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Abstract 
 
 The state-of-the-art writer identification systems use various features and techniques to 

identify the writer of the handwritten text. In this work, several directional features and 
combinations of directional with model-based features are presented. Specifically, several 
improvements of a statistical, directional feature, the edge hinge distribution, are attempted in 
novel contributions as the Skeleton Hinge Distribution, the Weighted Skeleton Hinge Distribution, 
the Quantized Skeleton Hinge Distribution, the Directional Stroke Run Length Distribution and 
the Edge Skeleton Hinge combination. Furthermore, the Skeleton Hinge Distribution feature with 
a model-based feature is explored, based on a codebook of graphemes.  
Novel contributions related to the preprocessing of the document images and the extraction of 
valuable characteristics are presented. More specifically, two techniques are presented for Main 
Body Size estimation, a characteristic with application in a broad range of document image 
analysis fields. One measures Main Body size directly, while the other does an estimation for the 
baselines first. Both methods are segmentation free. A collection of 10 printed document images 
and a collection of handwritten text were used for the presented experimental results.  
Furthermore, a technique for text localization is presented that takes advantage of the fact that text 
should present some contrast in comparison with the background, to be distinguished by the human 
eye. A procedure of binarization is applied to create appropriate images for text detection. The 
connected components of the image are extracted, and some heuristic rules are applied to identify 
areas containing text.  
For the evaluation, the Firemaker Database and the ICDAR 2017 writer identification competition 
dataset were used. A plethora of matching techniques were considered for Skeleton Hinge 
distribution, including nearest neighbour classifier, K-means, Hierarchical Cluster Tree, k-nearest 
neighbours and Support Vector Machines. The skeleton hinge distribution achieved an accuracy 
of 90,8%, while the combination of this method with the codebook of graphemes reached 96%. 
The Weighted Skeleton Hinge Distribution achieved an accuracy of 91.2%. The Quantized 
Skeleton Hinge Distribution achieved an accuracy of 92.4%. The Directional Stroke Run Length 
Distribution achieved an accuracy of 91.2%, and finally, the Edge Skeleton Hinge combination 
technique achieved an accuracy of 90,2%. 
Keywords: Writer Identification, Edge-Hinge Distribution, Skeleton-Hinge Distribution,  
Codebook of Graphemes 
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Περίληψη 
 
 Τα σύγχρονα συστήματα αναγνώρισης γραφέα χρησιμοποιούν μια ποικιλία διαφορετικών 

χαρακτηριστικών και τεχνικών για να προσδιορίσουν τον συγγραφέα του χειρόγραφου κειμένου. 
Σε αυτή την διατριβή παρουσιάζονται διάφορα κατευθυντικά χαρακτηριστικά καθώς και 
συνδυασμοί κατευθυντικών χαρακτηριστικών με χαρακτηριστικά που βασίζονται σε μοντέλα. 
Συγκεκριμένα, επιχειρούνται αρκετές βελτιώσεις ενός στατιστικού, κατευθυντικού 
χαρακτηριστικού, του edge hinge distribution. Τα νέα  χαρακτηριστικά που παρουσιάζονται  είναι 
το Skeleton Hinge Distribution, το Weighted Skeleton Hinge Distribution, το Quantized Skeleton 
Hinge Distribution, το Directional Stroke Run Length Distribution και το Edge Skeleton Hinge 
Combination . Επιπλέον, διερευνάται ο συνδυασμός του Skeleton Hinge Distribution με ένα 
χαρακτηριστικό που βασίζετε σε μοντέλα. 
Νέες συνεισφορές που σχετίζονται με την προεπεξεργασία των εικόνων εγγράφων αλλα και την 
εξαγωγή πολύτιμων χαρακτηριστικών του κειμένου. Ειδικότερα, παρουσιάζονται δύο τεχνικές για 
την εκτίμηση μεγέθους κύριου σώματος (Main Body Size Estimation), το οποίο είναι ένα 
χαρακτηριστικό του κειμένου με εφαρμογή σε ένα ευρύ φάσμα πεδίων ανάλυσης εικόνων 
εγγράφου. Η πρώτη μέθοδος μετρά άμεσα το μέγεθος του κύριου σώματος, ενώ η δεύτερη 
υπολογίζει πρώτα τις βασικές γραμμές (baseline). Και οι δύο προτινόμενοι μεθόδοι δεν απαιτούν 
τμηματοποίηση (segmentation) . Τα πειραματικά αποτελέσματα παρουσιάζονται σε μια συλλογή 
χειρόγραφων εγγράφων καθώς και σε μια μικρή συλλογή 10 εικόνων απο πληκτρολογημένα 
εγγράφα προκειμένου να προκύψουν πιο αντικειμενικά αποτελέσματα. Επιπλέον, παρουσιάζετε 
μια τεχνική για τον εντοπισμό κειμένου που εκμεταλλεύεται το γεγονός ότι το κείμενο πρέπει να 
παρουσιάζει κάποια αντίθεση σε σχέση με το υπόβαθρο (background), προκειμένου να 
διακρίνεται από το ανθρώπινο μάτι. Χρησιμοποιείται μια διαδικασία  binarization για τη 
δημιουργία κατάλληλων εικόνων εγγράφου για την ανίχνευση κειμένου. Στην συνέχεια τα 
συνδεδεμένα στοιχεία (connected components) της εικόνας εξάγονται και εφαρμόζονται 
ορισμένοι ευρετικοί κανόνες για τον εντοπισμό περιοχών που περιέχουν κείμενο. 
Για την αξιολόγηση της παρούσας εργασίας, η συλλογή χειρόγραφων firmaker DB 
χρησιμοποιήθηκε. Η συγκεκριμένη συλλογή περιλαμβάνει 4 σελίδες χειρόγραφού κειμένου από 
250 διαφορετικούς συγγραφείς. Χρησιμοποιήθηκε μια πληθώρα τεχνικών αντιστοίχισης για το 
Skeleton Hinge Distribution, συμπεριλαμβανομένου του πλησιέστερου γείτονα, k-means, 
ιεραρχικών συστάδων (hierarchical cluster trees) , knn και support vector machines. Το 
χαρακτηριστικό Skeleton Hinge Distribution κατάφερε να ανιχνεύσει τον συγγραφέα χειρόγραφου 
κειμένου με ακρίβεια 90,8%, το Weighted Skeleton Hinge Distribution με ακρίβεια 91,2%, το 
Quantized Skeleton Hinge Distribution με ακρίβεια 92,4%, το Directional Stroke Run Length 
Distribution με ακρίβεια 91,2% και το Edge Skeleton Hinge Combination με ακρίβεια 90,2%.  
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1. Writer Identification 
1.1  Introduction 

 
 
While our future is digital, our past is analogue. Writing is one of the most important 

innovations in human history. Our cultural heritage, art, sciences, mythology, religious scripts, 
poems, certificates, and our entire history can be found in the various historical document 
collections written over the ages. While these collections are owned by various libraries and private 
collections worldwide as hard copies, many historical documents have already become digital in 
the last decades. The digitization of these documents is far from over since more and more 
collections are digitized every day. 
Although the contents of most historical document collections are well known, the same does not 
apply to the writer identity. Therefore, by developing new methodologies that can identify the 
writer of a historical document, or retrieve other historical documents from the same writer, or 
even being able to tell if a historical document is written by one or more writers, like in [1], could 
allow us to have a better understanding of our history.  
Each person’s handwriting is unique and therefore it can be used as a biometric characteristic[2]. 
More specifically, handwriting is considered a behavioural biometric characteristic since it directly 
relates to how each person grew up. For example, schooling, personal preferences, languages 
learned, and other characteristics make each writer's handwriting unique. Moreover, handwriting 
can be affected by other factors like the writing implements used, writing speed, writing surface, 
and available writing area, resulting in handwritten documents with text characters that may vary 
in size. 
In recent years, most research in person identification primarily targets their biometrics [3]–[5]. 
Two types of biometrics exist, physiological and behavioural. Physiological biometrics 
identification applications are based on measuring the physical property of the human body. 
Various applications offer person identification through their physiological biometrics like their 
iris, fingerprints, retinal blood vessels, hand geometry, DNA and even face identification from an 
image. Results that yield a person’s identification using physiological biometrics can be considered 
a solved problem. Behavioural biometrics, on the other hand, uses individual traits of a person’s 
behaviour for identification. Some behavioural biometrics applications include voice 
identification, signature identification, gait, keystroke dynamics and also handwriting.  
Contrary to signature identification[6], which requires a predefined, sort sequence of characters or 
strokes, writer identification can be achieved by a writer's handwritten text and not only by a 
predefined one. Moreover, most signature identification systems use online information, meaning 
that the user signs in a specific area with an electronic pen or some other electronic form of writing 
aid, which monitors the user's movements and time. Unfortunately, writer identification systems 
cannot use the same information for practical reasons. Most of the samples are written in the paper, 
meaning the writer's time to write a text is unknown. Furthermore, the direction he travelled when 
writing the characters of the text is also unknown.  
Writer identification is the task of identifying the writer of an unknown handwritten document 
image by matching it against a database of handwritten documents with a known writer. First, 
features are extracted from the handwritten document image, and either a statistical analysis of 
these features is entailed, and then their distances are measured, or the features are used to construct 
models, which are later compared, to achieve identification. 



 

In forensic practice, the identification of a writer is a problem that often arises in a court of justice 
to identify the writer of a handwritten document [7], a will, for example. It also has applications 
in the health sector where a prescription writer must be verified [8]. While in forensics [9] where 
writer verification is most common and is usually performed by human experts, writer 
identification can also be beneficial.  For example, in cases of threats, or ransom letters, when there 
is a suspect for the case, and his handwriting texts are taken as evidence, a graphologist tries to 
verify the writer's identity with his handwriting texts. The above procedure can be automated if a 
writer identification system is applied to an extensive data set and output a list of top-ranked 
writers. Then the results can be either verified by a writer verification system or a human expert.  
Writer identification and writer verification are some terms that usually get confused [10]. Writer 
identification systems attempt to match the handwriting of unknown writers against a dataset of 
handwriting from a known writer. These systems can identify a writer of the handwritten text based 
on other handwritten text samples from the same writer. Moreover, writer identification systems 
perform one too many searches in an extensive database with handwriting samples of a known 
writer and return either one or a list of candidate writers. Writer identification can also be applied 
to optical character recognition by exploiting the writer's style and adapting the recognition system 
to the type of the writer [11]. 
On the other hand, on writer verification systems, the goal is to do a one-to-one identification. 
Therefore, a decision must be made if two specific handwritten text samples belong to the same 
writer. In this method, usually, the distance between the two samples is measured, and if it is below 
a specific threshold, then the two samples are from the same writer. 
Writer identification and writer verification fall into two broad categories: text-dependent and text-
independent [6]. Text-dependent methods share many similarities with signature verification 
techniques since they compare a predefined set of characters or words of known semantic meaning 
with the ones in the handwritten sample in question. Text-dependent methods require human 
intervention to segment characters or words correctly. On the other hand, text-independent 
methods use statistical features extracted from the samples without any human intervention. In this 
work, the main focus will be given in text-independent techniques. 
Writer identification techniques can be divided into three broad categories, statistical techniques 
that use textural [10], [12] or structural based features [13] and model-based approaches that 
extract features automatically from raw data without explicit programming.  
Statistical techniques usually entail a statistical analysis of features extracted from the 
directionality and curvature or structure of patterns in handwritten document images. In textural 
features [12], the handwritten document is treated as an image and not as handwriting, and usually, 
the analysis of the foreground texture is entailed to extract features. In structural features, the 
extracted features are mainly based on characteristics of the writing that even a human reader can 
distinguish, such as the text's Main Body size, the height of upper and lower Baselines, character 
width, and text slant. 
Model-based techniques can extract features automatically by using various Artificial-Intelligence 
techniques like Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Extend 
Learning Model (ELM), other deep machine learning models, or allograph approaches [10] that 
construct models using Self Organizing Feature Maps (SOFM). 
This work addresses the problem of offline, text-independent writer identification using scanned 
handwritten document images. The methods presented here are statistical techniques that capture 
textural features.  



 

Our methods are statistically evaluated using the Firemaker data set [14] and the ICDAR, 2017 
writer identification competition dataset [15].  

 
1.2  Motivation And Objectives 

 
The most prominent application of writer identification is in forensics and as evidence in 

court trials [10]. For example, recently, writer identification techniques [1] were utilized in 
palaeography to prove that The Great Isaiah Scroll (1QIsaa), one of the original seven Dead Sea 
Scrolls discovered in Qumran in 1947, was written by two distinct writers carefully mirroring 
another scribe's writing style. Future advancements in this field may allow us to use it in 
applications such as OCR, identifying the writer of anonymous historical documents, and 
authentication systems.  
Although relatively recent works on the writer identification field utilize artificial intelligence 
techniques [15]–[21], a choice was made to use traditional methods only for several reasons.  
More specifically, the datasets available for the writer identification task do not contain enough 
samples and are pretty limited in size. In [17], This issue is identified in the open research issues 
section as the cause for the scarcity of CNN based writer identification systems in the literature 
and as a problem that highly affects the performance of deep learning models. Some researchers 
[21] try to overcome those limitations by using another Artificial Intelligence technique to generate 
thousands of samples per writer. Other researchers [19], [20] either utilize the annotations available 
on Datasets to split entire pages into words or proceed with word segmentation techniques and 
then try to achieve writer identification on the word level.  
Moreover, with the recent European Union fit for the Digital Age [22], the EU Commission 
proposes new rules and actions for excellence and trust in Artificial Intelligence. According to 
these new rules, biometric identification systems are considered high risk and subject to strict 
requirements. One of those requirements is using high-quality datasets to minimize risks and 
discriminatory outcomes. 
Furthermore, the dilemmas in applying artificial intelligence methods in digital palaeography, as 
presented in [23], also reflect our difficulties in using artificial intelligence techniques for critical 
writer identification applications. In our view, a system that could be used in forensics and as 
evidence in court trials must be easily explainable, understood, and most importantly, trusted. 
Directional methods [24]–[28] fulfil the above criteria since they can be easily explained, 
understood and ultimately trusted. Moreover, they are computationally efficient and fast and could 
be even run on mobile devices if such a need arises. Finally, their requirements for training data is 
minimal since only one page of handwritten text is sufficient, in most cases, to capture the 
necessary characteristics, or the feature vector, of a writer.  
In our work on Skeleton Hinge Distribution [28], the skeleton information was used to make the 
feature extraction faster. However, by considering only the Skeleton, a big part of the available 
pixel information is discarded. This choice has motivated us to investigate if any additional 
information that could help identify the writer lies in discarded information. 
Furthermore, our work on Detecting the Main Body size [29] made apparent that the Main Body 
size fluctuations could be observed even in a single text written by one writer. This observation 
motivated us to utilize this information and explore its contribution towards identifying the writer. 
Finally, on [20], they observed that neural networks trained on grey-scale images performed better 
than neural networks trained on binarized and contour images indicating that texture information 



 

is an essential factor for writer identification. This observation motivated us to investigate if the 
same can be observed in Directional methods. 
In a nutshell, the objectives of this thesis are as follows 
Objective 1: We aim to make advancements in the preprocessing of handwritten document images 
that will allow us to reduce the noise and extract valuable characteristics of the text. 
Objective 2: We aim to advance directional feature extraction techniques and propose some new 
feature extraction methods. 
Objective 3: We aim to experiment with various matching techniques for our features to 
understand better how the different matching techniques affect identification accuracy.   
Objective 4: We aim to evaluate the choices made in our work regarding the skeletonization 
process and find out if there is a loss of information and the effect it has on performance. 
Objective 5: We aim to experiment with pixel intensity and character size fluctuations to 
understand better how they affect identification accuracy.   
 

1.3  Main Assumptions 
 
The written text consists of several pen strokes applied with some force on a medium like 

paper. While those ink strokes represent a single line to a human observer, the same ink stroke is 
digitized into several pixel lines. To make things worse, differences in pen ball size and the angle 
or surface of writing may produce significant variations in the number of pixel lines produced 
during the digitization process and differences in the character sizes. 
The primary assumption done in this work is that all stroke widths, i.e., line thickness, should be 
the same size. Practically this means that an attempt is made to condense all the writing information 
in 1-pixel width strokes. 
Furthermore, an assumption is made that even if all the available information is used in 1-pixel 
width fragments, the accuracy should not significantly deviate from the Skeleton Hinge technique 
accuracy.   
Similarly, an assumption is made that the main body size variance affects the identification 
accuracy since Hinge angles are related to the size of characters. Imagine, for example, the 
character "o" with two different main body sizes. The first can be represented by capital "O" and 
the second with a small "o". The directional angle of writing on the small “o” is smaller than the 
directional angle of writing on the capital “O”. 
Moreover, an assumption is made that noise produced by the writer could affect identification 
accuracy. This kind of noise either consists of the writers attempt to erase with ink what he has 
written by mistake or smaller ink stains that resemble salt and pepper noise.  
Finally, an assumption is made that the pressure applied to the medium by the writer can also affect 
accuracy. Since this work deals with offline writer identification, a further assumption is that the 
pressure can be represented by pixel intensity on the grey-scale document image. 

 
1.4  Contributions 

 
In this work, several directional features and combinations of directional features with 

model-based features are presented. Specifically, several improvements of a statistical directional 
feature, the edge hinge distribution, are attempted in novel contributions as the Skeleton Hinge 
Distribution, the Weighted Skeleton Hinge Distribution, the Quantized Skeleton Hinge 
Distribution, the Directional Stroke Run Length Distribution and the Edge Skeleton Hinge 



 

combination. Furthermore, the combination of the Skeleton Hinge Distribution feature with a 
model-based feature is explored based on a codebook of graphemes.  
Novel contributions related to the preprocessing of the document images and the extraction of 
valuable characteristics are presented. More specifically, two techniques are presented for Main 
Body Size estimation, a characteristic with application in a broad range of document image 
analysis fields. One measures the Main Body size directly, while the other first estimates the 
baselines. Both methods are segmentation free. Finally, to give more objective results, 
experimental results are presented over a small collection of 10 printed documents and a collection 
of handwritten text. 
Furthermore, a technique for text localization is presented, which takes advantage of the fact that 
text should present some contrast in comparison with the background to be distinguished by the 
human eye. First, a procedure of binarization is applied to create appropriate images for text 
detection. Next, the connected components of the image are extracted, and some heuristic rules are 
applied to identify areas containing text. Finally, a postprocessing step is applied to clean the 
document image from the noise that is not part of the text. 

 
1.5  Overview 

 
In chapter 2, state of the art in writer identification is presented. Then, an overview of the 

anatomy of the handwritten document image is given. Finally, significant terms and techniques 
related to document image analysis, in general, will be presented. 
In chapter 3, statistical and model-based features used for writer identification are presented. 
Individually, Edge Direction Distribution, Edge Hinge Distribution and Edge Hinge 
Combinations, along with our contributions, the Skeleton Hinge Distribution, the Weighted 
Skeleton Hinge Distribution, the Quantized Skeleton Hinge Distribution, the Directional Stroke 
Run Length Distribution and the Edge Skeleton Hinge combination are presented. Furthermore, a 
Model-Based feature that only considers closed areas of the characters is presented.  
In chapter 4, two novel approaches for estimating the Main Body size and a technique for noise-
cleaning through text localization will be presented.  
In chapter 5, the data set used to evaluate this work is presented along with experimental results 
from our feature extraction techniques. More specifically, experimental results on Skeleton Hinge 
Distribution using the Nearest Neighbour classifier, K-means, Hierarchical Cluster Tree, K-
Nearest Neighbours and Support Vector Machines are presented. Moreover, results on Quantized 
Skeleton Hinge Distribution, Weighted Skelton Hinge Distribution, Run Length Directional Hinge 
and Edge Skeleton Hinge Combinations, and Codebook of Graphemes combined with Skeleton 
Hinge Distribution are presented. 
Finally, in Chapter 6, an interpretation of the feature vector characteristics produced by the 
directional methods mentioned above is attempted. Furthermore, an explanation of how matching 
is achieved and what happens on false identifications is provided. Furthermore, a discussion about 
writer identification techniques is provided, and finally, our conclusions are drawn. 

 
 
 
 
 



 

2. State Of The Art 
 

In this section, a review of recent papers published on the topics of writer identification and 
some from writer verification are presented. Writer verification was chosen because some of the 
feature extraction techniques developed for writer verification can also be used in writer 
identification. Several approaches exist in the literature for writer identification. First, works that 
entail a classical method, i.e. statistical or model-based strategies, are reviewed—followed by the 
most recent works based on artificial intelligence and deep learning.   
Bulacu et al. [24] proposed the Edge Directional Distribution (EDD) and the Edge-Hinge 
Distribution (EHD) features. While Edge directional distribution considers the direction of a single 
edge fragment, the Edge-Hinge distribution considers the directions of two edge fragments 
emerging from a central pixel of a sliding window. Next, the probability distribution of the 
directions detected is generated for every writer in the train data set and then for every writer in 
the test data set. Finally, the generated distributions from the test data set are matched against the 
generated distributions of the train data set using the nearest neighbourhood algorithm. 
Experimental results reported an accuracy of 35% for the Edge directional distribution and 63% 
for the Edge-Hinge directional distribution on Firemaker DB [14].  
Laurens van der Maaten et al. [25] suggested an improved Edge Hinge Directional feature, the 
Edge Hinge Combinations (EHC), by combining various sliding window sizes in a single feature. 
Experimental results achieved an identification accuracy of 81% on Firemaker DB.  
Brink et al. [26] suggested the Quill feature, a probability distribution of the local relation between 
ink direction (φ) and ink width (w). Furthermore, the Quill-hinge feature was suggested, which 
records the ink width in conjunction with the two directions (φ1) and (φ2). While the Quill feature 
achieved 71% accuracy, the Quill-hinge achieved 86% accuracy, both on Firemaker DB. 
He and Schomaker [27] proposed two directional features. The CoHinge feature is defined as the 
joint distribution of the Hinge kernel on two different pixels of writing contours, and the 
QuadHinge feature, defined as the joint distribution of angles, along with the curvature information 
of contour fragments. The CoHinge feature was used in the ICDAR 2017 writer identification 
competition [15] in the method Groningen, achieving an accuracy of 76.1%. 
Finally, He et al. [30] proposed a model-based approach for junction detection using the stroke 
length distribution in every direction around a reference point inside the ink of texts. A codebook-
based representation of the junctions detected is constructed and used for writer identification 
achieving an accuracy of 80.6% on the Firemaker DB.  
Said et al. [12] proposed a text-independent approach for writer identification that derives writer-
specific texture features using multi-channel Gabor filtering and Gray-Scale Co-occurrence 
Matrices. This method requires uniform blocks of the text created by word deskewing,  predefined 
thresholds of the distance between text lines, words and text padding. Two small sets of 20 writers, 
with a large number of 25 samples of handwriting text per writer, are used in the evaluation. The 
Nearest-centroid classification using weighted Euclidean distance and Gabor features achieved an 
accuracy of 96%. One of the main issues of this approach is the large number of sample pages 
required per writer.  
Zois and Anastassopoulos [31] proposed a method for writer identification using a single word. 
They apply image thresholding and curve thinning, resample the horizontal projection profiles, 
and then use morphological operators to obtain 20-dimensional feature vectors classified using a 
Bayesian classifier. Experiments were performed on a single word, the word "characteristic", 



 

written 45 times by each writer, both in English and Greek. The dataset consisted of 50 different 
writers. The reported accuracy of this method is 95%. 
Srihari et al. [32], on a writer verification approach, proposed a considerable number of features 
divided into two categories. Macro-features, which operate at document, paragraph and word level. 
Also, Micro-features, which operate at word and character levels. The macro-features are based 
on grey-level entropy and threshold, number of ink pixels, number of interior and exterior 
contours, number of 4-direction slope components, average height and slant, paragraph aspect ratio 
and indentation, word length and upper and lower zone ratio. The Micro-features utilize gradient, 
structural, and concavity attributes. The proposed system considers two handwritten document 
images and outputs a decision made if the two input images are from the same writer or a different 
one. Experimental results were performed on a dataset containing 1000 writers who copied a fixed 
text of 156 words (the CEDAR letter). This writer verification method achieved on same writer 
accuracy of 94.6 % while different writer accuracy was 97.6 %.  
Bensefia et al. [33] use graphemes generated by a handwriting segmentation method to encode the 
individual characteristics of handwriting. These graphemes are then clustered to define a feature 
space common for the document set. Finally, grapheme clustering is used to define a feature space 
common for all documents in the dataset. The reported experiment results achieved an accuracy 
of 90 % on a dataset consisting of 88 writers (PSI) and 68 % on a dataset of 150 writers (IAM).   
Schomaker et al. [34] compute fragments of connected-component contour classified to identify 
the writer. Next, a codebook of graphemes is generated by training a Kohonem SOFM on many 
grapheme contours. Later, graphemes are extracted from each document and matched with the 
graphemes in the codebook. Finally, a histogram of graphemes for every document is generated. 
Experimental results achieved an accuracy of 95 % on ten writers and 83 % on 215 writers. When 
combined with Edge Directional features, 97% accuracy is achieved.  
Laurens van der Maaten et al. [25] improved edge hinge directional features using a combination 
of window sizes while combining these features with a codebook of graphemes achieved 97% 
identification accuracy. In addition, the edge hinge combinations methodology proposed achieved 
81% identification accuracy on the Firemaker dataset, which consists of 250 writers.  
Schlapbach and Bunke [35] used HMM to identify and verify writers. Single writer recognizers 
are specialized by training using only handwriting originating from the chosen writer. More 
specifically, the output log-likelihood scores of the HMMs were used to identify the writer on 
handwritten text lines of varying content. This method achieved 96% identification accuracy and 
2.5% error in verification accuracy as reported on a subset of the IAM database containing 100 
writers, five handwritten pages per writer. 
Pervouchine and Leedham [36] proposed a writer identification scheme based on high frequent 
characters. The high frequent characters ('f', 'd', 'y', 'th') are identified and used to determine the 
writer. Characteristics like height, width, height to width ratio, height of ascenders and descenders, 
stroke angle, slant angle and others. Experimental results achieved an identification accuracy of 
58 %. 
Bar-Yosef et al. [37] proposed a method for writer identification applied to historical Hebrew 
calligraphy documents based on topological features. While his approach seems similar to 
Pervouchine and Leedham approach, they use three high frequent Hebrew characters only to 
identify the writer. Connected components for tracing background, the convex hull of the 
characters, the ratio between background and convex hull, concavity, compactness are some of the 
features used in this approach.  The reported experimental results achieved an accuracy of 100 % 
on 34 writers. 



 

Li et al. [38] proposed a method for text-independent online handwriting writer identification. 
They used the feature vector of hierarchical structure in shape primitives and the dynamic and 
static feature for writer identification for English and Chinese documents. Experimental results 
achieved an identification rate of 91.5% with datasets in Chinese text and 93.6% in English text. 
It is an exciting methodology with the drawback that it cannot be applied to offline writer 
identification because the direction of the stroke of the writer is unknown. 
He et al. [39] developed a technique for offline, text-independent writer identification of Chinese 
handwriting documents. He applied the Gabor filter to extract features from the text and 
incorporated a Hidden Markov Tree in the wavelet domain. Experimental results achieved an 
accuracy of 36.4% on a dataset of 500 writers with two handwritten text documents each. 
Yan et al. [40] utilize spectral features using Fast Fourier Transformation to identify the writer of 
Chinese text. The identification rate achieved in this method is 64 % on 100 writers. 
Bulacu et al. [41] developed a text-independent writer identification method for Arabic text. They 
use textural and allographic features to define a probability distribution function and apply the 
nearest neighbourhood classifier using them as a distance measure.  
Al-Dmour et al. [42] identify writers in Arabic using different feature extraction methods such as 
hybrid spectral-statistical measures (SSMs), multiple-channel (Gabor) filters, and the grey-level 
co-occurrence matrix (GLCM) were verified to find the best subset of features. In addition, they 
experimented with various classifiers to rank the extracted features.  
Wu et al. [43] proposed a method based on scale-invariant feature transform (SIFT) in three stages 
of training, enrollment, and identification. First, an isotropic LoG filter is utilized to segment the 
image to word regions from where SIFT descriptors are extracted into a codebook. Second, scale 
and orientations are used to construct an orientation histogram. Finally, a distance metric is used 
for matching. Experimental results on the Firemaker dataset achieved 92.4% accuracy.  
Nicolaou et al. [44] developed a generic text-as-texture classification scheme where Sparse Radial 
Sampling Local Binary Patterns are constructed in histograms for different radius. In their 
Barcelona variation used in ICDAR 2017 writer identification competition [15], they used 12 radii 
to create histograms normalized with a PCA transform.  
Mohammed	 et al. [45] proposed the Local Naïve Bayes Nearest-Neighbour (Local NBNN) 
classifier. In this method, the SIFT algorithm is used to detect and describe critical points with a 
constrain that considers the particularity of handwriting patterns and prevents irrelevant points to 
be matched. Normalization is also proposed to cope with unbalanced data. In their Hamburg 
variation used in the ICDAR 2017 writer identification competition [14], they used NBNN instead 
of the local NBNN without normalization. 
Newell et al. [46] proposed the oriented Basic Image Feature Columns (oBIF Columns) that entail 
a mixture of allograph and texture-based methods that encode a writer's deviation from the mean 
encoding population of writers with the Delta Encoding. 
Abdeljalil et al. [47] developed a method that uses oriented Basic Image Features (oBIFs) that 
labels locations in the document images into seven symmetry classes for several orientations. 
Column histograms are constructed, and a distance metric is used for matching. For example, in 
their Tebessa I and II variations used in ICDAR 2017 writer identification competition [15], they 
used city block distance. 
Nadia et al. [48] applied 16 Gabor filters for handwriting texture analysis, while Gazzah et al. [49] 
applied spatial-temporal textural analysis.  Al-Ma‘adeed et al. [50] identify Arabic writers using 
only 16 words. They utilize edge-based directional features and three edge-direction distributions 
of different sizes.  



 

Chahi et al. [51] suggested using a Block Wise Local Binary Count (BW-LBC) operator, which 
represented the writer by a set of histograms calculated from all the connected components in the 
text and is based on the occurrence distribution of pixels in small blocks. In addition, the nearest-
neighbour classification using the Hamming distance was utilized for matching. 
Chahi et al. [52] proposed Cross multi-scale Locally encoded Gradient Patterns (CLGP). This new 
feature extraction technique that represents better salient local writing structure operates at 
connected component sub-images of the writing sample. Then CLGP histogram feature vectors 
are computed from all these observation regions in all writing samples, and the Nearest Neighbor 
Classifier is used for matching. Accuracy results reported in this work for the Firemaker database 
achieved an accuracy of 97.60%, showing that traditional methods are still helpful for writer 
identification.  
Fiel and Sablating [16] suggested a convolutional neural network (CNN) method for writer 
identification. A CNN-based feature vector was generated for each writer compared with the 
precalculated feature vectors stored in the database using nearest neighbour classification.  
Xing and Qiao [53] proposed DeepWriter, a deep multi-stream CNN that takes local handwritten 
patches as input and is trained with softmax classification loss. 
Tang and Wu [21] suggested using a CNN and joint Bayesian at two stages, feature extraction and 
writer identification. In the first stage, and because much data is needed to train an effective CNN, 
an augmentation technique generates thousands of handwriting images for each writer. These 
generated images are then used to train the CNN model while the joint Bayesian method is utilized 
for writer identification. 
Khan et al. [54] suggested an offline text-independent writer identification system, which 
combined SIFT (Scale Invariant Feature Transform) and RootSIFT descriptors in a set of Gaussian 
mixture models (GMM). They reported accuracy of 97.98% on the Firemaker dataset. 
He and Schomaker [18] suggested using an end-to-end multi-task neural network with several 
adaptive convolutional layers with two types of information. Explicit information includes data 
like lexical content or word length and implicit attributes such as the author's identity. Their 
method performs writer identification on word level by resizing all word images to 120×40×1. 
He and Schomaker [19], in a later work, proposed FragNet. This deep neural network entails two 
pathways: a feature pyramid that is first used to extract feature maps and then a fragment pathway 
based on fragments extracted from the input image and the feature maps from the feature pyramid. 
In this work, word images were used to achieve writer identification on the word level. Their 
method achieved 57.5% accuracy on word images from the Firemaker dataset. 
Finally, He and Schomaker [20] suggested the global-context residual recurrent neural network 
(GR-RNN) method. This work utilizes an end-to-end neural network that jointly integrates global-
context information and a sequence of local fragment-based features. A global average pooling 
step is used at the tail of the neural network to acquire the global-context information, while a low-
level deep feature map is used to extract the local fragment-based features. A recurrent neural 
network (RNN) is used to model the spatial relationship between the sequence of fragments and 
to strengthen the discriminative ability of the local fragment features. They reported an accuracy 
of 98.8 % on the Firemaker Dataset that is the best performance reported on the literature for the 
Firemaker Dataset.  

 
 
 

 



 

 
3. Handwritten Document Image 

3.1  Handwritten Document Image Anatomy 
 

Many characteristics can describe handwritten documents. First, the characters and words have 
unusual shapes and sizes. Furthermore, their layouts and the skew of the text are not uniform and 
depend on the writer. Moreover, the text lines do not follow a straight line but tend to have a 
curvature. Also, text lines may interfere with each other or might be physically connected with 
other lines. Finally, the interline spacing is not uniform. For an example of handwritten documents 
with the above problems, see Fig. 1 and 2.  
While all the above are considered a problem for tasks like the automatic reading of these 
documents, they are regarded as features for writer identification since they can reveal the specific 
writer of the document.  

 

 
Figure 1. Example of a part of a handwritten historical document image from the ICDAR 2013 Handwriting 

Segmentation Contest [55] benchmark dataset with interfering lines (ellipse), non-uniform skew, non-uniform 
interlines spacing and text lines with curvature. 

 
Figure 2. Example of a part of a handwritten historical document image from the ICDAR 2013 Handwriting 

Segmentation Contest benchmark dataset with connected lines (circles), non-uniform skew and non-uniform 
interline spacing (line). 

 

Handwritten documents do not have a standard form of writing or any uniform layout. The text 
line structure is the most dominant structure of these documents. A handwritten document image 



 

can be viewed as a text area that consists of text lines. Every text line also consists of one or more 
words, while every word can be seen as a set of characters in order.  Characters, in their turn, 
consist of black pixels. This work assumes that document images have a white background black 
foreground (text). 
While humans can easily distinguish the text lines, the mechanism of this inherent ability is a 
fantastic feature of the human brain that is still an unsolved problem for computer algorithms. 
Even when the handwritten document image is seen at a significant distance, while the characters 
and the words are still blurry, the human brain can still distinguish the distinct lines that form the 
text. For example, see Fig. 3 and Fig. 4, two images from the ICDAR 2013 Handwriting 
Segmentation Contest [55] are scaled to 5% of the original image size. Thus, while it is still hard 
for a human to read the exact text, it is easy to segment the different text lines. 

 

 
Figure 3. Example of handwritten historical document images from the ICDAR 2013 Handwriting 

Segmentation Contest benchmark dataset, scaled to 5% of the original size. Text lines can be distinguished from a 
human, even on this scale. 

 

 
Figure 4. Example of handwritten historical document images from the ICDAR 2013 Handwriting 

Segmentation Contest [10] benchmark dataset, scaled to 5% of the original size. Text lines can be distinguished 
from a human, even on this scale. 



 

 
3.2  Terms Definition 

 
In this section, the different terms associated with the physical structure of handwritten 

documents are presented. For graphical representations, please see Fig. 5 and Fig. 6 
 
• A stroke is considered the movement of a writing instrument (pen) on a writing surface 

(paper) 
• The baseline of text is the imaginary line that follows the lower part of the characters. 
• The median line of text is the imaginary line that follows the upper part of the character. 
• The upper line of text is the imaginary line that follows the upper parts of ascenders. 
• The lower line of text is the imaginary line that follows the lower parts of descenders. 
• The main body of the text is the size between the baseline and the median line. 
• The ascenders are the parts of lowercase characters that lie above the median line. 
• The descenders are the parts of lowercase characters that lie below the baseline. 
• A component is considered a single character or several connected characters that form a 

word in this work. Component, in a more general term, is regarded as the connected pixels 
with similar intensity values.  

• Overlapping components are the ascenders or descenders that are in the region of the line 
above or below. 

• Touching components means the ascenders or descenders are physically connected with a 
part of the text line above or below. 

 

 
Figure 5. Upper line, Median line, Baseline, Lower line, a single stroke, ascenders and descenders. 

 

 



 

 
Figure 6. Square: touching components. Circle: overlapping components 

 
3.3  Document Image Analysis 

 
In this section, an attempt is made to give all the necessary definitions for the methods 

described in the next chapter, to be more easily understandable.  A basic introduction of what a 
digital image is, is given. Furthermore, some exciting image analysis techniques like image 
binarization, edge detection, Gabor filters, skeletonization, connected components, contour 
tracing, Main Body, run lengths, Fourier transformation, and text localization will be briefly 
presented. 

3.3.1 Digital Image 
 

When a document image is scanned, it is transformed, through a process of digitization, into a 
digital image. This digital image is, in fact, a numeric representation of a two-dimensional matrix 
if the image is digitized to contain only the grayscale representation. Alternatively, it can be 
represented to a three-dimensional matrix if the image is digitized to include all the available 
colour information. For the digitization process, the image is first sampled on a discrete grid, and 
then each sample, or pixel, is quantized using a finite number of bits. Finally, a computer processes 
the digitized image. For example, in Fig.7, a document image fragment is presented with the word 
"The". 

 

 
Figure 7. Fragment of a digital image with the word “The” 

In scanning or digitization in general, the image is viewed as small elements, called pixels. A 
matrix of pixel intensity is stored that can later represent the scanned image. For example, if a 
zoom-in on a digital image is attempted, at some point, the distinction between the different pixels 
the image consists, can be observed. For example, see Fig 8. 



 

 
Figure 8. Fragment of a digital image with the character “e”, zoomed to the pixel level 

 
This pixel intensity matrix is, in fact, a numerical matrix. Each pixel intensity value stored in this 
matrix represents how bright a pixel will appear on a screen. The higher the intensity value of a 
pixel is, the whiter it will look. Grayscale images use 8-bit integers to store pixel values, meaning 
that a pixel can be represented by a numerical value between 0 and 255.   In Fig. 9, the character 
"e" is represented in a pixel intensity matrix. The same character "e" as viewed in Fig. 7 and Fig 8 
only scaled at 30 %.  

 

 
Figure 9. the character “e” represented in a pixel intensity matrix 

 
3.3.2 Binarization 

 
An image can be binarized using a threshold [56] to consist only of values 1 or 0, white or 

black. In Fig. 10, a binarization example that uses a threshold of 150 is presented. In this example, 
values smaller than 150 are set to 0, while values greater or equal to 150 are set to 1. This grayscale 
image will be transformed into a binary one with the above process, although this is just one 



 

method for binarizing an image using a global threshold. More complicated methods exist that use 
adaptive [57] thresholding and other techniques.  In Fig. 10, an example of the image in Fig. 9, 
binarized using a global threshold, is presented.  

 

 
Figure 10. The character "e" is represented in a binary pixel intensity matrix 

Binarization is a ubiquitous pre-processing task of image processing, which reduces the size 
of the image and allows fast and easy calculations and further processing of an image. It is 
considered a mandatory task in many computer vision systems [58], and several works have used 
binarization as an aid for text detection [59]–[62]. 

 
3.3.3 Edge Detection 

 
Edge detection [63] is the process of identifying the specific points in a digital image where 

the image brightness suddenly changes or has discontinuities. Those points are typically organized 
into a set of curved line segments named edges. With edge detection, the boundaries of objects in 
an image are indicated, making the methods of edge detection a fundamental tool in image 
processing, machine vision and computer vision. The output of an edge detection algorithm is a 
binary image, with only the edge pixels having a value of 1. For an example of applying an edge 
detection algorithm, and more specifically Sobel edge detection, see Fig 11. 

 

 
Figure 11. The output of edge detection on the image of Fig. 7. 



 

 
3.3.4 Gabor Filter 

 
Gabor filters [64] are orientation-sensitive filters used for texture analysis. They typically 

traverse an image in multiple directions. A Gabor filter, set in a direction, will give a strong output 
for locations of the target images that have structures in this given direction. For example, suppose 
the target image is made of a periodic grating in a diagonal direction. In that case, a Gabor filter 
set at a direction will give a strong output only if its direction matches one of the gratings. Gabor 
filters have also been used to localize and extract edges since edges are composed of higher 
frequency components, whereas other image regions are relatively smooth. Frequency and 
orientation representations of Gabor filters are similar to those of the human visual perception, and 
they are appropriate for texture identification and representation. Gabor filters have many practical 
applications. They are primarily used in character recognition and fingerprint enhancement and 
also writer identification systems. For example, see Fig. 12. 

 

 
Figure 12. Top left: Original Chinese character. Top middle: Orientation = 0 degree. Top right: Orientation 

= 45 degree. Bottom middle: Orientation = 90 degree. Bottom right: Orientation = 135 degree. Bottom left: 
Superposition of all four orientations. 

 
3.3.5 Skeletonization 

 
A topological skeleton [65] is a thin version of the shapes found in a digital image. The skeleton 

usually highlights the geometrical and topological properties of a shape. These properties include 
its length, direction, width, topology and connectivity. Thus, the skeleton can efficiently represent 
that shape since it contains all the necessary information to reconstruct it. In this work, 
skeletonization is referred to as thinning the characters, so only their skeletons are left. 
Skeletons have been utilized in various fields, like image analysis, computer vision, and digital 
image processing, including applications for fingerprint recognition, optical character recognition, 
binary image compression, and pattern recognition. An example of the skeleton of the word “The” 
is given in Fig. 13. 

 



 

 
Figure 13. The output of skeletonization on the image of Fig. 7. 

3.3.6 Connected Components 
 

Connected components are groups of pixels that share similar pixel intensity values and are 
connected [66]. Connected component algorithms work by traversing an image pixel-by-pixel 
(from top to bottom and left to right) to identify connected pixel regions, i.e. regions of adjacent 
pixels that share the same set of intensity values. For example, an algorithm can be set to check 
for a 4-connectivity connected component or an 8-connectivity connected component Fig. 14. 4-
connectivity algorithms check the upper, the bottom, the left, and the right neighbour pixel for the 
same intensity. 8-connectivity checks the entire neighbourhood of the central pixel for pixels with 
the same intensity.  

 

 
Figure 14. left: 8-connectivity. Also called a Moore neighbourhood.  right: 4-connectivity 

 
Only connected pixels with a numeric value "1" will be considered in the same group for a binary 
image. While on grayscale images, a range of intensity values is considered. Each group of 
connected components is labelled, either with an id or with a different colour.  
The connected components technique is advantageous in document image analysis because each 
character can be categorized as a connected component with a given label. 

 
3.3.7 Contour Tracing 

 
Contour tracing [67] output might look almost the same as edge detection algorithms; however, 

edge detection algorithms try to find points that are at the extreme of the image gradient in the 
direction of the gradient, with the edge pixels, pointing out a significant difference between 
neighbouring pixels. Contour tracing tries to find the contour, i.e. the boundaries, of an object.  
Contours need to be closed curves to map precisely the boundaries of any given object, while edge 
detection does not require closed curve edges. Usually, objects are first identified through a 
connected component tracing, and then the contour of every object is extracted. A complete 



 

contour includes both the exterior contour and the interior contour. Interior contours are harder to 
detect because they reside in character closed areas. For example, a complete contour of character 
A is given in Fig 15. 

 

 
Figure 15. left: The character “A”. right: The complete contour of character “A". 

 
3.3.8 Main Body 

Main Body [29] or core region size is a characteristic that is used quite often in most 
document image processing systems. As Main Body, it is considered the central part of the text, 
excluding ascenders and descenders (Fig.16). Most of the time, it is referred to words. 

 
Figure 16. Word Main Body and baselines. 

Main Body is a characteristic used in many systems that use image processing for various tasks in 
document images. It has been used in systems for OCR [68], [69], segmentation [70], [71], slant 
removal [72], dewarping [73], [74], word matching [75], indexing [76], word spotting [77]–[79], 
etc. All the above systems utilize the main body information and use it as a threshold or character 
size information, as it is directly related to the size of the characters, the document image resolution 
and the text orientation. 
The Main Body size can also be utilized to get a rough estimation of the character width. Especially 
in [79], they mention: By mean width of the character, we consider the width of characters such 
as a, b, c, d, e, f and others, excluding the characters i,l,j,m,w that are either too narrow (i,l), or too 
broad (m,w).  Although the character width differs between characters and writers, a rough 
estimation of the mean width could be made by accepting that characters present width equal to 
their height, excluding the ascenders and descenders height of the characters. 
Considering all the above, we see that Main Body is crucial in document image processing 
systems. Thus, many techniques have been developed for calculating the Main Body. 
 
 
 



 

3.3.9 Run Length Encoding 
 
Run Length Encoding counts runs of data with the same value that occur in consecutive 

pixels. It is used primarily on binary images for various tasks, from data compression to skew 
detection and line segmentation. In binary images, two distinct types of run lengths exist. Black 
run Lengths, where consecutive pixels that are off (0) are counted and White Run Lengths where 
consecutive pixels that are on are counted. For example, the pixel sequence in Fig. 17 has a black 
run-length encoding of 2, 3, 7, 2, 3 

 
Figure 17. An example of a pixel sequence with a black run length with values 2, 3, 7, 2, 3 

 
3.3.10 Fourier Transformation 

 
Fourier Transformation is a valuable image processing tool used to decompose an image into 

its sine and cosine components [80]. The output of a Fourier transformation is a complex number 
valued output image that represents the input image in the frequency domain. The input image is 
considered the spatial domain equivalent, and by spatial, it is meant the normal image space. In 
the Frequency domain image, each point represents a particular frequency contained in the spatial 
domain image.  
The complex number valued output image produced by the Fourier Transform can be displayed 
with two images, the magnitude image and the phase image. The magnitude image contains most 
of the information of the geometric structure of the input image, and thus, in image processing, 
only the Magnitude of the Fourier Transform is displayed. However, for re-transforming the 
Fourier image into the correct spatial domain image after some processing in the frequency 
domain, both the Magnitude and phase of the Fourier image are required. 
Furthermore, unlike a typical grayscale image in the spatial domain represented with pixel 
intensities between a range of 0 and 255, the Fourier domain image consists of a much higher 
range. Thus, to be sufficiently accurate, its values are usually calculated and stored in float values. 
The Fourier Transform can be found in various applications, such as image filtering, image 
analysis, image reconstruction and image compression. An example of the magnitudes of specific 
handwriting letters can be seen in Fig 18.  



 

 
Figure 18. Handwritten characters, along with their Magnitude in the Fourier domain 

 
3.3.11 Text Localization 

 
Text localization is an old computer vision problem, which started to be studied in the ’90s [81], 

and it involves the task of localizing text in images. Nowadays, efficient solutions to this problem 
are more useful than ever in robotics, smart cars, smartphones and other fields. Thus, many 
techniques have been proposed using connected components [82], edge detection [83], sliding 
windows [84], hybrid techniques [85], as well as other techniques [86]. Moreover, in the last years, 
four competitions have been organized on robust reading [87]–[90], which has motivated active 
research in this area.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 



 

4. Writer Identification Techniques 
 
State of the art writer identification systems uses various techniques that use different 

feature types and classifier approaches to identify the writer. Features can have many types, 
statistical features where distribution is calculated, structural features where specific rules related 
to the text structure are applied, model-based features where the characters are treated like 
allographs or graphemes where the text is treated as texture and many others. Furthermore, features 
can be extracted from different levels of the text, like the macro-level that includes features from 
the entire document, paragraphs, lines or words and the micro-level that includes features from 
characters, parts of characters (graphemes) or pixels. On the other hand, classification approaches 
can be categorized into five types [91]: minimum distance classifiers, statistical classifiers, neural 
networks, fuzzy classifiers and syntactic classifiers. 
In the scope of this work, a focus is given on statistical-textural directional features on the micro-
level that are extracted using a Probability Distribution Function (PDF) and minimum distance 
classifiers. Furthermore, further experiments were performed using a combination of statistical-
textural features with model-based features. Finally, statistical classifiers and neural networks were 
also considered.  
The focus will be given to edge direction features [24], their advancements, edge hinge 
distribution, and edge hinge combinations [25]. Edge hinge distribution is reported to outperform 
all other statistical features while edge hinge combinations improve the previous method.  An 
attempt is made [28] to improve the edge hinge combinations methodology using image skeleton, 
thus referring to this methodology as skeleton hinge distribution. Further improvements are also 
attempted on the skeleton hinge distribution on a weighted variation using the Main Body size at 
the pixel level. Furthermore, an attempt was made to utilize the pixel intensity information on a 
quantized version of the skeleton hinge approach. Furthermore, a novel approach on directional 
features is presented using Directional Stroke Run Length Hinge Distribution. Finally, a 
combination of the Edge Hinge Combinations Distribution with the Skeleton Hinge Distribution 
is presented. 
While directional features distributions have good results, they are directly related to the writer’s 
slant. The slant is a characteristic that can be easily forged.  A combination of skeleton hinge 
distribution with a model-based one is presented to secure this method and improve the results.  
The model-based technique used in this thesis involves using predefined models of small strokes 
of handwriting called graphemes.  
 

4.1  Statistical-Directional Features 
4.1.1 Edge-Direction Distribution 

 
Edge-direction distribution, suggested by Bulacu et al. in [24], is the first and the most 

straightforward method in a family of techniques that consider statistical-directional features for 
the task of writer identification. In this method, extraction starts with edge detection. Edge 
detection generates a binary image in which only the edge pixels are kept. Next, each edge pixel 
is considered in the centre of a square neighbourhood. Then, all the pixels are checked, using 
logical AND operators, to all directions, emerged from the central pixel and end on the periphery 
of the neighbourhood, looking for the presence of another edge fragment (i.e. connected sequences 
of pixels). In Fig. 19, an edge image of the word "the" is presented. Furthermore, an example of a 



 

square neighbourhood with a 4-pixel length edge fragment emerging from the central pixel with 
the direction of the fragment quantized in 12 directions is presented.  
First, a histogram is created, using the count of all the verified direction instances, and then it is 
normalized to a probability distribution p(φ). This distribution gives the possibility of finding an 
edge-based fragment oriented at the angle φ to the horizontal. Moreover, the most dominant 
direction in p(φ) corresponds to the slant of the handwritten text.   
Some essential practical details that relate to the implementation of edge-direction distribution [24] 
should be mentioned. In order to avoid repetition, the algorithm only checks the upper two 
quadrants in the neighbourhood since it is hard to determine which way the writer "travelled" along 
with the found oriented edge fragment.  In the experiments conducted in [24], they only considered 
3,4 and 5 pixel-long fragments quantized in n= 8,12 and 16 directions, respectively.  It is also 
worth mentioning that the edge detection method used does not generate 1-pixel wide edges, but 
instead edges that have a wide of 1 to 3 pixels.  This practical detail introduced smoothing into the 
histogram computation, which they found advantageous in the experiments. For more details about 
algorithm options and results, see [24]. 

 
Figure 19.  Extraction of edge-direction distribution. 

 
 

4.1.2 Edge-Hinge Distribution 
 
Edge hinge distribution, also suggested by Bulacu et al. in [24], is an improved version of 

Edge-Direction distribution that considers not one but two edge fragments in the neighbourhood, 
emerging from the central pixel, and subsequently, compute the joint probability distribution of 
the orientations of the two fragments. This feature concerns the direction changes of a writing 
stroke in handwritten text. The edge-hinge distribution is extracted using a window that scans a 
binary handwriting image that contains only the edge information. When the central pixel of the 
window is “on”, the two edge fragments emerging from this central pixel are considered only when 
φ1<φ2. In Fig 20, an example of a window with a 4-pixel length edge fragment emerging from the 
central pixel with the direction of the fragment quantized in 24 directions is presented. The 
directions are measured and stored in pairs. A joint probability distribution p(ϕ1, ϕ2) is obtained 
over a large sample of pairs. 
Furthermore, some practical details related to implementing the algorithm used [24] for this feature 
are worth mentioning. In this implementation, the edge detection algorithm does not produce 1-
pixel wide edges, but instead, it produces 1-3-pixel wide edges. While in the edge-direction 
distribution, where only one edge fragment is checked, the edge detection did not consist of a 
limitation. In our case, two edge fragments must be checked. This consists of a limitation; thus, an 
extra constraint is implemented. The ends of the edge fragments are required to be separated by at 



 

least one “non-edge” pixel. In the experiments conducted for this feature in [24], like the edge-
direction distribution, only 3,4 and 5 pixel-long fragments are considered quantized in 2n = 16,24 
and 32 directions, respectively. 
Furthermore, two more constraints are implemented in the algorithm that is worth mentioning. The 
first is that the φ1 angle must be lower than the φ2 angle. The second one is in cases where the 
ending pixels have a common side eliminated.  For more details about algorithm options and 
results, see [24].  

 
Figure 20. Edge Hinge Distribution Extraction 

 
4.1.3 Edge-Hinge Combinations 

 
The edge-hinge combinations, proposed by Van der Maaten et al. [25], improved the edge 

hinge distribution by considering multiple pixel length edge fragments (i.e. window sizes) instead 
of just one. Experimenting with combinations of edge hinge distributions and using various 
fragment lengths, they improved the results of writer identification by up to 12% compared with 
the edge-hinge distribution. 

 
 

4.1.4 Skeleton-Hinge Distribution 
 
The main problem with the current implementations is that the edges are usually close to 

each other, filling the feature matrix with duplicate and unnecessary data. Therefore, a simplified 
version of Edge-Hinge Combinations was used to consider the skeleton information of the image 
instead of the edge information to overcome that problem. Henceforth, this technique will be 
referred to as skeleton hinge distribution. 

 



 

 
Figure 21. Handwritten digitized text 

Usually, when something is written on paper (Fig.21), its thickness is considered a single line. 
However, when the image is digitized, the same trace of ink is translated into several pixel lines.  
By considering the edge hinge distribution, on an edge image (Fig. 22), much unnecessary 
information, like the bottom, or the side curves of the letters, is included in the feature vector. 
Furthermore, differences in line thickness from a variety of different pens may produce significant 
variations in the extracted features in both edge hinge distribution and edge hinge combinations. 
Therefore, the main suggestion in this work is that all stroke widths, i.e. line thickness, should be 
the same size. Thus, by skeletonizing the image, characters with a single-pixel width stroke are 
acquired. 

 

 
Figure 22. Edge image of handwritten text 

On the skeleton hinge distribution, only the skeleton of the letters is considered (Fig.23), a simple 
structure that considers the basic required information to match the features to already known ones. 

 



 

 
Figure 23. Skeleton image of handwritten text 

The Skeleton Hinge distribution [28] belongs to a family of similar techniques like the edge hinge 
distribution and edge hinge combinations. The main idea is to locate two hinge line fragments 
emerging from a central pixel on a sliding window (Fig. 24) and store their directions in pairs.  
While on edge hinge distribution and edge hinge combinations, the edge information is used to 
locate hinge fragments, on skeleton hinge distribution, the skeleton information is used.  

 
Figure 24. 4 pixels long Hinge line fragments, emerging from a central pixel, on a 7x7 window. 

Skeleton Hinge distribution starts with the image skeleton extraction using a generic 
skeletonization approach [92]. Then a sliding window technique that uses several window sizes, 
each quantized in a different number of directions, checks for skeleton line fragments, which 
emerge from the central window pixel. Finally, their directions are measured and stored in pairs. 
Only skeleton line fragments with φ1<φ2 are counted and stored in pairs in a histogram. A joint 
probability distribution p(ϕ1, ϕ2) is obtained over a large sample of pairs. Finally, the probability 
distributions acquired by the various sliding window sizes are combined and considered for 
matching. For an instance of the Skeleton, Hinge Distribution extraction, see Fig. 25. 



 

 
Figure 25. An instance of Skeleton Hinge distribution extraction with four pixels-long edge fragments on the 

part of the word “Bob”. 

 
The main ideas of edge hinge distribution and edge hinge combinations are present in the proposed 
technique. On the other hand, a significant improvement in the writer identification task results is 
observed by applying this methodology to a skeleton image. 
It is essential to mention that the resulting feature matrix includes more compact information than 
the Edge Hinge Distribution feature matrix, and it is easier to compare two resulting matrices of 
test and train samples. Please check a successful application of the proposed system in figures 
26,27,28, where some text samples are provided over their results. On the upper part of the figure, 
fragmented samples of the text are provided. The left text fragment is used as a training sample, 
and the right text fragment is used as a test sample. Both samples in each picture are from the same 
writer.  Next, the surface of the Skeleton Hinge Distribution is presented. The left one corresponds 
to the training sample, while the right one to the test sample. Finally, on the lower part of the 
figure, the edge hinge combinations surface is presented. Again, the left one corresponds to the 
training sample and the right to the test sample.  



 

 
Figure 26. Text samples from the same writer along with skeleton hinge distribution feature surface (middle) 

and edge hinge combinations feature surface (bottom) 



 

 
Figure 27. Text samples from the same writer along with skeleton hinge distribution feature surface (middle) 

and edge hinge combinations feature surface (bottom) 



 

 
Figure 28. Text samples from the same writer along with skeleton hinge distribution feature surface (middle) 

and edge hinge combinations feature surface (bottom) 

4.1.5 Weighted Skeleton-Hinge Distribution 
 
In our work for Main Body Size Estimation[29], an observation was made in the handwritten 

document text that characters do not have a single size but vary even in the same text line. In the 
Weighted Skeleton-hinge distribution, a hypothesis is made that the variations of character size 
observed in a document image could affect the system's accuracy since they can affect the skeleton 
hinge distribution. One of the factors affecting the skeleton hinge distribution is the varying 
character size in a document image. Imagine, for example, a capital "O" and a small "o". The hinge 
angle on the small "o" is smaller than the hinge angle on the capital "O" at almost any pixel.  
In this work, a variation of our Main Body estimation technique[29] is utilized to detect local and 
global Main Body sizes. The ratio of the varying character sizes found locally in a handwritten 
document image and the document's global character size is considered Weight. 

 
 
 



 

4.1.5.1 Main Body Size And Main Body Map 
 
Usually, in document image processing systems, it is crucial to identify the character size 

information quickly. The Main Body or core region describes the central part of the text, between 
the upper baseline and lower baseline, excluding ascenders and descenders (Fig. 29), and it is 
usually referred to words. This characteristic aims to provide a reference for thresholds and sizes 
of lines, words and characters as it is directly related to the size of the characters [29]. 

 
Figure 29. Word main body and baselines 

 
In this work, the Main Body size is referred to small areas of text, usually one or more words, in a 
part of the text that has a length of C.   
The Main Body Map corresponds to an image, where, when a pixel is on (black pixel) on the 
document image, the intensity value on the map is the Main Body size value detected in that area 
of text. For an example of the Main Body Map, see Fig. 30 and 31. Pixels outside of the Main 
Body area, for example, above the upper baseline and below the lower baseline, are assigned with 
values equal to the most common Main Body size detected in the document image. 

 
Figure 30. Main Body Map Example 



 

 
Figure 31. Main Body Map projected on the document image 

4.1.5.2 Main Body Size Extraction And Weighted Skeleton Hinge 
 

The Main Body size estimation technique starts by applying a smoothing technique that 
downsamples the image width while keeping the same height. The technique utilized is a 
horizontal smoothing procedure that uses the mean value of every C consecutive pixel. An example 
of the original text and the smoothed image can be seen in Figures 32 and 33. By observing the 
resulting image on figures 34 and 35 vertically, it is easily observable that the intensity levels 
follow a bimodal distribution (Fig 36). Therefore, it is expected that multiple Bimodal distributions 
will be observed by traversing the new smoothed image vertically. In Bimodal distributions, the 
external (e.g. top and bottom) modes are expected to take maximum values. For a large enough C, 
the external modes correspond to the word baselines (Fig. 29), allowing the estimation of the Main 
Body Size.  
In the proposed MBS estimation methodology, the main idea presented above is used. The 
smoothed image is traversed vertically, and the bimodal distributions are identified by considering 
different thresholds. The threshold corresponds to the expected intensity value of the external 
modes. A range of thresholds is used. On every threshold used, the distances of the external modes 
detected are considered and stored in a histogram of external mode distances. The distance with 
the maximum value is considered the most common distance for the selected threshold. This value 
is stored in the second histogram of threshold distances. Finally, the distance with the max value 
in the histogram of threshold distances is selected as the most common MBS in the document. 
Furthermore, the MBS threshold can be found from the maximum frequency value of the MBS 
from all the histograms of external nodes. 
Finally, the Main Body Map is constructed by extracting all the external modes and distances using 
the MBS threshold. The intensities of the pixels on and between two external modes (upper and 
lower baselines) are set to the distance value detected for the specific modes. The intensities of the 
pixel outside of the Main Body area are set to the MBS value. 



 

 
Figure 32. Handwritten document image with a resolution of 1232x2076 

 
Figure 33. The smoothed version of the document image with the parameter C set to 60 pixels and resolution 

1232x34 

 
Figure 34. Example of the letter O 
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Figure 35. Example of the corresponding smoothed image of the letter O with a height of 35 pixels and 

width of 1. 

 

 
Figure 36. Bimodal distribution 

 

While Skeleton Hinge distribution [28] treats all the skeleton fragments detected in the same way, 
in the proposed method, the weighted skeleton hinge distribution, the varying size of the text is 
considered. For example, a word with a large MBS will be treated the same as a word with a 
smaller MBS in skeleton hinge distribution. In the proposed technique, the Main Body Map 
information gives different weights on the skeleton hinge fragments detected, according to their 
central pixel value on the Main Body Map (MBMvalue) and its deviation from the MBS 
(MBSvalue). The Weight considered is the corresponding value on the Main Body Map divided 
with the MBS value if the Main Body Map value is lower or equal to the MBS value.       

                            (1) 

On the other hand, if the Main Body Map value is greater than the MBS value, then the Weight 
considered is 

           (2) 

 

 

4.1.6 Quantized Skeleton Hinge Distribution 
 

Pixel intensity information in Handwritten text is not uniform if we suppose the writing surface 
is the same for all the writers; the pen is pressed with more power or less power during writing, 
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depending on the angle, the character, and the written text.  In Gray Scale images, we can use the 
information of pen pressure, denoted as pixel intensity, to augment the skeleton hinge information 
and prove that those points of pressure provide additional information for the writer's 
identification. 
In this method, the pixel intensity is quantized in N discrete values. The number of quantizations 
is used to construct a 3-dimensional matrix with the third direction having a length of N. Quantized 
Skeleton Hinge distribution also starts with the image skeleton extraction using a generic 
skeletonization approach [92]. Then a sliding window technique that uses several window sizes, 
each quantized in a different number of directions, checks for skeleton line fragments, which 
emerge from the central window pixel. Finally, their directions and the quantized intensity are 
measured and stored in triplets. Only skeleton line fragments with φ1<φ2 are counted and stored 
in pairs in a histogram. A joint probability distribution p(ϕ1, ϕ2, n) is obtained over a large sample 
of pairs. Finally, the probability distributions acquired by the various sliding window sizes are 
combined and considered for matching. 
 

4.1.7 Directional Stroke Run Length Hinge Distribution 
 
While skeleton hinge distribution and weighted skeleton hinge distribution perform well, 

some information might be lost since the skeleton information is used. The same applies to the 
edge hinge distribution and edge hinge combinations with the edge information.  
The main idea behind the Directional Stroke Run Length Hinge Distribution method is to consider 
all the available information in the document image by utilizing run lengths. To achieve that, all 
the pixels that are on are considered. Next, a sliding window technique is used with various 
window sizes, each quantized in directions. On every central pixel that is on the black run lengths, 
in eight directions are considered. Only the two directions with the most significant run lengths 
are kept. Next, the direction of the maximum run length is considered. The next pixel is selected 
by following that direction, and the run lengths of the five directions that emerged from that pixel 
are considered. The three directions excluded are the opposite direction of the previously selected 
direction and the two neighbouring directions. This process is repeated by following the pixels 
found on the largest run lengths from the five directions until the window border is reached. The 
same technique is applied in the second-largest direction that was initially kept.  Finally, the 
directions of the two run-length directional fragments are measured and stored in pairs—only 
fragments with φ1<φ2 are counted and stored in pairs in a histogram. A joint probability 
distribution p(ϕ1, ϕ2) is obtained over a large sample of pairs. The probability distributions, 
acquired by the various sliding window sizes, are combined and considered for matching. For 
example, visualizing some of the steps of this technique, see figures 37 to 47. 

 

 
Figure 37. An instance of Stroke Run Length Directional Hinge window of 6 pixels-long fragments with the 

central pixel selected as starting point. 



 

 

 
Figure 38. cardinal and intermediate directions will be used to describe run-length directions 

 

 
Figure 39. The selected Starting point along with the run lengths in 8 directions with the largest one being 6 
pixels length with North direction and the second largest with 5 pixels length on South-East direction 

 

 
Figure 40. The five directions emerging from the second point along with the run lengths in five directions, 

with the largest one being in the North-East direction 

 

 
Figure 41. The Largest Run Length is followed until the border is reached 

 



 

 
Figure 42. The next pixel is selected in the direction of the second largest direction 

 

 
Figure 43. The five directions emerging from the first point on the second-largest direction along with the 

run lengths in five directions, with the largest one being in the East direction 

 

 
Figure 44. The five directions are emerging from the second point on the second-largest direction and the 

run lengths in five directions with two directions of equal length of four pixels. The East direction is selected since it 
was also the direction selected in the previous step. 

 

 
Figure 45. The five directions emerging from the third point on the second-largest direction along with the 

run lengths in five directions, with the largest one being in the South East direction 



 

 
Figure 46. The Largest Run Length is followed until the border is reached 

 

 
Figure 47. Final Stroke Run Length Directional Hinge with six pixels-long fragments 

 
4.1.8 Run Length Directional Skeleton Hinge Distribution 

 
This method proceeds with the same steps as the Run Length Directional Hinge 

Distribution, with the only difference being that starting points are located on the image skeleton. 
First, the image skeleton is extracted using a generic skeletonization approach [92]. All the other 
pixels are not considered starting points but are considered to locate the most significant run 
lengths. Next, the directions of the two run-length directional fragments are measured and stored 
in pairs—only fragments with φ1<φ2 are counted and stored in pairs in a histogram. A joint 
probability distribution p(ϕ1, ϕ2) is obtained over a large sample of pairs. Finally, the probability 
distributions acquired by the various sliding window sizes are combined and considered for 
matching. 

 
 

4.1.9 Edge-Skeleton-Hinge Combinations 
 

An attempt was made to fill the entire feature space with information on the Edge-Skeleton 
Hinge Combinations method. All the feature spaces of the previous techniques have one thing in 
common: the bottom left part of the feature space and the diagonal line from top left to bottom 
right is empty, which is due because the directions are considered only when φ1<φ2. For example, 
see Fig. 48   

 



 

 
Figure 48. Skeleton-Hinge feature with the area denoted with the triangle being empty 

To achieve that, both features, the Skeleton Hinge and the Edge hinge, were considered. The 
skeleton Hinge feature space was saved in the upper right side of the feature space using the 
probability distribution Ps(Φ1, Φ2), while the Edge Hinge feature was saved in the bottom left side 
using an inverse probability distribution Pe(Φ2, Φ1). In Figures 49 and 50, examples from the test 
set and the train set are presented. 

 
Figure 49. Feature spaces from the Edge-Skeleton Hinge Combinations on the Test sample 



 

 
Figure 50. Feature spaces from the Edge-Skeleton Hinge Combinations on Train sample from the same 

writer. 

In the second variation of this technique, an attempt was made to also fill the diagonal line from 
top left to bottom right. In order to achieve that, we used Φ as the difference of Φ2 from Φ1 and 
the probability distribution Pd(Φ, Φ) 

𝛷 = 𝛷2 − 𝛷1.		                                     (5) 
 

4.2 Model-Based Features 
 
In the Model-Based approach used in the works [25], [34], it is assumed that each writer 

produces a recognizable set of writer specific character shapes or allographs which happens due 
to schooling and personal preferences. Therefore, the core idea reflected in the above statement 
implies that a histogram of used allographs can characterize each writer. However, it is not feasible 
to have a predefined list of allographs. Instead, training is needed to automatically generate a 
codebook, which sufficiently captures allograph information from handwriting samples. 
The approach used in this work relies on a codebook of models of graphemes. Graphemes are 
small strokes of handwriting, which are extracted by applying a robust segmentation algorithm on 
a handwritten image. It should be mentioned that there is a distinction between graphemes and the 
fragments used in the statistical methods because of the different algorithms in use.  
In Schomaker et al. [34], a codebook of graphemes is generated by training a Kohonen SOFM [93] 
on a large number of grapheme contours.  The produced codebook is later used to construct feature 
vectors. 
The process used to create feature vectors from the codebook is quite simple: From each text 
image, all graphemes are extracted and matched to the grapheme models of the codebook. 
Euclidean distance between the grapheme contours is used for the matching process.  For each 
grapheme model in the codebook, every successful match is counted.  The result is a histogram of 
graphemes, which characterize the writer and also identify him.  
A limitation in this approach is the long training time of Kohonen SOFM. As reported in [34], a 
training time of up to 122 hours can be required.  Besides that, Kohonem SOFM may get stuck in 
local minima. 



 

Van Der Maaten et al. [25] proposed using random selection to create graphemes rather than using 
Kohonem SOFM. In this method, no time-consuming training is performed, overcoming the time 
limitation. Instead of training, a random number of graphemes are drawn from the large set of 
graphemes.  
When combined with the edge-hinge feature, both approaches achieved an identification 
performance of 97% on the Firemaker DB for 150 distinct writers and a codebook of 400 
graphemes.  
Here, an improvement was attempted, using a different approach on the codebook generation, by 
only considering closed areas of the characters. Character closed areas are the least affected by 
writer slant, very important as slant is a characteristic of the writer that can affect the skeleton 
hinge distribution.  
By combining skeleton hinge distribution with a codebook of graphemes only generated by 
character closed areas, it was expected to be an ideal way of securing skeleton hinge distribution 
against forge attempts. A forge attempt can be made by merely changing the slant. However, the 
results of this approach were not the expected ones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

5. Main Body And Text Localization 
5.1  Introduction 

In order to validate or dismiss two of our assumptions, and more specifically, the third and 
fourth assumptions, some preprocessing techniques were developed to facilitate us with this 
validation. 
Firstly, for the third assumption, regarding the effect of Main Body variance in the accuracy of 
writer identification, two techniques appropriate to detect the Main Body size were developed [29]. 
Only one was used for writer identification from the two main body size estimation techniques due 
to its speed and the lower estimation error. Directional Features are susceptible to the Main Body 
size variance since the angle measured will be narrower in smaller characters and wider in bigger 
characters. Our approach to validate or dismiss this assumption consists of measuring the global 
Main Body size of a document and local Main Body size on the word level and use their ratio as 
the weight for our feature extraction technique. To the best of our knowledge, there is no other 
paper in the literature specific to Main Body size detection other than [29]. 
For the fourth assumption, regarding the effect of noise produced by the writer in the accuracy of 
writer identification, a variation of a technique used for text localization [94] is appropriate to 
localize only pure text using some rules and dismiss all the noise produced by the writer. This kind 
of noise usually consists of the writer attempt to erase with ink what he has written by mistake or 
more minor ink stains that could be regarded as salt and pepper noise. For example, see Fig. 51.  

 
Figure 51. Writers attempt to erase with ink what he has written by mistake 

 
5.2 Main Body Size Estimation 

5.2.1 First Technique 
 
Our first technique, shown briefly in Fig.52 and analyzed in this section, estimates the 

average main body of words in a scanned document. Although it has some similarities with [72], 
it is not that complex; it does not require line segmentation nor image binarisation. Moreover, the 



 

technique is applied to grey level images, although the experimental results prove that if the image 
is binarised and cleaned from extra noise and converted to grey level, the results are improved. 

 
Figure 52. The proposed Main Body Size Extraction methodology. 

 

First, the average pixel value is calculated for every N pixel in each pixel line of the image. N can 
be any value. It is only essential for the skew angle of the page that it can handle. The smaller the 
N, the biggest the skew angle it handles. However, since this work does not emphasize that, for 
the results presented here, N=100 was chosen. The results are saved in the Averager table with 
size Hx[W/100], where H is the height and W is the image's width. 
Next, the table Means is created of size Hx1, where its elements are the average values of the 
corresponding lines of the Averager matrix. Then the threshold T is set as the median value of 
matrix Means. By this threshold, we set to zero the values of Means smaller than T while we count 
the consecutive lines with a value larger than T. Next, the consecutive line sizes are considered as 
Main Body size occurrences. The occurrences for each size are also counted and saved as 
Frequencies. Finally, the more frequent Main Body size in Frequencies is considered as Main Body 
size. 

Read Image

Averager table
[mean value/100 hor.pixels] 

Means table
[Mean value / Averager line]

t = median (Means)

Sizes = consecutive lines>t

Frequencies = n. of occurencies/Size



 

 
Figure 53. Schematic presentation of the technique through example 

In Fig. 53, the technique is presented through an example. This technique does not require 
binarisation. Moreover, it can give more information if different main body sizes are present on 
the same page. 

 
5.2.2 Second Technique 

 
This technique, developed by Vassilios Veras, a co-author on [29],  estimates the baselines 

of the text in a document page. Initially, the document is binarised. Then, the Connected 
Components (CCs) of the document are detected for the 8-pixel neighbourhood. Finally, all CCs 
bigger than 30000 pixels and smaller than 10 pixels are removed, that is, a large area, e.g. scan 
noise or figures and tiny, noisy areas or accents, respectively.   



 

 
Figure 54. Vertical dilate. 

Then vertical dilate is applied to identify the horizontal borders of the text area (left-right), and if 
the text consists of text columns, this is necessary since, in the case of the text columns, each 
column is treated separately. After the vertical dilate the columns of text form a big connected area 
(Fig.54). Consequently, CCs are again detected, and now only those bigger than 10000 pixels are 
kept. Finally, a vertical histogram is taken, and those pixel columns with black pixels more than 
75% of the average are marked as text and the others as background (Fig.55).  

 
Figure 55. Vertical text localization. 

Then the document is scanned from left to right, and the total number of text columns is identified. 
A similar procedure is followed for each text column, this time with a horizontal dilate (Fig.57). 
Next, the text lines are detected with their respective start and end indexes in the document. In 
order to detect the Main Body size, the pixel row must contain 170% of the average pixel rows 



 

(Fig.58); This ensures that the beginning and the end of the main body will be detected, without 
including the ascenders and the descenders. Finally, the average baselines are calculated and 
returned as showed in the original document (Fig. 59). The technique is presented in Fig.56. 

 

 
Figure 56. The second technique 

 
Figure 57. Horizontal dilate. 



 

 

Figure 58. Horizontal text localization. 

 

Figure 59. Result with upper and lower baselines visible 

 

5.2.3 Experimental Results 
Evaluating a technique that estimates the text Main Body size is not easy, primarily when 

referring to the handwritten text. Therefore, the TrigraphSlant data set [95] containing images of 
handwriting produced under natural and forced slant conditions were used. It includes 190 images 
from 47 persons. In addition, 30 images of natural writing by different writers were used. 
In order to create ground truth data, the height of 10 ‘o’ of each image was measured, and the mean 
value was considered. It took us by surprise that even on the same document image, written by the 
same person, differences of more than 10 pixels were found. 
In table 1, the mean estimated Main Body size for five writers (D00X), along with the results for 
4 document images of the same writer (D00X-1, D00X-2, D00X-3, D00X-4). It is obvious how 
the size changes, even for the same writer. Only the first document image (D00X-1) of each writer 
for X between 1 and 30 was used in our experiments. 



 

Since, as explained, it is difficult to have exact results, in table 2, the average error deviation 
between the estimated values and the ones detected by the two techniques is given. Moreover, to 
give more objective results, in the same table, the average error deviation between the actual values 
and the ones detected by the two techniques over a collection of 10 printed images that includes 
font sizes between 8 and 24 pts is also given. 

 

Table 1.  Examples of Main Body size estimation 

Document Image 
Code 

Estimated Mean Main Body Size 
(pixels) 

D001-1-An 34,8 
D001-2-Bn 35,2 
D001-3-Bl 31,6 
D001-4-Br 31,6 
D002-1-An 33,6 
D002-2-Bn 27,4 
D002-3-Bl 37,2 
D002-4-Br 27,2 
D003-1-An 34,2 
D003-2-Bn 33,4 
D003-3-Br 30,8 
D003-4-Bl 33,4 
D004-1-An 29,2 
D004-2-Bn 29,2 
D004-3-Br 32,8 
D004-4-Bl 34,2 
D005-1-An 34,6 
D005-2-Bn 34,2 
D005-3-Br 28 
D005-4-Bl 33,4 

 
 

Table 2.  Experimental Results 

Technique 
Average error 

deviation (pixels) on 
Trigraph 

Average error 
deviation (pixels) on 

printed DB 
first 2.17 0.67 
second 4.96 1.05 

 
 
 
 



 

5.3  Text Localization 
5.3.1 System Overview 

 
The proposed method, developed by Ergina Kavalieratou and Pilar Gomez-Gil, co-authors on [94], 
takes advantage of two facts: a) a text should contrast with its background in order to be readable; 
b) a text follows some regularity in any language. Figure 60 shows the main steps of this method. 
First, an RGB image is transformed into a grayscale image using the formula [96]:  

𝑔𝑟𝑎𝑦	 = 	0.2989	 ∗ 	𝑅	 + 	0.5870	 ∗ 	𝐺	 + 	0.1140	 ∗ 	𝐵      (3) 
Where R, G, B correspond to the colour of the pixel, respectively. This image is binarised for using 
various thresholds, which is defined as: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	 = 	𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐼	 + 	𝑘 ∗ 𝑆𝑇𝐸𝑃                               (4) 
Where minimumI corresponds to the minimum intensity of the grayscale image and STEP is a 
small value. In the experimental results reported here, STEP values go from 1 to 7. The k parameter 
considers values from 1 up to (maximumI - minimumI)/STEP in order to cover with various 
thresholds all the range between the minimum (minimumI) and the maximum (maximumI) of the 
grayscale image. A binary image and its reversed one are built, using as threshold all the multiples 
of a specific STEP. The reverse image is also used since it cannot be known if the foreground is 
lighter or darker.  
Using all possible black and white images, all possible contrasts should be included for a small 
step. After this, each image is examined in detail for the existence of several constraints that the 
parts of images corresponding to texts are expected to accomplish: 
1. Similar colours between the text parts or dissimilarity less than 10% are expected. 
2. Within a text region, the dissimilarity in colour should remain less than 10%. 
3. Areas with either size less than 5 pixels are not considered. 
4. The parts of the text, usually characters, are expected to have a similar width, with a maximum 

deviation of 10%. A difference of up to 50% is allowed in height to include words with 
uppercase and lowercase letters. 

5. Neighbour text parts are expected to have similar areas with a deviation of a maximum of 30% 
due to the difference between characters and uppercase/lowercase letters. 

6. The parts of the same text square are expected to have a horizontal distance of a maximum 
3xMB and a vertical distance of one MB, where MB is a rough approach of the mean character 
size. 
 

As it is mentioned in [78]: By mean width of the character, we consider the width of characters 
such as a, b, c, d etc., excluding the characters i, l, j, m, w that are either too narrow (i, j, l), or too 
broad (m, w). ... Although the character width differs between characters and writers, a rough 
estimation of the mean width could be made by accepting that excluding the ascenders and 
descenders the characters with mean width (as defined above), present width equal to their height. 
Thus, MB is estimated as the CCs height; rules 4, 5 and 6 derive from the above definition.   
 
CCs of every binary image is extracted, and several properties are calculated: 

• The centroids of the CCs. 
• The minimum, maximum and mean intensity of the corresponding area in the grayscale 

image. 
• The area of each CC. 



 

• The bounding boxes of each CC. along with the coordinates of the upper left corner and 
their width and height. 

• The main body, as the height of the CC. 

Then, for each pair of CCs and using these properties, the rules described above are applied, 
respectively:  

1. The mean intensity of the two CCs is expected not to differ more than 10%. 

2. The minimum and maximum intensity of each CC is expected not to differ more than 10%. 

3. The CCs with an area less than 10 pixels or Bounding Box width or height less than 5 pixels 
are eliminated. 

4. Both bounding box heights and widths are required not to differ more than 10%. 

5. The areas of the CCs are expected not to differ more than 30% 

6. The x coordinates of CCs centroids are expected to be situated within 3MB and the y 
coordinates within one MB. 

 
 

 
Figure 60. The tasks of the proposed system 

A pair of CCs that successfully pass the above constraints is considered part of the same group. 
Then, the procedure is repeated for the reverse image. As a result, from each image, several areas 
are extracted as possible text areas. Considering that natural scenes can include all grayscale tones 
from 0 to 255 (not always), some dozens of binary images are considered, and the extracted areas 
could be up to hundreds. However, since they are black and white images, the processing is fast. 
Thus, the extracted areas are unified if the following rule holds: 
IF the mean value of the y-coordinates of an area is included in the y-coordinates of another area 
AND (their areas are either overlapped, OR they are not located more than one MB apart, 
horizontally.) 

 
Transformation to 

Grayscale 

Binarization 

CC-localization 

Rule Application 

Post-Processing 

Concatenation 



 

At this point, our system presented a recall >70%, which is very high compared to the results of 
other systems of the competition but very low precision. This is the reason that a post-processing 
stage was included in the system. In this post-processing stage, every single part of the image is 
analyzed in order to confirm that it includes text. Thus, it includes the following procedures:  
• First, the image is cleaned on all sides, above, below, left and right by pixel lines that include 

entirely white or entirely black pixels. 

• Then, if horizontal pixels lines include only white or only black pixels, the image is split 
into horizontal text lines, limited by these pixel lines. 

• Finally, it is checked if there are entire columns with only white or black pixels expected to 
separate characters. 

Once the post-processing is done, a concatenation procedure is applied to unify the overlapped 
parts of the image.  
 

 
Figure 61. Text localization result example of the document from Figure 51. 

 



 

 
Figure 62. Final image after text localization, on the document from Figure 51. 

 

5.3.2 Experimental Results 
 
For evaluating the proposed procedure, the dataset of ICDAR 2011 Robust Reading Competition 
Challenge 2: Reading Text in Scene Images [89] was used. The final dataset consisted of 485 
images containing text in various colours and fonts on many different backgrounds and 
orientations. A comparison of our results with other techniques is shown in Table 3. Furthermore, 
after filtering the document images with this technique and using the Skeleton Hinge distribution 
for feature extraction, experimental results for the writer identification task can be found in chapter 
6. 

Table 3.  Comparative results with the dataset of ICDAR 2011 Robust Reading Competition Challenge 2: 
Reading Text in Scene Images [96]. 

Method Recall Precision 
Harmonic 
Mean 

technique 1 62.47 82.98 71.28 
technique 2 58.09 67.22 62.32 
technique 3 57.68 66.97 61.98 
technique 4 52.54 68.93 59.63 
technique 5 53.52 63.52 58.09 
technique 6 50.07 62.97 55.78 
technique 7 44.57 59.67 51.03 
technique 8 38.32 35.01 36.59 
technique 9 25.96 50.05 34.19 
Proposed 
Technique 

77.08 57.15 65.63 

 



 

6. Writer Identification Experimental Results 
6.1  Data Sets 

6.1.1 Firemaker DB 
 

One of the datasets used to evaluate the feature extraction techniques presented in this work 
was the Firemaker Database [14]. This data set was used to directly compare the achieved results 
with the reported ones by the other methods. 
The Firemaker is a database of handwritten pages from 250 writers, including four pages per 
writer.  

• Page 1 contains a copied text in natural writing style 
• Page 2 contains a copied text in Upper-case text 
• Page 3 contains copied forged text. The writers here try to impersonate another writer. 
• Page 4 contains a self-generated description of a cartoon image in free writing style. On 

this last page, the text content and the amount of written ink varies considerably per writer. 
 

All pages in Firemaker Database were scanned at 300-dpi grayscale. The text that was asked to be 
copied was specially designed in forensic praxis to cover many different alphabet letters. In our 
experiments, only pages 1 and 4 were used. Page 1 was used as a training set. While page 4 was 
used as a test set. 

 

 
Figure 63. Part of a Document image from Firemaker DB 

 
 

6.1.2 ICDAR 2017 Writer Identification Competition 
 
Additional experiments were performed on the Skeleton Hinge Distribution feature using 

the ICDAR 2017 writer identification competition [15] dataset. The dataset used for this 
competition consists of 3600 document images, which 720 different writers have written. Each 
writer has contributed five documents. The performance was evaluated using ScriptNet, the 
competition platform which can output the mean average precision (map) and top 1 performance. 



 

 
6.2  Experiments  

6.2.1  Skeleton Hinge Distribution 
 
Various experiments were performed, using combinations of several parameters, e.g. 

window sizes and matching classifiers. However, it is hard to compare our results with results 
reported on other papers because of the variation in the data sets. Therefore, our results will be 
only comparable to methods that used the same dataset.  
Furthermore, even on the same dataset, results can have a significant variation. For example, some 
methodologies only used a fragment of the entire dataset without mentioning which one exactly. 
Also, there are differences in train and test sets. Even a slight change in these sets can change the 
entire outcome.  
For the training (Extract Skeleton Hinge training Features), only page 1 from the Firemaker DB 
was used.  Each page was binarised, and the skeleton was extracted using Matlab. The used 
procedure is the one described in the previous section for skeleton hinge distribution.  
The training procedure was fast, about 250 seconds on a laptop i7 2.5Ghz pc, and in comparison 
to the edge hinge distribution, about 35% faster. On the same machine, the edge-hinge distribution 
train took 384 seconds to complete. 
To extract Skeleton Hinge test Features, only page 4 was used from the Firemaker DB. The testing 
process used the same procedure as the training process.  
The test procedure was faster than training due to the variations in text sizes on page 4. Testing 
took around 200 seconds on a laptop i7 2.5 GHz. Edge hinge distribution time was about 270 
seconds.  An improvement of about 35% can be observed here, too. 
Different matching techniques were considered for writer identification—maximum accuracy 
achieved with the Nearest Neighbour classifier with Manhattan distance. Euclidean and chi-square 
distances were also considered for classifying, but they performed worse than Manhattan distance. 
KNN classifier was also considered with k 1. 
Furthermore, clustering techniques, like K-means and Agglomerative Hierarchical Cluster Trees, 
and machine learning techniques, like SVM, were considered. 

 
6.2.1.1 Skeleton Hinge Features With The Nearest Neighbour Classifier On Firemaker DB. 

 
   Skeleton Hinge Distribution Feature identification results are presented in Table 4. These 

experiments used the entire data set of 250 writers. Like the edge-hinge combinations method, a 
combination of fragment lengths, i.e. window sizes were used. Furthermore, for the nearest 
neighbour classifier Manhattan, Euclidian and chi-square distances were used. Our top result is 
identification accuracy of 90.8 % for a combination of fragment lengths of 5- and 9-pixel length 
window and Manhattan distance. 

 
 

 



 

Table 4.  Skeleton Hinge Distribution Accuracy (Percentage) on Firemaker DB 

Fragment 
Length 

Skeleton Hinge Distribution Accuracy (Percentage) 
Manhattan 

Distance 
Euclidian 
Distance 

Chi-square 
Distance 

3 80% 72% 53.2% 
5 89.6% 77.2% 66% 
7 90% 81.6% 69.6% 
9 88% 85.2% 76% 
3 , 5 85.2% 75.2% 58.4% 
3 , 7 85.6% 75.6% 55.2% 
3 , 9 86% 74.8% 53.2% 
5 , 7 90% 78.8% 64.4% 
5 , 9 90.8% 78.8% 67.2% 
7 , 9 90% 83.2% 73.6% 
3 , 5 , 7 86.8% 76.8% 60% 
3 , 7 , 9 89.6% 76.8% 55.6% 
5 , 7 , 9 90% 79.2% 68.8% 
3 , 5 , 7 

, 9 
89,6% 76.8% 60.4% 

 
 
 
 

6.2.1.2 Skeleton Hinge Features With The Nearest Neighbour Classifier On ICDAR 2017 
 
   Skeleton Hinge Distribution Feature identification results or ICDAR 2017 dataset are 

presented in Table 5. These experiments used the entire data set of 3600 document images, which 
720 different writers have written. Like the edge-hinge combinations method, a combination of 
fragment lengths, i.e. window sizes were used. In addition, for the nearest neighbour classifier, 
Manhattan distances were used. Our top result is identification accuracy of 68.44% with a mean 
average precision (map) of  47.02% for a combination of fragment lengths of 3-5-7 and a 9-pixel 
length window. Finally, in Table 6, an overview of results reported in [15] compared to our results 
is presented. 

 
 

 
 

 
 



 

Table 5.  Skeleton Hinge Distribution Accuracy (Percentage) on ICDAR 2017 writer identification 
competition Data Set 

Fragment Length WI-map WI-precision 

3 40.57% 60.83% 
5 44.80% 66% 
7 43.96% 64.63% 
9 40.99% 61.41% 
3 , 5 44.50% 65.58% 
3 , 7 46.20% 67.33% 
3 , 9 46.33% 67.52% 
5 , 7 45.98% 67.22% 
5 , 9 46.34% 67.66% 
7 , 9 43.73% 64.33% 
3 , 5 , 7 46.34% 67.75% 
3 , 7 , 9 46.92% 68.36% 
5 , 7 , 9 46.11% 67.33% 
3 , 5 , 7 , 9 47.02% 68.44% 

 

Table 6.  Skeleton Hinge Distribution Accuracy (Percentage) on ICDAR 2017 writer identification 
competition Data Set as reported in [15] 

Method WI-map WI-precision 

Skeleton Hinge 47.02% 68.44% 
Barcelona 45.9% 67% 
Fribourg 30.7% 47.8% 
Groningen 54.2% 76.1% 
Hamburg 46.9% 67.1% 
Tebessa I 52.5% 74.4% 
Tebessa II 55.6% 55.6% 

 
6.2.1.3 Skeleton Hinge Features With K-means And Hierarchical Cluster Tree Identification 

Results. 
 
An attempt was made to identify writers using the k-means algorithm and partitioning the 

collection into clusters on Firemaker DB. The entire collection consisted of 250 writers with two 
pages per writer, one page in training data, and one page in test data. Skeleton hinge distribution 
features were extracted from 500 pages and partitioned into 250 clusters. Standard K-means 
technique was used, as well as Kmeans with different distance parameters were explored. Only 



 

clusters that included both pages from each writer were considered as correctly identified. 
Identification accuracy reached 66.8% using 3,5,7,9 skeleton hinge distribution combinations. 
Furthermore, experiments of clustering the 500 pages using an Agglomerative hierarchical cluster 
tree were made using two parameters, Agglomerative clusters from linkages and Agglomerative 
clusters directly from data. Only clusters containing both pages from the same writer were 
considered as correctly identified. Accuracy in both methods reached 63.6% using 3,5,7,9 skeleton 
hinge distribution combinations.   
Skeleton Hinge Distribution Features clustered with K-means and Hierarchical cluster tree 
identification results are presented in Table 7. 

Table 7.  K-means and Hierarchical cluster tree identification Results on Firemaker DB 

Clustering Method Parameter Accuracy 
 

K-means normal 66.8% 
K-means city block 46.4% 

       K-means cosine 66.8% 
K-means correlation 66.8% 
Hierarchical Cluster Tree linkages 63.6% 

 
Hierarchical Cluster Tree 
 

data 63.6% 

 
6.2.1.4 Skeleton Hinge Features With Nearest Neighbor Using KNN Results. 

 
Besides using a simple Euclidean distance measure, the KNN algorithm was used to find 

the nearest neighbour of every document of the training set in the test set on Firemaker DB. From 
each set, skeleton hinge distribution combinations with fragment lengths 3,5,7,9 were extracted. 
Different distance measures were used. In most of them, accuracy reached 76.8%, while with city 
blocks distance, accuracy reached 89.6%. Skeleton Hinge Features with Nearest Neighbor using 
KNN results are presented in Table 8. 

 

Table 8.  Skeleton Hinge Identification Accuracy using KNN on Firemaker DB 

Method(k=1) Distance Accuracy 
 

KNN Chebychev 51.6% 
 

KNN Minkowski 76.8% 
 

KNN Cosine 76.8% 
 

KNN Correlation 76.8% 
 

KNN Hamming 1.2% 
 

KNN Seuclidean 0.4% 



 

 
KNN Cityblock 89.6% 

 
 
 

6.2.1.5 Skeleton Hinge Features With Support Vector Machines Results. 
 
Support vector machines (SVM) were used as well to identify the writer on Firemaker DB. 

A simple scheme of “one-vs-all” was used in an iterative process. A single document from the 
training set, consisting of 250 writers, was assigned as known and the rest unknown in each 
iteration.  An SVM was trained using the skeleton hinge distribution combinations with fragment 
lengths 3,5,7,9 extracted from the training set and the class information assigned to them. Next, a 
new iteration was used to classify the documents in the test data set, after extracting the skeleton 
hinge distribution combinations with fragment lengths 3,5,7,9, according to the trained model. 
Accuracy was 53.6% 
SVM with a one-vs-one scheme was also considered but trained only in the first 100 writers. In 
each iteration, a classifier was trained to distinguish between documents of 2 distinct writers. All 
the possible non-overlapping combinations were considered. A total of 4950 classifiers were 
trained. The SVM classifiers were trained using the 3,5,7,9 skeleton hinge distribution 
combinations from the train set. Next, a new iteration was used to classify the documents in the 
test set. Every handwritten document was classified using the trained classifiers. Matching is 
achieved with a voting procedure. The most voted class is assigned to the document. Accuracy for 
100 writers achieved 63%. Skeleton Hinge Features with Support Vector Machines results are 
presented in Table 9. 

 

 

Table 9.  Skeleton Hinge Features with Support Vector Machines results on Firemaker DB. 

Scheme 
 

Number of writers Accuracy 

One-vs-all 250 53.6% 
 

One-vs-one 100 63% 
 

 

 
6.2.2 Codebook of Graphemes And Skeleton Hinge Distribution 

 
In addition, an attempt was made to combine skeleton hinge distribution with a codebook 

of graphemes method on Firemaker DB. The results of this experiment are presented in Table 10. 
The model-based methods [25], [34] reported accuracy of up to 97% on 150 writers, using a 
codebook of size 400 when the results were combined with edge-directional features. 
Unfortunately, it was impossible to train a codebook of 400 graphemes for 250 writers due to 
memory issues.  



 

Instead, a codebook of 225 graphemes was trained for 250 writers. Maximum accuracy of 95,6% 
was reached. It is necessary to mention that the other methods reported 97 % accuracy on 150 
writers with a codebook of 400 graphemes. In our case, an experiment was also performed using 
150 writers of the data set and a codebook of 225 graphemes. An accuracy of 96% was achieved. 
Codebook of Graphemes combined with Skeleton Hinge Distribution feature identification results 
is presented in Table 10. 

 

Table 10.  Skeleton Hinge Distribution Combined with Codebook of Graphemes Method Accuracy 
(Percentage) on Firemaker DB 

Number 
of 

Writers 

CodeBook 
Size 

Skeleton Hinge Distribution 
Combined with Codebook of 

Graphemes Method 
Manhattan 

Distance 
Euclidian 
Distance 

Chi-square 
Distance 

250 225 95.6% 91.2% 78.8% 

150 225 96% 94.7% 86.7% 
 

6.2.3 Quantized Skeleton Hinge Distribution 
 
In this section, experiments were performed only for combining fragment lengths 5 and 9 

since that combination achieved an accuracy of 90.8% on the Skeleton Hinge Distribution on 
Firemaker DB. The experiments were performed on 250 writers using Manhattan Distance and 
quantized in 1,2,3,4,5,9 intensity levels. Quantized Skeleton Hinge Distribution feature 
identification results are presented in Table 11. 

 

Table 11.  Quantized Skeleton Hinge Distribution Accuracy (Percentage) on Firemaker DB 

Number Of 
Quantizations 

Quantized Skeleton 
Hinge Distribution 

 
1 90.8% 
2 92% 
3 92.4% 
4 89.6% 
5 91.2% 
9 88.4% 

 
 

 
6.2.4 Weighted Skeleton Hinge 

 
In this section, experiments were performed with combinations of various fragment length 

sizes (i.e. window sizes) were considered on pages 1 and 4 of the Firemaker DB, conducted on 
250 writers using Manhattan Distance. For comparison with previous methods, we included the 



 

results of Edge Hinge Combinations (EHC), as reported in [25] and Skeleton Hinge Distribution 
(SHD) as reported in [28]. In addition, weighted Skeleton Hinge Distribution (WSHD) features 
identification results are presented in Table 12. 

 

Table 12.  EHC, SHD, WSHD identification Accuracy (Percentage) with Manhattan Distance on Firemaker 
DB 

Fragment 
Length 

Combinations 

EHC 
Accuracy 

(Percentage) 

SHD 
Accuracy 

(Percentage) 

WSHD 
Accuracy 

(Percentage) 
3 68% 80% 82% 
5 70% 89.6% 88.8% 
7 70% 90% 90% 
9 69% 88% 88.8% 
3 , 5 77% 85.2% 85.2% 
3 , 7 77% 85.6% 85.6% 
3 , 9 79% 86% 86% 
5 , 7 74% 90% 89.6% 
5 , 9 77% 90.8% 91.2% 
7 , 9 72% 90% 89.6% 
3 , 5 , 7 80% 86.8% 87.6% 
3 , 7 , 9 78% 89.6% 89.2% 
5 , 7 , 9 76% 90% 90.8% 
3 , 5 , 7 , 9 81% 89.6% 88.4% 

 
 

6.2.5 Run Length Directional Hinge 
 
In this section, experiments were performed with combinations of various fragment length 

sizes (i.e. window sizes) were considered on pages 1 and 4 of the Firemaker DB, performed on 
250 writers using Manhattan Distance. For comparison with previous methods, we included the 
results of Edge Hinge Combinations (EHC), as reported in [25] and Skeleton Hinge Distribution 
(SHD) as reported in [28]. In addition, run Length Directional Hinge Distribution 
(RLDHD)features identification results are presented in Table 13. 

 

Table 13.  EHC, SHD, RLDHD identification Accuracy (Percentage) with Manhattan Distance on Firemaker 
DB 

Fragment 
Length 

Combinations 

EHC 
Accuracy 

(Percentage) 

SHD 
Accuracy 

(Percentage) 

RLDHD 
Accuracy 

(Percentage) 
3 68% 80% 85.2% 
5 70% 89.6% 89.2% 
7 70% 90% 90.4% 
9 69% 88% 91.2% 
3 , 5 77% 85.2% 88% 
3 , 7 77% 85.6% 89.2% 
3 , 9 79% 86% 89.2% 
5 , 7 74% 90% 89.6% 



 

5 , 9 77% 90.8% 89.2% 
7 , 9 72% 90% 90.4% 
3 , 5 , 7 80% 86.8% 88.8% 
3 , 7 , 9 78% 89.6% 89.2% 
5 , 7 , 9 76% 90% 90% 
3 , 5 , 7 , 9 81% 89.6% 89.2% 

 
6.2.6 Edge Skeleton Hinge Combination 

 
In this section, experiments were performed with combinations of various fragment length 

sizes (i.e. window sizes) were considered on pages 1 and 4 of the Firemaker DB, conducted on 
250 writers using Manhattan Distance. For comparison with previous methods, we included the 
results of Edge Hinge Combinations (EHC), as reported in  [25] and Skeleton Hinge Distribution 
(SHD) as reported in [28]. Edge Skeleton Hinge Combination (ESHC) features identification 
results are presented in Table 14 

 

Table 14.  EHC, SHD, ESHC identification Accuracy (Percentage) with Manhattan Distance on Firemaker 
DB 

Fragment 
Length 

Combinations 

EHC 
Accuracy 

(Percentage) 

SHD 
Accuracy 

(Percentage) 

ESHC 
Accuracy 

(Percentage) 
3 68% 80% 79.4% 
5 70% 89.6% 89.2% 
7 70% 90% 89.6% 
9 69% 88% 87.2% 
3 , 5 77% 85.2% 84.6% 
3 , 7 77% 85.6% 85.2% 
3 , 9 79% 86% 85.6% 
5 , 7 74% 90% 89.6% 
5 , 9 77% 90.8% 90.2% 
7 , 9 72% 90% 89.4% 
3 , 5 , 7 80% 86.8% 86.8% 
3 , 7 , 9 78% 89.6% 89.2% 
5 , 7 , 9 76% 90% 89.4% 
3 , 5 , 7 , 9 81% 89.6% 89.2% 

 
 

6.2.7 Directional Features Comparison 
 
In this section, a comparison of top identification results reported in the literature on 

Firemaker DB, and in the sections above for the directional features of Edge Direction 
Distribution, Edge Hinge Combinations, Skeleton Hinge Distribution, Quantized Skeleton Hinge 
Distribution, Weighted Skeleton Hinge Distribution, Run Length Directional Hinge Distribution, 
Quill-Hinge and Junctions are presented in Table 15. Furthermore, a graphical representation of 
the results on Edge Hinge Combinations, Skeleton Hinge Distribution, Weighted Skeleton Hinge 
Distribution and Run Length Directional Hinge Distribution on common fragment length 
combinations is given in Fig. 64 



 

 

Table 15.  EDD, EHC, SHD, QSHD, WSHD, RLDHD, ESHC, and methods from literature identification 
Accuracy (Percentage) with Manhattan Distance on Firemaker DB 

 

Method 
Accuracy 
Reported 

 
EDD 35% 
EHC  68% 
SHD  90.8% 
QSHD 92.4% 
WSHD  91.2% 
ESHC 90.2% 
RLDHD 91.2% 
Edge-Hinge [24] 63% 
Codebook of Graphemes combined with Edge-Hinge [34] 97% 
Edge-Hinge combinations [25] 81% 
Codebook of Graphemes combined with Edge-Hinge 

Combinations [25] 
97% 

Contour-Hinge combined with Writer-Specific Grapheme 
Emission PDF [41] 

83% 

SDS+SOH [43] 92.4% 
Quill-Hinge [26] 86% 
Junclets [30] 80.6% 
Junclets+Hinge [30] 89.8% 
BW-LBC [51] 94.4% 
CLGP [52] 97.6% 
Dissimilarity GMM (DGMM) [54] 97.98% 
GR-RNN [20] 98.8% 

 



 

 
Figure 64. EHC, SHD, WSHD, RLDHD identification accuracy on Firemaker DB 

 
6.2.8 Filtering With Text Localization Method 

 
In this section, experiments were performed with combinations of various fragment length 

sizes (i.e. window sizes) that were considered on the filtered pages 1 and 4 of the dataset, 
performed on 250 writers using Manhattan Distance. The Text Localization technique was used to 
clean the pages, as described in Chapter 3.2. This method is appropriate to localize only pure text 
using some rules and dismiss all the noise produced by the writer. For comparison with previous 
methods, we included the results of Skeleton Hinge Distribution (SHD) as reported in [28] and 
Edge Skeleton Hinge Combination (ESHC) as presented previously. For consistency, the same 
methods were used for the filtered pages. Identification results are presented in Table 16. 

Table 16.  SHD, filtered SHD, ESHC and filtered ESHC identification Accuracy (Percentage) with 
Manhattan Distance 

Fragment 
Length 

Combinations 

SHD 
Accuracy 

(Percentage) 

Filtered SHD 
Accuracy 

(Percentage) 

ESHC 
Accuracy 

(Percentage) 

Filtered 
ESHC 

Accuracy 
(Percentage) 

3 80% 80% 79.4% 83.2% 
5 89.6% 88.8% 89.2% 90% 
7 90% 90% 89.6% 90.4% 
9 88% 88% 87.2% 89.2% 
3 , 5 85.2% 85.2% 84.6% 86% 
3 , 7 85.6% 87.2% 85.2% 88% 



 

3 , 9 86% 86% 85.6% 88.8% 
5 , 7 90% 90.4% 89.6% 90% 
5 , 9 90.8% 91.2% 90.2% 90.4% 
7 , 9 90% 90.8% 89.4% 90.8% 
3 , 5 , 7 86.8% 86.8% 86.8% 87.6% 
3 , 7 , 9 89.6% 89.2% 89.2% 90% 
5 , 7 , 9 90% 90.4% 89.4% 90.4% 
3 , 5 , 7 , 9 89.6% 89.6% 89.2% 89.6% 

 
6.2.9 ICDAR 2017 Experiments 

 
All the techniques were considered for testing for the ICDAR 2017 Dataset and parameters 

of various fragment length sizes (i.e. window sizes) combinations. Furthermore, the Quantised 
Skeleton Hinge Distribution was tested only by quantizing the intensity on three levels (3QSHD) 
since this level achieved the best accuracy on the Firemaker dataset. From the Top 1 identification 
results presented in Table 17, it is easily observable that SHD, WSHD and SRLDSHD have no 
significant differences. Furthermore, RLDSHD, although for most fragment length combinations, 
performs slightly worse than the other 2, for single fragment lengths like 3, 5, 7 and 9, performs 
slightly better. The RLDHD performs worse than SHD, with an average of 3.61% lower than the 
other three techniques and in all fragment length combinations besides the single fragment length 
9, where an increase of 0.64% from the SHD technique can be observed. The QSHD technique 
had a significantly lower accuracy with an average of 10.59% lower than the SHD technique. 

Table 17.  SHD, WSHD, RLDSHD, RLDHD, SRLDSHD TOP-1 Identification Accuracy (Percentage) on ICDAR 
2017 writer identification competition Data Set 

Fragment 
Length 

Combinations 

SHD Accuracy 
(Percentage) 

WSHD 
Accuracy 

(Percentage) 

RLDSHD 
Accuracy 

(Percentage) 

RLDHD 
Accuracy 

(Percentage) 

3QSHD 
Accuracy 

(Percentage) 
3 60.83% 60.75% 64.05% 58.91% 51.91% 
5 66% 65.94% 66.55% 62.22% 55.77% 
7 64.63% 64.61% 65.30% 62.72% 53.63% 
9 61.41% 61.41% 62.44% 62.05% 49.33% 
3 , 5 65.58% 65.55% 65.80% 61% 55.77% 
3 , 7 67.33% 67.25% 66.27% 62.19% 57.5% 
3 , 9 67.52% 67.52% 65.88% 63.16% 56.36% 
5 , 7 67.22% 67.22% 66.55% 63% 57.33% 
5 , 9 67.66% 67.63% 66.19% 63.61% 56.38% 
7 , 9 64.33% 64.33% 64.19% 62.80% 52.86% 
3 , 5 , 7 67.75% 67.69% 66.41% 62.30% 57.66% 
3 , 7 , 9 68.36% 67.80% 66.05% 63.38% 57.05% 
5 , 7 , 9 67.33% 67.38% 66.05% 63.19% 56.58% 
3 , 5 , 7 , 9 68.44% 68.41% 66.44% 63.30% 57.94% 

 
From the MAP identification results presented in Table 18, the same observations can be made. It 
is easily observable that SHD, WSHD and RLDSHD have no significant differences while 
RLDSHD, although for most fragment length combinations, performs slightly worse than the other 
2. Single fragment lengths like 3 and 9 perform slightly better. The SRLDHD performs worse than 
SHD, with an average of 3.87% lower than the other three techniques and in all fragment length 



 

combinations. The QSHD technique had a significantly lower accuracy with an average of 10.41% 
lower than the SHD technique. 

Table 18.  SHD, WSHD, RLDSHD, RLDHD, 3QSHD MAP Identification Accuracy (Percentage) on ICDAR 2017 
writer identification competition Data Set 

Fragment 
Length 

Combinations 

SHD Accuracy 
(Percentage) 

WSHD 
Accuracy 

(Percentage) 

RLDSHD 
Accuracy 

(Percentage) 

RLDHD 
Accuracy 

(Percentage) 

3QSHD 
Accuracy 

(Percentage) 
3 40.57% 40.48% 42.79% 38.82% 31.77% 
5 44.80% 44.77% 44.26% 40.84% 34.83% 
7 43.96% 43.96% 43.60% 41.37% 33.57% 
9 40.99% 41% 41.71% 40.91% 30.54% 
3 , 5 44.50% 44.44% 44.01% 40.22% 34.78% 
3 , 7 46.20% 46.16% 44.32% 41.15% 35.86% 
3 , 9 46.33% 46.3% 44.11% 41.63% 35.28% 
5 , 7 45.98% 45.97% 44.29% 41.45% 35.59% 
5 , 9 46.34% 46.32% 43.99% 41.76% 35.35% 
7 , 9 43.73% 43.76% 42.94% 41.30% 33.05% 
3 , 5 , 7 46.34% 46.30% 44.40% 41.10% 36.10% 
3 , 7 , 9 46.92% 46.70% 44.13% 41.72% 35.83% 
5 , 7 , 9 46.11% 46.11% 43.94% 41.64% 35.32% 
3 , 5 , 7 , 9 47.02% 47% 44.32% 41.65% 36.25% 

 
Finally, in Table 19, an overview of the maximum accuracy achieved for all four techniques and 
results reported in the ICDAR 2017 writer identification competition is presented for the MAP and 
Top -1 metrics. It is noticeable that there is a lot of room for improvement for both metrics. For 
the MAP metric, most techniques score below 50% accuracy, while Groningen and Tebessa 2 
methods achieve 54.2% and 55.6%. For the top-1 Metric, most techniques are scoring below 70%, 
while Groningen and Tebessa 2 methods achieve 76.1% and 76.4%, respectively. 

Table 19.  Skeleton Hinge Distribution Accuracy (Percentage) on ICDAR 2017 writer identification 
competition Data Set as reported in [21] 

Method MAP Top-1 
precision 

Skeleton Hinge 47% 68.4% 
WSHD 47% 68.4% 
SRLDSHD 44.4% 66.5% 
SRLDHD 41.7% 63.6% 
3QSHD 36.2% 57.9% 
Barcelona 45.9% 67% 
Fribourg 30.7% 47.8% 
Groningen 54.2% 76.1% 
Hamburg 46.9% 67.1% 
Tebessa I 52.5% 74.4% 
Tebessa II 55.6% 76.4% 



 

 
7. Discussions And Conclusion 

7.1  Directional Hinge Features Interpretation 
 
In this section, an attempt is made to explain and interpret the characteristics of handwritten 

text captured by the Directional Hinge methods described above. The common denominator of all 
Directional methods described in previous chapters is that they use a probability distribution 
P(φ1,φ2) which captures information about the Slant and the curvature of the handwritten text.  
Slant is a salient feature of western handwriting [97] and is defined as the predominant angle of 
the downward stroke. Slanted characters can slope either to the left or right, although the Slant is 
not always uniform and can change even in the same word. For an example, see Figures 65 and 
66. 
The importance of Slant on the task of Writer Identification systems can be seen in the various 
works found in the literature like [24], [41], [98], [99]. Furthermore, Forensic document examiners 
also find Slant to be a significant consideration [100] and a discriminatory characteristic [101] to 
identify the writer. Again, Slant is among the most visible attributes of handwritten text, along 
with size and spaces. Moreover, imitating the writing Slant is one of the most common 
characteristics in forgery, i.e. when a writer tries to mimic other writers handwriting. According 
to [102], while copying Slant, the forger might lose attention for a moment and revert to his unique 
style. For a forensic document examiner, this sudden and brief Slant change is suspicious and 
might contain information about the forger identity.  
Finally, in cases of disguise, i.e. the writer tries to hide his identity by changing his writing style, 
and he achieves that by changing his Slant of writing. In experiments performed in [97], they found 
that while Slant is very important for writer identification, it is not essential as a sole factor. The 
same observation can be seen in the Edge-Direction distribution [24], which mostly captures the 
Slant of writing by the low identification accuracy achieved on the Firemaker dataset.  

 
Figure 65. An example of different Slant Angles from left to right. The graphic is from [103].  



 

 
Figure 66. An example of right slanted (a), left slanted (b) and variant slanted(c) word. The graphic is from [104]. 

 
Slant angle, for most writers, is visible in the feature space when it is projected to polar coordinates. 
For example, in Figures 67-70, two parts of handwritten pages can be seen along with their feature 
space projected in polar coordinates. For the first writer, i.e. Figures 67 and 68, it is observable 
that the Slant of writing is precisely 90 degrees; this can be seen from the φ1 angle distribution 
that maxes out at 90 degrees, while the φ2 angle distribution maxes out at 270 degrees. Thus, by 
following the peaks of φ2 towards φ1, the slant angle of writing is found. On the second writer, 
i.e. Figures 69 and 70, a right slant can be observed with an angle of approximately 81 degrees. 
However, it should be noted that the Slant could not be found in all the cases by finding the max 
of the angle distributions in the polar plot. In those cases, the predominant angles captured in the 
Directional feature come from all kinds of strokes, not only the downward strokes.   

 
Figure 67. Part of text from Firemaker DataSet from writer 1657 

 
Figure 68 Polar plot of the angles φ1, φ2 and their difference φ2-φ1 for writer 1657 



 

 
Figure 69 Part of text from Firemaker DataSet from writer 17 

 
Figure 70 Polar plot of the angles φ1, φ2 and their difference φ2-φ1 for writer 17 

Curvature results from the movement of the wrist and the fingers [105] while holding down a pen 
and in the spatial domain is expressed by the angular information of the handwritten curves [24]. 
Therefore, it is also an essential characteristic that plays a significant role in Writer Identification 
[24], [25].  
The curvature information is part of the probability distribution of all the φ1 angles and φ2 angles 
and their difference (φ2-φ1). Although the curvature is not quite as visible as Slant in the polar 
plots as a feature, its importance can be realized through the experimental results presented in 
chapter 6. More specifically, in the identification accuracy difference between the methods of Edge 
Direction distribution, [24] and Edge Hinge Distribution [24]. 
Although Slant and Curvature are significant features for writer identification, that does not mean 
that they can uniquely identify the writer. It is interesting to observe the rare cases of false matching 
and the feature similarity between two distinct writers. In most of the miss-match cases, it is pretty 
interesting that the predominant direction was not relating to the Slant, i.e. downward strokes, but 
instead with a more horizontal direction.  

 



 

 

 
Figure 71 Train and Test samples from writer 52 of Firemaker Dataset 

 

 

 
Figure 72 Train and Test samples from writer 23 of Firemaker Dataset 

 
Figure 73 with solid lines writer 52 from train dataset and dashed line writer 23 from the test dataset. 



 

 
Figure 74 writer 52 differences between train and test dataset 

 

Figure 75 Same words from writer 52 and 23 from Firemaker data set 

Although it might be an easy task for a forensic document examiner to distinguish between the 
two writers in Figures 71 and 72, Directional Distribution systems have difficulty doing so. 
Observing the extracted angular information between those writers in Figures 73 and 74, it is 
apparent that the features of the two writers have more similarities than the features of the same 
writer between the test and training set. Furthermore, a selection of words was made to showcase 
the similarities of the two writers in Figure 75.  
 

7.2  Discussions 
 
Offline Writer Identification is an exciting but also a very challenging task. It has 

applications in sensitive fields like forensics [10], biometrics [2] and palaeography [1], and thus 
the mechanisms and techniques that are utilized to provide writer identification results should 
comply with some essential characteristics. To be more precise, Writer Identifications systems 
should be easy to explain, understand, and, most importantly, trust. 
Implications of false positives or wrong identification results in Writer Identification could have 
severe consequences. For example, a wrong identification used in a court case could lead to an 
unjust ruling. Likewise, used in a biometric system could result in a data breach, while in 



 

palaeography, it could lead to wrong conclusions or, even worse, to future conflicts if it is about a 
biblical text like the Quran or the bible.   
Classical Methods like Hinge distribution have an advantage over Artificial Intelligence systems, 
primarily for their ability to be explained. Usually, Classical methods consist of algorithms with a 
bounded set of steps that use other algorithms as building blocks. On the other hand, Artificial 
Intelligence methods feed test and train data, usually on a neural network that can adjust inner 
weights between neurons and learn to identify the writer based on the data provided.   
Artificial intelligence methods have recently bloomed in the field of Writer Identification, 
outperforming traditional methods [20]. In addition, modern AI tools and frameworks and 
hardware advances have boosted Artificial Intelligence presence in literature publications, making 
Classical methods rarer.  
We believe that the research trend in Artificial Intelligence will grow even more in the future. 
However, eventually, we might reach a point where Artificial Intelligence will produce new 
classical methods for Writer Identification, i.e. explainable algorithms produced by AI. 
Alternatively, we will revert to classical methods for the kinds of applications that require 
trustability and explainability.  

 
7.3  Conclusion 

 
In this work, several features for writer identification were presented. Our experiments 

indicate that even by using a single feature, writer identification accuracy yields promising results. 
While most of our experiments that achieved maximum accuracy are performed using nearest 
neighbour matching, other matching techniques were considered, including machine learning, 
yielding promising results.  
One of our main findings is the importance of the skeleton information on Writer Identification 
methods. Our primary assumption that all stroke widths, i.e. line thickness, should be considered 
the same size, has been explored by applying skeletonization to characters and thus making all 
strokes having the same line thickness. However, the experimental results proved that the previous 
assumption is correct.  
Furthermore, a devised technique, the Run Length Directional Hinge Distribution, considers the 
complete information found on the document. The same technique was limited to only using the 
image's Skeleton as starting points in the Run Length Directional Skeleton Hinge Distribution. 
Experiments on ICDAR 2017 data set revealed that when using the Skeleton, an increase in 
accuracy could be observed with a mean difference of 3.17%. Although the difference is not 
significant, it proves that better quality and fewer noise feature vectors are acquired when using 
the Skeleton. Furthermore, when RLDHD is compared with the Skeleton Hinge Distribution 
technique, the same observation can be made with a slightly higher mean difference of 3.61%. 
Moreover, an attempt was made to understand the effect of Main Body Size fluctuations, observed 
on the document level, on identification accuracy. A Weighted variation of the Skeleton Hinge 
Distribution method was utilized on two datasets. Experimental results revealed that Main Body 
Size fluctuations hardly affect the identification accuracy since only minor differences could be 
observed, and thus, our assumption that Main Body size can affect writer identification is proved 
wrong. 
Finally, an attempt was made to understand the effects of Grey-scale pixel intensity on 
identification accuracy. A variation of the Skeleton Hinge Distribution technique considers only 
pixels in a specific pixel intensity range. In this method, an attempt was made to denote pixel 



 

intensity as the pressure of writing and prove that areas with more pressure contain more 
information about the writer. For the Firemaker dataset, a slight improvement in accuracy of 1.6% 
can be observed. On the other hand, for the ICDAR 2017 data set, a significant decline with a 
mean difference of 10.59 % can be observed. However, this difference might be caused by 
differences in datasets since Firemaker contains grey-scale samples in white background and with 
higher variation in the dark pixel intensities. In comparison, the ICDAR 2017 datasets contain 
colour images with a yellowish background and more minor variations in pixel intensities of the 
dark pixels that contain text. Therefore, we estimate that further research is required in more 
datasets with a higher variation in dark pixel intensities to prove or disprove our third assumption. 
We strongly believe that further improvements can be achieved. A combination of statistical 
features along with the skeleton hinge distribution could be used to increase accuracy. Further 
research is needed in the area. 
Furthermore, the methods described in this work can be used for a variety of different applications. 
Some suggestions of possible future applications are presented here.  
First of all, the techniques presented here could be used as a screening method to reduce the number 
of possible writers of a handwritten document image by displaying the nearest N writers. 
Especially when the number of writers is vast, the time needed to calculate the distances between 
writers is very fast since a single mathematical operation is needed per writer. Next, depending on 
the application, a human expert or an Artificial Intelligence method could do one on one matching.   
Skeleton hinge distribution features can also be used as a writer verification system by applying a 
threshold. For example, if the distance between the two samples is lower than a predefined 
threshold, then verification of the writer can be made.  
In the same way, it can be used as a user authentication method or as an addition to two-factor 
authentication for mobile phones. Online features can be added as well to improve results.  
Furthermore, it can be used for historical documents of unknown origin. There exist numerous 
documents, that their origin till today is unknown. With our proposed methods, a match of these 
documents and their writers can be made, which might give a better perspective on history. 
Lastly, the skeleton hinge distribution feature suggested in this work might be a fit for other 
applications. For example, it is believed that it can be advantageous in slant correction systems.  It 
might have applications in word spotting systems, but further research is needed to determine that. 
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