classical approximation for the analysis 

of population dynamics and growth (Asmussen and Hering (1983); Haccou, Jagers and Vatutin (2007); 

(Lange (2010)). 

Branching processes (BPs) are stochastic processes with main aspect that the systems that a BPs 

models have a special construction: a single individual lives for a unit of time and by its death produces 𝑛 

identical particles; all these individuals compose a process (Athreya and Ney (1972); Schinazi (1999)). It 

seems that based on this principle, branching processes can model systems of classical areas (e.g. biology, 

epidemiology, chemistry, physics, geneology-sociology etc.) as well as alternative phenomena (e.g. 

cascading failures on power transmission, ventilation or, generally, complex systems) (Kemeny and Snell 

(1978); Dobson, Carreras and Newman (2005); Pázsit and Pál (2008)). Thourgout this thesis, we focus on 

the theoretical framework of that field and possible corresponding applications. However, the main aim 

is to present the basic concepts and formulation of branching theory and to conduct applications on 

alternative areas, such as reliability of mechanical, industrial or financial related systems, considering the 

existing relevant literature. To this direction, two different applications of BPs are examined. The first 

application concerns the mathematical modelling of the reliability of a petrochemical industry plant unit 

consisting of pumps by using BPs. However, without overlooking the aforementioned ideas, due to the 

sudden outbreak of the Covid-19 pandemic and based on the fact that BPs are extensively used to model 

dynamics of epidemics, the second application refers to the coronavirus (covid-19) spread in Greece.  

The first presented application attempts to combine Markov processes and branching processes 

to model a plant unit consisting of pumps. The aim is to evaluate the reliability of the plant as well as some 

of the system characteristics. Maintenance of equipment, nowadays, is of primary importance and great 

necessity for industry, comparing to the past where the prevailing idea was that there is no need for 

further attention (Deepak Prabhakar and Dharmaraj (2018); Raghavaiah and HariPrasad (2019)). In 

addition, the relevant reliability theory is a key factor to properly maintain a system. To that side, Markov 

models are classes of stochastic processes that are broadly proposed for reliability system analysis as well 
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as supporting decision tools for maintenance strategies, on the contrary to BPs, where modeling and 

evaluating system reliability by using them seems to be poorly documented in the relevant literature 

(Dawid, McMillan and Revie (2015); Gabe, Freire and de Andrade (2019); Ye, et al. (2020)). Real data from 

the industry are used to examine the proposed approach for real-life system. Such an analysis is 

considered as an alternative analysis of systems’ reliability and could be profitable for maintenance 

departments. 

The second application of branching processes refers to an epidemiology branching model, so to 
analyze the initial and latter stages of covid-19 transmission. Mathematical modeling constitutes an 
important tool to estimate key parameters of a disease transmission and predict the dynamic of a virus 
(Allen (2015)). More precisely, in the relevant literature, epidemiology is considered as a classical 
application area of branching processes, which are stochastic individual-based processes. The novel 
coronavirus (covid-19) was initially identified at the end of 2019 and caused a global health care crisis 
(Ndaïrou, et al. (2020)). The increased transmissibility of the virus, that led to high mortality, raises the 
interest of scientists worldwide. Thus, various methods and models have been extensively discussed, so 
to study and control covid-19 transmission (Ndaïrou, et al. (2020); Ivorra, et al. (2020)). As a second 
application, a classical Galton-Watson branching process approach is developed for the covid-19 spread 
in Greece. The primary aim of this application is to model the transmission stages through BPs in order to 
analyze the first semiannual spread of the pandemic. In order to give a comprehensive view of the 
pandemic, the effectiveness of control measures is discussed, based on a simple exponential smoothing 
model, which is used to build a non-mitigation scenario. 

To sum up, this thesis is structured in 5 chapters. Chapter 2 analytically presents the typical 
branching theory and the mathematical formulation of branching models, which constitute important 
pillars of the following applications that are presented in Chapter 3 and 4 respectively. In these chapters 
(3 & 4, respectively for each application), each problems’ formulation is separately discussed as well as 
the outputs and conclusions. Finally, the last chapter (Chapter 5) gives a broadly overview of the branching 
processes viewed through the presented applications and additionally ideas for future work are 
considered and firmly discussed. 
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Chapter 2 : Literature Review on Branching Processes. 

2.1. Theoretical framework of Bienaymé-Galton-Watson processes. 

Branching Processes are individual-based models that consider the growth of populations, whose 

particles’ reproduction follows stochastic laws, and have a long history (Dorman, Sinsheimer and Lange 

(2004)). The term “branching processes” has been coined in 1847, when the population mathematics 

adopted probability theory, by A. N. Kolmogorov and  N. A. Dmitriev, but the subject is much older, 

approximately one century ago (Kendall (1966); Gonzalez and del Puerto (2010)). The initial motivation 

event it is considered to be the extinction of surnames of European aristocratic families, that Francis 

Galton documented in 1867 and Reverend Henry William Watson formulated in 1873 in Educational Times 

(Gonzalez and del Puerto (2010); Almudevar, Oakes and Hall (2020)). The initial communication of the 

problem was published in 1873 to a periodical, that was characterized by Galton as “a well-known 

mathematical periodical of a high-class Educational times” (Kendall (1966)): 

“PROBLEM 4001: A large nation, of whom we will only concern ourselves with adult males, N in 

number, and who each bear separate surnames colonise a district. Their law of population is such that, in 

each generation, a0 percent of the adult males have no male children who reach adult life; a1 have one 

such male child; a2 have two; and so on up to a5 who have five. 

Find (1) what proportion of their surnames will have become extinct after r generations; and (2) 

how many instances there will be of the surname being held by m persons.” 

The formulation that Watson proposed, is based on probability generating functions and stands 

until nowadays. Removing the restriction of 𝑘 ≤ 5, writing  𝑝𝑘instead of Galton’s 𝑎𝑘 and if the input is  

                                                                 𝑓(𝑠) = ∑𝑝𝑘 ∙ 𝑠
𝑘

∞

𝑘=0

    (0 ≤ 𝑠 ≤ 1)                                                            (1) 

               𝑎𝑛𝑑         𝑓1(𝑠) = 𝑓(𝑠),     𝑓𝑛+1(𝑠) = 𝑓(𝑓𝑛(𝑠)) = 𝑓𝑛(𝑓(𝑠))      (𝑛 = 1, 2, … )                   (2)    

then the power series for 𝑓𝑛 have as coefficients the terms of the probability distribution for the total 

number of males in 𝑛𝑡ℎ generation, whereas the first male constitutes the zero generation (Kendall 

(1966)). In addition, Watson detected that the probability of extinction, 𝑞𝑛, satisfies the equations:  

                                                       𝑞1 = 𝑝0   and     𝑞𝑛+1 = 𝑓(𝑞𝑛) 

                                         and that if 𝑞𝑛 → 𝑞 when 𝑛 → ∞, then  𝑞 = 𝑓(𝑞)                                                         (3)  

and always has as a root 𝑞 = 1 (Kendall (1966)). Based on that Watson believed that the extinction of the 

male line is an inevitable circumstance. However, a few years later, Agner Krarup Erlang considering the 

problem of Watson, revised the formulation of Watson’s equation (3) and interpreted the probability of 

extinction 𝑞 equals to : (i) the chance of no male in first generation, plus to (ii) the chance of one male in 

first generation, followed by extinction, plus to (iii) the chance of two males in first generation, followed 

by both ultimate extinction and so on (Kendall (1966)): 
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                                                                     𝑞 =  𝑝0 + 𝑝1𝑞 + 𝑝2𝑞
2 +⋯                                                                 (4)  

To that side, Erlang noticed that equation (3) can have two roots in the interval [0,1]; one root is 

𝑞 = 1, and there is exactly one more root in [0,1] if and only if the expected number of sons per parent is 

greater than unity: 

                                                                                𝑚 =∑𝑘𝑝𝑘

∞

0

                                                                                  (5) 

In fact, that observation led to a basic theorem, which until nowadays is considered as an 

important property of branching processes and stands as categorization parameter of the criticality of a 

process (Kendall (1966)): “it is always the smallest root of equation (3) which is the appropriate one; thus 

extinction is always certain for subcritical populations with 𝑚 < 1 and for critical population with 𝑚 = 1, 

but there is always a positive chance of survival for supercritical populations with 1 < 𝑚 ≤ ∞”. However, 

I. J. Bienaymé had noticed and formulated the family extinction problem before Watson did, thus 

branching processes are also known as Galton-Watson or Bienaymé-Galton-Watson processes (Kendall 

(1966); Gonzalez and del Puerto (2010)).  

According to the aforementioned information about these processes genealogy and in general 

social studies area, have been extensively used branching processes, thus it is believed that this area is 

considered as a classical application area of branching processes (Gonzalez and del Puerto (2010); Lange 

(2010)). In addition, these processes had been broadly used to biological field applications such as ecology, 

epidemiology, genetics, evolution, cell biology (cell division), population biology (survival of mutant 

genes), as well as to physics (neutron chain reaction) (Jagers (1975); Macken and Perelson (1985); Schinazi 

(1999); Kimmel and Axelrod (2002); Lange (2010)). Apart from the epidemics that will be furtherly 

discussed in next chapters, all the aforementioned fields are not part of that thesis. However, there exist 

a considerable number of manuscripts and books that focus on branching processes and their applications 

to these areas, such as the book of Kimmel and Axelrod (2002), Haccou, Jagers and Vatutin (2007), 

Gonzalez and del Puerto (2010) and books that set an analytical theoretical framework such as those of 

Harris (1964), Athreya and Ney (1972). 

Nevertheless, in last decades many researchers work on modelling peculiar populations by using 

branching processes and create applications in non-classical areas, such as the failures of several 

technological systems (Dobson, Carreras and Newman (2004,2005); Kim and Dobson (2011)). 

Contemporary studies attempt to approach reliability of mechanical multi-parted systems through 

branching process models. According to the relevant literature review in classical and contemporary  

conducted studies, this thesis deals with a typical epidemiology model and a model of system reliability. 

The next two sub-sections (2.1.1.-2.1.2.) give a broad review in these fields. In addition, the relevant 

reference in Markov processes is integrated, because a Markov model is used in the branching application 

so to form real data to use them. 
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2.2. Elementary branching theory and formulation. 

A branching process is a stochastic process which consists of collections of random variables and 

the main purpose is to serve as a mathematical model of a population in which each individual in 

generation 𝑛 produces some random number of individuals in generation 𝑛 +  1. These individuals in 

next generation produce other individuals. All individuals reproduce independently but under the same  

offspring distribution. Branching processes are used to model reproduction, for example, the individuals 

might correspond to bacteria, each of which generates 0, 1, or 2 offspring with some probability in a single 

time unit. Branching processes can also be used to model other systems with similar dynamics such as the 

spread of surnames in genealogy or the propagation of neutrons in a nuclear reactor (Haccou, Jagers and 

Vatutin (2007)).  

A branching process has a “boom or bust” distribution: either the population will take off (grows 

up quickly) or will fail altogether. Additionally, an important information is that by the time the population 

size starts decreasing, the extinction of the BP will occurr soon by the first stages. One of the crucial 

questions in the theory of branching processes is the probability of ultimate extinction, where no 

individuals exist after some finite number of generations, or the probability of survive, as well as the 

conditions under which the population became extinct (Athreya and Ney (1972)).  

The classification of BP could be made in various bases, the majority of authors uses the following: 

according to their time parameter and their criticality condition (Kimmel and Axelrod (2002)). Based on 

their criticality there are three cases (subcritical, critical and supercritical), but first we need to get 

introduced to branching processes/GWP so to carry more information about that classification, thus, we 

will analyze criticality conditions below (Kimmel and Axelrod (2002); Haccou, Jagers and Vatutin (2007)).  

Based on lifetime (time parameter) we have gradient classification. If lifetimes of all individuals 

are identical and equal to 1, it follows that the process can be described using a discrete-time index, 

identical to the number of successive generations (Athreya and Ney (1972); (Kemeny and Snell (1978); 

(Kimmel and Axelrod (2002); Pázsit and Pál (2008)). This is the Galton-Watson classical approach (the 

simplest form of Discrete Time Branching Processes (DTBP)). On the other hand, if lifetimes of each 

individual are not constant (one unit time as in classical approach), there are two general categories 

(Haccou, Jagers and Vatutin (2007)), (Athreya and Ney (1972)): 

• Markov Process: if the particles lifetime distribution is exponential (we have a continuous-

time Markov process) 

• Age-Dependent (or Bellman-Harris) Process: if lifetime of individuals is an arbitrary non-

negative random variable. 

As in the majority of stochastic processes, there exist discrete-time and continuous-time 

branching processes. In discrete-time branching models, time is represented by integers that indicate 

reproduction periods (Haccou, Jagers and Vatutin (2007)). Thus, in the simplest forms, there are no 

overlaps between generations and reproduction occurs only in separate periods (Haccou, Jagers and 

Vatutin (2007)). Continuous-time models are more complex than Discrete-time models, however, as a 

discrete-time branching process has small time-steps, it can be viewed as an approach of a continuous 
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branching model (Haccou, Jagers and Vatutin (2007)). In fact, discrete-time branching models are usually 

used so to extract useful information about the corresponding continuous-time model. 

 The oldest and simplest discrete time branching processes are the simple Galton-Watson single-

type branching processes, that are also named Bienaymé-Galton-Watson processes or simple branching 

processes. As it was already mentioned, we have only one type of individuals and there are non-overlaps 

between generations, as it is confirmed by Figure 1 that is a simple illustration of the process. 

 

 

Figure 1. Discrete Time Branching Process tree 

The basic branching model or Galton-Watson simple branching process is a discrete time process 

with non-overlaps between generations and consisting of only one type (or single type) of individuals 

(Haccou, Jagers και Vatutin (2007)). The size of the population in 𝑛𝑡ℎ generation is denoted by 𝑍𝑛. Each 

individual lives exactly one unit of time, produces a random number of offspring (𝜉) and dies. All 

individuals reproduce independently. The population starts with one individual (𝑍0 = 1) at 𝑛 = 0 

generation and the population size of next generation can be determined by summing the numbers of 

offspring (Schinazi (1999)). The number of offspring of the ith particle is denoted as 𝜉𝑖,  and 𝜉𝑖  with 𝑖 =

1, 2, 3, … are independent and identically distributed random variables (i.i.d.) and the family size 

distribution is 𝑃(𝜉 = 𝑘) = 𝑝𝑘, the probability of producing 𝑘 offspring (Haccou, Jagers και Vatutin (2007)). 

Additionally, the population size of (n+1)th generation (𝑍𝑛+1) arises as the sum of the offspring delivered 

by the particles of nth generation  : 

𝑍𝑛+1 = 𝜉1 + 𝜉2 +⋯+ 𝜉𝑍𝑛  

So, the number of individuals at time 𝑛, 𝑍𝑛, is equal to the total number of offspring of the 

individuals 1,2,3, … , 𝑍𝑛−1. Then the branching process is {𝑍0, 𝑍1, 𝑍2, … , } = {𝑍𝑛: 𝑛 ∈ ℕ} 

                                                                                        𝑍𝑛 = ∑ 𝜉𝑖

𝑍𝑛−1

𝑖=1

                                                                           (6) 

The state of branching process at time 𝑛 is 𝑍𝑛, it takes values 0,1,2, … but 𝑍0 = 1 always. Once 

𝑍𝑛 takes the value 0 this means that no individual is alive, then the process is dead and this state is 

considered as an absorbing. However, the aforementioned formulation and assumptions compose the 

simplest type of branching models. There exist more complex branching models, such as the multi-type 

or several type branching processes, where the population consists of more than 1 species and one of the 
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major differences is that same-type particles are assumed to have identically distributed number of 

offspring, however different type particles may differ (Haccou, Jagers and Vatutin (2007)). Other more 

complex cases of branching models are those in which each particle of the population does not necessarily 

live only one unit of time, not all individuals have the same life spans or particles can give birth at different 

ages (Haccou, Jagers and Vatutin (2007)). In addition, some cases that start in zero generation with more 

than one particles are considered as different branching processes. The assumption about the 

independence of reproduction allows each individual to compose its new branching process, for instance 

in Figure 1, the first particle of the first generation constitutes a branching process that starts with one 

individual (itself) that produces two identical copies of itself, these particles compose the next generation 

and produce other individuals. 

Two major issues are important to discuss considering populations and reproductions: the 

expected number of population size and the probability of extinction (Athreya and Ney (1972); Schinazi 

(1999); Haccou, Jagers and Vatutin (2007)). In probability and statistics, the population mean, or expected 

value, is a measure of the central tendency either of a probability distribution or of the random variable 

characterized by that distribution. So, it seems pretty reasonable to calculate the mean of 𝑍𝑛 (𝐸(𝑍𝑛)), 

because we need to find out what we expect the population to be in 𝑛 generations time (Schinazi (1999)). 

On the other hand, variance is the expectation of the squared deviation of a random variable from its 

mean. Informally, it measures how far a set of (random) numbers is spread out from the average value. 

As we mentioned above for 𝑍𝑛, the population either will take off or will fail altogether. In fact, if the 

population size fails, it is likely to do so very quickly, within the first few generations. This explains why 

we are interested in 𝑉𝑎𝑟(𝑍𝑛). High variance denotes that the population will not evolve rapidly around 

the mean values, and respectively, low variance alerts us that the population will probably take off around 

the mean value.  

Both 𝐸(𝑍𝑛) and 𝑉𝑎𝑟(𝑍𝑛) can be expressed in terms of the mean and variance of the number of 

offspring. Thus, let 𝐸(𝜉) = 𝑚 and 𝑉𝑎𝑟(𝜉) = 𝜎2. These are the mean and the variance of a single individual 

(Schinazi (1999)). In order to estimate the expected number of population size, let {𝑍0, 𝑍1, 𝑍2, … , } be a 

branching process with 𝑍0 = 1, let 𝜉 denote the number of offspring and suppose that 𝐸(𝜉) = 𝑚. Then, 

                                                       𝐸(𝑍𝑛) = 𝐸(𝑍𝑛|𝑍0 = 1) = 𝑚
𝑛                                                            (7) 

Proof (Schinazi (1999); Haccou, Jagers and Vatutin (2007)): 

We will do the proof by induction. Firstly note that  

 

𝐸(𝑍1|𝑍0 = 1) = 𝐸(𝜉) = 𝑚 = 𝑚1 

 

The formula works for 𝑛 = 1. Assume that the formula works for 𝑛. By conditioning 𝑍𝑛 we get  

 

                                      𝐸(𝑍𝑛+1|𝑍0 = 1) = ∑𝐸(𝑍𝑛+1|𝑍𝑛 = 𝑘) 𝑃(𝑍𝑛 = 𝑘|𝑍0 = 1)

𝑘≥1

                                     (8) 
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By Markov property we are using that  

𝐸(𝑍𝑛+1|𝑍0 = 1, 𝑍𝑛 = 𝑘) =  𝐸(𝑍𝑛+1|𝑍𝑛 = 𝑘)  for every 𝑘 ≥ 1. Now we have: 

𝐸(𝑍𝑛+1|𝑍𝑛 = 𝑘) = 𝐸(∑ 𝜉𝑖
𝑘
𝑖=1 ) = 𝑘𝑚 , because we assumed that 𝐸(𝜉) = 𝑚. 

So, equation (8) becomes:  

𝐸(𝑍𝑛+1|𝑍0 = 1) = ∑𝑘𝑚 ∙  𝑃(𝑍𝑛 = 𝑘|𝑍0 = 1)

𝑘≥1

 =    𝑚𝐸(𝑍𝑛|𝑍0 = 1) 

Because we know that ∑ 𝑘 ℙ(𝑍𝑛 = 𝑘|𝑍0 = 1) =𝑘≥1 𝐸(𝑍𝑛|𝑍0 = 1).  

By the induction hypothesis we have 𝐸(𝑍𝑛|𝑍0 = 1) = 𝑚
𝑛, so we can conclude that  

 𝐸(𝑍𝑛+1|𝑍0 = 1) = 𝑚𝑚
𝑛 = 𝑚𝑛+1  

𝐸(𝑍𝑛+2|𝑍0 = 1) = 𝑚𝑚
𝑛+1 = 𝑚𝑛+2  and so on. 

Thus, by the induction analysis it stands that 𝐸(𝑍𝑛|𝑍0 = 1) = 𝑚
𝑛, which the expected number of 

population size 𝐸(𝑍𝑛) and is related to the mean value of offspring.  

□ 

In order to estimate the variance, let {𝑍0, 𝑍1, 𝑍2, … , } be a branching process with 𝑍0 = 1 and let 

𝑌 denote the family size distribution and suppose that 𝐸(𝑌) = 𝑚 and Va𝑟(𝑌) = 𝜎2 . Then, 

                                        𝑉𝑎𝑟(𝑍𝑛) =

{
 

 
𝜎2𝑛                                  𝑖𝑓 𝑚 = 1

 

𝜎2𝜇𝑛−1 (
𝑚𝑛 − 1

𝑚 − 1
)          𝑖𝑓 𝑚 ≠ 1

                                                           (9) 

Proof (Schinazi (1999); Haccou, Jagers and Vatutin (2007)): 

Starting from 𝑉𝑎𝑟(𝑍𝑛) = 𝑉𝑎𝑟(𝐸(𝑍𝑛|𝑍𝑛−1)) + 𝐸(𝑉𝑎𝑟(𝑍𝑛|𝑍𝑛−1)) (Law of total variance). In the previews 

proof, it has been defined that 𝐸(𝑍𝑛+1|𝑍𝑛 = 𝑘) = 𝐸(∑ 𝑌𝑖
𝑘
𝑖=1 ) = 𝑘𝑚, so 𝐸(𝑍𝑛|𝑍𝑛−1 = 𝑘) =

𝐸(∑ 𝑌𝑖
𝑘
𝑖=1 ) = 𝑘𝑚. Similarly, and because of the independence of 𝑌𝑖  we can get  

𝑉𝑎𝑟(𝑍𝑛|𝑍𝑛−1 = 𝑘) = 𝐸 (∑𝑌𝑖

𝑘

𝑖=1

) =∑𝑉𝑎𝑟(𝑌𝑖)

𝑘

𝑖=1

= 𝜎2𝑘  

Applying the law of total variance we get: 

𝑉𝑎𝑟(𝑍𝑛) = 𝑉𝑎𝑟(𝑚𝑍𝑛−1) +   𝐸(𝜎
2𝑍𝑛−1) =  𝑚

2𝑉𝑎𝑟(𝑍𝑛−1) + 𝜎
2𝑚𝑛−1  𝑓𝑜𝑟 𝑛 ≥ 1 

By induction and if we assume that 𝑉𝑎𝑟(𝑍0) = 0, we get  

For 𝑍1:  𝑉𝑎𝑟(𝑍1) = 𝑚
2𝑉𝑎𝑟(𝑍0) + 𝜎

2𝑚0 = 𝜎2  
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For 𝑍2:  𝑉𝑎𝑟(𝑍2) = 𝑚
2𝑉𝑎𝑟(𝑍1) + 𝜎

2𝑚1 = 𝑚2𝜎2 + 𝜎2𝑚 = 𝜎2𝜇(1 + 𝑚)  

For 𝑍3:   𝑉𝑎𝑟(𝑍3) = 𝑚
2𝑉𝑎𝑟(𝑍2) +  𝜎

2𝑚2 = 𝑚3𝜎2(1 + 𝑚)+ 𝜎2𝑚2 = 𝜎2𝑚2(1 + 𝑚 +𝑚2) 

For 𝑍4:𝑉𝑎𝑟(𝑍4) = 𝑚
2𝑉𝑎𝑟(𝑍3) +  𝜎

2𝑚3 = 𝜎2𝑚4(1 + 𝑚 +𝑚2) + 𝜎2𝑚3 = 𝜎2𝑚3(1 +𝑚 + 𝑚2 +𝑚3) 

⋮ 

So the general pattern is proved by induction on and it is: 

 

𝑉𝑎𝑟(𝑍𝑛) =  𝜎
2𝑚𝑛−1∑𝑚𝑘

𝑛−1

𝑘=0

 =

{
 

 
𝜎2𝑚                                  𝑖𝑓 𝑚 = 1

 

𝜎2𝑚𝑛−1 (
𝑚𝑛 − 1

𝑚 − 1
)          𝑖𝑓 𝑚 ≠ 1

 

□ 

 

The following examples give briefly a simple implementation of the aforementioned formulas: 

1. Family size 𝑌~𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝 = 0.3) 
 

So,      𝑚 = 𝛦(𝜉) =
𝑞

𝑝
=

0.7

0.3
= 2.33 

 

               𝜎2 =
𝑞

𝑝2
=

0.7

(0.3)2
= 7.78 

 

For the expected population in 10th generation (n=10): 

𝐸(𝑍10) = 𝑚
10 = 2,3310 = 4,715.87 

 

Since 𝑚 = 2.33 ≠ 1 

𝑉𝑎𝑟(𝑍10) = (7.78)
2(2.33)2 (

2.3310 − 1

2.33 − 1
) = 43.4 × 107 

 

 

2. Family size 𝑌~𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝 = 0.5) 
 

So,      𝜇 = 𝛦(𝜉) =
𝑞

𝑝
=

0.5

0.5
= 1 

 

                   𝜎2 =
𝑞

𝑝2
=

0.5

(0.5)2
= 2 

For the expected population in 10th generation (n=10): 

𝐸(𝑍10) = 1
10 =  1 
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            Since 𝜇 = 1 

𝑉𝑎𝑟(𝑍10) = 𝜎
2𝑛 = 2 × 10 = 20 

Within these examples we can define how mean and variance can be used as prediction tools to 

see what is going on with the extinction of the population before calculating the probability of extinction. 

A low variance alerts us to the fact that the process clusters closely around the mean values. Is the variance 

of a population enough to decide about the extinction of a population? The answer is no, because we 

need to know the mean value around of which the process clusters. For instance, the population of 

example 2 is more likely to become extinct than the population of example 1. In example 1, the mean and 

the variance are high, so the values are spread widely around the “high” mean. In example 2, the mean 

and the variance are low, which means that the values are spread closely to one. Thus, population of 

example 2 is more likely to be extinct than the population of example 1. In addition, that assumption 

explains, firstly, the fact that if the population size fails, it is likely to do so very quickly, and secondly why 

we are interested in 𝑉𝑎𝑟(𝑍𝑛). An important information, that also proves the assumption we made above 

about the mean-variance-extinction, is that the mean (𝑚) is an inference about the probability of 

extinction (Schinazi (1999)):  

• If 𝑚 ≤ 1 then the expected number of offspring tends fast to 0 and the extinction probability is 1 
(𝑚 < 1 is considered as subcritical case and respectively 𝑚 = 1 is a critical case) 

• If 𝑚 > 1 the extinction probability is less than 1 but not necessarily 0 and it is calculated by the PGF 
of 𝑍𝑛 (supercritical case) 
 

In addition, by knowing or formulating the related probability generating function, the estimation 

of the expected number of population size could be much simpler. Considering the Watson’s initial 

formulation of equations (1)-(3), the definition of the process (equation (6)), and basic properties of 

probability generating functions, the expected number of population size is the first derivative of the 

probability generating function to 1 (Athreya and Ney (1972); Lange (2010)): If the progeny function (PGF) 

is 𝐺(𝑧), then the expected number of population size is 𝐺′(1). As it is already mentioned, one of the main 

properties of branching models is that the probability of ultimate extinction is also estimated by using the 

progeny functions. 

By extinction we mean that the random sequence {𝑍𝑛} consists of zeros for all, but finite, number 

of values. Since 𝑍𝑛 is integer-valued, extinction is an event that forces 𝑍𝑛 go to 0 (𝑍𝑛 → 0). The population 

is extinct by generation 𝑛 if 𝑍𝑛 = 0, and after that time the population is extinct forever: 𝑍𝑡 =

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑛 (Haccou, Jagers and Vatutin (2007)). In addition, if the population once becomes extinct, 

it is always extinct. Thus, if we assume that extinction occurs at time 𝑛 = 2, we have that {𝑍2 = 0} and 

that enforces  {𝑍3 = 0} and so on. The probability of ultimate extinction refers to the probability that the 

population will be extinct by generation 𝑛, for any value of 𝑛 and if 𝑞𝑛 represents the probability of 

extinction at generation 𝑛, then(Schinazi (1999)), (Haccou, Jagers and Vatutin (2007)): 

𝑃(𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛) = 𝑞 = lim
𝑛→∞

𝑞𝑛 

Considering the initial formulation of Watson-Erlang (equations (1)-(4)), the progeny function is 

formulated as follows: 
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                                                                       𝐺(𝑞) = 𝑝0 + 𝑝1𝑞 + 𝑝2𝑞
2 +⋯                                                        (10) 

where 𝑝𝑖 is the probability to have 𝑖 = 1,2,3, … individuals and 𝑞 is the probability of ultimate extinction. 

Let 𝑞𝑛 be the probability of extinction in the nth time period (generation) and 𝑞0 = 0; as 𝑛 → ∞ then 𝑞𝑛 →

𝑞 (0 ≤ 𝑞 ≤ 1). In order for the population to become extinct in period 𝑛, all individuals should die at least 

on the previews period (𝑛 − 1). Therefore, 

                                                                        𝑞𝑛 = 𝑝0 + 𝑝1𝑞𝑛−1 + 𝑝2𝑞𝑛−1
2 +⋯                                                 (11) 

Recalling the progeny function (equation (10)), equation (11) can be written as 𝑞𝑛 = 𝐺(𝑞𝑛−1) and 

according to Watson, as 𝑞𝑛 → 𝑞, the probability of extinction should satisfy  𝐺(𝑞) = 𝑞. Whereas ∑𝑝𝑖 =

1, the solution 𝑞 = 1 is always a root of equation 𝐺(𝑞) = 𝑞. In addition, the first and second derivatives 

of the PGF are formed respectively as follows, with respect to 𝑞: 

                                                                  𝐺′(𝑞) = 𝑝1 + 2𝑝2𝑞 + 3𝑝3𝑞
2 +⋯                                                       (12) 

                                                             𝐺′′(𝑞) = 2𝑝2 + 3 ∙ 2𝑝3𝑞 + 4 ∙ 3𝑝4𝑞
2 +⋯                                             (13) 

It is obvious that both derivatives are non-negative for 𝑞 ≥ 0 and it turns out that 𝐺(𝑞) is a non-decreasing 

function that concaves upwards. Thus, 𝑦 = 𝑧 and 𝑦 = 𝐺(𝑧) should intersect at most on two points and 

one of them is (1,1) as 𝑞 = 1 is always a root of equation. To that side there exist three scenarios, 

illustrated in Figure. (2) (Athreya and Ney (1972)) (Fazlollahtabar and Niaki (2018)): 

• 2 roots (𝑞, 1), where 0 ≤ 𝑞 < 1 (Figure. (2a)) 

• 1 root 𝑞 = 1 (Figure. (2b)) 

• 2 roots (1, 𝑞), where 𝑞 > 1 (Figure. (2c)) 

 

 

Figure 2. Graphs of scenarios of intersection points of 𝑦 = 𝑧 and 𝑦 = 𝐺(𝑧). 

While 𝑞 refers to the probability of extinction should be 0 ≤ 𝑞 ≤ 1, thus in cases (b), (c) the only solution 

is 𝑞 = 1. However, recalling that in general 𝐺′(1) = 𝑚 , the first derivative of the progeny function at 1 
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gives the expected number of population size, the case (a), presented in Figure. (3), corresponds to a 

supercritical case (𝐺′(1) = 𝑚 > 1). 

 

Figure 3. Intersection points of  𝑦 = 𝑧 and 𝑦 = 𝐺(𝑧) in a Supercritical case scenario. 

To that side, and because 𝑞0 = 0, 𝑞1 = 𝐺(𝑞0), … , 𝑞𝑛 = 𝐺(𝑞𝑛−1), the points (𝑞𝑖 , 𝐺(𝑞𝑖)) will always 

lie above the line 𝑦 = 𝑧 (Fazlollahtabar and Niaki (2018)). Hence, there exist one more solution that should 

be less than 1 (𝑞 < 1) that is estimated as the smallest root of equation 𝐺(𝑧) = 𝑧. 

The probability of extinction is related to the mean (𝑚). Some values of 𝑚 guarantee the death 

of the branching process with probability 1. If the mean number of offspring per individual 𝑚 is 1 or less, 

then the ultimate extinction is certain. Other 𝑚 guarantee that the probability of extinction will be less 

than 1. If the mean number of offspring per individual 𝑚 is higher than 1, then the ultimate extinction is 

not certain but it might occur (Lange (2010)). According to the aforementioned analysis, let 

{𝑍0, 𝑍1, 𝑍2, … , }, with (𝑍0 = 1), be a branching process and  𝑚 be the expected number of population 

size. Let also 𝑞 be the probability of ultimate extinction. Then (Athreya and Ney (1972); Haccou, Jagers 

and Vatutin (2007)): 

• If   𝑚 > 1, then 𝑞 < 1 : extinction is not guaranteed (supercritical case) 

• If   𝑚 < 1, then 𝑞 = 1 : extinction is guaranteed (subcritical case) 

• If   𝑚 = 1, then 𝑞 = 1 : extinction is not guaranteed unless there is only one particle (critical case) 

To sum up till this point, in a branching process model all the effort is concentrated to build and 

formulate the relevant probability generating function. Once the progeny function is formulated, we can 

define the following data about a process: 

1. The probability of ultimate extinction as the smallest root of 𝐺(𝑧) = 𝑧. 

2. The probability of the population to become extinct in a specific generation (𝑞𝑛). 

3. The conditions of extinction (the expected number of population as 𝐺′(1). 
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2.2.1. Continuous Time Branching Processes (CTBP) 

As it was referred before, in a (Galton-Watson) branching process, the future states are 

independent of the past. This means that these processes satisfy the property of Markov processes, where 

the future depends only upon the present and not at all upon the past. In addition, in classical Galton-

Watson approach, each individual lives for exactly one unit of time. We assume that individuals’ lifetime 

is exponentially distributed and thus we have a continuous-time Markov process. Markov branching 

processes are the counterparts of GWBP in continuous time (Haccou, Jagers and Vatutin (2007)).  

The main difference between continuous and discrete time branching processes is that births and 

deaths occur at random times for the CTBP. In addition, continuous time branching processes have the 

Markov property if and only if birth and death times are exponentially distributed (Haccou, Jagers and 

Vatutin (2007)). 

Furthermore, DTBP are much simpler than CTBP. In DTBP, in classical approach, the population, 

at a time, contains individuals only from one generation. In continuous time this is not true; individuals of 

different generation may be alive at the same time. This occurs because of the difference in living time 

spans. Figure 4 shows a family tree of a continuous-time branching process. The individual dies after a 

single reproduction event, which is the simplest form of CTBP. The numbers at the branches (life-times) 

denote the generation of each particle. In this general example, at time 𝑡1 the population consists of one 

particle from the second generation, three particles of third generation. 

 

 

Figure 4. Continuous Time Branching Process tree. 

In CTBP an embedded generation process is commonly used so to extract some fundamental 

results from Discrete Time Branching Processes and attach them to the corresponding Continuous Time 

Branching Process. The embedded process counts the number of particles of different ages (Haccou, 

Jagers and Vatutin (2007)). So, this process consists of random integer-valued variables and it is commonly 

denoted as 𝜁𝑛. For instance, in Figure 2 we had 𝜁0 = 1, 𝜁1 = 2, 𝜁2 = 3. Many authors do not use a different 
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symbol for the embedded process, they just call a discrete time branching process 𝑍𝑛 (Haccou, Jagers and 

Vatutin (2007)). 

The embedded generation process is a Discrete Time Branching process. Assuming that 

𝜉1 , 𝜉2, … , 𝜉𝑛 are the total offspring numbers of the various individuals in 𝑛𝑡ℎgeneration during all their 

lives, we recall the corresponding equation 

𝜁𝑛+1 =∑𝜉𝑖

𝜁𝑛

𝑖=1

 

In addition, the assumption that all individuals reproduce independently of each other and have 

the same distribution (of reproduction), leads to the outcome that the embedded process is a Galton-

Watson Branching Process (Athreya and Ney (1972)). 

An embedded generation process does not carry over other useful information about the original 

process (CTBP), but it is widely used, as mentioned before, to simplify the original process and through 

this we minimize the computational effort so to carry out fundamental results. For example, the extinction 

probability at a CTBP is determined by the much simpler embedded process. Besides, the extinction of 

the original process occurs if and only if the embedded process dies out (Haccou, Jagers and Vatutin 

(2007)). 

In literature there are multi-type and single-type processes (Athreya and Ney (1972)), (Haccou, 

Jagers and Vatutin (2007)). The single-type processes are characterized by the life-time distribution that 

gives birth-event ages and numbers of offspring. The simplest cases in CTBP are single-type processes 

which have only one reproduction event, that happens by the death of the individual and the reproduction 

is independent of the lifetime. In this form we have the Markov branching and birth-and-death process 

(and the continuous time binary branching processes). If we let the reproduction distribution to depend 

on life-spans we have the age-dependent processes or Bellman-Harris Processes. In addition, we have the 

Sevastyanov Processes where not only the hazard rate but also the distribution of offspring numbers 

depends on the age of the ancestor.  Finally, there are processes in which individuals may reproduce 

several times during their lifetime and additionally the multi-type processes (Athreya and Ney (1972); 

Schinazi (1999); Kimmel and Axelrod (2002); Haccou, Jagers and Vatutin (2007)). 

Process with one reproduction in a life-span 

These processes are usually considered as splitting processes, because the individual after a life-

time is replaced by its offspring. In this section we will analyze the processes in which the reproduction is 

independent of the ancestor’s life span and the individuals reproduce independently of each other and 

processes that reproduction is age-dependent (Haccou, Jagers and Vatutin (2007)). 

(a)Markov Branching processes and Birth-and-Death processes 

Markov branching processes are counterparts of CTBP. Branching processes in continuous time 

are splitting Markov processes with some characteristics. Firstly, there is one type of individuals, the 

reproduction happens individually between particles and the particles reproduce with the same 

distribution. The concept is that an individual lives a life span which is exponentially distributed and then 

it splits into 𝜉 particles. The reproduction procedure of each particle is independent of each other and 

additionally, as mentioned before, the reproduction distribution is independent of the age of the parent. 
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Markov branching processes are characterized by the parameter 𝜆 of the exponentially distributed life-

time and the distribution of 𝜉 offspring values. Here, the parameter 𝜆 counts the chance per time-unit of 

splitting and is constant because of the exponential life-time distribution. The parameter 𝜆 is named, 

differently by many authors, as death rate, hazard or intensity ((Athreya and Ney (1972); (Schinazi (1999); 

(Haccou, Jagers and Vatutin (2007)).  

The stochastic process (𝑍𝑡)𝑡≥0 , that gives the population size at any time 𝑡 ≥ 0, is determined by 

the structure described above and the starting condition 𝑍0. The exponential distribution has a probability 

density function form 𝜆𝑒−𝜆𝑡 , 𝑡 > 0 for some 𝜆 > 0. In mathematical symbols, a real-valued, nonnegative 

random variable 𝑇 follows an exponential distribution if and only if (Haccou, Jagers and Vatutin (2007)): 

𝑃(𝑇 > 𝑡 + 𝑢|𝑇 > 𝑢)  =   𝑃 (𝑇 > 𝑡)            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑢 ≥ 0 

In other words, the probability distribution of the remaining lifetime is independent of the 

future/next, given that a determined age has been attained. Individuals with exponentially distributed life 

time do not age. The non-aging property, thus, is extracted from the Markov property. As in Galton-

Watson processes we are interested in the expected value of the population size. In addition, if we 

overlook the risk that more than one death occurs in each generation, we assume that 𝑍𝑢 is 𝜉 or 1. That 

depends on whether the ancestor of the process has died by 𝑢 or not (and then obtained 𝜉 children). As 

it was on GWBP,  𝑚 = 𝐸[𝜉], so, we conclude to (Athreya and Ney (1972); Schinazi (1999); Haccou, Jagers 

and Vatutin (2007)): 

• If 𝑚 > 1 the population size has an exponential increase 

• If 𝑚 < 1 the population size has an exponential decrease 

Markov branching processes are usually related to birth-and-death processes which are 

continuous time models. These processes are commonly defined as integer-valued Markov processes 𝑍𝑡 

with the property that the intensity of jumping one step upward from the population size 𝑍𝑡 = 𝑗 is 𝑗𝑏, and 

the intensity of decrease by one step is 𝑗𝑑. The positive numbers 𝑑, 𝑏 are usually called respectively birth 

and death rates. The concept is that if the population size is 𝑍𝑡 = 𝑗, we have 𝑗 particles at present, each 

one with birth rate 𝑏. So, the whole population jumps up with rate 𝑗𝑏 and down with rate 𝑗𝑑. On the 

individual level the birth-death process is a binary splitting Markov branching process. Life-times are 

distributed exponentially with the parameter (𝑏 + 𝑑) (Schinazi (1999); Haccou, Jagers and Vatutin 

(2007)). Thus, the mean life-time is 1 (𝑏 + 𝑑)⁄  . The offspring distribution is  

𝑃(𝜉 = 0) =
𝑑

𝑏+𝑑
     and    𝑃(𝜉 = 2) =

𝑏

𝑏+𝑑
 

Hence, this model rises the assumption that an individual has a chance per time unit of dying 

without offspring, equal to 
𝑑

𝑏+𝑑
 and a chance per unit time of splitting into two of 

𝑏

𝑏+𝑑
.  Additionally, the 

birth-and-death processes are sometimes referred to as linear processes (opposed to Markov) with a 

growth rate of 𝜇𝑗 , if 𝑋𝑡 = 𝑗. That corresponds to branching processes dependent on population size in 

continuous time (Athreya and Ney (1972); Schinazi (1999); Haccou, Jagers and Vatutin (2007)).  
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The Continuous Time Binary Branching Process 

 

We define a continuous time binary process by the following properties: 

• The number of individuals at time 𝑡 is denoted by 𝑍𝑡 and we start with just one single type of 

reproductive individual, 𝑍0 = 1. 

• Independence between individuals 

• Each individual gives birth to a new individual with rate 𝜆 or dies with rate 1. 

Each individual in the population has two independent exponential random variables attached to 

it. One random variable has rate 𝜆 (birth) and the other has rate 1(death). The rule is that if the random 

variable with 𝜆 exponential happens before random variable  with rate 1, then the individual is replaced 

by two individuals (splits into two). Otherwise, the particle dies out with no offspring. As it happens in 

birth-death processes, we notice that the problem of survival for a CTBP is identical to the survival problem 

for the corresponding DTBP. Now, we know that a DTBP survives if 𝐸(𝜉1) > 1. We can compute the 

expected value of 𝜉1, even if we do not know the distribution of it (Haccou, Jagers and Vatutin (2007)).  

As next step, we want to define a differential equation for 𝑀(𝑡) (the expected size of the 

population at time 𝑡 i.e. 𝐸(𝑍𝑡)) so to see what happens to the population in future. At time 0 we have a 

single individual. We need to see what happens within a  small time span ℎ. We have three possible 

scenarios: 

1. The single particle gives birth between times 0 and ℎ, with probability 𝜆ℎ + 𝑜(ℎ) (because with rate 

𝜆 an individual gives birth/splits into two individuals) 

2. The individual dies out with no offspring, with probability 1 ∙ ℎ + 𝑜(ℎ) (because with rate 1 an 

individual dies) 

3. Nothing happens at all, with probability 1 − 𝜆ℎ − ℎ + 𝑜(ℎ), in better form 1 − (𝜆 + 1)ℎ + 𝑜(ℎ) 

 

In general, we can assume that, if  𝑚 = 𝐸(𝜉 ) > 1, the process survives, otherwise (if 𝑚 =

𝐸(𝜉 ) < 1) the population dies out. A remarkable note here is that, considering a continuous time 

branching process with 𝑍0 = 1 and assuming that 𝑍1 = 3, each of these three particles was possible to 

be appeared in different times between 0 and 1. Nevertheless, by assuming that (𝑍𝑛)𝑛≥0 is a discrete time 

branching process, we claim that each one of these particles, that have the same progeny distribution, 

starts its process at time 1. That arises from the Markov property (the memoryless property of the 

exponential distribution). As we mentioned before, individuals with exponentially distributed life time do 

not age. It only matters that an individual is present at time 1 and not at all how old is it at time 1 (Athreya 

and Ney (1972); Haccou, Jagers and Vatutin (2007)).  
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(b) Bellman-Harris Processes (Age-dependent) 

Bellman-Harris processes constitute branching processes in continuous time in which individuals 

have an arbitrary life-span distribution. The hazard rate is not constant in this case. Thus, we have hazard 

rate 𝜆(𝛼), where a denotes the age of the ancestor. So, these processes are commonly named as age-

dependent processes, because the reproduction depends upon the age of the ancestor. In addition, in 

Bellman-Harris processes there is a single-type of individuals which reproduce independently of each 

other and the reproduction happens with the same distribution for each particle. A useful note about 

hazard rate, as Haccou P. et al.  notice (Haccou, Jagers and Vatutin (2007)), is that the hazard rate does 

not affect the expected lifetime reproduction, so for the criticality of the process it does not matter if we 

have a Markov or a Bellman-Harris branching process, as long as we have the same distribution of 

offspring numbers. However, the expected population size at a given time is not the same. In addition the 

population age structure as a function of time differs in the two types of processes (Haccou, Jagers and 

Vatutin (2007)).  

 

2.3. Branching processes on system reliability analysis. 

Stochastic processes and especially Markov chains are powerful mathematical tools and classical 

approaches in modelling systems transitioning among states (Ye, et al. (2020)). Based on that, Ye et al. 

(2020) used a continuous time Markov model to represent failures and repairs of processing units (mainly 

consisting of compressors and pumps) to optimize system’s design, reliability and maintenance. A 

significant number of studies examine reliability of systems by semi-Markov models (Dui, et al. (2015)). 

To this side, recent as well as classical scientific literature of modelling systems reliability by Markov 

models are extensively documented and Dawid, McMillan and Revie (2015) had shown a broadly 

perspective of studies in this field. However, considering the wide variation of stochastic models, latter 

studies convey the impression that the alternative branching processes fit well to modelling complex 

systems. 

The initial study of Markov models and generating functions that Hermann and Pfaffelhuber 

(2019) conducted, builds a mathematical framework for the branching processes application to non-

biological systems. Despite the fact they use traditional mathematical techniques, they prove crucial 

branching processes theorems for time-homogenous branching processes with arbitrary distributions 

with binomial disasters, time-inhomogenous birth-death processes with time-dependent binomial 

disasters and continuous-state branching processes with binomial disasters. 

Cascading failures of electric power transmission systems form classical applications of branching 

processes in last decades. Dobson, Carreras and Newman (2004) identified the need for models that 

capture and quantify the risks of load-dependent cascading failure blackouts of power transmission 

systems due to the impact on society of widespread blackouts occurred in North America in 1996 and 

2003. They proved that a branching process is a profitable approach to deal with these risks, while in 2005 

as a continued work, they proposed two Galton-Watson branching process approaches, in continuous and 

discrete time, through a case study with real data from the blackout failures (Dobson, Carreras and 

Newman (2004, 2005)). Kim and Dobson (2011) extended the aforementioned research by introducing a 
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saturating Galton-Watson branching process, where cascading failures were modelled. This approach 

proved very beneficial mainly comparing with other cascading failure models (Kim and Dobson (2011)). 

Branching random walks have been also used in reliability theory. Yarovaya (2010) sets a useful 

theoretical framework for the application of branching random walks in reliability theory, within an 

analytical birth-death model. Furthermore, these models had been implemented to model ventilation 

systems in order to study and improve system’s reliability and durability. The key concept of this approach, 

that Gorshkov, Koroleva and Ezhov (2019) proposed, is that the system that was under study, had been 

segregated in four subsystems and the process was described through degradation groups. These groups 

seems that were the “memory” of a “memoryless” process, solving the major limitation of using a Markov 

process in real systems modelling (Gorshkov, Koroleva and Ezhov (2019)). 

To carry out reliability analysis of a complex system and prevent breakdowns, Fazlollahtabar and 

Niaki (2018) used a classical Galton-Watson approach. They modelled a complex system consisting of 

single and multitype robots and through three numerical applications they suggest how to use extinction 

probability to predict potential future conditions of the system. A different approach is to model the 

failures of a repairable mechanical system and not the system itself. Roche-Carrier et al. (2019) introduced 

an application of branching Poisson process to study the system’s reliability and among their findings was 

that the branching Poisson process offered a physical notion of the fluctuations for the time between 

failures. Chapter 3 provides a branching process model for the reliability analysis of a refinery pump 

system. 

 

2.4. Epidemiology models based on branching theory. 

In the relevant literature of mathematical modeling of populations considering epidemics, the 

deterministic models constitute powerful tools when the examined population is large enough. On the 

contrary, stochastic models can provide useful information when the population size is rather small (Allen 

(2015)). The theory of branching processes is simple: these processes are often used to model physical 

systems in which a single-type individual lives for a unit of time and by its death produces n identical 

copies of itself. More complex extensions of that simple process are for instance the multi-type branching 

processes (as described in sub-section 2.2) (Haccou, Jagers and Vatutin (2007)). The specific construction 

of the aforementioned process justifies that these processes are usually applied in biology, physics and 

epidemiology. So, any individual gives rise to a family size, where family sizes are independent and 

identically distributed (i.i.d) random variables (Athreya and Ney (1972)).  

Considering populations, two major issues are important: the expected number of population size 

and the extinction (more precisely the probability of extinction) (Athreya and Ney (1972); Haccou, Jagers 

and Vatutin (2007)). If 𝑑𝑘 is the probability of extinction at the kth-time period, then the smallest positive 

root of the probability generating function ℎ(𝑑) = 𝑑 as 𝑑𝑘 tends to 𝑑, is detected as the probability of 

ultimate extinction 𝑑. In addition, the first derivate of the probability generating function, that is usually 

formed as 𝑄(𝑠) = 𝑞𝑘𝑠
𝑘, is used to calculate the expected number of population size (𝑚) (Athreya and 

Ney (1972); Haccou, Jagers and Vatutin (2007)). According to the relevant literature, the expected size of 

a population (m) could be used as a measure to categorize a branching process into cases and predict the 

future condition of the system, as follows: If 𝑚 > 1 then 𝑑 < 1: extinction is not guaranteed (supercritical 
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case), if 𝑚 < 1, then 𝑑 = 1: extinction is guaranteed (subcritical case) and finally if 𝑚 = 1, then 𝑑 = 1 : 

extinction is not guaranteed unless the family size equals 1 (critical case) (Athreya and Ney (1972); Haccou, 

Jagers and Vatutin (2007)).  

S-I-R and S-E-I-R models are two of the basic models for infectious diseases and commonly the 

branching theory is attached to these models in order to extract useful information about populations 

such as the probability of transmission extinction or the probability of an outbreak (Allen (2015)). More 

specifically, a simple single-type branching process could be applied in a S-I-R model in the infectious stage 

as a birth-death process (Allen (2015)). In a S-I-R model, initially the entire closed population (N) is 

considered as totally susceptible (S), a small number of initially infectious individuals introduced into the 

large susceptible population and cause an outbreak, thus some individuals become infected and infectious 

(I), and R means that these individuals are removed from the population either by recovery or death (Jacob 

(2010); Allen (2015)). Some of the limitations of this approximation is the immunity assumption and the 

uncertainty based on data (Allen (2015); Bertozzi, et al. (2020)).  

A related to S-I-R model is an S-E-I-R model, in which E represents the exposed population and 

implies the assumption of a delay between the exposure and the infectiousness (Bertozzi, et al. (2020)). 

An S-E-I-R epidemic could be modeled as a multi-type branching process and through the probability 

generating functions, the probability of an outbreak can be estimated (Allen (2015)). According to 

Kucharski, et al. (2020), where a mathematical model for the early dynamics of transmission of covid-19 

was presented, a major limitation of that kind of approaches is the uncertainty based on data. However, 

S-E-I-R models although that are more complex compared to S-I-R models, remain simple and provide 

reliable information about the potential spread of a pandemic disease such as the Severe Acute 

Respiratory Syndrome (SARS) (Allen (2015)). 

The relevant literature of branching processes-based epidemiology models consists of variable 

complexity models, however data availability in such emerging situations commonly limits the selection 

power and leads to simple approaches.  Chapter 4 provides a branching process epidemiology model. 
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Chapter 3: Modelling a refinery pump system reliability 

using Branching Processes. 

Maintenance of equipment, nowadays, is of primary importance and great necessity for industry, 

comparing to the past where the prevailing idea was that there is no need for further attention (Deepak 

Prabhakar and Dharmaraj (2018); Raghavaiah and HariPrasad (2019)). Maintenance of industrial 

equipment involves numerous and varied activities (e.g. inspection, testing, replacement etc.), especially 

when it concerns large-scale plants with complex systems. The increased complexity and the focus on 

plant viability, efficiency and working safety are factors that force to organize carefully these activities 

(usually into projects also known as Shutdown/Turnaround projects) and predict the upcoming faults 

precisely (Langone, et al. (2015); Deepak Prabhakar and Dharmaraj (2018); Raghavaiah and HariPrasad 

(2019)). In the majority of cases, the proper system maintenance implies the assumption “new” because 

by the time the equipment is overhauled to manufacturer’s standards it is expected to perform as new 

(Jardine and Tsang (2013); Kumar and Narula (2020)). In addition, reliability, availability and 

maintainability (RAM analysis) of a system are key factors to evolve a proper reliability-centered 

maintenance (RCM) plan, which maximizes equipment’s life-cycle and minimizes its expenses and 

maintenance costs (Kumar and Narula (2020)). 

Stochastic processes are commonly used to model various technological and industrial systems, 

calculate reliability indicators (such as the availability, maintainability etc.) and consequently support the 

development of maintenance plans. Markov models are classes of stochastic processes that are broadly 

proposed for reliability system analysis as well as supporting decision tools for maintenance strategies 

(Dawid, McMillan and Revie (2015); Gabe, Freire and de Andrade (2019);Ye, et al. (2020)). However, 

Markov chains are characterized by limitations; for instance, the most obvious is the compulsory use of 

exponential distribution, which is usually an unrealistic assumption (Gabe, Freire and de Andrade (2019)). 

According to Roche-Carrier , et al. (2019) there are four stochastic processes that are widely used to 

approximate the reliability of a repairable system: the renewal process, the homogenous and non-

homogenous Poisson processes and the branching Poisson process. Despite the fact that branching 

processes are usually applied in biology, physics and epidemiology, in recent years researchers have 

introduced approaches for modeling technological systems so to confront with the uncertainty of failures 

and their impact (Kim and Dobson (2010); Fazlollahtabar and Niaki (2018); Gorshkov, Koroleva and Ezhov 

(2019); Roche-Carrier , et al. (2019)). 

This application combines a classical approach of Markov process with a branching process to 

propose an alternative perspective on reliability system analysis. An industrial unit consisting of three 

types of pumps is modelled. Raw data from industry are used to calculate the failure probability of each 

type of pumps through Markov models. Then, within branching process theory, the failure probability of 

the entire system is evaluated. Numerical applications amplify the outcomes by evaluating: (i) the 

probability of ultimate extinction of the system and the expected number of working components, (ii) the 

failure probability for every month during a year, both for each type of pumps and the entire unit. 
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3.1. System description. 

The heart of a petrochemical industry is the refinery, which usually consists of multiple and 

complex systems with various operations. Fluid moving machines, such as compressors and pumps, add 

energy to a system and transfer the proper amount of gas and fluids, respectively, through pipelines. 

Pumps are considered as a very important part of these industries and several types of them are broadly 

used (Azadeh, Ebrahimipour and Bavar (2009); Chaudhuri (2010)). Centrifugal and positive displacement 

pumps are two of the principal types of pumps (Chaudhuri (2010)). 

 

Figure 5. Construction of the pump system (unit). 

In petrochemical industries, where the equipment is constantly exposed to weather conditions 

and dirt, the damage is inevitable. The risk of damage is higher for some equipment, like pumps that 

impulse liquid, due to their nature. For instance, the positive displacement pumps that are run by sticky 

fluids, could be completely corrupted due to cylinder or piston damage (Chaudhuri (2010)). According to 

Azadeh et al. (2009), the majority of failures in a plant are correlated to comphressors, piping and pumps. 

However, these industries are familiarized with concepts like maintainability or availability and have 

already adopt maintenance strategies (Azadeh, Ebrahimipour and Bavar (2009)). 

This paper deals with a unit consisting of pumps located in a large-scale plant and classified in 

three types: 8 vertical centrifugal pumps with multiplier (type 1), 12 horizontal centrifugal pumps (type 2) 

and 2 positive displacement pumps (type 3). Each pump, in any type, comes along with its spare pump, 

for instance in type 1 there are 4 main and 4 spare pumps etc. In addition, each set of main and spare 
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pumps is considered as a component. Figure 5, shows in detail the examined system. The unit requires 

only 4, 6 and 1 pumps of each type respectively to operate. However, in a refinery where the production 

is continuous, the availability of the units and consequently of the pumps is essential. Thus, spare pumps, 

which are initiated by the time the main pumps fail, are of great necessity. However, despite 

redundancies, a failure free system operation is not guaranteed. 

 

3.2. Mathematical modeling and formulation. 

Our aim is to model a real system with scope to study main principles of systems reliability theory. 

The primary pursuit is to propose a model that uses a classical approach of Markov processes to identify 

the current situation of the system, and the alternative methodology of branching processes to predict 

future situation and potential failures. So, the proposed model is based on two main pillars, the Markov 

processes, and the branching processes. 

3.2.1. Markov model. 

Given that raw data consist of the times that a failure occurs between same-type pumps and the 

corresponding repair times, we grouped data by the nature of the failures in order to estimate via the use 

of Maximum Likelihood Estimators (MLE) the mean time between failures and the mean time to repair a 

failure that is caused by a specific failure of pump. Consequently, we estimated 𝜆̂𝑖, 𝜇̂𝑖 for every type of 

pumps, where i stands for every possible failure. 

Each type of pumps is attached with i pairs of 𝜆𝑖 and 𝜇𝑖, where i=1,2,3,4,5 is related to the possible 

failed pump’s state. If n defines the number of possible failures of a same-type pump and each state is 

related to failures, then every pump could be in n+1 states. State 0 represents the operational state of a 

pump, though in states 1, 2, …, n the pump is non-operational due to a certain type of failure. Based on 

experts’ opinion centrifugal pumps (vertical and horizontal) are characterized by five main failures/repairs 

and positive displacement pumps by four. 

Vertical centrifugal pumps (type1): gear box, seal, check valve, general repair and other. 

Horizontal centrifugal pumps (type2): gear box, seal, general repair, cobbler and other. Positive 

displacement pumps (type3): filter, general repair, ball bearing, cobbler. “General repair” and “other” 

depict respectively sets of major and minor failures that occurred together. Figure 6, incorporates all the 

aforementioned information. 

We define as state probabilities 𝜋𝑖(𝑡), 𝑖 ∈ 𝑆 for any 𝑡 ≥ 0 as applies in equations (14), (15) : 

  𝜋𝑖(𝑡) = 𝑃(𝑋(𝑡) = 𝑖) (14) 

∑ 𝜋𝑖(𝑡)𝑖∈𝑆 = 1 (15)  

where {𝑋(𝑡), 𝑡 ≥ 0} is a continuous time Markov process with state space 𝑆. 
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Figure 6. State transition diagrams of type 1, type2, type 3. 

The estimation of 𝜋𝑖(𝑡) is usually rough. However, since the examined unit is designed to 

operate continuously in time, we are mainly interested in deriving the asymptotic state probability 

distribution 𝛑 = [𝜋𝟎, 𝜋𝟏, … ] by solving the following system of linear equations : 

     𝝅𝑸 = 𝟎 

                                                                                         ∑𝜋𝑖
𝑖∈𝑆

= 1                                                                            (16) 

where 𝑸 is the rate transition kernel among system states. The relation shown in equation (17) provides 

the failure probability of each pump according to stationary distribution. These probabilities are needed 

for calculating failure probabilities and reliability of components for every type of pumps by using 

equation (18) and (19), based on reliability theory (Frankel (1984)). 

                                                                                            𝑝𝐹𝑎𝑖𝑙 = 1− 𝜋0                                                                (17) 

                                                                                        𝑝𝑓𝑎𝑖𝑙 𝐶𝑖 = 1 − 𝑝𝑓𝑎𝑖𝑙
2                                                          (18) 

                                                                                    𝑅𝐶𝑖 = 1− (1 − 𝑝𝑓𝑎𝑖𝑙𝐶𝑖
 )2                                                     (19) 

where 𝑝𝑓𝑎𝑖𝑙 𝐶𝑖, 𝑖 = 1, 2, 3 is the failure probability for a set of a main and a spare pump connected in 

parallel (thereafter called component) for pumps of type 𝑖. The estimation of the probability to have 

0, 1, 2, … components available (𝑝𝑖 , 𝑖 = 0, 1, 2, ..) arises from binomial distributions. 
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3.2.2. Branching model. 

Branching processes are often used to model physical systems in which an individual lives for a 

unit of time and by its death produces n identical copies of itself. So, any individual gives rise to a family 

size, where family sizes are independent and identically distributed random variables (i.i.d) (Fazlollahtabar 

et al. (2018)). Note that, two major issues are important to discuss considering populations: the expected 

number of population size and the extinction (Athreya and Ney 1972). 

Considering that instead of individuals our population consists of sets of pumps, the probability 

of extinction will determine the probability that the system stops working, while the expected number of 

population size will define the expected number of available pumps. If we have n available pumps in 𝑘𝑡ℎ 

time period, then in (k+1) time period we will have 𝑋1 + 𝑋2 +⋯+ 𝑋𝑘 available pumps, where 𝑋𝑘 are i.i.d 

random variables. We define the probability that the system stops working at 𝑘𝑡ℎ period as 𝑑𝑘. In order 

for the system to stop working in period k, one component should die at least in the (k-1) period. Thus, 

we determine 𝑑𝑘 by equation (20) and reform it in equation (21): 

                                                                       𝑑𝑘 = (𝑝0 + 𝑝1 + 𝑝2 +⋯ ) + 𝑝𝑖𝑑𝑘−1
                                              (20) 

                                                                                          𝑑𝑘 = ℎ(𝑑𝑘−1)                                                                   (21) 

For estimating the probability of ultimate extinction d, and as 𝑑𝑘 tends to 𝑑, we need to solve 

Eq. (22). 

                                                                                            𝑑 = ℎ(𝑑 )                                                                         (22) 

Since we are interested in the probability of extinction, 𝑑 is detected as the smallest positive root 

(as it is referred in sub-section 2.2) of equation (22). For instance, for the system that it is addresses, the 

generating functions for each type are formed respectively as follows: 

                                                            ℎ(𝑑𝑡1) = (𝑝0 + 𝑝1 + 𝑝2 + 𝑝3) + 𝑝4𝑑𝑡1
                                                    (23) 

                                                            ℎ(𝑑𝑡2) = (∑ 𝑝𝑖
5

𝑖=1
) + 𝑝6𝑑𝑡2                                                                     (24) 

                                                            ℎ(𝑑𝑡3) = 𝑝0 + 𝑝1𝑑𝑡3                                                                                     (25) 

where 𝑑𝑡𝑖 , 𝑖 = 1, 2, 3 is the extinction probability of each subset. Τhe probability of extinction 𝑑, for the 

entire system, according to reliability theory for components linked in series, is estimated by equation 

(26) (Frankel (1984)): 

                                                          𝑑 = 1 − (1 − 𝑑𝑡1)(1 − 𝑑𝑡2)(1 − 𝑑𝑡3)                                                        (26) 

In addition, the derivate of probability generating function is used to calculate the expected 

number of working pumps (𝑚) (Athreya and Ney (2004)). For the pump system, the equations that give 

the expected number of working pumps for each set are formed as follows: 

                                                                                          𝑚1 = 𝑝4                                                                              (27) 
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                                                                                          𝑚2 = 𝑝6                                                                              (28) 

                                                                                          𝑚3 = 𝑝1                                                                              (29) 

According to the relevant literature, the expected size of a population (m) could be used as a 

measure to categorize a branching process into cases and predict the future condition of the system, as 

follows (Athreya and Ney (2004); Haccou et al. (2007)): 

• If 𝑚 > 1, then 𝑑 < 1 extinction is not guaranteed (supercritical case) 

• If 𝑚 < 1, then 𝑑 = 1 extinction is guaranteed (sub-critical case) 

• If 𝑚 = 1, then 𝑑 = 1 : extinction is not guaranteed unless the family size is constant to 1 (critical 

case) 

 

3.3. Numerical application and results. 

Initially, we set the Markov model of each type of pumps according to mathematical formulation. 

The aim of this modelling approach is to obtain the steady-state probability distribution and eventually 

the failure probability for each pump of every type. In order to have a definite formatting of the models, 

we have to estimate the failure rate 𝜆, the repair rate 𝜇, and illustrate the transition diagrams for every 

pump type (Figure. 2). Table 1 presents the failure and repair rates that are estimated according to 

mathematical formulation and additionally to Fig. 2, provides a comprehensive view of the system. 

Based on the models for the three subsystems, we can calculate through equations (15) and (16) 

the steady-state probabilities 𝜋𝑖, where i=0,1,2,3,4,5 corresponding to the systems’ states. Table 2 

presents the steady state probability distribution for each type of pumps. 

According to this analysis, type 1, 2 and 3 pumps operate with probabilities 0.884, 0.9686 and 

0.99431 respectively. Thus, we can now evaluate the failure probability of any pump, by the corresponding 

formulas in equation (17). Consequently, a vertical centrifugal pump (type1) fails with probability 0.1776, 

a horizontal centrifugal pump (type2) fails with 0.0314 and a positive displacement pump fails with 

probability 0.0057. In addition, Table 3 presents the failure probability and reliability of a component for 

all types of pumps according to equation (18) and equation (19) respectively, crucial elements in order to 

evaluate the probability to have i working components. 

 

3.3.1. The probability of ultimate extinction. 

The probability of ultimate extinction and the expected size of population are two of the most 

critical information that can be extracted from a branching process application. Based on these measures 

we can predict the future condition of the system with satisfying accuracy. The output data provided by 

the Markov analysis are the failure probabilities for each pump, classified by their type. Recall that every 

pump of type 1, 2, 3 fails with probabilities calculated by equation (17). 
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Recall also that we have 8 pumps of type 1, 12 pumps of type 2, and 2 pumps of type 3, where 

the unit requires 4, 6 and 1 operational pumps respectively. By the time a main pump fails, its spare pump 

starts working immediately (we assume perfect control switch among the primary and the spare pumps). 

It is irrelevant if the functioning pumps are all main, spare or a combination of them as long as the 

aforementioned requirement is met. 

We then define as a set, the pumps of the same type, so set 1 refers to pumps of type 1 and so 

on. The probability needed to calculate the probability of ultimate extinction for each set of pumps is the 

probability to have 0, 1, 2,… working components, which is referred as 𝑝𝑖, for 𝑖 = 0,1,2,3,4,5,6, where i is 

the number of working components. These probabilities are calculated based on binomial distribution 

and presented in Table 4.  

 

Table 1. Failure and repair rates (per month) of the system, where i=1,2,3,4,5. 

Type 1 Type 2 Type 3 

𝜆̂𝑖 𝜇̂𝑖  𝜆̂𝑖 𝜇̂𝑖 𝜆̂𝑖 𝜇̂𝑖 

0.088 2.31 0.1 12.3 0.0047 30.43 

0.087 5.67 0.133 14.2 0.0046 30.43 

0.114 22.8 0.031 4.95 0.0163 6.09 

0.17 1.88 0.02 30.4 0.0167 6.09 

0.513 7.73 0.126 14.9   

 

 

Table 2. State probabilities 𝜋𝑖, for each type of pumps. 

 Type 1 Type 2 Type 3 

𝜋0 0.8224 0.9686 0.99431 

𝜋1 0.02616 0.0079 0.000153 

𝜋2 0.01265 0.0091 0.000151 

𝜋3 0.0041 0.0055 0.002663 

𝜋4 0.07479 0.0006 0.002724 

𝜋5 0.05463 0.0082 - 
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Table 3. Reliability and failure probability of a component for each type of pumps (𝑅𝐶𝑖  and  

𝑃𝑓𝑎𝑖𝑙,𝐶𝑖  , where 𝑖 = 1,2,3). 

 Type 1 Type 2 Type 3 

𝑝𝑓𝑎𝑖𝑙𝐶𝑖 0.03154176 0.00098596 0.0000324 

𝑅𝐶𝑖  0.062088637 0.001970948 0.0000648 

 

 

Table 4. Probabilities of i working components for each type. 

 Type 1 Type 2 Type 3 

𝑝0 0.773832898 0.988232429333 0.9999352 

𝑝1 0.204907338 0.0117096067109 0.0000648 

𝑝2 0.020346939 5.78115048∙ 10−5  

𝑝3 8.9796∙ 10−4 1.52224644∙ 10−7  

𝑝4 1.4861∙ 10−5 2.2546451∙ 10−10  

𝑝5  1.7810255∙ 10−13  

𝑝6  5.862068∙ 10−17  

 

Each set of pumps could possibly have 4, 6 and 1 components maximum, working at a time, thus 

empty columns appear in Table 4. To evaluate the probability of ultimate extinction for every type, three 

generating functions, one for each type respectively, are formed as in equations (23), (24) and (25). Solving 

equation (22) by integrating equations (23), (24) and (25), provides the smallest positive real solution as 

probabilities of extinction for each set of pumps. So, 

𝑑𝑡1 = 𝑑𝑡2 = 𝑑𝑡3 = 1 

and 𝑑 = 1, based on equation (26). Knowing d for each type of pumps enables us to simply evaluate the 

expected number of working pumps by using the derivatives of equations (27), (28), and (29). Therefore, 

the expected number of type 1, 2, 3 working pumps is: 

𝑚1 = 0.00001486 

𝑚2 = 5.86206788 ∙ 10
−17 

𝑚3 = 0.0000648 
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Values of probability of extinction for each type seem reasonable as we observe a non-maintained 

unit in infinity. As it was predicted, the expected number of working components remains small, as long 

as the probability of ultimate extinction of the unit is high. In addition, these results conform to branching 

process theory, which indicated that if 𝑚 < 1, then the extinction is guaranteed. A supplementary 

approach, analyzed in subsection below, will provide an intuitive idea of the future condition of the unit. 

3.3.2. Failure probability during a year. 

A reasonable question now that the probability of ultimate extinction is known, is what happens 

to the system in shorter time intervals? This approach adds information about the unit because it aims to 

demonstrate the impact of the time to the entire system. Failure probabilities for every type in 12  time 

units (1 year) are presented in Table 5-7 and illustrated in Figures 7-9. The entire system stops working 

when one component stops operating. Thus, the probability of the system to stop working arises by 

equation (26) that evaluates the probabilities of three types for 12 time periods. Table 8 presents the 

results and Figure 10 illustrates them in a bar-chart.  

By Tables 5-8, we observe that after one period the probability of each subsystem remains stable 

to 1 and subsequently corresponding probability of the unit is 1 for the entire year. The main reason of 

this impact is that the initial probabilities are too low. Despite that, this approach stands useful because 

it offers an easy and fast identification of the time that the maintenance of the system, or subsystems, 

should be applied and slightly supports decisions about which maintenance strategy to adapt for this unit. 

For instance, pumps of type 1 and 3, which in first three months have probability to fail lower than 1, may 

be excluded from a shutdown project of preventive maintenance in a scenario where other equipment is 

more critical, because it seems that small/routine proactive maintenance actions are enough for the 

smooth operation of the unit.  

Table 5. Failure probability of type 1 during a year. 

Period 

Probability of type 1 

components stop 

working  

1 0.999985138983549 

2 0.999999999779150 

3 0.999999999999997 

4 1. 00000000000000 

5 1. 00000000000000 

6 1. 00000000000000 

7 1. 00000000000000 

8 1. 00000000000000 

9 1. 00000000000000 

10 1. 00000000000000 

11 1. 00000000000000 

12 1. 00000000000000 
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Table 6. Failure probability of type 2 during a year. 

Period 
Probability of type 2 

components stop working  

1 1. 00000000000 

2 1. 00000000000 

3 1. 00000000000 

4 1. 00000000000 

5 1. 00000000000 

6 1. 00000000000 

7 1. 00000000000 

8 1. 00000000000 

9 1. 00000000000 

10 1. 00000000000 

11 1. 00000000000 

12 1. 00000000000 

 

Table 7. Failure probability of type 3 during a year. 

Period 
Probability of type 3 

components stop working 

1 0.99993520000000 

2 0.99999999580096 

3 0.99999999999973 

4 1. 0000000000000 

5 1. 0000000000000 

6 1. 0000000000000 

7 1. 0000000000000 

8 1. 0000000000000 

9 1. 0000000000000 

10 1. 0000000000000 

11 1. 0000000000000 

12 1. 0000000000000 
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Table 8. Failure probability of system during a year. 

Period 
Probability of the unit stop 

working  

1 1. 00000000000 

2 1. 00000000000 

3 1. 00000000000 

4 1. 00000000000 

5 1. 00000000000 

6 1. 00000000000 

7 1. 00000000000 

8 1. 00000000000 

9 1. 00000000000 

10 1. 00000000000 

11 1. 00000000000 

12 1. 00000000000 

 

 

 

Figure 7. Probabilities bar chart of type 1 pumps. 
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Figure 8. Probabilities bar chart of type 2 pumps. 

 

 

Figure 9. Probabilities bar chart of type 3 pumps. 

 

 

Figure 10. Probabilities bar chart of the entire system. 
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3.3.3. Application overview and results discussion. 

This application considers reliability analysis of a plant unit consisting of mechanical repairable 

through branching process modelling. The system is constructed in sets that represent types of main and 

spare pumps, where each set is considered as a component. A Markov model was built to process raw 

data from industry and set the basis for the branching model. The probability of ultimate extinction that 

was evaluated both for each type of pumps and the entire unit, the probability of extinction for 12 time 

units (1 year) and the expected number of working components could be used as reliability measures to 

predict future potential conditions of the system. 

The proposed approach is suggested for the reliability analysis of large-scale units consisting of single or 

multi-type equipment, because comparing to other stochastic models it is simpler and provides reliable 

results while minimizes the computational effort. Thus, we conclude that the contribution of this 

analysis is beneficial for maintenance departments, because supports maintenance decisions and 

slightly offers scope optimization of industrial maintenance projects. 
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Chapter 4: A Branching Process model for the novel 

coronavirus (covid-19) spread in Greece. 

Coronavirus disease 2019 (covid-19) is an infectious disease caused by severe acute respiratory 

syndrome (SARS). It was initially detected in December 2019 and has been rapidly spread globally inducing 

the ongoing pandemic (Ndaïrou, et al. (2020)). This novel coronavirus pandemic is deliberated as the 

biggest worldwide threat and on January 30th, 2020 World Health Organization (WHO) advocated that this 

new situation is a Public Health Emergency of International Concern, because of the thousands infected 

cases that were reported and deaths around the globe (Ndaïrou, et al. (2020); Ivorra, et al. (2020)). In 

particular, by April 1st, 2020, 872,481 confirmed cases and 43,275 deaths were reported (Ivorra, et al. 

(2020)). The first case in Greece was confirmed on February 26th (2020) and by April 21st, 2,401 cases and 

121 deaths were reported, even though health and state authorities had applied small-scale control 

measures, such as the suspension of educational institutions and the closing of cafes, bars, restaurants 

sports facilities etc. (NPHO (2020)). On March 22nd, the Greek government announced a general lockdown 

with movement restrictions and after 42 days of quarantine, when the number of daily reported cases 

decreased to 10, state authorities gradually repealed the restrictions (NPHO (2020)). These control 

measures, that were among the strictest in Europe, were initially considered as highly effective and 

whereas the pandemic was internationally ongoing, the case of Greece was treated as a success story 

(Tugwell and Nikas (2020)). However, at the time of this revision the numbers have been increased to 

82,034 total cases and 1,288 deaths. These fluctuations on numbers attract the interest of researchers to 

model the transmission of the virus to evaluate and quantify the dynamic of the pandemic (Ndaïrou, et 

al. (2020)). 

 Mathematical models of infectious disease transmission effectively describe and simply depict 

the evolution of diseases by providing quantitative data in epidemiology (Ivorra, et al. (2020); Wang 

(2020); Ahmed, et al. (2020)). Moreover, using mathematical and statistical tools enables to conduct long 

or short-term forecasts about the spread in population so to support decisions of intervention strategies, 

outbreak and healthcare management and policy development (Ivorra, et al. (2020); Wang (2020); 

Ahmed, et al. (2020); Overton, et al. (2020)). There exist several mathematical models in epidemiology, 

starting from the simple S-I-R models (Susceptible-Infected-Recovered models), to S-E-I-R models 

(Susceptible-Exposed-Infected-Recovered models), to more complex proposals (Allen, Jang and Roeger 

(2017); Ndaïrou, et al. (2020); Wang (2020)). A classical approach of data analytics of virus transmission is 

described by Galton-Watson branching process and a promising approach that uses advanced 

mathematical modelling to connect models with machine learning was introduced by Yang et al. (Wang 

(2020); Cruz (2020); Yang, et al. (2020)). However, the majority of analyses focus on human-to-human 

transmission and this implies two important limitations (Wang (2020); Cruz (2020); Helmy, et al. (2020)):  

1. contact tracing data are required and data availability in such emerging cases is limited. 

2. the assumption that transmission rates are considered as fixed for mathematical analysis 

simplicity seems unrealistic. 

The main goal of this application is to develop a simple mathematical model using branching 

processes in order to analyze the initial and latter stages of the outbreak of covid-19 in Greece and 
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evaluate crucial epidemiological indicators such as the reproduction number and the probability of 

extinction of the transmission. Finally, through an exponential smoothing model, in a complete absence 

of control measures a scenario is developed in order to effectively describe the virus transmission in case 

of Greece and discuss the effectiveness of control measures. 

 

4.1. Branching epidemiology model. 

A branching process approach is considered as classical approximation for epidemics (Lange 

(2010)). In addition, whereas the number of infected people is small, it is believed that people behave 

independently, hence branching processes can sufficiently model early stages of an epidemic (Lange 

(2010)). If an infected individual causes 0, 1, 2, … new infections with probabilities 𝑞0, 𝑞1, 𝑞2, …, then the 

progeny generating function is formed as 𝑄(𝑠) = 𝑞𝑘𝑠
𝑘 and represents the offspring distribution, where 

𝑞𝑘 is the probability that an infected individual causes 𝑘 new infections, in a total susceptible population, 

before s/he dies or recovers from the infection (Lange (2010); Blumberg, Funk and Pulliam (2014)). It is 

proven that a two-parameter offspring distribution is more beneficial over one-parameter distribution to 

model large datasets of infectious diseases, because in such a case the model depicts better the actual 

transmission of the virus assuming the adaption of the parameters (White and Pagano (2008)). Thus, 

generally it is considered that the offspring distribution is a negative binomial distribution with parameters 

(𝑅0, k) (Blumberg and Lloyd-Smith (2013); Zhang, Ye and Lord (2019)). To that side, assuming that variable 

𝑋 refers to a sample of counts of infected cases, the pdf of X is formed as shown in equation (30) and 

consequently the progeny function is formed as shown in equation (31)  (Blumberg and Lloyd-Smith 

(2013); Zhang, Ye and Lord (2019)): 

                                                       𝑃(𝑋 = 𝑥) =
𝛤(𝑥 + 𝑘)

𝑥! 𝛤(𝑘)
(
𝑅0

𝑅0 + 𝑘
)
𝑥

(
𝑘

𝑅0 + 𝑘
)
𝑘

                                              (30) 

𝑤𝑖𝑡ℎ 𝛤(𝑧) = ∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡
∞

0

 

                                                                       𝑄(𝑧) = (1 +
𝑅0
𝑘
(1 − 𝑧))−𝑘                                                              (31) 

The basic reproduction number, 𝑅0, is the average number of secondary cases infected by one 

individual in a total susceptible population, and k is the dispersion parameter which measures the 

transmission heterogeneity of the virus (Zhang, et al. (2020)). In fact, the dispersion parameter as a 

transmission heterogeneity measure, quantifies the variability in the number of secondary cases and 

could be described as a measure for the impact of the superspreading events (lower values of k signifies 

higher heterogeneity and higher impact of superspreading events) (Zhang, et al. (2020); Riou and Althaus 

(2020)). However, according to the relevant literature, the offspring distribution is additionally formed as 

a Poisson or a geometric distribution, which are nested cases of the negative binomial distribution, with 

𝑘 → ∞ and 𝑘 → 1 respectively (Blumberg and Lloyd-Smith (2013); Waxman and Nouvellet (2019)). 

As it is already mentioned, the expected number of population size and the probability of 

extinction are considered as crucial information about the evolution of a population. Moreover, taking 
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into account that we focus on the spread of a disease, the expected number of population size stands for 

𝑅0 and the probability of extinction refers to the extinction of transmission. Thus, if 𝑧 is the extinction 

probability, then (1 − 𝑧) is the probability of an outbreak. According to branching processes theory, in 

order to estimate the probability of ultimate extinction 𝑧, we need to solve equation (32): 

                                                                                         𝑄(𝑧) = 𝑧                                                                             (32) 

Since we are interested in the probability of extinction, 𝑧 is detected as the smallest positive root 

of equation (32) and the derivate of the probability generating function is used to calculate the expected 

population size. However, in order to compute the probability of extinction, we need to estimate the 

parameters 𝑅0 and 𝑘 firstly, because these parameters are critical elements of the probability generating 

function (equation (30)), and secondly because 𝑅0 is a typical threshold to detect the transmissibility and 

determines the epidemic potentiality of virus in the absence of control measures (WHO (2003)). More 

precisely, if the basic reproduction number is 𝑅0 > 1, in a total susceptible population, then eventually 

an epidemic occurs; contrariwise, if 𝑅0 < 1, the transmission is self-limited and if 𝑅0 =1, the state is 

characterized as endemic (endemic equilibrium) (Delamater, et al. (2019); De Serres, Gay and Farrington 

(2000)).  

Similar to the basic reproduction number 𝑅0, 𝑅𝑒𝑓𝑓  is the effective reproduction number, that 

represents the average number of secondary infected cases under control measures (WHO (2003)). 

Likewise 𝑅0, 𝑅𝑒𝑓𝑓  determines the epidemic potentiality of virus, but under control measures. Consider an 

epidemic scenario where an outbreak of a virus starts. In the initial stages there is absence of mitigate 

interventions and as the transmission continues, the government decides to adapt control measures (such 

as quarantine or massive vaccination etc.) in order to limit the spread of the disease. In fact, the 

government attempts to reduce an 𝑅0 > 1 to an 𝑅𝑒𝑓𝑓 < 1 to bring the outbreak under control. So, we 

can intuitively assume that as long as the basic reproduction number categorizes the spread of a virus as 

an epidemic or not, the effective reproduction number evaluates measures’ effectiveness (WHO (2003)). 

Despite the fact that the reproduction number is evaluated differently, the entire process for estimating 

the probability of ultimate extinction remains identical. 

4.1.1. Estimating the parameters: 𝑹𝟎, 𝑹𝒆𝒇𝒇, 𝒌. 

Considering a population consisting of particles that are able to reproduce independently 

(offspring) and a typical predecessor i could produce 𝑁𝑖 ancestors, then 𝑋𝑔 is the size of gth generation, 

where 𝑔 = 0, 1, 2, … , 𝐺 for the first G generations and 𝑋𝑔 can be computed as the sum of all offspring that 

each particle produced a generation before (𝑋𝑔 = ∑ 𝑁𝑖
𝑋𝑔−1
𝑖=0

). Then, the described process is a discrete 

time branching process and 𝑁𝑖 are independently and identically distributed (i.i.d) random variables. In 

addition, the process 𝑋𝑔, {𝑋𝑔: 𝑔 = 0, 1, 2, … , 𝐺}, has the Markov property, that is the value of 𝑋𝑔 depends 

only on 𝑋𝑔−1 (Yan and Chowell (2019)). One of the major properties that arises form branching process 

theory is that 𝑅0 = 𝐸[𝑁𝑖]. This property along with the Markovian property of the process lead to an 

efficient estimator for 𝑅0, the Harris estimator (White and Pagano (2008); Yan and Chowell (2019)): 

                                                                                   𝑅0̂ =
∑ 𝑋𝑔
𝐺
𝑔=1

∑ 𝑋𝑔−1
𝐺
𝑔=1

                                                                      (33) 
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However, in the relevant literature there exist several methods to estimate basic reproduction 

number 𝑅0, such as the Maximum Likelihood Estimator (MLE) (Obadia, Haneef and Boëlle (2012)). Despite 

the fact that the notions of 𝑅𝑒𝑓𝑓  and 𝑅0 are close, their evaluation differs. In order to allow the calculation 

of 𝑅𝑒𝑓𝑓, the referring population should be divided into chains or clusters of transmission and in some 

cases contacting data are needed (Blumberg, Funk and Pulliam (2014)). Nevertheless, a common obstacle 

for researchers that conduct studies for diseases and spread of viruses such as the corona virus that causes 

severe respiratory syndrome (SARS), is the lack of data (Helmy, et al. (2020)). In this approach, due to 

limited data availability, we consider one cluster with a limited number of chains. Thus, we assume that 

the entire cluster has only one 𝑅𝑒𝑓𝑓  (and 𝑘, which constitute the cluster’s parameters), is evaluated as 

follows: 

                                                                                   𝑅𝑒𝑓𝑓 = 𝑘 (
1

𝑝
− 1)                                                                   (34)  

where 𝑘 is the dispersion parameter and p is the scale parameter of the negative binomial distribution of 

𝑋𝑔. The smoothest way to evaluate the parameters of a negative binomial distribution is by using the 

method of moments (Method of Moments Estimator-MME), where by equating the sample mean 𝑦̅ to 

the population mean μ, and the sample variance 𝑆2 to the population variance 𝜎2, the dispersion and 

scale parameter are estimated through data by solving equations (35) and (36) respectively (Al-

Khasawneh (2010)): 

                                                                                        𝑘 =
𝑦̅2

𝑆2 − 𝑦̅
                                                                          (35) 

                                                                                        𝑝 =
𝑆2 − 𝑦̅

𝑆2
                                                                          (36) 

Despite the fact that this approach simply and effectively evaluates dispersion parameter through 

data, it is proven that several limitations appear, such as (Al-Khasawneh (2010)): 

• If the sample variance is higher than the sample mean, then k is very large. 

• If the sample variance is less than the sample mean, then k is negative. 

• If the sample variance equals the sample mean, then k is not defined. 

4.2. Numerical application: the case of Greece. 

The first imported case of COVID-19 in Greece was confirmed on February 26th, when an individual 

came back from a visit to Northern Italy. Most of the subsequent cases in February and early March were 

related to people that had been to Italy, Israel and Egypt or their contacts. Until the 22nd of March, when 

Greek government announced a general lockdown, 624 cases and 2 deaths were reported. The basic 

reproduction number in March 22nd was estimated to 𝑅0 = 1.18 according to (3). Table 9 and Figure 11 

present all reproduction number from the 27th of February to the 22nd of March. 
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Figure 11. Reproduction numbers from 27th February to March 22. 

 
Table 9. Reproduction numbers from 27th February to March 23. 

Date R0 95% CI k 

27/2/20 3  

0.74 

28/2/20 1.33 (-1.06 , 3.72) 

29/2/20 1.75 (0.6 , 2.9) 

1/3/20 1 (-0.42 , 2.42) 

2/3/20 1 (0.01 - 2.01) 

3/3/20 1 (0.1 , 1.9) 

4/3/20 1.29 (-0.59 , 1.98) 

5/3/20 3.44 (-0.02 , 6.9) 

6/3/20 1.45 (-0.03 , 2.93) 

7/3/20 1.47 (0.14 , 2.79) 

8/3/20 1.1 (-0.38 , 2.58) 

9/3/20 1.15 (-0.15 , 2.45) 

10/3/20 1.06 (-0.23 , 2.35) 

11/3/20 1.11 (-0.04 , 2.26) 

12/3/20 1.18 (0.15 , 2.21) 

13/3/20 1.6 (0.14 , 3.06) 

14/3/20 1.2 (0.15 , 2.25) 

15/3/20 1.45 (0.33 , 2.57) 

16/3/20 1.06 (-0.21 , 2.33) 

17/3/20 1.1 (-0.02 , 2.22) 

18/3/20 1.08 (-0.03 , 2.19) 

19/3/20 1.11 (0.1 , 2.12) 

20/3/20 1.07 (0.04 , 2.1) 

21/3/20 1.07 (0.08 , 2.06) 

22/3/20 1.18 (0.99 , 1.37) 
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As it can be obtained in Table 9, the basic reproduction number is firmly greater than 1 for the 

entire period before quarantine. More precisely, the day of the announcement of the quarantine, 𝑅0 was 

estimated to 1.18 (95% CI: (0.99, 1.37)) according to equation (33), the dispersion parameter k was 0.74 

according to equation (35) and based on these, the probability of spread extinction was estimated to 0 

according to equation (32). To this side, the probability of an outbreak was 1, a fact that according to the 

relevant branching processes literature, advocates the adoption of mitigation measures such as a general 

lockdown and quarantine. Greek government, through these measures, attempted to reduce the basic 

reproduction number to 𝑅𝑒𝑓𝑓 < 1, so to bring the outbreak under control.  

In order to use branching processes for the estimation of 𝑅𝑒𝑓𝑓, the population was divided into 

clusters/chains of transmission. We assume that Greece is considered as one cluster and each region as 

one transmission chain. In fact, due to limited data availability, we presume that the entire Greece 

composes one cluster consisting of 13 transmission chains, one for each region. Figure 12 depicts the 

percentage geographical distribution of total cases per region through quarantine period. 

 

 

Figure 12. Geographical distribution of total cases per region during quarantine period. 

 

By the end of quarantine, the 4th of May that the new cases per day were under 10, the effective 

reproduction number 𝑅𝑒𝑓𝑓  was estimated to 0.0003 (95% CI: (-6.7 , 6.7)) according to equation (34) which 

indicates that the number of secondary infections caused by one infected individual is noticeably reduced 

and the dispersion parameter (k) was 0.23. According to the new estimation of the parameters, the 

probability of the spread extinction was 1, an approximation that forces the probability of an outbreak to 
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be 0. These findings prove that the general lockdown was a highly effective measure so to control a 

general spread of the virus. 

However, the available data, from National Public Health Organization (NPHO) of Greece for the 

summer period, revealed a different evolution of the virus transmission despite the fact that Greek 

government has done smaller mitigation interventions such as the closing of bars and restaurants at 

12p.m. and the extensive usage of masks. More precisely, by the end of the summer period almost 300 

new cases per day were reported. Repealing the general lockdown along with the opening of country’s 

borders and allowing the normal operation of stores relieved Greek economy but led to an uncontrolled 

rise of the transmission, brought new imported cases and transmission chains roughly detected. Within 

this widespread of corona virus in Greece during summer period, data was noisy and deprived models’ 

accuracy. This scenario could have been seen in the complete absence of initial control measures. Thus, 

in order to scheme an assumptive state of the virus transmission in which no mitigation actions were 

adopted, we conduct an additional analysis. 

 

4.2.1. The non-mitigation scenario. 

 
Figure 13. Real data of reported new cases of corona virus transmission without mitigation actions. 

 

 

A simple Exponential Smoothing (ETS) model is used to forecast the transmission of corona virus 

in Greece in total absence of control measures. This model is actually used in order highlight the necessity 

and the effectiveness of quarantine measures. Real data, from the initial phase of the transmission (Figure 

13) in Greece until the 23th of March, was the pillars of the model and the output is presented in Table 10 

as new cases per day for the period: 24th of March to 31st of May. According to this approach, by the end 

of May there would be 247 new cases per day and the total cases are estimated to be close to 10,000. The 
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outputs underline that in the total absence of control measures, the virus transmission would tend to be 

uncontrollable since the number of new cases per day increases importantly. 

 
Table 10. Forecasting of new cases/day using Exponential Smoothing (ETS). 

Date New cases/day (fcst) Date New cases/day (fcst) 

24/3/20 67 28/4/20 159 

25/3/20 69 29/4/20 162 

26/3/20 72 30/4/20 164 

27/3/20 75 1/5/20 167 

28/3/20 77 2/5/20 170 

29/3/20 80 3/5/20 172 

30/3/20 82 4/5/20 175 

31/3/20 85 5/5/20 178 

1/4/20 88 6/5/20 180 

2/4/20 90 7/5/20 183 

3/4/20 93 8/5/20 186 

4/4/20 96 9/5/20 188 

5/4/20 98 10/5/20 191 

6/4/20 101 11/5/20 194 

7/4/20 104 12/5/20 196 

8/4/20 106 13/5/20 199 

9/4/20 109 14/5/20 201 

10/4/20 112 15/5/20 204 

11/4/20 114 16/5/20 207 

12/4/20 117 17/5/20 209 

13/4/20 119 18/5/20 212 

14/4/20 122 19/5/20 215 

15/4/20 125 20/5/20 217 

16/4/20 127 21/5/20 220 

17/4/20 130 22/5/20 223 

18/4/20 133 23/5/20 225 

19/4/20 135 24/5/20 228 

20/4/20 138 25/5/20 231 

21/4/20 141 26/5/20 233 

22/4/20 143 27/5/20 236 

23/4/20 146 28/5/20 238 

24/4/20 149 29/5/20 241 

25/4/20 151 30/5/20 244 

26/4/20 154 31/5/20 246 

27/4/20 
157 

Total 

cases: 
10,800 
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Figure 15 provides a comprehensive view of the scenario in which no mitigation action was 

adopted and complies with the aforementioned assumption about the roughly controllable spread of the 

virus. In this graph, the red line depicts the forecasted new cases in a complete absence control measures 

according to the aforementioned model and the dashed lines refer to the upper/lower confidence bounds 

of the forecasted data, while the gray line shows the actual data of new cases for the same period. The 

positive slope of the red line, prove that quarantine was an efficient control measure because in the 

absence of control measures the number of new cases per day would be increased, contrarily to the 

mitigation scenario in which this number actually decreases. In addition, in order to achieve a smooth and 

clear view of the results, the data for 69 days is formed into 10-day time periods. To that side, Table 11. 

presents the alternatively formatted outputs and Figure 14 visualizes the results. 

 

       
Table 11. Forecasting of new cases/time period. 

New cases per time period 

March Period 3 678 

April 

Period 1 1,111 

Period 2 1,288 

Period 3 1,385 

May 

Period 1 1,790 

Period 2 2,054 

Period 3 2,565 

Total Cases: 10,800 

 

 

 

 

 

Figure 14. Forecasting of new cases/time period. 
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Figure 15. Graph of real data of new cases/day before and at the quarantine period till the end of May 
and forecasted new cases/day in a complete absence of control measures. 

 

 

Figure 16. Graph of real data of new cases/day from quarantine period till the end of May and 
forecasted new cases/day for the prolongation of quarantine period scenario. 
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Figure 17. Graph of real data of new cases/day and forecasted new cases/day for the prolongation of 
quarantine period scenario (May-August). 

 

However, real data of new cases per day for the summer period revealed a different evolution of 
the virus transmission despite quarantine or smaller mitigation interventions. Figure 16 shows that some 
days after repealing quarantine (4th of May) the transmission was still under control, but if quarantine was 
extended until the end of May, based on the forecast model (red line), the transmission would have 
stopped. Repealing the general lockdown along with the opening of country’s borders and allowing the 
normal operation of stores led to an uncontrolled rise of the transmission, brought new imported cases 
and transmission chains roughly detected.  

More precisely, in Figure 17 the red line refers to new cases per day in extended-lockdown 
scenario and arises as forecast based on the simple ETS model. The gray line depicts real data of new cases 
per day for the summer period. As it can be obtained, the positive slope of real data (gray line) along with 
the negative slope of the red line prove that the prolongation of quarantine would be an efficient choice 
because the number of new cases/day tends fast to zero, so the transmission of the virus would have 
been stopped. In addition, we can assume that the aforementioned smaller mitigation actions were not 
efficient enough so to set under control the transmission of corona virus, especially comparing to a general 
lockdown which was proven efficient. 

 

4.2.2. Application overview and results discussion. 

This application considers the development of a simple mathematical model using branching 

processes to analyze the initial and latter transmission stages of the covid-19 pandemic outbreak in 
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Greece. The results depict a reasonably increased 𝑅0 that implies an aggressive spread of the virus. 

However, the adopted control measures issued by health authorities and adopted by Greek government 

were proven efficient because the 𝑅0=1.18 was reduced to an 𝑅𝑒𝑓𝑓  = 0.0003. To that side, the additional 

approach of non-mitigation scenario based on Exponential Smoothing (ETS) model complies with the 

aforementioned admission. Repealing the movement restrictions and restarting business activity along 

with opening of Greek borders to tourists, so to support Greek economy, significantly raised the number 

of reported cases and led to new transmission chains roughly detected. 

The lack of available data induced to consider the entire Greece as one cluster which is a slightly 

unrealistic assumption and the major limitation of the proposed model. However, despite the limitations 

and the fact this approximation is simple, we conclude that the proposed approach is proven beneficial 

and meets the initial aims.



Applications on Branching Processes. 

 

 

 45 

Chapter 5: Conclusions and future work. 

Branching Processes are individual-based models that consider the growth of populations, whose 

individuals’ reproduction follows mathematical distributions. Thus, the systems that BPs model have a 

special construction which leads to a specific areas of research, such as biology. The main aim of this thesis 

was to study in depth this type of stochastic processes with scope to investigate how it can be applied in 

a wider variety of applications. The preveling idea was to conduct applications on alternative areas, such 

as reliability of mechanical, industrial or financial related systems, considering the existing literature. To 

this end, two different applications were examined. The first application confronded with the 

mathematical modelling through BPs of the reliability of a petrochemical industry plant unit consisting of 

pumps. However, without overlooking the aforementioned ideas, due to the sudden outbreak of the 

Covid-19 pandemic the second application refered to the coronavirus (covid-19) spread in Greece. For 

both applications the relevant literature review was discussed along with the typical branching theory of 

Galton-Watson processes. 

The first application referred to the reliability analysis of a plant unit constructed in sets of main 

and spare pumps (components). A Markov model was built to process real raw data and set the basis for 

the branching model. The probability of ultimate extinction that was evaluated both for each type of 

pumps and the entire unit, the probability of extinction for 12 time units (1 year) and the expected number 

of working components could be used as reliability measures to predict future potential conditions of the 

system. The main benefit of this approach is considered that it uses a typical approximation of Markov 

model but it estimates the reliability and the availability of a mechanical system by using the branching 

processes. Thus, we can assume that gives a contemporary perspective of the implementation system 

reliability theory.  

Discussing about the second application, that presents the development of a simple mathematical 

model used to analyze the initial and latter transmission stages of the covid-19 pandemic in Greece, the 

findings are mainly focused on the outputs of the model, because epidemics consist a typical branching 

application area. However, the emerging situation that covid-19 caused, raised the interest of scientists 

as well as of the individuals in general about the epidemic indicators such as the basic or effective 

reproduction numbers. One of the most crucial findings is the effectiveness of control measures, that 

Greek government adopted in deferent stages, which was discussed based on the outputs of the 

branching model along with the additional non-mitigation scenario ( simple Exponential Smoothing (ETS) 

model). 

Appling branching processes in biology so to create epidemiology model approximations and 

examine the spread of diseases is usual and thus it is proven that these processes compose beneficial 

approaches for that scope. However, based on the system reliability application presented in that thesis, 

we can assume that branching processes approximations could be effective as a theoretical framework 

and formulation, because it gives an idea about how to formulate real data and a branching model so to 

study the reliability of a system, as well as for maintenance departments, because supports maintenance 

decisions and provides reliable results while minimizes the computational effort comparing to other 

stochastic methods. 
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As future work the financial area is highly considered. The implementation of branching processes 

in financial engineering applications is a complicated task. As in engineering, we firstly have to investigate 

different systems and study deeply the branching processes area in order to conclude to a specific field of 

research. Financial engineering area confronts with high risk and uncertainty. Hence, modelling and 

examination of these types of systems has been of great interest in last decades, mostly because it is a 

potential way to deal with risk and uncertainty. Nevertheless, the implementation of branching processes 

in economics and financial fields is, also, poorly documented in the relevant literature. However, there is 

also a considerable work on apply BP in financial area and economics (Duffie, Filipovic and Schachermayer 

(2003); Li, Branching Processes and Applications in Macroeconomy (2017)). Stock prices and pricing in 

markets are important financial areas. Many of the prominent features of stock prices can be represented 

by a simple branching process (Epps (1996)). In addition, a study, that refers to economic development of 

product innovations as an evolutionary branching process (Frenken and Boschma (2007)), provides a 

theoretical framework of how to apply BPs on these areas and explains why is that profitable. The area of 

product innovations is always up to date and raises the interest of modern industries. Finally, considering 

the aforementioned brief analysis of the applications on that field, convey the impression that financial 

and/or financial engineering constitute promising areas of research through branching processes. 
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