
University of the Aegean

Undergraduate Thesis

Applications of Convolutional Neural
Networks in Image and Natural Language

Processing

Author: Supervisor:
Apostolos Dimoulakis Dr. Nicholaos Ampazis

Department of
Financial and Management Engineering

November 28, 2021

Abstract

In this thesis we experimentally investigate the possibility of effectively trans-
ferring properties of a Convolutional Neural Network (CNN) to another one,
where the latter one is associated with a different type of problem from the
problem which the former one solves. Tuning a deep CNN architecture for
either image or text classification can become a tedious and time consuming
task. So if there is a way in which our hypothesis is valid, then this might
be a promising way to facilitate that task. We propose an approach to the
CNN training for image and text classification, with the aim to examine that
for a given CNN which performs well in one of these two areas, it can perform
well in the other area too. We test the performances on their respective tasks
accordingly and discuss the effectiveness of such transferences. Two CNN ar-
chitectures were selected, where each is tuned for a specific image and a text
dataset respectively. Initially, in each case, we have transferred only each ar-
chitecture’s properties without taking into account the trainable parameters.
We have swapped the tasks for each of these architectures by also changing 1D
layers (e.g. 1D convolutional layer) to 2D for the training of the image classifier
and the converse for the text classifier. The results of training such modified
architectures exhibit the high performance of these models as we demonstrate
by extensive experiments.

Additionally, there was a second approach to this problem, only this time we
have invoked transfer learning techniques using trained CNNs based on the
same tuned architectures. Our experiments have showed that the target CNNs
perform as random classifiers, thus our attempt to utilize transfer learning for
this purpose has failed. It seems that part of the reason for the poor perfor-
mance for such transferences, is that the parameters which were trained on the
source dataset might not support the training on the target dataset. Further-
more, using 2D layer with small scanning shape (e.g. small filter shape in the
case of 2D convolutional layer) on text data, must be contributing to this issue
because each embedded vector represents a document’s token and producing
feature maps based on small parts of such vectors makes little sense.

i

Περίληψη

Σε αυτή την διπλωματική εξετάζουμε πειραματικά το ενδεχόμενο της αποτελεσ-

ματικής μεταφοράς ιδιοτήτων ενός Συνελικτικού Νευρωνικού Δικτύου (ΣΝΔ)
σε ένα άλλο ΣΝΔ, όπου το τελευταίο επιλύει ένα πρόβλημα το οποίο διαφέρει
από το πρόβλημα που επιλύει το πρώτο ΣΝΔ. Για την κατηγοριοποίηση εικόνας
ή κειμένου, η προσαρμογή των υπερπαραμέτρων μίας αρχιτεκτονικής ενός βα-
θιού ΣΝΔ είναι συνήθως μία κουραστική και δύσκολη διαδικασία. Οπότε, εάν
υπάρχει τρόπος μέσω του οποίου η υπόθεσή μας είναι έγκυρη, τότε υπάρχει η
δυνατότητα για την διευκόλυνση αυτής της διαδικασίας. Εξετάζουμε αν ένα ΣΝΔ
το οποίο είναι αποδοτικό σε ένα από τα δύο αυτά πεδία, είναι εξίσου αποδοτικό στο
άλλο πεδίο. Ελέγχουμε τις αποδόσεις στα αντίστοιχα προβλήματα και συζητάμε
για την αποτελεσματικότητα αυτών των μεταφορών. Δύο αρχιτεκτονικές ΣΝΔ
επιλέχθηκαν, όπου η μία είναι προσαρμοσμένη σε ένα συγκεκριμένο σύνολο δε-
δομένων με εικόνες και σε ένα με κείμενα αντίστοιχα. Αρχικά, για κάθε περίπτωση,
έχουμε μεταφέρει μόνο τις ιδιότητες της αρχιτεκτονικής χωρίς να λάβουμε υπ-

όψη μας τις εκπαιδεύσιμες παραμέτρους. Συγκεκριμένα έχουμε μεταθέσει τα
προβλήματα που αντιστοιχίζονται στις δύο αρχιτεκτονικές, με τέτοιο τρόπο ώστε
εάν η Αρχιτεκτονική Α αντιστοιχίζεται στο πρόβλημα κατηγοριοποίησης εικόνας

και η Αρχιτεκτονική Β αντιστοιχίζεται στο πρόβλημα κατηγοριοποίησης κειμέ-

νου, μέσω αυτής της μετάθεσης καταλήγουμε να χρησιμοποιούμε την Αρχιτεκ-
τονική Α για το πρόβλημα κατηγοριοποίησης κειμένου και την Αρχιτεκτονική Β

για το πρόβλημα κατηγοριοποίησης εικόνας. Κατά την μετάθεση αυτή, αντικα-
θιστούμε τις στοιβάδες τύπου 1Δ (π.χ. 1Δ συνελικτική στοιβάδα) με τις αντίσ-
τοιχες στοιβάδες τύπου 2Δ για την εκπαίδευση του κατηγοριοποιητή εικόνας κα-
θώς επίσης κάνουμε και το αντίστροφο για την εκπαίδευση του κατηγοριοποιητή

κειμένου. Τα αποτελέσματα των εκπαιδεύσεων των μοντέλων που βασίστηκαν σε
αυτές τις τροποποιημένες αρχιτεκτονικές δείχνουν πως είναι υψηλής αποδοτικότη-

τας όπως παρουσιάζουμε εκτενώς στα πειράματα.

Επιπρόσθετα, υπήρξε και μία δεύτερη προσέγγιση σε αυτό το πρόβλημα της μεταφ-
οράς ιδιοτήτων από το ένα ΣΝΔ στο άλλο, ωστόσο αυτή την φορά επικαλεστήκαμε
τεχνικές του transfer learning χρησιμοποιώντας εκπαιδευμένα ΣΝΔ τα οποία
βασίστηκαν στις ίδιες προσαρμοσμένες (tuned) αρχιτεκτονικές. Τα πειράματά μας,
δείχνουν πως τα ΣΝΔ στόχοι (target CNNs) αποδίδουν όπως οι τυχαίοι κατηγορι-
οποιητές, οπότε η χρήση του transfer learning για αυτόν το σκοπό έχει αποτύχει.
Φαίνεται πως εν μέρει η κακή απόδοση σε περιπτώσεις τέτοιων μεταφορών, οφείλε-
ται στις παραμέτρους που εκπαιδεύτηκαν στο σύνολο δεδομένων πηγή (source
dataset) οι οποίες παράμετροι είναι αισθητά ακατάλληλες για την εκπαίδευση
του ΣΝΔ στόχος (target CNN) στο σύνολο δεδομένων στόχο (target dataset).
Τέλος, η χρήση στοιβάδας 2Δ με μικρό scanning shape (π.χ. μικρό shape φίλτρου
στη περίπτωση της 2Δ συνελικτικής στοιβάδας) σε δεδομένα κειμένου, πρέπει να
συμβάλλει σε αυτή την προβληματική συμπεριφορά διότι κάθε embedded διάνυσμα
εκπροσωπεί ένα token ενός κειμένου και παράγωντας feature maps βασισμένα σε
μικρά μέρη τέτοιων διανυσμάτων δεν έχει πολύ νόημα.

ii

Thesis Committee Members

Nicholaos Ampazis, Ph.D. Department of Financial and Management Engineering

Supervisor University of the Aegean

Dimosthenis Drivaliaris, Ph.D. Department of Financial and Management Engineering

University of the Aegean

Nikolaos Passalis, Ph.D. Department of Financial and Management Engineering

University of the Aegean

Acknowledgements

I would like to express my sincere gratitude to the members of this committee, for
their time, their invaluable help, guidance and inspiration during my studies as an
undergraduate student, and additionally for their contribution to this undergraduate
research project. I also thank everyone else that has supported and believed in me,
especially my hardworking parents.

iii

Contents

Contents

Introduction 1

1 Convolutional Neural Networks 3
1.1 Overview . 3
1.2 Application in Image Processing . 4

1.2.1 Simple Preprocessing . 5
1.2.2 2D Convolutional Layer . 5
1.2.3 2D Pooling Layers . 11
1.2.4 Image Data Augmentation . 12

1.3 Application in Natural Language Processing 14
1.3.1 Preprocessing . 15
1.3.2 Word Embedding . 17
1.3.3 1D Convolutional Layer . 19
1.3.4 1D Pooling Layers . 21

2 Hypothesis and Methodology 23
2.1 Hypothesis . 23
2.2 Transfer Learning . 23
2.3 Problems and Training Algorithms Part I 25

2.3.1 Training Framework of the Original Image Classifier 25
2.3.2 Training Framework of the Original Document Classifier . . . 26
2.3.3 Switching The Tasks . 27
2.3.4 Tables and Diagrams . 28

2.4 Problems and Training Algorithms Part II 34
2.4.1 Training Framework of the Source Image Classifier 34
2.4.2 Training Framework of the Source Document Classifier 34
2.4.3 Training Framework of the Target Models 35
2.4.4 Tables and Diagrams . 36

3 Experimental Evaluation 42
3.1 Evaluation Metrics . 42
3.2 Datasets . 42

3.2.1 The MNIST Dataset . 42
3.2.2 The LMRDv1.0 Dataset . 43

3.3 Experiments Part I . 44
3.3.1 Experiments Based on MNIST’s Architecture 44
3.3.2 Experiments Based on LMRDv1.0’s Architecture 48
3.3.3 Training Time . 52

3.4 Experiments Part II . 52
3.4.1 Experiments Based on the mnistsrc Source Model 53
3.4.2 Experiments Based on the imdbsrc Source Model 55
3.4.3 Training Time . 57

iv

Contents

4 Discussion 57

5 Conclusions 59

Appendices 61
Appendix I . 61
Appendix II . 71
Appendix III . 73
Appendix IV . 89

References 114

v

Symbols

Symbols
N The formal set of natural numbers, defined such that min(N) = 0.

R The set of real numbers.

Tp(S) For a set S, a number k ∈ N and p ∈ Nk , Tp(S) is the set of k rank tensors
with p shape and elements that belong to the set S.

D The dataset.

Dtr The training set.

Dva The validation set.

Dte The test set.

Dmtr,s The minibatch s, of instances taken from the training set. s is the number
that specifies which exact minibatch is taken from the training set after it
is split into multiple minibatches.

m The total number of instances found on the dataset.

mtr The total number of instances found on the training set.

mva The total number of instances found on the validation set.

mte The total number of instances found on the test set.

n The total number of instance features.

c The total number of classes in a classification problem.

X This is a (n + 1)th rank tensor that carries all of the dataset’s instances.
Each element is indexed by the vector (i, jfeat) where i ∈ {0, . . . ,m − 1}
specifies a training instance from the dataset, and jfeat specifies the feature.

Y This is a vector that carries all of the dataset’s target values.

W The weight term.

b The bias term.

L Total number of layers.

n The set holding the shapes of each layer’s output. Indexing: Layer l ∈
{0, . . . , L− 1} has shape n[l].

ntot The set holding the total number of neurons of each layer’s output. Index-
ing: Layer l ∈ {0, . . . , L− 1} has totally n[l]

tot neurons.

g The set with elements the activation functions. Indexing: Layer l ∈
{0, . . . , L− 1} has activation g[l].

vi

Symbols

z The set with elements the output neuron values layerwise, without these neu-
ron values being subjected to their respective activation functions. Indexing:
Layer l ∈ {0, . . . , L − 1} , with neuron index j ∈ {0, . . . , n[l]

0 − 1} × · · · ×
{0, . . . , n[l]

number_of_axes−1 − 1} corresponds to the linear neuron z[l]j .

a The set with elements the output neuron values layerwise. Has the same
indexing rules as z.

Slice indexing for a tensor B is specified in either its superscript or subscript. When
we want to take slices we are free to use the same indexing as the object ndarray
of Python’s NumPy library. When we want to specify every element across an axis
we prefer using the symbol "∗" instead of ":". The slice index object, which is a
generalized version of the regular tensor index, is still denoted by j and determines a
specific slice (B)j or Bj. Also the shape of each tensor is a vector of size equal to its
tensor rank k.

vii

Introduction

Introduction

In our current, highly computerized world, an astonishing amount of digital data
consisting of image and text is being generated and processed on a daily basis, which
brings about a considerably increasing demand for automation in a wider variety of
applications that involve data. Unstructured information that exists inside data holds
great potential to elevate technology, industry, science, and prosperity by orders of
magnitude. The primary focus of data science is to decode information from a set
of data, in order to reveal the underlying nature of a problem or phenomenon. This
is usually achieved in conjunction with mathematical models. On the other hand,
machine learning overlaps with data science in terms of their purpose and the tools
that are used to achieve it. Machine learning is the art of designing systems which
are capable of learning from data with minimal human intervention. These systems
are able to transform a finite set of digital data items, into prediction models which,
through their knowledge, are able to perform robustly in new data which hasn’t been
exploited before in any direct way by these trained models. This is similar to what
inferential statistics is concerned with, in the sense that information is pulled from a
sample, with the goal of making predictions about a wider population in the context
of a given task or problem. Additionally, machine learning is also taking into account
the available computational resources for the training process. Also the measurement
of the predictive potential, which is more formally known as the trained model’s
generalizability, is an inseparable part of the field. Sacrificing performance for more
data interpretability is usually not a matter of primary concern, which contrasts the
purpose of statistics, in which data interpretability is deemed necessary. Of course
the measurement and actual representation of data in a good enough digital format
is essential for the final model’s performance.

In deep learning, which is a subfield of machine learning, models are capable of
learning complex patterns from large pools of data, where many of these patterns
are undetectable by humans and regular measurement instruments. These models
are able to break down a task into multiple simpler subtasks, and take upon the
completion of these subtasks instead. These subtasks are parameterized by the data
during the training process of the model. The convolutional neural network is a type
of one such a deep learning model, which has been proven to be incredibly robust in
image and text related problems. Able to be trained on diverse and large pools of
image or text data, CNNs are capable of learning extremely complex patterns from
these types of data. However, the setup of the training process for deep CNNs is a
difficult and time consuming task.

We will firstly establish the notion of CNNs. Then we will explain how a CNN can
become the right tool for either image or text classification. For the examination of the
hypothesis, we will utilize two CNN architectures: One tuned for image classification
on a dataset consisting of image data, and the other tuned for text classification on
a dataset consisting of text data. In order to check if the hypothesis is true for each
one of these architectures, we will exchange the problems they were tuned to solve,

1

Introduction

with some necessary adjustments to the architecture and the dataset preprocessing.
In each case, we will train the respective CNNs and then we will evaluate their
effectiveness by interpreting the evaluation metrics for each of these models.

It is assumed that the reader is familiar with some basic theory of linear algebra,
matrix operations like matrix multiplication, multivariate differential calculus along
with the Python programming language along with its NumPy, Keras and TensorFlow
libraries. Also being familiar with probability theory and statistics is a plus. Chapter
1 offers some foundational knowledge for the reader’s mathematical perspective and
intuition about CNNs. The reader that is familiar with CNNs along with text and
image data may omit chapter 1. In the other chapters we discuss the hypothesis and
experiments. The code applied for the experiments is presented in the appendices at
the end of this thesis.

2

Convolutional Neural Networks

1 | Convolutional Neural Networks

In this chapter we will set the theoretical basis regarding the architecture of Convo-
lutional Neural Networks. Firstly we make a brief overview about these models, then
we specify them for image classification, and then for document classification.

1.1 | Overview

Recent developments of the Convolutional Neural Network (CNN) [1], have led
into major breakthroughs in image and natural language processing tasks [2]. These
breakthroughs would not be possible without the usage of processing units capable
of a high number of parallel operations, and without our access to vast amounts of
image and text data. This type of neural network was inspired by the visual cortex
of animals [3].

The CNN is a special type of feedforward neural network (FNN), which is associ-
ated with the convolutional layer. The convolutional layer is a trainable layer that
is based on the operation of 2D discrete convolution, as the linear map of the layer’s
input. This layer is not fully connected like the dense layer, in the sense that not every
input neuron of the layer necessarily participates in the computation of every neuron
in its output. It’s also capable of extracting spatial information in a more direct way
from the layer’s input tensor. The computation of each output neuron is a mapping
of a specific group of neurons also called the receptive field, whose neurons happen
to be closer together inside the input tensor of the convolutional layer. The mapping
of the output tensor is the result of the convolution between the input tensor and
a weight tensor, which holds the trainable parameters of the convolutional layer. If
the receptive fields were to be translated in different parts of the same input tensor,
it would have detrimental influence in the way that the tensor is processed by the
convolutional layer [4, 5]. This property is also referred to as the translation invari-
ance, which is profoundly a consequence of the convolution operation. Additionally,
features that are more far apart inside the input tensor don’t influence one another as
much (if at all), this is the locality property [6]. Compared to the training of densely
connected FNN, the training of a CNN on image and text data, typically occupies
lower computational resources and comes with a lower exposure to the curse of di-
mensionality and overfitting, that can result in higher performance models in reduced
training time, given that the trainings are computed by processing units, capable of
parallel computation (e.g. GPUs, TPUs). The convolutional layer may be consid-
ered as a regularized version of the dense layer due to the partial connection property.

The architectures of CNNs that are intended to be used for a classification task,
can be seen as pipelines of 3 vital components whose purpose is different from one
another. These are the feature extractor, the flattening and classifier components
(see Figure 1), where each of these is consisted of a stacked group of layers, except
from the flattening component which only contains one layer. To describe the role of

3

Convolutional Neural Networks

each one:

• Feature Extractor Component: Its role is to reduce the input tensor into
a more refined representation, with minimal disposal of spatial information.
The convolutional layer is an important part of this component. Some of the
appropriate types of layers used for this component are the 2D Convolutional,
2D Pooling and the Dropout layers.

• Flattening Component: Containing exactly one layer with index Lf − 1 ,
the flattening layer, which simply stretches any input tensor into a vector.

• Classifier Component: This is a dense FNN. The flattening layer is its input,
and the CNN’s output layer is the classifier component ’s output layer.

Figure 1: A high abstraction of the CNN’s architecture or pipeline.

1.2 | Application in Image Processing

Any coloured image, can be represented by a 3 rank tensor x with shape

(height, width, channels)

where the final axis is the channel axis. In this thesis we will use the RGB additive
color model [7], in which the total number of channels is 3, which are sorted as Red,
Green and Blue. Each channel corresponds to the intensity of a unique color among
channels unique colors. So the values of the matrix x∗,∗,0 correspond to intensities
of the red color of the image, values of x∗,∗,1 to intensities of green color and values of
x∗,∗,2 to intensities of the blue color for each position (height, width) of an image.
Images that are gray are grayscale images, and these can be represented by a plain
matrix or a tensor of shape (height, width, 1).

An image pixel is the smallest possible part of a colored image located in some posi-
tion (height, width), which is also a vector of size channels and may be expressed
as xheight,width,∗. Higher values of a pixel element correspond to higher intensity to
the respective channel on that pixel. On the feature extractor component a layer’s l
output, is a tensor with shape (n[l]

0 , n
[l]
1 , n

[l]
2) , where n

[l]
0 is the height, n[l]

1 is the width
and n[l]

2 is the number of channels.

Training on image datasets often requires a large amount of data due to the larger
number of features per image instance. The dense FNN can be effective for image pro-
cessing tasks, however CNNs have proven to be far better due to the good properties
that the convolutional layer has on ordered arrays such as images.

4

Convolutional Neural Networks

Figure 2: This image was taken from [8]. It shows how an RGB image can be seen
by segmenting it into its respective color channel matrices.

1.2.1 | Simple Preprocessing

Given the feature X and target y tensors of a raw instance set S, firstly we need
to make sure that each of the images denoted by Xi,∗ or Xi,∗,∗,∗ with index i ∈
{0, . . . , p − 1}, needs to have the same exact shape. If the height and width differs
per image then we need to somehow downsample each image channel into some
predetermined height and width say n[0]

0 and n[0]
1 respectively.

1.2.2 | 2D Convolutional Layer

In the case of image data, the convolutional layer l accepts a 3 rank tensor a[l−1] where
the final axis determines the channel. Now like in the case of the linear mapping of the
dense layer, the linear mapping of the 2D convolutional layer has some weight W[l] ∈
T
k
[l]
0 ,k

[l]
1 ,n

[l−1]
2 ,n

[l]
2
(R) and bias b[l] ∈ T

n
[l]
0 ,n

[l]
1 ,n

[l]
2
(R) terms. Given an output channel

ν
[l]
2 ∈ {0, . . . , n

[l]
2 −1}, the term W

[l]

∗,∗,∗,ν[l]2

is called the ν [l]2 -th filter of the layer, or the
layer’s output channel. Each filter corresponds to a different channel of the layer’s
output. The natural numbers k[l]0 and k[l]1 are the height and width of the filters, and
these two variables along with n

[l]
2 are crucial hyperparameters for that layer. The

multichannel convolution operation ~ is the convolution map between the input a[l−1]

and the ν [l]2 -th filter W[l]

∗,∗,∗,ν[l]2

, and this mapping is expressed as a[l−1]~W
[l]

∗,∗,∗,ν[l]2

. For

5

Convolutional Neural Networks

any given output height ν [l]0 , output width ν
[l]
1 and input channel ν [l−1]2 , this binary

operation produces

(a[l−1] ~W
[l]

∗,∗,∗,ν[l]2

)
ν
[l]
0 ,ν

[l]
1 ,ν

[l−1]
2

=

k
[l]
0 −1∑
κ
[l]
0 =0

k
[l]
1 −1∑
κ
[l]
1 =0

(a
[l−1]
ν
[l]
0 +κ

[l]
0 ,ν

[l]
1 +κ

[l]
1 ,ν

[l−1]
2

·W [l]

κ
[l]
0 ,κ

[l]
1 ,ν

[l−1]
2 ,ν

[l]
2

) (1.1)

where

n
[l]
j = n

[l−1]
j − k[l]j + 1 (∀j ∈ {0, 1}) . (1.2)

The linear output of this layer is defined as,

z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

=

n
[l−1]
2 −1∑
ν
[l−1]
2 =0

(a[l−1] ~W
[l]

∗,∗,∗,ν[l]2

)
ν
[l]
0 ,ν

[l]
1 ,ν

[l−1]
2

+ b
ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

=

n
[l−1]
2 −1∑
ν
[l−1]
2 =0

k
[l]
0 −1∑
κ
[l]
0 =0

k
[l]
1 −1∑
κ
[l]
1 =0

(a
[l−1]
ν
[l]
0 +κ

[l]
0 ,ν

[l]
1 +κ

[l]
1 ,ν

[l−1]
2

·W [l]

κ
[l]
0 ,κ

[l]
1 ,ν

[l−1]
2 ,ν

[l]
2

) + b
ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2
.

(1.3)

Sometimes we want to skip some rows and columns from the convolution operation
to reduce the computations done or to add some regularization effect. One way to do
this is through the strided convolution operation [9]. This operation is determined
by two additional hyperpameters. These are the height stride s[l]0 (s

[l]
0 ∈ N\{0}),

and the width stride s[l]1 (s
[l]
1 ∈ N\{0}). The symbol of the strided convolution is

now denoted by ~
s
[l]
0 ,s

[l]
1

or ~s[l] (where s[l] = (s
[l]
0 , s

[l]
1)) and is a generalization of

the convolution defined by (1.1) where ~1,1 = ~. The height stride determines how
many rows will be skipped for each convolution iteration on each individual height
vs width slice of the layer’s input (it is demonstrated in Figure 3). Additionally, to
control how these convolution operations are handling the elements with indices that
are close to the boundaries of the input tensor, and to be able to prevent losing the
rightmost and leftmost bk[l]0 /2c dimensions, along with the upmost and downmost
bk[l]1 /2c dimensions from the layer’s output tensor per channel, we can surround the
layer’s input tensor per channel with p[l]0 (p

[l]
0 ∈ N) rows and p[l]1 (p

[l]
1 ∈ N) columns of

0 values [9]. This is the padded input tensor and we denote it by a[l−1],pad. The
analogous is true for the width stride for the columns on the same matrices. Thus,
now (1.3) is computed by

z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

=

n
[l−1]
2 −1∑
ν
[l−1]
2 =0

(a[l−1],pad ~
s
[l]
0 ,s

[l]
1
W

[l]

∗,∗,∗,ν[l]2

)
ν
[l]
0 ,ν

[l]
1 ,ν

[l−1]
2

+ b
ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

=

n
[l−1]
2 −1∑
ν
[l−1]
2 =0

k
[l]
0 −1∑
κ
[l]
0 =0

k
[l]
1 −1∑
κ
[l]
1 =0

(a
[l−1],pad

ν
[l]
0 ·s

[l]
0 +κ

[l]
0 ,ν

[l]
1 ·s

[l]
1 +κ

[l]
1 ,ν

[l−1]
2

·W [l]

κ
[l]
0 ,κ

[l]
1 ,ν

[l−1]
2 ,ν

[l]
2

) + b
ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2
.

(1.4)

6

Convolutional Neural Networks

(∀ν [l]j ∈ {0, . . . , n
[l]
j − 1})(∀j ∈ {0, 1, 2}) where

n
[l]
j′ =

⌊
n
[l−1]
j′ + 2 · p[l]j′ − k

[l]
j′

s
[l]
j′

+ 1

⌋
(∀j′ ∈ {0, 1}) . (1.5)

z
[l]

∗,∗,ν[l]2

for some ν [l]2 , is also called the feature map of the convolutional layer l. Also

in (1.4) we will use sometimes C
ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

to refer to the
∑n

[l−1]
2 −1
ν
[l−1]
2 =0

(a[l−1],pad ~
s
[l]
0 ,s

[l]
1

W
[l]

∗,∗,∗,ν[l]2

)
ν
[l]
0 ,ν

[l]
1 ,ν

[l−1]
2

quantity. And to make the feature maps nonlinear, we use a

nonlinear activation g[l] to produce the output a[l]. We can see how the 2D con-
volutional layer works from Figure 4. Additionally, the example of 2D convolution
presented in Figure 3, demonstrates the strided convolution operation of the 2D con-
volutional layer with index say l for a specific padded input ν [l−1]2 ∈ {0, . . . , n[l−1]

2 −1}
and output ν [l]2 ∈ {0, . . . , n

[l]
2 − 1} channels. The strides here are s[l]0 := 2, s

[l]
1 := 2

, and the paddings are p[l]0 := 1 and p
[l]
1 := 1. The matrix represented by the blue

array of numbers is a
[l−1]
∗,∗,ν[l−1]

2

with dimensions n[l]
0 := 5 and n

[l]
1 := 5 , which is sur-

rounded by the padding and the matrix represented by the darker array with shape
(3, 3) overlapping with the padded input, is the filter W

[l]

∗,∗,ν[l−1]
2 ,ν

[l]
2

where k[l]0 := 3

and k[l]1 := 3. Each step produces an output neuron, via element wise multiplication
between values of the filter and the padded input matrix, where the elements of the
resulting matrix are added together to produce the respective output neuron’s signal.
We start from up left (Step 1) and go towards the right, skipping s[l]1 − 1 columns
each time, until we exhast all columns (Step 3). Then we return to the leftmost area
again and we shift downwards one time by skipping s[l]0 − 1 rows (Step 4). The same
procedure applies on this group of rows, again going towards the right side, and then
again we go downwards by skipping again s[l]0 − 1 rows. This happens until the entire
padded matrix is exhausted. The output neuron’s location in the output tensor is
determined by the overlapping of the filter with the padded input.

7

Convolutional Neural Networks

Figure 3: The image was taken from [10]. This is a demonstration of a strided 2D
Convolution per filter for a padded input matrix.

8

Convolutional Neural Networks

Figure 4: The pipeline of the 2D convolutional layer.

The weight parameters that need to be learned are the filters that are convolved

9

Convolutional Neural Networks

around the image. During the training, as these filters are in a state of constant
adjustment in each epoch for a better performing model, they become more able to
extract useful information about the image, and pass that information to the next
layer. In the first convolutional layers that are closer to the input image, the filters
may improve at sharpening the image for edges with a specific angle or direction.
As the image is processed by deeper convolutional layers, the kernels extract more
complex patterns, and every time these patterns are associated with larger areas of
the input image. Due to the translation invariance property, the convolutional layer
does not take into account the position of local areas inside the image. This is a
useful property in cases where the object of interest inside an image, should be free
to translate wherever possible. At least for CNNs applied for image classification
tasks, this property is normally useful [4, 5]. For a task of image classification be-
tween boats and cars, it would be expected that the background of most of the boat
images would mostly contain water areas and the background of car images would
mostly consist of road areas. Assume that a dense FNN and a CNN were trained on
the same dataset until the same training accuracies were reached. Let an image that
was not included in the training set, include a boat very similar to other boats of the
training set, but instead of being located on top of water, the boat is located in the
middle of a road with no cars. A dense layer of the dense FNN would be prone to
pass to the next layers more irrelevant information about the relation of the object of
interest, which is the boat, with the background. This irrelevant information would
contribute to larger errors which means that the classifier might fail to classify the
image correctly. On the other hand, the convolutional layer of a trained CNN on the
same dataset, would not pass as much irrelevant information about the location of
the boat inside the image. The pixels closer to the boat would surely be taken into
account by the convolutional layer of the CNN, but the dense layer of the dense FNN
would be free to take into account every pixel in that image to determine the entire
stack of neurons in the output. Thus, the dense FNN would be more prone to overfit
and it would surely need a larger training set in order to additionally learn how to
ignore the location of the object of interest inside an image whereas, the CNN would
naturally not need this additional training, because the translation invariance prop-
erty is hard-wired on the 2D convolutional layer, while the dense FNN has to learn
this property from scratch by the provided training set. Consequently, the transla-
tion invariance property of the convolutional layer, gives CNNs the advantage, as it
reduces the need of training on a larger training set.

Using small shapes for each filter especially in the initial convolutional layers, results
in a drastic reduction in the total number of parameters, while the representations
or output tensors of these convolutional layers become translation invariant and our
layer only incorporates local information, when determining the value of each hidden
activation [6]. Smaller filter shapes mean that the convolutional layer will capture
smaller, more simple features that do not vary much between other images containing
that same object. This is good because the convolutional layer is less prone to capture

10

Convolutional Neural Networks

high variation1 patterns which is usually accompanied by noise. Compared to a dense
layer that produces an output tensor of the same size, this is a smart way that ef-
fectively reduces the total number of parameters and decreases the total training time.

For (x,y) where x is an image in the RGB format, and l the index of the convo-
lutional layer, the error term from, [11] becomes

δ[l] =

n
[l]
2 −1∑

ν
[l+1]
2 =0

n
[l]
1 −1∑

ν
[l+1]
1 =0

n
[l]
0 −1∑

ν
[l+1]
0 =0

(δ
[l+1]

ν
[l+1]
0 ,ν

[l+1]
1 ,ν

[l+1]
2

· ∇z[l]h
[l+1]

ν
[l+1]
0 ,ν

[l+1]
1 ,ν

[l+1]
2

(g[l](z[l]))) (1.6)

where if ν [l]0 + p
[l+1]
0 − ν [l+1]

0 · s[l+1]
0 ∈ {0, . . . , k[l+1]

0 } and ν
[l]
1 + p

[l+1]
1 − ν [l+1]

1 · s[l+1]
1 ∈

{0, . . . , k[l+1]
1 } it’s

∂

∂z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

h
[l+1]

ν
[l+1]
0 ,ν

[l+1]
1 ,ν

[l+1]
2

(g
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

(z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

)) =

∂

∂z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

g
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

(z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

) ·W [l+1]

ν
[l]
0 +p

[l+1]
0 −ν[l+1]

0 ·s[l+1]
0 ,ν

[l]
1 +p

[l+1]
1 −ν[l+1]

1 ·s[l+1]
1 ,ν

[l]
2 ,ν

[l+1]
2

(1.7)

else it’s

∂

∂z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

h
[l+1]

ν
[l+1]
0 ,ν

[l+1]
1 ,ν

[l+1]
2

(g
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

(z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

)) = 0 (1.8)

(∀ν [l]0 ∈ {0, . . . , n
[l]
0 − 1})(∀ν [l]1 ∈ {0, . . . , n

[l]
1 − 1})(∀ν [l]2 ∈ {0, . . . , n

[l]
2 − 1})

(∀ν [l+1]
0 ∈ {0, . . . , n[l+1]

0 −1})(∀ν [l+1]
1 ∈ {0, . . . , n[l+1]

1 −1})(∀ν [l+1]
2 ∈ {0, . . . , n[l+1]

2 −1})

The loss gradients [12] become

∇W[l]L{(x,y)}(ŷ) =
n
[l]
2 −1∑
ν
[l]
2 =0

n
[l]
1 −1∑
ν
[l]
1 =0

n
[l]
0 −1∑
ν
[l]
0 =0

(δ
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

· ∇W[l]h
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

(a[l−1])) (1.9)

∇b[l]L{(x,y)}(ŷ) =
n
[l]
2 −1∑
ν
[l]
2 =0

n
[l]
1 −1∑
ν
[l]
1 =0

n
[l]
0 −1∑
ν
[l]
0 =0

(δ
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

· ∇b[l]h
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

(a[l−1])) . (1.10)

1.2.3 | 2D Pooling Layers

One way to deal with large numbers of computations using a convolutional layer is
through the usage of pooling layers [13], in layers before that convolutional layer.

1Variation between different images.

11

Convolutional Neural Networks

Two of the most common ones are the max-pooling and the average-pooling lay-
ers. Pooling layers are similar to the convolutional layer in the sense that they too
scan the image in the same way as the convolutional layer, but instead this time we
have a window that scans an image slice. 2D pooling layers can also have stride and
padding. The height and width of the window is k[l]0 and k[l]1 respectively. We use the
same notation for stride and padding as in the case of the 2D convolutional layer.

The max pooling takes a[l−1], which is a tensor of size (n[l−1]
0 , n

[l−1]
1 , n

[l−1]
2) and converts

it into the output tensor a[l] which is

a
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

= max({a[l−1],pad

ν
[l]
0 ·s

[l]
0 +κ

[l]
0 ,ν

[l]
1 ·s

[l]
1 +κ

[l]
1 ,ν

[l−1]
2

(κ
[l]
0 ∈ {0, . . . , k

[l]
0 − 1},

κ
[l]
1 ∈ {0, . . . , k

[l]
1 − 1})}) . (1.11)

On the other hand, the average pooling layer converts the input into

z
[l]

ν
[l]
0 ,ν

[l]
1 ,ν

[l]
2

=
1

k
[l]
0 · k

[l]
1

k
[l]
0 −1∑
κ
[l]
0 =0

k
[l]
1 −1∑
κ
[l]
1 =0

a
[l−1],pad

ν
[l]
0 ·s

[l]
0 +κ

[l]
0 ,ν

[l]
1 ·s

[l]
1 +κ

[l]
1 ,ν

[l−1]
2

. (1.12)

In either case, the resulting output tensor has shape(⌊
n
[l−1]
0 + 2 · p[l]0 − k

[l]
0

s
[l]
0

+ 1

⌋
,

⌊
n
[l−1]
1 + 2 · p[l]1 − k

[l]
1

s
[l]
1

+ 1

⌋
, n

[l−1]
2

)
. (1.13)

Note that the new height and width are computed in the same way as in the case of
the 2D convolutional layer.

The max pooling layer can lead to faster convergence, select superior features and
improve generalization [14]. Thus we can use this type of layer to reduce the over-
fitting behaviour of trainings, while reducing the total training time as the number
of output neurons is decreased by this mapping. Additionally, max pooling is better
compared to other downsampling methods such as average pooling [14].

1.2.4 | Image Data Augmentation

As we have already seen, the convolutional layer is translation invariant, which means
that moving the object of interest in an image does not make much of a difference on
where a CNN sees that object, for the classification. However, there are more image
transformations of the training set that can correspond to the same class, which
implies that the overfitting phenomenon still has ways to create training issues. If
there are indications of overfitting in the trainings on the given training set, we can
collect additional external instance images for the training set to improve training
and resolve part of the overfitting issue. Finding additional images may prove to be
difficult so we can follow other practices to resolve overfitting like regularizing the
training. An alternative choice we have, is the option to create more instances by

12

Convolutional Neural Networks

copying instances of the training set, and then making some minor adjustments to
them, depending on the task.

Figure 5: This image was taken from [15], showing the operation of 2D max pooling
on two different example inputs.

Such techniques are referred to as data augmentation techniques and they have
proven to be a reliable solution to image related tasks [16]. Such image transforma-
tions may be a random rotation, flipping, color intensity change, cropping, injecting
noise etc. [16]. After the data augmentation, all these instance transformations can
be included to the training set, thus now having additional, slightly diverse instances,
that force the model to be less sensitive to the respective augmentation transforma-
tions.

Rotation Augmentation

To describe how data augmentation can be implemented in the case of random image
rotations, assuming we have a training instance, say (x, y) where x is a given grayscale
image in the form of a matrix with shape (height, width), we firstly need to define a
maximum angle for the rotation tranformation, say θmax(θmax > 0) (in rads) and then
we sample a random angle θ from the continuous uniform distribution U(0, θmax) and
we rotate x by θ rads. It is advised by [16] for θmax to be small. This time we will use
a matrix with different indexing whose origin is located on (bheight/2c, bwidth/2c)

13

Convolutional Neural Networks

when we look at the same image x. Assume that new matrix is ξ, so we have

xα+i,β+j = ξi,j (1.14)

where α = bheight/2c and β = bwidth/2c , (∀i ∈ {0, . . . , height− 1})
(∀j ∈ {0, . . . , width − 1}). The new index of an image pixel that belongs to ξ with
index (i, j) is (

i′

j′

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
·
(
i
j

)
(1.15)

where i′ and j′ are rounded to the closest integers after this operation. A simple
way to avoid problems with exceeding index values, is to just dispose of the pixels
corresponding to them, and replace empty pixels with 0 values. Another simple
workaround is to surround all of these images with a common padding of zeros, so
that the resulting image x will have height and width equal to

⌈
(α2 + β2)1/2

⌉
.

1.3 | Application in Natural Language Processing

The field of natural language processing (NLP) is concerned with the interactions
between computers and humans through natural language [17]. Sentiment analysis
is the field of study that analyzes people’s opinions, sentiments, evaluations, attitudes,
and emotions from written language [18]. This thesis will be limited in the case of
document classification tasks using sentiment analysis techniques, in which a ma-
chine learning model has to classify documents. CNNs have proven to be capable of
performing well on NLP tasks [19, 20, 21], including document classification tasks [22].

The representation of an instance’s document is the feature x and an initial raw
form of this representation may be stored in a machine’s memory as a string, say

"They␣arrived␣late,␣and␣they␣couldn’t␣find␣good␣seats!"

where the “␣” is set to be identical to the space character, which acts as a visible
separator of words in sentences. A document holds some meaning that needs to be
decoded in correspondence with the NLP task. That initial representation of each
feature-document is incompatible with the input of an FNN, as FNNs accept tensors
of continuous numbers and not strings. This means that it is imperative that each
document string is firstly properly mapped into a tensor of numbers in a similar way
as images are encoded, before being processed by such a model. The layers used in
the feature extractor component of a CNN’s architecture in the case of images, can be
applied to sequence data like documents2 with some minor modifications. We refer to
these layers by 1D or 1 dimensional layers, because sequence data is scanned through
one axis instead of two like in the case of image data. Additionally we’ll introduce
an optional, but extremely useful layer called the embedding layer (see Figure 6).

2Documents can be seen as sequences of words.

14

Convolutional Neural Networks

Figure 6: A high abstraction of the CNN’s architecture or pipeline with the embed-
ding component which is defined to contain the embedding layer only.

1.3.1 | Preprocessing

In order to use a FNN for document classification, we need to find a numerical
representation of an instance’s document x, with length which will be shared with
the other documents as well. In order to map any document as such, we invoke the
following preprocessing rules.

Tokenization

Each document’s string can be broken down into a vector containing a number of
fundamental elements called tokens. A document’s token may be defined to be
an individual character. So we can represent the document as a vector of these
tokens, while maintaining the ordering of the tokens found in that document string.
However in this thesis we define tokens to be the words of a document, instead
of individual characters. A document’s size or length, denoted by doc_length, is
defined to be the multitude of tokens it is associated with. Each instance’s document
in its raw form, may vary in size and is consisted of alphanumeric characters, along
with other potential symbols that are used in sentences like punctuation marks (e.g.
“.”, “,”, “!”, “;”). We will use an approach similar to the one shown in [23] for the
document tokenization. Each word in a document is separated by the space character
“␣” between them, so the x of our previous example now becomes the vector of word
strings

("They", "arrived", "late", "and", "they", "couldn’t", "find", "good",
"seats!") .

Uppercase alphabetical characters offer detrimental information so they are substi-
tuted by their respective lowercase and assuming that the special symbols do not
significantly contribute to the meaning of a document, we are free to drop them as
well. Therefore x now becomes

("they", "arrived", "late", "and", "they", "couldnt", "find", "good",
"seats") .

Vocabulary

Looking at a training set’s tokenized documents, most of the documents’ words repeat
themselves. The vocabulary [24] is denoted by vocab and is defined to be a vector.
Every element of this vector corresponds to a unique word’s string found in the
training set’s tokenized document representations. The words inside vocab are sorted

15

Convolutional Neural Networks

in a decreasing order by the frequency of their appearances inside the training set.
So the elements corresponding to initial indices of vocab are the more frequent ones,
while the elements corresponding to later indices are the less frequent ones. For
example vocab may look like this (showing only the first 4 elements)

("the", "a", "and", "of", . . .)

meaning that "the" is the most frequent word found in the training set, "a" is the
second most frequent word etc. Furthermore, an additional symbol will be used for
the padding of each document, we define that to be "<PAD/>", and include it as a
special word in the vocab’s zeroth position. Additionally an external document may
contain words that do not exist inside the vocab, in this case we can substitute these
with "<UNK/>". So the above vocab example becomes

("<PAD/>", "<UNK/>", "the", "a", "and", "of", . . .) .

Thus now we can represent every unique word with a unique natural number, so the
tokenized document example may be encoded as

(32, 4407, 511, 4, 32, 20799, 164, 49, 6617)

where each number is an index of vocab that points to the corresponding document
words located inside the vocab vector. For example, "they" has index 32, meaning
that it is located on the 32-th position inside vocab. We can drop some of the rarest
words found in the training set to reduce complexity [24]. The number of words we
hold is set to be the first, or most frequent max_words words. For each removed word
from the vocabulary, the removed word inside each document is substituted by the
value 1 (the encoding of "<UNK/>") in the training set documents. We also define
vocab_length to be the final length of the vocab vector.

Trimming and Padding Sequences

Now, each document can be represented by a sequence of numbers using the training
set’s dictionary. But the problem of varying document size remains. In order to
fix this, we can adjust any document to a fixed sequence size seq_size ∈ N. If a
tokenized document exceeds seq_size in size, we trim the document by removing
the rightmost words with document indices more than seq_size − 1. On the other
hand, if a tokenized document’s size is lower than seq_size we add <PAD/> tokens
to the right, until the size of the document totals to seq_size tokens. So if we would
select seq_size to be equal to 7, our document example would be converted into

(32, 4407, 511, 4, 32, 20799, 164)

or we could select seq_size to be equal to 10, in which case the example now becomes

(32, 4407, 511, 4, 32, 20799, 164, 49, 6617, 0, 0) .

The documents that have undergone the preprocessing until up to this point, are
denoted as xint.

16

Convolutional Neural Networks

One Hot Encoding

The training process of regression models, have a natural way of absorbing informa-
tion from the order between the training instances’ values. Words are categorical
feature objects and the ordering by the frequency of their appearance in the training
set, carries information that forces FNNs to converge into low performance classifiers
[25]. Such an ordering is trivial for the document classification task, so this is a low
quality representation of words. In order to improve this representation, we’ll need
to convert the integer encodings, into their respective OHE vectors [26]. For this
representation, instead of integers, each of the words is encoded into a vector with
size equal to the length of the vocab vector. Assuming a word encoded to integer is
symbolized by word_int(word_int ∈ {0, . . . , vocab_length− 1}), then the equiva-
lent OHE word word_ohe has 0 values in every one of its positions except from the
position word_int, where it takes the value 1. Thus an OHE document tensor has
shape (doc_length, vocab_length).

1.3.2 | Word Embedding

The OHE document has a compatible format to become an input into a CNN model,
as a single channeled, grayscale image would. But is one hot encoding the proper en-
coder for a document? Different OHE words are pairwise orthogonal3, which roughly
reveals any information about the similarity between them (e.g. cosine similarity)
[27]. On top of that, if the vocabulary is large, say with 5000 unique words, then
it would be computationally demanding (assuming it would be feasible at all) for
a CNN to process larger document datasets effectively [28]. We can resolve this by
shrinking each OHE word into a smaller vector, while retaining the information which
the former was holding relative to the vocabulary, and at the same time by harnessing
contextual information from the training set.

Word2vec

According to [27], a robust way to learn more compact word encodings of these
OHE word vectors, so that the encoding captures information about their similarity
with one another inside the training set, is through the utilization of a Word2vec
unsupervised model [29, 30]. Word2vec models are FNNs. The result of such word
representations are vectors. One property of this kind of encoding is that the angles
between the word vectors are negatively correlated with the frequency at which these
were found closer together inside the training set’s documents. If word_0 was found
more frequently closer to word_1 than with word word_2, then the angle between
vectors word_0 and word_1 is expected to be lower than the angle between word_0
and word_2. Words that share more common semantic meanings inside a sentence, are
more likely to be clustered closer together. Word2vec captures the semantic meaning
of a word, by taking into account the distance of a word’s occurrence relative to other
words’ occurrences inside a document. The latter words are also called context words

3With respect to the Euclidean inner product.

17

Convolutional Neural Networks

[29, 30]. For a given word and its occurrence inside the training set’s documents, the
number of words that will be taken into account as the context words is constant
and is determined by the hyperparameter called window size (see Figures 7 and 8).
These embedded representations of words which are projected in lower dimensions
than vocab_length have length equal to embedding dimension, and we denote
this length using the symbol embedding_dim.

The Embedding Layer

We set the embedding layer [28] as the first hidden layer of a CNN’s architecture.
The embedding layer is there to essentially assign a meaningful representation to each
word. So while the document classifier is being trained, this layer refines improved
encoded representations of these OHE words per document, in direct relation with
the classification task based on information that exists inside the training set, and
passes those representations into the next layers (see Figure 6). Word2vec algorithms
can be utilized prior to the classifier’s training as a pre-training step for the trainable
parameters of the embedding layer, with the constraint that the embedding layer of
the classifier has to have the same embedding dimension (or word size)4 with the one
used in Word2vec, and after the Word2vec trainings, we initialize the weights of the
embedding layer, using the trainable parameters of a trained Word2vec’s layer. An
additional option would be to avoid using the embedding layer, however, as we’ve
already explained, using arbitrary representations or OHE of words inside the doc-
uments would be impractical, so it is recommended to train those representations
beforehand using a Word2vec algorithm, and then pass the learned representations
as inputs to an appropriate input layer of the CNN classifier.

Technically speaking, the embedding layer is a linear dense layer with no bias term,
which instead of accepting a vector as an instance, it accepts the document matrix
where each line is a OHE row vector word. XOHE is defined to be such a docu-
ment which we express as a[0] in terms of FNN notation, with shape (doc_length,
vocab_length). Now the embedding layer transforms XOHE or a[0] into a matrix a[1]

with shape (doc_length, embedding_dim) through the simple matrix multiplication

a[1] = XOHE ·W[1] (1.16)

where W[1] obviously has shape (vocab_length, embedding_dim). In the following
part of the thesis, we will be based on the architecture that includes the embedding
layer, so (1.16) will always be true.

4The size of each individual word vector representation.

18

Convolutional Neural Networks

Figure 7: This image was taken from [31]. It shows that the training set is be-
ing harnessed iteratively moving from the previous to the next word’s occurrence
inside a training document instance. The size of the window here is set to take into
account 2 word occurrences from the left and 2 word occurrences from the right.
So the words found in the window corresponding to the word brown, which in the
case of the example shown in the image, and specifically in the first row, are in
{The, quick, fox, jumps}, so all of these words, the context words, are considered to
be close to the word brown.

1.3.3 | 1D Convolutional Layer

We can see the embedded layer’s output as a grayscale image where instead, each
line corresponds to the given document’s word. The 1D convolutional layer, in
case the 1D convolutional layer is next to the embedding layer, it refines information
from local rows of document words, instead of local image pixels (located next to the
embedding layer) [22]. So, it makes sense for each scan to take into account entire
rows of these embedded matrices, taking into account words that are stacked close
together to form new more refined features or feature maps. If we would stack more
of these layers, then the deeper we go, the wider the area of the initial document that
will be refined, in the same way as 2D convolutional layers are acting on images. So
initial 1D convolutional layers are taking into account more basic patterns in smaller
areas of the document, while the deeper convolutional layers are refining more com-
plex documentwise features associated with more words of the given document.

Based on the modeling of [22], given a layer index l which corresponds to a layer
that belongs to the feature extractor component, we can define n

[l]
1 different fil-

ters, each with shape (k
[l]
0 , n

[l−1]
1). We define W[l] to be the weight tensor with

shape k[l] or (k
[l]
0 , k

[l]
1 , k

[l]
2) which is also equal to (k

[l]
0 , n

[l−1]
1 , n

[l]
1), where each slice

W
[l]

∗,∗,ν[l]1

(ν
[l]
1 ∈ {0, . . . , n

[l]
1 − 1}) is a filter belonging to this layer. Additionally, the

bias term b is a matrix of shape n[l].

19

Convolutional Neural Networks

Figure 8: This image was taken from [32]. The example demonstrated here shows a
potential case of a trainedWord2vec model. Each encoded word’s value is expressed in
terms of {living_being, feline, human, gender, gender, royalty, verb, plural},
and depending on how high or low some of the scores are on each of these features
for the given word, it is correlated more or less to other words, strictly in terms of
these features. In the rightmost visualization of the shown figure, that correlation is
expressed as the vector distance between words.

We can include a row stride s[l] and also add the p[l] row padding in an analogous way
as per the construction of the 2D convolutional layer for image data, with a[l−1],pad

being the padded input (see Figure 9). Obviously the column stride and padding
would have no meaning in the case of this type of layer, so it is assumed that s[l]
and p[l] are the row stride and the row padding configurations respectively. The 1D
convolution is defined (filter-wise) as

(a[l−1],pad ~s[l] W
[l]

∗,∗,ν[l]1

)
ν
[l]
0
=

k
[l]
0 −1∑
κ
[l]
0 =0

n
[l]
1 −1∑
κ
[l]
1 =0

(a
[l−1],pad

ν
[l]
0 ·s[l]+κ

[l]
0 ,κ

[l]
1

·W [l]

κ
[l]
0 ,κ

[l]
1 ,ν

[l]
1

) . (1.17)

20

Convolutional Neural Networks

and the linear output is

z
[l]

ν
[l]
0 ,ν

[l]
1

=(a[l−1],pad ~s[l] W
[l]

∗,∗,ν[l]1

)
ν
[l]
0
+ b

ν
[l]
0 ,ν

[l]
1

=

k
[l]
0 −1∑
κ
[l]
0 =0

n
[l]
1 −1∑
κ
[l]
1 =0

(a
[l−1],pad

ν
[l]
0 ·s[l]+κ

[l]
0 ,κ

[l]
1

·W [l]

κ
[l]
0 ,κ

[l]
1 ,ν

[l]
1

) + b
ν
[l]
0 ,ν

[l]
1
. (1.18)

which applies for every output row ν
[l]
0 (ν

[l]
0 ∈ {0, . . . , n

[l]
0 − 1}) and filter ν [l]1 (ν

[l]
1 ∈

{0, . . . , n[l]
1 − 1}). The multitude of the output’s columns are equal to the number of

filters as we’ve defined them to be and the multitude of the output’s rows are

n
[l]
0 =

⌊
n
[l−1]
0 + 2 · p[l] − k[l]0

s[l]
+ 1

⌋
. (1.19)

1.3.4 | 1D Pooling Layers

Analogous properties of 2D pooling layers apply to 1D pooling layers for document
data. 1D pooling layers are defined so that each window is a vector with size k[l].

z
[l]

ν
[l]
0 ,ν

[l]
1

= max({a[l−1],pad

ν
[l]
0 ·s[l]+κ[l],ν

[l]
1

(κ[l] ∈ {0, . . . , k[l] − 1})}) (1.20)

and the average pooling to be

z
[l]

ν
[l]
0 ,ν

[l]
1

=
1

k[l]

k[l]−1∑
κ[l]=0

a
[l−1],pad

ν
[l]
0 ·s[l]+κ[l],ν

[l]
1

(1.21)

for every output’s row ν
[l]
0 ∈ {0, . . . , n

[l]
0 − 1} and column ν [l]1 ∈ {0, . . . , n

[l]
0 − 1} with

(row) stride s[l] and padding p[l]. The output’s columns and rows are n[l]
1 = n

[l−1]
1 and

n
[l]
0 =

⌊
n
[l−1]
0 + 2 · p[l] − k[l]

s[l]
+ 1

⌋
(1.22)

respectively.

21

Convolutional Neural Networks

Figure 9: An example of a 1D convolutional layer with index l, input shape (7, 5),
k
[l]
0 = 2, stride s[l] = 2 and padding p[l] = 1. The input layer happens to be the

embedded input with doc_length = 7 and embedding_dim = 5. In the upper part
we can see the padded embedded input a[l−1],pad next to the weight tensor W[l]. The
rest of this depiction shows the convolution operation per filter for the red, lime and
purple filters, separately, to produce the output a[l] with shape (4, 3). Each of the 4
receptive fields, is labeled as RF_c where c ∈ {0, 1, 2, 3}.

22

Hypothesis and Methodology

2 | Hypothesis and Methodology

We start off by introducing the scientific hypothesis, then we move on to the descrip-
tion of the learning algorithms which were utilized to test this hypothesis in the case
of two specific tasks, one task is from the field of image processing and one from the
field of natural language processing. Finally we test the hypothesis using transfer
learning.

2.1 | Hypothesis

Deep CNN architectures are undeniably tedious and time consuming to manually
tune for image and natural language related tasks, due to the overwhelmingly large
set of potential hyperparameter selections. As for automatic model selection algo-
rithms (e.g. [33, 34]), these require a considerable amount of computational resources
and time. So both practices have their own challenges and issues that need to be
addressed in order to find appropriate architectures that are capable of leading train-
ings into high performance models. We investigate a different approach to the tuning
problem, by utilizing a deep CNN architecture that works well for a sentiment anal-
ysis problem, to solve a problem in the field of image processing and vice versa. By
this, the following questions arise: Can architectures that are optimized to work well
for NLP tasks, also work well for image processing tasks? Is the converse also true?
If so, what are the limitations of this hypothesis? Obviously these questions cannot
be experimentally investigated for every problem in these fields, consequently in this
thesis we chose to test the validity of this hypothesis under some specific circum-
stances5, as an attempt to provide solid evidence that it is possible for CNN transfers
from task to task to be effective at least in some way.

2.2 | Transfer Learning

In the field of deep learning, the transfer learning methodology is concerned with
the replacement of the target model ’s hidden layers, with the hidden layers which
belong to a trained source model, in order to transfer knowledge or information ex-
tracted from the source dataset, that can also be applied to the target task, as part
of the target model [35]. In order for these methodologies to be effective, it is as-
sumed that the source and target tasks and datasets share some similarities between
them [36]. It has been confirmed that transfer learning applied for image and natural
language related tasks, can significantly contribute to a target model’s performance
with a lower generalization error [36, 37].

Specifically regarding classification tasks using FNNs, given a source model’s archi-
tecture along with a source dataset, we firstly train this model on that dataset. Now
given another task (the target task), transfer learning can be utilized by copying the

5By saying specific circumstances we practically mean to limit our experimentation to specific
problems, datasets and architectures.

23

Hypothesis and Methodology

same hidden layers of the source model as the hidden layers of the target model, and
initializing the hidden layer parameters of the target model as the trained hidden
layer parameters of the source model, and then we train the target model on the
target dataset. The output layers between the source and target models may differ
because the number of classes can vary between the source and target tasks, in which
case the output layer of the target model has to be randomly initialized before its
training starts. The input data feature tensor obviously has to have the same shape
in each case, so if the input of the target task has a different shape, it has to be
preprocessed in order to match the input’s shape from the source task.

Figure 10: This image was taken from [38]. It shows how transfer learning can
be accomplished, by the transference of all the hidden layers (layer hyperparameters
and parameters) of an already trained neural network, to a neural network that is
supposed to be trained for the target task, which may differ from the source task.

The process of training a source model for transfer learning is called pre-training
and when the source model has completed its training for the purpose of transfer
learning, it is a pre-trained model. Training parts of a pre-trained model on the
target dataset is also called fine-tuning.

Assume that the source task is the image classification between the classes {"car",
"bike", "bus"}, an input image which strictly contains exactly one of these objects,
and a high performance neural network classifier which will be the source model, that
is trained for this task. This source model has obviously been trained on a dataset
consisted of car, bike and bus images. For a target task that differs from the source
task, say the image classification of dog image vs cat image, a slightly different neural
network classifier is trained, where its hidden layers are the same hidden layers as the
ones used in the source model. The initial hidden layer parameters are the already

24

Hypothesis and Methodology

trained hidden layer parameters of the source model. The hidden layers closer to the
input layer, will already be able to extract edges, colors and more basic geometrical
characteristics from an input image. Thus before the training of the target model even
starts, these initial layers will be more capable in identifying features that are already
important for the target task, without being explicitly trained on the target dataset.
As a consequence, the target model will not need as much training compared to a
model whose hidden layers have been randomly initialized, in order to reach higher
performances. Finally there are less overfitting risks involved for the target model on
the target’s training set, as the trainable parameters of hidden layers have already
captured relevant information from a different dataset (the source dataset) [36].

2.3 | Problems and Training Algorithms Part I

For our experiments, we have selected to inspect the training algorithms found on
the repositories [39] and [40], along with the tasks they are intended to be trained
on. Both of these are CNN classifier trainers, one tuned for a specific labeled dataset
that holds information regarding an image classification task, and the other tuned for
another labeled dataset that holds information regarding a document classification
task. For our experiments, we have trained both of these on the tasks they were tuned
for, respectively. Furthermore, we have swapped the tasks they solve along with the
datasets, with minimal modifications in their architectures and trained these too on
the swapped datasets. One noticeable modification is the conversion of 2D layers
into 1D layers and the converse. 2D layers were used for the image dataset and 1D
layers were used for the text dataset, where the parameters (e.g. filters, and window
size) of each of these layers were maintained. All 4 of these training processes and
architectures were implemented in a total of 10 epochs, we have selected 64 as the
size of each minibatch and the gradient descent algorithm we have used AdaDelta
[41]. For the image classification task we have used the categorical cross entropy
as the loss function, and in the case of the document classification we have used
the binary cross entropy as the loss function. Obviously, the number of output
neurons was adjusted for each of the 4 architectures, depending on the task. All
of the CNNs were trained from scratch, in the sense that the trainable parameters
were initialized by some simple process which allows for a proper training (excluding
the embedding layer). Biases were all initialized to 0, and weights across all layers,
except from the embedding one, were all randomly initialized by sampling from the
Xavier/Glorot (normal) distribution. The following subchapters thoroughly specify
each of the discussed training processes and architectures.

2.3.1 | Training Framework of the Original Image Classifier

The training process and architecture we have selected that was intended to solve the
image classification task is completely based on [39]. The specific image classification
task, which the respective learning process was tuned to handle, is the classification
of grayscale images among all the decimal digits or classes c(c{0, . . . , 9}). The raw
input tensor’s shape is equal to (28, 28).

25

Hypothesis and Methodology

Preprocessing

We firstly normalize this dataset by using Min-Max Normalization. Then we shuffle
the instances inside the dataset. The dataset itself has no ordering, but when it
is stored in a Python’s list or NumPy’s ndarray (which is essentially a list with
more structure in it), then it gains some non-random ordering, so this is why a prior
shuffling of the dataset’s elements inside the list is imperative. Finally the dataset is
split into a training and validation6 sets so that mtr ≈ [6/7 ·m] and mva ≈ [1/7 ·m].

Architecture

The architecture of [39] is tuned for the MNIST dataset [42], and will be denoted as

arch_opt4mnist_dataset_mnist .

Table 1 specifies it, and Figure 11 offers a visual sense about the output shapes found
across its layers.

2.3.2 | Training Framework of the Original Document Classifier

The training process and architecture we have selected that was intended to solve the
document classification task is completely based on [40]. The document classification
task, which this learning process was tuned to handle, is the classification of movie
review documents into either a positive, in which case it’s c = 0 or a negative review
in which case it’s c = 1. We set the size of the vocabulary to be equal to 95 489.

Preprocessing

We begin by setting tokens to be words, then we tokenize each document, removing
any potential non-alphanumeric symbols and we split each document to word strings,
so that every document is converted into a vector of its word strings. Then we create
the vocabulary vocab which is consisted of the words found in the dataset. The
vocabulary will not be reduced, and remains as is. Seeing the vocabulary as a vector
of words, the first word is the most frequent one beginning from index 1 and goes on
towards the less frequent ones as the vocab’s index gets incremented, where in the
position with index 0 we assign it to hold the value "<PAD/>" for the paddings. Now
we adjust each document to hold exactly 400 words, trimming the ones that exceed
this length, and padding the ones with lower length using the "<PAD/>" string. After
that, we substitute each word string with the respective vocab’s index. As a final
step, we create word embeddings by using a word2vec algorithm once again using the
entire dataset, and the trained weights of the hidden word2vec FNN are the initial
weights of the trainable embedding layer which is part of the document classifier’s
architecture. The embedding dimension is set to be 50 and the window size to 10.
We split the dataset into a training and validation set so that mtr ≈ [1/2 · m] and
mva ≈ [1/2 ·m].

6As we have not tuned any of the CNNs, the role of the validation set perfectly aligns with the
role of a test set.

26

Hypothesis and Methodology

Architecture

The architecture of [40] is tuned for the LMDRv1.0 dataset [43], and will be denoted
as

arch_opt4imdb_dataset_imdb .

Table 2 specifies it, and Figure 12 offers a visual sense about the output shapes found
across its layers.

2.3.3 | Switching The Tasks

To test if arch_opt4mnist_dataset_mnist can itself process a document dataset
instead of an image dataset, we have modified it into

arch_opt4mnist_dataset_imdb

which includes an embedding layer and where every 2D layer was substituted by a
corresponding 1D layer in the feature extractor component of the architecture. This
modified architecture is specified by Table 3, and the layerwise output shape is shown
in Figure 13. The preprocessing of arch_opt4mnist_dataset_imdb’s learning algo-
rithm uses the same preprocessing that corresponds to the architecture arch_opt4imd
b_dataset_imdb. Analogously, in order for the architecture arch_opt4imdb_dataset
_imdb to be able to process an image dataset, it was adjusted into

arch_opt4imdb_dataset_mnist

by removing the embedding layer and converting 1D layers into their corresponding
2D ones. The preprocessing of arch_opt4imdb_dataset_mnist’s learning algorithm
uses the preprocessing that corresponds to the architecture arch_opt4mnist_dataset
_mnist. This modified architecture is specified in Table 4 and the layerwise output
shape is shown in Figure 14.

27

Hypothesis and Methodology

2.3.4 | Tables and Diagrams

arch_opt4mnist_dataset_mnist
Index Layer Type Layer hyperparameters Inp. Shape Out. Shape
[0] Input - (28,28) (28,28)
[1] 2D Convolutional Filter Shape: (3,3) (28,28) (26,26,32)

of Filters: 32
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[2] 2D Convolutional Filter Shape: (3,3) (26,26,32) (24,24,64)
of Filters: 64
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[3] 2D Max Pooling Pooling Shape: (2,2) (24,24,64) (12,12,64)
Stride: (2,2)
Padding: (0,0)

[4] Dropout Drop Rate: 25% (12,12,64) (12,12,64)
[5] Flattening - (12,12,64) (9216)
[6] Dense Output Size: 128 (9216) (128)
[7] Dropout Drop Rate: 50% (128) (128)
[8] Dense Output Size: 10 (128) (10)

Activation: Softmax

Table 1: Total # of trainable parameters: 1 199 882.

28

Hypothesis and Methodology

arch_opt4imdb_dataset_imdb
Index Layer Type Layer hyperparameters In. Shape Out. Shape
[0] Input - (400) (400)
[1] Embedding Embedding dim.: 50 (400) (400,50)

Vocab. Length: 95489
[2] Dropout Drop Rate: 50% (400,50) (400,50)
[3;0] 1D Convolutional Filter Shape: 3 (400,50) (398,10)

of Filters: 10
Stride: 1
Padding: 0
Activation: ReLU

[3;1] 1D Convolutional Filter Shape: 8 (400,50) (393,10)
of Filters: 10
Stride: 1
Padding: 0
Activation: ReLU

[4;0] 1D Max Pooling Pooling Shape: 2 (398,10) (199,10)
Stride: 2
Padding: 0

[4;1] 1D Max Pooling Pooling Shape: 2 (393,10) (196,10)
Stride: 2
Padding: 0

[5;0] Flattening - (199,10) (1990)
[5;1] Flattening - (196,10) (1960)
[6] Concatenate Inputs: (a[5;0], a[5;1]) - (3950)
[7] Dropout Drop Rate: 80% (3950) (3950)
[8] Dense Output Size: 50 (3950) (50)

Activation: ReLU
[9] Dense Output Size: 1 (50) (1)

Activation: Sigmoid

Table 2: Total # of trainable parameters: 4 977 571.

29

Hypothesis and Methodology

arch_opt4mnist_dataset_imdb
Index Layer Type Layer hyperparameters Inp. Shape Out. Shape
[0] Input - (400) (400)
[1] Embedding Embedding dim.: 50 (400) (400,50)

Vocab. Length: 95489
[2] 1D Convolutional Filter Shape: 3 (400,50) (398,32)

of Filters: 32
Stride: 1
Padding: 0
Activation: ReLU

[3] 1D Convolutional Filter Shape: 3 (398,32) (396,64)
of Filters: 64
Stride: 1
Padding: 0
Activation: ReLU

[4] 1D Max Pooling Pooling Shape: 2 (396,64) (198,64)
Stride: 2
Padding: 0

[5] Dropout Drop Rate: 25% (198,64) (198,64)
[6] Flattening - (198,64) (12672)
[7] Dense Output Size: 128 (12672) (128)
[8] Dropout Drop Rate: 50% (128) (128)
[9] Dense Output Size: 1 (128) (1)

Activation: Sigmoid

Table 3: Total # of trainable parameters: 6 407 763.

30

Hypothesis and Methodology

arch_opt4imdb_dataset_mnist
Index Layer Type Layer hyperparameters In. Shape Out. Shape
[0] Input - (28,28) (28,28)
[1] Dropout Drop Rate: 50% (28,28) (28,28)
[2;0] 2D Convolutional Filter Shape: (3,3) (28,28) (26,26,10)

of Filters: 10
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[2;1] 2D Convolutional Filter Shape: (8,8) (26,26,10) (21,21,10)
of Filters: 10
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[3;0] 2D Max Pooling Pooling Shape: (2,2) (26,26,10) (13,13,10)
Stride: (2,2)
Padding: (0,0)

[3;1] 2D Max Pooling Pooling Shape: (2,2) (21,21,10) (10,10,10)
Stride: (2,2)
Padding: (0,0)

[4;0] Flattening - (13,13,10) (1690)
[4;1] Flattening - (10,10,10) (1000)
[5] Concatenate Inputs: (a[4;0], a[4;1]) - (2690)
[6] Dropout Drop Rate: 80% (2690) (2690)
[7] Dense Output Size: 50 (2690) (50)

Activation: ReLU
[8] Dense Output Size: 10 (50) (10)

Activation: Softmax

Table 4: Total # of trainable parameters: 135 810.

31

Hypothesis and Methodology

Figure 11: This figure was obtained using the software [44]. It shows
arch_opt4mnist_dataset_mnist’s output shapes layerwise.

Figure 12: This figure was obtained using the software [44]. It shows
arch_opt4imdb_dataset_imdb’s output shapes layerwise.

32

Hypothesis and Methodology

Figure 13: This figure was obtained using the software [44]. It shows
arch_opt4mnist_dataset_imdb’s output shapes layerwise.

Figure 14: This figure was obtained using the software [44]. It shows
arch_opt4imdb_dataset_mnist’s output shapes layerwise.

33

Hypothesis and Methodology

2.4 | Problems and Training Algorithms Part II

We have utilized transfer learning for image and document classification tasks. The
source model architectures are identical to arch_opt4mnist_dataset_mnist and
arch_opt4imdb_dataset_imdb, where the first is tuned for a specific image clas-
sification task, and the latter is tuned for a specific document classification task.
The source models were trained on the respective problems they were tuned to solve.
When the training of the source models finished, their respective hidden layers were
used as the hidden layers of the target models (excluding the embedding layer). For
the fine-tuning part, the same datasets were used as the target datasets, but they
were swapped for the training of each of the target models. Additionally, the target
models were trained on the same datasets as their respective source models with the
same hyperparameters. Thus there are 2 source models and for each of these source
models, there are 2 target models. The training processes share the same number of
epochs, minibatch size, gradient descent algorithm and trainable parameter initial-
ization as in the case of 2.3.

2.4.1 | Training Framework of the Source Image Classifier

The training process that trains the source image classifier is based on [39]. It is
tuned to produce high performance classifiers for the same task as the one described
in 2.3.1 with the same raw input shape and preprocessing.

Architecture

The source architecture of the image classification task is set to be equal to arch_opt4
mnist_dataset_mnist and will be denoted as

mnistsrc

Table 5 specifies it, and Figure 15 offers a visual sense about the output shapes found
across its layers.

2.4.2 | Training Framework of the Source Document Classifier

The training process that trains the source document classifier is based on [40]. It is
tuned to produce high performance classifiers for the same task as the one described
in 2.3.2 with the same vocabulary size.

Preprocessing

The same preprocessing as in 2.3.2 was used here, except this time the document size
was set to be equal to 28 instead of 400, and the embedding dimension was set to be
equal to 28 instead of 50. This is one way to make it possible for transfer learning to
work properly.

Architecture

34

Hypothesis and Methodology

The hidden layers’ hyperparameters of the source architecture of the image classifica-
tion task, are set to be equal to the respective ones as in the arch_opt4imdb_dataset_
imdb and will be denoted as

imdbsrc .

The shapes of each layer’s output is different from arch_opt4imdb_dataset_imdb, as
the preprocessing leads to different output shapes on the input and embedding layers.
Table 6 specifies it, and Figure 16 offers a visual sense about the output shapes found
across its layers.

2.4.3 | Training Framework of the Target Models

The target model which was based on the source model that was originally trained on
the image dataset, was trained on the document dataset where the respective trained
source model was trained on. The respective architecture of that target model, is
denoted as

mnistsrc_imdbtgt ,

Table 7 specifies it, and Figure 17 shows its layers’ outputs. For the target architec-
ture, an embedding layer was added prior to all of the source architecture’s hidden
layers, while the number of output neurons in the output layer was set to be 1 which is
equipped with the sigmoid activation function. On the other hand, the target model
associated with the source model that was trained on the document dataset, was
trained on the image dataset where the respective trained source model was trained
on. The respective architecture of that target model, is denoted as

imdbsrc_mnisttgt ,

Table 8 specifies it, and Figure 18 shows its layers’ outputs. The embedding layer
of the source architecture was not used in the target model, while the number of
output neurons in the output layer was set to be 10, while the layer was equipped
with the softmax activation function. In both of these target model cases, the output
layer’s initial trainable parameters were sampled from the Xavier/Glorot distribution.

The same source models were also trained on the same source datasets, with the
same hyperparameter configurations in each of the 2 cases, which is basically the
same as training the same source models for the double amount of epochs as part
of the pre-training stage. The architecture of the target model associated with the
source model where both of these models were trained on the same image dataset, is
denoted as

mnistsrc_mnisttgt ,

and the architecture of the target model associated with the source model where both
of these models were trained on the same document dataset, is denoted as

imdbsrc_imdbtgt .

35

Hypothesis and Methodology

where obviously

mnistsrc = mnistsrc_mnisttgt ,

and

imdbsrc = imdbsrc_imdbtgt .

2.4.4 | Tables and Diagrams

mnistsrc or mnistsrc_mnisttgt
Index Layer Type Layer hyperparameters Inp. Shape Out. Shape
[0] Input - (28,28) (28,28)
[1] 2D Convolutional Filter Shape: (3,3) (28,28) (26,26,32)

of Filters: 32
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[2] 2D Convolutional Filter Shape: (3,3) (26,26,32) (24,24,64)
of Filters: 64
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[3] 2D Max Pooling Pooling Shape: (2,2) (24,24,64) (12,12,64)
Stride: (2,2)
Padding: (0,0)

[4] Dropout Drop Rate: 25% (12,12,64) (12,12,64)
[5] Flattening - (12,12,64) (9216)
[6] Dense Output Size: 128 (9216) (128)
[7] Dropout Drop Rate: 50% (128) (128)
[8] Dense Output Size: 10 (128) (10)

Activation: Softmax

Table 5: Total # of trainable parameters: 1 199 882.

36

Hypothesis and Methodology

imdbsrc or imdbsrc_imdbtgt
Index Layer Type Layer hyperparameters In. Shape Out. Shape
[0] Input - (28) (28)
[1] Embedding Embedding dim.: 28 (28) (28,28)

Vocab. Length: 95489
[2] Dropout Drop Rate: 50% (28,28) (28,28)
[3;0] 1D Convolutional Filter Shape: 3 (28,28) (26,10)

of Filters: 10
Stride: 1
Padding: 0
Activation: ReLU

[3;1] 1D Convolutional Filter Shape: 8 (28,28) (21, 10)
of Filters: 10
Stride: 1
Padding: 0
Activation: ReLU

[4;0] 1D Max Pooling Pooling Shape: 2 (26,10) (13, 10)
Stride: 2
Padding: 0

[4;1] 1D Max Pooling Pooling Shape: 2 (21, 10) (10, 10)
Stride: 2
Padding: 0

[5;0] Flattening - (199,10) (130)
[5;1] Flattening - (196,10) (100)
[6] Concatenate Inputs: (a[5;0], a[5;1]) - (230)
[7] Dropout Drop Rate: 80% (230) (230)
[8] Dense Output Size: 50 (230) (50)

Activation: ReLU
[9] Dense Output Size: 1 (50) (1)

Activation: Sigmoid

Table 6: Total # of trainable parameters: 1 086 625.

37

Hypothesis and Methodology

mnistsrc_imdbtgt
Index Layer Type Layer hyperparameters Inp. Shape Out. Shape
[0] Input - (28) (28)
[1] Embedding Embedding dim.: 28 (28) (28,28)

Vocab. Length: 95489
[2] 2D Convolutional Filter Shape: (3,3) (28,28) (26,26,32)

of Filters: 32
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[3] 2D Convolutional Filter Shape: (3,3) (26,26,32) (24,24,64)
of Filters: 64
Stride: (1,1)
Padding: (0,0)
Activation: ReLU

[4] 2D Max Pooling Pooling Shape: (2,2) (24,24,64) (12,12,64)
Stride: (2,2)
Padding: (0,0)

[5] Dropout Drop Rate: 25% (12,12,64) (12,12,64)
[6] Flattening - (12,12,64) (9216)
[7] Dense Output Size: 128 (9216) (128)
[8] Dropout Drop Rate: 50% (128) (128)
[9] Dense Output Size: 1 (128) (1)

Activation: Sigmoid

Table 7: Total # of trainable parameters: 2 270 645.

38

Hypothesis and Methodology

imdbsrc_mnisttgt
Index Layer Type Layer hyperparameters In. Shape Out. Shape
[0] Input - (28,28) (28,28)
[1] Dropout Drop Rate: 50% (28,28) (28,28)
[2;0] 1D Convolutional Filter Shape: 3 (28,28) (26,10)

of Filters: 10
Stride: 1
Padding: 0
Activation: ReLU

[2;1] 1D Convolutional Filter Shape: 8 (28,28) (21, 10)
of Filters: 10
Stride: 1
Padding: 0
Activation: ReLU

[3;0] 1D Max Pooling Pooling Shape: 2 (26,10) (13, 10)
Stride: 2
Padding: 0

[3;1] 1D Max Pooling Pooling Shape: 2 (21, 10) (10, 10)
Stride: 2
Padding: 0

[4;0] Flattening - (199,10) (130)
[4;1] Flattening - (196,10) (100)
[5] Concatenate Inputs: (a[5;0], a[5;1]) - (230)
[6] Dropout Drop Rate: 80% (230) (230)
[7] Dense Output Size: 50 (230) (50)

Activation: ReLU
[8] Dense Output Size: 10 (50) (10)

Activation: Softmax

Table 8: Total # of trainable parameters: 15 160.

39

Hypothesis and Methodology

Figure 15: This figure was obtained using the software [44]. It shows mnistsrc’s or
mnistsrc_mnisttgt’s output shapes layerwise.

Figure 16: This figure was obtained using the software [44]. It shows imdbsrc’s or
imdbsrc_imdbtgt’s output shapes layerwise.

40

Hypothesis and Methodology

Figure 17: This figure was obtained using the software [44]. It shows
mnistsrc_imdbtgt’s output shapes layerwise.

Figure 18: This figure was obtained using the software [44]. It shows
imdbsrc_mnisttgt’s output shapes layerwise.

41

Experimental Evaluation

3 | Experimental Evaluation

For each of the training algorithms specified in the Subchapter 2.3 corresponding to
one of the mentioned architectures, we have trained a classifier and here we present
the produced classifiers’ evaluation metrics per epoch, which were collected in tables
followed by their respective plots. The experiments were conducted in a Debian 9
(Linux) equipped with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and with total
memory ∼132GB. All the experiments were implemented using Python version 3.
Python version 2 was also used in some cases. We have utilized the open source
library of Keras [45], using TensorFlow [46] as its backend.

• For Python2 we have used Keras version 2.3.0 and TensorFlow version 1.13.1.

• For Python3 we have used Keras version 2.3.0 and TensorFlow version 2.0.0.

The experiments are reproducible per machine.

3.1 | Evaluation Metrics

The evaluation metrics we have collected for all of the trained classifiers are that from
the respective loss functions which corresponds to each learning process and accuracy.
The measured numbers presented in the tables were rounded to the 4th fractional digit
so that the tables could fit inside the pages, given that the rest of the digits do not
play a significant role. Regarding the evaluation tables, we have highlighted the cell
corresponding to the epoch with the optimal value among the values of all epochs
per metric. So for example, if epoch 3 ∈ {0, . . . , 9} of the rounded validation set’s
loss has the lowest value among all epochs, then the cell containing that value will be
highlighted. The cells which have a non-white background are the highlighted ones.
Also, it should be noted that Keras/TensorFlow’s evaluation metrics parameterized
on the respective training set per epoch, are estimators of the real evaluation metrics.
These estimators are computed as an average of the evaluation metrics parameterized
on every minibatch per epoch [47]. Because of that, we will observe excessively lower
estimated performance on the training set compared to the validation/test set in
initial epochs. That is because during the initial minibatch updates in early epochs,
the loss is way higher, and as a result the average value of all loss estimations is
directly affected by these minibatch losses.

3.2 | Datasets

As we have already mentioned in the Subchapter 2.3.1, each of the original training
algorithms are tuned on the MNIST and the LMRDv1.0 datasets.

3.2.1 | The MNIST Dataset

The MNIST dataset, formally known as the Modified National Institute of Stan-
dards and Technology database [42], is used to solve the task of image classification

42

Experimental Evaluation

of grayscale images consisted of handwritten digits. It is a balanced dataset with 10
unique labels, where each label index c(c ∈ {0, 1, . . . , 9}) corresponds to the hand-
written decimal digit c. So an image x with label index c (or y) corresponds to the
number c. The dataset contains 70 000 grayscale images of handwritten digits where
every image has a fixed (28, 28) shape (see Figure 19). Each image’s pixel positioned
at (j0, j1) corresponds to an integer number xj0,j1(xj0,j1 ∈ {0, . . . , 255}).

3.2.2 | The LMRDv1.0 Dataset

The LMRDv1.0, formally known as the Large Movie Review Dataset v1.0 [43],
containing comments of movie reviews, originated from the IMDb’s official website7

[43]. We focus on 50 000 of these comments which are labeled either as positive or
negative reviews, each corresponding to a specific movie. This balanced dataset is
suitable for sentiment analysis and specifically for the binary classification problem
of a positively versus negatively reviewed movie from multiple users among a wide
variety of movies. Each comment is a specific document instance. The dataset we
invoke for the experiments is a slightly modified version of the mentioned one, pulled
from the repository [48]. We may also refer to the same dataset as the IMDb dataset.
Below a dataset’s instance of these comments is shown in string format.

"i␣really␣liked␣this␣movie␣despite␣one␣scene␣that␣was␣pretty␣bad␣the␣
one␣when␣samantha␣and␣nick␣are␣flirting␣in␣the␣hotel␣the␣story␣is␣

so␣cool␣and␣can␣t␣wait␣to␣read␣the␣book␣bravo␣for␣the␣super␣station"

Figure 19: This image was taken from [49], and it shows a sample of images from
the MNIST dataset. In this demonstration, the color intensity of each image pixel
was inverted.

7https://www.imdb.com

43

https://www.imdb.com

Experimental Evaluation

3.3 | Experiments Part I

These experiments were conducted using the methodology proposed in 2.3.

3.3.1 | Experiments Based on MNIST’s Architecture

Table 9 (for Python2), Table 11 (for Python3) along with their respective plots shown
in Figure 20 (a), (b) (for Python2), and Figure 21 (a), (b) (for Python3) show the eval-
uation of the classifier that was produced by the architecture which was tuned for the
problem of MNIST, this architecture was named as arch_opt4mnist_dataset_mnist.
This classifier was trained on the MNIST dataset by the training algorithm corre-
sponding to that architecture.

On the other hand, Table 10 (for Python2), Table 12 (for Python3) along with
their respective plots shown in Figure 20 (c), (d) (for Python2), and Figure 21
(c), (d) (for Python3) show the evaluation of the classifier that was produced by
the architecture which was tuned for the problem of MNIST, but is modified in a
way that it is able to process the IMDb dataset, this architecture was named as
arch_opt4mnist_dataset_imdb, which is a slightly modified version of the archi-
tecture arch_opt4mnist_dataset_mnist that allows for the processing of the IMDb
dataset’s documents. This classifier was trained on the IMDb dataset by the training
algorithm corresponding to that architecture.

44

Experimental Evaluation

Training arch_opt4mnist_dataset_mnist on MNIST using Python2
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.2107 0.0809 0.0614 0.0523 0.0472 0.0425 0.0395 0.0370 0.0357 0.0336
LDva 0.0601 0.0468 0.0434 0.0375 0.0349 0.0329 0.0318 0.0359 0.0300 0.0338
ˆacc(Dtr) 0.9360 0.9761 0.9817 0.9848 0.9865 0.9877 0.9882 0.9892 0.9893 0.9906
acc(Dva) 0.9837 0.9867 0.9866 0.9897 0.9900 0.9905 0.9910 0.9898 0.9917 0.9918

Table 9: Evaluation metrics during the training of the classifier based on the MNIST
dataset, that was produced by the MNIST architecture using Python2.

Training arch_opt4mnist_dataset_imdb on IMDb using Python2
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.5286 0.2913 0.2445 0.2087 0.1867 0.1599 0.1385 0.1124 0.0856 0.0632
LDva 0.3115 0.2644 0.2744 0.2855 0.2742 0.2759 0.2938 0.3256 0.3846 0.4264
ˆacc(Dtr) 0.7111 0.8802 0.9041 0.9198 0.9283 0.9400 0.9485 0.9600 0.9702 0.9784
acc(Dva) 0.8706 0.8916 0.8914 0.8915 0.8973 0.8956 0.8940 0.8975 0.8901 0.8948

Table 10: Evaluation metrics during the training of the classifier based on the IMDb
dataset, that was produced by the MNIST architecture after its modifications to allow
for such a training, using Python2.

Training arch_opt4mnist_dataset_mnist on MNIST using Python3
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.2112 0.0804 0.0606 0.0513 0.0462 0.0413 0.0384 0.0361 0.0354 0.0333
LDva 0.0609 0.0462 0.0437 0.0354 0.0350 0.0333 0.0309 0.0347 0.0302 0.0361
ˆacc(Dtr) 0.9360 0.9761 0.9817 0.9847 0.9862 0.9877 0.9887 0.9895 0.9891 0.9905
acc(Dva) 0.9829 0.9869 0.9864 0.9901 0.9894 0.9905 0.9909 0.9906 0.9919 0.9915

Table 11: Evaluation metrics during the training of the classifier based on the MNIST
dataset, that was produced by the MNIST architecture using Python3.

Training arch_opt4mnist_dataset_imdb on IMDb using Python3
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.4854 0.2876 0.2429 0.2087 0.1837 0.1572 0.1337 0.1049 0.0772 0.0567
LDva 0.2946 0.2613 0.2943 0.2611 0.2718 0.2877 0.3009 0.4066 0.3555 0.4279
ˆacc(Dtr) 0.7500 0.8835 0.9046 0.9199 0.9298 0.9415 0.9510 0.9626 0.9747 0.9812
acc(Dva) 0.8792 0.8921 0.8869 0.8991 0.8970 0.8924 0.8894 0.8774 0.8966 0.8933

Table 12: Evaluation metrics during the training of the classifier based on the IMDb
dataset, that was produced by the MNIST architecture after its modifications to allow
for such a training, using Python3.

45

Experimental Evaluation

Figure 20: Performance graphs of the classifiers’ trainings produced using the ar-
chitectures which were originally tuned for the MNIST task in Python2. (a) and
(b) correspond to the produced model using arch_opt4mnist_dataset_mnist which
was trained on the MNIST dataset. (c) and (d) correspond to the produced model
using arch_opt4mnist_dataset_imdb which was trained on the IMDb dataset.

46

Experimental Evaluation

Figure 21: Performance graphs of the classifiers’ trainings produced using the ar-
chitectures which were originally tuned for the MNIST task in Python3. (a) and
(b) correspond to the produced model using arch_opt4mnist_dataset_mnist which
was trained on the MNIST dataset. (c) and (d) correspond to the produced model
using arch_opt4mnist_dataset_imdb which was trained on the IMDb dataset.

47

Experimental Evaluation

3.3.2 | Experiments Based on LMRDv1.0’s Architecture

Table 14 (for Python2), Table 16 (for Python3) along with their respective plots shown
in Figure 22 (c), (d) (for Python2), and Figure 23 (c), (d) (for Python3) show the
evaluation of the classifier that was produced by the architecture which was tuned for
the problem of IMDb, this architecture was named as arch_opt4imdb_dataset_imdb.
This classifier was trained on the IMDb dataset by the training algorithm correspond-
ing to that architecture.

On the other hand, Table 13 (for Python2), Table 15 (for Python3) along with
their respective plots shown in Figure 22 (a), (b) (for Python2), and Figure 23
(a), (b) (for Python3) show the evaluation of the classifier that was produced by
the architecture which was tuned for the problem of IMDb8 but is modified in a
way that it is able to process the MNIST dataset, this architecture was named as
arch_opt4imdb_dataset_mnist, which is a slightly modified version of the archi-
tecture arch_opt4imdb_dataset_imdb that allows for the processing of the MNIST
dataset’s images. This classifier was trained on the MNIST dataset by the training
algorithm corresponding to that architecture.

8Reminding that the IMDb and LMRDv1.0 are referring to the same movie review dataset in
this thesis.

48

Experimental Evaluation

Training arch_opt4imdb_dataset_mnist on MNIST using Python2
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.5527 0.3076 0.2615 0.2377 0.2248 0.2137 0.2044 0.1999 0.1912 0.1884
LDva 0.2889 0.2297 0.1835 0.1684 0.1622 0.1757 0.1413 0.1334 0.1507 0.1382
ˆacc(Dtr) 0.8219 0.9028 0.9188 0.9255 0.9294 0.9308 0.9346 0.9360 0.9391 0.9395
acc(Dva) 0.9438 0.9580 0.9655 0.9663 0.9695 0.9696 0.9701 0.9726 0.9703 0.9741

Table 13: Evaluation metrics during the training of the classifier based on the MNIST
dataset, that was produced by the IMDb architecture after its modifications to allow
for such a training, using Python2.

Training arch_opt4imdb_dataset_imdb on IMDb using Python2
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.6102 0.4099 0.3522 0.3188 0.2999 0.2828 0.2705 0.2614 0.2543 0.2445
LDva 0.4088 0.3205 0.3282 0.2793 0.2727 0.2693 0.2574 0.2680 0.2513 0.2499
ˆacc(Dtr) 0.6376 0.8165 0.8488 0.8684 0.8751 0.8840 0.8889 0.8961 0.8989 0.9022
acc(Dva) 0.8331 0.8692 0.8682 0.8901 0.8936 0.8964 0.8988 0.8916 0.9001 0.9005

Table 14: Evaluation metrics during the training of the classifier based on the IMDb
dataset, that was produced by the IMDb architecture using Python2.

Training arch_opt4imdb_dataset_mnist on MNIST using Python3
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.5527 0.3071 0.2622 0.2382 0.2247 0.2138 0.2049 0.1998 0.1904 0.1886
LDva 0.2893 0.2291 0.1819 0.1677 0.1639 0.1755 0.1430 0.1352 0.1586 0.1444
ˆacc(Dtr) 0.8215 0.9032 0.9184 0.9252 0.9293 0.9312 0.9342 0.9361 0.9392 0.9398
acc(Dva) 0.9447 0.9577 0.9662 0.9666 0.9690 0.9700 0.9704 0.9724 0.9691 0.9734

Table 15: Evaluation metrics during the training of the classifier based on the MNIST
dataset, that was produced by the IMDb architecture after its modifications to allow
for such a training, using Python3.

Training arch_opt4imdb_dataset_imdb on IMDb using Python3
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.5849 0.4025 0.3456 0.3170 0.3031 0.2835 0.2708 0.2639 0.2565 0.2471
LDva 0.3976 0.3204 0.3300 0.2783 0.2855 0.2737 0.2557 0.2664 0.2496 0.2488
ˆacc(Dtr) 0.6707 0.8224 0.8543 0.8680 0.8738 0.8862 0.8888 0.8920 0.8975 0.9031
acc(Dva) 0.8437 0.8735 0.8642 0.8912 0.8902 0.8944 0.8998 0.8940 0.9022 0.9012

Table 16: Evaluation metrics during the training of the classifier based on the IMDb
dataset, that was produced by the IMDb architecture using Python3.

49

Experimental Evaluation

Figure 22: Performance graphs of the classifiers’ trainings produced using the ar-
chitectures which were originally tuned for the IMDb task in Python2. (a) and (b)
correspond to the produced model using arch_opt4imdb_dataset_mnist which was
trained on the MNIST dataset. (c) and (d) correspond to the produced model using
arch_opt4imdb_dataset_imdb which was trained on the IMDb dataset.

50

Experimental Evaluation

Figure 23: Performance graphs of the classifiers’ trainings produced using the
architecture which were tuned for the IMDb task in Python3. (a) and (b) cor-
respond to the produced model using arch_opt4imdb_dataset_mnist which was
trained on the MNIST dataset. (c) and (d) correspond to the produced model using
arch_opt4imdb_dataset_imdb which was trained on the IMDb dataset.

51

Experimental Evaluation

3.3.3 | Training Time

Training Time using Python2

• arch_opt4mnist_dataset_mnist takes approximately 265 seconds to complete
an epoch.

• arch_opt4mnist_dataset_imdb takes approximately 122 seconds to complete
an epoch.

• arch_opt4imdb_dataset_mnist takes approximately 54 seconds to complete
an epoch.

• arch_opt4imdb_dataset_imdb takes approximately 132 seconds to complete
an epoch.

Training Time using Python3

• arch_opt4mnist_dataset_mnist takes approximately 43 seconds to complete
an epoch.

• arch_opt4mnist_dataset_imdb takes approximately 42 seconds to complete
an epoch.

• arch_opt4imdb_dataset_mnist takes approximately 9 seconds to complete an
epoch.

• arch_opt4imdb_dataset_imdb takes approximately 40 seconds to complete an
epoch.

The execution time is notably longer in the Python2 trainings mainly because of the
additional configuration through the function

tf.ConfigProto

where tf is the alias for the TensorFlow v1.13.1 module, invoked for the Python2
implementations. This additional RNG configuration was necessary for the experi-
ments’ reproducibility9.

3.4 | Experiments Part II

These experiments were conducted using the methodology proposed in 2.4 using
Python 3.

9https://www.tensorflow.org/api_docs/python/tf/compat/v1/ConfigProto

52

https://www.tensorflow.org/api_docs/python/tf/compat/v1/ConfigProto

Experimental Evaluation

3.4.1 | Experiments Based on the mnistsrc Source Model

The evaluation metrics during the training of the source model and its target models
produced by the transfer learning associated with the mnistsrc architecture which
was tuned for the MNIST dataset, are shown in the following tables and diagrams.
The source architecture was tuned for the MNIST task. Table 17 demonstrates the
performance of the pre-training part which is the training of the source model with ar-
chitecture mnistsrc, on the MNIST dataset. Table 18 demonstrates the performance
of the fine-tuning part on the same dataset as the source model with no changes in
the architecture mnistsrc_mnisttgt relative to the mnistsrc architecture. Table 19
demonstrates the performance of the fine-tuning part on the IMDb dataset, where the
target architecture is mnistsrc_imdbtgt. Figure 24 shows the respective diagrams.

Training mnistsrc on MNIST
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.2112 0.0804 0.0606 0.0513 0.0462 0.0413 0.0384 0.0361 0.0354 0.0333
LDva 0.0609 0.0462 0.0437 0.0354 0.0350 0.0333 0.0309 0.0347 0.0302 0.0361
ˆacc(Dtr) 0.9360 0.9761 0.9817 0.9847 0.9862 0.9877 0.9887 0.9895 0.9891 0.9905
acc(Dva) 0.9829 0.9869 0.9864 0.9901 0.9894 0.9905 0.9909 0.9906 0.9919 0.9915

Table 17: Evaluation metrics during the training of mnistsrc on the MNIST dataset.

Training mnistsrc_mnisttgt on MNIST
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.0320 0.0302 0.0311 0.0290 0.0289 0.0270 0.0263 0.0255 0.0256 0.0248
LDva 0.0297 0.0304 0.0322 0.0304 0.0309 0.0302 0.0319 0.0322 0.0354 0.0316
ˆacc(Dtr) 0.9899 0.9908 0.9904 0.9913 0.9915 0.9919 0.9920 0.9919 0.9923 0.9923
acc(Dva) 0.9918 0.9912 0.9924 0.9916 0.9916 0.9929 0.9921 0.9922 0.9914 0.9927

Table 18: Evaluation metrics during the training of mnistsrc_mnisttgt on the
MNIST dataset, where the initial trainable parameters were copied from the respec-
tive trained source model of mnistsrc.

Training mnistsrc_imdbtgt on IMDb
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.7266 0.7180 0.7116 0.7076 0.7049 0.7028 0.6993 0.6990 0.6988 0.6988
LDva 0.7091 0.7036 0.6997 0.6971 0.6955 0.6946 0.6940 0.6936 0.6934 0.6933
ˆacc(Dtr) 0.4959 0.4985 0.5010 0.4954 0.4954 0.4965 0.4993 0.5024 0.5009 0.4951
acc(Dva) 0.5030 0.5030 0.5030 0.5030 0.5030 0.5030 0.5030 0.5030 0.5030 0.5030

Table 19: Evaluation metrics during the training of mnistsrc_imdbtgt on the IMDb
dataset, where the initial trainable parameters were copied from the respective trained
source model of mnistsrc.

53

Experimental Evaluation

Figure 24: Performance graphs of the classifiers’ trainings based on the mnistsrc’s
trained source model. (a) and (b) correspond to the training of the source model with
architecture mnistsrc, on the MNIST dataset. (c) and (d) correspond to the training
of the target model with architecture mnistsrc_mnisttgt on the MNIST dataset,
while (e) and (f) correspond to the training of the target model with architecture
mnistsrc_imdbtgt on the IMDb dataset. Both of the target models were based on
the mentioned source model.

54

Experimental Evaluation

3.4.2 | Experiments Based on the imdbsrc Source Model

The evaluation metrics during the training of the source model and its target models
produced by the transfer learning associated with the imdbsrc architecture which
was tuned for the IMDb dataset, are shown in the following tables and diagrams.
The source architecture was tuned for the IMDb task. Table 20 demonstrates the
performance of the pre-training part which is the training of the source model with
architecture imdbsrc, on the IMDb dataset. Table 21 demonstrates the performance
of the fine-tuning part on the same dataset as the source model with no changes
in the architecture imdbsrc_imdbtgt relative to the imdbsrc architecture. Table
22 demonstrates the performance of the fine-tuning part on the MNIST dataset,
where the target architecture is imdbsrc_mnisttgt. Figure 25 shows the respective
diagrams.

Training imdbsrc
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.6971 0.6726 0.6496 0.6303 0.6089 0.5973 0.5856 0.5746 0.5667 0.5581
LDva 0.6784 0.6544 0.6277 0.6054 0.5884 0.5746 0.5678 0.5589 0.5511 0.5521
ˆacc(Dtr) 0.5328 0.5830 0.6157 0.6419 0.6584 0.6723 0.6830 0.6957 0.6984 0.7076
acc(Dva) 0.6092 0.6423 0.6718 0.6819 0.6910 0.6990 0.7080 0.7041 0.7149 0.7097

Table 20: Evaluation metrics during the training of imdbsrc on the IMDb dataset.

Training imdbsrc_imdbtgt on IMDb
0 1 2 3 4 5 6 7 8 9

L̂Dtr 0.6084 0.5969 0.5899 0.5844 0.5770 0.5752 0.5654 0.5632 0.5551 0.5499
LDva 0.5909 0.5802 0.5743 0.5748 0.5697 0.5675 0.5649 0.5577 0.5550 0.5495
ˆacc(Dtr) 0.6566 0.6678 0.6734 0.6794 0.6896 0.6907 0.6970 0.7010 0.7071 0.7132
acc(Dva) 0.6724 0.6825 0.6843 0.6899 0.6932 0.6950 0.6984 0.7030 0.7068 0.7087

Table 21: Evaluation metrics during the training of imdbsrc_imdbtgt on the IMDb
dataset, where the initial trainable parameters were copied from the respective trained
source model of imdbsrc.

Training imdbsrc_mnisttgt on MNIST
0 1 2 3 4 5 6 7 8 9

L̂Dtr 6.7460 6.1296 5.6088 5.1579 4.7634 4.4514 4.1984 3.9790 3.7935 3.6294
LDva 4.9574 4.4590 4.0436 3.7057 3.4350 3.2169 3.0429 2.9036 2.7920 2.7019
ˆacc(Dtr) 0.1010 0.1014 0.1027 0.1039 0.1046 0.1072 0.1088 0.1089 0.1092 0.1113
acc(Dva) 0.1047 0.1045 0.1021 0.0976 0.0885 0.0860 0.0851 0.0880 0.0946 0.0992

Table 22: Evaluation metrics during the training of imdbsrc_mnisttgt on the
MNIST dataset, where the initial trainable parameters were copied from the respec-
tive trained source model of imdbsrc.

55

Experimental Evaluation

Figure 25: Performance graphs of the classifiers’ trainings based on the imdbsrc’s
trained source model. (a) and (b) correspond to the training of the source model with
architecture imdbsrc, on the IMDb dataset. (c) and (d) correspond to the training
of the target model with architecture imdbsrc_mnisttgt on the MNIST dataset,
while (e) and (f) correspond to the training of the target model with architecture
imdbsrc_imdbtgt on the IMDb dataset. Both of the target models were based on
the mentioned source model.

56

Experimental Evaluation

3.4.3 | Training Time

Training Time of Pre-Training

• mnistsrc takes approximately 37s seconds to complete an epoch.

• imdbsrc takes approximately 6s seconds to complete an epoch.

Training Time of Fine-Tuning

• mnistsrc_mnisttgt takes approximately 29s seconds to complete an epoch.

• mnistsrc_imdbtgt takes approximately 16s seconds to complete an epoch.

• imdbsrc_mnisttgt takes approximately 4s seconds to complete an epoch.

• imdbsrc_imdbtgt takes approximately 3s seconds to complete an epoch.

4 | Discussion

About Experiments Part I

For this group of experiments there are no considerable differences between the
Python2 and Python3 implementations.

Using an architecture which was tuned for the MNIST dataset, for the training on
the IMDb dataset after the adjustment, part of which was the conversion of the
2D to 1D layers in the feature extraction component (Architecture’s Table 3), the
trained model performs well enough but is slightly worse than the model trained for
the IMDb dataset where the final one was based on the architecture (Architecture’s
Table 2) which was tuned for the IMDb dataset (Performance Tables 10, 14, 12, 16).
Judging by the loss metric, the adjusted model has a mild tendency to overfit after
epoch 2 in the case of Python2, while in Python3 this happens after epoch 3. This
makes sense because the adjusted architecture is set to have many more parameters
(6 407 763 parameters) compared to the number of parameters of the architecture that
was tuned on the IMDb dataset and used for trainings on the same dataset (4 977 571
parameters). The model with architecture tuned for the IMDb dataset does not show
any signs of overfitting behavior during its training as expected.

Conversely, taking the architecture which was tuned for the IMDb dataset and ap-
plying it to the MNIST dataset with the necessary adjustments (Architecture’s Table
4), the model performs slightly worse than the model corresponding to the architec-
ture (Architecture’s Table 1) which was tuned for the MNIST dataset (Performance
Tables 13, 9, 15, 11). The adjusted model has validation accuracy 0.9734 which is
noticeably lower than the 0.9918 validation accuracy of the model that was training
on the MNIST dataset whose architecture was tuned for the MNIST dataset. A pos-
sible reason for this performance reduction is because the total number of parameters

57

Experimental Evaluation

is lower in the case of the adjusted architecture (135 810 parameters) compared to
the architecture tuned for the MNIST dataset which is used for the training on that
same dataset (1 199 882 parameters), and potentially because of the dropout layer
immediately after the input layer with a drop rate of 50% which may ruin important
patterns inside the input’s image. The combination of these two facts imply that
the adjusted model’s architecture learns a lot less features with the initial dropout
causing a bottleneck in the information received by the following layers.

About Experiments Part II

Considering the architecture which was tuned for the MNIST dataset (Architecture’s
Table 5), the training (Table 17) of the model seems to be optimal at epoch 8 with
validation accuracy 0.9919, after which it drops by a trivial amount to 0.9915. Con-
tinuing the training on the same dataset (Table 18) the resulting model has a trivially
higher validation accuracy 0.9927 where the optimal one is at epoch 5 with validation
accuracy 0.9929. The training shows a minor sign of overfitting because the optimal
validation loss remains at epoch 0 after which it fluctuates around the same values
while the training loss continues to improve. On the other hand, using the same
source model for the training on the IMDb dataset, with the appropriate adjust-
ments (Architecture’s Table 7), the transfer learning has failed. The reason is that
during the training (Table 19), in all epochs the validation and training accuracy
oscillates around values close to 0.5 = 1/c, where c = 2 is the number of classes for
the IMDb’s task. This means that the trained model in each epoch performs like a
random classifier and uses excessive computational resources. This classifier is obvi-
ously impractical under all circumstances, thus at this point we have accepted that
the transfer learning from an image dataset to a text dataset has failed. Compared
to the architecture which was tuned for the IMDb dataset, the reduction of the input
vector’s size from 400 to 28 with the embedding dimension reduced from 50 to 28
could’ve had an impact on that, but it seems like a major reason was the usage of 2D
layers to a text dataset, instead of 1D. It makes little sense to extract the features of
a very small part of each embedding vector (e.g. 3 coordinates) every time and this
is probably why such CNNs cannot work on embedded text datasets.

Conversely, having the architecture which was tuned for the IMDb dataset (Archi-
tecture’s Table 6), the training (Table 20) of the model should have stopped at epoch
8 where the validation accuracy is the highest 0.7149 with the final one being 0.7097.
The validation accuracy is notably lower compared to the 0.9012 (Table 16) pro-
duced by the original architecture for the IMDb dataset. The reason for the big gap
is because imdbsrc has 28 input neurons with 28 being the size of the embedding
dimension while arch_opt4imdb_dataset_imdb has 400 input neurons and 50 is the
size of the embedding dimension, thus this accuracy reduction makes sense in that
regard. Additionally, this source architecture contains a lower amount of parame-
ters (1 086 625 parameters) compared to the original architecture for IMDb trainings
(4 977 571 parameters). Continuing the training for the same number of epochs (Ta-
ble 21) the final model with validation accuracy 0.7087 doesn’t show any signs of
significant improvement which is a strong sign of underfitting. On the other hand,

58

Experimental Evaluation

using this model as a source model for the training on the MNIST dataset and by
adjusting the architecture (Architecture’s Table 8), we observe an identical behavior
during the training, as in the case of the other transfer learning procedure (Table 22).
Validation and training accuracy once again are oscillating around 0.1 = 1/c. This
time the number of classes c is obviously 10, thus this model behaves like a random
classifier as in the other case. Another possible justification for the bad performance
is the number of parameters which is 15 160, and compared to the 1 199 882 of the
original architecture’s for the MNIST dataset, it is extremely lower. We can observe
that the validation loss is decreasing after each epoch which raises the hope for more
successful models produced by trainings with more epochs.

5 | Conclusions

We made an attempt to test if we can successfully train a CNN using some prop-
erties of another CNN whose architecture was tuned for a different problem based
on a different type of dataset. Moreover, we decided to use the MNIST and IMDb
datasets along with their tuned CNN architectures and their respective training al-
gorithms from external sources. We then trained these models and have found out
that they work fine on the datasets they were supposed to be trained on. Then we
have switched the tasks for each of these architectures. 2D layers and 1D layers have
been also swapped while maintaining the rest of their hyperparameters. We have also
included the embedding layer in the case of the training on the IMDb dataset and
removed the embedding layer in the case of the training on the MNIST dataset. The
reason for these changes is because 2D layers are supposed to work on image data and
1D layers on text data and the embedding layer has been designed to work for text
data. These modifications resulted in well performing final models with some mild
overfitting and underfitting behaviors during their trainings. This transference has
worked relatively fine, as the trainings of the swapped models showed high enough
validation accuracies with minor differences compared to the default trainings. We
have also used transfer learning, which has prevented us from swapping 1D with 2D
layers. The target models performed as random classifiers. We suspect that this issue
is caused because the transfered 1D kernels learned document features which are not
applicable to image data, and because the transfered 2D kernels learned image fea-
tures which are not applicable to document data, ending up trapping the initial target
model in a state where it has to unlearn irrelevant noise in each case. Additionally,
the processing of a 2D convolutional layer with a small kernel has little meaning, as
each embedded word is supposed to be treated as a whole thing. That is because
each word in a document is the equivalent of a pixel in an image.

A potential future work may be focused on investigating why such transfer learn-
ing methods from image to text data (and vice versa) fail. Was this training issue
caused by the transference of 1D to 2D trained layers? Is the usage of 2D (1D)
layers to text (image) data the problem? Are the dense layers contributing to the
problem? In order to reveal more about the hypothesis, all these questions should be

59

Experimental Evaluation

answered first. Additionally, increasing the number of epochs for the fine tuning may
be another approach for a more successful application of transfer learning. Finally we
could investigate the following transfer learning methodology: use 2D (1D) layers to
train a source model on text (image) data and proceed for the fine tuning on image
(text) data using these trained hidden layers.

60

Appendices

Appendices
The code described here can be found in [50].

Appendix I

Here we present the Python code responsible for the parsing and preprocessing of the
MNIST and IMDb datasets’ files. The file containing these parsing and preprocessing
functions is named as data_helpers.py . The chunk of code that imports all of the
necessary libraries for the data_helpers.py file can be found in Algorithm 1.

load_local_mnist_dataset (MNIST Dataset)

The function load_local_mnist_dataset (Algorithm 2) loads the MNIST dataset
from a local directory. The inputs are

• <num_classes>: int, total number of classes for the classification task.

• <img_rows>: int, total number of the feature’s image matrix rows.

• <img_cols>: int, total number of the feature’s image matrix columns.

and it returns

• <dataset>: tuple, contains 2 tuples each containing 2 elements. It is the
dataset after it has been preprocessed. <dataset> = (<x_train>, <y_train>),
(<x_test>, <y_test>):

• <x_train>: numpy.ndarray, the training set’s feature tensor, has shape (<pre-
defined_number_of_training_instances>, <predefined_number_of_rows>,
<predefined_number_of_cols>, 1).

• <y_train>: numpy.ndarray, ground truth of the test set with shape (<prede-
fined_number_of_training_instances>, <predefined_number_of_classes>).

• <x_test>: numpy.ndarray, the test set’s feature tensor, has shape (<prede-
fined_number_of_test_instances>, <predefined_number_of_feature_rows>,
<predefined_number_of_feature_cols>, 1).

• <y_test>: numpy.ndarray, ground truth of the test set with shape (<prede-
fined_number_of_test_instances>, <predefined_number_of_classes>).

mnist_channel_axis_add (MNIST Dataset)

The function mnist_channel_axis_add (Algorithm 3) adds another axis to the input,
and returns that expanded input. The inputs are

• <x>: numpy.ndarray, the dataset’s feature tensor in which there is going to
be assigned an additional axis to it. Has shape (<number_of_instances>,
<number_of_feature_rows>, <number_of_feature_cols>, 1).

61

Appendices

• <img_rows>: int, total number of the features’ image matrix rows.

• <img_cols>: int, total number of the features’ image matrix columns.

and it returns

• <x_expanded_axis>: numpy.ndarray, the input tensor with an additional axis.

preprocess_image_dataset (MNIST Dataset)

The function preprocess_image_dataset (Algorithm 4) preprocesses the given dataset,
and returns that expanded input. This is where the main preprocessing of the dataset
is implemented. The feature images are normalized, the ground truth variables are
mapped to their OHE equivalents, the instances are shuffled inside their respective
tensors and the dataset is split into a training and test set respectively. The inputs
are

• <x>: numpy.ndarray, the dataset’s feature tensor. Has shape
(<number_of_instances>, <number_of_feature_rows>,
<number_of_feature_cols>, 1).

• <y>: numpy.ndarray, the dataset’s ground truth tensor. Has shape (<num-
ber_of_instances>, <number_of_classes>). <num_classes>: int, total num-
ber of classes.

and it returns

• <dataset>: tuple, 2 tuples each containing 2 elements. It is the dataset after
it has been preprocessed. <dataset> = (<x_train>, <y_train>), (<x_test>,
<y_test>):

• <x_train>: numpy.ndarray, the training set’s feature tensor, has shape
(<predefined_number_of_training_instances>,
<predefined_number_of_rows>,
<predefined_number_of_cols>, 1).

• <y_train>: numpy.ndarray, ground truth of the test set in OHE with
shape (<predefined_number_of_training_instances>,
<predefined_number_of_classes>).

• <x_test>: numpy.ndarray, the test set’s feature tensor, has shape (<pre-
defined_number_of_test_instances>,
<predefined_number_of_feature_rows>,
<predefined_number_of_feature_cols>, 1).

• <y_test>: numpy.ndarray, ground truth of the test set in OHE with shape
(<predefined_number_of_test_instances>,
<predefined_number_of_classes>).

load_local_imdb_dataset (IMDb Dataset)

62

Appendices

The function load_local_imdb_dataset (Algorithm 5) loads and preprocesses data
from the IMDb dataset. Returns input vectors, labels, vocabulary, and the inverse
vocabulary. The inputs are

• <sequence_length>: int, the resulting feature instances are all going to have
an equal <sequence_length> length. This is the sequence length.

and it returns

• <dataset_vocabulary>: list, contains 3 elements where the first two elements
are tuples each composed by 2 elements. <dataset_vocabulary> = [(<x_train>,
<y_train>), (<x_test>, <y_test>), <vocabulary_inv>]:

• <x_train>: numpy.ndarray, the training feature matrix with shape (<num-
ber_of_training_instances>, <sequence_length>).

• <y_train>: numpy.ndarray, the training ground truth vector with shape
(<number_of_training_instances>).

• <x_test>: numpy.ndarray, the test feature matrix with shape (<num-
ber_of_test_instances>, <sequence_length>).

• <y_test>: numpy.ndarray, the test ground truth vector with shape (<num-
ber_of_test_instances>).

• <vocabulary_inv>: dict, the inverted vocabulary defined as per the func-
tion <build_vocab>.

clean_str (IMDb Dataset)

The function clean_str (Algorithm 6) is a tokenization/string cleaning program.
Original taken from [51]. The inputs are

• <string>: str.

and it returns

• <string_cleaned>: str.

pad_sentences (IMDb Dataset)

The function pad_sentences (Algorithm 7) pads all sentences to the same length
which is set to be equal to the maximum number of tokens among all instance texts.
The length is defined by the longest sentence and returns padded sentences. The
inputs are

• <sentences>: list, is consisted of all of the dataset’s features. Contains <num-
ber_of_instances> elements which are all lists, where each of these lists is a
feature instance that contains token (word) strings. These are splitted tokens
from the text corresponding to that particular instance.

63

Appendices

• <maxlen>: int, default value: -1, after each text instance has been padded,
-(<maxlen>+1) tokens from the right towards the left are dropped.

• <padding_word>: str, default value: ’<PAD/>’, this is the padding token.

and it returns

• <padded_reduced_sentences>: list, contains the same text elements as <sen-
tences> but each text element is now padded and trimmed from the right so
that all text elements share the same number of token elements, which is set to
be equal to <maxlen>.

build_vocab (IMDb Dataset)

The function build_vocab (Algorithm 8) builds a vocabulary mapping from word to
index based on the sentences and returns vocabulary mapping and inverse vocabulary
mapping. The inputs are

• <sentences>: list, contains the text features. All the text features share the
same length <maxlen>. Also note that some of the raw feature set’s tokens
may be missing.

and it returns

• <vocabulary_pair>: list, contains 2 elements, <vocabulary_pair> = [<vo-
cabulary>, <vocabulary_inv>]:

• <vocabulary>: dict, each key is the vocabularies token in str type and
each value is the unique token’s index which is an int type, beginning
from 0 and ending to the total number of unique tokens found inside the
feature set, each time incrementing the key value by 1. The zeroth value
contains the padding token, and beginning from key with value 1 until the
maximum dictionary key value, the tokens are sorted in descending order
by the frequency of their token appearances inside the feature set.

• <vocabulary_inv>: list, each element is a vocabularies token in str. Each
list index versus string word pair is the same as in <vocabulary>. It can
be seen as the inverse of <vocabulary> in regards to its key-value pair.

build_input_data (IMDb Dataset)

The function build_input_data (Algorithm 9) generates the vocabulary based on
the dataset. The tokens are substituted by their respective vocabulary indices inside
the feature set, and because text instances have equal size, the feature list can be
converted into a feature tensor, which is invoked here. The inputs are

• <sentences>: list, contains the text features. All the text features share the
same length <maxlen>.

64

Appendices

• <labels>: numpy.ndarray, the ground truth vector.

and it returns

• <dataset>: list, consisted of 2 elements. <dataset> = [x, y]:

• <x>: numpy.ndarray, the feature matrix, has shape
(<number_of_instances>, <maxlen>).

• <y>: numpy.ndarray, the ground truth vector, has shape
(<number_of_instances>).

Algorithm 1 Libraries (data_helpers.py)
1: import io
2: import re
3: import itertools
4: from collections import Counter
5: import idx2numpy
6: import numpy as np
7: from tensorflow.python.keras import backend as K
8: from keras.datasets import mnist
9: from keras.utils import to_categorical

65

Appendices

Algorithm 2 The load_local_mnist_dataset function
1: def load_local_mnist_dataset(num_classes, img_rows, img_cols):

2: rel_path_dir = ’../../datasets/MNIST’
3: rel_path_x_train = rel_path_dir+’/train/train-images-idx3-ubyte’

4: rel_path_y_train = rel_path_dir+’/train/train-labels-idx1-ubyte’

5: rel_path_x_test = rel_path_dir+’/test/t10k-images-idx3-ubyte’
6: rel_path_y_test = rel_path_dir+’/test/t10k-labels-idx1-ubyte’

7: x_train = idx2numpy.convert_from_file(rel_path_x_train)
8: y_train = idx2numpy.convert_from_file(rel_path_y_train)
9: x_test = idx2numpy.convert_from_file(rel_path_x_test)
10: y_test = idx2numpy.convert_from_file(rel_path_y_test)

11: x = mnist_channel_axis_add(x=np.concatenate((x_train, x_test),
axis=0), img_rows=img_rows, img_cols=img_rows)

12: y = np.concatenate((y_train, y_test), axis=0)

13: (x_train, y_train), (x_test, y_test) = preprocess_image_dataset(x,
y, num_classes=num_classes)

14: return (x_train, y_train), (x_test, y_test)

Algorithm 3 The mnist_channel_axis_add function
1: def mnist_channel_axis_add(x, img_rows, img_cols):

2: if K.image_data_format() == ’channels_first’:
3: print(’Warning: Channels axis is before rows and columns.’)
4: x = x.reshape(x.shape[0], 1, img_rows, img_cols)
5: else:
6: x = x.reshape(x.shape[0], img_rows, img_cols, 1)

7: return x

66

Appendices

Algorithm 4 The preprocess_image_dataset function
1: def preprocess_image_dataset(x, y, num_classes):

2: ## Dataset format modifier
3: x.astype(’float32’)

4: ## Feature normalizer
5: x = x/255.

6: ## One hot encoding for classes
7: y = to_categorical(y, num_classes)

8: ## Dataset shuffler
9: shuffle_indices = np.random.permutation(np.arange(len(y)))
10: x = x[shuffle_indices]
11: y = y[shuffle_indices]

12: ## Dataset splitter
13: train_len = int(len(y) * 6./7.)
14: x_train = x[:train_len]
15: y_train = y[:train_len]
16: x_test = x[train_len:]
17: y_test = y[train_len:]

18: return (x_train, y_train), (x_test, y_test)

67

Appendices

Algorithm 5 The load_local_imdb_dataset function
1: def load_imdb_data_and_labels():

2: # Load data from files
3: positive_training_examples = io.open("../../datasets/IMDb/train

-pos.txt", encoding=’iso-8859-1’).readlines()
4: positive_training_examples = [s.strip() for s in

positive_training_examples]
5: negative_training_examples = io.open("../../datasets/IMDb/train

-neg.txt", encoding=’iso-8859-1’).readlines()
6: negative_training_examples = [s.strip() for s in

negative_training_examples]

7: positive_testing_examples = io.open("../../datasets/IMDb/test-
pos.txt", encoding=’iso-8859-1’).readlines()

8: positive_testing_examples = [s.strip() for s in
positive_testing_examples]

9: negative_testing_examples = io.open("../../datasets/IMDb/test-
neg.txt", encoding=’iso-8859-1’).readlines()

10: negative_testing_examples = [s.strip() for s in
negative_testing_examples]

11: ## ! Dataset concat: Begin

12: positive_examples = positive_training_examples +
positive_testing_examples

13: negative_examples = negative_training_examples +
negative_testing_examples

14: ## Split by words
15: x_text = positive_examples + negative_examples

16: x_text = [clean_str(sent) for sent in x_text]
17: x_text = [s.split(" ") for s in x_text]

18: ## Generate labels
19: positive_labels = [1 for _in positive_examples]
20: negative_labels = [0 for _in negative_examples]

21: y = np.concatenate([positive_labels, negative_labels], 0)

22: ## ! Dataset concat: End

23: return [x_text, y]

68

Appendices

Algorithm 6 The clean_str function
1: def clean_str(string):

2: string = re.sub(r"[ˆA-Za-z0-9(),!?\’\‘]", " ", string)
3: string = re.sub(r"\’s", " \’s", string)
4: string = re.sub(r"\’ve", " \’ve", string)
5: string = re.sub(r"n\’t", " n\’t", string)
6: string = re.sub(r"\’re", " \’re", string)
7: string = re.sub(r"\’d", " \’d", string)
8: string = re.sub(r"\’ll", " \’ll", string)
9: string = re.sub(r",", " , ", string)
10: string = re.sub(r"!", " ! ", string)
11: string = re.sub(r"\(", " \(", string)
12: string = re.sub(r"\)", " \) ", string)
13: string = re.sub(r"\?", " \? ", string)
14: string = re.sub(r"\s{2,}", " ", string)

15: return string.strip().lower()

Algorithm 7 The pad_sentences function
1: def pad_sentences(sentences, maxlen=-1, padding_word="<PAD/>"):

2: sequence_length = max(len(x) for x in sentences)
3: padded_sentences = []
4: for i in range(len(sentences)):
5: sentence = sentences[i]
6: num_padding = sequence_length - len(sentence)
7: new_sentence = sentence + [padding_word] * num_padding
8: padded_sentences.append(new_sentence)

9: ## A sentence has length equal to the length of the sentence
with the greatest length of <sentence>, and the next line shrinks
this length to <maxlen> size.

10: padded_reduced_sentences = \
11: [
12: padded_sentences[sentence_idx][:maxlen]
13: for sentence_idx in range(len(padded_sentences))
14:]

15: return padded_reduced_sentences

69

Appendices

Algorithm 8 The build_vocab function
1: def build_vocab(sentences):

2: ## Counts the number of encounters of each word on the dataset,
it resembles a dictionary where you input the word, and it returns
it’s number of encounters.

3: word_counts = Counter(itertools.chain(*sentences))
4: ## Mapping from index to word
5: vocabulary_inv = [x[0] for x in word_counts.most_common()]
6: ## Mapping from word to index
7: vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}

8: return [vocabulary, vocabulary_inv]

Algorithm 9 The build_input_data function
1: def build_input_data(sentences, labels, vocabulary):

2: ## Converts a given sentence, which is a list consisted of
string elements, to their respective vocabulary indices (0 is the
padding or <PAD/>)

3: x = np.array([[vocabulary[word] for word in sentence] for
sentence in sentences])

4: y = np.array(labels)

5: return [x, y]

70

Appendices

Appendix II

Here we present the Python code responsible for the word embeddings’ training using
a Word2Vec model based on the gensim library [52]. The embeddings are trained
on the IMDb’s feature set. The file is named as w2v.py . The chunk of code that
imports all of the necessary libraries for the w2v.py file can be found in Algorithm
10.

Algorithm 10 Libraries (w2v.py)
1: import io
2: from __future__ import print_function
3: import os
4: from os.path import join, exists, split
5: import numpy as np
6: from gensim.models import word2vec

train_word2vec

The function train_word2vec (Algorithm 11) trains, saves, loads a Word2Vec model.
The inputs are

• <sentence_matrix>: numpy.ndarray, has shape (<dataset_size>,
<sequence_length>), where <dataset_size> is the size of the dataset and <se-
quence_length> is the size of each sequence or instance text.

• <vocabulary_inv>: dict int: str, inverted vocabulary.

• <num_features>: int, word vector dimensionality.

• <min_word_count>: int, minimum word count.

• <context>: int, context window size.

and it returns

• <embedding_weights>: dict, It contains the embedding vectors of each dictio-
nary word. Each dictionary key is an identifier of each vocabulary word in int,
and dictionary value is the embedding vector of the word it corresponds to.

71

Appendices

Algorithm 11 The train_word2vec function
1: def train_word2vec(sentence_matrix, vocabulary_inv,

num_features=300, min_word_count=1, context=10):

2: model_dir = ’models’
3: model_name = "{:d}features_{:d}minwords_{:d}context.mdl".format(

num_features, min_word_count, context)
4: model_name = join(model_dir, model_name)
5: if exists(model_name):
6: embedding_model = word2vec.Word2Vec.load(model_name)
7: print(’Load existing Word2Vec model \’%s\” %

split(model_name)[-1])
8: else:
9: ## Set values for various parameters
10: num_workers = 2 # Number of threads to run in parallel
11: downsampling = 1e-3 # Downsample setting for frequent words

12: ## Initialize and train the model
13: print(’Training Word2Vec model...’)
14: sentences = [[vocabulary_inv[w] for w in s] for s in

sentence_matrix]
15: embedding_model = word2vec.Word2Vec(sentences,

workers=num_workers,
16: size=num_features, min_count=min_word_count,
17: window=context, sample=downsampling)

18: ## If we don’t plan to train the model any further, calling
init_sims will make the model much more memory-efficient.

19: embedding_model.init_sims(replace=True)

20: # Saving the model for later use. You can load it later
using Word2Vec.load()

21: if not exists(model_dir):
22: os.mkdir(model_dir)
23: print(’Saving Word2Vec model \’%s\” % split(model_name)[-1])
24: embedding_model.save(model_name)

25: ## Add unknown words
26: embedding_weights = {key: embedding_model[word] if

word in embedding_model else np.random.uniform(-0.25,
0.25, embedding_model.vector_size) for key, word in
vocabulary_inv.items()}

27: return embedding_weights

72

Appendices

Appendix III

Here we present the files containing each executable code that produces each of the
experiments described in Experiments Part I. The chunk of code that imports all
of the necessary libraries for these files can be found in Algorithm 12. In order for
each of these codes to be reproducible, the code chunk in Algorithms 13 and 14 for
Python 2 and Python 3 respectively is read by the Python interpreter beforehand,
prior to any other line of code presented in this thesis. That is because most of
the code injects pseudo-randomness into the respective preprocessing and training
process. The rest of the code presented here applies for both Python 2 and Python
3.

Final Code Chunk

Every executable code of Experiments Part I, ends with the code chunk in Algorithm
15. The model.fit is the function that trains the already defined neural network.
The model.save saves the model after it is trained and the final line of code saves
the evaluation metrics into a spreadsheet file.

Algorithm 12 Libraries used by the executable files of Experiments Part I
1: from copy import deepcopy
2: import os
3: import random
4: import numpy as np
5: import pandas as pd
6: import tensorflow as tf
7: from keras.models import Sequential, Model
8: from keras.layers import Input, Dense, Dropout, Flatten, Conv2D,

MaxPooling2D, Convolution1D, MaxPooling1D, Embedding, Concatenate
9: from keras.datasets import mnist, imdb

10: from keras.preprocessing import sequence
11: from keras.losses import binary_crossentropy,

categorical_crossentropy
12: from keras.optimizers import Adadelta
13: from w2v import train_word2vec
14: import data_helpers

73

Appendices

Algorithm 13 RNG seed for the experiments implemented in Python 2
1: random.seed(1)
2: np.random.seed(1)
3: session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,

inter_op_parallelism_threads=1)
4: sess = tf.Session(graph=tf.get_default_graph(),

config=session_conf)
5: K.set_session(sess)
6: tf.set_random_seed(1)

Algorithm 14 RNG seed for the experiments implemented in Python 3
1: random.seed(1)
2: np.random.seed(1)
3: tf.random.set_seed(1)

Algorithm 15 Final code chunk for the executable code files of Experiments Part I
1: model.summary()

2: # Train the model
3: model.fit\
4: (
5: x_train,
6: y_train,
7: batch_size=batch_size,
8: epochs=num_epochs,
9: validation_data=(x_test, y_test),

10: verbose=1
11:)

12: model.save(”.join((model_path, ’.mdl’)))

13: score = model.evaluate(x_test, y_test, verbose=0)

14: print(’Test loss: %.30f’%score[0])
15: print(’Test accuracy: %.30f’%score[1])

16: ## Store training output
17: metrics_history = pd.DataFrame.from_dict(model.history.history)
18: metrics_history = pd.concat([metrics_history[’loss’],

metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

19: metrics_history.T.to_excel(”.join((model_path, ’.xlsx’)))

20: model.summary()

74

Appendices

The Executable arch_opt4_mnist_dataset_mnist.py

This executable file contains the code through which the CNN with architecture
arch_opt4_mnist_dataset_mnist can be trained on the MNIST dataset. The code
is presented in Algorithms 16, 17 and 15. Table 1 shows the architecture and Figure
11 gives an visual intuition about its outputs layerwise. The source of this code is
[39]. The training process and CNN architecture are tuned for the MNIST dataset.

The Executable arch_opt4_mnist_dataset_imdb.py

This executable file contains the code through which the CNN with architecture
arch_opt4_mnist_dataset_imdb can be trained on the IMDb dataset. The code is
presented in Algorithms 18, 19 and 15. Table 3 shows the architecture and Figure 13
gives an visual intuition about its outputs layerwise.

This code is a modified version of arch_opt4_mnist_dataset_mnist.py. The modi-
fications allow for the training on the IMDb dataset instead. We use the data_helpers
.load_local_imdb_dataset function in line 19 in Algorithm 16, which parses and
preprocesses the IMDb dataset using the preprocessing functions of [53]. The lines 10
until 28 in Algorithm 20 have been added to make preparations for the initialization
of the embedding weights which will be used in the newly added embedding layer
4 in Algorithm 21. The feature extractor component of the architecture specified
by lines 5 until 10 in Algorithm 17 are modified to the lines 5 until 8 in Algorithm
21. This change converted all the 2D layers to their 1D equivalents, on the feature
extractor component of the architecture. The cost function has been modified from
the categorical cross entropy in line 18 in Algorithm 17 to the binary cross entropy in
line 22 in Algorithm 21 and the output’s layer activation function has been modified
from the softmax in line 14 in Algorithm 17 to the sigmoid function in line 12 in
Algorithm 21 with 1 output neuron.

75

Appendices

Algorithm 16 The arch_opt4_mnist_dataset_mnist.py trainer file: Chunk 1
1: ## ! Configuration: Begin

2: ## Output model
3: model_name = ’arch_opt4_mnist_dataset_mnist’
4: model_path = ’./models/’+model_name

5: batch_size = 64
6: num_classes = 10
7: num_epochs = 10

8: ## input image dimensions
9: img_rows, img_cols = 28, 28

10: ## Data source
11: data_source = "local_dir" # "keras_data_set" or "local_dir"

12: ## ! Configuration: End

13: def load_data(data_source):
14: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
15: if data_source == "keras_data_set":
16: (x_train, y_train), (x_test, y_test) = mnist.load_data()
17: else:
18: (x_train, y_train), (x_test, y_test) = \
19: data_helpers.load_local_mnist_dataset\
20: (
21: num_classes=num_classes,
22: img_rows=img_rows,
23: img_cols=img_cols
24:)

25: return x_train, y_train, x_test, y_test

26: # Data Preparation
27: print("Load data...")
28: x_train, y_train, x_test, y_test = load_data(data_source)

76

Appendices

Algorithm 17 The arch_opt4_mnist_dataset_mnist.py Trainer File: Chunk 2
1: ## ! Build model: Begin

2: input_shape = x_train.shape[1:]

3: print(’Input shape: ’ + str(input_shape))

4: model = Sequential()
5: model.add(Conv2D(32, kernel_size=(3, 3),
6: activation=’relu’,
7: input_shape=input_shape))
8: model.add(Conv2D(64, (3, 3), activation=’relu’))
9: model.add(MaxPooling2D(pool_size=(2, 2)))

10: model.add(Dropout(0.25))
11: model.add(Flatten())
12: model.add(Dense(128, activation=’relu’))
13: model.add(Dropout(0.5))
14: model.add(Dense(num_classes, activation=’softmax’))

15: ## ! Build model: End

16: model.compile\
17: (
18: loss=categorical_crossentropy,
19: optimizer=Adadelta(),
20: metrics=["accuracy"]
21:)

77

Appendices

Algorithm 18 The arch_opt4_mnist_dataset_imdb.py Trainer File: Chunk 1
1: ## ! Configuration: Begin

2: ## Output model
3: model_name = ’arch_opt4_mnist_dataset_imdb’
4: model_path = ’./models/’+model_name

5: ## Model type. See Kim Yoon’s Convolutional Neural Networks for
Sentence Classification, Section 3

6: model_type = "CNN-non-static" # CNN-rand or CNN-non-static or
CNN-static

7: ## Data source
8: data_source = "local_dir" # "keras_data_set" or "local_dir"

9: padding_word = "<PAD/>"

10: batch_size = 64
11: num_epochs = 10

12: ## input image dimensions
13: img_rows, img_cols = 28, 28

14: embedding_dim = 50

15: ## Prepossessing parameters
16: sequence_length = 400
17: max_words = 5000

18: ## Word2Vec parameters (see train_word2vec)
19: min_word_count = 1
20: context = 10

21: ## ! Configuration: End

78

Appendices

Algorithm 19 The arch_opt4_mnist_dataset_imdb.py Trainer File: Chunk 2
1: def load_data(data_source):
2: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
3: if data_source == "keras_data_set":
4: print(’Using the keras IMDb dataset’)
5: (x_train, y_train), (x_test, y_test) = \
6: imdb.load_data\
7: (
8: num_words=max_words,
9: start_char=None,
10: oov_char=None,
11: index_from=None
12:)

13: x_train = sequence.pad_sequences(x_train,
maxlen=sequence_length, padding="post", truncating="post")

14: x_test = sequence.pad_sequences(x_test,
maxlen=sequence_length, padding="post", truncating="post")

15: vocabulary = imdb.get_word_index()
16: vocabulary_inv = dict((v, k) for k, v in vocabulary.items())
17: vocabulary_inv[0] = deepcopy(padding_word)
18: else:
19: print(’Using a local IMDb dataset.’)
20: (x_train, y_train), (x_test, y_test), vocabulary_inv =

data_helpers.load_local_imdb_dataset(sequence_length)

21: return x_train, y_train, x_test, y_test, vocabulary_inv

22: # Data Preparation
23: print("Load data...")
24: x_train, y_train, x_test, y_test, vocabulary_inv =

load_data(data_source)

25: input_shape = x_train.shape[1:]

79

Appendices

Algorithm 20 The arch_opt4_mnist_dataset_imdb.py Trainer File: Chunk 3
1: print(’Input shape: ’ + str(input_shape))

2: if sequence_length != x_test.shape[1]:
3: print("Adjusting sequence length for actual size")
4: sequence_length = x_test.shape[1]

5: print("x_train shape: " + str(x_train.shape))
6: print("x_test shape: " + str(x_test.shape))
7: print("Vocabulary Size: {:d}".format(len(vocabulary_inv)))

8: # Prepare embedding layer weights and convert inputs for static
model

9: print("Model type is: " + str(model_type))
10: if model_type in ["CNN-non-static", "CNN-static"]:
11: embedding_weights = \
12: train_word2vec\
13: (
14: np.vstack((x_train, x_test)),
15: vocabulary_inv,
16: num_features=embedding_dim,
17: min_word_count=min_word_count,
18: context=context
19:)
20: if model_type == "CNN-static":
21: x_train = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_train])
22: x_test = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_test])
23: print("x_train static shape: " + str(x_train.shape))
24: print("x_test static shape: " + str(x_test.shape))

25: elif model_type == "CNN-rand":
26: embedding_weights = None
27: else:
28: raise ValueError("Unknown model type")

80

Appendices

Algorithm 21 The arch_opt4_mnist_dataset_imdb.py Trainer File: Chunk 4
1: ## ! Build model: Begin

2: model = Sequential()

3: input_shape = (sequence_length,)
4: model.add(Embedding(len(vocabulary_inv), embedding_dim,

input_length=sequence_length, name="embedding_",
input_shape=input_shape))

5: model.add(Convolution1D(32, kernel_size=3, activation=’relu’))

6: model.add(Convolution1D(64, 3, activation=’relu’))
7: model.add(MaxPooling1D(pool_size=2))
8: model.add(Dropout(0.25))
9: model.add(Flatten())

10: model.add(Dense(128, activation=’relu’))
11: model.add(Dropout(0.5))
12: model.add(Dense(1, activation=’sigmoid’))

13: # Initialize weights with word2vec
14: if model_type == "CNN-non-static":
15: weights = np.array([v for v in embedding_weights.values()])
16: print("Initializing embedding layer with word2vec weights,

shape" + str(weights.shape))
17: embedding_layer = model.get_layer(name="embedding_")
18: embedding_layer.set_weights([weights])

19: ## ! Build model: End

20: model.compile\
21: (
22: loss=binary_crossentropy,
23: optimizer=Adadelta(),
24: metrics=["accuracy"]
25:)

81

Appendices

The Executable arch_opt4_imdb_dataset_imdb.py

This executable file contains the code through which the CNN with architecture
arch_opt4_imdb_dataset_imdb can be trained on the IMDb dataset. The code is
presented in Algorithms 22, 23, 24, 25 and 15. Table 2 shows the architecture and
Figure 11 gives an visual intuition about its outputs layerwise. The source of this
code is [40]. The training process and CNN architecture are tuned for the MNIST
dataset.

The Executable arch_opt4_imdb_dataset_mnist.py

This executable file contains the code through which the CNN with architecture
arch_opt4_imdb_dataset_mnist can be trained on the MNIST dataset. The code
is presented in Algorithms 26, 27 and 15. Table 4 shows the architecture and Figure
14 gives an visual intuition about its outputs layerwise.

This code is a modified version of arch_opt4_imdb_dataset_imdb.py. The modifica-
tions allow for the training on the MNIST dataset instead. We use the data_helpers
.load_local_mnist_dataset function in line 19 in Algorithm 16, which parses and
preprocesses the IMDb dataset. The preprocessing method used is the same ones
found in [39]. The lines 9 until 27 in Algorithm 24 have been removed as the embed-
ding weights have no meaning for the training on the MNIST dataset. The feature
extractor component of the architecture specified by lines 7 until 15 in Algorithm 25
are modified to the lines 13 until 21 in Algorithm 27. This change converted all the
1D layers to their 2D equivalents, on the feature extractor component of the archi-
tecture. The cost function has been modified from the binary cross entropy in line
31 in Algorithm 25 to the categorical cross entropy in line 32 and the output’s layer
activation function has been modified from the sigmoid in line 20 in Algorithm 25 to
the softmax function in line 27 in Algorithm 27 with 10 output neurons.

82

Appendices

Algorithm 22 The arch_opt4_imdb_dataset_imdb.py Trainer File: Chunk 1
1: ## ! Configuration: Begin

2: ## Output model
3: model_name = ’arch_opt4_imdb_dataset_imdb’
4: model_path = ’./models/’+model_name

5: ## Model type. See Kim Yoon’s Convolutional Neural Networks for
Sentence Classification, Section 3

6: model_type = "CNN-non-static" # CNN-rand or CNN-non-static or
CNN-static

7: ## Data source
8: data_source = "local_dir" # keras_data_set or local_dir

9: padding_word = "<PAD/>"

10: ## Model Hyperparameters
11: embedding_dim = 50
12: filter_sizes = (3, 8)
13: num_filters = 10
14: dropout_prob = (0.5, 0.8)
15: hidden_dims = 50

16: ## Training parameters
17: batch_size = 64
18: num_epochs = 10

19: ## Prepossessing parameters
20: sequence_length = 400
21: max_words = 5000

22: ## Word2Vec parameters (see train_word2vec)
23: min_word_count = 1
24: context = 10

25: ## ! Configuration: End

83

Appendices

Algorithm 23 The arch_opt4_imdb_dataset_imdb.py Trainer File: Chunk 2
1: def load_data(data_source):
2: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
3: if data_source == "keras_data_set":
4: print(’Using the keras IMDb dataset’)
5: (x_train, y_train), (x_test, y_test) = \
6: imdb.load_data\
7: (
8: num_words=max_words,
9: start_char=None,
10: oov_char=None,
11: index_from=None
12:)

13: x_train = sequence.pad_sequences(x_train,
maxlen=sequence_length, padding="post", truncating="post")

14: x_test = sequence.pad_sequences(x_test,
maxlen=sequence_length, padding="post", truncating="post")

15: vocabulary = imdb.get_word_index()
16: vocabulary_inv = dict((v, k) for k, v in vocabulary.items())
17: vocabulary_inv[0] = deepcopy(padding_word)
18: else:
19: print(’Using a local IMDb dataset.’)
20: (x_train, y_train), (x_test, y_test), vocabulary_inv =

data_helpers.load_local_imdb_dataset(sequence_length)

21: return x_train, y_train, x_test, y_test, vocabulary_inv

22: # Data Preparation
23: print("Load data...")
24: x_train, y_train, x_test, y_test, vocabulary_inv =

load_data(data_source)

84

Appendices

Algorithm 24 The arch_opt4_imdb_dataset_imdb.py Trainer File: Chunk 3
1: if sequence_length != x_test.shape[1]:
2: print("Adjusting sequence length for actual size")
3: sequence_length = x_test.shape[1]

4: print("x_train shape: " + str(x_train.shape))
5: print("x_test shape: " + str(x_test.shape))
6: print("Vocabulary Size: {:d}".format(len(vocabulary_inv)))

7: # Prepare embedding layer weights and convert inputs for static
model

8: print("Model type is: " + str(model_type))
9: if model_type in ["CNN-non-static", "CNN-static"]:

10: embedding_weights = \
11: train_word2vec\
12: (
13: np.vstack((x_train, x_test)),
14: vocabulary_inv,
15: num_features=embedding_dim,
16: min_word_count=min_word_count,
17: context=context
18:)
19: if model_type == "CNN-static":
20: x_train = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_train])
21: x_test = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_test])
22: print("x_train static shape: " + str(x_train.shape))
23: print("x_test static shape: " + str(x_test.shape))

24: elif model_type == "CNN-rand":
25: embedding_weights = None
26: else:
27: raise ValueError("Unknown model type")

28: ## ! Build model: Begin

29: input_shape = (sequence_length,)
30: model_input = Input(shape=input_shape)

85

Appendices

Algorithm 25 The arch_opt4_imdb_dataset_imdb.py Trainer File: Chunk 4
1: z = Embedding(len(vocabulary_inv), embedding_dim,

input_length=sequence_length, name="embedding")(model_input)
2: z = Dropout(dropout_prob[0])(z)

3: # Convolutional block
4: conv_blocks = []
5: for sz in filter_sizes:
6: conv = \
7: Convolution1D\
8: (
9: filters=num_filters,

10: kernel_size=sz,
11: padding="valid",
12: activation="relu",
13: strides=1
14:)(z)
15: conv = MaxPooling1D(pool_size=2)(conv)
16: conv = Flatten()(conv)
17: conv_blocks.append(conv)
18: z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else

conv_blocks[0]

19: z = Dropout(dropout_prob[1])(z)
20: z = Dense(hidden_dims, activation="relu")(z) model_output = Dense(1,

activation="sigmoid")(z)

21: model = Model(model_input, model_output)

22: # Initialize weights with word2vec
23: if model_type == "CNN-non-static":
24: weights = np.array([v for v in embedding_weights.values()])
25: print("Initializing embedding layer with word2vec weights,

shape: " + str(weights.shape))
26: embedding_layer = model.get_layer("embedding")
27: embedding_layer.set_weights([weights])

28: ## ! Build model: End

29: model.compile\
30: (
31: loss=binary_crossentropy,
32: optimizer=Adadelta(),
33: metrics=["accuracy"]
34:)

86

Appendices

Algorithm 26 The arch_opt4_imdb_dataset_mnist.py Trainer File: Chunk 1
1: ## ! Configuration: Begin

2: ## Output model
3: model_name = ’arch_opt4_imdb_dataset_mnist’
4: model_path = ’./models/’+model_name

5: num_classes = 10

6: ## input image dimensions
7: img_rows, img_cols = 28, 28

8: ## Model Hyperparameters
9: filter_sizes = (3, 8)

10: num_filters = 10
11: dropout_prob = (0.5, 0.8)
12: hidden_dims = 50

13: ## Training parameters
14: batch_size = 64
15: num_epochs = 10

16: ## Data source
17: data_source = "local_dir" # "keras_data_set" or "local_dir"

18: ## ! Configuration: End

19: def load_data(data_source):
20: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
21: if data_source == "keras_data_set":
22: (x_train, y_train), (x_test, y_test) = mnist.load_data()
23: else:
24: (x_train, y_train), (x_test, y_test) = \
25: data_helpers.load_local_mnist_dataset\
26: (
27: num_classes=num_classes,
28: img_rows=img_rows,
29: img_cols=img_cols
30:)

31: return x_train, y_train, x_test, y_test

87

Appendices

Algorithm 27 The arch_opt4_imdb_dataset_mnist.py Trainer File: Chunk 2
1: # Data Preparation
2: print("Load data...")
3: x_train, y_train, x_test, y_test = load_data(data_source)

4: ## ! Build model: Begin

5: input_shape = x_train.shape[1:]

6: print(’Input shape: ’ + str(input_shape))

7: model_input = Input(shape=input_shape)
8: z = Dropout(dropout_prob[0])(model_input)

9: # Convolutional block
10: conv_blocks = []
11: for sz in filter_sizes:
12: conv = \
13: Conv2D\
14: (
15: filters=num_filters,
16: kernel_size=sz,
17: padding="valid",
18: activation="relu",
19: strides=1
20:)(z)
21: conv = MaxPooling2D(pool_size=2)(conv)
22: conv = Flatten()(conv)
23: conv_blocks.append(conv)
24: z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else

conv_blocks[0]

25: z = Dropout(dropout_prob[1])(z)
26: z = Dense(hidden_dims, activation="relu")(z)
27: model_output = Dense(num_classes, activation=’softmax’)(z)

28: model = Model(model_input, model_output)

29: ## ! Build model: End

30: model.compile\
31: (
32: loss=categorical_crossentropy,
33: optimizer=Adadelta(),
34: metrics=["accuracy"]
35:)

88

Appendices

Appendix IV

Here we present the files containing each executable code that produces each of the
experiments described in the Experiments Part II. The chunk of code that imports
some of the necessary libraries for the these files can be found in Algorithm 28. In
order for each of these codes to be reproducible, the code chunk in Algorithm 14 is
read by the Python interpreter beforehand, prior to any other line of code presented
in this thesis. All of the code presented here applies for Python 3.

Algorithm 28 Libraries used by the executable files of Experiments Part II
1: from copy import deepcopy
2: import os
3: import random
4: import numpy as np
5: import pandas as pd
6: import tensorflow as tf
7: from keras.layers import Dropout, Flatten, Convolution1D,

MaxPooling1D, Conv2D, MaxPooling2D, Concatenate
8: from keras.datasets import mnist, imdb
9: from keras.preprocessing import sequence

10: from keras.losses import binary_crossentropy,
categorical_crossentropy

11: from w2v import train_word2vec
12: import data_helpers

The Executables mnistsrc_train.py, imdbsrc_train.py

The executable files mnistsrc_train.py and imdbsrc_train.py train the same
CNNs as arch_opt4_mnist_dataset_mnist.py (mnistsrc source architecture) on
the MNIST dataset and arch_opt4_imdb_dataset_imdb.py (imdbsrc source archi-
tecture) on the IMDb dataset respectively. Each of these files train the source models
which will in turn will continue being trained by the mnistsrc_mnisttgt_train.py
(mnistsrc_mnisttgt), mnistsrc_imdbtgt_train.py (mnistsrc_imdbtgt), imdbsrc
_imdbtgt_train.py (imdbsrc_imdbtgt) and imdbsrc_mnisttgt_train.py (imdbsr
c_mnisttgt) for the fine tuning part.

89

Appendices

Algorithm 29 The mnistsrc_train.py Trainer File: Chunk 1
1: from keras.models import Sequential
2: from keras.layers import Dense
3: from keras.optimizers import Adadelta

4: ## ! Configuration: Begin

5: batch_size = 64
6: num_classes = 10
7: num_epochs = 10

8: ## input image dimensions
9: img_rows, img_cols = 28, 28

10: ## Data source
11: data_source = "local_dir" # "keras_data_set" or "local_dir"

12: ## Output model’s name
13: src_model_name = "mnistsrc"

14: ## Output model’s file path
15: src_model_path = "models/"+src_model_name+".mdl"

16: ## Output model’s evaluation history file path
17: src_model_hist = "models/"+src_model_name+".xlsx"

18: ## ! Configuration: End

19: def load_data(data_source):
20: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
21: if data_source == "keras_data_set":
22: (x_train, y_train), (x_test, y_test) = mnist.load_data()
23: else:
24: (x_train, y_train), (x_test, y_test) = \
25: data_helpers.load_local_mnist_dataset\
26: (
27: num_classes=num_classes,
28: img_rows=img_rows,
29: img_cols=img_cols
30:)

31: return x_train, y_train, x_test, y_test

90

Appendices

Algorithm 30 The mnistsrc_train.py Trainer File: Chunk 2
1: ## Data Preparation
2: print("Load data...")
3: x_train, y_train, x_test, y_test = load_data(data_source)

4: input_shape = x_train.shape[1:]

5: print(’Input shape: ’ + str(input_shape))

6: src_model = Sequential()
7: src_model.add(Conv2D(32, kernel_size=(3, 3), activation=’relu’,

input_shape=input_shape))
8: src_model.add(Conv2D(64, (3, 3), activation=’relu’))
9: src_model.add(MaxPooling2D(pool_size=(2, 2)))

10: src_model.add(Dropout(0.25))
11: src_model.add(Flatten())
12: src_model.add(Dense(128, activation=’relu’))
13: src_model.add(Dropout(0.5))
14: src_model.add(Dense(num_classes, activation=’softmax’))

15: src_model.compile\
16: (
17: loss=categorical_crossentropy,
18: optimizer=Adadelta(),
19: metrics=["accuracy"]
20:)

21: src_model.summary()

22: ## Train the model
23: src_model.fit\
24: (
25: x_train,
26: y_train,
27: batch_size=batch_size,
28: epochs=num_epochs,
29: validation_data=(x_test, y_test),
30: verbose=1
31:)

91

Appendices

Algorithm 31 The mnistsrc_train.py Trainer File: Chunk 3
1: src_model.save(src_model_path)

2: score = src_model.evaluate(x_test, y_test, verbose=0)

3: print(’Test loss: %.30f’%score[0])
4: print(’Test accuracy: %.30f’%score[1])

5: ## Store training output
6: metrics_history = pd.DataFrame.from_dict(src_model.history.history)

7: metrics_history = pd.concat([metrics_history[’loss’],
metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

8: metrics_history.T.to_excel(src_model_hist)

92

Appendices

Algorithm 32 The imdbsrc_train.py Trainer File: Chunk 1
1: from keras.models import Model
2: from keras.layers import Input, Dense, Embedding
3: from keras.optimizers import Adadelta

4: ## ! Configuration: Begin

5: ## Model type. See Kim Yoon’s Convolutional Neural Networks for
Sentence Classification, Section 3

6: model_type = "CNN-non-static" # CNN-rand or CNN-non-static or
CNN-static

7: ## Data source
8: data_source = "local_dir" # keras_data_set or local_dir

9: padding_word = "<PAD/>"

10: ## Model Hyperparameters
11: embedding_dim = 28 # 50
12: filter_sizes = (3, 8)
13: num_filters = 10
14: dropout_prob = (0.5, 0.8)
15: hidden_dims = 50

16: ## Training parameters
17: batch_size = 64
18: num_epochs = 10

19: ## Prepossessing parameters
20: sequence_length = 28 # 400
21: max_words = 5000

22: ## Word2Vec parameters (see train_word2vec)
23: min_word_count = 1
24: context = 10

25: ## Stage 1 model name
26: src_model_name = "imdbsrc"

27: ## Stage 1 model file path
28: src_model_path = "models/"+src_model_name+".mdl"

29: ## Stage 1 model evaluation history file path
30: src_model_hist = "models/"+src_model_name+".xlsx"

93

Appendices

Algorithm 33 The imdbsrc_train.py Trainer File: Chunk 2
1: ## ! Configuration: End

2: def load_data(data_source):
3: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
4: if data_source == "keras_data_set":
5: print(’Using the keras IMDb dataset’)
6: (x_train, y_train), (x_test, y_test) = \
7: imdb.load_data\
8: (
9: num_words=max_words,
10: start_char=None,
11: oov_char=None,
12: index_from=None
13:)

14: x_train = sequence.pad_sequences(x_train,
maxlen=sequence_length, padding="post", truncating="post")

15: x_test = sequence.pad_sequences(x_test,
maxlen=sequence_length, padding="post", truncating="post")

16: vocabulary = imdb.get_word_index()
17: vocabulary_inv = dict((v, k) for k, v in vocabulary.items())
18: vocabulary_inv[0] = deepcopy(padding_word)
19: else:
20: print(’Using a local IMDb dataset.’)
21: (x_train, y_train), (x_test, y_test), vocabulary_inv =

data_helpers.load_local_imdb_dataset(sequence_length)

22: return x_train, y_train, x_test, y_test, vocabulary_inv

23: ## Data Preparation
24: print("Load data...")
25: x_train, y_train, x_test, y_test, vocabulary_inv =

load_data(data_source)

94

Appendices

Algorithm 34 The imdbsrc_train.py Trainer File: Chunk 3
1: if sequence_length != x_test.shape[1]:
2: print("Adjusting sequence length for actual size")
3: sequence_length = x_test.shape[1]

4: print("x_train shape: " + str(x_train.shape))
5: print("x_test shape: " + str(x_test.shape))
6: print("Vocabulary Size: {:d}".format(len(vocabulary_inv)))

7: ## Prepare embedding layer weights and convert inputs for static
model

8: print("Model type is: " + str(model_type))
9: if model_type in ["CNN-non-static", "CNN-static"]:

10: embedding_weights = \
11: train_word2vec\
12: (
13: np.vstack((x_train, x_test)),
14: vocabulary_inv,
15: num_features=embedding_dim,
16: min_word_count=min_word_count,
17: context=context
18:)
19: if model_type == "CNN-static":
20: x_train = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_train])
21: x_test = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_test])
22: print("x_train static shape: " + str(x_train.shape))
23: print("x_test static shape: " + str(x_test.shape))

24: elif model_type == "CNN-rand":
25: embedding_weights = None
26: else:
27: raise ValueError("Unknown model type")

95

Appendices

Algorithm 35 The imdbsrc_train.py Trainer File: Chunk 4
1: # Build model
2: if model_type == "CNN-static":
3: input_shape = (sequence_length, embedding_dim)
4: else:
5: input_shape = (sequence_length,)

6: a0 = Input(shape=input_shape)

7: ## Static model does not have embedding layer
8: if model_type == "CNN-static":
9: a = a0

10: else:
11: a = Embedding(len(vocabulary_inv), embedding_dim,

input_length=sequence_length, name="embedding")(a0)

12: a = Dropout(dropout_prob[0])(a)

13: ## Convolutional block
14: conv_blocks = []
15: for sa in filter_sizes:
16: conv = \
17: Convolution1D\
18: (
19: filters=num_filters,
20: kernel_size=sa,
21: padding="valid",
22: activation="relu",
23: strides=1
24:)(a)
25: conv = MaxPooling1D(pool_size=2)(conv)
26: conv = Flatten()(conv)
27: conv_blocks.append(conv)
28: a = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else

conv_blocks[0]

96

Appendices

Algorithm 36 The imdbsrc_train.py Trainer File: Chunk 5
1: a = Dropout(dropout_prob[1])(a)
2: a = Dense(hidden_dims, activation="relu")(a)
3: a = Dense(1, activation="sigmoid")(a)

4: src_model = Model(a0, a)
5: src_model.compile\
6: (
7: loss=binary_crossentropy,
8: optimizer=Adadelta(),
9: metrics=["accuracy"]

10:)

11: ## Initialize weights with word2vec
12: if model_type == "CNN-non-static":
13: weights = np.array([v for v in embedding_weights.values()])
14: print("Initializing embedding layer with word2vec weights,

shape: " + str(weights.shape))
15: embedding_layer = src_model.get_layer("embedding")
16: embedding_layer.set_weights([weights])

17: src_model.summary()

18: ## Train the model
19: src_model.fit\
20: (
21: x_train,
22: y_train,
23: batch_size=batch_size,
24: epochs=num_epochs,
25: validation_data=(x_test, y_test),
26: verbose=1,
27:)

28: src_model.save(src_model_path)
29: score = src_model.evaluate(x_test, y_test, verbose=0)
30: print(’Test loss: %.30f’%score[0])
31: print(’Test accuracy: %.30f’%score[1])
32: ## Store training output
33: metrics_history = pd.DataFrame.from_dict(src_model.history.history)

34: metrics_history = pd.concat([metrics_history[’loss’],
metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

35: metrics_history.T.to_excel(src_model_hist)

97

Appendices

The Executable mnistsrc_mnisttgt_train.py

The mnistsrc_mnisttgt_train.py file fine tunes a model trained on the MNIST
dataset with architecture mnistsrc. The fine tuning of the model is based on
the MNIST dataset. Line 13 in Algorithm 37 loads the source model trained by
mnistsrc_train.py (Algorithms 29, 30 and 31), and mnistsrc_mnisttgt_train.py
(Algorithms 37, 38 and 39) produces the target model mnistsrc_mnisttgt.

The Executable mnistsrc_imdbtgt_train.py

The mnistsrc_imdbtgt_train.py file fine tunes a model trained on the MNIST
dataset with architecture mnistsrc. The fine tuning of the model is based on
the IMDb dataset. Line 15 in Algorithm 40 loads the source model trained by
mnistsrc_train.py (Algorithms 29, 30 and 31), and mnistsrc_imdbtgt_train.py
(Algorithms 40, 41, 42, 43 and 44) and produces the target model corresponding to the
architecture mnistsrc_imdbtgt. However before the training, mnistsrc_imdbtgt_
train.py prepares the embedding layer in lines 11 until 29 in Algorithm 42. In line
4 in Algorithm 43 the embedding layer is added prior to the rest of the layers. Line 7
in Algorithm 43 is responsible for the transference of each of the hidden layers of the
source model to the target architecture and initial target model. The output’s layer
activation function is defined to be the sigmoid and the number of output neurons
is 1, this is done in line 10 in Algorithm 43. The cost function is defined to be the
binary cross entropy in line 13 in Algorithm 43.

98

Appendices

Algorithm 37 The mnistsrc_mnisttgt_train.py Trainer File: Chunk 1
1: ## ! Configuration: Begin

2: ## Stage 1 model name
3: src_model_name = "mnistsrc"

4: ## Stage 1 model file path
5: src_model_path = "models/"+src_model_name+".mdl"

6: ## Stage 2 model name
7: tgt_model_name = src_model_name+"_"+"mnisttgt"

8: ## Stage 2 model file path
9: tgt_model_path = "models/"+tgt_model_name+".mdl"

10: ## Stage 2 model evaluation history file path
11: tgt_model_hist = "models/"+tgt_model_name+".xlsx"

12: ## Pulling the trained Stage 1 model
13: tgt_model = tf.keras.models.load_model(src_model_path)

14: batch_size = 64
15: num_classes = 10
16: num_epochs = 10

17: ## input image dimensions
18: img_rows, img_cols = 28, 28

19: ## Data source
20: data_source = "local_dir" # "keras_data_set" or "local_dir"

21: ## ! Configuration: End

99

Appendices

Algorithm 38 The mnistsrc_mnisttgt_train.py Trainer File: Chunk 2
1: def load_data(data_source):
2: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
3: if data_source == "keras_data_set":
4: (x_train, y_train), (x_test, y_test) = mnist.load_data()
5: else:
6: (x_train, y_train), (x_test, y_test) = \
7: data_helpers.load_local_mnist_dataset\
8: (
9: num_classes=num_classes,
10: img_rows=img_rows,
11: img_cols=img_cols
12:)

13: return x_train, y_train, x_test, y_test

14: ## Data Preparation
15: print("Load data...")
16: x_train, y_train, x_test, y_test = load_data(data_source)

17: input_shape = x_train.shape[1:]

18: print(’Input shape: ’ + str(input_shape))

19: tgt_model.summary()

20: ## Train the model
21: tgt_model.fit\
22: (
23: x_train,
24: y_train,
25: batch_size=batch_size,
26: epochs=num_epochs,
27: validation_data=(x_test, y_test),
28: verbose=1
29:)

100

Appendices

Algorithm 39 The mnistsrc_mnisttgt_train.py Trainer File: Chunk 3
1: tgt_model.save(tgt_model_path, save_format=’h5’)

2: score = tgt_model.evaluate(x_test, y_test, verbose=0)

3: print(’Test loss: %.30f’%score[0])
4: print(’Test accuracy: %.30f’%score[1])

5: ## Store training output
6: metrics_history = pd.DataFrame.from_dict(tgt_model.history.history)

7: metrics_history = pd.concat([metrics_history[’loss’],
metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

8: metrics_history.T.to_excel(tgt_model_hist)

101

Appendices

Algorithm 40 The mnistsrc_imdbtgt_train.py Trainer File: Chunk 1
1: from tensorflow.keras import Model, Sequential
2: from tensorflow.keras.layers import Input, Dense, Embedding,

Reshape
3: from tensorflow.keras.optimizers import Adadelta

4: ## ! Configuration: Begin

5: ## Stage 1 model name
6: src_model_name = "mnistsrc"
7: ## Stage 1 model file path
8: src_model_path = "models/"+src_model_name+".mdl"

9: ## Stage 2 model name
10: tgt_model_name = src_model_name+"_"+"imdbtgt"
11: ## Stage 2 model file path
12: tgt_model_path = "models/"+tgt_model_name+".mdl"
13: ## Stage 2 model evaluation history file path tgt_model_hist = "mod-

els/"+tgt_model_name+".xlsx"

14: ## Pulling the trained Stage 1 model
15: src_model = tf.keras.models.load_model(src_model_path)

16: ## The Stage 1 input layer’s hyperparameters
17: src_img_rows, src_img_cols = tuple(src_model.layers[0].input

.shape[1:-1])

18: ## Model type. See Kim Yoon’s Convolutional Neural Networks for
Sentence Classification, Section 3

19: model_type = "CNN-non-static" # CNN-rand or CNN-non-static or
CNN-static

20: ## Data source
21: data_source = "local_dir" # keras_data_set or local_dir

22: padding_word = "<PAD/>"

23: ## Model Hyperparameters
24: embedding_dim = src_img_cols # 50
25: filter_sizes = (3, 8)
26: num_filters = 10
27: dropout_prob = (0.5, 0.8)
28: hidden_dims = 50

102

Appendices

Algorithm 41 The mnistsrc_imdbtgt_train.py Trainer File: Chunk 2
1: ## Training parameters
2: batch_size = 64
3: num_epochs = 10

4: ## Prepossessing parameters
5: sequence_length = src_img_rows # 400
6: max_words = 5000

7: ## Word2Vec parameters (see train_word2vec)
8: min_word_count = 1
9: context = 10

10: ## ! Configuration: End

11: def load_data(data_source):
12: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
13: if data_source == "keras_data_set":
14: print(’Using the keras IMDb dataset’)
15: (x_train, y_train), (x_test, y_test) = \
16: imdb.load_data\
17: (
18: num_words=max_words,
19: start_char=None,
20: oov_char=None,
21: index_from=None
22:)

23: x_train = sequence.pad_sequences(x_train,
maxlen=sequence_length, padding="post", truncating="post")

24: x_test = sequence.pad_sequences(x_test,
maxlen=sequence_length, padding="post", truncating="post")

25: vocabulary = imdb.get_word_index()
26: vocabulary_inv = dict((v, k) for k, v in vocabulary.items())
27: vocabulary_inv[0] = deepcopy(padding_word)
28: else:
29: print(’Using a local IMDb dataset.’)
30: (x_train, y_train), (x_test, y_test), vocabulary_inv =

data_helpers.load_local_imdb_dataset(sequence_length)

31: return x_train, y_train, x_test, y_test, vocabulary_inv

103

Appendices

Algorithm 42 The mnistsrc_imdbtgt_train.py Trainer File: Chunk 3
1: ## Data Preparation print("Load data...")
2: x_train, y_train, x_test, y_test, vocabulary_inv =

load_data(data_source)

3: if sequence_length != x_test.shape[1]:
4: print("Adjusting sequence length for actual size")
5: sequence_length = x_test.shape[1]

6: print("x_train shape: " + str(x_train.shape))
7: print("x_test shape: " + str(x_test.shape))
8: print("Vocabulary Size: {:d}".format(len(vocabulary_inv)))

9: ## Prepare embedding layer weights and convert inputs for static
model

10: print("Model type is: " + str(model_type))
11: if model_type in ["CNN-non-static", "CNN-static"]:
12: embedding_weights = \
13: train_word2vec\
14: (
15: np.vstack((x_train, x_test)),
16: vocabulary_inv,
17: num_features=embedding_dim,
18: min_word_count=min_word_count,
19: context=context
20:)
21: if model_type == "CNN-static":
22: x_train = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_train])
23: x_test = np.stack([np.stack([embedding_weights[word] for

word in sentence]) for sentence in x_test])
24: print("x_train static shape: " + str(x_train.shape))
25: print("x_test static shape: " + str(x_test.shape))

26: elif model_type == "CNN-rand":
27: embedding_weights = None
28: else:
29: raise ValueError("Unknown model type")

104

Appendices

Algorithm 43 The mnistsrc_imdbtgt_train.py Trainer File: Chunk 4
1: tgt_model = Sequential()

2: if model_type != "CNN-static":
3: input_shape = (sequence_length,)
4: tgt_model.add(Embedding(len(vocabulary_inv),

embedding_dim, input_length=sequence_length, name="embedding",
input_shape=input_shape))

5: tgt_model.add(Reshape(target_shape=tgt_model.get_layer(index=0)
.output.shape[1:]+1))

6: for src_model_idx in range(len(src_model.layers)-1):
7: tgt_model.add(src_model.get_layer(index=src_model_idx))
8: else:
9: exit("Exception: The current version does not support static

CNN trainings.")

10: tgt_model.add(Dense(1, activation="sigmoid"))

11: tgt_model.compile\
12: (
13: loss=binary_crossentropy,
14: optimizer=Adadelta(),
15: metrics=["accuracy"]
16:)

17: tgt_model.summary()

18: ## Train the model
19: tgt_model.fit\
20: (
21: x_train,
22: y_train,
23: batch_size=batch_size,
24: epochs=num_epochs,
25: validation_data=(x_test, y_test),
26: verbose=1,
27:)

105

Appendices

Algorithm 44 The mnistsrc_imdbtgt_train.py Trainer File: Chunk 5
1: tgt_model.save(tgt_model_path, save_format=’h5’)

2: score = tgt_model.evaluate(x_test, y_test, verbose=0)

3: print(’Test loss: %.30f’%score[0])
4: print(’Test accuracy: %.30f’%score[1])

5: ## Store training output
6: metrics_history = pd.DataFrame.from_dict(tgt_model.history.history)

7: metrics_history = pd.concat([metrics_history[’loss’],
metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

8: metrics_history.T.to_excel(tgt_model_hist)

106

Appendices

The Executable imdbsrc_imdbtgt_train.py

The imdbsrc_imdbtgt_train.py file fine tunes a model trained on the IMDb dataset
with architecture mnistsrc. The fine tuning of the model is based on the IMDb
dataset. Line 13 in Algorithm 45 loads the source model trained by imdbsrc_train.py
(Algorithms 32, 33, 34, 35 and 36), and imdbsrc_imdbtgt_train.py (Algorithms 45,
46 and 47) produces the target model imdbsrc_imdbtgt.

The Executable imdbsrc_mnisttgt_train.py

The imdbsrc_mnisttgt_train.py file fine tunes a model trained on the IMDb dataset
with architecture mnistsrc. The fine tuning of the model is based on the MNIST
dataset. Line 16 in Algorithm 48 loads the source model trained by imdbsrc_train.py
(Algorithms 32, 33, 34, 35 and 36), and imdbsrc_mnisttgt_train.py (Algorithms
48, 49 and 50) and produces the target model corresponding to the architecture
imdbsrc_mnisttgt. The embedding layer will not be included in this architecture.
Lines 20 until 5 in Algorithm 49 is responsible for the transference of each of the
hidden layers of the source model to the target architecture and initial target model.
The output’s layer activation function is defined to be the softmax and the number
of output neurons is 10, this is done in line 6 in Algorithm 50. The cost function is
defined to be the categorical cross entropy in line 10 in Algorithm 50.

107

Appendices

Algorithm 45 The imdbsrc_imdbtgt_train.py Trainer File: Chunk 1
1: ## ! Configuration: Begin

2: ## Stage 1 model name
3: src_model_name = "imdbsrc"

4: ## Stage 1 model file path
5: src_model_path = "models/"+src_model_name+".mdl"

6: ## Stage 2 model name
7: tgt_model_name = src_model_name+"_"+"imdbtgt"

8: ## Stage 2 model file path
9: tgt_model_path = "models/"+tgt_model_name+".mdl"

10: ## Stage 2 model evaluation history file path
11: tgt_model_hist = "models/"+tgt_model_name+".xlsx"

12: ## Pulling the trained Stage 1 model
13: src_model = tgt_model = tf.keras.models.load_model(src_model_path)

14: ## The Stage 1 input and embedding layers’ hyperparameters
15: src_embedding_dim, src_sequence_length = tuple(src_model.layers[1]

.output.shape[1:])

16: ## Model type. See Kim Yoon’s Convolutional Neural Networks for
Sentence Classification, Section 3

17: model_type = "CNN-non-static" # CNN-rand or CNN-non-static or
CNN-static

18: ## Data source
19: data_source = "local_dir" # keras_data_set or local_dir

20: padding_word = "<PAD/>"

21: ## Model Hyperparameters
22: embedding_dim = src_embedding_dim
23: filter_sizes = (3, 8)
24: num_filters = 10
25: dropout_prob = (0.5, 0.8)
26: hidden_dims = 50

108

Appendices

Algorithm 46 The imdbsrc_imdbtgt_train.py Trainer File: Chunk 2
1: ## Training parameters
2: batch_size = 64
3: num_epochs = 10

4: ## Prepossessing parameters
5: sequence_length = src_sequence_length
6: max_words = 5000

7: ## Word2Vec parameters (see train_word2vec)
8: min_word_count = 1
9: context = 10

10: ## ! Configuration: End

11: def load_data(data_source):
12: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
13: if data_source == "keras_data_set":
14: print(’Using the keras IMDb dataset’)
15: (x_train, y_train), (x_test, y_test) = \
16: imdb.load_data\
17: (
18: num_words=max_words,
19: start_char=None,
20: oov_char=None,
21: index_from=None
22:)

23: x_train = sequence.pad_sequences(x_train,
maxlen=sequence_length, padding="post", truncating="post")

24: x_test = sequence.pad_sequences(x_test,
maxlen=sequence_length, padding="post", truncating="post")

25: vocabulary = imdb.get_word_index()
26: vocabulary_inv = dict((v, k) for k, v in vocabulary.items())
27: vocabulary_inv[0] = deepcopy(padding_word)
28: else:
29: print(’Using a local IMDb dataset.’)
30: (x_train, y_train), (x_test, y_test), vocabulary_inv =

data_helpers.load_local_imdb_dataset(sequence_length)

31: return x_train, y_train, x_test, y_test, vocabulary_inv

109

Appendices

Algorithm 47 The imdbsrc_imdbtgt_train.py Trainer File: Chunk 3
1: ## Data Preparation
2: print("Load data...")
3: x_train, y_train, x_test, y_test, vocabulary_inv =

load_data(data_source)

4: if sequence_length != x_test.shape[1]:
5: print("Adjusting sequence length for actual size")
6: sequence_length = x_test.shape[1]
7: print("x_train shape: " + str(x_train.shape))
8: print("x_test shape: " + str(x_test.shape))
9: print("Vocabulary Size: {:d}".format(len(vocabulary_inv)))

10: tgt_model.summary()

11: ## Train the model
12: tgt_model.fit\
13: (
14: x_train,
15: y_train,
16: batch_size=batch_size,
17: epochs=num_epochs,
18: validation_data=(x_test, y_test),
19: verbose=1,
20:)

21: tgt_model.save(tgt_model_path, save_format=’h5’)

22: score = tgt_model.evaluate(x_test, y_test, verbose=0)

23: print(’Test loss: %.30f’%score[0])
24: print(’Test accuracy: %.30f’%score[1])

25: ## Store training output
26: metrics_history = pd.DataFrame.from_dict(tgt_model.history.history)

27: metrics_history = pd.concat([metrics_history[’loss’],
metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

28: metrics_history.T.to_excel(tgt_model_hist)

110

Appendices

Algorithm 48 The imdbsrc_mnisttgt_train.py Trainer File: Chunk 1
1: from tensorflow.keras.models import Model
2: from tensorflow.keras.layers import Input, Dense
3: from tensorflow.keras.optimizers import Adadelta

4: ## ! Configuration: Begin

5: ## Stage 1 model name
6: src_model_name = "imdbsrc"

7: ## Stage 1 model file path
8: src_model_path = "models/"+src_model_name+".mdl"

9: ## Stage 2 model name
10: tgt_model_name = src_model_name+"_"+"mnisttgt"

11: ## Stage 2 model file path
12: tgt_model_path = "models/"+tgt_model_name+".mdl"

13: ## Stage 2 model evaluation history file path
14: tgt_model_hist = "models/"+tgt_model_name+".xlsx"

15: ## Pulling the trained Stage 1 model
16: src_model = tf.keras.models.load_model(src_model_path)

17: ## Input layer hyperparameters
18: src_sequence_length, src_embedding_dim = tuple(src_model

.layers[1].output.shape[1:])

19: batch_size = 64
20: num_classes = 10
21: num_epochs = 10

22: ## input image dimensions
23: img_rows, img_cols = src_sequence_length, src_embedding_dim

24: ## Data source
25: data_source = "local_dir" # "keras_data_set" or "local_dir"

26: ## ! Configuration: End

111

Appendices

Algorithm 49 The imdbsrc_mnisttgt_train.py Trainer File: Chunk 2
1: def load_data(data_source):
2: assert data_source in ["keras_data_set", "local_dir"], "Unknown

data source"
3: if data_source == "keras_data_set":
4: (x_train, y_train), (x_test, y_test) = mnist.load_data()
5: else:
6: (x_train, y_train), (x_test, y_test) = \
7: data_helpers.load_local_mnist_dataset\
8: (
9: num_classes=num_classes,
10: img_rows=img_rows,
11: img_cols=img_cols
12:)

13: return x_train, y_train, x_test, y_test

14: ## Data Preparation print("Load data...")
15: x_train, y_train, x_test, y_test = load_data(data_source)
16: x_train, x_test = x_train[..., -1], x_test[..., -1]

17: input_shape = x_train.shape[1:]

18: print(’Input shape: ’ + str(input_shape))

19: a0 = Input(shape=input_shape)
20: a = src_model.get_layer(index=2)(a0)

21: ## ! 2 Conv Blocks: Begin

22: ## To simplify the code below, it was assumed that the
architecture has exactly 1 part consisted of 2 blocks where each
block contains 3 sequential layers. So (2 blocks)*(3 layers per
block) = (6 layers) meaning that 6 layers have to be iterated
until the blocks merge again into a single block.

23: conv1 = src_model.get_layer(index=3)(a)
24: conv1 = src_model.get_layer(index=5)(conv1)
25: conv1 = src_model.get_layer(index=7)(conv1)
26: conv2 = src_model.get_layer(index=4)(a)
27: conv2 = src_model.get_layer(index=6)(conv2)
28: conv2 = src_model.get_layer(index=8)(conv2)
29: conv_blocks = [conv1, conv2]

30: a = src_model.get_layer(index=9)(conv_blocks)

112

Appendices

Algorithm 50 The imdbsrc_mnisttgt_train.py Trainer File: Chunk 3
1: ## ! 2 Conv Blocks: End

2: tgt_model.summary()

3: ## The final merged part of the hidden layers.
4: for src_mode_idx in range(10, len(src_model.layers)-1):
5: a = src_model.get_layer(index=src_mode_idx)(a)

6: a = Dense(num_classes, activation="softmax")(a)

7: tgt_model = Model(a0, a)

8: tgt_model.compile\
9: (

10: loss=categorical_crossentropy,
11: optimizer=Adadelta(),
12: metrics=["accuracy"]
13:)

14: ## Train the model
15: tgt_model.fit\
16: (
17: x_train,
18: y_train,
19: batch_size=batch_size,
20: epochs=num_epochs,
21: validation_data=(x_test, y_test),
22: verbose=1
23:)

24: tgt_model.save(tgt_model_path, save_format=’h5’)

25: score = tgt_model.evaluate(x_test, y_test, verbose=0)

26: print(’Test loss: %.30f’%score[0])
27: print(’Test accuracy: %.30f’%score[1])

28: ## Store training output
29: metrics_history = pd.DataFrame.from_dict(tgt_model.history.history)

30: metrics_history = pd.concat([metrics_history[’loss’],
metrics_history[’accuracy’], metrics_history[’val_loss’],
metrics_history[’val_accuracy’]], axis=1)

31: metrics_history.T.to_excel(tgt_model_hist)

113

Appendices

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” in PROCEEDINGS OF THE IEEE, 1998, pp.
2278–2324.

[2] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial Intelligence
Review, vol. 53, no. 8, pp. 5455–5516, Dec 2020. [Online]. Available:
https://doi.org/10.1007/s10462-020-09825-6

[3] A. C. Ian Goodfellow, Yoshua Bengio, Deep Learning. MIT Press, 2017, pp.
364–371.

[4] W. Zhang, “Shift-invariant pattern recognition neural network and its optical
architecture,” 1988.

[5] R. Zhang, “Making convolutional networks shift-invariant again,” in Proceedings
of the 36th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 7324–7334. [Online]. Available:
http://proceedings.mlr.press/v97/zhang19a.html

[6] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020,
p. 228, https://d2l.ai.

[7] R. Hirsch, Exploring Colour Photography: A Complete Guide. Laurence King,
2004. [Online]. Available: https://books.google.gr/books?id=4Gx2WItWGYoC

[8] M. L. Andrei Bursuc, Florent Krzakala. Neural networks, Convolutions,
Architectures. Lecture Slides. [Online]. Available: https://www.di.ens.fr/
~lelarge/dldiy/slides/lecture_6/index.html#114

[9] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020,
pp. 237–241, https://d2l.ai.

[10] Convolution arithmetic tutorial. Theano Tutorial. [Online]. Available: https:
//theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html

[11] M. Kaushik. Backpropagation for convolution with strides: Loss gradient with
respect to the input tensor. [Online]. Available: https://medium.com/@mayank.
utexas/backpropagation-for-convolution-with-strides-8137e4fc2710

[12] ——. Backpropagation for convolution with strides: Loss gradient with
respect to the filter (weight) tensor. [Online]. Available: https://medium.com/
@mayank.utexas/backpropagation-for-convolution-with-strides-fb2f2efc4faa

114

https://doi.org/10.1007/s10462-020-09825-6
http://proceedings.mlr.press/v97/zhang19a.html
https://d2l.ai
https://books.google.gr/books?id=4Gx2WItWGYoC
https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_6/index.html#114
https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_6/index.html#114
https://d2l.ai
https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html
https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-fb2f2efc4faa
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-fb2f2efc4faa

Appendices

[13] D. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Flex-
ible, high performance convolutional neural networks for image classification.”
07 2011, pp. 1237–1242.

[14] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in con-
volutional architectures for object recognition,” in Artificial Neural Networks –
ICANN 2010, K. Diamantaras, W. Duch, and L. S. Iliadis, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 92–101.

[15] C. S. Wiki, “Max-pooling / pooling — computer science wiki,,” 2018. [Online].
Available: https://computersciencewiki.org/index.php?title=Max-pooling_/_
Pooling&oldid=7839

[16] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul 2019. [Online].
Available: https://doi.org/10.1186/s40537-019-0197-0

[17] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020,
p. 663, https://d2l.ai.

[18] B. Liu, Sentiment Analysis and Opinion Mining, 2012, sourced from Microsoft
Academic, https://academic.microsoft.com/paper/2108646579.

[19] W.-t. Yih, X. He, and C. Meek, “Semantic parsing for single-relation question
answering,” in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Baltimore, Maryland:
Association for Computational Linguistics, Jun. 2014, pp. 643–648. [Online].
Available: https://www.aclweb.org/anthology/P14-2105

[20] Y. Shen, X. He, J. Gao, l. Deng, and G. Mesnil, “Learning semantic representa-
tions using convolutional neural networks for web search,” 04 2014, pp. 373–374.

[21] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural
network for modelling sentences,” CoRR, vol. abs/1404.2188, 2014. [Online].
Available: http://arxiv.org/abs/1404.2188

[22] Y. Kim, “Convolutional neural networks for sentence classification,” Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing,
08 2014.

[23] P. R. Christopher D. Manning and H. Schütze. Tokenization. [Online]. Available:
https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html

[24] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020,
p. 310, https://d2l.ai.

[25] ——, Dive into Deep Learning, 2020, p. 108, https://d2l.ai.

[26] ——, Dive into Deep Learning, 2020, p. 327, https://d2l.ai.

115

https://computersciencewiki.org/index.php?title=Max-pooling_/_Pooling&oldid=7839
https://computersciencewiki.org/index.php?title=Max-pooling_/_Pooling&oldid=7839
https://doi.org/10.1186/s40537-019-0197-0
https://d2l.ai
https://academic.microsoft.com/paper/2108646579
https://www.aclweb.org/anthology/P14-2105
http://arxiv.org/abs/1404.2188
https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
https://d2l.ai
https://d2l.ai
https://d2l.ai

Appendices

[27] ——, Dive into Deep Learning, 2020, p. 664, https://d2l.ai.

[28] R. Ruizendaal. Deep learning 4: Why you need to start using
embedding layers. [Online]. Available: https://towardsdatascience.com/
deep-learning-4-embedding-layers-f9a02d55ac12

[29] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013. [Online]. Available: http:
//arxiv.org/abs/1301.3781

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26. Curran Associates,
Inc., 2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[31] J. Qadrud-Din. Transform anything into a vector. [Online]. Available:
https://blog.insightdatascience.com/entity2vec-dad368c5b830

[32] H. Gautam. Word embedding: Basics. [Online]. Available: https://medium.
com/@hari4om/word-embedding-d816f643140

[33] M. M. Hossain, D. Talbert, S. Ghafoor, and R. Kannan, “Fawca: A flexible-
greedy approach to find well-tuned cnn architecture for image recognition prob-
lem,” 08 2018.

[34] D. Laredo, Y. Qin, O. Schütze, and J. Q. Sun, “Automatic model selection for
neural networks,” 05 2019.

[35] S. Bozinovski. (1976) Reminder of the first paper on transfer learning in neural
networks. http://www.informatica.si/index.php/informatica/article/view/2828.

[36] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020,
p. 574, https://d2l.ai.

[37] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, “Transfer learning in
natural language processing,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Tutorials.
Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 15–18. [Online]. Available: https://www.aclweb.org/anthology/N19-5004

[38] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2020,
p. 575, https://d2l.ai.

[39] “Keras,” 2018, GitHub, Commit: 1a3ee8441933fc007be6b2beb47af67998d50737.
[Online]. Available: https://github.com/keras-team/keras/blob/
1a3ee8441933fc007be6b2beb47af67998d50737/examples/mnist_cnn.py

116

https://d2l.ai
https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12
https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://blog.insightdatascience.com/entity2vec-dad368c5b830
https://medium.com/@hari4om/word-embedding-d816f643140
https://medium.com/@hari4om/word-embedding-d816f643140
http://www.informatica.si/index.php/informatica/article/view/2828
https://d2l.ai
https://www.aclweb.org/anthology/N19-5004
https://d2l.ai
https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/mnist_cnn.py
https://github.com/keras-team/keras/blob/1a3ee8441933fc007be6b2beb47af67998d50737/examples/mnist_cnn.py

Appendices

[40] A. Rakhlin, “Convolutional neural networks for
sentence classification,” 2017, GitHub, Commit:
0c7a61f428470d014177ad4a98fef7ad4b86d387. [Online]. Available: https:
//github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/
tree/0c7a61f428470d014177ad4a98fef7ad4b86d387

[41] M. Zeiler, “Adadelta: An adaptive learning rate method,” vol. 1212, 12 2012.

[42] C. J. B. Yann LeCun, Corinna Cortes. The mnist database.
Http://yann.lecun.com/exdb/mnist/.

[43] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association for
Computational Linguistics, June 2011, pp. 142–150. [Online]. Available:
http://www.aclweb.org/anthology/P11-1015

[44] H. Iqbal, “Plotneuralnet,” 2020, GitHub, Com-
mit: e96bc852189c2089dd500527a0a01a5a36e8977e. [Online].
Available: https://github.com/HarisIqbal88/PlotNeuralNet/tree/
e96bc852189c2089dd500527a0a01a5a36e8977e

[45] F. Chollet et al., “Keras,” 2015, GitHub. [Online]. Available: https:
//github.com/fchollet/keras

[46] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[47] M. Cerliani. Tensorflow 2.0: How are metrics computed when the ouput is
sequential? [Online]. Available: https://stackoverflow.com/questions/61732344/
tensorflow-2-0-how-are-metrics-computed-when-the-ouput-is-sequential#:~:
text=Tensorflow%2FKeras%20by%20default%20computes,calculated%20on%
20all%20the%20batches.

[48] linanqiu. word2vec-sentiments. [Online]. Available: https://github.com/
linanqiu/word2vec-sentiments

[49] A. Baldominos, Y. Saez, and P. Isasi, “A survey of handwritten character
recognition with mnist and emnist,” Applied Sciences, vol. 9, no. 15, 2019.
[Online]. Available: https://www.mdpi.com/2076-3417/9/15/3169

117

https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/tree/0c7a61f428470d014177ad4a98fef7ad4b86d387
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/tree/0c7a61f428470d014177ad4a98fef7ad4b86d387
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/tree/0c7a61f428470d014177ad4a98fef7ad4b86d387
http://www.aclweb.org/anthology/P11-1015
https://github.com/HarisIqbal88/PlotNeuralNet/tree/e96bc852189c2089dd500527a0a01a5a36e8977e
https://github.com/HarisIqbal88/PlotNeuralNet/tree/e96bc852189c2089dd500527a0a01a5a36e8977e
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://tensorflow.org/
https://stackoverflow.com/questions/61732344/tensorflow-2-0-how-are-metrics-computed-when-the-ouput-is-sequential#:~:text=Tensorflow%2FKeras%20by%20default%20computes,calculated%20on%20all%20the%20batches.
https://stackoverflow.com/questions/61732344/tensorflow-2-0-how-are-metrics-computed-when-the-ouput-is-sequential#:~:text=Tensorflow%2FKeras%20by%20default%20computes,calculated%20on%20all%20the%20batches.
https://stackoverflow.com/questions/61732344/tensorflow-2-0-how-are-metrics-computed-when-the-ouput-is-sequential#:~:text=Tensorflow%2FKeras%20by%20default%20computes,calculated%20on%20all%20the%20batches.
https://stackoverflow.com/questions/61732344/tensorflow-2-0-how-are-metrics-computed-when-the-ouput-is-sequential#:~:text=Tensorflow%2FKeras%20by%20default%20computes,calculated%20on%20all%20the%20batches.
https://github.com/linanqiu/word2vec-sentiments
https://github.com/linanqiu/word2vec-sentiments
https://www.mdpi.com/2076-3417/9/15/3169

Appendices

[50] fl0wer, “Code to produce experiments,” 2021. [Online]. Available: https:
//gitlab.com/fl0wer-roots/undergrad_thesis

[51] “String cleaner python code.” [Online]. Available: https://github.com/yoonkim/
CNN_sentence/blob/master/process_data.py

[52] R. Řehůřek. Gensim, topic modelling for humans. [Online]. Available:
https://radimrehurek.com/gensim/

[53] A. Rakhlin, “Convolutional neural networks for
sentence classification,” 2017, GitHub, Commit:
0c7a61f428470d014177ad4a98fef7ad4b86d387. [Online]. Available: https:
//github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/
blob/0c7a61f428470d014177ad4a98fef7ad4b86d387/data_helpers.py

118

https://gitlab.com/fl0wer-roots/undergrad_thesis
https://gitlab.com/fl0wer-roots/undergrad_thesis
https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
https://radimrehurek.com/gensim/
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/blob/0c7a61f428470d014177ad4a98fef7ad4b86d387/data_helpers.py
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/blob/0c7a61f428470d014177ad4a98fef7ad4b86d387/data_helpers.py
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras/blob/0c7a61f428470d014177ad4a98fef7ad4b86d387/data_helpers.py

	Introduction
	Convolutional Neural Networks
	Overview
	Application in Image Processing
	Simple Preprocessing
	2D Convolutional Layer
	2D Pooling Layers
	Image Data Augmentation

	Application in Natural Language Processing
	Preprocessing
	Word Embedding
	1D Convolutional Layer
	1D Pooling Layers

	Hypothesis and Methodology
	Hypothesis
	Transfer Learning
	Problems and Training Algorithms Part I
	Training Framework of the Original Image Classifier
	Training Framework of the Original Document Classifier
	Switching The Tasks
	Tables and Diagrams

	Problems and Training Algorithms Part II
	Training Framework of the Source Image Classifier
	Training Framework of the Source Document Classifier
	Training Framework of the Target Models
	Tables and Diagrams

	Experimental Evaluation
	Evaluation Metrics
	Datasets
	The MNIST Dataset
	The LMRDv1.0 Dataset

	Experiments Part I
	Experiments Based on MNIST's Architecture
	Experiments Based on LMRDv1.0's Architecture
	Training Time

	Experiments Part II
	Experiments Based on the mnistsrc Source Model
	Experiments Based on the imdbsrc Source Model
	Training Time

	Discussion
	Conclusions
	Appendices
	Appendix I
	Appendix II
	Appendix III
	Appendix IV

	References

