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Abstract

The state-of-the-art writer identification systems use various features and techniques to
identify the writer of the handwritten text. In this work, several directional features and
combinations of directional with model-based features are presented. Specifically, several
improvements of a statistical, directional feature, the edge hinge distribution, are attempted in
novel contributions as the Skeleton Hinge Distribution, the Weighted Skeleton Hinge Distribution,
the Quantized Skeleton Hinge Distribution, the Directional Stroke Run Length Distribution and
the Edge Skeleton Hinge combination. Furthermore, the Skeleton Hinge Distribution feature with
a model-based feature is explored, based on a codebook of graphemes.

Novel contributions related to the preprocessing of the document images and the extraction of
valuable characteristics are presented. More specifically, two techniques are presented for Main
Body Size estimation, a characteristic with application in a broad range of document image
analysis fields. One measures Main Body size directly, while the other does an estimation for the
baselines first. Both methods are segmentation free. A collection of 10 printed document images
and a collection of handwritten text were used for the presented experimental results.
Furthermore, a technique for text localization is presented that takes advantage of the fact that text
should present some contrast in comparison with the background, to be distinguished by the human
eye. A procedure of binarization is applied to create appropriate images for text detection. The
connected components of the image are extracted, and some heuristic rules are applied to identify
areas containing text.

For the evaluation, the Firemaker Database and the ICDAR 2017 writer identification competition
dataset were used. A plethora of matching techniques were considered for Skeleton Hinge
distribution, including nearest neighbour classifier, K-means, Hierarchical Cluster Tree, k-nearest
neighbours and Support Vector Machines. The skeleton hinge distribution achieved an accuracy
of 90,8%, while the combination of this method with the codebook of graphemes reached 96%.
The Weighted Skeleton Hinge Distribution achieved an accuracy of 91.2%. The Quantized
Skeleton Hinge Distribution achieved an accuracy of 92.4%. The Directional Stroke Run Length
Distribution achieved an accuracy of 91.2%, and finally, the Edge Skeleton Hinge combination
technique achieved an accuracy of 90,2%.

Keywords: Writer Identification, Edge-Hinge Distribution, Skeleton-Hinge Distribution,
Codebook of Graphemes
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Iepiinyn

Ta cOYYpoVa GUCTHUATO AVAYVAOPLONG YPAPEDN YPTGLLOTOLOVV LI TOIKIAO SLOUPOPETIKMOV
YOPOKTNPIOTIKAOV KO TEYVIKDV Y10, VO TPOGOL0PIGOVV TOV GUYYPUPEN TOL YEPAYPOPOV KEUEVOL.
Yeg ovt) v SwtpPn mopovotdlovior Saeopo KATELOLVTIKA YOPOKTNPIOTIKE KOOMG Kot
OLVOLOCHOL KATEVOVVTIKMOV YOPOKTIPLOTIKOV HE YOPUKTNPIOTIKG oL Pacilovtal 6€ HOVTELQ.
YUYKEKPIUEVO,  EMYEPOVVTOL  OPKETEC  PeATidoelg  €vOg  OTATIOTIKOD,  KATELOLVTIKOD
xopoakINploTikov, Tov edge hinge distribution. Ta véa yopakTnplotiKd mov Ttapovotdlovial givat
10 Skeleton Hinge Distribution, to Weighted Skeleton Hinge Distribution, to Quantized Skeleton
Hinge Distribution, to Directional Stroke Run Length Distribution kot to Edge Skeleton Hinge
Combination . EmimAéov, diepevvator o cvvovacudg tov Skeleton Hinge Distribution pe éva
YopokINPIoTIKd OV Pocilete o€ LOVTEAQ.

Néeg ovvelopopéc mov oyetTilovtal Pe TNV TPOENEEEPYOTIO TOV EIKOVAOV EYYPAPOV OAAL KOL TNV
e€aymyn TOAVTIL®V YOPAKTNPIGTIK®V TOL KEWEVOL. E1dkotepa, mapovstalovtat dVo TEXVIKES Yo
v extipnon peyébovg kvpov copatog (Main Body Size Estimation), to omoio eivon éva
YOPOKTNPIOTIKO TOL KEWWEVOL UE €QUPUOYN o€ €va gupy @dopo medlov avdAvong eKOVov
eyypboov. H mpdm pnébodog petpd queca 1o péyeboc tov kHPLOV CAOUOTOC, VD M Oe0TEPN
vroroyilel mpota Tic Pacikés ypappés (baseline). Kat ot dvo mpotvopevor pebdoot dev amattovv
Tunuotonoinon (segmentation) . To TEPAUATIKA OTOTEAEGLOTO TAPOVGLALOVTOL GE [L0L GLALOYY|
YEPOYPOUOOV £YYPAO®V KOONDS Kol o€ o pikpn cvAioyn 10 ewdvov amo TANKTIpoAoyNUEVA
EYYPAPO TPOKEUEVOL VAL TPOKVYOVV MO OVTIKELUEVIKG amoteAéopata. EmmAéov, mapovoidlete
0L TEYVIKT] Y10l TOV EVIOTICUO KEWWEVOL TTOV EKUETOAAEVETAL TO YEYOVOG OTL TO KEIEVO TTPETEL VaL
napovotalel kdmow ovtifeon oe oxéon pe to vroPfabpo (background), mpoxeyévov va
dwukpivetor and 1o avBpdmivo pdti. Xpnowomoteitor por dadikocioo  binarization yio
onuovpyio KOATAAANA®V €KOVOV €YYPAPOL Y10, TNV OVIXVELCT] KEWEVOVL. XTNV GLVEXEWL TO
ouvoedepéva otoyyeion (connected components) tng ewovag e&dyovror kot e@appoloviat
OPIGLLEVOL EVPETIKOTL KOVOVEG Y10 TOV EVIOTIGUO TEPLOY DV TOV TEPLEXOVV KEILEVO.

[Na mv a&ordynon g mopovoag epyociog, M ovAAOYn xewpodypaewv firmaker DB
ypnoworomOnke. H cvykekpipuévn cvilhoyn nepthapPdvel 4 oerdeg yeipoypapov KEWEVOL amd
250 dwpopeTikovs cuyypapeic. Xpnotpomomonke po aIAn0dpo TEYVIKOV 0VTIGTOL(IoNG Yo TO
Skeleton Hinge Distribution, cvumepilapfavopévov tov minciéctepov yeitova, k-means,
epapyik®v ovotddwv (hierarchical cluster trees) , knn kot support vector machines. To
yopoaktnpiotikd Skeleton Hinge Distribution katdeepe va aviyvehoEL TOV GUYYPAQEA X ELPOYPAPOL
kewévou pe axpifeia 90,8%, to Weighted Skeleton Hinge Distribution pe axpifeia 91,2%, to
Quantized Skeleton Hinge Distribution pe axpifeia 92,4%, to Directional Stroke Run Length
Distribution pe axpifeia 91,2% wor to Edge Skeleton Hinge Combination pe axpifeia 90,2%.
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«Make everything as simple as
possible, but not simpler.»

Albert Einstein
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1. Writer Identification
1.1 Introduction

While our future is digital, our past is analogue. Writing is one of the most important
innovations in human history. Our cultural heritage, art, sciences, mythology, religious scripts,
poems, certificates, and our entire history can be found in the various historical document
collections written over the ages. While these collections are owned by various libraries and private
collections worldwide as hard copies, many historical documents have already become digital in
the last decades. The digitization of these documents is far from over since more and more
collections are digitized every day.

Although the contents of most historical document collections are well known, the same does not
apply to the writer identity. Therefore, by developing new methodologies that can identify the
writer of a historical document, or retrieve other historical documents from the same writer, or
even being able to tell if a historical document is written by one or more writers, like in [1], could
allow us to have a better understanding of our history.

Each person’s handwriting is unique and therefore it can be used as a biometric characteristic[2].
More specifically, handwriting is considered a behavioural biometric characteristic since it directly
relates to how each person grew up. For example, schooling, personal preferences, languages
learned, and other characteristics make each writer's handwriting unique. Moreover, handwriting
can be affected by other factors like the writing implements used, writing speed, writing surface,
and available writing area, resulting in handwritten documents with text characters that may vary
in size.

In recent years, most research in person identification primarily targets their biometrics [3]-[5].
Two types of biometrics exist, physiological and behavioural. Physiological biometrics
identification applications are based on measuring the physical property of the human body.
Various applications offer person identification through their physiological biometrics like their
iris, fingerprints, retinal blood vessels, hand geometry, DNA and even face identification from an
image. Results that yield a person’s identification using physiological biometrics can be considered
a solved problem. Behavioural biometrics, on the other hand, uses individual traits of a person’s
behaviour for identification. Some behavioural biometrics applications include voice
identification, signature identification, gait, keystroke dynamics and also handwriting.

Contrary to signature identification[6], which requires a predefined, sort sequence of characters or
strokes, writer identification can be achieved by a writer's handwritten text and not only by a
predefined one. Moreover, most signature identification systems use online information, meaning
that the user signs in a specific area with an electronic pen or some other electronic form of writing
aid, which monitors the user's movements and time. Unfortunately, writer identification systems
cannot use the same information for practical reasons. Most of the samples are written in the paper,
meaning the writer's time to write a text is unknown. Furthermore, the direction he travelled when
writing the characters of the text is also unknown.

Writer identification is the task of identifying the writer of an unknown handwritten document
image by matching it against a database of handwritten documents with a known writer. First,
features are extracted from the handwritten document image, and either a statistical analysis of
these features is entailed, and then their distances are measured, or the features are used to construct
models, which are later compared, to achieve identification.



In forensic practice, the identification of a writer is a problem that often arises in a court of justice
to identify the writer of a handwritten document [7], a will, for example. It also has applications
in the health sector where a prescription writer must be verified [8]. While in forensics [9] where
writer verification is most common and is usually performed by human experts, writer
identification can also be beneficial. For example, in cases of threats, or ransom letters, when there
is a suspect for the case, and his handwriting texts are taken as evidence, a graphologist tries to
verify the writer's identity with his handwriting texts. The above procedure can be automated if a
writer identification system is applied to an extensive data set and output a list of top-ranked
writers. Then the results can be either verified by a writer verification system or a human expert.
Writer identification and writer verification are some terms that usually get confused [10]. Writer
identification systems attempt to match the handwriting of unknown writers against a dataset of
handwriting from a known writer. These systems can identify a writer of the handwritten text based
on other handwritten text samples from the same writer. Moreover, writer identification systems
perform one too many searches in an extensive database with handwriting samples of a known
writer and return either one or a list of candidate writers. Writer identification can also be applied
to optical character recognition by exploiting the writer's style and adapting the recognition system
to the type of the writer [11].

On the other hand, on writer verification systems, the goal is to do a one-to-one identification.
Therefore, a decision must be made if two specific handwritten text samples belong to the same
writer. In this method, usually, the distance between the two samples is measured, and if it is below
a specific threshold, then the two samples are from the same writer.

Writer identification and writer verification fall into two broad categories: text-dependent and text-
independent [6]. Text-dependent methods share many similarities with signature verification
techniques since they compare a predefined set of characters or words of known semantic meaning
with the ones in the handwritten sample in question. Text-dependent methods require human
intervention to segment characters or words correctly. On the other hand, text-independent
methods use statistical features extracted from the samples without any human intervention. In this
work, the main focus will be given in text-independent techniques.

Writer identification techniques can be divided into three broad categories, statistical techniques
that use textural [10], [12] or structural based features [13] and model-based approaches that
extract features automatically from raw data without explicit programming.

Statistical techniques usually entail a statistical analysis of features extracted from the
directionality and curvature or structure of patterns in handwritten document images. In textural
features [12], the handwritten document is treated as an image and not as handwriting, and usually,
the analysis of the foreground texture is entailed to extract features. In structural features, the
extracted features are mainly based on characteristics of the writing that even a human reader can
distinguish, such as the text's Main Body size, the height of upper and lower Baselines, character
width, and text slant.

Model-based techniques can extract features automatically by using various Artificial-Intelligence
techniques like Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Extend
Learning Model (ELM), other deep machine learning models, or allograph approaches [10] that
construct models using Self Organizing Feature Maps (SOFM).

This work addresses the problem of offline, text-independent writer identification using scanned
handwritten document images. The methods presented here are statistical techniques that capture
textural features.



Our methods are statistically evaluated using the Firemaker data set [14] and the ICDAR, 2017
writer identification competition dataset [15].

1.2 Motivation And Objectives

The most prominent application of writer identification is in forensics and as evidence in
court trials [10]. For example, recently, writer identification techniques [1] were utilized in
palaeography to prove that The Great Isaiah Scroll (1QIsaa), one of the original seven Dead Sea
Scrolls discovered in Qumran in 1947, was written by two distinct writers carefully mirroring
another scribe's writing style. Future advancements in this field may allow us to use it in
applications such as OCR, identifying the writer of anonymous historical documents, and
authentication systems.

Although relatively recent works on the writer identification field utilize artificial intelligence
techniques [15]-[21], a choice was made to use traditional methods only for several reasons.
More specifically, the datasets available for the writer identification task do not contain enough
samples and are pretty limited in size. In [17], This issue is identified in the open research issues
section as the cause for the scarcity of CNN based writer identification systems in the literature
and as a problem that highly affects the performance of deep learning models. Some researchers
[21] try to overcome those limitations by using another Artificial Intelligence technique to generate
thousands of samples per writer. Other researchers [19], [20] either utilize the annotations available
on Datasets to split entire pages into words or proceed with word segmentation techniques and
then try to achieve writer identification on the word level.

Moreover, with the recent European Union fit for the Digital Age [22], the EU Commission
proposes new rules and actions for excellence and trust in Artificial Intelligence. According to
these new rules, biometric identification systems are considered high risk and subject to strict
requirements. One of those requirements is using high-quality datasets to minimize risks and
discriminatory outcomes.

Furthermore, the dilemmas in applying artificial intelligence methods in digital palaecography, as
presented in [23], also reflect our difficulties in using artificial intelligence techniques for critical
writer identification applications. In our view, a system that could be used in forensics and as
evidence in court trials must be easily explainable, understood, and most importantly, trusted.
Directional methods [24]-[28] fulfil the above criteria since they can be easily explained,
understood and ultimately trusted. Moreover, they are computationally efficient and fast and could
be even run on mobile devices if such a need arises. Finally, their requirements for training data is
minimal since only one page of handwritten text is sufficient, in most cases, to capture the
necessary characteristics, or the feature vector, of a writer.

In our work on Skeleton Hinge Distribution [28], the skeleton information was used to make the
feature extraction faster. However, by considering only the Skeleton, a big part of the available
pixel information is discarded. This choice has motivated us to investigate if any additional
information that could help identify the writer lies in discarded information.

Furthermore, our work on Detecting the Main Body size [29] made apparent that the Main Body
size fluctuations could be observed even in a single text written by one writer. This observation
motivated us to utilize this information and explore its contribution towards identifying the writer.
Finally, on [20], they observed that neural networks trained on grey-scale images performed better
than neural networks trained on binarized and contour images indicating that texture information



is an essential factor for writer identification. This observation motivated us to investigate if the
same can be observed in Directional methods.

In a nutshell, the objectives of this thesis are as follows

Objective 1: We aim to make advancements in the preprocessing of handwritten document images
that will allow us to reduce the noise and extract valuable characteristics of the text.

Objective 2: We aim to advance directional feature extraction techniques and propose some new
feature extraction methods.

Objective 3: We aim to experiment with various matching techniques for our features to
understand better how the different matching techniques affect identification accuracy.

Objective 4: We aim to evaluate the choices made in our work regarding the skeletonization
process and find out if there is a loss of information and the effect it has on performance.
Objective 5: We aim to experiment with pixel intensity and character size fluctuations to
understand better how they affect identification accuracy.

1.3 Main Assumptions

The written text consists of several pen strokes applied with some force on a medium like
paper. While those ink strokes represent a single line to a human observer, the same ink stroke is
digitized into several pixel lines. To make things worse, differences in pen ball size and the angle
or surface of writing may produce significant variations in the number of pixel lines produced
during the digitization process and differences in the character sizes.

The primary assumption done in this work is that all stroke widths, i.e., line thickness, should be
the same size. Practically this means that an attempt is made to condense all the writing information
in 1-pixel width strokes.

Furthermore, an assumption is made that even if all the available information is used in 1-pixel
width fragments, the accuracy should not significantly deviate from the Skeleton Hinge technique
accuracy.

Similarly, an assumption is made that the main body size variance affects the identification
accuracy since Hinge angles are related to the size of characters. Imagine, for example, the
character "o" with two different main body sizes. The first can be represented by capital "O" and
the second with a small "0". The directional angle of writing on the small “0” is smaller than the
directional angle of writing on the capital “O”.

Moreover, an assumption is made that noise produced by the writer could affect identification
accuracy. This kind of noise either consists of the writers attempt to erase with ink what he has
written by mistake or smaller ink stains that resemble salt and pepper noise.

Finally, an assumption is made that the pressure applied to the medium by the writer can also affect
accuracy. Since this work deals with offline writer identification, a further assumption is that the
pressure can be represented by pixel intensity on the grey-scale document image.

1.4 Contributions

In this work, several directional features and combinations of directional features with
model-based features are presented. Specifically, several improvements of a statistical directional
feature, the edge hinge distribution, are attempted in novel contributions as the Skeleton Hinge
Distribution, the Weighted Skeleton Hinge Distribution, the Quantized Skeleton Hinge
Distribution, the Directional Stroke Run Length Distribution and the Edge Skeleton Hinge



combination. Furthermore, the combination of the Skeleton Hinge Distribution feature with a
model-based feature is explored based on a codebook of graphemes.

Novel contributions related to the preprocessing of the document images and the extraction of
valuable characteristics are presented. More specifically, two techniques are presented for Main
Body Size estimation, a characteristic with application in a broad range of document image
analysis fields. One measures the Main Body size directly, while the other first estimates the
baselines. Both methods are segmentation free. Finally, to give more objective results,
experimental results are presented over a small collection of 10 printed documents and a collection
of handwritten text.

Furthermore, a technique for text localization is presented, which takes advantage of the fact that
text should present some contrast in comparison with the background to be distinguished by the
human eye. First, a procedure of binarization is applied to create appropriate images for text
detection. Next, the connected components of the image are extracted, and some heuristic rules are
applied to identify areas containing text. Finally, a postprocessing step is applied to clean the
document image from the noise that is not part of the text.

1.5 Overview

In chapter 2, state of the art in writer identification is presented. Then, an overview of the
anatomy of the handwritten document image is given. Finally, significant terms and techniques
related to document image analysis, in general, will be presented.

In chapter 3, statistical and model-based features used for writer identification are presented.
Individually, Edge Direction Distribution, Edge Hinge Distribution and Edge Hinge
Combinations, along with our contributions, the Skeleton Hinge Distribution, the Weighted
Skeleton Hinge Distribution, the Quantized Skeleton Hinge Distribution, the Directional Stroke
Run Length Distribution and the Edge Skeleton Hinge combination are presented. Furthermore, a
Model-Based feature that only considers closed areas of the characters is presented.

In chapter 4, two novel approaches for estimating the Main Body size and a technique for noise-
cleaning through text localization will be presented.

In chapter 5, the data set used to evaluate this work is presented along with experimental results
from our feature extraction techniques. More specifically, experimental results on Skeleton Hinge
Distribution using the Nearest Neighbour classifier, K-means, Hierarchical Cluster Tree, K-
Nearest Neighbours and Support Vector Machines are presented. Moreover, results on Quantized
Skeleton Hinge Distribution, Weighted Skelton Hinge Distribution, Run Length Directional Hinge
and Edge Skeleton Hinge Combinations, and Codebook of Graphemes combined with Skeleton
Hinge Distribution are presented.

Finally, in Chapter 6, an interpretation of the feature vector characteristics produced by the
directional methods mentioned above is attempted. Furthermore, an explanation of how matching
is achieved and what happens on false identifications is provided. Furthermore, a discussion about
writer identification techniques is provided, and finally, our conclusions are drawn.



2. State Of The Art

In this section, a review of recent papers published on the topics of writer identification and
some from writer verification are presented. Writer verification was chosen because some of the
feature extraction techniques developed for writer verification can also be used in writer
identification. Several approaches exist in the literature for writer identification. First, works that
entail a classical method, i.e. statistical or model-based strategies, are reviewed—followed by the
most recent works based on artificial intelligence and deep learning.

Bulacu et al. [24] proposed the Edge Directional Distribution (EDD) and the Edge-Hinge
Distribution (EHD) features. While Edge directional distribution considers the direction of a single
edge fragment, the Edge-Hinge distribution considers the directions of two edge fragments
emerging from a central pixel of a sliding window. Next, the probability distribution of the
directions detected is generated for every writer in the train data set and then for every writer in
the test data set. Finally, the generated distributions from the test data set are matched against the
generated distributions of the train data set using the nearest neighbourhood algorithm.
Experimental results reported an accuracy of 35% for the Edge directional distribution and 63%
for the Edge-Hinge directional distribution on Firemaker DB [14].

Laurens van der Maaten et al. [25] suggested an improved Edge Hinge Directional feature, the
Edge Hinge Combinations (EHC), by combining various sliding window sizes in a single feature.
Experimental results achieved an identification accuracy of 81% on Firemaker DB.

Brink et al. [26] suggested the Quill feature, a probability distribution of the local relation between
ink direction (@) and ink width (w). Furthermore, the Quill-hinge feature was suggested, which
records the ink width in conjunction with the two directions (¢1) and (¢2). While the Quill feature
achieved 71% accuracy, the Quill-hinge achieved 86% accuracy, both on Firemaker DB.

He and Schomaker [27] proposed two directional features. The CoHinge feature is defined as the
joint distribution of the Hinge kernel on two different pixels of writing contours, and the
QuadHinge feature, defined as the joint distribution of angles, along with the curvature information
of contour fragments. The CoHinge feature was used in the ICDAR 2017 writer identification
competition [15] in the method Groningen, achieving an accuracy of 76.1%.

Finally, He et al. [30] proposed a model-based approach for junction detection using the stroke
length distribution in every direction around a reference point inside the ink of texts. A codebook-
based representation of the junctions detected is constructed and used for writer identification
achieving an accuracy of 80.6% on the Firemaker DB.

Said et al. [12] proposed a text-independent approach for writer identification that derives writer-
specific texture features using multi-channel Gabor filtering and Gray-Scale Co-occurrence
Matrices. This method requires uniform blocks of the text created by word deskewing, predefined
thresholds of the distance between text lines, words and text padding. Two small sets of 20 writers,
with a large number of 25 samples of handwriting text per writer, are used in the evaluation. The
Nearest-centroid classification using weighted Euclidean distance and Gabor features achieved an
accuracy of 96%. One of the main issues of this approach is the large number of sample pages
required per writer.

Zois and Anastassopoulos [31] proposed a method for writer identification using a single word.
They apply image thresholding and curve thinning, resample the horizontal projection profiles,
and then use morphological operators to obtain 20-dimensional feature vectors classified using a
Bayesian classifier. Experiments were performed on a single word, the word "characteristic",



written 45 times by each writer, both in English and Greek. The dataset consisted of 50 different
writers. The reported accuracy of this method is 95%.

Srihari et al. [32], on a writer verification approach, proposed a considerable number of features
divided into two categories. Macro-features, which operate at document, paragraph and word level.
Also, Micro-features, which operate at word and character levels. The macro-features are based
on grey-level entropy and threshold, number of ink pixels, number of interior and exterior
contours, number of 4-direction slope components, average height and slant, paragraph aspect ratio
and indentation, word length and upper and lower zone ratio. The Micro-features utilize gradient,
structural, and concavity attributes. The proposed system considers two handwritten document
images and outputs a decision made if the two input images are from the same writer or a different
one. Experimental results were performed on a dataset containing 1000 writers who copied a fixed
text of 156 words (the CEDAR letter). This writer verification method achieved on same writer
accuracy of 94.6 % while different writer accuracy was 97.6 %.

Bensefia et al. [33] use graphemes generated by a handwriting segmentation method to encode the
individual characteristics of handwriting. These graphemes are then clustered to define a feature
space common for the document set. Finally, grapheme clustering is used to define a feature space
common for all documents in the dataset. The reported experiment results achieved an accuracy
of 90 % on a dataset consisting of 88 writers (PSI) and 68 % on a dataset of 150 writers (IAM).
Schomaker et al. [34] compute fragments of connected-component contour classified to identify
the writer. Next, a codebook of graphemes is generated by training a Kohonem SOFM on many
grapheme contours. Later, graphemes are extracted from each document and matched with the
graphemes in the codebook. Finally, a histogram of graphemes for every document is generated.
Experimental results achieved an accuracy of 95 % on ten writers and 83 % on 215 writers. When
combined with Edge Directional features, 97% accuracy is achieved.

Laurens van der Maaten et al. [25] improved edge hinge directional features using a combination
of window sizes while combining these features with a codebook of graphemes achieved 97%
identification accuracy. In addition, the edge hinge combinations methodology proposed achieved
81% identification accuracy on the Firemaker dataset, which consists of 250 writers.

Schlapbach and Bunke [35] used HMM to identify and verify writers. Single writer recognizers
are specialized by training using only handwriting originating from the chosen writer. More
specifically, the output log-likelihood scores of the HMMs were used to identify the writer on
handwritten text lines of varying content. This method achieved 96% identification accuracy and
2.5% error in verification accuracy as reported on a subset of the IAM database containing 100
writers, five handwritten pages per writer.

Pervouchine and Leedham [36] proposed a writer identification scheme based on high frequent
characters. The high frequent characters ('f', 'd', 'y', 'th") are identified and used to determine the
writer. Characteristics like height, width, height to width ratio, height of ascenders and descenders,
stroke angle, slant angle and others. Experimental results achieved an identification accuracy of
58 %.

Bar-Yosef et al. [37] proposed a method for writer identification applied to historical Hebrew
calligraphy documents based on topological features. While his approach seems similar to
Pervouchine and Leedham approach, they use three high frequent Hebrew characters only to
identify the writer. Connected components for tracing background, the convex hull of the
characters, the ratio between background and convex hull, concavity, compactness are some of the
features used in this approach. The reported experimental results achieved an accuracy of 100 %
on 34 writers.



Li et al. [38] proposed a method for text-independent online handwriting writer identification.
They used the feature vector of hierarchical structure in shape primitives and the dynamic and
static feature for writer identification for English and Chinese documents. Experimental results
achieved an identification rate of 91.5% with datasets in Chinese text and 93.6% in English text.
It is an exciting methodology with the drawback that it cannot be applied to offline writer
identification because the direction of the stroke of the writer is unknown.

He et al. [39] developed a technique for offline, text-independent writer identification of Chinese
handwriting documents. He applied the Gabor filter to extract features from the text and
incorporated a Hidden Markov Tree in the wavelet domain. Experimental results achieved an
accuracy of 36.4% on a dataset of 500 writers with two handwritten text documents each.

Yan et al. [40] utilize spectral features using Fast Fourier Transformation to identify the writer of
Chinese text. The identification rate achieved in this method is 64 % on 100 writers.

Bulacu et al. [41] developed a text-independent writer identification method for Arabic text. They
use textural and allographic features to define a probability distribution function and apply the
nearest neighbourhood classifier using them as a distance measure.

Al-Dmour et al. [42] identify writers in Arabic using different feature extraction methods such as
hybrid spectral-statistical measures (SSMs), multiple-channel (Gabor) filters, and the grey-level
co-occurrence matrix (GLCM) were verified to find the best subset of features. In addition, they
experimented with various classifiers to rank the extracted features.

Wu et al. [43] proposed a method based on scale-invariant feature transform (SIFT) in three stages
of training, enrollment, and identification. First, an isotropic LoG filter is utilized to segment the
image to word regions from where SIFT descriptors are extracted into a codebook. Second, scale
and orientations are used to construct an orientation histogram. Finally, a distance metric is used
for matching. Experimental results on the Firemaker dataset achieved 92.4% accuracy.

Nicolaou et al. [44] developed a generic text-as-texture classification scheme where Sparse Radial
Sampling Local Binary Patterns are constructed in histograms for different radius. In their
Barcelona variation used in ICDAR 2017 writer identification competition [15], they used 12 radii
to create histograms normalized with a PCA transform.

Mohammed et al. [45] proposed the Local Naive Bayes Nearest-Neighbour (Local NBNN)
classifier. In this method, the SIFT algorithm is used to detect and describe critical points with a
constrain that considers the particularity of handwriting patterns and prevents irrelevant points to
be matched. Normalization is also proposed to cope with unbalanced data. In their Hamburg
variation used in the ICDAR 2017 writer identification competition [14], they used NBNN instead
of the local NBNN without normalization.

Newell et al. [46] proposed the oriented Basic Image Feature Columns (oBIF Columns) that entail
a mixture of allograph and texture-based methods that encode a writer's deviation from the mean
encoding population of writers with the Delta Encoding.

Abdeljalil et al. [47] developed a method that uses oriented Basic Image Features (oBIFs) that
labels locations in the document images into seven symmetry classes for several orientations.
Column histograms are constructed, and a distance metric is used for matching. For example, in
their Tebessa I and II variations used in ICDAR 2017 writer identification competition [15], they
used city block distance.

Nadia et al. [48] applied 16 Gabor filters for handwriting texture analysis, while Gazzah et al. [49]
applied spatial-temporal textural analysis. Al-Ma‘adeed et al. [50] identify Arabic writers using
only 16 words. They utilize edge-based directional features and three edge-direction distributions
of different sizes.



Chabhi et al. [51] suggested using a Block Wise Local Binary Count (BW-LBC) operator, which
represented the writer by a set of histograms calculated from all the connected components in the
text and is based on the occurrence distribution of pixels in small blocks. In addition, the nearest-
neighbour classification using the Hamming distance was utilized for matching.

Chabhi et al. [52] proposed Cross multi-scale Locally encoded Gradient Patterns (CLGP). This new
feature extraction technique that represents better salient local writing structure operates at
connected component sub-images of the writing sample. Then CLGP histogram feature vectors
are computed from all these observation regions in all writing samples, and the Nearest Neighbor
Classifier is used for matching. Accuracy results reported in this work for the Firemaker database
achieved an accuracy of 97.60%, showing that traditional methods are still helpful for writer
identification.

Fiel and Sablating [16] suggested a convolutional neural network (CNN) method for writer
identification. A CNN-based feature vector was generated for each writer compared with the
precalculated feature vectors stored in the database using nearest neighbour classification.

Xing and Qiao [53] proposed DeepWriter, a deep multi-stream CNN that takes local handwritten
patches as input and is trained with softmax classification loss.

Tang and Wu [21] suggested using a CNN and joint Bayesian at two stages, feature extraction and
writer identification. In the first stage, and because much data is needed to train an effective CNN,
an augmentation technique generates thousands of handwriting images for each writer. These
generated images are then used to train the CNN model while the joint Bayesian method is utilized
for writer identification.

Khan et al. [54] suggested an offline text-independent writer identification system, which
combined SIFT (Scale Invariant Feature Transform) and RootSIFT descriptors in a set of Gaussian
mixture models (GMM). They reported accuracy of 97.98% on the Firemaker dataset.

He and Schomaker [18] suggested using an end-to-end multi-task neural network with several
adaptive convolutional layers with two types of information. Explicit information includes data
like lexical content or word length and implicit attributes such as the author's identity. Their
method performs writer identification on word level by resizing all word images to 120x40x1.
He and Schomaker [19], in a later work, proposed FragNet. This deep neural network entails two
pathways: a feature pyramid that is first used to extract feature maps and then a fragment pathway
based on fragments extracted from the input image and the feature maps from the feature pyramid.
In this work, word images were used to achieve writer identification on the word level. Their
method achieved 57.5% accuracy on word images from the Firemaker dataset.

Finally, He and Schomaker [20] suggested the global-context residual recurrent neural network
(GR-RNN) method. This work utilizes an end-to-end neural network that jointly integrates global-
context information and a sequence of local fragment-based features. A global average pooling
step is used at the tail of the neural network to acquire the global-context information, while a low-
level deep feature map is used to extract the local fragment-based features. A recurrent neural
network (RNN) is used to model the spatial relationship between the sequence of fragments and
to strengthen the discriminative ability of the local fragment features. They reported an accuracy
of 98.8 % on the Firemaker Dataset that is the best performance reported on the literature for the
Firemaker Dataset.



3. Handwritten Document Image
3.1 Handwritten Document Image Anatomy

Many characteristics can describe handwritten documents. First, the characters and words have
unusual shapes and sizes. Furthermore, their layouts and the skew of the text are not uniform and
depend on the writer. Moreover, the text lines do not follow a straight line but tend to have a
curvature. Also, text lines may interfere with each other or might be physically connected with
other lines. Finally, the interline spacing is not uniform. For an example of handwritten documents
with the above problems, see Fig. 1 and 2.

While all the above are considered a problem for tasks like the automatic reading of these
documents, they are regarded as features for writer identification since they can reveal the specific
writer of the document.
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Figure 1. Example of a part of a handwritten historical document image from the ICDAR 2013 Handwriting
Segmentation Contest [55] benchmark dataset with interfering lines (ellipse), non-uniform skew, non-uniform
interlines spacing and text lines with curvature.
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Figure 2. Example of a part of a handwritten historical document image from the ICDAR 2013 Handwriting
Segmentation Contest benchmark dataset with connected lines (circles), non-uniform skew and non-uniform
interline spacing (line).

Handwritten documents do not have a standard form of writing or any uniform layout. The text
line structure is the most dominant structure of these documents. A handwritten document image



can be viewed as a text area that consists of text lines. Every text line also consists of one or more
words, while every word can be seen as a set of characters in order. Characters, in their turn,
consist of black pixels. This work assumes that document images have a white background black
foreground (text).

While humans can easily distinguish the text lines, the mechanism of this inherent ability is a
fantastic feature of the human brain that is still an unsolved problem for computer algorithms.
Even when the handwritten document image is seen at a significant distance, while the characters
and the words are still blurry, the human brain can still distinguish the distinct lines that form the
text. For example, see Fig. 3 and Fig. 4, two images from the ICDAR 2013 Handwriting
Segmentation Contest [55] are scaled to 5% of the original image size. Thus, while it is still hard
for a human to read the exact text, it is easy to segment the different text lines.
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Figure 3. Example of handwritten historical document images from the ICDAR 2013 Handwriting
Segmentation Contest benchmark dataset, scaled to 5% of the original size. Text lines can be distinguished from a
human, even on this scale.
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Figure 4. Example of handwritten historical document images from the ICDAR 2013 Handwriting
Segmentation Contest [10] benchmark dataset, scaled to 5% of the original size. Text lines can be distinguished
from a human, even on this scale.



3.2 Terms Definition

In this section, the different terms associated with the physical structure of handwritten
documents are presented. For graphical representations, please see Fig. 5 and Fig. 6

e A stroke is considered the movement of a writing instrument (pen) on a writing surface
(paper)

e The baseline of text is the imaginary line that follows the lower part of the characters.

e The median line of text is the imaginary line that follows the upper part of the character.

e The upper line of text is the imaginary line that follows the upper parts of ascenders.

e The lower line of text is the imaginary line that follows the lower parts of descenders.

e The main body of the text is the size between the baseline and the median line.

e The ascenders are the parts of lowercase characters that lie above the median line.

e The descenders are the parts of lowercase characters that lie below the baseline.

e A component is considered a single character or several connected characters that form a
word in this work. Component, in a more general term, is regarded as the connected pixels
with similar intensity values.

e Overlapping components are the ascenders or descenders that are in the region of the line
above or below.

e Touching components means the ascenders or descenders are physically connected with a
part of the text line above or below.

Upper line
Median line e god 'i_ 5
ain Bo
Baseline Ay-g
Stroke descender
Lower line

Figure 5. Upper line, Median line, Baseline, Lower line, a single stroke, ascenders and descenders.
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3.3 Document Image Analysis

In this section, an attempt is made to give all the necessary definitions for the methods
described in the next chapter, to be more easily understandable. A basic introduction of what a
digital image is, is given. Furthermore, some exciting image analysis techniques like image
binarization, edge detection, Gabor filters, skeletonization, connected components, contour
tracing, Main Body, run lengths, Fourier transformation, and text localization will be briefly
presented.

3.3.1 Digital Image

When a document image is scanned, it is transformed, through a process of digitization, into a
digital image. This digital image is, in fact, a numeric representation of a two-dimensional matrix
if the image is digitized to contain only the grayscale representation. Alternatively, it can be
represented to a three-dimensional matrix if the image is digitized to include all the available
colour information. For the digitization process, the image is first sampled on a discrete grid, and
then each sample, or pixel, is quantized using a finite number of bits. Finally, a computer processes
the digitized image. For example, in Fig.7, a document image fragment is presented with the word
"The".

Figure 7. Fragment of a digital image with the word “The”

In scanning or digitization in general, the image is viewed as small elements, called pixels. A
matrix of pixel intensity is stored that can later represent the scanned image. For example, if a
zoom-in on a digital image is attempted, at some point, the distinction between the different pixels
the image consists, can be observed. For example, see Fig 8.



Figure 8. Fragment of a digital image with the character

This pixel intensity matrix is, in fact, a numerical matrix. Each pixel intensity value stored in this
matrix represents how bright a pixel will appear on a screen. The higher the intensity value of a
pixel is, the whiter it will look. Grayscale images use 8-bit integers to store pixel values, meaning
that a pixel can be represented by a numerical value between 0 and 255. In Fig. 9, the character
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An image can be binarized using a threshold [56] to consist only of values 1 or 0, white or
black. In Fig. 10, a binarization example that uses a threshold of 150 is presented. In this example,
values smaller than 150 are set to 0, while values greater or equal to 150 are set to 1. This grayscale
image will be transformed into a binary one with the above process, although this is just one
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method for binarizing an image using a global threshold. More complicated methods exist that use
adaptive [57] thresholding and other techniques. In Fig. 10, an example of the image in Fig. 9,
binarized using a global threshold, is presented.
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Figure 10. The character "e" is represented in a binary pixel intensity matrix

Binarization is a ubiquitous pre-processing task of image processing, which reduces the size
of the image and allows fast and easy calculations and further processing of an image. It is
considered a mandatory task in many computer vision systems [58], and several works have used
binarization as an aid for text detection [59]-[62].

3.3.3 [Edge Detection

Edge detection [63] is the process of identifying the specific points in a digital image where
the image brightness suddenly changes or has discontinuities. Those points are typically organized
into a set of curved line segments named edges. With edge detection, the boundaries of objects in
an image are indicated, making the methods of edge detection a fundamental tool in image
processing, machine vision and computer vision. The output of an edge detection algorithm is a
binary image, with only the edge pixels having a value of 1. For an example of applying an edge
detection algorithm, and more specifically Sobel edge detection, see Fig 11.

Figure 11. The output of edge detection on the image of Fig. 7.



3.3.4 Gabor Filter

Gabor filters [64] are orientation-sensitive filters used for texture analysis. They typically
traverse an image in multiple directions. A Gabor filter, set in a direction, will give a strong output
for locations of the target images that have structures in this given direction. For example, suppose
the target image is made of a periodic grating in a diagonal direction. In that case, a Gabor filter
set at a direction will give a strong output only if its direction matches one of the gratings. Gabor
filters have also been used to localize and extract edges since edges are composed of higher
frequency components, whereas other image regions are relatively smooth. Frequency and
orientation representations of Gabor filters are similar to those of the human visual perception, and
they are appropriate for texture identification and representation. Gabor filters have many practical
applications. They are primarily used in character recognition and fingerprint enhancement and
also writer identification systems. For example, see Fig. 12.

Figure 12. Top left: Original Chinese character. Top middle: Orientation = 0 degree. Top right: Orientation
= 45 degree. Bottom middle: Orientation = 90 degree. Bottom right: Orientation = 135 degree. Bottom left:
Superposition of all four orientations.

3.3.5 Skeletonization

A topological skeleton [65] is a thin version of the shapes found in a digital image. The skeleton

usually highlights the geometrical and topological properties of a shape. These properties include
its length, direction, width, topology and connectivity. Thus, the skeleton can efficiently represent
that shape since it contains all the necessary information to reconstruct it. In this work,
skeletonization is referred to as thinning the characters, so only their skeletons are left.
Skeletons have been utilized in various fields, like image analysis, computer vision, and digital
image processing, including applications for fingerprint recognition, optical character recognition,
binary image compression, and pattern recognition. An example of the skeleton of the word “The”
is given in Fig. 13.
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Figure 13. The output of skeletonization on the image of Fig. 7.

3.3.6 Connected Components

Connected components are groups of pixels that share similar pixel intensity values and are
connected [66]. Connected component algorithms work by traversing an image pixel-by-pixel
(from top to bottom and left to right) to identify connected pixel regions, i.e. regions of adjacent
pixels that share the same set of intensity values. For example, an algorithm can be set to check
for a 4-connectivity connected component or an §8-connectivity connected component Fig. 14. 4-
connectivity algorithms check the upper, the bottom, the left, and the right neighbour pixel for the
same intensity. 8-connectivity checks the entire neighbourhood of the central pixel for pixels with
the same intensity.
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Figure 14. left: 8-connectivity. Also called a Moore neighbourhood. right: 4-connectivity

Only connected pixels with a numeric value "1" will be considered in the same group for a binary
image. While on grayscale images, a range of intensity values is considered. Each group of
connected components is labelled, either with an id or with a different colour.

The connected components technique is advantageous in document image analysis because each
character can be categorized as a connected component with a given label.

3.3.7 Contour Tracing

Contour tracing [67] output might look almost the same as edge detection algorithms; however,
edge detection algorithms try to find points that are at the extreme of the image gradient in the
direction of the gradient, with the edge pixels, pointing out a significant difference between
neighbouring pixels. Contour tracing tries to find the contour, i.e. the boundaries, of an object.
Contours need to be closed curves to map precisely the boundaries of any given object, while edge
detection does not require closed curve edges. Usually, objects are first identified through a
connected component tracing, and then the contour of every object is extracted. A complete



contour includes both the exterior contour and the interior contour. Interior contours are harder to
detect because they reside in character closed areas. For example, a complete contour of character
A is given in Fig 15.

Figure 15. left: The character “A”. right: The complete contour of character “A".

3.3.8 Main Body
Main Body [29] or core region size is a characteristic that is used quite often in most
document image processing systems. As Main Body, it is considered the central part of the text,
excluding ascenders and descenders (Fig.16). Most of the time, it is referred to words.

upper
bazeline

main body
lower
baseline
Figure 16. Word Main Body and baselines.

Main Body is a characteristic used in many systems that use image processing for various tasks in
document images. It has been used in systems for OCR [68], [69], segmentation [70], [71], slant
removal [72], dewarping [73], [74], word matching [75], indexing [76], word spotting [77]-[79],
etc. All the above systems utilize the main body information and use it as a threshold or character
size information, as it is directly related to the size of the characters, the document image resolution
and the text orientation.

The Main Body size can also be utilized to get a rough estimation of the character width. Especially
in [79], they mention: By mean width of the character, we consider the width of characters such
asa, b, c, d, e, fand others, excluding the characters 1,1,j,m,w that are either too narrow (i,1), or too
broad (m,w). Although the character width differs between characters and writers, a rough
estimation of the mean width could be made by accepting that characters present width equal to
their height, excluding the ascenders and descenders height of the characters.

Considering all the above, we see that Main Body is crucial in document image processing
systems. Thus, many techniques have been developed for calculating the Main Body.



3.3.9 Run Length Encoding

Run Length Encoding counts runs of data with the same value that occur in consecutive
pixels. It is used primarily on binary images for various tasks, from data compression to skew
detection and line segmentation. In binary images, two distinct types of run lengths exist. Black
run Lengths, where consecutive pixels that are off (0) are counted and White Run Lengths where
consecutive pixels that are on are counted. For example, the pixel sequence in Fig. 17 has a black
run-length encoding of 2, 3, 7,2, 3

001000100000001001000

Figure 17. An example of a pixel sequence with a black run length with values 2, 3, 7, 2, 3

3.3.10 Fourier Transformation

Fourier Transformation is a valuable image processing tool used to decompose an image into
its sine and cosine components [80]. The output of a Fourier transformation is a complex number
valued output image that represents the input image in the frequency domain. The input image is
considered the spatial domain equivalent, and by spatial, it is meant the normal image space. In
the Frequency domain image, each point represents a particular frequency contained in the spatial
domain image.

The complex number valued output image produced by the Fourier Transform can be displayed
with two images, the magnitude image and the phase image. The magnitude image contains most
of the information of the geometric structure of the input image, and thus, in image processing,
only the Magnitude of the Fourier Transform is displayed. However, for re-transforming the
Fourier image into the correct spatial domain image after some processing in the frequency
domain, both the Magnitude and phase of the Fourier image are required.

Furthermore, unlike a typical grayscale image in the spatial domain represented with pixel
intensities between a range of 0 and 255, the Fourier domain image consists of a much higher
range. Thus, to be sufficiently accurate, its values are usually calculated and stored in float values.
The Fourier Transform can be found in various applications, such as image filtering, image
analysis, image reconstruction and image compression. An example of the magnitudes of specific
handwriting letters can be seen in Fig 18.



Figure 18. Handwritten characters, along with their Magnitude in the Fourier domain

3.3.11 Text Localization

Text localization is an old computer vision problem, which started to be studied in the *90s [81],
and it involves the task of localizing text in images. Nowadays, efficient solutions to this problem
are more useful than ever in robotics, smart cars, smartphones and other fields. Thus, many
techniques have been proposed using connected components [82], edge detection [83], sliding
windows [84], hybrid techniques [85], as well as other techniques [86]. Moreover, in the last years,
four competitions have been organized on robust reading [87]-[90], which has motivated active
research in this area.



4. Writer Identification Techniques

State of the art writer identification systems uses various techniques that use different
feature types and classifier approaches to identify the writer. Features can have many types,
statistical features where distribution is calculated, structural features where specific rules related
to the text structure are applied, model-based features where the characters are treated like
allographs or graphemes where the text is treated as texture and many others. Furthermore, features
can be extracted from different levels of the text, like the macro-level that includes features from
the entire document, paragraphs, lines or words and the micro-level that includes features from
characters, parts of characters (graphemes) or pixels. On the other hand, classification approaches
can be categorized into five types [91]: minimum distance classifiers, statistical classifiers, neural
networks, fuzzy classifiers and syntactic classifiers.

In the scope of this work, a focus is given on statistical-textural directional features on the micro-
level that are extracted using a Probability Distribution Function (PDF) and minimum distance
classifiers. Furthermore, further experiments were performed using a combination of statistical-
textural features with model-based features. Finally, statistical classifiers and neural networks were
also considered.

The focus will be given to edge direction features [24], their advancements, edge hinge
distribution, and edge hinge combinations [25]. Edge hinge distribution is reported to outperform
all other statistical features while edge hinge combinations improve the previous method. An
attempt is made [28] to improve the edge hinge combinations methodology using image skeleton,
thus referring to this methodology as skeleton hinge distribution. Further improvements are also
attempted on the skeleton hinge distribution on a weighted variation using the Main Body size at
the pixel level. Furthermore, an attempt was made to utilize the pixel intensity information on a
quantized version of the skeleton hinge approach. Furthermore, a novel approach on directional
features is presented using Directional Stroke Run Length Hinge Distribution. Finally, a
combination of the Edge Hinge Combinations Distribution with the Skeleton Hinge Distribution
is presented.

While directional features distributions have good results, they are directly related to the writer’s
slant. The slant is a characteristic that can be easily forged. A combination of skeleton hinge
distribution with a model-based one is presented to secure this method and improve the results.
The model-based technique used in this thesis involves using predefined models of small strokes
of handwriting called graphemes.

4.1 Statistical-Directional Features
4.1.1 Edge-Direction Distribution

Edge-direction distribution, suggested by Bulacu et al. in [24], is the first and the most
straightforward method in a family of techniques that consider statistical-directional features for
the task of writer identification. In this method, extraction starts with edge detection. Edge
detection generates a binary image in which only the edge pixels are kept. Next, each edge pixel
is considered in the centre of a square neighbourhood. Then, all the pixels are checked, using
logical AND operators, to all directions, emerged from the central pixel and end on the periphery
of the neighbourhood, looking for the presence of another edge fragment (i.e. connected sequences
of pixels). In Fig. 19, an edge image of the word "the" is presented. Furthermore, an example of a



square neighbourhood with a 4-pixel length edge fragment emerging from the central pixel with
the direction of the fragment quantized in 12 directions is presented.

First, a histogram is created, using the count of all the verified direction instances, and then it is
normalized to a probability distribution p(¢). This distribution gives the possibility of finding an
edge-based fragment oriented at the angle ¢ to the horizontal. Moreover, the most dominant
direction in p(¢) corresponds to the slant of the handwritten text.

Some essential practical details that relate to the implementation of edge-direction distribution [24]
should be mentioned. In order to avoid repetition, the algorithm only checks the upper two
quadrants in the neighbourhood since it is hard to determine which way the writer "travelled" along
with the found oriented edge fragment. In the experiments conducted in [24], they only considered
3,4 and 5 pixel-long fragments quantized in n= 8,12 and 16 directions, respectively. It is also
worth mentioning that the edge detection method used does not generate 1-pixel wide edges, but
instead edges that have a wide of 1 to 3 pixels. This practical detail introduced smoothing into the
histogram computation, which they found advantageous in the experiments. For more details about
algorithm options and results, see [24].

Figure 19. Extraction of edge-direction distribution.

4.1.2 Edge-Hinge Distribution

Edge hinge distribution, also suggested by Bulacu et al. in [24], is an improved version of
Edge-Direction distribution that considers not one but two edge fragments in the neighbourhood,
emerging from the central pixel, and subsequently, compute the joint probability distribution of
the orientations of the two fragments. This feature concerns the direction changes of a writing
stroke in handwritten text. The edge-hinge distribution is extracted using a window that scans a
binary handwriting image that contains only the edge information. When the central pixel of the
window is “on”, the two edge fragments emerging from this central pixel are considered only when
¢@1<@2. In Fig 20, an example of a window with a 4-pixel length edge fragment emerging from the
central pixel with the direction of the fragment quantized in 24 directions is presented. The
directions are measured and stored in pairs. A joint probability distribution p(¢1, ¢2) is obtained
over a large sample of pairs.

Furthermore, some practical details related to implementing the algorithm used [24] for this feature
are worth mentioning. In this implementation, the edge detection algorithm does not produce 1-
pixel wide edges, but instead, it produces 1-3-pixel wide edges. While in the edge-direction
distribution, where only one edge fragment is checked, the edge detection did not consist of a
limitation. In our case, two edge fragments must be checked. This consists of a limitation; thus, an
extra constraint is implemented. The ends of the edge fragments are required to be separated by at



least one “non-edge” pixel. In the experiments conducted for this feature in [24], like the edge-
direction distribution, only 3,4 and 5 pixel-long fragments are considered quantized in 2n = 16,24
and 32 directions, respectively.

Furthermore, two more constraints are implemented in the algorithm that is worth mentioning. The
first is that the @1 angle must be lower than the ¢2 angle. The second one is in cases where the
ending pixels have a common side eliminated. For more details about algorithm options and
results, see [24].
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Figure 20. Edge Hinge Distribution Extraction

4.1.3 Edge-Hinge Combinations

The edge-hinge combinations, proposed by Van der Maaten et al. [25], improved the edge
hinge distribution by considering multiple pixel length edge fragments (i.e. window sizes) instead
of just one. Experimenting with combinations of edge hinge distributions and using various
fragment lengths, they improved the results of writer identification by up to 12% compared with
the edge-hinge distribution.

4.1.4 Skeleton-Hinge Distribution

The main problem with the current implementations is that the edges are usually close to
each other, filling the feature matrix with duplicate and unnecessary data. Therefore, a simplified
version of Edge-Hinge Combinations was used to consider the skeleton information of the image
instead of the edge information to overcome that problem. Henceforth, this technique will be
referred to as skeleton hinge distribution.
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Figure 21. Handwritten digitized text

Usually, when something is written on paper (Fig.21), its thickness is considered a single line.
However, when the image is digitized, the same trace of ink is translated into several pixel lines.
By considering the edge hinge distribution, on an edge image (Fig. 22), much unnecessary
information, like the bottom, or the side curves of the letters, is included in the feature vector.
Furthermore, differences in line thickness from a variety of different pens may produce significant
variations in the extracted features in both edge hinge distribution and edge hinge combinations.
Therefore, the main suggestion in this work is that all stroke widths, i.e. line thickness, should be
the same size. Thus, by skeletonizing the image, characters with a single-pixel width stroke are
acquired.
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Figure 22. Edge image of handwritten text

On the skeleton hinge distribution, only the skeleton of the letters is considered (Fig.23), a simple
structure that considers the basic required information to match the features to already known ones.
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Figure 23. Skeleton image of handwritten text
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The Skeleton Hinge distribution [28] belongs to a family of similar techniques like the edge hinge
distribution and edge hinge combinations. The main idea is to locate two hinge line fragments
emerging from a central pixel on a sliding window (Fig. 24) and store their directions in pairs.
While on edge hinge distribution and edge hinge combinations, the edge information is used to
locate hinge fragments, on skeleton hinge distribution, the skeleton information is used.
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Figure 24. 4 pixels long Hinge line fragments, emerging from a central pixel, on a 7x7 window.

Skeleton Hinge distribution starts with the image skeleton extraction using a generic
skeletonization approach [92]. Then a sliding window technique that uses several window sizes,
each quantized in a different number of directions, checks for skeleton line fragments, which
emerge from the central window pixel. Finally, their directions are measured and stored in pairs.
Only skeleton line fragments with ¢1<¢2 are counted and stored in pairs in a histogram. A joint
probability distribution p(¢p1, ¢2) is obtained over a large sample of pairs. Finally, the probability
distributions acquired by the various sliding window sizes are combined and considered for
matching. For an instance of the Skeleton, Hinge Distribution extraction, see Fig. 25.
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Figure 25. An instance of Skeleton Hinge distribution extraction with four pixels-long edge fragments on the
part of the word “Bob”".

The main ideas of edge hinge distribution and edge hinge combinations are present in the proposed
technique. On the other hand, a significant improvement in the writer identification task results is
observed by applying this methodology to a skeleton image.

It is essential to mention that the resulting feature matrix includes more compact information than
the Edge Hinge Distribution feature matrix, and it is easier to compare two resulting matrices of
test and train samples. Please check a successful application of the proposed system in figures
26,27,28, where some text samples are provided over their results. On the upper part of the figure,
fragmented samples of the text are provided. The left text fragment is used as a training sample,
and the right text fragment is used as a test sample. Both samples in each picture are from the same
writer. Next, the surface of the Skeleton Hinge Distribution is presented. The left one corresponds
to the training sample, while the right one to the test sample. Finally, on the lower part of the
figure, the edge hinge combinations surface is presented. Again, the left one corresponds to the
training sample and the right to the test sample.
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Figure 26. Text samples from the same writer along with skeleton hinge distribution feature surface (middle)
and edge hinge combinations feature surface (bottom)
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Figure 27. Text samples from the same writer along with skeleton hinge distribution feature surface (middle)
and edge hinge combinations feature surface (bottom)
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Figure 28. Text samples from the same writer along with skeleton hinge distribution feature surface (middle)
and edge hinge combinations feature surface (bottom)

4.1.5 Weighted Skeleton-Hinge Distribution

In our work for Main Body Size Estimation[29], an observation was made in the handwritten
document text that characters do not have a single size but vary even in the same text line. In the
Weighted Skeleton-hinge distribution, a hypothesis is made that the variations of character size
observed in a document image could affect the system's accuracy since they can affect the skeleton
hinge distribution. One of the factors affecting the skeleton hinge distribution is the varying
character size in a document image. Imagine, for example, a capital "O" and a small "0". The hinge
angle on the small "o0" is smaller than the hinge angle on the capital "O" at almost any pixel.

In this work, a variation of our Main Body estimation technique[29] is utilized to detect local and
global Main Body sizes. The ratio of the varying character sizes found locally in a handwritten
document image and the document's global character size is considered Weight.



4.1.5.1 Main Body Size And Main Body Map

Usually, in document image processing systems, it is crucial to identify the character size
information quickly. The Main Body or core region describes the central part of the text, between
the upper baseline and lower baseline, excluding ascenders and descenders (Fig. 29), and it is
usually referred to words. This characteristic aims to provide a reference for thresholds and sizes
of lines, words and characters as it is directly related to the size of the characters [29].

upper
bazeline

main body

lower
bazeline

Figure 29. Word main body and baselines

In this work, the Main Body size is referred to small areas of text, usually one or more words, in a
part of the text that has a length of C.

The Main Body Map corresponds to an image, where, when a pixel is on (black pixel) on the
document image, the intensity value on the map is the Main Body size value detected in that area
of text. For an example of the Main Body Map, see Fig. 30 and 31. Pixels outside of the Main
Body area, for example, above the upper baseline and below the lower baseline, are assigned with
values equal to the most common Main Body size detected in the document image.

Figure 30. Main Body Map Example
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Figure 31. Main Body Map projected on the document image

4.1.5.2 Main Body Size Extraction And Weighted Skeleton Hinge

The Main Body size estimation technique starts by applying a smoothing technique that
downsamples the image width while keeping the same height. The technique utilized is a
horizontal smoothing procedure that uses the mean value of every C consecutive pixel. An example
of the original text and the smoothed image can be seen in Figures 32 and 33. By observing the
resulting image on figures 34 and 35 vertically, it is easily observable that the intensity levels
follow a bimodal distribution (Fig 36). Therefore, it is expected that multiple Bimodal distributions
will be observed by traversing the new smoothed image vertically. In Bimodal distributions, the
external (e.g. top and bottom) modes are expected to take maximum values. For a large enough C,
the external modes correspond to the word baselines (Fig. 29), allowing the estimation of the Main
Body Size.

In the proposed MBS estimation methodology, the main idea presented above is used. The
smoothed image is traversed vertically, and the bimodal distributions are identified by considering
different thresholds. The threshold corresponds to the expected intensity value of the external
modes. A range of thresholds is used. On every threshold used, the distances of the external modes
detected are considered and stored in a histogram of external mode distances. The distance with
the maximum value is considered the most common distance for the selected threshold. This value
is stored in the second histogram of threshold distances. Finally, the distance with the max value
in the histogram of threshold distances is selected as the most common MBS in the document.
Furthermore, the MBS threshold can be found from the maximum frequency value of the MBS
from all the histograms of external nodes.

Finally, the Main Body Map is constructed by extracting all the external modes and distances using
the MBS threshold. The intensities of the pixels on and between two external modes (upper and
lower baselines) are set to the distance value detected for the specific modes. The intensities of the
pixel outside of the Main Body area are set to the MBS value.
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Figure 32. Handwritten document image with a resolution of 1232x2076
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Figure 33. The smoothed version of the document image with the parameter C set to 60 pixels and resolution
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Figure 34. Example of the letter O
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Figure 35. Example of the corresponding smoothed image of the letter O with a height of 35 pixels and
width of 1.
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Figure 36. Bimodal distribution

While Skeleton Hinge distribution [28] treats all the skeleton fragments detected in the same way,
in the proposed method, the weighted skeleton hinge distribution, the varying size of the text is
considered. For example, a word with a large MBS will be treated the same as a word with a
smaller MBS in skeleton hinge distribution. In the proposed technique, the Main Body Map
information gives different weights on the skeleton hinge fragments detected, according to their
central pixel value on the Main Body Map (MBMvalue) and its deviation from the MBS
(MBSvalue). The Weight considered is the corresponding value on the Main Body Map divided
with the MBS value if the Main Body Map value is lower or equal to the MBS value.
MBMvalue(x, y) 1)

MBSvalue(x, y)
On the other hand, if the Main Body Map value is greater than the MBS value, then the Weight

considered is
Weight(x, v) =1 — MBMvalue(x,y) | | 2
MBSvalue(x, y)

Weight(x, y) =

4.1.6 Quantized Skeleton Hinge Distribution

Pixel intensity information in Handwritten text is not uniform if we suppose the writing surface
is the same for all the writers; the pen is pressed with more power or less power during writing,



depending on the angle, the character, and the written text. In Gray Scale images, we can use the
information of pen pressure, denoted as pixel intensity, to augment the skeleton hinge information
and prove that those points of pressure provide additional information for the writer's
identification.

In this method, the pixel intensity is quantized in N discrete values. The number of quantizations
is used to construct a 3-dimensional matrix with the third direction having a length of N. Quantized
Skeleton Hinge distribution also starts with the image skeleton extraction using a generic
skeletonization approach [92]. Then a sliding window technique that uses several window sizes,
each quantized in a different number of directions, checks for skeleton line fragments, which
emerge from the central window pixel. Finally, their directions and the quantized intensity are
measured and stored in triplets. Only skeleton line fragments with ¢1<¢2 are counted and stored
in pairs in a histogram. A joint probability distribution p(¢1, ¢2, n) is obtained over a large sample
of pairs. Finally, the probability distributions acquired by the various sliding window sizes are
combined and considered for matching.

4.1.7 Directional Stroke Run Length Hinge Distribution

While skeleton hinge distribution and weighted skeleton hinge distribution perform well,

some information might be lost since the skeleton information is used. The same applies to the
edge hinge distribution and edge hinge combinations with the edge information.
The main idea behind the Directional Stroke Run Length Hinge Distribution method is to consider
all the available information in the document image by utilizing run lengths. To achieve that, all
the pixels that are on are considered. Next, a sliding window technique is used with various
window sizes, each quantized in directions. On every central pixel that is on the black run lengths,
in eight directions are considered. Only the two directions with the most significant run lengths
are kept. Next, the direction of the maximum run length is considered. The next pixel is selected
by following that direction, and the run lengths of the five directions that emerged from that pixel
are considered. The three directions excluded are the opposite direction of the previously selected
direction and the two neighbouring directions. This process is repeated by following the pixels
found on the largest run lengths from the five directions until the window border is reached. The
same technique is applied in the second-largest direction that was initially kept. Finally, the
directions of the two run-length directional fragments are measured and stored in pairs—only
fragments with @1<@2 are counted and stored in pairs in a histogram. A joint probability
distribution p(¢1, ¢2) is obtained over a large sample of pairs. The probability distributions,
acquired by the various sliding window sizes, are combined and considered for matching. For
example, visualizing some of the steps of this technique, see figures 37 to 47.

Figure 37. An instance of Stroke Run Length Directional Hinge window of 6 pixels-long fragments with the
central pixel selected as starting point.
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Figure 38. cardinal and intermediate directions will be used to describe run-length directions

Figure 39. The selected Starting point along with the run lengths in 8 directions with the largest one being 6
pixels length with North direction and the second largest with 5 pixels length on South-East direction

Figure 40. The five directions emerging from the second point along with the run lengths in five directions,
with the largest one being in the North-East direction
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Figure 41. The Largest Run Length is followed until the border is reached



Figure 43. The five directions emerging from the first point on the second-largest direction along with the
run lengths in five directions, with the largest one being in the East direction

Figure 44. The five directions are emerging from the second point on the second-largest direction and the
run lengths in five directions with two directions of equal length of four pixels. The East direction is selected since it
was also the direction selected in the previous step.
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Figure 45. The five directions emerging from the third point on the second-largest direction along with the
run lengths in five directions, with the largest one being in the South East direction




Figure 47. Final Stroke Run Length Directional Hinge with six pixels-long fragments

4.1.8 Run Length Directional Skeleton Hinge Distribution

This method proceeds with the same steps as the Run Length Directional Hinge
Distribution, with the only difference being that starting points are located on the image skeleton.
First, the image skeleton is extracted using a generic skeletonization approach [92]. All the other
pixels are not considered starting points but are considered to locate the most significant run
lengths. Next, the directions of the two run-length directional fragments are measured and stored
in pairs—only fragments with ¢1<@2 are counted and stored in pairs in a histogram. A joint
probability distribution p(¢1, $2) is obtained over a large sample of pairs. Finally, the probability
distributions acquired by the various sliding window sizes are combined and considered for
matching.

4.1.9 Edge-Skeleton-Hinge Combinations

An attempt was made to fill the entire feature space with information on the Edge-Skeleton
Hinge Combinations method. All the feature spaces of the previous techniques have one thing in
common: the bottom left part of the feature space and the diagonal line from top left to bottom
right is empty, which is due because the directions are considered only when @1<¢2. For example,
see Fig. 48
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Figure 48. Skeleton-Hinge feature with the area denoted with the triangle being empty

To achieve that, both features, the Skeleton Hinge and the Edge hinge, were considered. The
skeleton Hinge feature space was saved in the upper right side of the feature space using the
probability distribution Ps(®1, ®2), while the Edge Hinge feature was saved in the bottom left side
using an inverse probability distribution Pe(®2, @1). In Figures 49 and 50, examples from the test
set and the train set are presented.

Figure 49. Feature spaces from the Edge-Skeleton Hinge Combinations on the Test sample
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Figure 50. Feature spaces from the Edge-Skeleton Hinge Combinations on Train sample from the same
writer.

In the second variation of this technique, an attempt was made to also fill the diagonal line from
top left to bottom right. In order to achieve that, we used @ as the difference of @2 from ®1 and
the probability distribution Pd(®, @)

@ = P2 —P1. (5)

4.2Model-Based Features

In the Model-Based approach used in the works [25], [34], it is assumed that each writer
produces a recognizable set of writer specific character shapes or allographs which happens due
to schooling and personal preferences. Therefore, the core idea reflected in the above statement
implies that a histogram of used allographs can characterize each writer. However, it is not feasible
to have a predefined list of allographs. Instead, training is needed to automatically generate a
codebook, which sufficiently captures allograph information from handwriting samples.

The approach used in this work relies on a codebook of models of graphemes. Graphemes are
small strokes of handwriting, which are extracted by applying a robust segmentation algorithm on
a handwritten image. It should be mentioned that there is a distinction between graphemes and the
fragments used in the statistical methods because of the different algorithms in use.

In Schomaker et al. [34], a codebook of graphemes is generated by training a Kohonen SOFM [93]
on a large number of grapheme contours. The produced codebook is later used to construct feature
vectors.

The process used to create feature vectors from the codebook is quite simple: From each text
image, all graphemes are extracted and matched to the grapheme models of the codebook.
Euclidean distance between the grapheme contours is used for the matching process. For each
grapheme model in the codebook, every successful match is counted. The result is a histogram of
graphemes, which characterize the writer and also identify him.

A limitation in this approach is the long training time of Kohonen SOFM. As reported in [34], a
training time of up to 122 hours can be required. Besides that, Kohonem SOFM may get stuck in
local minima.



Van Der Maaten et al. [25] proposed using random selection to create graphemes rather than using
Kohonem SOFM. In this method, no time-consuming training is performed, overcoming the time
limitation. Instead of training, a random number of graphemes are drawn from the large set of
graphemes.

When combined with the edge-hinge feature, both approaches achieved an identification
performance of 97% on the Firemaker DB for 150 distinct writers and a codebook of 400
graphemes.

Here, an improvement was attempted, using a different approach on the codebook generation, by
only considering closed areas of the characters. Character closed areas are the least affected by
writer slant, very important as slant is a characteristic of the writer that can affect the skeleton
hinge distribution.

By combining skeleton hinge distribution with a codebook of graphemes only generated by
character closed areas, it was expected to be an ideal way of securing skeleton hinge distribution
against forge attempts. A forge attempt can be made by merely changing the slant. However, the
results of this approach were not the expected ones.



5. Main Body And Text Localization

5.1 Introduction

In order to validate or dismiss two of our assumptions, and more specifically, the third and
fourth assumptions, some preprocessing techniques were developed to facilitate us with this
validation.
Firstly, for the third assumption, regarding the effect of Main Body variance in the accuracy of
writer identification, two techniques appropriate to detect the Main Body size were developed [29].
Only one was used for writer identification from the two main body size estimation techniques due
to its speed and the lower estimation error. Directional Features are susceptible to the Main Body
size variance since the angle measured will be narrower in smaller characters and wider in bigger
characters. Our approach to validate or dismiss this assumption consists of measuring the global
Main Body size of a document and local Main Body size on the word level and use their ratio as
the weight for our feature extraction technique. To the best of our knowledge, there is no other
paper in the literature specific to Main Body size detection other than [29].
For the fourth assumption, regarding the effect of noise produced by the writer in the accuracy of
writer identification, a variation of a technique used for text localization [94] is appropriate to
localize only pure text using some rules and dismiss all the noise produced by the writer. This kind
of noise usually consists of the writer attempt to erase with ink what he has written by mistake or
more minor ink stains that could be regarded as salt and pepper noise. For example, see Fig. 51.
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Figure 51. Writers attempt to erase with ink what he has written by mistake

5.2Main Body Size Estimation
5.2.1 First Technique

Our first technique, shown briefly in Fig.52 and analyzed in this section, estimates the
average main body of words in a scanned document. Although it has some similarities with [72],
it is not that complex; it does not require line segmentation nor image binarisation. Moreover, the



technique is applied to grey level images, although the experimental results prove that if the image
is binarised and cleaned from extra noise and converted to grey level, the results are improved.
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Figure 52. The proposed Main Body Size Extraction methodology.

First, the average pixel value is calculated for every N pixel in each pixel line of the image. N can
be any value. It is only essential for the skew angle of the page that it can handle. The smaller the
N, the biggest the skew angle it handles. However, since this work does not emphasize that, for
the results presented here, N=100 was chosen. The results are saved in the Averager table with
size Hx[W/100], where H is the height and W is the image's width.

Next, the table Means is created of size Hx1, where its elements are the average values of the
corresponding lines of the Averager matrix. Then the threshold T is set as the median value of
matrix Means. By this threshold, we set to zero the values of Means smaller than T while we count
the consecutive lines with a value larger than T. Next, the consecutive line sizes are considered as
Main Body size occurrences. The occurrences for each size are also counted and saved as
Frequencies. Finally, the more frequent Main Body size in Frequencies is considered as Main Body
size.
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Figure 53. Schematic presentation of the technique through example

In Fig. 53, the technique is presented through an example. This technique does not require
binarisation. Moreover, it can give more information if different main body sizes are present on
the same page.

5.2.2 Second Technique

This technique, developed by Vassilios Veras, a co-author on [29], estimates the baselines
of the text in a document page. Initially, the document is binarised. Then, the Connected
Components (CCs) of the document are detected for the 8-pixel neighbourhood. Finally, all CCs
bigger than 30000 pixels and smaller than 10 pixels are removed, that is, a large area, e.g. scan
noise or figures and tiny, noisy areas or accents, respectively.



Figure 54. Vertical dilate.

Then vertical dilate is applied to identify the horizontal borders of the text area (left-right), and if
the text consists of text columns, this is necessary since, in the case of the text columns, each
column is treated separately. After the vertical dilate the columns of text form a big connected area
(Fig.54). Consequently, CCs are again detected, and now only those bigger than 10000 pixels are
kept. Finally, a vertical histogram is taken, and those pixel columns with black pixels more than
75% of the average are marked as text and the others as background (Fig.55).
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Figure 55. Vertical text localization.

Then the document is scanned from left to right, and the total number of text columns is identified.
A similar procedure is followed for each text column, this time with a horizontal dilate (Fig.57).
Next, the text lines are detected with their respective start and end indexes in the document. In
order to detect the Main Body size, the pixel row must contain 170% of the average pixel rows



(Fig.58); This ensures that the beginning and the end of the main body will be detected, without
including the ascenders and the descenders. Finally, the average baselines are calculated and
returned as showed in the original document (Fig. 59). The technique is presented in Fig.56.
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Figure 56. The second technique
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Figure 57. Horizontal dilate.
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Figure 58. Horizontal text localization.
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Figure 59. Result with upper and lower baselines visible

5.2.3 Experimental Results

Evaluating a technique that estimates the text Main Body size is not easy, primarily when
referring to the handwritten text. Therefore, the TrigraphSlant data set [95] containing images of
handwriting produced under natural and forced slant conditions were used. It includes 190 images
from 47 persons. In addition, 30 images of natural writing by different writers were used.
In order to create ground truth data, the height of 10 ‘0’ of each image was measured, and the mean
value was considered. It took us by surprise that even on the same document image, written by the
same person, differences of more than 10 pixels were found.
In table 1, the mean estimated Main Body size for five writers (D00X), along with the results for
4 document images of the same writer (D00X-1, D00X-2, DO0X-3, D0O0X-4). It is obvious how
the size changes, even for the same writer. Only the first document image (D00X-1) of each writer
for X between 1 and 30 was used in our experiments.



Since, as explained, it is difficult to have exact results, in table 2, the average error deviation
between the estimated values and the ones detected by the two techniques is given. Moreover, to
give more objective results, in the same table, the average error deviation between the actual values
and the ones detected by the two techniques over a collection of 10 printed images that includes
font sizes between 8 and 24 pts is also given.

Table 1. Examples of Main Body size estimation

Document Image Estimated Mean Main Body Size
Code (pixels)
D001-1-An 34,8
D001-2-Bn 35,2
DO001-3-BI 31,6
D001-4-Br 31,6
D002-1-An 33,6
D002-2-Bn 274
D002-3-BI 37,2
D002-4-Br 27,2
D003-1-An 34,2
D003-2-Bn 33,4
D003-3-Br 30,8
D003-4-BI 33,4
D004-1-An 29,2
D004-2-Bn 29,2
D004-3-Br 32,8
D004-4-BI 34,2
D005-1-An 34,6
D005-2-Bn 34,2
D005-3-Br 28
D005-4-BI 33,4
Table 2. Experimental Results
Average error Average error
Technique deviation (pixels) on deviation (pixels) on
Trigraph printed DB

first 2.17 0.67
second 4.96 1.05




5.3 Text Localization
5.3.1 System Overview

The proposed method, developed by Ergina Kavalieratou and Pilar Gomez-Gil, co-authors on [94],
takes advantage of two facts: a) a text should contrast with its background in order to be readable;
b) a text follows some regularity in any language. Figure 60 shows the main steps of this method.
First, an RGB image is transformed into a grayscale image using the formula [96]:

gray = 0.2989 * R + 0.5870 = G + 0.1140 * B (3)

Where R, G, B correspond to the colour of the pixel, respectively. This image is binarised for using
various thresholds, which is defined as:
threshold = minimuml + k * STEP 4)

Where minimuml corresponds to the minimum intensity of the grayscale image and STEP is a
small value. In the experimental results reported here, STEP values go from 1 to 7. The k parameter
considers values from 1 up to (maximuml - minimuml)/STEP in order to cover with various
thresholds all the range between the minimum (minimuml) and the maximum (maximuml) of the
grayscale image. A binary image and its reversed one are built, using as threshold all the multiples
of a specific STEP. The reverse image is also used since it cannot be known if the foreground is
lighter or darker.

Using all possible black and white images, all possible contrasts should be included for a small

step. After this, each image is examined in detail for the existence of several constraints that the

parts of images corresponding to texts are expected to accomplish:

1. Similar colours between the text parts or dissimilarity less than 10% are expected.

2. Within a text region, the dissimilarity in colour should remain less than 10%.

3. Areas with either size less than 5 pixels are not considered.

4. The parts of the text, usually characters, are expected to have a similar width, with a maximum
deviation of 10%. A difference of up to 50% is allowed in height to include words with
uppercase and lowercase letters.

5. Neighbour text parts are expected to have similar areas with a deviation of a maximum of 30%
due to the difference between characters and uppercase/lowercase letters.

6. The parts of the same text square are expected to have a horizontal distance of a maximum
3xMB and a vertical distance of one MB, where MB is a rough approach of the mean character
size.

As it is mentioned in [78]: By mean width of the character, we consider the width of characters
such as a, b, c, d etc., excluding the characters i, 1, j, m, w that are either too narrow (i, j, 1), or too
broad (m, w). ... Although the character width differs between characters and writers, a rough
estimation of the mean width could be made by accepting that excluding the ascenders and
descenders the characters with mean width (as defined above), present width equal to their height.
Thus, MB is estimated as the CCs height; rules 4, 5 and 6 derive from the above definition.

CCs of every binary image is extracted, and several properties are calculated:
e The centroids of the CCs.
e The minimum, maximum and mean intensity of the corresponding area in the grayscale
image.
e The area of each CC.



e The bounding boxes of each CC. along with the coordinates of the upper left corner and
their width and height.
e The main body, as the height of the CC.

Then, for each pair of CCs and using these properties, the rules described above are applied,

respectively:
1. The mean intensity of the two CCs is expected not to differ more than 10%.
2. The minimum and maximum intensity of each CC is expected not to differ more than 10%.
3. The CCs with an area less than 10 pixels or Bounding Box width or height less than 5 pixels
are eliminated.
4. Both bounding box heights and widths are required not to differ more than 10%.
5. The areas of the CCs are expected not to differ more than 30%
6. The x coordinates of CCs centroids are expected to be situated within 3MB and the y

coordinates within one MB.

Transformation to
Grayscale

Binarization
CC-localization
Rule Application
Post-Processing

Concatenation

Figure 60. The tasks of the proposed system

A pair of CCs that successfully pass the above constraints is considered part of the same group.
Then, the procedure is repeated for the reverse image. As a result, from each image, several areas
are extracted as possible text areas. Considering that natural scenes can include all grayscale tones
from 0 to 255 (not always), some dozens of binary images are considered, and the extracted areas
could be up to hundreds. However, since they are black and white images, the processing is fast.
Thus, the extracted areas are unified if the following rule holds:

IF the mean value of the y-coordinates of an area is included in the y-coordinates of another area
AND (their areas are either overlapped, OR they are not located more than one MB apart,
horizontally.)



At this point, our system presented a recall >70%, which is very high compared to the results of
other systems of the competition but very low precision. This is the reason that a post-processing
stage was included in the system. In this post-processing stage, every single part of the image is
analyzed in order to confirm that it includes text. Thus, it includes the following procedures:
e First, the image is cleaned on all sides, above, below, left and right by pixel lines that include
entirely white or entirely black pixels.

e Then, if horizontal pixels lines include only white or only black pixels, the image is split
into horizontal text lines, limited by these pixel lines.

e Finally, it is checked if there are entire columns with only white or black pixels expected to
separate characters.

Once the post-processing is done, a concatenation procedure is applied to unify the overlapped
parts of the image.
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Figure 61. Text localization result example of the document from Figure 51.
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Figure 62. Final image after text localization, on the document from Figure 51.

5.3.2 Experimental Results

For evaluating the proposed procedure, the dataset of ICDAR 2011 Robust Reading Competition
Challenge 2: Reading Text in Scene Images [89] was used. The final dataset consisted of 485
images containing text in various colours and fonts on many different backgrounds and
orientations. A comparison of our results with other techniques is shown in Table 3. Furthermore,
after filtering the document images with this technique and using the Skeleton Hinge distribution
for feature extraction, experimental results for the writer identification task can be found in chapter
6.

Table 3. Comparative results with the dataset of ICDAR 2011 Robust Reading Competition Challenge 2:
Reading Text in Scene Images [96].

Harmonic
Method Recall | Precision | Mean
technique 1 | 62.47 | 82.98 71.28
technique 2 | 58.09 | 67.22 62.32
technique 3 | 57.68 | 66.97 61.98
technique 4 | 52.54 | 68.93 59.63
technique 5 | 53.52 | 63.52 58.09
technique 6 | 50.07 | 62.97 55.78
technique 7 | 44.57 | 59.67 51.03
technique 8 | 38.32 | 35.01 36.59
technique 9 | 25.96 | 50.05 34.19
Proposed 77.08 | 57.15 65.63
Technique




6. Writer Identification Experimental Results
6.1 Data Sets
6.1.1 Firemaker DB

One of the datasets used to evaluate the feature extraction techniques presented in this work
was the Firemaker Database [14]. This data set was used to directly compare the achieved results
with the reported ones by the other methods.

The Firemaker is a database of handwritten pages from 250 writers, including four pages per

writer.

Page 1 contains a copied text in natural writing style

Page 2 contains a copied text in Upper-case text

Page 3 contains copied forged text. The writers here try to impersonate another writer.
Page 4 contains a self-generated description of a cartoon image in free writing style. On
this last page, the text content and the amount of written ink varies considerably per writer.

All pages in Firemaker Database were scanned at 300-dpi grayscale. The text that was asked to be
copied was specially designed in forensic praxis to cover many different alphabet letters. In our
experiments, only pages 1 and 4 were used. Page 1 was used as a training set. While page 4 was
used as a test set.
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Figure 63. Part of a D()cumuzt image from Firemaker DB

6.1.2 ICDAR 2017 Writer Identification Competition

Additional experiments were performed on the Skeleton Hinge Distribution feature using

the ICDAR 2017 writer identification competition [15] dataset. The dataset used for this
competition consists of 3600 document images, which 720 different writers have written. Each
writer has contributed five documents. The performance was evaluated using ScriptNet, the
competition platform which can output the mean average precision (map) and top 1 performance.



6.2 Experiments
6.2.1 Skeleton Hinge Distribution

Various experiments were performed, using combinations of several parameters, e.g.
window sizes and matching classifiers. However, it is hard to compare our results with results
reported on other papers because of the variation in the data sets. Therefore, our results will be
only comparable to methods that used the same dataset.

Furthermore, even on the same dataset, results can have a significant variation. For example, some
methodologies only used a fragment of the entire dataset without mentioning which one exactly.
Also, there are differences in train and test sets. Even a slight change in these sets can change the
entire outcome.

For the training (Extract Skeleton Hinge training Features), only page 1 from the Firemaker DB
was used. Each page was binarised, and the skeleton was extracted using Matlab. The used
procedure is the one described in the previous section for skeleton hinge distribution.

The training procedure was fast, about 250 seconds on a laptop i7 2.5Ghz pc, and in comparison
to the edge hinge distribution, about 35% faster. On the same machine, the edge-hinge distribution
train took 384 seconds to complete.

To extract Skeleton Hinge test Features, only page 4 was used from the Firemaker DB. The testing
process used the same procedure as the training process.

The test procedure was faster than training due to the variations in text sizes on page 4. Testing
took around 200 seconds on a laptop 17 2.5 GHz. Edge hinge distribution time was about 270
seconds. An improvement of about 35% can be observed here, too.

Different matching techniques were considered for writer identification—maximum accuracy
achieved with the Nearest Neighbour classifier with Manhattan distance. Euclidean and chi-square
distances were also considered for classifying, but they performed worse than Manhattan distance.
KNN classifier was also considered with k 1.

Furthermore, clustering techniques, like K-means and Agglomerative Hierarchical Cluster Trees,
and machine learning techniques, like SVM, were considered.

6.2.1.1 Skeleton Hinge Features With The Nearest Neighbour Classifier On Firemaker DB.

Skeleton Hinge Distribution Feature identification results are presented in Table 4. These
experiments used the entire data set of 250 writers. Like the edge-hinge combinations method, a
combination of fragment lengths, i.e. window sizes were used. Furthermore, for the nearest
neighbour classifier Manhattan, Euclidian and chi-square distances were used. Our top result is
identification accuracy of 90.8 % for a combination of fragment lengths of 5- and 9-pixel length
window and Manhattan distance.



Table 4. Skeleton Hinge Distribution Accuracy (Percentage) on Firemaker DB

Skeleton Hinge Distribution Accuracy (Percentage)
Fragment L .
Length Ma.nhattan E u.cltdum C hl.-square

Distance Distance Distance
3 80% 72% 53.2%
5 89.6% 77.2% 66%
7 90% 81.6% 69.6%
9 88% 85.2% 76%
3,5 85.2% 75.2% 58.4%
3,7 85.6% 75.6% 55.2%
3,9 86% 74.8% 53.2%
5,7 90% 78.8% 64.4%
5,9 90.8% 78.8% 67.2%
7,9 90% 83.2% 73.6%
3,5,7 86.8% 76.8% 60%
3,7,9 89.6% 76.8% 55.6%
5,7,9 90% 79.2% 68.8%
3,5,7 89,6% 76.8% 60.4%
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6.2.1.2 Skeleton Hinge Features With The Nearest Neighbour Classifier On ICDAR 2017

Skeleton Hinge Distribution Feature identification results or ICDAR 2017 dataset are
presented in Table 5. These experiments used the entire data set of 3600 document images, which
720 different writers have written. Like the edge-hinge combinations method, a combination of
fragment lengths, i.e. window sizes were used. In addition, for the nearest neighbour classifier,
Manhattan distances were used. Our top result is identification accuracy of 68.44% with a mean
average precision (map) of 47.02% for a combination of fragment lengths of 3-5-7 and a 9-pixel
length window. Finally, in Table 6, an overview of results reported in [15] compared to our results
is presented.



Table 5. Skeleton Hinge Distribution Accuracy (Percentage) on ICDAR 2017 writer identification
competition Data Set

Fragment Length WI-map Wil-precision
3 40.57% 60.83%
5 44.80% 66%

7 43.96% 64.63%
9 40.99% 61.41%
3.5 44.50% 65.58%
3,7 46.20% 67.33%
3.9 46.33% 67.52%
5,7 45.98% 67.22%
5,9 46.34% 67.66%
7,9 43.73% 64.33%
3,5,7 46.34% 67.75%
3,7,9 46.92% 68.36%
5,7,9 46.11% 67.33%
3,5,7,9 47.02% 68.44%
Table 6. Skeleton Hinge Distribution Accuracy (Percentage) on ICDAR 2017 writer identification
competition Data Set as reported in [15]

Method WI-map Wil-precision
Skeleton Hinge 47.02% 68.44%
Barcelona 45.9% 67%
Fribourg 30.7% 47.8%
Groningen 54.2% 76.1%
Hamburg 46.9% 67.1%
Tebessa I 52.5% 74.4%
Tebessa II 55.6% 55.6%

6.2.1.3 Skeleton Hinge Features With K-means And Hierarchical Cluster Tree Identification
Results.

An attempt was made to identify writers using the k-means algorithm and partitioning the
collection into clusters on Firemaker DB. The entire collection consisted of 250 writers with two
pages per writer, one page in training data, and one page in test data. Skeleton hinge distribution
features were extracted from 500 pages and partitioned into 250 clusters. Standard K-means
technique was used, as well as Kmeans with different distance parameters were explored. Only



clusters that included both pages from each writer were considered as correctly identified.
Identification accuracy reached 66.8% using 3,5,7,9 skeleton hinge distribution combinations.

Furthermore, experiments of clustering the 500 pages using an Agglomerative hierarchical cluster
tree were made using two parameters, Agglomerative clusters from linkages and Agglomerative
clusters directly from data. Only clusters containing both pages from the same writer were
considered as correctly identified. Accuracy in both methods reached 63.6% using 3,5,7,9 skeleton

hinge distribution combinations.

Skeleton Hinge Distribution Features clustered with K-means and Hierarchical cluster tree
identification results are presented in Table 7.

Table 7. K-means and Hierarchical cluster tree identification Results on Firemaker DB
Clustering Method Parameter Accuracy
K-means normal 66.8%

K-means city block 46.4%
K-means cosine 66.8%
K-means correlation 66.8%
Hierarchical Cluster Tree linkages 63.6%
Hierarchical Cluster Tree data 63.6%

6.2.1.4 Skeleton Hinge Features With Nearest Neighbor Using KNN Results.

Besides using a simple Euclidean distance measure, the KNN algorithm was used to find
the nearest neighbour of every document of the training set in the test set on Firemaker DB. From
each set, skeleton hinge distribution combinations with fragment lengths 3,5,7,9 were extracted.
Different distance measures were used. In most of them, accuracy reached 76.8%, while with city
blocks distance, accuracy reached 89.6%. Skeleton Hinge Features with Nearest Neighbor using
KNN results are presented in Table 8.

Table 8. Skeleton Hinge Identification Accuracy using KNN on Firemaker DB
Method(k=1) Distance Accuracy
KNN Chebychev 51.6%

KNN Minkowski 76.8%
KNN Cosine 76.8%
KNN Correlation 76.8%
KNN Hamming 1.2%
KNN Seuclidean 0.4%




KNN Cityblock 89.6%

6.2.1.5 Skeleton Hinge Features With Support Vector Machines Results.

Support vector machines (SVM) were used as well to identify the writer on Firemaker DB.
A simple scheme of “one-vs-all” was used in an iterative process. A single document from the
training set, consisting of 250 writers, was assigned as known and the rest unknown in each
iteration. An SVM was trained using the skeleton hinge distribution combinations with fragment
lengths 3,5,7,9 extracted from the training set and the class information assigned to them. Next, a
new iteration was used to classify the documents in the test data set, after extracting the skeleton
hinge distribution combinations with fragment lengths 3,5,7,9, according to the trained model.
Accuracy was 53.6%

SVM with a one-vs-one scheme was also considered but trained only in the first 100 writers. In
each iteration, a classifier was trained to distinguish between documents of 2 distinct writers. All
the possible non-overlapping combinations were considered. A total of 4950 classifiers were
trained. The SVM classifiers were trained using the 3,5,7,9 skeleton hinge distribution
combinations from the train set. Next, a new iteration was used to classify the documents in the
test set. Every handwritten document was classified using the trained classifiers. Matching is
achieved with a voting procedure. The most voted class is assigned to the document. Accuracy for
100 writers achieved 63%. Skeleton Hinge Features with Support Vector Machines results are
presented in Table 9.

Table 9. Skeleton Hinge Features with Support Vector Machines results on Firemaker DB.
Scheme Number of writers Accuracy
One-vs-all 250 53.6%

One-vs-one 100 63%

6.2.2 Codebook of Graphemes And Skeleton Hinge Distribution

In addition, an attempt was made to combine skeleton hinge distribution with a codebook
of graphemes method on Firemaker DB. The results of this experiment are presented in Table 10.
The model-based methods [25], [34] reported accuracy of up to 97% on 150 writers, using a
codebook of size 400 when the results were combined with edge-directional features.
Unfortunately, it was impossible to train a codebook of 400 graphemes for 250 writers due to
memory issues.



Instead, a codebook of 225 graphemes was trained for 250 writers. Maximum accuracy of 95,6%
was reached. It is necessary to mention that the other methods reported 97 % accuracy on 150
writers with a codebook of 400 graphemes. In our case, an experiment was also performed using
150 writers of the data set and a codebook of 225 graphemes. An accuracy of 96% was achieved.

Codebook of Graphemes combined with Skeleton Hinge Distribution feature identification results
is presented in Table 10.

Table 10. Skeleton Hinge Distribution Combined with Codebook of Graphemes Method Accuracy
(Percentage) on Firemaker DB

Skeleton Hinge Distribution
Number CodeBook Combined with Codebook of
of Size Graphemes Method
Writers Manhattan | Euclidian | Chi-square
Distance Distance Distance
250 225 95.6% 91.2% 78.8%
150 225 96% 94.7% 86.7%

6.2.3 Quantized Skeleton Hinge Distribution

In this section, experiments were performed only for combining fragment lengths 5 and 9
since that combination achieved an accuracy of 90.8% on the Skeleton Hinge Distribution on
Firemaker DB. The experiments were performed on 250 writers using Manhattan Distance and
quantized in 1,2,3,4,5,9 intensity levels. Quantized Skeleton Hinge Distribution feature
identification results are presented in Table 11.

Table 11. Quantized Skeleton Hinge Distribution Accuracy (Percentage) on Firemaker DB
Quantized Skeleton
Number Of Hinge Distribution
Quantizations
1 90.8%
2 92%
3 92.4%
4 89.6%
5 91.2%
9 88.4%

6.2.4 Weighted Skeleton Hinge

In this section, experiments were performed with combinations of various fragment length
sizes (i.e. window sizes) were considered on pages 1 and 4 of the Firemaker DB, conducted on
250 writers using Manhattan Distance. For comparison with previous methods, we included the



results of Edge Hinge Combinations (EHC), as reported in [25] and Skeleton Hinge Distribution
(SHD) as reported in [28]. In addition, weighted Skeleton Hinge Distribution (WSHD) features

identification results are presented in Table 12.

Table 12.

EHC, SHD, WSHD identification Accuracy (Percentage) with Manhattan Distance on Firemaker
DB

Fragment EHC SHD WSHD
Length Accuracy Accuracy Accuracy

Combinations (Percentage) | (Percentage) | (Percentage)

3 68% 80% 82%
5 70% 89.6% 88.8%

7 70% 90% 90%
9 69% 88% 88.8%
3,5 7% 85.2% 85.2%
3,7 7% 85.6% 85.6%

3,9 79% 86% 86%
5,7 74% 90% 89.6%
5,9 7% 90.8% 91.2%
7,9 2% 90% 89.6%
3,5,7 80% 86.8% 87.6%
3,7,9 78% 89.6% 89.2%
5,7,9 76% 90% 90.8%
3,5,7,9 81% 89.6% 88.4%

6.2.5 Run Length Directional Hinge

In this section, experiments were performed with combinations of various fragment length
sizes (i.e. window sizes) were considered on pages 1 and 4 of the Firemaker DB, performed on
250 writers using Manhattan Distance. For comparison with previous methods, we included the
results of Edge Hinge Combinations (EHC), as reported in [25] and Skeleton Hinge Distribution
(SHD) as reported in [28]. In addition, run Length Directional Hinge Distribution
(RLDHD)features identification results are presented in Table 13.

Table 13. EHC, SHD, RLDHD identification Accuracy (Percentage) with Manhattan Distance on Firemaker
DB
Fragment EHC SHD RLDHD
Length Accuracy Accuracy Accuracy
Combinations (Percentage) | (Percentage) | (Percentage)
3 68% 80% 85.2%
5 70% 89.6% 89.2%
7 70% 90% 90.4%
9 69% 88% 91.2%
3,5 7% 85.2% 88%
3,7 7% 85.6% 89.2%
3,9 79% 86% 89.2%
5,7 74% 90% 89.6%




5,9 7% 90.8% 89.2%
7,9 72% 90% 90.4%
3,5,7 80% 86.8% 88.8%
3,7,9 78% 89.6% 89.2%
5,7,9 76% 90% 90%

3,5,7,9 81% 89.6% 89.2%

6.2.6 Edge Skeleton Hinge Combination

In this section, experiments were performed with combinations of various fragment length
sizes (i.e. window sizes) were considered on pages 1 and 4 of the Firemaker DB, conducted on
250 writers using Manhattan Distance. For comparison with previous methods, we included the
results of Edge Hinge Combinations (EHC), as reported in [25] and Skeleton Hinge Distribution
(SHD) as reported in [28]. Edge Skeleton Hinge Combination (ESHC) features identification

results are presented in Table 14

Table 14. EHC, SHD, ESHC identification Accuracy (Percentage) with Manhattan Distance on Firemaker
DB
Fragment EHC SHD ESHC
Length Accuracy Accuracy Accuracy
Combinations (Percentage) | (Percentage) | (Percentage)
3 68% 80% 79.4%
5 70% 89.6% 89.2%
7 70% 90% 89.6%
9 69% 88% 87.2%
3,5 7% 85.2% 84.6%
3,7 7% 85.6% 85.2%
3,9 79% 86% 85.6%
5,7 74% 90% 89.6%
5,9 7% 90.8% 90.2%
7,9 2% 90% 89.4%
3,5,7 80% 86.8% 86.8%
3,7,9 78% 89.6% 89.2%
5,7,9 76% 90% 89.4%
3,5,7,9 81% 89.6% 89.2%

6.2.7 Directional Features Comparison

In this section, a comparison of top identification results reported in the literature on
Firemaker DB, and in the sections above for the directional features of Edge Direction
Distribution, Edge Hinge Combinations, Skeleton Hinge Distribution, Quantized Skeleton Hinge
Distribution, Weighted Skeleton Hinge Distribution, Run Length Directional Hinge Distribution,
Quill-Hinge and Junctions are presented in Table 15. Furthermore, a graphical representation of
the results on Edge Hinge Combinations, Skeleton Hinge Distribution, Weighted Skeleton Hinge
Distribution and Run Length Directional Hinge Distribution on common fragment length

combinations is given in Fig. 64




Table 15. EDD, EHC, SHD, QSHD, WSHD, RLDHD, ESHC, and methods from literature identification
Accuracy (Percentage) with Manhattan Distance on Firemaker DB

Accuracy
Method Reported
EDD 35%
EHC 68%
SHD 90.8%
QSHD 92.4%
WSHD 91.2%
ESHC 90.2%
RLDHD 91.2%
Edge-Hinge [24] 63%
Codebook of Graphemes combined with Edge-Hinge [34] 97%
Edge-Hinge combinations [25] 81%
Codebook of Graphemes combined with Edge-Hinge 97%

Combinations [25]
Contour-Hinge combined with Writer-Specific Grapheme 83%
Emission PDF [41]

SDS+SOH [43] 92.4%
Quill-Hinge [26] 86%
Junclets [30] 80.6%
Junclets+Hinge [30] 89.8%
BW-LBC [51] 94.4%
CLGP [52] 97.6%
Dissimilarity GMM (DGMM) [54] 97.98%
GR-RNN [20] 98.8%
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Figure 64. EHC, SHD, WSHD, RLDHD identification accuracy on Firemaker DB

6.2.8 Filtering With Text Localization Method

In this section, experiments were performed with combinations of various fragment length
sizes (i.e. window sizes) that were considered on the filtered pages 1 and 4 of the dataset,
performed on 250 writers using Manhattan Distance. The Text Localization technique was used to
clean the pages, as described in Chapter 3.2. This method is appropriate to localize only pure text
using some rules and dismiss all the noise produced by the writer. For comparison with previous
methods, we included the results of Skeleton Hinge Distribution (SHD) as reported in [28] and
Edge Skeleton Hinge Combination (ESHC) as presented previously. For consistency, the same
methods were used for the filtered pages. Identification results are presented in Table 16.

Table 16. SHD, filtered SHD, ESHC and filtered ESHC identification Accuracy (Percentage) with
Manhattan Distance
Fragment SHD Filtered SHD ESHC Filtered
Length Accuracy Accuracy Accuracy ESHC
Combinations (Percentage) | (Percentage) | (Percentage) Accuracy
(Percentage)
3 80% 80% 79.4% 83.2%
5 89.6% 88.8% 89.2% 90%
7 90% 90% 89.6% 90.4%
9 88% 88% 87.2% 89.2%
3,5 85.2% 85.2% 84.6% 86%
3,7 85.6% 87.2% 85.2% 88%




3,9 86% 86% 85.6% 88.8%
5,7 90% 90.4% 89.6% 90%

5,9 90.8% 91.2% 90.2% 90.4%
7,9 90% 90.8% 89.4% 90.8%
3,5,7 86.8% 86.8% 86.8% 87.6%
3,7,9 89.6% 89.2% 89.2% 90%

5,7,9 90% 90.4% 89.4% 90.4%
3,5,7,9 89.6% 89.6% 89.2% 89.6%

6.2.9 ICDAR 2017 Experiments

All the techniques were considered for testing for the ICDAR 2017 Dataset and parameters
of various fragment length sizes (i.e. window sizes) combinations. Furthermore, the Quantised
Skeleton Hinge Distribution was tested only by quantizing the intensity on three levels (3QSHD)
since this level achieved the best accuracy on the Firemaker dataset. From the Top 1 identification
results presented in Table 17, it is easily observable that SHD, WSHD and SRLDSHD have no
significant differences. Furthermore, RLDSHD, although for most fragment length combinations,
performs slightly worse than the other 2, for single fragment lengths like 3, 5, 7 and 9, performs
slightly better. The RLDHD performs worse than SHD, with an average of 3.61% lower than the
other three techniques and in all fragment length combinations besides the single fragment length
9, where an increase of 0.64% from the SHD technique can be observed. The QSHD technique
had a significantly lower accuracy with an average of 10.59% lower than the SHD technique.

Table 17. SHD, WSHD, RLDSHD, RLDHD, SRLDSHD TOP-1 Identification Accuracy (Percentage) on ICDAR
2017 writer identification competition Data Set
Fragment SHD Accuracy WSHD RLDSHD RLDHD 3QSHD
Length (Percentage) Accuracy Accuracy Accuracy Accuracy

Combinations (Percentage) (Percentage) (Percentage) (Percentage)
3 60.83% 60.75% 64.05% 58.91% 51.91%
5 66% 65.94% 66.55% 62.22% 55.77%
7 64.63% 64.61% 65.30% 62.72% 53.63%
9 61.41% 61.41% 62.44% 62.05% 49.33%
3,5 65.58% 65.55% 65.80% 61% 55.77%
3,7 67.33% 67.25% 66.27% 62.19% 57.5%
3,9 67.52% 67.52% 65.88% 63.16% 56.36%
5,7 67.22% 67.22% 66.55% 63% 57.33%
5,9 67.66% 67.63% 66.19% 63.61% 56.38%
7,9 64.33% 64.33% 64.19% 62.80% 52.86%
3,5,7 67.75% 67.69% 66.41% 62.30% 57.66%
3,7,9 68.36% 67.80% 66.05% 63.38% 57.05%
5,7,9 67.33% 67.38% 66.05% 63.19% 56.58%
3,5,7,9 68.44% 68.41% 66.44% 63.30% 57.94%

From the MAP identification results presented in Table 18, the same observations can be made. It
is easily observable that SHD, WSHD and RLDSHD have no significant differences while
RLDSHD, although for most fragment length combinations, performs slightly worse than the other
2. Single fragment lengths like 3 and 9 perform slightly better. The SRLDHD performs worse than
SHD, with an average of 3.87% lower than the other three techniques and in all fragment length



combinations. The QSHD technique had a significantly lower accuracy with an average of 10.41%
lower than the SHD technique.

Table 18. SHD, WSHD, RLDSHD, RLDHD, 3QSHD MAP Identification Accuracy (Percentage) on ICDAR 2017
writer identification competition Data Set
Fragment SHD Accuracy WSHD RLDSHD RLDHD 3QSHD
Length (Percentage) Accuracy Accuracy Accuracy Accuracy

Combinations (Percentage) (Percentage) (Percentage) (Percentage)
3 40.57% 40.48% 42.79% 38.82% 31.77%
5 44.80% 44.77% 44.26% 40.84% 34.83%
7 43.96% 43.96% 43.60% 41.37% 33.57%
9 40.99% 41% 41.71% 40.91% 30.54%
3,5 44.50% 44.44% 44.01% 40.22% 34.78%
3,7 46.20% 46.16% 44.32% 41.15% 35.86%
3,9 46.33% 46.3% 44.11% 41.63% 35.28%
5,7 45.98% 45.97% 44.29% 41.45% 35.59%
5,9 46.34% 46.32% 43.99% 41.76% 35.35%
7,9 43.73% 43.76% 42.94% 41.30% 33.05%
3,5,7 46.34% 46.30% 44.40% 41.10% 36.10%
3,7,9 46.92% 46.70% 44.13% 41.72% 35.83%
5,7,9 46.11% 46.11% 43.94% 41.64% 35.32%
3,5,7,9 47.02% 47% 44.32% 41.65% 36.25%

Finally, in Table 19, an overview of the maximum accuracy achieved for all four techniques and
results reported in the ICDAR 2017 writer identification competition is presented for the MAP and
Top -1 metrics. It is noticeable that there is a lot of room for improvement for both metrics. For
the MAP metric, most techniques score below 50% accuracy, while Groningen and Tebessa 2
methods achieve 54.2% and 55.6%. For the top-1 Metric, most techniques are scoring below 70%,
while Groningen and Tebessa 2 methods achieve 76.1% and 76.4%, respectively.

Table 19. Skeleton Hinge Distribution Accuracy (Percentage) on ICDAR 2017 writer identification
competition Data Set as reported in [21]
Method MAP Top-1
precision
Skeleton Hinge 47% 68.4%
WSHD 47% 68.4%
SRLDSHD 44.4% 66.5%
SRLDHD 41.7% 63.6%
3QSHD 36.2% 57.9%
Barcelona 45.9% 67%
Fribourg 30.7% 47.8%
Groningen 54.2% 76.1%
Hamburg 46.9% 67.1%
Tebessa | 52.5% 74.4%
Tebessa 11 55.6% 76.4%




7. Discussions And Conclusion
7.1 Directional Hinge Features Interpretation

In this section, an attempt is made to explain and interpret the characteristics of handwritten
text captured by the Directional Hinge methods described above. The common denominator of all
Directional methods described in previous chapters is that they use a probability distribution
P(¢1,¢2) which captures information about the Slant and the curvature of the handwritten text.
Slant is a salient feature of western handwriting [97] and is defined as the predominant angle of
the downward stroke. Slanted characters can slope either to the left or right, although the Slant is
not always uniform and can change even in the same word. For an example, see Figures 65 and
66.

The importance of Slant on the task of Writer Identification systems can be seen in the various
works found in the literature like [24], [41], [98], [99]. Furthermore, Forensic document examiners
also find Slant to be a significant consideration [100] and a discriminatory characteristic [101] to
identify the writer. Again, Slant is among the most visible attributes of handwritten text, along
with size and spaces. Moreover, imitating the writing Slant is one of the most common
characteristics in forgery, i.e. when a writer tries to mimic other writers handwriting. According
to [102], while copying Slant, the forger might lose attention for a moment and revert to his unique
style. For a forensic document examiner, this sudden and brief Slant change is suspicious and
might contain information about the forger identity.

Finally, in cases of disguise, i.e. the writer tries to hide his identity by changing his writing style,
and he achieves that by changing his Slant of writing. In experiments performed in [97], they found
that while Slant is very important for writer identification, it is not essential as a sole factor. The
same observation can be seen in the Edge-Direction distribution [24], which mostly captures the
Slant of writing by the low identification accuracy achieved on the Firemaker dataset.
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Figure 65. An example of different Slant Angles from left to right. The graphic is from [103].
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(a) a word slanted to right

Gan AR

(b) a word slanted to left
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(c) a variant-slanted word

Figure 66. An example of right slanted (a), left slanted (b) and variant slanted(c) word. The graphic is from [104].

Slant angle, for most writers, is visible in the feature space when it is projected to polar coordinates.
For example, in Figures 67-70, two parts of handwritten pages can be seen along with their feature
space projected in polar coordinates. For the first writer, i.e. Figures 67 and 68, it is observable
that the Slant of writing is precisely 90 degrees; this can be seen from the @1 angle distribution
that maxes out at 90 degrees, while the ¢2 angle distribution maxes out at 270 degrees. Thus, by
following the peaks of @2 towards ¢1, the slant angle of writing is found. On the second writer,
i.e. Figures 69 and 70, a right slant can be observed with an angle of approximately 81 degrees.
However, it should be noted that the Slant could not be found in all the cases by finding the max
of the angle distributions in the polar plot. In those cases, the predominant angles captured in the
Directional feature come from all kinds of strokes, not only the downward strokes.
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Figure 67. Part of text from Firemaker DataSet from writer 1657
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Figure 68 Polar plot of the angles @1, 92 and their difference p2-¢1 for writer 1657



fch  Javid en ge )@nh}a parcn  peol 1
Van do  (prcen %&Fﬁgﬁaﬂd @%% %@é

UsA Hollard, | lard. 0 Nanacto.
WReoChkns vesilin Cn reyolen mef ole

IM . Veor horte Fonden  huwdle, 20 @,
udy  meedal @ L/Wﬁ e, ford.
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Figure 70 Polar plot of the angles @1, 92 and their difference p2-¢p1 for writer 17

Curvature results from the movement of the wrist and the fingers [105] while holding down a pen
and in the spatial domain is expressed by the angular information of the handwritten curves [24].
Therefore, it is also an essential characteristic that plays a significant role in Writer Identification
[24], [25].

The curvature information is part of the probability distribution of all the @1 angles and ¢2 angles
and their difference (p2-¢1). Although the curvature is not quite as visible as Slant in the polar
plots as a feature, its importance can be realized through the experimental results presented in
chapter 6. More specifically, in the identification accuracy difference between the methods of Edge
Direction distribution, [24] and Edge Hinge Distribution [24].

Although Slant and Curvature are significant features for writer identification, that does not mean
that they can uniquely identify the writer. It is interesting to observe the rare cases of false matching
and the feature similarity between two distinct writers. In most of the miss-match cases, it is pretty
interesting that the predominant direction was not relating to the Slant, i.e. downward strokes, but
instead with a more horizontal direction.
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Figure 73 with solid lines writer 52 from train dataset and dashed line writer 23 from the test dataset.



120 01 60

150 0.06 30

180

210 330

240 300
270

Figure 74 writer 52 differences between train and test dataset

Bt | Bot
(anacta | (Gnacta

75/1(70, Toleyo.
/@W Vgejomz/n

Gernelode ) | ger ool

Figure 75 Same words from writer 52 and 23 from Firemaker data set

Although it might be an easy task for a forensic document examiner to distinguish between the
two writers in Figures 71 and 72, Directional Distribution systems have difficulty doing so.
Observing the extracted angular information between those writers in Figures 73 and 74, it is
apparent that the features of the two writers have more similarities than the features of the same
writer between the test and training set. Furthermore, a selection of words was made to showcase
the similarities of the two writers in Figure 75.

7.2 Discussions

Offline Writer Identification is an exciting but also a very challenging task. It has
applications in sensitive fields like forensics [10], biometrics [2] and palacography [1], and thus
the mechanisms and techniques that are utilized to provide writer identification results should
comply with some essential characteristics. To be more precise, Writer Identifications systems
should be easy to explain, understand, and, most importantly, trust.

Implications of false positives or wrong identification results in Writer Identification could have
severe consequences. For example, a wrong identification used in a court case could lead to an
unjust ruling. Likewise, used in a biometric system could result in a data breach, while in



palaeography, it could lead to wrong conclusions or, even worse, to future conflicts if it is about a
biblical text like the Quran or the bible.

Classical Methods like Hinge distribution have an advantage over Artificial Intelligence systems,
primarily for their ability to be explained. Usually, Classical methods consist of algorithms with a
bounded set of steps that use other algorithms as building blocks. On the other hand, Artificial
Intelligence methods feed test and train data, usually on a neural network that can adjust inner
weights between neurons and learn to identify the writer based on the data provided.

Artificial intelligence methods have recently bloomed in the field of Writer Identification,
outperforming traditional methods [20]. In addition, modern Al tools and frameworks and
hardware advances have boosted Artificial Intelligence presence in literature publications, making
Classical methods rarer.

We believe that the research trend in Artificial Intelligence will grow even more in the future.
However, eventually, we might reach a point where Artificial Intelligence will produce new
classical methods for Writer Identification, i.e. explainable algorithms produced by Al
Alternatively, we will revert to classical methods for the kinds of applications that require
trustability and explainability.

7.3 Conclusion

In this work, several features for writer identification were presented. Our experiments
indicate that even by using a single feature, writer identification accuracy yields promising results.
While most of our experiments that achieved maximum accuracy are performed using nearest
neighbour matching, other matching techniques were considered, including machine learning,
yielding promising results.

One of our main findings is the importance of the skeleton information on Writer Identification
methods. Our primary assumption that all stroke widths, i.e. line thickness, should be considered
the same size, has been explored by applying skeletonization to characters and thus making all
strokes having the same line thickness. However, the experimental results proved that the previous
assumption is correct.

Furthermore, a devised technique, the Run Length Directional Hinge Distribution, considers the
complete information found on the document. The same technique was limited to only using the
image's Skeleton as starting points in the Run Length Directional Skeleton Hinge Distribution.
Experiments on ICDAR 2017 data set revealed that when using the Skeleton, an increase in
accuracy could be observed with a mean difference of 3.17%. Although the difference is not
significant, it proves that better quality and fewer noise feature vectors are acquired when using
the Skeleton. Furthermore, when RLDHD is compared with the Skeleton Hinge Distribution
technique, the same observation can be made with a slightly higher mean difference of 3.61%.
Moreover, an attempt was made to understand the effect of Main Body Size fluctuations, observed
on the document level, on identification accuracy. A Weighted variation of the Skeleton Hinge
Distribution method was utilized on two datasets. Experimental results revealed that Main Body
Size fluctuations hardly affect the identification accuracy since only minor differences could be
observed, and thus, our assumption that Main Body size can affect writer identification is proved
wrong.

Finally, an attempt was made to understand the effects of Grey-scale pixel intensity on
identification accuracy. A variation of the Skeleton Hinge Distribution technique considers only
pixels in a specific pixel intensity range. In this method, an attempt was made to denote pixel



intensity as the pressure of writing and prove that areas with more pressure contain more
information about the writer. For the Firemaker dataset, a slight improvement in accuracy of 1.6%
can be observed. On the other hand, for the ICDAR 2017 data set, a significant decline with a
mean difference of 10.59 % can be observed. However, this difference might be caused by
differences in datasets since Firemaker contains grey-scale samples in white background and with
higher variation in the dark pixel intensities. In comparison, the ICDAR 2017 datasets contain
colour images with a yellowish background and more minor variations in pixel intensities of the
dark pixels that contain text. Therefore, we estimate that further research is required in more
datasets with a higher variation in dark pixel intensities to prove or disprove our third assumption.
We strongly believe that further improvements can be achieved. A combination of statistical
features along with the skeleton hinge distribution could be used to increase accuracy. Further
research is needed in the area.

Furthermore, the methods described in this work can be used for a variety of different applications.
Some suggestions of possible future applications are presented here.

First of all, the techniques presented here could be used as a screening method to reduce the number
of possible writers of a handwritten document image by displaying the nearest N writers.
Especially when the number of writers is vast, the time needed to calculate the distances between
writers is very fast since a single mathematical operation is needed per writer. Next, depending on
the application, a human expert or an Artificial Intelligence method could do one on one matching.
Skeleton hinge distribution features can also be used as a writer verification system by applying a
threshold. For example, if the distance between the two samples is lower than a predefined
threshold, then verification of the writer can be made.

In the same way, it can be used as a user authentication method or as an addition to two-factor
authentication for mobile phones. Online features can be added as well to improve results.
Furthermore, it can be used for historical documents of unknown origin. There exist numerous
documents, that their origin till today is unknown. With our proposed methods, a match of these
documents and their writers can be made, which might give a better perspective on history.
Lastly, the skeleton hinge distribution feature suggested in this work might be a fit for other
applications. For example, it is believed that it can be advantageous in slant correction systems. It
might have applications in word spotting systems, but further research is needed to determine that.
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