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Abstract

High-dimensional data sets give researchers from different fields, the ability
to answer various scientific questions. However, their commonly complicated
structure and other features, like multicollinearity and noise accumulation,
set their handling with classic methods insufficient. New computational and
statistical techniques are required to conduct analysis, which can result in re-
liable conclusions. Such a method is considered to be Partial Least Squares.
It is a method with many applications in a wide spectrum of fields, that
serves various statistical purposes (such as regression, classification, etc) and
though, till recent years, was unfamiliar to a major part of statisticians.
The aim of this master thesis is to investigate the prospects of Partial Least
Squares Method in both univariate and multivariate level as a reliable method
for the analysis of high-dimensional data. The theoretical basis of this di-
mensionality reduction method is presented along with Principal Component
Analysis, to further compare their performance in linear regression problems.
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Περίληψη

Τα σύνολα δεδομένων μεγάλων διαστάσεων δίνουν τη δυνατότητα σε ερευ-

νητές διαφόρων πεδίων να απαντήσουν σε επιστημονικά προβλήματα. Ωστόσο,

η συχνά πολύπλοκη δομή τους και άλλα χαρακτηριστικά τους, όπως η πολυ-

συγγραμμικότητα και ο ‘θόρυβος’, καθιστούν τον χειρισμό τους με κλασσικές

μεθόδους, ανεπαρκή. Νέες υπολογιστικές και στατιστικές τεχνικές απαιτούνται

ώστε να διεξάγουμε αναλύσεις, οι οποίες μπορούν να οδηγήσουν σε αξιόπιστα

συμπεράσματα. Μια τέτοια μέθοδος θεωρείται η Μέθοδος Μερικών Ελαχίστων

Τετραγώνων. Πρόκειται για μια μέθοδο με πολλές εφαρμογές σε ευρύ φάσμα

επιστημονικών πεδίων, που εξυπηρετεί ποικίλους σκοπούς στατιστικής ανάλυ-

σης (όπως παλινδρόμηση, κατηγοριοποίηση, κλπ.) και, παρ΄ όλα αυτά, παρέμεινε

άγνωστη σε μεγάλη μερίδα στατιστικών, μέχρι πριν από λίγα χρόνια. Ο σκο-

πός αυτής της διπλωματικής εργασίας είναι να διερευνήσει τις δυνατότητες της

Μεθόδου Μερικών Ελαχίστων Τετραγώνων στην μονομεταβλητή και την πολυ-

μεταβλητή διάσταση, ως μια αξιόπιστη μέθοδος ανάλυσης δεδομένων μεγάλων

διαστάσεων. Στην παρούσα εργασία παρατίθεται η θεωρητική βάση της συ-

γκεκριμένης μεθόδου μείωσης διάστασης, παράλληλα με την μέθοδο Ανάλυσης

Κυρίων Συνιστωσών, προκειμένου να συγκριθεί η απόδοσή τους σε προβλήματα

γραμμικής παλινδρόμησης.



3

Acknowledgements

Before we begin, I would like to attribute my acknowledgments to some
people for their support in this project.

Firstly, I would like to thank Professor Alexandros Karagrigoriou, of the
University of the Aegean, for being my supervisor and guiding me scien-
tifically. His intelligent way of thinking and his rare kindness make him a
prototype of a scientist and a teacher.

I would also like to thank Mr. Kimon Ntotsis. I am grateful for all
the time he dedicated to my thesis, his continuous willingness to share his
knowledge and his support last months.

I could not omit to give thanks to Evangelos Kipouridis. For all the
times, in all these years, he tirelessly explained my questions and turned the
incomprehensible into simple.

Finally, I would like to express my gratitude to my family and especially
George.





Contents

1 Dimensionality Reduction 6

2 Linear Regression Analysis 9
2.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . 9
2.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . 11
2.3 Multivariate Linear Regression . . . . . . . . . . . . . . . . . . 12
2.4 Evaluation of Model Performance . . . . . . . . . . . . . . . . 13
2.5 Assumptions of Regression Analysis . . . . . . . . . . . . . . . 15

2.5.1 Multicollinearity . . . . . . . . . . . . . . . . . . . . . 16

3 Dimension Reduction Techniques 20
3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . 22

3.1.1 Principal Component Regression . . . . . . . . . . . . 29
3.1.2 Advantages and Drawbacks of PCR . . . . . . . . . . . 30

3.2 Partial Least Squares Method . . . . . . . . . . . . . . . . . . 32
3.2.1 Partial Least Squares Regression . . . . . . . . . . . . 41
3.2.2 Model Selection Criteria . . . . . . . . . . . . . . . . . 42
3.2.3 Advantages and Drawbacks of PLSR . . . . . . . . . . 44

3.3 A comparison between PCA and PLS . . . . . . . . . . . . . . 47

4 Numerical Application 49
4.1 Dimension Reduction in Univariate case with PLS Method . . 50
4.2 Dimension Reduction in Multivariate case with PLS Method . 54
4.3 Final conclusions and Future work . . . . . . . . . . . . . . . . 58

Bibliography 60



Chapter 1

Dimensionality Reduction

Over the last three decades advances in technology have allowed the col-
lection and storage of datasets, the size of which exceeds what was earlier
considered as large, since both their dimension and their sample size have
been significantly grown. By dimension, it is meant the number of variables
that are measured and their number in these high-dimensional datasets can
be hundreds or more. The need for their management and utilization re-
sulted in the bloom of Big Data Analytics, which is a scientific field that
searches for ways to systematically extract information from too large or
too complicated data sets [33]. In other words, this area is referred to the
search of modeling techniques to successfully reveal underlying relationships
between available variables, make predictions on similar data and make suf-
ficient summarizing visualizations. Typical fields that generate Big Data are
bioinformatics, neuroscience, medicine, health care, Web search, social media
analysis, economics and finance.

One of the challenges of Big Data, which demands special handling, is
heterogeneity, which is present when values of investigated variables differ
and form subpopulations with special properties. Samples that belong to
small subpopulations may have been categorized as outliers in small samples,
but large data sets give a more realistic picture of the systems that are being
analyzed. The phenomenon is commonly noticed when data are collected
from different or multiple sources.

However, it is commonly accepted that in Big Data Analytics the problem
of a large number of samples can be solved with more convenience than
an extremely large number of measured variables. Despite what someone
would expect, data sets with too many variables do not always result in

6
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more effective models than lower dimension data sets.
One of the main problems researchers deal when analyze high-dimensional

data and refers to the number of available variables, is noise accumulation.
Noisy data are the part of a data set that brings meaningless information in
it. “Such a noise accumulation effect is especially severe in high dimensions
and may even dominate the true signals”[8]. Noisy data can significantly
effect the models unless they are identified and removed from the dataset
before the analysis. They come from bad performance in measurement tools,
as mistaken recordings or just random errors. Furthermore, quite often high-
dimensional data sets include irrelevant variables that negatively effect the
process of analysis.

Additionally, a very common problem is the handling of data which are
defined by collinear variables. Multicollinearity, or just collinearity in a
dataset is the situation where two or more variables are linearly associated.
Performance of models based on multicollinear variables are severly affected
by them; this phenomenon is further discussed in subsection Multicollinear-
ity.

Dimensionality Reduction Techniques (also referred to as Dimension Re-
duction) are used to successively manage these potential problems. They are
defined as techniques that reduce the dimension of a dataset and transform
it into a set of lower dimension that retains as much as possible informa-
tion from the original dataset. They are divided into two main categories:
Feature extraction and Feature selection methods.

Feature selection methods include algorithms that aim to find irrelevant
and/or redundant variables of a dataset. Then, these variables are removed.
A new dataset has a lower dimension, as it consists of a subset of the vari-
ables of initial dataset. In most techniques in this category, all variables
are matched with a value, arising from a criterion. According to its value,
every variable is evaluated and it is decided either on its removal or its se-
lection. The physical meaning of retained variables does not change at all.
Despite the advantage of interpretability, information captured in interac-
tions and correlations between selected and removed variables is lost [23].
Some popular techniques of this kind are Information Gain, Relief, Fisher
Score, Forward Feature Selection, Chi-square Test, Backward Feature Elim-
ination, Lasso and Elastic Net.

On the contrary, application of feature extraction techniques results in
transformation of a dataset -data points are projected to a low dimensional
space. This is achieved with the use of original variables as elements of



CHAPTER 1. DIMENSIONALITY REDUCTION 8

combinations that summarize information from initial variables [23]. This is
true because these newly generated variables, also called Latent Variables in
the literature, are correlated with the original variables. Among the most
applied techniques are Principal Component Analysis, Partial Least Squares
Method, Canonical Correlation Analysis and Linear Discriminant Analysis.

Benefits of datasets which have been processed with these techniques are
multiple: data complexity can be reduced significantly. As a result models
produced by them demand less computation power and time. Furthermore,
overfitting is avoided and they can generalize better. Their performance is
also improved in terms of accuracy. Finally, their parsimonious representa-
tions make data visualizations feasible.

Although, the two mentioned dimension reduction categories have differ-
ent approaches, there are techniques that can be used so “feature extraction
(transformation) methods can be converted into feature selection methods”
[1][26]. In any case, they can both effectively serve the aim of dimension
reduction.

In this thesis, it is investigated a comparison between two feature ex-
traction methods, Partial Least Squares method and Principal Component
Analysis. Their performance refers to regression analysis problems and their
ability to achieve dimension reduction when high-dimensional datasets are
being analyzed. Hence, it is considered necessary to include in the begin-
ning, the basic elements of Linear Regression Analysis, which are recorded
in chapter 2. Next, in chapter 3 the theoretical framework these methods
are based on is presented. Finally, in chapter 4 these two methods are going
to be applied to datasets from the field of chemometrics. The conclusions of
their comparison are stated there along with the future work.



Chapter 2

Linear Regression Analysis

2.1 Simple Linear Regression

Linear regression is a statistical method that allows to build a linear
model, so as to relate a dependent variable Y to an independent variable
X. Then, we can use the linear model to either describe the kind of linear
relation between these two variables or to predict the values of Y, given the
values of X. The mathematical expression of a linear regression model is

Y = b0 + b1X + e

where Y and X are the variables intent to be related, b0 is the intercept
and b1 is the slope. Intercept represents the value of Y when X variable is
zero. When b1 is positive, it expresses that one unit increase in X variable
is estimated to increase |b1| units the response variable Y, and when b1 is
negative, it expresses that the response variable is estimated to decrease |b1|
units. The random variable e is called residual and it contains the difference
between Y value and the term (b0 + b1X).

In order to build this linear model, a training set which is nothing but a
set of samples (objects) with known X and Y values, is used. For example,
let’s say that our training set consists of n samples. Theoretically, applying
the previous relation, we would get n equations:

Yi = b0 + b1Xi + ei

9
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where Yi and Xi are the Y and X values of the ith out of a sample of size n.
The next step is to find estimates of the regression coefficients b0 and

b1 to be able to use the model for predictions and understanding of this
relation. The most popular and widely used criterion to achieve that is the
minimization of the sum of squared residuals, an approach called Ordinary
Least Squares Method (OLS):

n∑
i=1

e2i =
n∑

i=1

(Yi − (b0 + b1Xi))
2.

Setting the partial derivatives with respect to b0 and b1 equal to zero, we
get the coefficients estimates b̂0 and b̂1 that can be used to make the predic-
tions of unknown Y values given X values according to the next relation:

Ŷ = b̂0 + b̂1X.

The previous relation can always be applied, although the reliability of our
predictions can be ensured if only the assumptions of regression are fulfilled
(see section 2.5).

However, when an analyst defines a linear regression model makes the
assumption that in some way X is related to Y. A hypothesis test, where:

H0 : b1 = 0

vs

H1 : b1 ̸= 0

can be used to validate this state. For this purpose, t-statistic formed as:

t =
b̂1 − 0

SE(b̂1)

where SE(b̂1) is the standard error of b̂1, and is used to check if b̂1 differs
from zero. If that is true, the assumption of relation between X and Y is also
true, and therefore X is a statistically significant predictor of Y.
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2.2 Multiple Linear Regression

Despite the simplicity of Simple Linear regression, most real-world prob-
lems are described by more than just one predictor X. Today, it is very often
for statisticians to handle data sets where every sample is described by a
set of measurements, say xi1, xi2, xi3..., xip, which are the values of variables
X1, X2, ...Xp respectively and the value yi of the response variable, where i
is the index for the ith out of n observations of the training set. In this case,
the mathematical expression of the linear model that relates Y variable to p
X variables is:

Y = b0 + b1X1 + b2X2 + .....+ bpXp + e.

It is obvious that each additional independent variable is combined with
a new regression coefficient. The interpretation of Y, bk with k= 1, ..p, and
e are analogous to the simple regression model.

Again, in order to compute the regression coefficients in Multiple Linear
Regression (MLR), as this case is called, we make use of the available data,
resulting in the following n equations:

y1 = b0 + b1x11 + b2x12 + · · ·+ bpx1p + e1

y2 = b0 + b1x21 + b2x22 + · · ·+ bpx2p + e2

...

yn = b0 + b1xn1 + b2xn2 + · · ·+ bpxnp + en

which can be summarized to

Y = XB + e

where Y is the column vector containing the yi values, Y = (y1, y2, . . . yn)
⊺, B

is a column vector containing the regression coefficients B = (b0, b1, . . . bp)
⊺,

e is the column vector containing the residuals e = (e1, e2, . . . en)
⊺ and X is a

matrix of size n× (p+ 1), frequently called design matrix. The first column
includes n values of 1 and the remaining p columns include the sample values
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as shown below:

X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp


Applying the Least Squares Method, where the sum of squared resid-

uals e⊺e is minimized, the estimation for the regression coefficients can be
computed and summarized in a column vector by the type:

B̂ = (X⊺X)−1X⊺Y

where B̂ = (b̂0, b̂1, . . . b̂p)
⊺.

Further, fitted values can be predicted for a new unseen sample, as long
as the values of independent variables are available:

Ŷ = b̂0 + b̂1X1 + · · ·+ b̂pXp.

It should be mentioned that it’s common practice to use mean-center
design matrix to reduce computational cost. The first column of X matrix,
the column of ones, is omitted and the linear model is formed as:

Y = b1X1 + b2X2 + · · ·+ bpXp + e.

The intercept can be finally computed by taking the difference between the
mean of the y values and the predicted values

b0 = Ȳ − Ŷ .

2.3 Multivariate Linear Regression

Finally, there are problems where it is needed to relate a set of indepen-
dent variables X1, X2, . . . Xp to a set of dependent variables Y1, Y2, . . . Ym .
The statistical problem in multivariate regression, as this kind of regression
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is called, is written as:

Y = XB + E

where Y is a matrix of size n ×m, B is a (p + 1) ×m matrix of regression
coefficients, X is a data matrix as in multiple regression, and E is the n×m
matrix of the residuals. The previous expression compresses m relations of
the type:

Yj = Xbj + ej

where Yj, bj and ej denote the j
th column of Y, B and E matrices respectively.

According to Ordinary Least Squares (OLS) Method regression coefficients
can be estimated by:

B̂ = (X⊺X)−1X⊺Y

and fitted values can be predicted by:

Ŷ = XB̂.

2.4 Evaluation of Model Performance

When analyzing high dimensional data, it is common to produce models
that include different subsets of the original predictors. Once the regression
models are defined and possible collinearity issues are faced, one should eval-
uate the performance of the resulted models. This is usually done using one
of the following measures:

• R-squared (R2) value: It is called the coefficient of determination and
denotes the percentage of the variability in the response variable that
can be explained by the model. Its formula is:

R2 =
ESS

SSTo

where ESS is the Explained Sum of Squares and SSTo is the Total Sum
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of Squares [15], since based on the relevant theory

ESS = SSTo−RSS,

so that R2 can be written as:

R2 = 1− RSS

SSTo

where RSS is the Residual Sum of Squares. It can be concluded that
R2 values range from 0 and 1, with values closer to 1 indicating better
model performance. In univariate and multiple linear regression with
a unique response variable a unique R2 is generated to evaluate model
performance, while in multivariate regression an index R2 corresponds
to each response variable.

• Adjusted R2 value: It is a modification of R2 value that penalizes more
complicated models, meaning models that include more predictors. Its
formula is:

R2
adj = 1− (n− 1)

(n− p− 1)
(1−R2)

where n refers to the number of samples and p to the number of in-
cluded predictors.

• Akaike’s Information Criterion: It is an information criterion utilized
to compare models with different complexity scales, meaning models
that include different number of predictors for a given set of data. Its
computation formula for each model is:

AIC(p) = −2(maximum log − likelihood) + 2p

where p is the number of included predictors. In former equation,
the first term represents model accuracy and the second, 2p, relates
to model parsimony. In a set of compared models, the model that
performs better is the one with the lowest AIC value. As in case of
R2 and R2

adj, in multivariate response variables models, computed AIC
indexes should be as many as the response variables, one index for each
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response variable.

2.5 Assumptions of Regression Analysis

The predictions arising from the previous models are reliable under spe-
cific conditions. In all regression cases, either simple or multiple regression,
the most important assumptions that should always be fulfilled are:

• Normality of residuals

In regression analysis, it should be confirmed that residuals are nor-
mally distributed with mean 0, regardless of the distribution of vari-
ables X and Y. Normal distribution of residuals can be detected graph-
ically with a Q-Q plot, where the dots, that represent the samples,
are expected to form a straight line. Except from this, there are also
hypothesis tests, like Shapiro Wilk and Lilliefors that can be used to
check the normal distribution of residuals. In both statistical tests as
null hypothesis is set, the normality of residuals. In case of non-normal
residuals, the problem can be solved by transformation of the response
variable, like logarithm. However, short-tailed distributions of residuals
do not have a severe impact on regression reliability and the violation
of this assumption could be ignored. Further, as far as large data sets
and Big Data, “with a large dataset, even mild deviations from non-
normality may be detected, but there would be little reason to abandon
least squares because the effects of non-normality are mitigated by large
sample sizes” [9].

• Independence of residuals

The assumption that error terms are uncorrelated is very important. It
means that the sign of ei is not associated with the sign of error term
ei+1. Graphically, it can be detected by plotting the residuals against
time. Durbin-Watson statistical test can be used for this purpose as
Run Test, too. In the latter, the null hypothesis being checked is that
residuals are randomly ordered. In the first case, the null hypothesis
is that residuals are not autocorrelated against a correlated special
structure. It is applied after validation of normality of residuals and
is based on the argument that normally distributed and uncorrelated
residuals are independent [11].
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• Homoscedasticity of residuals

This assumption concerns residual variance. More precisely, in the case
of regression analysis, the residuals must have common variance (σ2),
and by extension the same standard deviation (σ). To confirm that
this assumption is not violated, Levene’s test is used to check the null
hypothesis of equality of all population variances. Additionally, the
general picture can be captured in a plot of residuals against fitted
values (Ŷ ).

• Linearity

It is the only assumption not referring to residuals. It is a fundamental
assumption that linear relationship between the variables should exist
in order for regression results to be statistically trustworthy. Linearity
can be confirmed by a scatterplot of fitted values against the residuals.
It is expected an approximately straight line through the middle of the
plot. Note that in the case of Big Data Analytics, where a large amount
of variables exists, this assumption is fulfilled by a random sampling of
approximately 10%-30% of the possible combinations, and if linearity
exists in the random sample, then the generalization of the assumption
in the total population can be made.

Additionally, another factor that can negatively affect the regression model
is the existence of “anomalous” data in the training set. Such observations
lie away from the regression line and consequently have large residuals, but
also, they are points with high leverage, meaning they differ significantly
from the rest training set. Cook’s distance is a measure used to evaluate
the influence of an observation on the regression model and to indicate such
potential points.

2.5.1 Multicollinearity

Another issue, often met in multivariate data sets is the existence of
multicollinearity among predictors. Multicollinearity, or Collinearity as is
also called, is present in a data set when two or more predictors are corre-
lated.This can be expressed as follows: let’s make the assumption that j out
of p variables of X data matrix are correlated, meaning:
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j∑
i=1

aiXi = 0

where there are aj different from zero that make the equation true. This case
is called perfect or structural multicollinearity and “it caused by generating
predictors with the use of already existing ones”[29]. It could be said that
it arises as a non-appropriate definition of a regression problem set by the
analyst, and as such it can be easily handled, by identifying and removing
the variables that can be predicted by others as a linear combination of them.

However, in real-world regression problems there is also the case that the
relation between the predictors is approximately linear, a case that is also
described by the term multicollinearity, and it can be written as:

j∑
i=1

aiXi ≈ 0

for aj different from 0. This case is called data-based multicollinearity, or
simply high multicollinearity and it is presented when data come from obser-
vational experiments. It is attributed to the structure of available data. It
is met more often than perfect multicollinearity and needs different dealing.

In the first case, the matrix X⊺X becomes singular, since two or more
of its columns are dependent. As a result, the OLS method can no longer
be used to estimate regression coefficients bj, since there is no inverse matrix
(X⊺X)−1.

In the second case, when the inverse matrix (X⊺X)−1 can be computed
successfully, problematic situations are created:

It is difficult to distinguish the effects of predictors on the response vari-
able. A regression coefficient expresses the impact of a one-unit change in
the correspond predictor, when the rest of the predictors are unchanged.
However, when predictors are correlated, they have a common variability
pattern, meaning that they simultaneously increase, or oppositely decrease.
As a result, it is difficult to estimate how much correlated predictors effect
on the response variable. The apparent effects are misleading.

Additionally, when multicollinearity is presented there are many combi-
nations of estimated coefficients that all result in similar predictions and RSS
statistic. This means that the standard error of the estimates is high. Con-
sequently, the t-statistic, t = b̂j/SE(b̂j) is declined, which reduces the power
of hypothesis test H0 : bj = 0. This implies that zero coefficients may not be
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detected as so, but mistakenly appear to be statistically significant, a fact
that leads to the existence of redundant variables. In these cases, R2, the
measure to evaluate the goodness of fit (i.e. the performance) of a model, will
be large and the produced model will be interpreted as sufficient. However,
redundancy leads to overfitting of the regression model, a situation where the
regression model is unable to perform sufficiently for samples that do not be-
long in the training set. Further, since the produced estimates of coefficients
are not precise, the predictions of samples lying far from the space covered
by the training set will also be imprecise.

Moreover, the regression model becomes unstable. Small changes in train-
ing set could lead to large changes in estimates. It is even possible to result
in estimates with inverse signs.

Examination of the correlation matrix of the predictors can reveal pair-
wise collinearities. High values of correlation between two variables may be
an index of collinear relation between them. Nonetheless, Variance Inflation
Factors (VIFs) are typically used to reveal such problematic cases. This
measure can be computed as:

V IFk =
1

1−R2
(−k)

where R2
(−k) is the R2 value of the regression model that uses Xk as the

response variable and the rest variables of the dataset as predictors. When
Xk is correlated to other variables, it can be easily linearly predicted by them.
R2

(−k) will be close to one and VIF index will be large.
This measure “expresses the rate at which the variance of the estimator

increases when collinearity exists” [29] and it is obvious in the following [9]:

var(b̂k) = σ2 1

Sxjxj

(
1

1−R2
(−k)

) = σ2 1

Sxjxj

V IFk

where

Sxjxj
=

n∑
i=1

(xij − x̄j)
2.

It is revealed that increased V IFj, as is the case in multicollinearity,
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means increased variance of the estimator. A widespread threshold that is
used to infer if a predictor is collinear, is the value 5 (a more relaxed threshold
is 10). When the VIF index is higher than the set threshold, the predictor
is considered collinear.

Another way to detect multicollinearity is to make use of the condition
number and the condition index. According to this method the eigenval-
ues λ1, λ2, . . . , λp of X⊺X matrix are computed and their maximum λmax is
identified. The ratio

ks =

√
λmax

λs

for s in (1,. . . p), is called condition index. The largest of the s indices is the
condition number and is associated with the detection of multicollinearity.
When this value is more than 10 and less than 30, multicollinearity exists
in the data set. When it exceeds 30, multicollinearity is severe and effects
regression results significantly. Additionally, when more than one condition
index is high, it means that the phenomenon is caused by more than one
linear combination.

Furthermore, as stated in [29] a predictor which appears to be significant
in simple linear regression with the response variable and insignificant in
multiple linear regression with the same response variable could be an indi-
cation of multicollinearity. An other indication is significant changes in the
estimated coefficients when a predictor is removed from the design matrix X.

As revealed from above, multicollinearity can negatively affect resulting
estimations and inferences when present in a regression problem. In the case
of perfect multicollinearity, it is logically concluded that a re-definition of
the description of the problem, by removing the predictors, which are linear
combinations of other predictors, eliminates the problem. In the case of high
collinearity, high correlated predictors should be removed after their identi-
fication. In Big Data analysis, where the number of predictors can be hun-
dreds, it is more sufficient to eliminate multicollinearity with Dimensionality
Reduction Techniques. More specifically, Partial Least Squares Method and
Principal Component Analysis can be used as a pre-processing step before
the regression analysis, to eliminate the problem by generating uncorrelated
variables produced by combinations of original variables.



Chapter 3

Dimension Reduction
Techniques

Scientists in every scientific field often deal with datasets with special
properties that make Ordinary Least Squares Method an inappropriate choice
for modeling. Such a case is a situation where analysts have access to a small
number of observations (let’s say n) described by a larger number of variables
(p). Another problematic situation is a dataset with highly correlated predic-
tors that contain similar information. As explained in subsection 2.5.1, mul-
ticollinearity leads to unstable OLS regression models or, even worse, makes
it impossible to calculate the model since the (X⊺X) matrix will be singu-
lar. Feature selection methods, like Forward Feature Selection, Backward
Feature Elimination, Lasso and Elastic Net have been proposed to overcome
these problems. However, these techniques are often time-consuming and
include high risk of omitting significant variables. An alternative sufficient
approach to overcome these situations and manage dimension reduction are
Latent Variable methods, like Principal Component Analysis (PCA) and Par-
tial Least Squares (PLS), which are feature extraction methods. As stated
in [34], “latent variables are variables that are not directly observed but are
rather inferred from other variables that are observed (directly measured)”.
They arise as linear combinations of the original variables so as to compress
information from given data. This property, in combination with the fact
that in PCA and PLS methods uncorrelated Latent Variables are produced,
makes it feasible to extract information from data and further relate it to
response variables, when the OLS method fails.

PCA is a method first described by Pearson in 1901 [30] and Hotelling in

20
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1933 [14] independently. Pearson approached the main idea from a geometric
point of view, while Hotelling described it more algebraically. Development
of computers was the determining factor in widespread application of the
method in other sciences, since processing of large datasets with this method
was finally feasible. In PCA, latent variables are called Principal Components
or simply components. These three terms are equivalent and in the text may
alternate.

PLS or Projection to Latent Variables, as sometimes is called, is also a
method that uses latent variables to model complicated data, in terms of
dimension and collinearity. It was first developed by Herman Wold around
1975 and applied in econometrics. Later, Svante Wold and Harald Martens
applied it in chemometrics [40]. As stated in [31], “PLS regression used to
be overlooked by statisticians and is still considered rather an algorithm than
a rigorous statistical model”. However, nowadays it is a method with many
variations used in numerous fields. Here, Latent variables are also called
(Principal) Components, a strong evidence of the common philosophy that
PLS shares with PCA.
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3.1 Principal Component Analysis

PCA is a commonly applied dimension reduction method. It is a multi-
variate technique in which a data matrix X, which includes correlated vari-
ables, is transformed into a new one. Variables in the new matrix, also called
Principal Components, are uncorrelated and ordered so as to contain vari-
ance of the original X matrix on a declining scale, starting from the first one.
The beneficial property of the new matrix is that most variation of X matrix
is compressed in the first few new variables. These variables, the number of
which is selected by the user, form a low-dimension matrix, an approximation
of X that can be used for modelling purposes.

As stated in [38] “PCA can be seen as a method to compute a new coor-
dinate system formed by the latent variables, which is orthogonal, and where
only the most informative dimensions are used.” From a geometrical point
of view, an X matrix is projected/mapped to a new space (hyperplane, plane
or line), the coordinate system of which is formed by the Principal Com-
ponents. Additionally, Principal Components are oriented in the direction
of maximized variance of data points. “The coordinates of the samples in
the new space are called scores, often indicated with the symbol T. The new
dimensions are linear combinations of the original variables and are called
loadings (symbol P).”[39].

The Principal Components Analysis of a X matrix of size n× p is:

X = TpP
⊺
p

where T is the matrix containing the scores of the samples, P is the matrix
containing the loadings, and superscript ⊺ indicates the transpose of a matrix.
Subscript p indicates the number of latent variables that can be computed.
However, as only a few Principal Components are almost always used for
modeling, since they suffice to explain most of the variance included in X,
the original matrix can be written as:

X = TmP
⊺
m + E

wherem, ranging from 1 to p, indicates the number of selected latent variables
and E is the matrix containing the residual error. Geometrically, that is, the
perpendicular distance of each point onto the hyperplane formed by loading
vectors [6]. These quantities represent the loss of information because of the
projection of X data points into a low-dimension space. Finally, the new,
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low-dimension matrix can be written as:

X̃ = TmP
⊺
m

where X̃ indicates the approximation of X, that can be used for modeling
purposes discharged of noise.

Steps to build a PCA model

The first step in PCA is centering data matrix X in order to remove
arbitrary bias from measurements [6]. This is achieved by replacing each xij

element by:

xij − x̄j

where (x̄j) indicates the mean value of column j. After this process, in the
mean-centered matrix X, each column has a mean of zero. This technically
means that data points have been moved to the center of the coordinate
system while the distances between them do not change at all.

In some cases, datasets include variables of different magnitudes, because
they are measured in different units. As a result, some variables have different
statistical weights in the analysis. This problem can be solved by replacing
each xij element by:

xij − x̄j

sj

where sj indicates the standard deviation of the jth variable, a process called
scaling. In this way, the final columns in X have a mean of zero and a
unit variance, and it should be noted that in this case the relative distance
between data points is changed. However, if predictors are measured in
the same units, scaling could cause the inflation of noise in uninformative
variables [39].

Next step is to compute matrices of Principal Components.
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Singular Value Decomposition

A common applied technique to compute scores and loadings is the Sin-
gular Value Decomposition (SVD), according to which the mean-centered X
matrix is decomposed as:

X = UDV ⊺

where U is a matrix of size n×n and its columns are the left singular vectors
of X, while V is a matrix of size p× p and its columns are the right singular
vectors of X. Matrices U and V are orthogonal, meaning each column is
orthogonal to the others. Matrix D is a diagonal n×p matrix, where diagonal
elements di are related to variances of corresponding principal components.
These quantities can be computed by:

λi =
d2i

n− 1
.

Finally, matrices U, D, V, T, and P are related to each other as follows:

X = (UD)V ⊺ = TP ⊺

meaning that the matrix of loadings P is set equal to matrix V, while the
matrix of scores T is set equal to matrix (UD).

Eigen Decomposition

In the case of data sets with many original variables, the SVD process is
considered computationally demanding and it is avoided. Instead, an other
method, called Eigen decomposition is applied to either covariance matrix Σ
or correlation matrix ρ(X).

Each element in a covariance matrix represents the covariance between
two variables, a quantity that measures the joint variability of them [35] and
it is computed by:

cov(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj))]. (3.1)
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Given a data set that includesX1, X2, . . . , Xp variables, covariance matrix
is symmetric as shown below:

Σ =


cov(X1, X1) cov(X1, X2) ... cov(X1, Xp)
cov(X2, X1) cov(X2, X2) ... cov(X2, Xp)

...
...

...
cov(Xp, X1) cov(Xp, X2) ... cov(Xp, Xp)


Diagonal elements of the Σ matrix represent variances of variables, since by
definition

V ar[Xi] = E[(Xi −E(Xi))
2] = E[(Xi −E(Xi))(Xi −E(Xi))] = cov(Xi, Xi).

As a result, this matrix is also called the variance-covariance matrix.
However, in PCA, the original X variables are mean-centered and equa-

tion (3.1) becomes:

cov(Xi, Xj) = E[XiXj].

In terms of matrix, that includes all p variables, this can be written as
E[X⊺X] and when variance-covariance matrix refers to sample data set it is
equal to X⊺X matrix.

Correspondingly, each element in the correlation matrix represents a cor-
relation between two variables, a measure of the linear relationship between
them, and it is computed by:

cor(Xi, Xj) =
cov(Xi, Xj)√

V ar[Xi]
√
V ar[Xj]

.

Given a data set that includes X1, X2, . . . , Xp variables, the correlation
matrix is symmetric and diagonal elements are equal to one, as shown below:
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ρ(X) =


1 cor(X1, X2) . . . cor(X1, Xp)

cor(X2, X1) 1 . . . cor(X2, Xp)
...

...
...

cor(Xp, X1) cor(Xp, X2) . . . 1


since

cor(Xi, Xi) =
cov(Xi, Xi)√

V ar[Xi]
√

V ar[Xi]
=

V ar[Xi]

V ar[Xi]
= 1,∀i.

It should be noted that correlation is independent of the scales of vari-
ables, while covariance is not. This is the reason why the correlation matrix is
used when variables have different measurements; oppositely, the covariance
matrix is used when all variables in X express the same measurement unit.
Note that even though the correlation matrix supposedly handles the differ-
entiation between the units measurements of the variables, data standard-
ization is highly recommended in the presence of extreme multicollinearity
regardless of the selected matrix.

Finally, the basic elements of the decomposition process are the eigen-
values and the corresponding eigenvectors, which are related according to
equation:

Xv = λv.

As stated in [36] “In this equation X is an n-by-n matrix, v is a non-zero
n-by-1 vector and λ is a scalar (which may be either real or complex).Any
value of λ for which this equation has a solution is known as an eigenvalue of
the matrix X. It is sometimes also called the characteristic value. The vector
v, which corresponds to this value is called an eigenvector”.

As mentioned above, in PCA the PCs are oriented in directions of maxi-
mal variance of data points. In other words, the method initially aims to find
the direction of a unit length vector p1 that maximizes the variance of score,
i.e the values that are loaded in vector t1. This is equivalent to maximizing
the function g:

g = t⊺1t1
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under the constraint p⊺1p1 = 1 and considering that t1 = Xp1. Hence:

g = t⊺1t1 = p⊺1X
⊺Xp1. (3.2)

Using Lagrange multiplier, equation (3.2) can be transformed into:

g = t⊺1t1 = p⊺1X
⊺Xp1 − λ(p⊺1p1 − 1). (3.3)

Taking partial derivatives:

∂g

∂p1
= 0 ⇒ ∂{p⊺1X⊺Xp1 − λ(p⊺1p1 − 1)}

∂p1
= 0 ⇒

2X⊺Xp1 − 2λp1 = 0 ⇒

(X⊺X − λIp×p)p1 = 0 ⇒

X⊺Xp1 = λp1. (3.4)

From equation (3.2) and considering equation (3.4) :

t⊺1t1 = p⊺1(X
⊺Xp1) ⇒

t⊺1t1 = p⊺1λp1 = λp⊺1p1 ⇒

t⊺1t1 = λ. (3.5)

Similarly, the rest requested directions of PCs can be computed, under
the additional constraint of orthogonality among all of them.

Finally, it is concluded that the directions of PCs are the directions of
eigenvectors of covariance matrix X⊺X. Therefore, loadings matrix P is
formed by setting as columns the eigenvectors of X⊺X and they are ordered
according to the value of respective eigenvalue. Eigenvectors with larger
eigenvalues are set first. In this way, arising PCs, which consist of the columns
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in the XP product matrix, have maximum variance, because their variance
is equal to the respective eigenvalue, as shown in equation (3.5).

Eventually, the mechanism of eigenvalue decomposition of a set of pre-
dictors X, where variables Xi are mean-centered, can be summarized in two
steps: Creation of the covariance or correlation matrix and the computation
of its eigenvectors and eigenvalues. Finally, order the eigenvalues in a de-
clining scale and form loadings matrix P using the eigenvectors. This matrix
can be used to produce scores matrix T, by setting T = XP .

Choosing the number of Principal Components

The major aim of PCA is dimension reduction. In other words, PCA
is applied to replace the p variables-columns of an X matrix by a smaller
number m of PCs, without discarding a significant amount of information
[17]. Although, typically p PCs can be computed, it’s meaningless to work
with all of them. The crucial question is how many PCs should eventually
be included in the PCA model. The answer is not straightforward, as the
analyst should consider a trade-off between information loss and the insertion
of noise. Next, are presented the most often approaches used to determine
the appropriate number of PCs:

• Cumulative Percentage of Total Variation

A direct estimate of the appropriate number of PCs can be formed
by the inspection of the cumulative percentage of total variation of X,
that can be explained by the inclusion of different numbers of PCs. It
should be noted that percentage of variance explained by the ith PC
can be computed by the formula [39]:

qi = 100
λi∑p
j=1 λj

where λi refers to the eigenvalue of the ith PC and p the overall number
of PCs. Usually, one selects the first m PCs, which absorb 80%− 90%
of initial data variation [39]:



CHAPTER 3. DIMENSION REDUCTION TECHNIQUES 29

m∑
j=1

qj = 100

∑m
j=1 λj∑p
j=1 λj

.

• Size of variances of PCs

This approach is also called Kaiser’s Rule and is mainly applied in
cases where PCs are generated by the analysis of correlation matrix.
According to [18], PCs are included in the PCA model as long as their
variance is larger than 1. However, it should be mentioned that in [16]
is suggested a lower variance threshold, a value of 0.7, due to indepen-
dency conditions and sampling variances. In PCA of covariance matrix,
sufficient threshold is considered the average value of the eigenvalues.

• The scree graph

It is a graphic way to judge the number of PCs. On scree graph,
also called scree plot, the proportion of variance explained by each PC
against the rank of each PC is plotted. Usually, the curve that connects
the points forms an elbow-like shape. The point located at its angle
indicates the last PC to be included in the PCA model [4].

There have also been proposed Cross-validation and bootstrap techniques,
but they are not common due to the computational cost, especially when
processing large data sets [17].

3.1.1 Principal Component Regression

The Principal Component Regression (PCR) is a linear regression method
that uses PCA and a regression step to overcome weaknesses of Multiple
Linear Regression (MLR). It is applied in case of multicollinearity between
the predictors or/and in case the number of predictors is large compared
to the number of available samples. Then, X matrix can be decomposed
according to PCA and, after determining the number of PCs retaining to
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the model, low-dimension matrix T is used in MLR instead of X matrix. As
described in [39]:

Y = XB + E = X̃B + E ′ = (TP ⊺)B + E ′

= T (P ⊺B) + E ′ = TA+ E ′.

It is obvious that PCR initially decomposes the data matrix and then
replaces it with scores matrix T in a regression step. Matrix A indicates the
regression coefficients to be computed. The formula for this is:

A = (T ⊺T )−1T ⊺Y

as computed in classic Linear Regression when Ordinary Least Squares Method
is applied. It should be noted that values in A matrix refer to scores. Matrix
B with the regression coefficients that refer to the original variables of X can
by computed by:

B = PA = P (T ⊺T )−1T ⊺Y.

3.1.2 Advantages and Drawbacks of PCR

It is obvious that PCR is a simple technique carrying many advantages
compared to MLR, such as:

• Columns in matrix T are independent. As a result, the matrix T ⊺T
is numerically stable and therefore the consequences of collinearity in
estimating regression coefficients are eliminated.

• T columns used in the final regression step include information sepa-
rated by noise.

• Of course, since dimension reduction is achieved by selecting only m
out of p PCs to retain in the PCA model, the complexity of the final
regression model is significantly optimized.
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• PCs can be used to create informative visualizations of multivariate
datasets. Also, PCA can be combined with other (supervised) methods,
beyond PCR, where PCA is used to pre-process the dataset.

• Unlike MLR, the PCR can be applied even when the number of avail-
able samples is lower than the number of regressors in a dataset.

On the other hand, the main drawbacks of the method are:

• Coefficients arising from the regression step of PCR refer to new vari-
ables. Therefore, they are not interpretable.

• Transformation of original variables to PCs can cause the loss of vital
information, especially for prediction purposes.

• The selection of the number of PCs to be retained in the PCR model
is subjective.
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3.2 Partial Least Squares Method

In PCA, analysis is applied on the X data matrix. As a result, aris-
ing PCs retained in the model may not contain information related to the
dependent-response variables they are next meant to predict in the regression
step. In other words, valuable for prediction purposes information may be
summarized in PCs that are not included in the PCA model. Partial Least
Squares (PLS) is an alternative method that copes with this deficiency of
PCA and, at the same time, achieves dimension reduction. As stated in [31],
“It comprises of regression and classification tasks as well as dimension re-
duction techniques and modeling tools.” This Master thesis refers to the PLS
version that aims to model relation among two blocks of variables, a matrix
X containing predictors and a matrix Y containing responses, although other
versions have been used to relate more blocks. It is used when the number of
predictors is large compared to the available samples and/or multicollinearity
is present.

This method shares the same main idea as PCA: it forms new variables,as
linear combinations of the original, which are uncorrelated. The difference
is that they retain information involved both in X and Y data matrices. So,
here, the aim is to generate latent variables in the direction of maximum co-
variance between X and Y: as stated in [39],“PLS explicitly aims to construct
latent variables in such a way as to capture most variance in X and Y, and to
maximize the correlation between these matrices”. However, the algorithm to
achieve this goal is a bit more complicated, since both X and Y matrices are
analyzed. New latent variables are generated through an iterative procedure,
in every step of which it is computed a set of scores vectors, a set of loadings,
but also a set of weight vectors. One vector of each type refers to X matrix
and the other refers to Y matrix. Next, follows deflation of X and Y matrices,
so as to subtract the information explained by the computed components.
Deflated matrices are used in the next iteration of the algorithm to generate
new components. Finally, the user selects the number of components of X
matrix that will be used. Of course, their number is significantly reduced
compared to the number of original variables, since valuable information is
summarized in the first few PCs.

Geometrically, just like PCA, X but here also Y dataset are projected
to new spaces, the coordinate systems of which are formed by new latent
variables formed by linear combinations of original ones as mentioned before.
Latent variables of X matrix are generated so as to be orthogonal, and as a
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result uncorrelated, but this is not necessarily the case for latent variables of
Y matrix.

Partial Least Squares analysis of an X matrix of size n× p and a matrix
Y of size n× k is:

X = TαP
⊺
α

Y = UαQ
⊺
α

where T and U are scores matrices. Again, the ith columns in T and U
matrices, are the coordinates of the samples in the direction of ith new la-
tent variable, values arising from the perpendicular projection of each sample
onto this direction and are measured from the origin. P and Q are loadings
matrices, and the superscript ⊺ indicates the transpose of a matrix. In the
PLS model, loadings are vectors used in the deflation process of sequential
deflated matrices generated through the algorithm. The subscript α indi-
cates the number of latent variables that we usually compute and is equal
to min(n,p,k). Since, only the first few Components are adequate for the
following modeling purposes, the original matrices can be rewritten as [31]:

X = TmP
⊺
m + E

Y = UmQ
⊺
m + F

where m is a number smaller than α and indicates the number of latent
variables retained to the model. Matrices E and F contain information not
explained by the first m selected Components. Eventually, the new, low-
dimension matrix can be written as:

X̃ = TmP
⊺
m

where X̃ indicates the approximation of X, that can be used for further
modeling purposes.
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Steps to build a PLS model

The very first step in building a PLS model is mean-centering columns
in matrices X and Y, so that each one has zero mean. Additionally, in cases
of variables measured in different units, scaling should be considered. The
reason and technique for mean-centering and scaling is the same as in PCA
model.

Concerning the computation of scores, loadings and weight vectors, plenty
of algorithms have been proposed. Some of the most known are named:
The Eigenvector algorithm, by Hoeskuldsson [12], Kernel algorithm for PLS
introduced by Lindgren et al [24], NIPALS algorithm introduced by H. Wold
in 1975 [42], SIMPLS algorithm for PLS proposed by de Jong [6], Orthogonal
Projections to Latent Structures (O-PLS) proposed by Trygg and Wold in
2002 [37]. Present Master thesis display Nonlinear Iterative Partial Least
Squares algorithm (NIPALS).

NIPALS Algorithm

The NIPALS algorithm constructs the PLS model’s matrices in sequential
steps. In every step X-scores vector, denoted by t and results from the
projection of X-data matrix on the direction of the new latent variable, is
about to be constructed in X data space. Y-score vector, denoted by u, arises
alike. These directions are defined by weight vectors w and c, respectively.
Mathematically, this can be written as:

t = Xw

u = Y c/(c⊺c).

Directions of the w and c vectors are found so as to maximize the covari-
ance between score vectors t and u, a value proportional to the quantity t⊺u.
An additional constraint on unit length weight vectors is applied. To sum
up, the problem to be solved can be written as [31]:

max{cov(t, u)} = max{t⊺u} = max{(Xw)⊺Y c} = max{w⊺X⊺Y c}. (3.6)

In every step, the computation of weights and scores is followed by the
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deflation of X and Y matrices. This process is based on p and q loadings of
X and Y matrices respectively, computed as:

p = X⊺t/(t⊺t)

q = Y ⊺u/(u⊺u).

Actually, there are several variations on how to run deflation. The choice
depends on the aim of PLS modeling. Herman Wold initially proposed to
deflate matrices as follows:

Xnew = Xold − tp⊺

Ynew = Yold − uq⊺.

This version of deflation of Y is used when the PLS model is built to
reflect relations between blocks of variables and the algorithm is called PLS
Mode A. In case a PLS model is built for prediction, the algorithm is called
PLS1, when there is only one Y response variable to be predicted, and PLS2,
when also Y matrix, as X, is multidimensional. The rest of this Master
Thesis is focused on PLS1 and PLS2, namely PLS models for regression.
These variations run deflation as follows:

Xnew = Xold − tp⊺

Ynew = Yold − btc⊺

where

b = u⊺t/(t⊺t). (3.7)

When the c vector is not scaled to have a unit length (and this is most
frequently the case), as shown below, b is equal to one [12]:

u⊺t = c⊺Y ⊺t/(c⊺c) = c⊺(Y ⊺t)/(c⊺c) = c⊺c(t⊺t)/(c⊺c) = t⊺t (3.8)
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and from equations (3.7) and (3.8)

b = u⊺t/(t⊺t) = t⊺t/(t⊺t) = 1.

In the following, the c vector is not supposed to be scaled, so b is consid-
ered equal to one. Because of this, deflation of Y matrix becomes:

Ynew = Yold − tc⊺.

Once deflation is completed new matricesXnew and Ynew, also called resid-
ual matrices, are analyzed in the next step so that the next latent variable
can be extracted. The procedure for PLS2 can be described by the following
pseudocode:
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Algorithm 1 Pseudocode for PLS2

Input: A data set consisted by a n × p matrix X and a n × k matrix Y,
where each Xj and Yj column represents a variable.

Output: Vectors t, p, w and c

Step 1: Set the vector u as the first or any other column of Y

Step 2: Compute X weight: w = X⊺u/(u⊺u)

Step 3: Scale w to be unit length vector, ||w|| = 1

Step 4: Compute X scores: t = Xw

Step 5: Compute Y weight: c = Y ⊺t/(t⊺t)

Step 6: Update u scores vector: u = Y c/(c⊺c)

Step 7: Test convergence of ratio v = ||told − tnew||/||tnew||
• If v > ϵ, go to step 2 (where ϵ set to a number between (10−8, 10−6)
for instance)

• If v < ϵ, go to step 8

Step 8: Compute X loadings: p = X⊺t/(t⊺t)

Step 9: Deflation process: Xnew = X − tp⊺ and Ynew = Y − tc⊺

Step 10: Set X = Xnew and Y = Ynew and go to step 2

The way t scores are derived implies that they also contain information
about Y. As a result, they are also good predictors of Y (and that is the
reason that deflation of Y matrix is done by subtracting tc⊺ = tt⊺Y/(t⊺t),
where t⊺Y/(t⊺t) is the OLS estimate v of coefficient in regression Y = tv).

At this point, it should be mentioned that in [41] it is supported that
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deflation of Y matrix is optional, since as it is stated there “the results are
equivalent with or without Y-deflation”.

With this in mind, the procedure for the PLS1 version is more simple as
shown below:

Algorithm 2 Pseudocode for PLS1

Input: A data set consisted by a n × p matrix X and a n × 1 matrix Y,
where each Xj column represents a variable.

Output: Vectors t, p, w and c

Step 1: Set the vector u as the Y column, the unique vector of response
variable

Step 2: Compute X weight: w = X⊺u/(u⊺u)

Step 3: Scale w to be unit length vector, ||w|| = 1

Step 4: Compute X scores: t = Xw

Step 5: Compute Y weight: c = Y ⊺t/(t⊺t)

Step 6: Compute X loadings: p = X⊺t/(t⊺t)

Step 7: Deflation process: Xnew = X − tp⊺

Step 8: Set X = Xnew and go to step 2

The maximal number of such components that have nonzero covariance
with Y is min(n − 1, p), where n the number of samples and p the number
of variables in X matrix [3].

The way the weight vectors are found ensures that these give the solution
to the problem formulated in equation (3.6). To prove that we can use the fact
that non deflation of Y matrix does not influence the results. Further, let us
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denote as X⊺
i the residual matrix that is going to be used for the construction

of the ith latent variable. For this ith dimension we denote as wn−1 the weight
vector of (n− 1)th iteration of steps 2 to 6 before the convergence and as wn

the weight vector of nth iteration before the convergence. Then as stated in
[12], the weight vector can be analyzed as:

wn = X⊺
i un−1/(u

⊺
n−1un−1) =

= X⊺
i Y cn−1/(u

⊺
n−1un−1)(c

⊺
n−1cn−1) =

= X⊺
i Y Y ⊺tn−1/(u

⊺
n−1un−1)(c

⊺
n−1cn−1)(t

⊺
n−1tn−1) =

= X⊺
i Y Y ⊺Xiwn−1/(u

⊺
n−1un−1)(c

⊺
n−1cn−1)(t

⊺
n−1tn−1).

Considering that the ith latent variable takes s iterations till convergence
is achieved, then we can conclude that ws and ws−1 do not differ significantly.
So, by previous equation vector ws is eigenvector of matrix X⊺

i Y Y ⊺Xi.
Accordingly, we can find that cs is the eigenvector of matrix Y ⊺XiX

⊺
i Y

[12]:

cn = Y ⊺tn/(t
⊺
ntn) =

= Y ⊺Xiwn/(t
⊺
ntn) =

= Y ⊺XiX
⊺
i un−1/(t

⊺
ntn)(u

⊺
n−1un−1) =

= Y ⊺XiX
⊺
i Y cn−1/(t

⊺
ntn)(u

⊺
n−1un−1)(c

⊺
n−1cn−1).

Eventually, ws and cs are the first eigenvectors that correspond to the
largest eigenvalue of X⊺

i Y Y ⊺Xi and Y ⊺XiX
⊺
i Y matrices, respectively. There-

fore, from SVD properties, these vectors maximize the quantity of interest
in equation (3.6).

Furthermore, PLS latent variables not only explain maximum covariance
between X and Y. An other useful property of them is that they are mutually
orthogonal. The retroactive relation between residual matrices of the PLS
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model will help to prove it [12].

Xj = Xj−1 − tj−1p
⊺
j−1 =

= Xj−1 −Xj−1wj−1t
⊺
j−1Xj−1/(t

⊺
j−1tj−1) =

= Xj−1[I − wj−1t
⊺
j−1Xj−1/(t

⊺
j−1tj−1)] =

= [Xj−2 − tj−2p
⊺
j−2][I − wj−1t

⊺
j−1Xj−1/(t

⊺
j−1tj−1)] =

= [Xj−2 −Xj−2wj−2t
⊺
j−2Xj−2/(t

⊺
j−2tj−2)][I − wj−1t

⊺
j−1Xj−1/(t

⊺
j−1tj−1)] = ...

= [Xi−Xiwit
⊺
iXi/(t

⊺
i ti)]...[I−wj−2t

⊺
j−2/(t

⊺
j−2tj−2)][I−wj−1t

⊺
j−1Xj−1/(t

⊺
j−1tj−1)].

Next, the proof of orthogonality between scores vectors follows: Let in-
dices i and j denote now two different directions of extracted latent variables
(suppose i < j). From the retroactive relation above, we can write [12]:

Xj = [Xi −Xiwit
⊺
iXi/(t

⊺
i ti)] ∗ · · · ∗[I − wj−2t

⊺
j−2/(t

⊺
j−2tj−2)]

[I − wj−1t
⊺
j−1Xj−1/(t

⊺
j−1tj−1)] =

= [Xi −Xiwit
⊺
iXi/(t

⊺
i ti)]Z

where Z some matrix.
Further,

t⊺iXj = t⊺i [Xi −Xiwit
⊺
iXi/(t

⊺
i ti)]Z =

= t⊺iXi − (t⊺iXiwit
⊺
iXi)/(t

⊺
i ti) =

= t⊺iXi − (t⊺i ti)t
⊺
iXi/(t

⊺
i ti) =

= t⊺iXi − t⊺iXi = 0.

(3.9)

Consequently,

t⊺i tj = t⊺iXjwj = 0.
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This means that scores vectors are mutually orthogonal and as a result un-
correlated, a very significant property.

When the whole process of extracting latent variables is completed, the
involved t scores vectors, p loadings vectors, w and c weight vectors are com-
bined as column-vectors and form respectively T scores matrix, P loadings
matrix and weight matrices W and C.

However, frequently, for interpretation purposes, another matrix is being
computed:

R = W (P ⊺W )−1.

The need for R arises because derived weight scores do not refer to the
original matrix X and its original variables, but to the sequential deflated
matrices Xi. On the contrary, each column vector in R matrix expresses the
weights of the original variables of X at the corresponding dimension [39].
Algebraically, is the generalized inverse of matrix P ⊺, which is singular, and
it is [39]:

T = XR.

3.2.1 Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is a linear regression method
that uses PLS, as a method of extracting latent variables, and a regression
step. It is used when Multiple Linear Regression is impossible to give a
solution to a regression problem or its solution is not stable. Typical situa-
tions include collinear predictors and/or need for dimension reduction. Then,
PLS1 or PLS2 can be applied to matrices X and Y, depending on the dimen-
sion of Y. The PLS model with the selected components is then used in
regression:

Y = XB + E = X̃B + E ′ = (TP ⊺)B + E ′

= T (P ⊺B) + E ′ = TA+ E ′.

The above regression scheme, as presented in [39], is identical to PCR.
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The difference lies in the computation of scores, which takes into account the
response variable(s). Regression coefficients are again computed using the
Ordinary Least Squares Method.

A = (T ⊺T )−1T ⊺Y.

In PLS1 A and E ′ are column vectors, while in PLS2 they are matrices, where
the number of their columns is equal to the number of response variables,
exactly like MLR. Matrix B with the regression coefficients that refer to the
original variables of X can be computed by the fact that the inverse matrix
of P ⊺ is R:

B = RA = R(T ⊺T )−1T ⊺Y.

(Note: In NIPALS, algorithm loading vectors p are not mutually orthogo-
nal as scores are. However, it is interesting that in [25] it has been proposed
another algorithm that generates orthogonal loadings instead, and it is shown
that regression coefficients are the same as those resulted by PLSR [13].)

3.2.2 Model Selection Criteria

In the PLSR method, we are unable to define the appropriate number
of PLS components that form an efficient summarization of the two-block
investigated system, before the integration of the model in a regression step.
This is due to the direct relation of Y matrix with the PLS components and
the purpose the PLS model will eventually serve. This means that a different
number of PLS components would be appropriate for regression purposes
and for a classification problem, for example. The appropriate number of
components to retain in the PLS model can be judged by Wold’s R criterion
and Adjusted Wold’s R criterion.

Alternatively, both in PCR and in PLSR, AIC and R2
adj are used to define

the number of retaining components. These three mentioned measures are
not only used to define the complexity of PCR and PLSR models but also to
select the best model out of a set of tested models that an analyst produces
when analyzing data. By “best model” it is meant the evaluation of the
goodness of fit and parsimony of a model. In the statistical analysis of a
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complicated system it is quite often to produce a set of models that differ,
not only in the grade of complexity but also in the predictors they arise from.
For instance, it is common to apply variable selection before PLS and PCA
analysis. Different sets of original predictors are resulted, sets that then are
analyzed by PCA and PLS. In this case a researcher should define not only
the appropriate number of components to retain but also the appropriate set
of variables, from which arises the model that performs better.

• Wold’s R criterion: A commonly used measure for evaluation of plsr
models is Wold’s R criterion. It involves cross-validation technique as
follows: Data matrix X and Y are split into k groups. A reiterative pro-
cedure is applied k times, according to which each time one (different)
group is excluded from the data, and a PLSR model is generated based
on rest (k-1) groups of the data. Then, a PRESS value (Predicted Er-
ror Sum of Squares) is computed by testing the excluded group on the
generated model.

PRESS =
∑

(yi − ŷ(i))
2,

where ŷ(i) the prediction with the i -group excluded. The PRESS statis-
tic is a measure of the predictive ability of the model. In practice, in
the first iteration of the algorithm when this procedure of exclusion
takes place for all k groups, the produced PRESS values are added to
form the PRESS(1) value -this is the PRESS value that corresponds
to the PLSR model when the first latent variable is included. The pro-
cess is repeated, however this time two latent variables are going to be
used as predictors to eventually produce PRESS(2). The process con-
tinues adding latent variables in the PLSR model until the min(n, p)th

latent variable is found. It should be mentioned that the residual ma-
trices needed when adding a latent variable in PLSR model for the
computation of k models, are the residual matrices as they arise from
the algorithm when applied in full data matrix X. Wold’s R value is
computed by:

R =
PRESS(m+ 1)

PRESS(m)
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where number m+1 in the numerator and m in the denominator indi-
cates the number of latent variables included in the k individual PLSR
models. The value of ratio R is compared to 1, and if it is higher
than it, only first m components are included in the model. In PLS2,
the number of computed Wold’s R indexes is equal to the number of
response variables.

• Adjusted Wold’s R criterion: It is nothing but a variation of Wold’s
R criterion, where ratio R is compared to values 0.95 (R0.95

adj ) and 0.90
(R0.90

adj ), due to sampling variability, as it is supported in [21]. As stated
in [22] “The adjusted R criteria states that an additional latent variable
will not be included in the PLS model unless it provides significantly
better predictions”.

Note: the PRESS statistic can also be used in an alternative approach to
define the number of retaining components. Data are separated into k groups
and PRESS is computed as the sum of individual PRESS values. However,
this time residual matrices arise from the deflation of reduced data matrices
that do not contain the excluded group. Then, the following ratio is computed:

PRESS(i)

N − i− 1

where i denotes the number of components in the model. In the final model
only the first j latent variables are included, where j corresponds to the model
with the lowest ratio.

3.2.3 Advantages and Drawbacks of PLSR

PLSR and PCR share the main philosophy as regression methods; there-
fore they present similarities when compared with MLR:

• As shown, utilized scores vectors in PLSR are mutually orthogonal and
thus uncorrelated. As a result, they can replace correlated predictors in
regression and they can effectively lead to the estimation of regression
coefficients.

• Because of the mechanism that generates T matrix, the information
compressed in it is directly related to response variables. This means
that PLSR can also deal with noisy data.
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• Even in cases of large data without collinear variables, dimension re-
duction achieved by PLSR can beneficially reduce model complexity.

• Dimension reduction is also helpful when graphical representations are
used to get a “big picture” of the data. They allow a good sense of
their structure.

• PLSR successfully deals with the “small n large p” problem, a situ-
ation that MLR cannot overcome. This situation is very common in
regression analysis of biological, chemical and other scientific problems.

• Additionally, large number of predictors is also associated with a phe-
nomenon called over-fitting. In such situations, MLR models fit per-
fectly the training data set, since samples are described explicitly by the
predictors. However, these models fail to perform efficiently in predic-
tions of unseen data. On the contrary, dimension reduction conducted
by PLSR eliminates the danger of over-fitting.

• In the case of full rank matrix X, the PLSR model that includes as many
latent variables as columns in X, gives an identical solution as the MLR
model. However, in the case of correlated original predictors, as is most
commonly the case, MLR regression predictors are misleading due to
multicollinearity. On the contrary, PLSR regression coefficients are
shrunk estimates and thus more robust, leading to better predictions
[10].

• A multidimensional Y matrix is analyzed in different ways in two meth-
ods. In MLR, a linear regression model is produced for each response
variable and the estimates of the regression coefficients are different in
the generated models. In PLSR, in case of correlated responses, the
variation PLS2 can be applied and one regression model is produced.
Hence, the regression coefficients are common for all Y variables. Be-
sides the fact that in this way the analysis is completed very fast, the
relations between the response variables play significant role in the def-
inition of regression coefficients. However in case there is no correlation
between response variables, individual PLS1 models is more appropri-
ate choice.

Between its disadvantages are:
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• Regression coefficients estimated by the regression step of PLSR need
extra process, so as to refer to original variables.

• The magnitude of summarized information, eventually used for predic-
tions may depend on the user and the interpretation of methods that
help choose the retaining components.
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3.3 A comparison between PCA and PLS

PCA and PLS are dimension reduction techniques based on the same
main idea: the aim is to construct latent variables that summarize as much
as possible data information and achieve dimension reduction by using the
most informative of them. Despite their similarities, methods differ in the
following:

• PCA achieves its purpose with a simple one-step algorithm and pro-
duces elements, meaning scores and loadings, which refer to the original
variables. On the other hand, PLS make use of iterative procedures,
so scores, weights and loadings refer to sequential deflated matrices,
which impeding their direct interpretation.

• Furthermore,“in PLS dimension reduction and regression are performed
simultaneously” as referred in [43]. In contrast, the implementation of
the low-dimension matrix, resulted from PCA of an X matrix, in a
regression scheme is a different step.

• Technically, they differ at the optimization problem they aim to solve
in order to extract these latent variables. PCA derives variables by
maximizing the information of X matrix that is explained, while PLS
maximizes the covariance of X and Y matrices that is explained.

• Their main difference when occupied in regression problems is that PLS
involves also information in Y to model the data (supervised method),
while PCA is independent from responses (unsupervised method). As
stated in [15], “there is no guarantee that the directions that best explain
the predictors will also be the best directions to use for predicting the
response.”

• The next statement is directly related to this difference:“Because PLS
components are developed as latent variables possessing a high correla-
tion with Y, the optimum number of PLS components is usually smaller
than the optimum number of PCA components in PCR”[38]. It is ex-
pected that the PLSR model will perform better, because it includes
information coming from the overall system of variables that is being
modeled, and not from a part of it, meaning the part of the system
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that defines matrix X. This has the advantage of fewer factors to in-
terpret and minimization of computational cost. In [43] it has been
proven that PLSR models are most parsimonious and have the higher
predictive accuracy.

• When multivariate Y is about to be predicted, PCR will run multiple
regression steps, one for the prediction of each response variable, using
the same Principal Components for all. On the contrary, PLS has a
variation, PLS2, that is appropriate for dependent response variables.
In this case, the same latent variables will be used for simultaneously
prediction of them. The way they are generated implies that relations
between Y responses are taken into account, leading to a better il-
lustration of the whole investigated system. However, in the case of
independent variables, separate PLSR models perform better, “a sin-
gle PLSR model tends to have many components and be difficult to
interpret” [41].

• Generally, PCR and PLSR result in different regression coefficients.
However, when adding components, models tend to become more sim-
ilar. [3]



Chapter 4

Numerical Application

The aforesaid, Partial Least Squares method and Principal Component
Analysis are techniques that attain dimension reduction of high-dimensional
data sets. The PCA is widely used for this purpose. It is considered to be
the cornerstone of feature extraction dimension reduction techniques, and
numerous of scientific papers have been published concerning its widespread
utility in a variety of fields; it is characteristic the comment of Jolliffe in
[17]: “Web of Science identifies over 2000 articles published in the two years
1999–2000 that include the phrases ‘principal component analysis’ or ‘prin-
cipal components analysis’ in their titles, abstracts or keywords”. On the
other hand, PLS method was first applied in econometrics, later introduced
and became very popular in chemistry, and although today is used in many
fields, until recently it was rather overlooked by statisticians.

In this chapter PLS method is tested as a dimensionality reduction tech-
nique. The method is applied on two different high-dimensional datasets to
test its ability/prospects on both univariate and multivariate case of response
variable(s). To accomplish this purpose, initial coefficients of original vari-
ables as arise from a PLSR model, are used to determine sufficient thresholds
that allow to consider/judge as insignificant and non-informative the orig-
inal variables with absolute value lower than the defined threshold. These
variables are discarded. Furthermore, at a second level it is attempted a com-
parison between PCA and PLS methods, as dimension reduction methods for
regression analysis purposes. The generated models are compared according
to AIC and R2

adj model selection criteria, while in the case of PLSR models,
Adjusted Wold’s R criterion in both variations was also computed, although
R0.90

adj was chosen for the final results of our applications.

49
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The numerical applications are implemented using the R programming
language. The choice of programming language was determined due to the
fact that R makes it feasible to process high-dimensional data sets, as those in
our case. The user is allowed to apply models demanding high computational
power and have supervision of what is being calculated, in contrast to a
black-box software. Additionally, it is a very popular tool for applications
in numerous fields and the wide community that makes use of this language
shares examples and packages.

4.1 Dimension Reduction in Univariate case

with PLS Method

Initially, the PLS method is applied to data coming from the gasoline
dataset found in the pls package. This dataset consists of a sample of gaso-
line observations. Each observation is described by its octane number and
NIR spectrum, which consists of 401 diffuse reflectance measurements from
900 to 1700 nm [19]. The aim here is to produce a flexible, yet reliable lin-
ear regression model able to predict the octane number by NIR spectrum
of unseen samples. The modeling process is going to be based on 50 sam-
ples. Given that the number of available samples in the training set is small
compared to the number of predictors and the existence of multicollinear-
ity, the application of MLR with regression coefficients estimated with the
OLS method would give models of poor performance, as documented in the
aforementioned chapters.

Below the application of PLSR and PCR method on an initial data set of
50 samples and 401 predictors it is presented. Table 4.1 includes the values
of the information criteria for these models.



CHAPTER 4. NUMERICAL APPLICATION 51

models of 401 predictors
PLSR PCR

No.LVs AIC R2
adj R

(0.9)
adj AIC R2

adj

1 171.9813 0.2792 180.0716 0.1526
2 18.51905 0.9671 179.3640 0.1802
3 0.3639 0.9776 3 18.0970 0.968
4 -7.1816 0.9811 6.5083 0.9751
5 -26.4575 0.9873 8.1747 0.9747

Table 4.1: Information criteria values of models generated based on 401
predictors, where No.LVs indicates the number of Latent Variables.

In the PLSR model of Table 4.1, the reduction in AIC value from the one-
component to the two-component model is remarkable . The R2

adj value is also
significantly increased in the second case. These indications, in combination
with the fact that the two-component model explains 85.58% of the variance
of X matrix and 96.85% of the variance of the response variable, lead to
the conclusion that a two-component PLSR model is sufficient to predict
the number of octane in new data. The adjusted Wold’s R (R

(0.9)
adj )criterion

suggests a three-component model, a reasonable choice in case we wish to
increase the percentage of explained variance in X data matrix to 93%.

However, in contradiction to PLSR, the two-component PCR model can
be considered insufficient for the modeling of the response variable based on
either AIC or R2

adj. PCR suggests the use of a three-component model, so to
be considered as sufficient. It is noteworthy that the three-component model
of the PCR model is as effective as the two-component PLSR model -based on
both displayed information criteria, which highlights the predominance and
effectiveness of PLSR against PCR when it comes to regression purposes.
Note that we choose to select the three-component PLSR model not only
because the Wold’s R criterion, specially designed for PLSR, suggests its use
but also due to further significant improvement indicated by AIC and R2

adj.
Next, regression coefficients of the original variables were estimated based

on the PLSR model. Then, various thresholds of their absolute values were
tested, so as to decide those variables that will eventually be used in the final
regression model. We tested numerous models, where the design matrix X
contained:

• only the variables that the absolute values of estimated regression co-
efficients in all models built with up to three components were larger
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than the tested thresholds 0.09, 0.25, 0.30, 0.4, 0.5, 0.7, 1

• only the variables that the absolute values of estimated regression coef-
ficients in all models built with up to two components were larger than
the tested thresholds 0.09, 0.25, 0.30, 0.4, 0.5, 0.7, 1

• all variables except those with absolute values of estimated regression
coefficients larger than the thresholds in all models built with up to
three components and, simultaneously these absolute values were even
larger in models built with 4 and 5 components

• all variables except those with absolute values of estimated regression
coefficients larger than the tested thresholds in both models built with
up to two components, and simultaneously these absolute values were
even larger in models built with 3,4 and 5 components

• all variables except those excluded from the first case and those with ab-
solute values of estimated regression coefficients larger than the tested
thresholds in all models built with up to three components, and simul-
taneously these absolute values were even larger in models built with
4 and 5 components (or simply the combination of bullets 1 and 3 )

• all variables except those excluded from the second case and those
with absolute values of estimated regression coefficients larger than the
tested thresholds in both models built with up to two components, and
simultaneously these absolute values were even larger in models built
with 3,4 and 5 components (or simply the combination of bullets 2 and
4 ).

Table 4.2 presents the information criteria values of the models that ap-
pear to have the best performance between the tested models constructed
with the mentioned constraints. The specific PLSR and PCR models are
based on the X matrix that included only the variables that the absolute
values of the estimated regression coefficients were higher than 0.30 in all
models built with up to three components. In this way, 139 variables were
excluded from the predictors dataset; that is, the 34% of the initial set. The
remaining models were rejected due to poor performance.

Looking at Table 4.2 we infer that in the case of PLSR all three criteria,
AIC, R2

adj and adjusted Wold’s R demonstrate the good performance of this
model and the nomination of the three-component model as most sufficient.
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models of 262 predictors
PLSR PCR

No.LVs AIC R2
adj R

(0.9)
adj AIC R2

adj

1 171.5231 0.2858 180.0834 0.1524
2 21.3171 0.9653 149.5523 0.5484
3 -1.7011 0.9785 3 10.1766 0.9727
4 -12.0819 0.9828 5.8030 0.9754
5 -25.3679 0.9871 6.9709 0.9753

Table 4.2: Information Criteria values of models generated based on 262
predictors.

We can see that the difference in AIC values between the one-component
and the two-component models clearly shows the significant improvement
in performance, something that is validated by the huge increase of the R2

adj

value. We choose to include the third component in the final model, retaining
the advantage of data visualization in three dimensions, while further opti-
mization in AIC and R2

adj values is achieved. R
0.90
adj , a specialized information

criteria for PLSR models, also suggests the three-component model, which
explains 93.76% of the variance in the reduced X matrix and 97.98% of the
variance in the response variable. It should be noted that AIC values tend
to decrease as more components are added to the model. In the present case,
the significant decrease between the one and the three-component model,
leads to the conclusion that the last performs better. Finally, the results
of the model constructed from the exclusion of the variables with absolute
values of estimated regression coefficients in all models built with up to three
components less than one, were very similar to those presented. However,
the severe removal of the 86% of the original set of predictors, might lead to
model underestimation and we decided on its rejection.

As far as the comparison with the PCR models, we can see that the PLSR
models perform better in all respective cases. Additionally, in PCR method
the inclusion of the third component is absolutely necessary for a sufficient
performance.
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4.2 Dimension Reduction in Multivariate case

with PLS Method

Now, let us see how PLS method works in the multivariate case with an
application on data coming from the corn data set [5]. Each sample is de-
scribed by the moisture, oil, protein and starch values and measurements on
an NIR spectrometer, where the wavelength range in [1100−2498]nm, at 2nm
intervals. To sum up, there are four response variables and 700 predictors.
The multicollinearity phenomenon is also present here, since almost half the
predictors have extreme multicollinearity. Additionally, the response vari-
ables are also correlated, as shown in Table 4.3. Hence, the specific dataset
is appropriate for the application of the PLSR2 algorithm, which in the mod-
eling process takes into account these relations in the response variables.

Y1 Y2 Y3 Y4
Y1 1 -0.3457 -0.3176 -0.0656
Y2 -0.3457 1 0.2853 0.0253
Y3 -0.3176 0.2853 1 -0.7983
Y4 -0.0656 0.0253 -0.7983 1

Table 4.3: Correlation between response variables

Initially, we made use of a training set consisting of 60 samples and applied
PLSR2 method to the initial set of predictors. We computed the Adjusted
Wold’s R values, R2

adj and based on them we determined the significant com-
ponents for each response individually. We came to the conclusion that Y1
, Y2 , Y3 and Y4 respectively, require 5, 21, 7 and 8 components. Then we
applied constraints to find the final subset of predictors, which will be used in
the final regression step. For this purpose, initially we defined the following
four subsets:

• In the first subset the informative variables for Y1 are included. They
are the variables with absolute values of regression coefficients higher
than the tested threshold in all models built with up to five components.

• In the second subset the informative variables for Y2 are included.
They are the variables with absolute values of regression coefficients
higher than the tested threshold in all models built with up to twenty
one components.
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• In the third subset the informative variables for Y3 are included. They
are the variables with absolute values of regression coefficients higher
than the tested threshold in all models built with up to seven compo-
nents.

• In the fourth subset the informative variables for Y4 are included. They
are the variables with absolute values of regression coefficients higher
than the tested threshold in all models built with up to eight compo-
nents.

Then, the intersection of these subsets consisted of the final reduced data
set used for the regression model. The tested thresholds in this case were
higher than the previous univariate case -they were 2, 2.25 and 2.50, and the
excluded variables were 44, 69 and 99, respectively. The optimum threshold is
found to be 2.50 and the results of the PLSR and PCR method are displayed
in Tables 4.4 and 4.5.



CHAPTER 4. NUMERICAL APPLICATION 56

PLSR METHOD
No.LVs 1 2 3 4 5

AIC

Y1 0.8066 1.8514 -1.9315 -23.9521 -50.1671
Y2 -62.6191 -62.1212 -66.1768 -68.6419 -68.0212
Y3 76.1178 65.6200 4.9934 -30.4190 -34.8127
Y4 153.0169 144.8910 115.1701 85.9975 63.4061

R2
adj

Y1 0.5149 0.5186 0.5551 0.6964 0.8068
Y2 0.2704 0.2759 0.3338 0.3703 0.3732
Y3 0.1744 0.3179 0.7555 0.8666 0.8778
Y4 -0.01514 0.1275 0.4766 0.683 0.7857

R0.90
adj

Y1 0.49094 0.48029 0.51808 0.65369 0.78243
Y2 0.2253 0.2193 0.27650 0.24688 0.24197
Y3 0.1383 0.26207 0.66346 0.82373 0.84728
Y4 -0.0666 0.04530 0.32932 0.58041 0.72499

No.LVs 6 7 8 21

AIC

Y1 -140.2870 -141.7700 -166.3753 -366.0695
Y2 -66.8455 -87.2085 -154.2896 -214.2232
Y3 -54.8042 -56.3919 -60.0893 -181.0950
Y4 38.6846 27.8286 6.7515 -131.0660

R2
adj

Y1 0.9576 0.9592 0.9733 0.9992
Y2 0.3701 0.5577 0.8574 0.9543
Y3 0.9137 0.9172 0.9232 0.9911
Y4 0.8601 0.8849 0.9201 0.993

R0.90
adj

Y1 0.93693 0.94998 0.96795 0.99860
Y2 0.21055 0.44174 0.81050 0.8986
Y3 0.88788 0.89302 0.90071 0.9624
Y4 0.80716 0.83255 0.87608 0.9737

Table 4.4: Information criteria values of PLSR2 models based on 601 predic-
tors.

In the PLSR method, the regression model must include every component
which is significant for at least one Y response. Thus, in our case, twenty
one first components should be included in the final PLSR regression model,
according to the selected information criteria. In this case, almost all vari-
ance of the reduced X matrix is used, while the percentages of the explained
variance of Y responses are 99.95% for Y1, 97.06% for Y2, 99.43% for Y3
and 99.55% for Y4. It is concluded that it achieved a sizable dimensionality
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PCR METHOD
No.LVs 1 2 3 4 5

AIC

Y1 0.8279 0.6323 -8.7237 -20.9680 -115.7999
Y2 -62.6076 -61.0262 -66.6877 -69.4438 -68.5784
Y3 76.13027 73.8200 71.59042 49.1969 22.35033
Y4 153.0161 150.9798 151.3416 145.2836 120.132

R2
adj

Y1 0.5192 0.5283 0.6027 0.681 0.9353
Y2 0.2703 0.2626 0.3394 0.3787 0.379
Y3 0.1742 0.218 0.2582 0.497 0.6833
Y4 -0.01513 0.03427 0.0435 0.1485 0.4484

No.LVs 6 7 8 21

AIC

Y1 -114.1676 -153.1206 -151.1345 -371.4285
Y2 -97.8725 -116.0777 -124.317 -158.1575
Y3 3.2084 -24.3550 -56.3728 -112.8488
Y4 106.6219 76.7425 51.8404 -46.76802

R2
adj

Y1 0.9345 0.9663 0.9656 0.9992
Y2 0.6244 0.7267 0.765 0.8837
Y3 0.7731 0.8587 0.9183 0.9723
Y4 0.566 0.74 0.8307 0.9715

Table 4.5: Information criteria values of PCR models based on 601 predictors

reduction, with a negligible loss of information. However, it should be men-
tioned that if the theoretical frame was less strict, we would choose the eight
components model for even less complexity.

Further, PCR model also needs twenty one components to achieve a sim-
ilar performance and to explain 99.95%, 92.51% , 98.21% , 98.17% of the
variance in Y1, Y2, Y3 and Y4 correspondingly. However, the PLSR model
provides better results in reference to the variability explained for all four
response variables.
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4.3 Final conclusions and Future work

The present Thesis approached Partial Least Squares method as a re-
gression analysis method. However, in a more general frame, Partial Least
Squares is a method that can be implemented in numerous applications and
there are many variations that serve different purposes. To name some of
them, it can be used for time series analysis, discriminant analysis, non-linear
modelling and hierarchical modeling, for univariate and multivariate binary
classification and also for survival analysis [41][3]. It effectively handles dif-
ferent types of data and situations that classic methods cannot overcome or
lead to non-reliable results: such cases are high-dimensional, multicollinear,
noisy or incomplete data.

In regression analysis problems the method counts the relationships be-
tween a set of Y variables and allows us, by using adjusted scaling, to use
the prior knowledge of investigating systems in order to “focus the model
on more important Y-variables, and use experience to increase the weights
of more informative X-variables”[41]. As a result, we can investigate more
complex problems with a more realistic and holistic view. This is further sup-
ported by the less strict assumptions of this method compared to classical
regression, as far as noise, errors and multicollinearity. Additionally, PLSR
has been proved to be a non-time consuming process and statistically effi-
cient method with high prediction accuracy. As a recently found technique
in the field, many aspects of its underlying mechanism have recently been
revealed and yet, there is no strictly defined frame for its application. As a
result, the method is considered to be very flexible and many modifications
and experimentations are tested.

Such an experimentation conducted in the final chapter of this Master
Thesis. PLSR was used as a dimension reduction technique on two levels.
Firstly, it successfully operated as a variable selection technique, as through
this we removed up to 34% and 14% of the initial predictors in the final
selected models in the univariate and multivariate cases, respectively. Ad-
ditionally, it operated as a feature extraction method and its results were
compared to those found through PCR.

In the univariate case, the final selected model is based on only 262 pre-
dictors out of an initial set of 401. The three-component model, which is
suggested as optimum, explains the major part of information captured in
the data, while it is parsimonious, with high prediction ability and can eas-
ily be used for visualizations. The comparison with the corresponding PCR



CHAPTER 4. NUMERICAL APPLICATION 59

model, which was based on information criteria AIC and R2
adj, demonstrates

that PLSR model gave more sufficient results.
In the multivariate case, the problem appears to be more complicated.

Initially PLSR2 was implemented on the data out of necessity, due to the fact
that correlations were observed between the response variables. We estimated
the regression coefficients and we determined the significant components for
each response variable. We compared the absolute values of the coefficients
in significant components with thresholds and then, we defined four sets
of predictors, which contained the important predictors for the individual
responses, respectively. Their intersection consisted the final set of predictors
for the multivariate regression model. This procedure could be considered
as a combined approach of PLS2 and PLS1, for variable selection. This
way, in the final selected model 99 less predictors than in the initial set
were included. The simultaneous process of the response variables generated
a single regression model with AIC values lower than the individual PCR
models in all four responses. The increased number of constructed models in
the PCR method is associated with high complexity and computational cost
of the whole analysis. This, in combination with the fact that less variability
is explained in the second response variable with the PCR method, leads to
the suggestion of a PLSR model is optimum also in the multivariate case.

Concerning possible future expansion of this work, an application of
the Elastic Net Regularization along with Partial Least Squares Method is
planned to be implemented. We aim to investigate the cooperative effects
of these two techniques on high-dimensional multicollinear data in order to
make a projection on a low-dimensional space and thus to construct less
simplex and more interpretable linear regression models of high predictive
accuracy with a penalized set of predictors.
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[43] Yeniay, Ö. and Goktas, A. (2002). A comparison of partial least squares
regression with other prediction methods. Hacettepe Journal of Mathemat-
ics and Statistics. 31.




	Dimensionality Reduction
	Linear Regression Analysis
	Simple Linear Regression
	Multiple Linear Regression
	Multivariate Linear Regression
	Evaluation of Model Performance
	Assumptions of Regression Analysis
	Multicollinearity


	Dimension Reduction Techniques
	Principal Component Analysis
	Principal Component Regression
	Advantages and Drawbacks of PCR

	Partial Least Squares Method
	Partial Least Squares Regression
	Model Selection Criteria
	Advantages and Drawbacks of PLSR

	A comparison between PCA and PLS

	Numerical Application
	Dimension Reduction in Univariate case with PLS Method
	Dimension Reduction in Multivariate case with PLS Method
	Final conclusions and Future work

	Bibliography

