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ABSTRACT

In recent years, composites have been successfully strengthened at micrometer scale
using different types of reinforcements. Production of carbon nanotubes and of graphene
enabled the reinforcement of cement-based materials at the nano-scale. The produced
nanocomposites have greatly increased the mechanical properties, especially the “effective”
properties such as modulus of elasticity and Poisson ratio. With their widespread exploitation a
need has emerged, the ability to simulate and predict the mechanical properties and
consequently the mechanical behavior of cement-based composite materials according to type,
geometry and volume fraction of inclusions used. Another important need is the ability to
identify the optimum material synthesis of a composite that will fill the intended needs in the
most economically efficient way when different types of inclusions are in the engineer’s
disposal; and even so when more than one type of inclusion may be used in conjunction with

the cement matrix.

Therefore, the main scope of this Thesis was the development of a methodology for the
calculation of the mechanical properties of a cement-based nano-reinforced composite and to
predict by extrapolation the properties of any composite with the same matrix and inclusions,
but with varying inclusion volume fractions. Research in international literature was initially
conducted for the available methods of homogenization and experimental data of cement-
based matrix reinforced with multi-walled carbon nanotubes (MWCNTs) were retrieved from
literature data. The selected homogenization methods were the multi-step method and the
finite element method. Inclusion orientation was simulated with two different methods: the
fixed angles and the random orientation method. The homogenization tool of the ANSA®
software package was exploited for the modeling of the inclusion geometries in a cubic matrix
and for mesh generation. A Representative Volume Element (RVE) was constructed with either
random orientation tensor algorithm or periodic geometry algorithm tools and for different
concentrations of the nano-reinforcement. Finite element modelling of the pre-cracked
specimens for 4 point bending flexural tests followed, and the simulation results of the crack

mouth opening displacement (CMOD) were compared against the experimental results, in order



to identify the most accurate composition. Effective modulus of elasticity was expressed as a

correlation of inclusion volume fraction (vs).

Secondarily, the synthesis optimization problem was addressed. A methodology was
developed in order to achieve optimal material synthesis with a target valued for the effective
modulus of elasticity. The Interior Point Optimization (IPOpt) algorithm was used to guide the
iterations applied to the homogenized material properties simulated. Three study cases were

investigated in order to validate the proof of concept.



NEPINAHWH

Ta teAevtaia xpovia to oUVOETA UALKA £XOUV ETMITUXWC €VIOXUOElL otnVv KAlpOKO TOU
ULKPOUETPOU XPNOLUOTIOLWVTAC SLadOPETLKOUC TUTIOUG evioxuonc. H mapaywyr) vavoowAnvwy
avBpaka kat ypadeviou emetpePe TV evioxuon VALKWV UE BAoN TO TOLUEVTO OTN VAVO-KALLOKA.
To vavoevioxupEva SOULKA UALKA £XOUV QUENUEVEG LNXOVLKEG LOLOTNTEG, Wolaitepa LoOSUVOLES
(effective) 1610TNTEG OMWG TO METPO €AaoTIKOTNTAG KOl 0 AOyog Poisson. Me tnv gupeia xprion
TWV VAVOUAIKWY, TIPOEKUYPE N avaykn TNG MPOCOUOLWOoNG Kol TPOPAEPNG TWV HUNXAVIKWV
SlotATwy Kat tng cupnepLdpopdg evog cuVOeTOU UAKOU pe BAon TO TOLWEVTO CUUPWVA PE TOV
TUTO, TN VEWUETPLO Kol TO KAAOUA OYKOU TwV TPOOHETWV TOU XPNOLUOTIOLOUVTOL Yl TV
evioxyuon. Mwa GAAn onpovtiky avaykn €ivat n kavotnta mpoodloplopol Tng BEATLIOTNG
ouvBeon¢ Tou UALKOU mou Ba KaAUPEL TG TPOPAETIOUEVEG QVAYKEG LIE TOV TILO OLKOVOULKQ
amodoTIKO TPOMOo, Otav dladopetikol TUMOL mMpocOetwy sival otn SlabBson Tou HNXAVLKOU,
aKOUN Kot OTav UmopoUlVv va xpnolpomnolnfolv mePLocOTEPOL Ao €vag TUTIOL POCHETWY o€

ouvOUAOUO HE TN UATPA TOLUEVTOU.

Q¢ ek TOUTOU, TO KUPLO TESIO AUTHC TNG EPEVVNTIKAG EpyAciag ATav va avantuxOel pia
pnebodoloylia yLa ToV UTTOAOYLOMO TWV HUNXAVIKWY LELOTATWVY £vO¢ oUVOETOU e BACN TO TOLUEVTO
Kal vo TpoBAEPEL avaywylKA TIG UNXAVIKEC LOLOTNTEC omoloudnmote oUVOETOU pE TNV WOl
UNTPa Kal TpocBeta, aAAd pe molkila KAdopata Oykou mpooBetwv. H €pesuva otn Sledbvn)
BBAoypadia 6e€AxOn apxikd ya va emAexBolv amo TG OloBéolpeg  peBOdoug
OLOYEVOTIOINONG KOl OVEUPEONKAV TEPAUATIKA OeSopéva  pATpaG He PAocn TOLMEVTO
EVIOXUMEVA HE VAVOOWANVeG AdvBpaka TOAAamMAWY Towpdtwv (MWCNT). Ou pébobdot
opoyevormoinong mou emAéxBnkav Atav n puéBodo¢ moAamAwv otadiwv (multi-step) kal n
HEBodog MenepaoUEVWY OTOoLXElWY. O MPOCAVOTOAOUOC TWV MPOCOETWY MPOCOUOLWONKE pE
SU0 Sladopetikég ueBodoug: pe otabepég ywvieg kat pe Tnv pEBodo tuxaiou mpooavatoAlopol
(random orientation). To epyaAsio OMOYEVOTIOINGNC TOU TIOKETOU AoYylOplkoU ANSA®
aglomolnOnke yla tn LovIeAOTOlNoN TWV YEWUETPLWY TWV VAVOIVWY O€ [ia KUBLKAG YEWUETPLAG
uNTpa Kol yia tn dnuoupyia TAEypatog. Eva avIUMpOOWIEUTIKO oTolxelo Oykou (random
volume element) kataokeudotnke €ite e TOV TAVUOTA TUXAlOU TPOCAVATOALOMOU €iTE e

epyaAeia aAyoplBuwv meplodIKNC yEWHETPLAG KOl Yot SLOPOPETIKEC CUYKEVIPWOELC TOU VOVO-
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omAlopoU. AkoAoUBNoe HOVTEAOTIOLNON TIEMEPACUEVWY OTOLXEIWV TWV TIPO-PNYHATWHUEVWY
SoKLUiwV yia SoKLIUEG KApPNE 3 onUelwV KAl TO AMOTEAECUATO TTPOCOUOLWONG TNC LETATOTILONG
TOU QVOlyHOTOG TOU GKPOU TNG PWYHUNG CUYKPLONKOV HE TA TELPOUATIKA QMOTEAECUATA,
TPOKELHEVOU va mpoaodloplotel n mo okplBric ovvBeon. To wooduvapo (effective) pétpo

EAAOTIKOTNTAC EKPPAOTNKE WG CUCXETLON TOU KAAOHUATOC OYKOU TIPOCOETWV (Vvs).

AgUtepov, avTIHETWTOTNKE TO TPOPANUA  €Upeong TG PBEATIoTNG ouvOeonc.
Avartuxonke pia pebodoroyia mpokelpévou va enteuxBel n BEATLoTn ouvBeon UALKOU yla pia
TLUA OTOXO TOU METPOU eAoTIKOTNTAG. O aAyoplOpHoG BEATIOTOMOINONG ECWTEPIKWY ONUELWV
(Interior Point Optimization) xpnowomouiBnke ywa va odnynoel TG emavaAfPelg mou
edapudotnkav pe S€S0UEVEC TIC TIPOCOUOLWHEVEG LOLOTNTEC TOU OHLOYEVOTIOLNHUEVOU UALKOU.
TPELC MEPUTTWOELG LEAETNG SOKLUAOTNKAV YLOL TNV ArtOdelEn TG £€vvoLag Kol TOV TPocSLopLOUO

EMAPKOUG aplBpoL enavaAnPewv.
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1. Introduction

1.1 Reinforcing materials

Reinforcing a material adds rigidity and greatly impedes crack propagation. In essence,
the mechanical properties of the matrix are enforced, resulting in most cases in stiffer, stronger
and harder material than the original matrix. The type of reinforcement can help distinguish the

composite in four basic categories: particulates, fibers, flakes and fillers, e.g. (1).
1.1.1 Flakes

These are reinforcing materials existing in flat platelet form and having approximately
two-dimensional geometry with strength and stiffness in two directions. With their suspension
in glass or plastic an effective composite material can be formed. Commonly, flakes are packed
parallel to one another, meaning that in comparison with fiber reinforced materials, flakes can
provide a higher density. Some of these flake materials are mica, aluminum, and silver (Figure
1). When mica flakes are embedded in a glassy matrix, the resulting composites can be
machined with ease and as such are used widely in electrical applications. Flakes of aluminium
in paints and coatings in general orient themselves in parallel. Where there is need for a good

conductor, flakes of silver are an option (1).

Figure 1 Photograph showing silver mica flakes (2)



1.1.2 Fillers

Powders and particles inserted into a matrix in order to enhance its physical and
mechanical properties are called fillers. Fillers are also helpful in lowering the percentage used
of a more expensive binder material. Thermal conductivity, electrical resistivity, friction, wear
resistance, and flame resistance can all be enhanced using fillers. Some typical examples of
fillers are calcium carbonate, aluminum oxide, lime (also known as calcium oxide), fumed silica,

treated clays, and hollow glass beads (1).
a (b)
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Figure 2 Schematic illustration of the hollow sphere PANI/S composite during the charge/discharge process. (a) The initial

PANI-S composite, (b) the cycled PANI-S composite, (c) the lithiated PANI-S Composite and (d) the schematic illustration of

integrity of the hollow PANI-S cathode with severe Volume change during charge/discharge (3)

Figure 3 White glass fiber composite raw material background (4)
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1.1.3 Fibers

Fibers are ropes or strings with a substantial aspect ratio (> 100) used as a component in
composite materials. Fiber cross-sections can be of a circular, square or hexagonal form. Fibers
usually used are glass fibers (Figure 4), which consist primarily of silicon dioxide and metallic
oxide modifying elements and are generally produced by mechanical drawing of molten glass
through a small orifice. These have the benefits of a very low cost simultaneously providing high
corrosion resistance. Typical uses include fishing rods, storage tanks, and aircraft parts; 2)
aramid fibers, which have higher specific strength while lighter than glass and more ductile than
carbon. Examples of industrial application are armor, protective clothing, and sporting goods; 3)
carbon fibers (Figure 4), can be made from an oxidized polyacrylonitrile or via pyrolysis
carbonized polymers. Carbon fibers may offer more than 950 GPa with low density. Their
diameter usually falls somewhere in the range between 5 and 8 um, 4) boron fibers, with
characteristics such as high stiffness and compressive strength, and relatively large diameters
(0.05—0.2 mm). Such boron fiber composites have been utilized in aerospace structures where
stiffness is of essence. 5) silicon carbide fibers, for high-temperature metal and ceramic matrix
composites (CMC) because of excellent oxidation resistance, high modulus, and strength in

high-temperature atmosphere (1).

Figure 4 Carbon fiber and aramid fiber (5)
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1.2 Reinforced concrete history

Francois Coignet was the first to use iron-reinforced concrete as a technique for
constructing building structures (6). In 1853, Coignet built the first iron reinforced concrete
structure, a four-story house at 72 rue Charles Michels in the suburbs of Paris, which still stands
as seen in Figure 5. Coignet's descriptions of reinforcing concrete suggests that he did not do it
for means of adding strength to the concrete but for keeping walls in monolithic construction
from overturning (7). In 1854, English builder William B. Wilkinson reinforced the concrete roof
and floors in the two-story house he was constructing. His positioning of the reinforcement
demonstrated that, unlike his predecessors, he had knowledge of tensile stresses, e.g. (8), (9)

and (10).

E r<_ a 1
o iy ol |l

Figure 5 The world's first iron-reinforced concrete structure, a four-story house at 72 rue Charles Michels (6)

Joseph Monier, a 19t™ century French gardener, was a pioneer in the development of
structural, prefabricated and reinforced concrete, having been dissatisfied with the existing
materials available for making durable flowerpots (11). Monier filed and was granted the patent
for reinforcing concrete flowerpots by means of mixing a wire mesh and a mortar shell. Even
further, in 1877, Monier was issued another patent for a more advanced technique of
reinforcing concrete columns and girders, using iron rods placed in a grid pattern. It is in doubt
whether Monier understood the mechanical properties and concepts such as tensile stresses in

design (Figure 6) (12).
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Figure 6 In 1873 Monier applied for an addition to patent 77165 to cover bridges, and in 1875 built his first bridge for the

marquis de Tilliére. It spans 14 metres across the moat of the chateau. (13)

Even though concrete was discovered in Roman times and was rediscovered in the early
1800’s, until the time of Monies it was not widely used not scientifically understood and
accepted. Thaddeus Hyatt was the one who published a report named “An Account of Some
Experiments with Portland-Cement-Concrete Combined with Iron as a Building Material, with
Reference to Economy of Metal in Construction and for Security against Fire in the Making of
Roofs, Floors, and Walking Surfaces”, in which he reported his experiments on the behaviour of
reinforced concrete. This report was to play a defining role in the evolution of concrete
construction as a proven and studied science. Without Hyatt's work, more dangerous trial and
error methods might been depended on for the advancement in the technology, e.g. (7) and

(14).

English-born engineer Ernest Ransome was another early innovator of reinforced
concrete techniques at the end of the 19t century. Using the knowledge of reinforced concrete
developed during the previous 50 years, Ransome put in improvements on nearly all aspects of
techniques. Ransome's key innovation was the twist of the reinforcing steel bar, thereby
improving its bond with the concrete (15) . His constructions having made him widely
recognized Ransome was in position to leave his mark building two of the first reinforced
concrete bridges in North America (Figure 7) (16). One of the first concrete buildings
constructed in the United States was a private home designed by William Ward, completed in

1876, a building designed with fire resistance in mind.
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Figure 7 Constructed in 1889, the first reinforced concrete bridge in America (17)

A civil engineer from Germany bought Monier’s patents and pushed forward iron and
steel concrete construction. In 1884, his firm, Wayss & Freytag, made the first commercial use
of reinforced concrete, e.g. (12). One of the first skyscrapers made with reinforced concrete was

the 16-story Ingalls Building in Cincinnati, constructed in 1904 (10).

The first reinforced concrete building in Southern California was the Laughlin Annex in
downtown Los Angeles, constructed in 1905, (18) and (19). One year later building permits were
issued for reinforced concrete buildings in the City of Los Angeles, including the Temple
Auditorium and 8-story Hayward Hotel, numbered 16, e.g. (20) and (21). On the same vyear,
Bixby Hotel in Long Beach partially collapsed during construction killing 10 workers. This led to
an investigation of concrete erection practices and building inspections. The structure was
constructed of reinforced concrete frames with hollow clay tile ribbed flooring and hollow clay
tile infill walls. That practice was strongly questioned by experts and recommendations for
“pure” concrete construction were made, using reinforced concrete for the floors and walls as

well as the frames (22).

Figure 8 J. Morgan’s reinforced concrete structure, El Campanil, a 72-foot (22 m) bell tower at Mills College (23)
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1.3 Fiber reinforced concrete

Construction materials are continuously evolving. Demand for high strength, crack,
resistant and lighter concrete has resulted in the development of Fiber Reinforced Concrete
(FRC). Some of the fiber materials in use are steel, nylon, asbestos, glass, carbon, sisal, jute, coir,

polypropylene (24)
1.3.1 History of fiber reinforced concrete

Use of fibers for reinforcement was in use as early as the ancient world. Horse hair and
straw were both utilized to strengthen the bricks (Figure 9). In 1911 use of asbestos fibers was
made in concrete. In the ‘50s fiber reinforced concrete was becoming a field of interest as
asbestos was first suspected to pose health concerns. In 1963 Romualdi and Batson publish

their paper on FRC (24).

Figure 9 Horse hair in the bricks mud (25)
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2.Modelling Composites: Matrix - Reinforcement

Carbon nanostructures gained the interest of researchers because of their mechanical
properties. The high modulus of elasticity E of these materials gave to the field of mechanics
promises of sky rocketing structural potential. Nanostructured composites had been
successfully strengthened using carbon fibers as filling material in (26), greatly improving the
mechanical properties of the matrix. Researchers have widely investigated the enhancement of
graphene at both metal matrix (27) and (28), polymer matrix (29) and (30) as well as epoxy

matrix nanocomposites (31).

In order to find all possible ways to use these new materials and, moreover, to optimize
production methods, computational research is required; research that compares the
properties of these materials for various compositions and production methods. In this way,
results of the computational analysis will designate materials and combinations with properties

suitable for industrial use.

The earliest attempts to calculate and predict the effective properties of heterogeneous
materials were the analytical methods. Voigt made the first attempt of calculating analytically
the properties (32), assuming a homogenous strain field, internally of a small unary
representative sample of the material, thus making it suitable for models under axial loading.
Later, Reuss followed a similar path (33), but assuming a homogenous stress field in a
representative material sample, thus suitable for models under forces vertical to inclusions’ axis.
Eshelby created a more sophisticated model assuming infinitesimal homogenous interactions
(34). This model is based on a single fiber of ellipsoid two-dimensional form inside a three-
dimensional matrix of relatively large dimensions. Mori-Tanaka developed a computational
theory (35) applicable to materials with inclusions of various shapes; the inclusions are
considered as isolated and the strain in the matrix is considered as the out of field strain. The

Mori-Tanaka method may be applied for two phase composites.

Because of increasing demand and use of composite materials with varying inclusion

percentages, complex inclusion geometries and use of different kinds of inclusions

16



simultaneously in the same matrix, a new method of “prediction” calculation of the properties
of such materials was sought. The numerical method, having no constraints in the
aforementioned, was deemed suitable for modelling the microstructure of complex composite

materials.

The first modelling attempts were models of a single inclusion in two-phase composites
(36) not taking into consideration interactions between inclusions. Later on, the three-phase
composite (37) was developed, in which the inclusion was positioned in a matrix ring which in
turn was positioned in a ring of the homogenized material, the latter considered of infinite
width (Figure 10). Afterwards, models were created with a small number of inclusions,
according to the actual fiber packing. In such models, 9 inclusions were imported in the case
where fiber packing was considered a square array, 13 inclusions in the case of a hexagonal

array, and 25 fibers in such a case as of a random array, e.g. (38).

In order to succeed in simulating materials’ geometrical characteristics and mechanical
behaviour using RVEs, several algorithms have been developed. The most common such
algorithm, the random sequential adsorption (RSA) method, was used by Babu et al. (39),
implemented in MATLAB for the homogenization of carbon fibers in epoxy matrix , and by Chen
et al. (40) implemented in Wolfram for homogenizing elastomer composites’ properties. Savvas
et al. (41) used the Monte Carlo method in order to generate a composite containing a limited
number of unidirectional inclusions. The sequential addition and migration method was used by
Schneider (42) to evaluate the isotropic engineering constants of glass fiber reinforced

polyamide.

Figure 10 Homogenization Methods Overview, Ghayath Al Kassem (2009)
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2.1. Semi- Analytical methods overview
2.1.1. The theoretical bounds of HILL — REUSS — VOIGT
This method is valid for a transversely isotropic symmetry (Figure 11):

(Reuss field)
-— —

Specified traction Specified traction

(Voigt field)

- -
- -

Specified displacement Specified displacement
Figure 11 Theoretical Bounds of HILL — REUSS — VOIGT method visualization

The Voigt’s uniform strain can be calculated as follows:

C™® - C= +¥,(C —C")=F,C' +¥.C"

’

while the Reuss uniform stress can be calculated as follows:
S.Efl‘-'j — Srll s II: {5-’ _S'.l.l :I=-f,:|r:‘|] _I'!"'msrll

2.1.2. The ESHELBY Model

Eshelby solved a single-inclusion problem: An ellipsoid is cut out of an infinite matrix,

undergoes an Eigen strain, and is inserted back into the matrix.
2.1.3. The MORI-TANAKA Model

The Mori-Tanaka Model proposed by Mori and Tanaka in 1973, can be applied to
Isotropic and Transversal Isotropic materials (Figure 12). It takes into account interactions
between the inclusions. It is accurate heterogeneous materials with a moderate volume fraction

of 25-30%
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Figure 12 Mori-Tanaka Model visualization

Each inclusion behaves like an isolated inclusion, in an infinite matrix that is remotely

loaded by the average matrix strain Em or average matrix stress Tm, respectively. The
concentration tensor:

A=[E:(Clcr-1)+1] .
2.1.4.

The self-consistent method

This method assumes that each inclusion is isolated and embedded in a fictitious

homogeneous matrix possessing the unknown macroscopic stiffness that is being searched
(Figure 13).

e

h * e

c .:I;.
= Q,
— C
g I

Figure 13 Self consistent method visualization

Good predictions for poly-crystals but is less satisfying in the case of two-phase
composites, while the influence tensor can be calculated as follows:

A% [1+2s (¢ -’



2.1.5. Interpolative double inclusion model (LIELENS’ model)

This model supposes that each spheroidal inclusion (l)—of stiffness CI —is wrapped with a
matrix material of stiffness CM. The outer reference material has a stiffness CR. The composite

has an average or effective stiffness CLIL.

- -
Cr+ ¢ ae—1 Cr + & _1

T — il s Tk

{'iLII.} == l(l 9 ) Lil[T“l: + —2 (f.".'IT}

From the methods that were considered during the first part of this research, the multi-
step homogenization method making use of the Mori-Tanaka model was chosen. The selection
was made making use of comparisons of the various analytical methods (Aboudi, 1992),
Ghayath Al Kassem, 2009) and judgment of suitability of each method with regard to this
specific research but also the grade by which each method is suitable to be applied in a wider

range of problems.

2.2. Modelling composites using numerical method

Using the numerical method different types of elements (Figure 14) may be used for the
Matrix, and Reinforcement (Fibers, sheets, platelets etc.). In present Thesis, solid 3 dimensional
elements were chosen to be used for both the matrix and the reinforcement. This is the more
costly —computationally- method, but one that provides the most accurate results because of

the level of analysis.

Matrix —— solid elements 3D
‘'shell elements 2D

Reinforcement
>solid elements 3D {x}‘

Figure 14 Numerical method element types

20



2.3. Cement matrix composite materials homogenization

Even though homogenization is common practice in most of the composite materials,
not much research has been conducted specifically for cementitious composites. One first try to
apply analytical homogenization methods in cement based concrete was made by Yang (43),
who initially used the Hori and Nemat-Nasser model method to calculate the equivalent elastic
moduli of the aggregate and the transition zone and then used the Mori-Tanaka model to

evaluate the overall effective properties of the cement composite.

Gal and Kryvoruk (44) studied the properties of a cement based material with inclusions
of both aggregates and fibers, using a two-step method. In the first step, interface transition
zones and the aggregates were homogenized using an analytical model suggested by
Christensen (45). In the following step, the macroscopic properties of the mortar-fibers material

were evaluated using a numerical homogenization procedure.

Gal, et al (46) V-enrichment and zigzag-like enrichment functions for the shape of the
inclusions or the coating and evaluated the homogenized elastic properties using 2D models of

cement based materials having aggregate as inclusions surrounded by thin coatings.

Wang et al (47) applied the RVE method to cement-based composites. The algorithm
that was used in order to set the fibers’ orientation did not accept deleted any fiber that
exceeded the boundaries and any new fiber overlapping with any of the previously placed

fibers.

Zhang et al (48) used a double numerical homogenization. At the micro scale the cement
matrix unit cell containing aggregate- interfacial transition zone inclusions were homogenized.
At the meso-scale, the properties of the composite, consisted from fine-concrete matrix and

steel fibers, were evaluated.

Qsymah et al (49) used the finite element - RVE homogenization method to define the
properties of cement based composites with steel fibers of 13 mm in length and 0.2 mm in
diameter and pores. Because of the dimensions of the steel fibers, that research may not be

considered as at a nano-scale.
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2.4. Selected homogenization methods

2.4.1 Fiber orientation

With the application of the «random orientation tensor» algorithm it becomes possible
for each individual inclusion vector-among thousands that are positioned iteratively in the
matrix cube- to have its own position and orientation. Each inclusion is positioned in space

according to probability of convergence to the Xi, Xz, X3 axes.

The orientation tensor, borrowed from applied fluid mechanics, provides an efficient

description of fiber orientation, using a probability curve.

The tensor has nine components, with the suffixes for the tensor terms being:

. In the flow direction.
. Transverse to the flow direction.
. In the thickness direction.

Typically these axes apply:
. The X-Y (or 1-2) flow plane.
. The Z-axis in the thickness direction, out of the 1-2 flow plane.

In order to achieve a higher randomization of the placement of inclusions in the three-
dimensional cube, the following values were used for the orientation tensor ai1= 0.333, az;=
0.333, a33=0.333 with all other components left as null. In Figure 15 the created micro structure
geometry - as seen in the ANSA software environment - for the case of the aforementioned

tensor values is displayed.
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Figure 15 Orientation tensor a) tensor b) geometric representation c,d) orientation representation (not actual inclusion sizes)

The flow direction orientation term, contains most of the quantitative information about
the microstructure and is most sensitive to flow, processing and material changes (ANSYS
documentation). In the pictures of Figure 15c, Figure 15d, Figure 16 are shown examples of
ANSA model representation for random orientation tensor. Radius of fibers is exaggerated for

the purposes of better presentation.

Figure 16 Orientation Tensor model representation

Another way to simulate fiber orientation is by using Fixed Phi Theta Angles (Figure 17).
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Figure 17 Fixed Angle Fiber Orientation, left: geometry, right: ANSA representation

Fixed Phi Theta Angle combinations used in this research:

" ®=0, 6= 0
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. ®=-45, 6= 45

. ®=45, 6= 90

. ®=-45, 0=-45

The above 16 phi theta angle combinations were used for the inclusions, each for equal

III

volume fractions, representing a kind of “ideal” dispersion, as seen in Figure 18.

Figure 18 Fixed Angle Fiber Orientation result presented with ANSA

2.4.2 Periodic geometry algorithm

For the purposes of this research the so called “periodic geometry algorithm” was used.
Periodicity across surfaces means that continuity between adjustment RVEs is ensured. The way
this is achieved by, is that inclusions in the RVE that intersect the cube outer surfaces, are “cut”
with the remainder being placed as continuing from the opposite surface. Additionally, the
algorithm takes into account a minimum separation distance between the surfaces of any two
inclusions. This ensures that desired volume fraction is more effectively achieved and fibers

dispersion is more realistic.
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Figure 19 Periodic Geometry Algorithm result representation
2.4.3 Nano-scale Homogenization model

Two procedures may be followed, one for the isotropic case with two independent
parameters (E, v) and one for the transverse isotropic case with five independent parameters

(E11, V12, E22, Va3, G12). For the isotropic case:

i) tensile perturbation in the x-direction gives

o <512>n° e _<853>no
<gn>.r:D N <5n>nc

V= )2

ii) tensile perturbation in the y-direction gives
Ee” ZE:’? = <O-22>nc
- (8::)_00

and
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iii) tensile perturbation in the z-direction gives

<‘9n>9_‘J o <‘92:>Q.-

(853>_n_c. o

VT o+ )2

Jeff
Vi

The RVE was subjected to three tensile and three shear loadings using the Epilysis solver
software. The ANSA Homogenization Tool ensures distribution of hundreds of inclusions in the
RVE according to the volume fractions of the experimental data used as basis. The
Homogenization tool also ensures that an appropriate number of finite elements are placed
adjusted to each inclusion’s sides in order to keep the RVE’s loading results unaffected from
element size, and as a result, the calculated properties of the homogenized material. The option
of an even thicker than suggested by the Homogenization Tool mesh is open and it was indeed
taken for the purposes of this research, Cross — checking for different random orientation
positioning results was conducted, and for every different geometric position of the inclusions

the results remained constant.

The Multi-Step Homogenization Method

multi-phase composite

Decomposition:
Inclusions

in each “grain”
have the same ~
» Material properties
» Aspectratio

« Orientation \\'

First step

4:ond step

Voigt formulation

Homogenization for each “grain”
Mori-Tanaka

Figure 20 Multi Step Homogenization Method representation, Abaqus documentation
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Adhering to the multi-step homogenization method, the composite is decomposed into
"grains", with each grain containing one inclusion family and the matrix. The inclusions in each
family have the same material properties, aspect ratio, and orientation. In the first step
homogenization is performed in each grain using the Mori Tanaka model; in the second step the

Voigt formulation is used to compute the properties of the overall composite.

0!
0.2 Homogenization
(0]
07 ——>
0!

Q,

Figure 21 Representative Volume Element homogenization method representation

The representative volume element (RVE) is a sample of the material microstructure that
the macroscopic body consists of as shown in. In order to be representative, the size of the RVE
is of great importance. A definite perturbation is applied to calculate a definite material
property. Two procedures may be followed, one for the isotropic case with two independent
parameters (E, v) and one for the transverse isotropic case with five independent parameters

(E11, v12, E22, N3, G12).
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3. Research methodology

3.1 Experimetal data

As a basis for this paper experimental data were gathered from the experimental results
drawn from the research investigation of Prof. Z. S. Metaxa, e.g. (50), (51) and (52). These
papers describe the experiments of specimens subjected to three point bending flexural tests.
The specimens were of a cement paste matrix with multi walled carbon nanotube (MWCNT)
inclusions of various volume percentages, between 6 and 20 per mille. Preparation of cement
paste was documented. The MWCNTs were either all of a short or of a long type shape. The
preloaded specimens were notched in the middle (Figure 22). Further characteristic values and

data are shown in the figures and table below.

The modulus of elasticity of the cement matrix used in those experiments was calculated
as having a value of 4000 MPa. In the same experiments both long and short fibers were used as
inclusions, with characteristics as shown in Table 1. Even though the methodology was applied
to both types of inclusions, this paper focuses in the use of short fibers. Data was available for

inclusion volume fractions of 6 and 12 %eo.

Table 1 General characteristics of Multi Walled Carbon Nanotubes used in experiments

Aspect Ratio | Diameter Length Purity Specific surface area
(nm) (nm) (%) (m2/g)
Short (Cheap Tubes®) 700 20-40 10-30 >95 110
Long (Nanothings®) 1600 20-40 10-100 >97 250-300

<
Omm

ao=nGmm <

[
__L=75mm " t=20mm

Figure 22 left: Diagramme of the three-point flex notched specimen and right: picture of the three-point bending flexural test

fixture
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In all experiments the crack mouth opening displacement was measured. Results were

plotted into graphs such as that of the example below (Figure 23).

250

200

RN

N

o
1

Load (N)

50 ° 0.005 0.01 0.015 0.02 0.025
Crack Mouth Opening Displacement (mm)

Figure 23 Plot of experimental results for the short fibers — 6%, combination

Representative values for the modulus of elasticity of the carbon nanotubes were taken
from Min-Feng Yu, et al (2000) (53), a research of the same era as the experiments, ensuring
similar production techniques. These values are shown in ZdaApa! To apxeio npoéAeuong tng

avadopag dsv BpEONKE..

CNT Modulus of Elasticity :

3] 10 12

o 2 4

6
> E=470 GPa Sk

Figure 24 Representative values for modulus of elasticity of inclusions (53)
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3.2 Research methodology

For the numerical method, a Representative Volume Element was used in order to
achieve homogenization. The RVE was subjected to three tensile and three shear loadings using

the Epilysis solver software (Figure 25).

d. 3 tensile loadings

b. 3 shear loadings

ssssss

Figure 25 RVE loading procedure a. tensile b. shear

From these 6 loadings, strain — stress results were obtained. Those were in turn used to
calculate the effective modulus of elasticity of the composite. Following (Figure 26) is a

representation of the existing crack mouth as modeled.
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Crack mouth

ssssssssssss

Figure 26 Pre-existing crack mouth opening representation

The lips were modeled in contact with each other in the beginning of the experiment.

After loading, the crack mouth opening displacement would be of the form shown in the

example below (Figure 27b):

Figure 27 (a) Model geometry and b) FE discretization near the crack tip.

The following procedure was followed in order to obtain the properties of the
unreinforced matrix corresponding to those of the experiment. The unreinforced cement matrix

was modeled using finite elements (Figure 28).
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Figure 28 Unreinforced cement matrix model

Then the experiment was simulated with the same conditions as shown in Figure 29.

16inclusions ellipsoid fixed angle long fiber poisson817 mori tanaka linear elasticity

Figure 29 Specimen geometry, loading and boundaries

Then various values were given to the modulus of elasticity, until the unreinforced

matrix’s behaviour became nearly identical to that described by the experimental results.

300 Cement Paste
55 _ — _ s experimental
| P - - . — CPE5800-analysis
P o 2 CPE4500-analysis
> 150 CPE4800-analysis
T_%f 100 | — — — CPE5000-analysis
3 = = CPE4000-analysis
50 | CPE3700-analysis

0 0.002 0.004 0.006 0.008 0.01 0012 0.014 0.016 0.018 0.02

Crack Mouth Opening Displacement (mm)

Figure 30 CMOD - load simulation results
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As seen in the plot above (Figure 30), such behaviour was obtained for a modulus of elasticity of

4000 MPa. The methodology flowchart is shown in Figure 31. For — available from experiments —

inclusion volume fractions (Vf) of 0.6 and 1.2 % the following steps were followed:

Vi.

Vii.

viii.

Xi.

Xii.

Selection of CNT Poisson ratio (starting value is the highest found in literature, i.e. 0.35)

Selection of CNT modulus of elasticity (Ecnt) (starting value is the lowest found in

literature, i.e. 235 GPa according the results in (53).

Calculation of the Homogenized Material Stiffness Matrix: RVE finite element along with
the random orientation tensor, as described in the previous chapter of homogenization

methodology.

Modeling of the pre-cracked specimens using the aforementioned Homogenized Matrix

and Simulation of the experiment (FE).

Measurement of the Crack Mouth Opening Displacement in the CAE models.

Comparison of the Crack opening displacement with experimental results.

Change to higher CNT modulus of elasticity.

New loop from step 2 until satisfactory deviation from experimental results (or until

reaching non-realistic values of Ecnt, with the latter not having been applicable in this

paper).
Change to lower CNT Poisson ratio.

New loop from step 1 until satisfactory deviation from experimental results (or until

reaching non-realistic values of venr).

Determination of Poisson’s ratio and modulus of elasticity values from results closest to

experimental for experimental inclusion volume fractions.

Expressing the composite material’s Eeffective @s @ function of the inclusion volume
fraction (V4).
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Figure 31 The flowchart of the methodology used in the present investigation.
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4. Results

In the present Thesis, the ‘appropriate’ combination of homogenization methods and
fiber orientation resulted in the more accurate predictions of the mechanical behaviour
expected from the experimental results is investigated. As can be seen in the following figures,
Figure 32, Figure 33, Figure 343i¢paApa! To apxeio npoéAeuong thg avadopag Sev BpEOnKe.
and Figure 35, the random orientation tensor was better in providing that accuracy and in
comparison between the combinations of finite element method — random orientation tensor
and multi-step homogenization — random orientation tensor, the “pure” finite element method

proved to provide the outmost accuracy from all other combinations.

Multi Step method using random experimental
orientation tensor

250 -

200 - Multi-
Step_Random_E470
~v0.17

150 -

z
© 100 -
8 Multi-
| Step_Random_E335
50 - v0.17
0 .
0 0.005 O____. Multi-
50 - Step_Random_E274
Crack Mouth Opening Displacement (mm) ~vo-17

Figure 32 Multi step method using random orientation tensor
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D 0.005 0.01 0.015 0.02 0.025
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Figure 33 Finite element method using fixed angles
FE method using random orientation
tensor
250 - experimental
200 -
2150 . == =77\ - FE -E470_v0.17
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S 100 ==
() ,—’—
-1 50 - = . = = -FE-E335_v0.17
0 .
) 0.005 0
-50 - |
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Crack Mouth Opening Displacement (mm)

Figure 34 Finite element method using random orientation tensor
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FE method and Multi Step method using random
orientation tensor with varying inclusions modulus experimental
250 +
200 - FE -E470_v0.17
=150 -
£
T100 -
o Multi - Step
-1 50 - E470_v0.17
0 .
0 0.005 0 _
-50 - Fixed Angles-
Crack Mouth Opening Displacement (mm) E470_v0.17

Figure 35 Finite element method and multi-step method using random orientation method

4.1 Effect of CNTSs’ Poisson’s ratio

Regarding steps (i) and (x) of the methodology followed, as was already stated modelling
started with vent value of 0.45. As the value of Poisson’s ratio was lowered —all other
parameters constant, the resulting simulation of showed a CMOD value closer to that of the
experimental results. For example (Figure 36), for a V¢ = 0.006 and Ecnt=470 GPa the following
progress was observed: in order for a CMOD value of 0.009058 mm to be observed, Loading for
the experiments was at 193.8296 N. For the same CMOD value to be observed in a simulation
with vent = 0.35, loading of 177.771 N was required- a deviation of 0.082849 from experimental
value; with vent =0.17, loading of 186.2442 N, deviation of 0.039135 from experimental results,
an improvement of 4.3715 %; with vent = 0.10, loading of 189.7917 N, deviation of 0.020832
from experimental results, an improvement of 1.8302 %. At this point both the improvement
rate reached values too small and vent values were very low compared to experimental results

in literature to allow for further simulations with lower vent values.
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Figure 36 Diagram of applied load against CMOD for the same cement-based material matrix reinforced with Vi =6 %o

MWCNTSs, Ecnt = 470 GPa and comparing Poisson ratio of the CNTs (venr = 0.10, 0.17, 0.35).

Figure 37 shows the same process for identical parameters, except for the inclusion volume

fraction which now receives the other available from experimental data value of V= 12 %o.
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1 1 1 | 1 1 1
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Figure 37 Diagram of applied load against CMOD for the same cement-based material matrix reinforced with Vi =12 %o

MWCNTSs, Ecnt = 470 GPa and comparing Poisson ratio of the CNTs (venr = 0.10, 0.17, 0.35).
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4.2 Effect of CNTs’ modulus of elasticity

Similar to the previous steps, the Ecnt steps started for a value of 274 GPa and stopped
at 470 GPa; the values of GPa being close to the experimental ones, and further simulations
with higher Ecnt values giving minimal rate of convergence to the experimental data. The
optimal loop was the combination of venr=0.17 and Ecnt = 470 GPa, as seen in the figures for a V;

of 6 %o. The optimal loop parameters remained the same for the other experimental Vs value of

12 %o.

200 L L L 1 L L L 1 L L L 1 L L L 1
[ MWCNTSs: Vi=0.6% |Fur™40248MPa x4
(ot
| P I
160—_ ,,-"E'o o -
E_=4021.1 MPa #to o
Z 0] e A0o -
Z 100] \K;SSOD 2 A \ i
g b .,:’..D 2 A l L
S ] SO0 E =40183MPa %[
® m] A eff o,
80 s -
4 '.Jg 2
_ 'Eﬁ —e— experimental |
40 - .,xE‘ o E,,=470GPa&v, =010 ||
] @,,.ﬁ o E,,=335GPa&v, =0.10
0 -_/@» s E,,=2T4GPa&v,, =0.10

0,000 0,002 0,004 0,006 0,008 0,010
Crack mouth opening displacement (mm)

Figure 38 Diagram of applied load against CMOD for the same cement-based material matrix reinforced with Vs = 6 %0 MWCNTs,

Poisson ratio of the CNTs (venr = 0.10) and comparing modulus of elasticity of the CNTs (Ecnt = 274, 335 and 470 GPa).

In Figure 38 and Figure 39, a comparison of the effective moduli of elasticity calculated
from the simulations can be seen for various parameter combinations. As discussed the optimal
combination for both available experimental inclusion volume fractions was that of Ecnt = 470

GPa / vent = 0.17; optimal meaning that being as close as possible to the experimental data with

any further calibrations giving minimal gains.
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Figure 39 Diagram of applied load against CMOD for the same cement-based material matrix reinforced with V; =12 %o

MW(CNTs, Poisson ratio of the CNTs (venr = 0.10) and comparing modulus of elasticity of the CNTs (Ecnt = 274, 335 and 470 GPa).

Selecting from each homogenization method the combination that comes closer to the

experimental results and plotting them in Figure 40.
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Figure 40 Column chart comparing simulation and experimental CMODs under the same loading of 150 N for various Ecyr and

V; values
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5. Optimization of the graphene reinforcement

in cement-based materials

In a case where a researcher or an engineer is considering the use of various
combinations of inclusion materials and/or inclusion geometries and/or inclusion volume
fractions and or matrix materials, this methodology may be applied in reverse, constraining the
design properties the composite material must exhibit in order to be suitable for the
application. Where density is a factor, it may be used for exclusion of those combinations that

do not meet the constraints.

The Interior Point Optimization (IPOpt) algorithm is used for the iterations applied to the
effective modulus of elasticity of the homogenized material. The effective modulus of elasticity
is assumed as volume fraction dependent and is calculated at every iteration using the multi-
Step method, with the ANSA® homogenization tool. Where x variable is the CNT volume fraction
(Eg 2), objective f(x) is the difference between the Eef calculated by the homogenization within
the current iteration and the target Ee (Eq. 3), g_L and g_U are the lower and upper constraints
bounds (Eqg. 4), and x_L and x_U are the lower and upper variable bounds (Eq. 5). At every cycle,
a new volume fraction is set, and a new objective is recalculated. The points x which satisfies
the constraints (inequality) lower and upper bounds (g_L and g _U in Eqg. 4) are considered as
feasible. At every cycle the new volume fraction value must range between the x_L and x_U
bounds (Eg. 5). Convergence is achieved when either the objective value is less than a limit

objective value or the maximum number of iterations has been completed.

xel”  X¥=veyr (2)
minf(x)  J(x)= g - £ (3)
g L<g(x)<g U (4)
x L<x<x U (5)
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The steps to be followed for the optimal volume fraction identification using the proposed

method, as shown in Figure 41, are:

Vi.

Vii.

viii.

Set target effective modulus (Eefr *"8°) of the Homogenized Material, set boundaries

for volume fraction.

Set initial point for the IPOpt. The initial point is the initial value of the CNT volume

fraction.

Calculate effective modulus (Eef?'“Ited) of the Homogenized Material (given Ecnt, venr,
Ecement, Vcement, initial volume fraction) using multi-Step method combined with

Representative Volume Element (RVE) method at ANSA® Pre-Processor.

Evaluate the difference between the calculated effective modulus and the target

effective modulus (Eegeaculated _ F ¢ tareet) of the Homogenized Material

If the difference is more than limit objective value and the number of the completed
iterations is less than the maximum number of iterations move on to the next

iteration.
Set new volume fraction value.
Start the new iteration using the next point for the IPOpt.

Calculate of the Homogenized Material (Eesicul2ted) of the Homogenized Material
(given Ecnt, vent, Ecement, vcement, new volume fraction) using multi-Step method

combined with RVE at ANSA® Pre-Processor

If the difference Eeg@'culated _ [ g tareet is |ess than limit objective value or the number of
the completed iterations are or than the maximum number of iterations move on to

the next iteration.
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Figure 41 Optimization Methodology flowchart

The aforementioned steps were followed for three optimization cases of iterations and
different objective value. In the first case, the maximum number of iterations was 20 and the
maximum objective value 5 MPa. In the second case, the maximum number of iterations was
200 and the maximum objective value 1 MPa (Figure 42). In the third case, the maximum

number of iterations was 1000 and the maximum objective value 1e-4 MPa (Figure 43).
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Figure 42 (a) Effective modulus of the optimization for 200 maximum iterations and maximum objective value 1 MPa; (b)
difference between calculated and target effective modulus of the optimization case for 200 maximum iterations and

maximum objective value 1 MPa.
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Figure 43 (a) Effective modulus of the optimization case for 1000 maximum iterations and maximum objective value le-4
MPa; (b) difference between calculated and target effective modulus of the optimization case for 1000 maximum iterations

and maximum objective value 1e-4 MPa.
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6. Conclusions

6.1 Homogenization method

From the simulation results, the following equation describing the E of any composite
material with the same matrix and inclusion type E (Eeffective) @s a function of the inclusion

volume fraction (V4).
Eeffective = 2E-06 V4 - 0.0005 V¢ + 0.0384 Vi* - 1.4715 V¢ + 26.441 V¢ + 915.74 Vs + 4019
Equation 1 Estimation of effective modulus E of the homogenized material with respect to Vs of CNTs

The equation of Eefrective (Equation 1) describes any such composite with the same materials but
different inclusion volume fraction. The optimal point where each loop described in the
methodology should stop may change according to accuracy required and/or available

computational power and time.

The same methodology may be used to model any composite of certain parameters,
with known matrix properties, regardless of inclusion shape/geometry and properties even with

combinations of different inclusion types.

The loops in the methodology allow for calculation of the composite properties even
with unknown inclusion properties, meaning that as long as experimental data are available, the
methodology can still be applied and during the steps permits the estimation of the inclusions’

properties.

Following this method, a table correlating the percentage of CNTs (with Ecnt= 470 GPa)
with the composites E can be created. This methodology may be used for creating properties
tables for any composites of any number of materials and any number of inclusion geometric
shapes. The Finite Element — random orientation tensor method approximation proved the

more accurate, being closer to experimental data.

46



6.2 Optimization algorithm

According to the presented optimization methodology, the volume fraction required to
attain a target effective modulus was successfully calculated with great accuracy. The success of
the present procedure is demonstrated in Figs 6a and 6b. Every point of the diagrams
represents an optimization case with a specific maximum number of iterations. As depicted in
Fig. 6a the calculated effective modulus approximates the target effective modulus when the
cycles of the optimization are close to 1000. In case convergence is achieved after the
competition of 200 up to 1000 cycles, the accuracy of the calculated homogenized modulus is
more than 99,9 %. Additionally, the CNTs volume fraction approaches the experimental volume
fraction in case the optimization has 1000 maximum iterations. A Cost-Effectiveness analysis
comparing the various composite combinations is easily performed. In conclusion, the method
presented is a reliable approach that may be applied to identify the optimal percentage of
reinforcement in a matrix, even with composites containing inclusions of different shape, form

and material.
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