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Abstract

In Reliability Analysis the main focus is on stochastic processes and in particular
semi-Markov processes since they allow for general lifetime distributions. In this thesis,
we introduce a family of lifetime distributions, the H-class of distributions, which is closed
under minimum. However, some distributions, that we are interested in, do not belong to
the H-class, like the Modified Weibull Poisson distribution and therefore we approximate
them, by members of the H-class. Moreover, using the multi-state systems and semi-
Markov methodology, we produce maximum likelihood estimators for the parameters of
the distribution of H-class.
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Introduction

Reliability theory consists of a set of models and methods that aim to solve problems
that relate to the calculation, estimation and the optimization of operational probability
or expected life or generally the lifetime distribution of a unit or a system of units. The
reliability of a product (or system) can be defined as the probability that a product will
perform a required function under specified conditions for a certain period of time.

Operation of a unit is called the maintenance of its characteristics within specific limits
and under given conditions. While, failure of a unit or a system is called the possibility,
after its occurrence, some characteristics of the unit exceed the allowed limits.

Stochastic modelling is an interesting and challenging area with applications in many
different fields such as physics, psychology, medicine, biology, engineering, reliability and
others. However, in this work, we focus on reliability inference, therefore we use multi-
state systems that are represented as semi-Markov processes with several distributions
for the sojourn times. The waiting times on each state before moving to another may not
always have identical distributions, which complicates the situation further when using
closed form estimators.

The idea is to develop a class of several lifetime distributions that covers most if not
all of known extreme distributions. Several classes of distributions have been studied
with the Exponential being the baseline one (Tahir, et al. (2015)). Recently other
distributions have been used as the baseline as well. A family of distributions with
Kumaraswamy been the baseline distribution has been used by Barbu, et al. (2021)
for reliability inferences. Balasubramanian, et al. (1991) proposed a general class of
distributions using a parent continuous distribution having the Modified Weibull Poisson
(MWP) as the baseline distribution. The MWP distribution has been widely studied (see
Ghorbani, et al. (2014), Wang, et al. (2015)).

The MWP is of special interest in Reliability theory since it combines zero-truncated
Poisson distribution and Weibull distribution. Hence, Poisson will give the number of
parts that have failed, Weibull will give the time point each part failed and the minimum
among them, will provide the minimum time until the first failure. However, the problem
is that MWP is not closed under minimum and this fact introduces a limitation since
multi-state systems with the closeness under extremes have certain advantages.

The Gompertz distribution (Lenart, (2012)), as well as other families of distributions,
like Weibull and Rayleigh, which belong in a class of distributions closed under minimum,
are used as approximations for the MWP distribution which does not belong in the class
of distributions, that mentioned previously.
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In the current work we focus on a general class of distributions using a parent con-
tinuous distribution function and present some of its properties. Furthermore, for a
multi-state system, we provide estimates for the parameters of the general class of dis-
tributions which are considered to vary over the states of the system. The asymptotic
theory associated with the estimates obtained is also provided.

The manuscript is structured in 3 chapters. In the first chapter, we present the main
definitions and properties of Order Statistics, some of which will be useful in subsequent
Chapters. In the second chapter, we present the necessary theory of multi-state systems
and some of reliability indices, such as Mean Time To Failure (MTTF), Mean Time
Between Failure (MTBF), Mean Time To Repair (MTTR) and expected number of system
failures. Also, we analyse the theory of Markov Models for discrete and continuous time
and we focus on the study of semi-Markov Models, which are of great interest. Finally,
we present the statistical estimation concept and some of the methods of estimation. In
the third and last chapter, we introduce a special family of distributions closed under
minimum, the H-class of distributions. We present the approximation of distributions
which are not part of this family, by members of this family. Last but not least, we
discuss the semi-Markov setting that is used in order to get the maximum likelihood
estimators of the parameters involved.



Chapter 1

Order Statistics

1.1 Main Definitions and Properties

Definition 1.1.1: (Sahoo, P. (2013)) Let X1, X2, ..., Xn be observations from a random
sample of size n from a distribution f(x). Let X(1) denote the lowest of {X1, X2, ..., Xn},
X(2) denote the second smallest of {X1, X2, ..., Xn}, and similarly X(k) denote the kth low-
est of {X1, X2, ..., Xn}. Then the random variables X(1), X(2), ..., X(n) are called the order
statistics of the sample X1, X2, ..., Xn. Especially, X(k) is called the kth-order statistic of
X1, X2, ..., Xn.

Definition 1.1.2: (Casella, G. et al. (2021)) The order statistics of a random sample
{X1, X2, ..., Xn} are the sample values placed in ascending order. They are designated by
X(1), ..., X(n).

The order statistics are random variables that satisfy the relation X(1) ≤ X(2) ≤ ... ≤
X(n). Several statistics that are easily designated in terms of the order statistics, are the
following.

The equation R = X(n)−X(1), called sample range. The sample range is the distance
between the lowest and largest observations. Also it is a measurement of the dispersion
in the sample and should reflect the population dispersion.

The sample median, denoted by M , is a value such that approximately one-half of the
observations are greater than M and one-half are less. In terms of order statistics, M is
determined by

M =


X((n+1)/2), if n is odd

(X(n/2) +X(n/2+1))/2, if n is even.

The median is a measurement of location that might be assumed instead to the sample
mean. The benefit of the sample median over the sample mean is that it is less affected
by extreme observations.

For each number p between 0 and 1, the (100p)th sample percentile is the observation

9



10 CHAPTER 1. ORDER STATISTICS

such that approximately n(1−p) of the observations are larger and np of the observations
are less than this observation. The 25th percentile is the lower quartile, the 50th percentile
is the sample median and the 75th percentile is the upper quartile. A measurement of
dispersion that is commonly used is the interquartile range, which is the distance between
the lower and upper quartiles.

Theorem 1.1.1: (Casella, G. et al. (2021)) Let X1, ..., Xn be a random sample from a
discrete distribution with pmf fX(xi) = pi, where x1 < x2 < ... are the available values
of X in ascending order. Define

P0 = 0

P1 = p1

P2 = p1 + p2

.

.

.

Pi = p1 + p2 + ...+ pi

.

.

.

Let X(1), ..., X(n) define the order statistics from the sample. So,

P (X(j) ≤ xi) =
n∑
k=j

(
n

k

)
P k
i (1− Pi)n−k

and

P (X(j) = xi) =
n∑
k=j

(
n

k

)
[P k
i (1− Pi)n−k − P k

i−1 (1− Pi−1)n−k].

1.2 Probability Density Function & Cumulative Dis-

tribution Function of the Minimum and Maxi-

mum

For X1, X2, ..., Xn independent identically distributed continuous random variables with
probability density function f(x) and cumulative distribution function F (x), the pdf of
the kth order statistic is

F(1) = P (X(1) < x) = 1− P (X(1) > x) = 1− P (X1 > x, ..., Xn > x)

= 1− P (X1 > x) · · · P (Xn > x) = 1− (1− F (x))n
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F(n) = P (X(n) < x) = 1− P (X(n) > x) = P (X1 < x, ..., Xn < x)

= P (X1 < x) · · · P (Xn < x) = F (x)n

and

f(1)(x) =
d

dx
(1− F (x))n = n(1− F (x))n−1 dF (x)

dx
= nf(x)(1− F (x))n−1

f(n)(x) =
d

dx
F (x)n = nF (x)n−1 dF (x)

dx
= nf(x)F (x)n−1

Theorem 1.2.1: (Sahoo, P. (2013)) Let X1, X2, ..., Xn be a random sample of size n
from a distribution with pdf f(x). Then the pdf of the kth order statistic, X(k), is

g(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1 f(x) [1− F (x)]n−k,

where F (x) is the cdf of f(x).

Proof: We prove the theorem assuming f(x) continuous. In the case f(x) is discrete
the proof has to be modified appropriately. Let m be a positive real number and x be
an arbitrary point in the domain of f . Let us divide the real line into three segments,
namely

R = (−∞, x) ∪ [x, x+m) ∩ [x+m,∞).

The probability, say p1, of a sample value falls into the first interval (−∞, x] and is given
by

p1 =

∫ x

−∞
f(t)dt = F (x).

Similarly, the probability p2 of a sample value falls into the second interval [x, x+m) is

p2 =

∫ x+m

x

f(t)dt = F (x+m)− F (x).

In the same token, we can compute the probability p3 of a sample value which falls into
the third interval

p3 =

∫ ∞
x+m

f(t)dt = 1− F (x+m).

Then the probability, Pm(x), that (k − 1) sample values fall in the first interval,one falls
in the second interval, and (n− k) fall in the third interval is

Ph(x) =

(
n

k − 1, 1, n− k

)
pk−1

1 p1
2p
n−k
3 =

n!

(k − 1)!(n− k)!
pk−1

1 p2p
n−k
3 .
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Hence the pdf g(x) of the kth statistics is given by

g(x) = lim
m−→0

Pm(x)

m
= lim

m−→0

[
n!

(k − 1)!(n− k)!
pk−1

1

p2

m
pn−k3

]

=
n!

(k − 1)!(n− k)!
[F (x)]k−1 lim

m−→0

F (x+m)− F (x)

m
lim
m−→0

[1− F (x+m)]n−k

=
n!

(k − 1)!(n− k)!
[F (x)]k−1 F ′(x) [1− F (x)]n−k

=
n!

(k − 1)!(n− k)!
[F (x)]k−1 f(x) [1− F (x)]n−k.

1.3 The Joint Distribution of the Minimum and Max-

imum

Consider the joint cumulative distribution function of the minimum and the maximum

FX(1),X(n)
(x, y) = P (X(1) ≤ x,X(n) ≤ y).

It is not clear how to write this in terms of the individual Xi. Assume instead the
following relationship

(X(n) ≤ y) = P (X(1) ≤ x,X(n) ≤ y) + P (X(1) > x,X(n) ≤ y) (1.1)

We want to calculate the first term on the right-hand side. In terms of the last term, we
have

P (X(1) > x,X(n) ≤ y),

if x ≥ y the above expression is zero. In this instance, P (X(1) ≤ x,X(n) ≤ y) = P (X(n) ≤
y) and (1.1) gives us only P (X(n) ≤ y) = P (X(n) ≤ y). Considering that x < y. Then,

P (X(1) > x,X(n) ≤ y) = P (x < X1 ≤ y, ..., x < Xn ≤ y)
iid
= [P (x < X1 ≤ y)]n = [F (y)−F (x)]n.

Hence, from (1.1), we have the following

FX(1),X(n)
(x, y) = P (X(1) ≤ x,X(n) ≤ y)

= P (X(n) ≤ y)− P (X(1) > x,X(n) ≤ y)

= [F (y)]n − [F (y)− F (x)]n.
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So, the joint probability density function is

fX(1),X(n)
(x, y) =

d

dx

d

dy
{[F (y)]n − [F (y)− F (x)]n}

=
d

dx
{n[F (y)]n−1f(y)− n[F (y)− F (x)]n−1f(y)}

= n(n− 1)[F (y)− F (x)]n−2f(x)f(y)

For (x, y) in the support and x < y.

Theorem 1.3.1: Let X(1), ..., X(n) denote the order statistics of a random sample,
X1, ..., Xn, from a continuous population with cdf FX(x) and pdf fX(x). Hence, the
joint probability density function of X(i) and X(j), 1 ≤ i < j ≤ n, is

fX(i),X(j)
(v, u) =

n!

(i− 1)!(j − 1− i)!(n− j)!
fX(v)fX(u) [FX(v)]i−1 [FX(u)−FX(v)]j−1−i [1−FX(u)]n−j

for −∞ < v < u <∞.

Perhaps the other most significant probability density function is fX(1),...,X(n)
(x1, ..., xn),

the joint probability density function of all the order statistics, which is the following

fX(1),...,X(n)
(x1, ..., xn) =


n!fX(x1)...fX(xn), −∞ < x1 < x2 <∞.

0, otherwise

More informations about the Joint Distribution of the Minimum and Maximum can be
found in Lectures: Order Statistics of Applied Mathematics, University of Colorado Boul-
der.

1.4 Limit Distributions of Maxima and Minima

Previously, we have shown that

F(1) = P (X(1) < x) = 1− (1− F (x))n

F(n) = P (X(n) < x) = F (x)n

When n tends to infinity we get
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lim
n→∞

F(1)(x) = lim
n→∞

1− (1− F (x))n =


0, if F (x) = 0

1, if F (x) > 0.

lim
n→∞

F(n)(x) = lim
n→∞

F (x)n =


1, if F (x) = 1

0, if F (x) < 1.



Chapter 2

Multi-State Systems

2.1 Introduction to Multi-State Systems

In reliability theory, a simple system has two states: on (functional) or off (failed).
Because of this assumption, the system’s structural function is a binary function of binary
variables, and the corresponding model is known as a binary reliability system.

In some multi-state systems, determining the state probability and output perfor-
mance rate of an component is difficult. Some of the issues stem from data inaccuracy
and insufficiency. In a broad sense, we define success as a happening or a type of behavior
of these elements that meets a predefined criterion, whatever that criterion may be. If
the criterion is broken, the result is a failure. The space shuttle Challenger (Vaughan,
1996), Three Mile Island (Chiles, 2002), the London Paddington train crash (Cullen,
2000), and the Gulf of Mexico oil disaster are only a few examples from the accident
literature. Non-linearities may exist in practice, and they can have a major impact on
system output performance.

We consider that the operation of safety is to identify and describe the functional
faults that lead to accidents. This operation can be performed in two ways:
i) by asking why accidents occurred and looking for root causes, and
ii) by evaluating the output performance levels of several recognized effective engineering
controls that are in operation.

Failure can have a variety of causes. These causes can be physical, human, logical,
or financial. Clearly, a variety of criteria and elements can be used to determine what
a failure is, including structure, output performance, cost, and even subjective intent.
Nevertheless, no matter what kind of failure it is, if the consequences are severe, further
investigation is required.

For example, a malfunctioning valve in a fluid control network may be ”stuck-open”
or ”stuck-closed,” while a gadget in a safety monitoring system will malfunction if it
”fails to detect breakdown” or ”initiates a false alert.” The term ”three-state device”
refers to a structure whose components can fail in two different ways. By assigning m≥
2 failure modes to each component, a natural extension of three-state devices can be
created simply. Multi state system is the name given to the resulting structure.

15
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2.1.1 Main Definitions and Properties

Generic Multi-State System Model

To study MSS behavior one has to know the features of its elements. Any system element
j can have kj different states corresponding to the output performance rates, represented
by the set

oj = {oj1, ..., ojkj}

where oji is the output performance rate of element j in the state i, i ∈ {1, 2, ..., kj}.

The output performance rate Oj(t) of element j at any instant t ≥ 0 is a random
variable that takes its values from oj : Oj(t) ∈ oj. Hence, the output performance rate
of element j is determined as a stochastic process, for the interval [0, T ], where T is the
MSS operation duration.

The conventional multi-state system reliability theory has two fundamental assump-
tions:
i) every state probability of an element which compounded a multi-state system can be
completely described by probability measures and
ii) the state output performance rate of an element which compounded a multi-state
system can be exactly designated.

In some instances, the output performance of element cannot be measured only by
a single value, but by more complex mathematical objects, most commonly vectors.
Especially, the element output performance is determined as a vector stochastic process
Oj(t).

The probabilities related with the various states of the system element j at any instant
t can be represented by the set

pj(t) = {pj1(t), ..., pjkj(t)}, (2.1)

where

pj(t) = P{Oj(t) = oji} (2.2)

Observe that since the element states compose the entire set of mutually exclusive

happenings (i.e., element j can always be in one and only one of kj states),
kj∑
i=1

pji(t) = 1,

for any t : 0 ≤ t ≤ T.
Expression (2.2) determines the probability mass function for a discrete random vari-

able Oj(t) at any instant t. The collection of pairs oji, pji(t), i = 1, ..., k completely
defines the probability distribution of output performance of the element j at any instant
t.

Note that the output performance distribution (PD) can be used to illustrate the
behavior of binary elements (those with only total failures). Indeed, assume a binary
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element b with a nominal output performance (output performance rate corresponding
to a fully operable state) o∗ and the probability that the element is in the completely
operable state p(t). Considering that the element’s output performance rate in a state of
total failure is 0, one gets its PD as follows: ob = {0, o∗}, pb(t) = {1− p(t), p(t)}.

When the MSS consists of n elements, the output performance rates of this system
are unambiguously defined by the output performance rates of these elements. At each
moment, the system elements have several output performance rates corresponding to
their states. The states of its elements define the state of the entire system. Consider
that the entire system has K different states and that oi is the entire system output
performance rate in state i, i ∈ {1, . . . , K}. The entire MSS output performance rate at
time t is a random variable that takes values from the set {o1, . . . , oK}.

Definition 1.1 (Lisnianski, A. et al.(2010)) Let Ln = {o11, ..., o1k1} × ...× {on1, ..., onkn}
be the space of possible combinations of output performance rates for all of the MSS el-
ements and M = {o1, . . . , oK} be the space of possible values of the output performance
rate for the entire system.

The transform f(O1(t), ..., On(t)) : Ln →M which maps the space of the elements’ output
performance rates into the space of the system’s output performance rates, is called the
MSS structure function.

Observe that the MSS structure function is a binary structure function’s extension.
The only difference is in the determination of the state spaces: the binary structure
function is mapped as {0, 1}n → {0, 1} , while in the MSS, one deals with much more
complex spaces.

Thus, we can determined a generic model of the MSS.
Models of output performance stochastic processes should be combined in this generic
MSS model.

Oj(t), j = 1, 2, ..., n (2.3)

for each system element j and of the system structure function that gives the stochastic
process corresponding to the output performance of the integrated MSS

O(t) = f(O1(t), ..., On(t)). (2.4)

In actuality, output performance stochastic processes Oj(t) can be given in several
forms. Consider, the output performance probability distributions for all of the system
elements can be produced at every time t throughout the operation duration [0, T ]. Thus,
these probability distributions present the MSS.

oj,pj(t), 1 ≤ j ≤ n, (2.5)

and structure function of the system:

O(t) = f(O1(t), ..., On(t)). (2.6)
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Does not matter how the structure function is determined. For any given set
{O1(t), ..., On(t)}, it can be represented in analytical form or in a table or be described
as an algorithm for defining the system output performance O(t) without ambiguity. We
will assume some of the available representations of MSS structure functions as examples,
in the next subsection.

Example (Lisnianski, A. et al.(2010)) Assume a 2-out-of-3 MSS. This system consists of
three binary elements with the output performance rates Oi(t) ∈ {oi1, oi2} = {0, 1}, for
i = 1, 2, 3, where

oi1 =


0, if element i is in a state of total failure,

1, if element i operates perfectly.

The system output performance rate O(t) at any instant t is

O(t) =



0, if there is more than one failed element,

1, if there is only one failed element,

2, if all the elements operate perfectly.

The values of the system structure function O(t) = f(O1(t), O2(t), O3(t)) for all the
possible system states are presented in Table 2.1.

O1(t) O2(t) O3(t) f(O1(t), O2(t), O3(t))

1 1 1 2
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Table 2.1: Structure function for 2-out of-3 system.

Main Properties of Multi-State Systems

The main properties of multi-state systems are Relevancy of systems Elements, Coherency
and Homogeneity. Below we will define them one by one. A more extensive collection
with further analysis of these properties can be found in Lisnianski, A. et al.(2010).
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• Relevancy of systems Elements

In the binary context, the relevancy of a system element means that the state of an
entire system totally dependent on the state of this element in particular cases. In terms
of the system structure function, the relevancy of element j means that there are such
O1(t), . . . , On(t) that

f(O1(t), ..., Oj−1(t), 1, Oj+1(t), ..., On(t)) = 1, (2.7)

f(O1(t), ..., Oj−1(t), 0, Oj+1(t), ..., On(t)) = 0.

It should be noted that for the binary systems Oj(t) ∈ {0, 1} for 1 ≤ j ≤ n.
When the MSS is assumed, an element is relevant if several changes in its state

cause changes in the complete system state without changes in the states of the existing
elements. In terms of the MSS structure function, the relevancy of element j means that
there are such O1(t), . . . , On(t) that for some ojk 6= ojm

f(O1(t), ..., Oj−1(t), ojk, Oj+1(t), ..., On(t)) 6= (2.8)

f(O1(t), ..., Oj−1(t), ojm, Oj+1(t), ..., On(t)).

• Coherency

In the binary system context coherency means that:

· All elements of the system are relevant.
· The fault of all the elements causes the fault of the entire system.
· The entire system operates as a result of the operation of all the elements.
· No extra failure can make the system operate again, once it has failed.
· No repair or addition of elements can cause the system to fail while it is in operation.

For MSSs these requirements are met in systems with monotonic structure functions:

f(O1(t), ..., On(t)) = 1, if Oj(t) = 1 for 1 ≤ j ≤ n,

f(O1(t), ..., On(t)) = 0, if Oj(t) = 0 for 1 ≤ j ≤ n, (2.9)

f(O1(t), ..., On(t)) ≥ f(Õ1(t), ..., Õn(t)),

if there is no j for which Õj ≥ Õj (for a binary system, this can be reformulated as
follows: there is no such j that Õj = 1 and Oj = 0).

Thus, in a multi-state case, the system is coherent if and only if the structure function
in each argument, is non-decreasing and all elements of the system are relevant. Mention
that the largest system output performance is succeed when all of the elements’ output
performance rates are the largest, and the lowest system output performance is succeed
when all of the elements’ output performance rates are the lowest, as a result of this
structure function property.
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• Homogeneity

If all of the MSS’s elements and the entire system have the same number of distinguished
states, the MSS is homogeneous. All binary-state systems are homogeneous, as may be
clearly seen.

2.1.2 Multi-State System Reliability and Its Measures

Acceptable and Unacceptable States. Failure Criteria

MSS behavior is characterized by its evolution in the space of states. The complete set
of available system states can be separated into two distinct subsets that correspond to
acceptable and unacceptable system function. A failure occurs when the system enters a
subset of unacceptable states. The ability of the MSS to stay in acceptable states during
the operation term is characterized as its reliability.

Therefore, the output performance O(t) characterize the system operation, the state
acceptability at any instant t ≥ 0 depends on this value. In some situations, this depen-
dency can be phrased by the acceptability function F (O(t)) which returns non-negative
values if and only if MSS operation is acceptable. This takes place when the efficiency
of the system operation is totally defined by its internal state. Such as, only states in
which a network’s connectivity is preserved are acceptable. In such circumstances,the
consumer is interested in a certain set of MSS states. Typically, these states are defined
as system failure states, implying that the system should be repaired or destroyed if they
are reached.

Frequently, the system state acceptability is established by the relationship between
MSS output performance and the desired level of this output performance (demand) des-
ignated outside of the system. Generally, the demand D(t) is also a random process.
Below we assume such a case when the demand can take discrete values from the set
d = {d1, ..., dM}. Usually, the desired relationship between the system output perfor-
mance and the demand can be phrased by the acceptability function F (O(t), D(t)). The
acceptable system states correspond to F (O(t), D(t)) ≥ 0 and the unacceptable states
correspond to F (O(t), D(t)) < 0. The MSS failure criterion is determined by the previous
inequality.

In many practical cases, the MSS output performance should be able to surpass the de-
mand. In such cases the acceptability function given by the following form F (O(t), D(t)) =
O(t)−D(t).

The possibility of entering the subset of unacceptable states more than once through-
out the operation time characterizes the system behavior. The possibility of entering the
subset of unacceptable states more than once during the operation time characterizes
the system behavior. When an MSS may only enter this subset once, it usually means
that the system is degrading and cannot be repaired. Transitions between subsets of
unacceptable and acceptable states may occur an arbitrarily times in repairable systems.

It’s worth noting that dividing an MSS’s state space into acceptable and unacceptable
states isn’t always doable. In order to determine MSS failure, only some functional linked
with two stochastic processes O(t) and D(t) may be of interest.

Such as, the failure of MSS can be determined as an event when functional J =
∫ T

0
a[O(t), D(t)]dt

is larger than some specified value J0 and a(·) is determined as some arbitrary function.
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Functional J as an energy not supplied to costumers in a power system, where O(t) and
D(t) are assessed as generating capacity and demand, where a(·) is identified as follows:
a(t) = D(t)− O(t), if D(t)− O(t) ≥ 0, and a(t) ≡ 0, if D(t)− O(t) < 0. The functional
J is called a failure criteria functional.

Relevancy and Coherency in Multi-State System Reliability Context

The MSS relevancy was taken into account as a property of the structure function that
represented the system’s output performance. When considering the MSS from the stand-
point of reliability, the system demand must also be considered. The demand value, as
well as the system output performance value, are of interest. In this case, an element is
relevant if changes in its state create changes in the system’s reliability without causing
changes in the states of the remaining elements. The relevancy of the system is now
viewed as a property related with the system’s ability to accomplish a task, which is
determined outside of the system. In this context element j, relevancy means that there
are O1(t), . . . , On(t) for which for some ojk 6= ojm

J {a[f(O1(t), ..., Oj−1(t), ojk, Oj+1(t), ..., On(t))], D} ≤ J0, (2.10)

while

J {a[f(O1(t), ..., Oj−1(t), ojm, Oj+1(t), ..., On(t))], D} > 0.

Mention that this situation is more difficult than (2.8). Certainly, a relevant element
according to expression (2.8) can be irrelevant according to (2.10).

One may also propose a determination of system coherency that is more closely con-
nected to the one given for binary systems by using the acceptability function. When it
comes to binary systems, coherency is determined in terms of fault and normal operation,
however when it comes to MSS, all that is necessary is the structural function’s mono-
tonic behavior. In reliability, the MSS coherency means that improvements in system
elements’ output performance cannot lead the entire system to move from an acceptable
to an unacceptable state:

if F (f(Õ1(t), ..., Õn(t)), D) ≥ 0 and there is no j for which Õj ≥ Õj, (2.11)

then F (f(O1(t), ..., On(t)), D) ≥ 0.

Multi-State System Reliability Measures

In order to numerically describe the MSS behavior from a reliability standpoint, we need
first to defined the MSS reliability indices. The indices of reliability can be assumed of
the relevant binary-state system reliability indices.

Some indices are based on assuming the system’s evolution in the time domain. Here,
we can be investigated the relationship between the output performance of the system
and the demand represented by the two associated stochastic processes.
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The behavior of the system is described by its output performance expressed as a
random variable when it is assumed in the given time instant or in a steady state, where
its output performance distribution is independent of time.

Keep in mind that in a steady state the distribution of the variable demand can be
represented by two vectors (d, q), where d = {d1, ..., dM} is the vector of possible demand
levels dj, j = 1, ...,M and q = {q1, ..., qM} is the vector of steady-state probabilities of
respective demand levels qj = P{D = dj}, j = 1, ...,M.

Figure 2.1: MSS behavior as stochastic process, where the G(t) has been noted with O(t)
(Lisnianski, A. et al.(2010)).

An example of the random realization of two stochastic processes O(t) and D(t) can
be considered in the Figure 2.1. Consider the case where the value of the system output
performance exceeds the value of demand: F (O(t), D(t)) = O(t)−D(t). Hence, the time
to MSS failure is defined by the first time that the process O(t) downcrosses the level of
demand, D(t).

Subsequently, we need to define the following random variables, which are important,
when considering MSS evolution in the space of states during system operation period T.

Tf is called the time to failure, i.e., the time between the start of the system’s life and
the first time it reaches the subset of unacceptable states. Tb is called the time between
failures, i.e., the amount of time between two successive transitions from one subset of
acceptable states to another subset of unacceptable states. Also, NT is number of failures,
i.e., the number of times throughout the time interval [0, T ] that the system reaches the
subset of unacceptable states.

For each the above times, we present the same indices. For Tf , the probability of a
failure-free operation or reliability function R(t), i.e, the probability that Tf is greater
than or equal to the value t(t > 0), where in the initial state (at instant t = 0) the MSS
is in one of the acceptable states:

R(t) = P {Tf ≥ t|F (O(0), D(0))} ≥ 0. (2.12)

For Tb, the probability that the time between failures is greater than or equal to t:
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P {Tb ≥ t} . (2.13)

And for NT , the probability that NT is less than a specified n:

P {NT ≤ n} . (2.14)

Moreover, we give the mean time of indices, respectively:
Mean time to failure (MTTF) is the mean time up to the moment when the system
enters the subset of unacceptable states for the first time:

E {Tf} =

∫ ∞
0

tfTf (t)dt. (2.15)

Mean time between failures (MTBF):

E {Tb} =

∫ ∞
0

tfTb(t)dt. (2.16)

The expected number of system failures for the time interval [0, T ], is:

E {NT} =
∞∑
n=0

nfNT (n). (2.17)

Also, the Mean time to Repair (MTTR) is determined as the expectation of the repair
period Tr:

E {Tr} =

∫ ∞
0

tfTr(t)dt. (2.18)

Multiple measures have been proposed in the literature, only a few of them will be
presented here. For more complete collection of such measures, the reader is advised to
look at Lisnianski, A. et al.(2010).

MSS pointwise (or instantaneous) availability A(t, d) is the probability that the MSS
at instant t > 0 is in an acceptable state:

A(t, d) = P {F (O(t), D(t)) ≥ 0} . (2.19)

For the time interval [0, T ], the MSS average availability is the following:

AT =
1

T

∫ T

0

1 {F [O(t), D(t)] ≥ 0} dt, (2.20)
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where

1 {F [O(t), D(t)] ≥ 0} =


1, if F [O(t), D(t)] ≥ 0,

0, if F [O(t), D(t)] < 0.

The random variable AT denotes the part of time during which the MSS output
performance rate is acceptable.

The availability of demand DA is the following expected value of AT

DA = E {AT} . (2.21)

The initial state of system has almost no effect on its availability for large t(t→∞).
So, the steady-state (stationary or long-term) MSS availability A∞(d) for the constant
demand level D(t) = d can be defined on the basis of the system steady-state output
performance distribution:

A∞(d) =
K∑
k=1

pk1(F (ok, d) ≥ 0), (2.22)

where

1 {F (oi, d) ≥ 0} =


1, if F (oi, d) ≥ 0,

0, if F (oi, d) < 0,

and pk = lim
t→∞

pk(t) is the steady-state probability of the MSS state k with the correspond-

ing output performance rate ok.

When F (O(t), D(t)) = O(t)−D(t), we have F (ok, d) = ok − d and

A∞(d) =
K∑
k=1

pk1(ok ≥ d) =
∑
ok≥d

pk. (2.23)

The cumulative output performance curve for a MSS in a steady state is shown in
Figure 2.2. The point where the cumulative output performance curve crosses the value
of w corresponds to stationary availability in this diagram.
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Figure 2.2: MSS steady-state cumulative output performance curve (Lisnianski, A. et
al.(2010)

As previously indicated, a steady-state distribution of the variable demand can be
represented by two vectors d and q, where d = {d1, ..., dM} is the vector of possible de-
mand levels dj, j = 1, ...,M and q = {q1, ..., qM} is the vector of steady-state probability
of the respective demand levels qj = P{D = dj}, j = 1, ...,M.

In this situation, the steady-state availability index can be calculated as follows:

A∞(d,q) =
M∑
m=1

A(dm)qm =
M∑
m=1

qm

K∑
k=1

pk1(F (ok, dm) ≥ 0), (2.24)

qm =
Tm
M∑
m=1

Tm

=
Tm
T
, m = 1, ...,M. (2.25)

The index 1−A(d, q) is frequently used in power engineering and is called the loss of
load probability (LOLP). Here, the MSS output performance is regarded as generating
capacity of the power system, while its demand is regarded as a load.

Now, we can use the output performance expectation to generate indices that char-
acterize the average MSS output performance. At time t, the mean value of MSS instan-
taneous output performance is defined by the following form

Omean(t) = E{O(t)}. (2.26)

The steady-state expected output performance takes the following form, if the long-
run probabilities pk = lim

t→∞
pk(t) there exist,

O∞ =
K∑
k=1

pkok. (2.27)
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For a certain time interval [0, T ], the average MSS expected output performance is
determined as

OT =
1

T

∫ T

0

Omean(t)dt. (2.28)

Note that the mean MSS output performance is independent to demand.
A conditional expected output performance is employed in various instances. This

index indicates MSS’s mean output performance under the assumption that it is in an
acceptable state. It takes the following form in the steady-state:

O∗∞ =

K∑
k=1

okpk1(F (ok, D) ≥ 0)

K∑
k=1

pk1(F (ok, dm) ≥ 0)

. (2.29)

When a demand is not met, knowing the measure of system output performance
deviation from that demand is useful. The instantaneous output performance deviation
can be expressed as follows, in the instance where F (O(t), D(t)) = O(t)−D(t)

D(t, d) = max{D(t)−O(t), 0}. (2.30)

and is named the instantaneous output performance deficiency at instant t.

Since D(t, d) is a random variable at time instant t, the following measurements can
be used to describe it:

� The probability that at instant t D(t, d) is less than a specified level d:

P{D(t, d) ≤ d}, (2.31)

. the mean value of the MSS output performance deficiency (deviation) at instant t:

Dm(t, d) = E{D(t, d)}. (2.32)

The output performance deficiency is not a function of time, when the MSS is in a
steady state and demand is constant D(t) = d. It may be calculated from the system
steady-state output performance distribution as follows

D∞ =
K∑
k=1

pk max(d− ok, 0). (2.33)

For a variable demand represented by two vectors (d,q), steady-state output perfor-
mance deficiency D∞ takes the following form
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D∞(d,q) =
M∑
m=1

K∑
i=1

pkqm max(dm − oi, 0). (2.34)

For a certain time interval [0, T ], the average MSS expected output performance
deficiency is determined by the following form:

DT =
1

T

∫ T

0

Dt dt. (2.35)

The cumulative output performance deficiency for certain time interval [0, T ] is de-
termined as follows:

D∑
T =

∫ T

0

D(t, d) dt. (2.36)

When the system uses storage resources to accumulate a product, the instantaneous
output performance deficiency makes no sense. The deficiency develops when the accu-
mulated output performance in interval [0, T ] is less than the accumulated demand at this
interval, rather that when the system output performance does not satisfy the demand.
The following expression is the accumulated output performance deficiency

D∑
T =

∫ T

0

(D(t)−O(t))dt =

∫ T

0

D(t)dt−
∫ T

0

O(t))dt. (2.37)

Below, we determine characteristics when D∑
T is a random variable

� Throughput availability is the probability that a random D∑
T is less than a certain

level l,

P{D∑
T ≤ l}. (2.38)

. the expected amount of the product not given to consumers during the time interval
[0, T ]:

D∑
m = E{D∑

T}. (2.39)

2.2 Modern Stochastic Process Methods for MSS Re-

liability Assessment

Although the classical iid case simplifies analysis, it is frequently unjustified, and we are
compelled to assume some level of dependence. The first-order dependence, also known
as Markov dependence, is the simplest and most significant type of dependence.
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Definition 2.2: (Lisnianski, A. et al.(2010)) A stochastic process {X(t)|t ≥ 0} is called
a Markov process if for any t0 < t1 < ... < tn−1 < tn < t the conditional distribution of
X(t) for given values of X(t0), ..., X(tn) depends only X(tn) :

P{X(t) ≤ x|X(tn) = xn, X(tn−1) = xn−1, ..., X(t1) = x1, X(t0) = x0} = (2.40)

P{X(t) ≤ x|X(tn) = xn}.

This is a broad concept that applies to Markov processes in which the state space
is continuous. Discrete-state Markov processes or Markov chains are commonly used to
investigate multi-state system reliability.

The probability of the random variable at time t > tn in the Markov process is
determined by the random variable’s value at tn, but not by the process;s realization of
the prior to tn. Particularly, given the current state of the process, the state probabilities
at a future instant are independent of the states occupied in the past. Thus, this process
is also known as “memoryless.”

The conditional distribution (2.40) has invariance with regard to the time origin tn:

P{X(t) ≤ x|X(tn) = xn} = P{X(t− tn) ≤ x|X(0) = xn}. (2.41)

A Markov process of this type is considered to be homogenous.

Moreover, two necessary stochastic processes that will be employed in the future are
assumed here: point and renewal processes.

A set of random points ti on the time axis is known as a point process. A stochastic
process X(t) equal to the figure of points ti in the interval (0, t) can be associated with
each point process. Point processes are commonly employed in reliability theory to char-
acterize the occurrence of events across time.

The Poisson process is an important example of point processes. Poisson points are
commonly used to introduce the Poisson process. These points are related with several
events, and the number N(t1, t2) of the points in an interval (t1, t2) of length t = t2− t1 is
a Poisson random variable with parameter λt, where λ is the average rate of occurrence
of the events:

P{N(t1, t2) = k} =
e−λt(λt)k

k!
. (2.42)

The random variables N(t1, t2) does not depend on N(t3, t4), when the intervals (t1, t2)
and (t3, t4) are not overlapping. Using the points ti one can form the stochastic process
X(t) = N(0, t).

The Poisson process, like the normal distribution in probability theory, plays an nec-
essary role in reliability theory.

The renewal process is well-known kind of point process. This process counts occur-
rences, the intervals between which are independent and identically distributed random
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variables. This type of mathematical model is used to characterize the flow of failures
through time, in reliability analysis.

Deem Xn is the period between the (n−1)st and the nth occurrence. Hence, (Xn, n ≥
1) is a following of nonnegative random variables determined on a probability space
(Ω,F,P). If Xn = 0 then the (n− 1)st and the nth occurrence happen at the same time.
Consider (Xn, n ≥ 1) to be a following of independent identically distributed random
variables with the common distribution F , and to avoid trivial details we assume that
F (0) = P(Xn = 0) < 1. Let S0, S1, S2, ... be the random variables determined by

S0 = X0 = 0 and Sn+1 = Sn +Xn+1, n ≥ 0.

Under these assumptions, the sequence S = (Sn, n ∈ N) is called a renewal process.
The times Sn are called renewal times.

So, F is the common distribution function of Xn , and Nt is the counting process of
the renewal process, especially,

Nt(ω) = max{n ∈ N|Sn ≤ t}, t ≥ 0, ω ∈ Ω.

Lemma: (Limnios, N. et al. (2001)) We have:

1. Sn →∞ (a.s.) as n→∞.

2. Nt →∞ (a.s.) as t→∞.

Limit Theorems for the Counting Process

In the sequel, we will suppose that µ = E(X1) < +∞.

Theorem (Strong Law of Large Numbers)(Limnios, N. et al. (2001))

1

t
Nt

a.s.−→ 1

µ
as t→ +∞.

Theorem (Central Limit Theorem)(Limnios, N. et al. (2001))

If 0 < σ2 = V ar(X1) < +∞, then,

Nt − t/µ√
tσ2/µ3

d−→ N(0, 1) as t→ +∞.

Proof: We have {Nt ≤ n} = {Sn > t}. Set n = [t/µ+ x
√
tσ2/µ3], where [a] denotes the

integer part of a.

We can write,



30 CHAPTER 2. MULTI-STATE SYSTEMS

lim
t→∞

P(Nt < n) = lim
t→∞

P

(
Nt − t/µ√
tσ2/µ3

≤ n− t/µ√
tσ2/µ3

)
= lim

t→∞
P

(
Nt − t/µ√
tσ2/µ3

≤ x

)

for all continuity points of the limiting distribution.

On the other hand, by the CLT for i.i.d. random variables, we get

lim
t→∞

P(Sn < t) = lim
t→∞

P
(
Sn − n/µ√

nσ2
>
t− n/µ√
nσ2

)
= lim

t→∞
P
(
Sn − n/µ√

nσ2
> −x

)
= Φ(x).

2.2.1 Markov Models: Discrete-time Markov Chains

Basic Definitions and Properties

A Markov process, as previously stated, is a stochastic process whose potent behavior is
such that the probability distribution for its future evolution is dependent on the present
state and not on how the process entered at that state.

The Markov process is established as a Markov chain when the state space, E, is
discrete, meaning finite or countably infinite. Consider without losing generality that
E = {0, 1, 2, 3, ...} when the state space is discrete and countable.

We have a discrete-time Markov chain if the parameter space, T, is also discrete.
Therefore, we let T = {0, 1, 2, 3, ...} because the parameter space is discrete. So, a
following of random variables J(0) = j0, J(1) = j1, J(2) = j2, ..., with j0, j1, j2, ... integer
numbers, characterize a Markov chain {J(n), n = 0, 1, 2, ...}.

Now, we denote J(n) = j, the state of the system at time step n is j and J0, the
initial state of the system at time step 0. By using these determinations in similarly with
(2.40), the Markov property can be designated as follows

P{J(n) = jn|J0 = j0, J1 = j1, ..., Jn−1 = jn−1} = (2.43)

P{J(n) ≤ jn|Jn−1 = jn−1}.

Equation (2.43) suggests that chain behavior in the future is dependent on its present
state and is independent on its past behavior, just as it is in the instance of a general
Markov process. It can be expressed as follows:

P(FUTURE|PAST, PRESENT ) = P(FUTURE|PRESENT )

Definition:(stopping time or Markov time) (Barbu, V. et al. (2009)). A random
variable T , determined on (Ω,F,P), with values in N̄ = N∪{∞}, is called a stopping time
with respect to the sequence (Xn)n∈N if the occurrence of the event {T = n} is defined by
the past of the chain up to time n, (Xk; k ≤ n). Especially, let Fn = σ(X0, ..., Xn), n ≥ 0,
be the σ-algebra generated by X0, ..., Xn, i.e., the information known at time n. The
random variable T is called a stopping time if, for every n ∈ N, {T = n} ∈ Fn.
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Definition:(strong Markov property)(Barbu, V. et al. (2009)) The Markov chain
(Xn)n∈N is said to have the strong Markov Property if, for any Markov time T , for any
integer m ∈ N and state j ∈ E we have

P(Xm+T = j|Xk, k ≤ T ) = PXT (Xm = j) a.s.

Proposition: (Barbu, V. et al. (2009)) Any Markov chain has the strong Markov prop-
erty.

Now, we need to define p
(n)
j , the probability than the chain will be in state j at step

n. As a result, one can be write

p
(n)
j = P{Jn = j}. (2.44)

Since, we have given the above definition, we can designate the conditional probability
pij(m,n). This probability describe the chain’s transition to state j at step n if at step
m it was in state i. Thus,

p
(m,n)
ij = P{J(n) = j|J(m) = i}, 0 ≤ m ≤ n. (2.45)

Note that the above equation p
(m,n)
ij is common as the transition probability function

of the Markov chain.

The homogeneous Markov chains are those in which the pij(m,n) is dependent only
on difference n−m. The simpler notation is used for these chains is:

p
(n)
ij = P{J(m+ n) = j|J(m) = i}, 0 ≤ m ≤ n (2.46)

The equation (2.46) is called n-step transition probabilities and it is the probability
that a homogeneous Markov chain will move from state i to state j in precisely n steps.

For n = 1, the homogeneous Markov chains will become:

p
(1)
ij = P{J(m+ 1) = j|J(m) = i} = pij. (2.47)

The probabilities pij are called one-step transition probabilities. The following tran-
sition (one-step) probability matrix P can be used to compact the one-step transition
probabilities.

P = [pij] =


p00 p01 ... p0M

p10 p11 ... p1M

p20 p21 ... p2M

... ... ... ...
pM0 pM1 ... pMM

 . (2.48)



32 CHAPTER 2. MULTI-STATE SYSTEMS

Therefore, the matrix P is a stochastic matrix and each row adds up to 1, for all
i, j ∈ E, 0 ≤ pij ≤ 1.

The initial probability row-vector is the probability mass function of the random value
J(0) and produce the initial conditions of a Markov chain.

p(0) = [p0(0), p1(0), ..., pM(0)] (2.49)

The state-transition diagram of the Markov chain is a guided graph that provides an
equivalent designation of the Markov chain. The state i is stood from a node tagged i
in the state diagram, and the associated one-step transition probability from state i to
state j is stood from a branch tagged pij from node i to node j.

Computation of n-step Transition Probabilities and State Probabilities

The task being assumed here is to derive an expression for calculating the n-step transition
probability p

(n)
ij from the one-step transition probabilities pij = p

(1)
ij . The homogeneous

Markov chain according to expression (2.46) can be rewritten as:

p
(n)
ij = P{J(m+ n) = j|J(m) = i}, 0 ≤ m ≤ n. (2.50)

Given that the process is in state i at the 0 step, we assume the transition probability
p

(m+n)
ij that the process will transition to state j at the (m+ n) step.

To get to state j at the (m + n) step the process first gets some transitional state k

at step m with probability p
(m)
ik , later goes from k to j at step (m + n) with probability

p
(n)
kj . The Markov property implies that there are two independent occurrences. Then

using the theorem of total probability we get
There are two independent occurrences, according to the Markov property. Then,

using the total probability theorem, we get

p
(m+n)
ij =

∑
k

p
(m)
ik p

(n)
kj , i, j ∈ E. (2.51)

The above equation is a variant of the well-known Chapman–Kolmogorov equation
and allows active calculation of the n-step transitions probabilities.

The matrix of n-step probabilities or, especially, the matrix whose (i, j) entry is p
(n)
ij ,

is referred to as P(n).
Thus, we define m = 1 and substitute n by n − 1 in equation (2.51), then can be

rewritten in matrix form:

P(n) = P ·P(n−1) = Pn, (2.52)

where P is the one-step probabilities of the Markov chain. Briefly, the n-step transition
probability matrix is the nth power of the one-step transition probability matrix.
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The unconditional state probabilities p
(n)
j can be investigated according to the achieved

results. Their values are determined by the number of steps taken since n = 0 and on the
probabilities of the initial state at n = 0. It can be written by the following expression:

p
(n)
j = P{J(n) = j} (2.53)

=
∑
i

P(J(0) = i)P(J(n) = j|J(0) = i) =
∑
i

p
(0)
i p

(n)
ij .

We can rewrite the matrix form expression (2.53) as follows

p(n) = p(0) ·Pn, (2.54)

where p(0) and p(n) are the row-vectors of the initial state probabilities and after the
nth’ step. This means that initial probability vector p(0) and the one-step transition
probability matrix P determine the unconditional state probabilities of a homogeneous
Markov chain, totally.

2.2.2 Markov Models: Continuous-time Markov Chains

Main Definitions and Properties

The continuous-time Markov chain is analogous to the discrete-time Markov chain, with
the exception that transitions from one state to another can occur at any time. One
important case is a Markov chain with discrete-state and continuous-time. It has discrete
set of values J(t), J(t) ∈ 1, 2, ..., and continuous parameter t with the range of values, t ∈
[0,∞). In reliability applications the set E of states is ordinarily finite, E = {1, 2, ..., K},
and so J(t) ∈ {1, 2, ..., K}.

For t0 < t1 < ... < tn−1 < tn, the discrete-state continuous-time stochastic process
{J(t)|t ≥ 0} is a Markov chain if its conditional probability mass function induges the
relationship

P{J(tn) = jn| J(tn−1) = jn−1, ..., J(t1) = j1, J(t0) = j0} = (2.55)

P{J(tn) = jn|J(tn−1) = jn−1}.

The expression (2.55) is simplifies as follows, by using t = tn−1 and tn = tn+1 + ∆t

P{J(t+ ∆t) = i| J(t) = j} = πji(t, t+ ∆t). (2.56)

One simple definition is frequently used is the following:

πji(t, t+ ∆t) = πji(t,∆t).

The above conditional probabilities are termed transition probabilities. The Markov
process is time-homogeneous, if the probabilities πji(t,∆t) are independent of t, but are
dependent of time difference ∆t. Also, πjj(t,∆t) is the probability that no change in the
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state will happen in a time interval of length ∆t if the process is in state j at the start
of the interval. It should be noted that

πji(t, t) =


1, if j = i,

0, otherwise.

(2.57)

Using (2.57), a non-negative continuous function qj(t) : may be determined for each j

qj(t) = lim
∆t→0

πjj(t, t)− πjj(t, t+ ∆t)

∆t
= lim

∆t→0

1− πjj(t, t+ ∆t)

∆t
(2.58)

so, ∀j and i 6= j a non-negative continuous function qji(t) given by the following equation:

qji(t) = lim
∆t→0

πji(t, t)− πji(t, t+ ∆t)

∆t
= lim

∆t→0

πji(t, t+ ∆t)

∆t
(2.59)

The transition intensity from state i to state j at time t is defined by the function
qji(t). The transition intensities of homogeneous Markov processes are independent of t,
thus are fixed.

If the process is in state j at a given time, either a transition from j to several state
i occurs in the following ∆t time interval, or the process stays in state j. Thus

πjj(∆t) +
∑
i 6=j

πji(∆t) = 1. (2.60)

By combining (2.58) and (2.60) and declaring qjj = −qj we get

qjj = −qj = lim
∆t→0

− 1

∆t

∑
i 6=j

πji(∆t) = −
∑
i 6=j

qji. (2.61)

The pi(t) are state probabilities of J(t) at time t:

pi(t) = P{J(t) = i, } j = 1, ..., K, t ≥ 0. (2.62)

The above equation (2.62) designates the probability mass function (pmf) of J(t) at time
t.

Therefore, the process must be in one of K states, at any given time, t ≥ 0.

K∑
i=1

pi(t) = 1 (2.63)
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We can phrase the probability mass function of J(t) in terms of the transition prob-
abilities πij(t1, t) and the probability mass function of J(t1) using the theorem of total
probability, for t > t1:

pj(t) = P{J(t) = j} =
∑
i∈S

P{J(t) = j|J(t1) = i}P{J(t1) = i} (2.64)

=
∑
i∈S

πij(t1, t)pi(t1).

In equation (2.64) we declare t1 = 0 and get this:

pj(t) =
∑
i∈S

πij(0, t)pi(0). (2.65)

The last result means that the transition probabilities πij(0, t) and the vector of initial
probability p(0) = [p1(0), ..., pK(0)] define the continuous-time Markov chain’s proba-
bilistic behavior in the future.

The transition probabilities of a Markov chain {J(t)|t ≥ 0} with continuous-time
indulge the equation of Chapman–Kolmogorov ∀i, j ∈ E, which can be stated in the
subsequent equation:

πij(t1, t) =
∑
k∈S

πik(t1, t2) πkj(t2, t), 0 ≤ t1 ≤ t2 ≤ t. (2.66)

The theorem of total probability is used to prove this form:

P{J(t) = j|J(t1) = i} (2.67)

=
∑
k∈S

P{J(t) = j|J(t2) = k, J(t1) = i}P{J(t2) = k|J(t1) = i}.

Then, the Markov property (2.56) is applied to expression (2.67) yielding (2.66).

At instant t+∆t, the state probabilities can be stated according to state probabilities
at instant t by using the following formula:

pj(t+ ∆t) = pj(t)
[
1−

∑
i 6=j

qij∆t
]

+
∑
i 6=j

pi(t)qij∆t, i, j = 1, ..., K. (2.68)

The following principles can be used to obtain Equation (2.68). There are two ways for
the process to reach state j at instant t+ ∆t.

The first way is: at instant t, the process may already be in state j and it does not
exit from this state until the moment t + ∆t. The probabilities of these happenings are
pi(t) and 1−

∑
i 6=j
qji∆t, respectively.
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The second way is: the process may be in one of the states i 6= j at instant t and
transits from state i to state j during time ∆t. The probability of these events is pi(t)
and qij∆t, respectively. Because the process can reach state j from any state i, these
probabilities should be multiplied and summarized ∀i 6= j .

So, can be rewritten (2.68) as (2.65), yielding the following formula:

pj(t+ ∆t) = pj(t)
[
1 + qjj∆t

]
+
∑
i 6=j

pi(t)qij∆t (2.69)

or, equivalently

pj(t+ ∆t)− pj(t) = (2.70)

K∑
i=1,i 6=j

pi(t)qij∆t+ pj(t)qjj∆t =
K∑

i=1,i 6=j

pi(t)qij∆t− pj(t)
K∑

i=1,i 6=j

qji∆t

The following result is the division of both sides of the form (2.70) by ∆t and passing to
limit ∆t→ 0

dpj(t)

dt
=

K∑
i=1,i 6=j

pi(t)qij − pj(t)
K∑

i=1,i 6=j

qji, j = 1, 2, ..., K. (2.71)

For the homogeneous Markov process’s state probabilities pj(t), j = 1, ..., K used the
(2.71) system of differential equations when the initial conditions are obtained as

pj(t) = qj, j = 1, ..., K. (2.72)

For a state-transition diagram for continuous-time Markov chain, Equation (2.71)
can be written using the following rule: The sum of the probabilities of the states that
have transitions to state j multiplied by the analogous transition intensities minus the
probability of state j multiplied by the sum of all transition intensities from state j, is
the time derivative of pj(t) for any state j.

Producing the row-vector p(t) = [p1(t), p2(t), ..., pK(t)] and the transition intensity
matrix q

q =


q11 q12 ... q1K

q21 q22 ... q2K

... ... ... ...
qK1 qK2 ... qKK

 , (2.73)

the diagonal elements of the above matrix are designated as qjj = −qj, system (2.71)
can be rewritten in matrix notation:



2.2. MODERN STOCHASTIC PROCESSMETHODS FORMSS RELIABILITY ASSESSMENT37

dp(t)

dt
= p(t)q. (2.74)

Also, the elements of matrix of each row add up to 0:
K∑
j=1

qij = 0,∀i (1 ≤ i ≤ K).

When the system state transitions are caused by failures and repairs of its elements,
the respective transition intensities are phrased by the element’s failure and repair rates.

When failures and repairs of the system’s elements create state transitions, the cor-
responding transition intensities are defined by the element’s failure and repair rates.

The instantaneous conditional density of the probability of failure of an initially func-
tional element at time t assuming that the element has not failed up to time t, is the
element’s failure rate λ(t).

Briefly, λ(t) is the time-to failure conditional probability density function. It phrases
a hazard of failure in time instant t with the assumption that no failure occured before
to t. The failure rate of an element at time t is designated as

λ(t) = lim
∆t→0

1

∆t

[
F (t+ ∆t)− F (t)

R(t)

]
=
f(t)

R(t)
, (2.75)

where F (t) is the Cumulative Distribution Function and f(t) is probability density func-
tion of the time to failure of the element. The reliability function of the element is
R(t) = 1− F (t).

The failure rate for homogeneous Markov processes is independent of t and given as

λ = MTTF−1, (2.76)

where MTTF so-called the mean time to failure, which we defined in the previous section.
In the same way, µ(t) called the repair rate and is the time-to-repair conditional proba-
bility density function. The µ(t) is independent of t, for homogeneous Markov processes
and given as

µ = MTTR−1, (2.77)

where MTTR so-called the mean time to repair, which we defined in the previous section.

A state j is said to be reachable from state i if for some t > 0, πij(t) > 0 and is
said to be an absorbing state, if once entered, the process is appropriated to exist in that
state. If every state is reachable from every other state, a continuous-time Markov chain
is called irreducible.

Definition: (irreducicle Markov chain) (Barbu, V. et al. (2009)) If for any states

i, j there is a positive integer n such that p
(n)
ij > 0, then the Markov chain is said to be

irreducible.
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In many applications, the steady-state probabilities pi = lim
t→∞

pi(t) are of interest. The

following limits there are at any state i ∈ E, for an irreducible continuous-time Markov
chain

pi = lim
t→∞

pi(t) = lim
t→∞

πij(t) = lim
t→∞

πi(t) (2.78)

and they do not depend on the initial state j ∈ E. The process is named ergodic when
there is the steady-state probabilities. The computations are more simpler for the steady-
state probabilities. The constant probabilities all time-derivatives are equal to 0, thus
the set of differential equations (2.71) is reduced to a set of K algebraic linear equations,

so dpi(t)
dt

= 0, i = 1, ..., K.

Definition: (ergodic theorem for Markov chains) (Barbu, V. et al. (2009)) For an
ergodic Markov chain we have

pnij −→
n→∞

ν(j)

where ν is steady-state probability distribution, for any i, j ∈ E

For this instance in steady state pi = lim
t→∞

pi(t), all derivatives of state probabilities

on the left-hand side of (2.71) will be zeroes. The following system of algebraic linear
equations should be solved in order to get the long-run probabilities:

0 =
K∑

i=1,i 6=j

pi(t)qij − pj(t)
K∑

i=1,i 6=j

qji, j = 1, ..., K. (2.79)

In (2.79) K equations are not linearly independent. The fact that the state probabil-
ities add up to 1 at any moment provides an additional independent equation:

K∑
i=1

pi = 1. (2.80)

Therefore, long-run probabilities of ergodic continuous-time Markov chains can be
derived using (2.79) and (2.80).

Now, we need to assume two more significant steady state parameters of the process:
one of them is the state frequency and the other is mean time of staying in state. The
predicted number of arrivals into the state i per unit time determines the frequency fi.
The term frequency is connected with the process’s long-run behavior. Before we going
to associate the frequency, mean time of staying in state i and probability, we will assume
the system evolution in the state space consist of two changable periods. These periods
are: the stays in i and outside i.

Thus, we introduce again the process by two states. Define T̄i as the mean duration
of the stays in state i and T̄oi as the mean duration that stays outside i. Also T̄ci is called
the mean cycle time.
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T̄ci = T̄i + T̄oi. (2.81)

From the designation of the state frequency it follows that, in the steady-state, fi
equals the reciprocal of the mean cycle time

The fi equals the reciprocal of the mean cycle time in the steady-state, based on the
state frequency designation.

fi =
1

T̄ci
. (2.82)

When both sides of the form multiplied by T̄i, one takes

T̄ifi =
T̄i
T̄ci

= pi. (2.83)

Therefore,

fi =
pi
T̄i
. (2.84)

The last result is a basic equation, which gives the relationship between the three state
parameters in the steady state.

The minimum of all random values Tij is the unconditional random value Ti. The Tij
describe the conditional random time of staying in state i if the transition is completed
from state i to any state j 6= i.

Ti = min{Ti1, ..., Tij}. (2.85)

All conditional times Tij follow exponential distribution with the cdf:

Fij(Tij ≤ t) = 1− e−λijt. (2.86)

All transitions from state i do not depend and then, the cdf of unconditional time Ti
of staying in state i can be figured out as follows:

Fi(Ti ≤ t) = 1− P{Ti > t} = 1−
∏
j 6=i

P{Tij > t} (2.87)

= 1−
∏
j 6=i

[1− P{Tij ≤ t}]

= 1−
∏
j 6=i

[1− Fij(Tij < t)] = 1−
∏
j 6=i

e−λijt

= 1− e
−
∑
j 6=i

λijt

.
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As a result, the unconditional time Ti follows exponential distribution with parameter
λ =

∑
j

λij, and the mean time of staying in state i given by:

T̄i =
1∑

j 6=i
λij

. (2.88)

Replacing T̄i in expression (2.84) we finally take

fi = pi
∑
j 6=i

λij. (2.89)

Reliability measures are commonly computed as equivalent functionals of state prob-
abilities, pi or pi(t).

Markov Models for Evaluating the Reliability of Multi-State Elements

Here, when we treat with a single multi-state element, we can skip index j for the defi-
nition of a set of the element’s output performance rates. As a result, this set is referred
as o = {o1, ..., ok}. We further consider that this set is ordered such that ∀i, oi+1 ≥ oi.

Two groupings of elements can be identified. The first group includes elements that
are only seen until they fail. These elements are either unrepairable or uneconomical to
repair, or just the life history up to the first failure is of relevance. The second group
includes elements that are repaired after they fail and have functioning and repair periods
in their life cycles. Both classes are described in the following subsections.

Non-repairable Multi-State Element

As previously stated, the lifetime of a non-repairable element endures until it enters the
subset of unacceptable states for the first time. The acceptability of an element’s state is
dependent of the relationship between the element’s output performance and the demand.

The demand is denoted by D(t) and it is a random process that gets discrete values
from the set d = {d1, ..., dM} . The acceptability function F (O(t), D(t)) can be used to
define the desired relationship between the demand and the system output performance.

Assume a multi-state element with only minor failures determined as those that cause
the element to move from state i to state i–1. Briefly, a minor failure has a small impact
on element output performance. Figure 2.3 shows the state-space diagram for such an
element.

The only output performance demotion specified by the stochastic process {O(t)|t ≥
0} is element evolution in the state space. Any transition from state i to state i–1 is a
transition intensity λi,i−1, i = 2, ..., k.
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Figure 2.3: State-transition diagram for non-repairable element with minor failures (Lis-
nianski, A. et al.(2010)).

A process is continuous-time Markov chain when the sojourn time in any state i
follows exponential distribution with parameter λi,i−1. Furthermore, it is well-known
pure death process. Let’s designate the auxiliary discrete-state continuous time stochastic
process {J(t)|t ≥ 0}, with J(t) ∈ {1, ..., k}. The stochastic process {O(t)|t ≥ 0} is closely
connected with this process.

When J(t) = i, the corresponding output performance rate of a multi-state element
is oi : O(t) = oi. The process J(t) is a discrete-state stochastic process decreasing by
1 at the points ti, i = 1, . . . , k, when the corresponding transitions occur. The state
probabilities of J(t) are

When J(t) = i, a multi-state element’s output performance rate is oi : O(t) = oi.
When the corresponding transitions happen, the process J(t) is a discrete-state stochastic
process that decreases by 1 at the points ti, i = 1, . . . , k. The state probabilities of J(t)
are as follows:

pi(t) = P{J(t) = i}, i = 1, ..., k for t ≥ 0. (2.90)

As may be seen,

k∑
i=1

pi(t) = 1. (2.91)

for any t ≥ 0, because the process must be in some state at all time.

In order to calculate state probabilities for the Markov process given in Figure 2.3,
we can use the system (2.71) to write the following differential equations:
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dpk(t)
dt

= −λk,k−1 · pk(t),

dpi(t)
dt

= λi+1,i · pi+1(t)− λi,i−1 · pi(t), i = 2, 3, ..., k − 1,

dp1(t)
dt

= λ2,1 · p2(t).

(2.92)

Note that there is only one transition from state k to k–1 with the intensity of λk,k−1

and no transitions to state k. In each state i, i = 2, 3, . . . , k − 1, there is one transition
to state i from the state i+ 1 with the intensity λi+1,i and one transition from state i to
state i–1 with the intensity λi,i−1.

One can see that, from state 1, there are not transitions. That is to say, if a process
reaches this state, it never leaves it. So, the state 1 is absorbing state for non repairable
multi state elements.

Consider that the process starts from best state k with a maximum element output
performance rate of ok. Thus, the initial conditions are given as

pk(0) = 1, pk−1(0) = pk−2(0) = ... = p1(0) = 0. (2.93)

Even for large k, one can obtain the numerical solution of the system of differential
equations (2.92) under initial conditions (2.93) using readily available software tools.

The Laplace–Stieltjes transform can be used to solve the system (2.92) analytically.
The following structure of linear algebraic expressions can be represented (2.92) using
this transform and including the initial conditions (2.93):



sp̃k(s)− 1 = −λk,k−1 · p̃k(s),

sp̃i(s) = λi+1,i · p̃i+1(s)− λi,i−1 · p̃i(s), i = 2, 3, ..., k − 1,

sp̃1(s) = λ2,1 · p̃2(s).

(2.94)

where, the Laplace-Stieltjes transform of a function pk(t) and of the derivative of a func-

tion pk(t) is p̃k(s) = L{pk(t)} =
∫∞

0
e−stpk(t) and L{dpk(t)

dt
} = sp̃k(s)−pk(0), respectively.

The system (2.94) one can rewrite in the following form:



p̃k(s) = 1
s+λk,k−1

,

p̃i(s) =
λi+1,i

s+λi,k−1
· p̃i+1(s), i = 2, 3, ..., k − 1,

p̃1(s) = λ2,1
s
· p̃2(s).

(2.95)

The states i + 1, ..., k, where the element output performance is up of level oi are
acceptable commonly, where F (oi, d) = oi − d for the fixed demand level oi+1 ≥ d >
oi, i = 1, ..., k − 1.
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The probability of the state with the smallest output performance p1(t) defines the
unreliability function of the multi-state element for the constant demand level o2 ≥ d ≥
o1. Therefore, the reliability function determined as the probability that the element is
not in its worst state (total failure) is

The unreliability function of the multi-state element for the fixed level demand o2 ≥
d ≥ o1 is determined by the state probability with the smallest output performance p1(t).
As a result, the reliability function, which is determined as the probability of the first
element has complete failure, is

R1(t) = 1− p1(t). (2.96)

Generally, if the fixed demand is oi+1 ≥ oi, i = 1, ..., k − 1, the unreliability function
is a sum of the probabilities of the unacceptable states 1, 2, . . . , i. Hence, the reliability
function for the ith element given by

Ri(t) = 1−
i∑

j=1

pj(t). (2.97)

For this fixed demand level, the mean time up to multi-state element failure can be
defined as the mean time up to the process entrance into state i.

Bellow, we compute the sum of the time periods when the process exist in each state
j > i. Therefore the process starts from the best state k with the highest element output
performance rate ok.

MTTFi =
k∑

j=i+1

1

λj,j−1

, i = 1, ..., k. (2.98)

According to (2.27), the element mean instantaneous output performance at time t
can be calculated as

Et =
k∑
i=1

oipi(t). (2.99)

According to (2.33), the element mean instantaneous output performance deficiency
for the fixed demand d can be calculated as

Dt =
k∑
i=1

pi(t)max(d− oi, 0). (2.100)

Assume a non-repairable multi-state element that can have both major and minor
failures. Meaning a major failure is defined as one that leads an element to move from
state i to state j : j < i − 1. The Figure 2.4 shows the state-space diagram for such an
element, which represents transitions corresponding to both minor and major failures.
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Figure 2.4: State-transition diagram for non-repairable element with minor and major
failures (Lisnianski, A. et al. (2010)).

According to Equations (2.71), we can write the differential equations for state proba-
bilities for the continuous-time Markov chain represented by previous state-space diagram
with the initial conditions (2.93):



dpk(t)
dt

= −pk(t) ·
k−1∑
e=1

λk,e,

dpi(t)
dt

=
k∑

e=i+1

λe,i · pe(t)− pi(t) ·
i−1∑
e=1

λi,e, i = 2, 3, ..., k − 1,

dp1(t)
dt

=
k∑
e=2

λe,1 · pe(t).

(2.101)

The mean instantaneous output performance and the mean instantaneous output
performance deficiency may be defined using (2.99) and (2.100), after solving previous
system and finding the state probabilities pi(t), i = 1, ..., k.

The unavailability of the element with both minor and major failures is defined by the
sum of the unacceptable states probabilities. Using the expression (2.97) can be defined
the element reliability function, given that for the fixed demand d(oi < d ≤ oi+1).

Repairable Multi-State Element

The more general model of a multi-state element is the model with repair. The repairs
can also be both minor and major. The repairable model is a more generic model of a
multi-state element. It has minor and major repairs. The minor repairs come back an
element from state j to state j + 1 and the major repairs come back it from state j to
state i, where i > j + 1.

An element with only minor failures and repairs is a specific instance of the repairable
multi-state element. The birth and death process is the stochastic process that based on
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this element. The Figure 2.5 (a) shows the state-space diagram of this process and (b)
shows the repairable multi-state element with minor and major failures and repairs.

Figure 2.5: State-transition diagrams for repairable element with minor failures and
repairs (a) and for repairable element with minor and major failures and repairs (b)
(Lisnianski, A. et al.(2010)).

One can write the differential equations’ system for the state probabilities of such
elements using the initial conditions (2.93). The solve of this system give the state
probabilities pi(t), i = 1, ..., k..



dpk(t)
dt

=
k−1∑
e=1

µe,k · pe(t)− pk(t) ·
k−1∑
e=1

λk,e,

dpi(t)
dt

=
k∑

e=i+1

λe,i · pe(t) +
i−1∑
e=1

µe,i · pe(t)− pi(t)
(
i−1∑
e=1

λi,e +
k∑

e=i+1

µi,e

)
,

i = 2, 3, ..., k − 1,

dp1(t)
dt

=
k∑
e=2

λe,1 · pe(t)− p1(t)
k∑
e=2

µ1,e,

(2.102)

The states i + 1, ..., k, where the element output performance is up of level oi are
acceptable commonly, where F (oi, d) = oi − d for the fixed demand level oi+1 ≥ d >
oi, i = 1, ..., k − 1. Hence, the instantaneous availability given by
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Ai(t) =
k∑

e=i+1

pe(t). (2.103)

Using (2.99) and (2.100) can be defined the element mean instantaneous output per-
formance and output performance deficiency.

For the steady-state probabilities the computations are more simpler. The set of
differential equations (2.102) is reduced to a set of k algebraic linear equations because

for the fixed probabilities all time-derivatives are equal to 0, hence, dpi(t)
dt

= 0, i = 1, ..., k.

Let the long-run probabilities pi = lim
t→∞

pi(t). The following system of algebraic linear

equations should be solved in order to get the probabilities:



0 =
k−1∑
e=1

µe,k · pe − pk
k−1∑
e=1

λk,e,

0 =
k∑

e=i+1

λe,i · pe +
i−1∑
e=1

µe,i · pe − pi
(
i−1∑
e=1

λi,e +
k∑

e=i+1

µi,e

)
,

i = 2, 3, ..., k − 1,

0 =
k∑
e=2

λe,1pe − p1 ·
k∑
e=2

µ1,e,

(2.104)

In (2.104) k equations are not linearly independent. The fact that the state probabil-
ities add up to 1 at all time provides an other independent equation:

k∑
i=1

pi = 1. (2.105)

The probability of the event when the element enters the set of unacceptable states for
the first time is used to define the reliability function for repairable multi-state elements.
It doesn’t really matter which one of the unacceptable states is visited initially and how
the element operates after the first time it enters the set of unacceptable states.
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Figure 2.6: State-transition diagram for definition of reliability function Ri(t) for re-
pairable element. (Lisnianski, A. et al.(2010))

In order to we derive the element reliability function Ri(t), for the fixed demand
d(oi < d ≤ oi+1), we should make a new Markov model.

All states 1, 2, . . . , i of the element corresponding to the output performance rates that
are smaller than the demand d should be combined into the same absorbing state. This
absorbing state can be assumed as state 0 and all repairs that come back the element to
the set of acceptable states should be prohibited.

This corresponds to zeroing all the transition intensities µ0,m for m = i+ 1, ..., k.

The sum of the transition rates from state m to all the unacceptable states is defined
the transition rate λm,0 from all acceptable states m(m > i) to the absorbing state 0:

λm,0 =
i∑

j=1

λm,j, m = k, k − 1, ..., i+ 1. (2.106)

The state-transition graph for computation of the reliability function is presented in
Figure 2.6. For this graph, the state probability p0(t) describes the reliability function of
the element because after the first entrance into the absorbing state 0 the element never
leaves it: Ri(t) = 1− p0(t).

Figure 2.6 shows the state-transition graph used to compute the reliability function.
In this graph, the state probability p0(t) describes the reliability function of the element
because after the first enter the absorbing state 0 the element cannot leaves: Ri(t) =
1− p0(t).

The definition of reliability function of the element introduced by the following system:
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dpk(t)
dt

=
k−1∑
e=i+1

µe,k · pe(t)− pk(t) ·
(
k−1∑
e=1

λk,e + λk,0

)
,

dpj(t)

dt
=

k∑
e=i+1

λe,j · pe(t) +
j−1∑
e=1

µe,j · pe(t)− pj(t)
(

j−1∑
e=i+1

λj,e + λj,0 +
k∑

e=i+1

µj,e

)
,

for i < j < k

dp0(t)
dt

=
k∑

e=i+1

λe,0 · pe(t).

(2.107)

In order to solve this system we use initial conditions

pk(0) = 1, pk−1(0) = ... = pi(0) = p0(0) = 0. (2.108)

after the solving we will get the reliability function as follows

Ri(t) = 1− p0(t) =
k∑

j=i+1

pj(t). (2.109)

The ultimate state probabilities for system (2.107) are:

pk = pk−1 = ... = pi+1 = 0, p0 = 1, (2.110)

since the element always entrances into the absorbing state 0 when t→∞.

The mean time to first failure, when the element output performance degrades from
level demand d for the first time, where oi < d ≤ oi+1, can be calculated using the
computed reliability function.

MTTFi =

∫ ∞
0

Ri(t)dt. (2.111)

Reliability measures are commonly computed using of state probabilities pi or pi(t).

Markov Models for Evaluating the Reliability of Multi-State Systems

Assume a system comprise various multi-state elements. A singular system state is cre-
ated by combining the states of these elements. Any system element j can have kj various
states, each corresponding to a different output performance rate, as represented by the
set oi = {oj1, ..., ojkj}. At each given time t, the present state of element j and, as a
result, the present value of the element output performance rate Oj(t) are random vari-
ables. The element output performance rate Oj(t) takes values from oj : Oj(t) ∈ oj. For
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any element j, the output performance rate is determined as continuous-state Markov
process in the time interval [0, T ], where T is the MSS functional period.

Based on the general MSS model, we consider that

Ln = {o11, ..., o1k1} × {o21, ..., o2k2} × ...× {on1, ..., onkn}
is a space of achievable combinations of output performance rates for all n system elements
and o = {o1, ..., oK} is a space of available values of these output performance rate for
the total system.

The system structure function is determined by the transform φ(O1(t), ..., On(t)) :
Ln → o, which is the space of element output performance rates into the space of system
output performance rates at any t. Since, by using the structure function, the total MSS
output performance rate can be calculated for each combination of output performance
rates of system elements.

The present state of the total MSS and, as a result, the present value of the system
output performance rate O(t) at any t are random variables. A continuous-time Markov
chain O(t) takes values from o : O(t) ∈ o = {o1, ..., oK}.

Consider that Markov processes for various elements are independent and that there
are no state transitions of any various elements occur at the same time. Especially, a
system may be only one failure or one repair at any given time t.

The Markov method to MSS reliability evaluation has two ways: first way is develop-
ment of the state-space diagram for the total system and second way is the evaluation of
the system’s reliability based on solving a system of differential equations corresponding
to the diagram.

In Markov analysis, particularly for the MSS, the suitable design of the state-transition
diagram is crucial. When the modeled system is great enough, the explosion of the
number of states remains a major issue. In such instances, a graphical representation of
a state space diagram is frequently difficult, so a typical description of the system is one
of the possible options. Using this description, we can investigate the state-space graph
systematically because we know the rules that control MSS evolution. It’s also necessary
to keep in mind that the state-space diagram serves just as a guide. The transition
intensity matrix q, which specifies the system of differential equations and consequently
the related Markov model is the focus.

Hence, we’re talking about the formalized generation of the transition intensity matrix
(2.74) and, consequently, the Markov model generation. Based on this concept, we present
effective algorithms for the reliability evaluation. The following is an achievable algorithm
for Markov model generation for the MSS.

Algorithm for the generation of the Markov model

1. Adjustment of the failure and repair rate sets

The given element failure and repair rates should be placed in the following ordered
set of failure rates, for each element j of the MSS

{
λ

(j)
kj ,kj−1, λ

(j)
kj ,kj−2..., λ

(j)
kj ,1

, λ
(j)
kj−1,kj−2, λ

(j)
kj−1,kj−3, ..., λ

(j)
kj−1,1, ..., λ

(j)
3,2, λ

(j)
3,1, λ

(j)
2,1

}
and the ordered set of repair rates
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{
µ

(j)
1,2, ..., µ

(j)
1,kj−1, µ

(j)
1,kj

, µ
(j)
2,3, ..., µ

(j)
2,kj−1, µ

(1)
2,kj

, ..., µ
(j)
kj−2,kj−1, µ

(j)
kj−2,kj

, µ
(j)
kj−1,kj

}
.

If there is no failure that causes a reduction in element output performance from level ojm
to level ojm−∆m for element j, the associated failure rate λ

(j)
m,m−∆m is zero in the failure

rate set. Similarly, if there is no repair that rebounds the output performance of j from
level ojm−∆m to level ojm, the associated repair rate µ

(j)
m−∆m,n is zero in the repair rate

set.

2. Generation of Multi State System states

All the K = k1k2 . . . kn available MSS states are created as various combinations of all
the achievable output performance levels of the system’s elements. A set {o1i, ..., on1}, i ∈
[1, k1], ..., l ∈ [1, kn], of analogous states of the system elements should be allocated to
every system state.

3. Enumeration of the system states and the calculation of the Multi State System output
performance

We should enumerate all states of system. The enumeration order is not significant
for algorithms that based on computer. What is really significant is the relation between
the number of states ns(ns ∈ [1, K]), the set of output performance rates of elements
in this state {o1i, ..., on1} and the MSS output performance rate ons in this state that is
defined by the MSS structure function

gns = φ(o1i, ..., on1), ns = 1, ..., K.

4. State-transition analysis and producing the transition matrix

The connections between any system state ns and other states must be defined at this
step. Failures and repairs of the system elements define these connections.

Based on the hypothesis that there are no transitions in any various elements in the
same time, the transition from an arbitrary system state described by the set of element
output performances {o1i, . . . , ojm, . . . , onh} is feasible only to one of the states in which
just one of the elements changes its output performance:

{o1i, . . . , ojm, . . . , onh} → {o1i, . . . , ojf , . . . , onh}

where m 6= f, 1 ≤ j ≤ n. The element failure represented of the transition in which
f < m, with transition intensity λ

(j)
m,f and the element repair represented of the transition

in which f > m, with transition intensity µ
(j)
m,f .

For the definition of all the transitions in the MSS state-space diagram, all the pairs of
system states that differ by the state of a single element must be chosen. The associated
transition intensities should be selected from the associated ordered sets, for every pair.
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If the MSS transits from state n1 to state n2 due to a failure with the intensity
of the arbitrary element j, then the element qn1n2 of transition matrix q placed in the
intersection of row n1 and column n2 is

qn1n2 = λ
(j)
m,f . (2.112)

If the MSS transits from state n1 to state n2 due to a repair with intensity µ
(j)
m,f (f > m)

of an arbitrary element j, then the element qn1n2 of transition matrix q placed in the
intersection of row n1 and column n2 is

qn1n2 = µ
(j)
m,f . (2.113)

However, if there is no transition from state n1 to state n2, then the element an1n2 of
transition matrix q placed in the intersection between row n1 and column n2 is 0:

qn1n2 = 0. (2.114)

5. Designation of diagonal elements in the transition intensity matrix

The definition of the diagonal elements of the transition intensity matrix q is the final
stage in its creation. The sum of elements in each row of matrix q is zero. Thus, the
diagonal elements of the matrix q determined as follows:

qii = −
K∑

n=1,n 6=i

qin, i = 1, ..., K. (2.115)

A transition intensity matrix for MSS can be obtained by using the five-step algorithm.
The system of differential equations (2.74) that describes the system behavior can be given
from the matrix.

The above algorithm is generic and can create a Markov model for even the most
complex MSS, lowering the risk of errors.

Instantaneous availability, instantaneous expected output performance, and instanta-
neous output performance deficiency are all MSS reliability indices that can be found in
the same manner as was proved for multi-state element.

First of all, we should solve the system of differential equations and should find the
probabilities pi(t) must for all system states i = 1, . . . , K.

The MSS instantaneous availability for a fixed demand level d can be calculated as
the sum of probabilities of all acceptable states, states where MSS output performance is
larger than or equal to d. As a result, the following form can be used to determine MSS
instantaneous availability:

A(t) =
K∑
i=1

pi(t) · 1(oi ≥ d), (2.116)
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MSS mean instantaneous output performance is designated by the following

Et =
K∑
i=1

oipi(t), (2.117)

and also MSS mean instantaneous output performance deficiency is determined as follows

Dt =
K∑
i=1

pi(t)max(d− oi, 0). (2.118)

The Markov model must be changed, in order to derive the MSS reliability function
Ri(t) for the fixed demand d, oi < d ≤ oi+1. All the system unacceptable states where the
output performance rate is less than demand d should be merged into a single absorbing
state with the number 0.

Transitions from state 0 to any other state that is acceptable should be prohibited.
The sum of the transition rates from state j to all unacceptable states should be used to
calculate the transition rate from any acceptable state j to the absorbing state.

As a result of these adjustments, we have a new transition intensity matrix.The prob-
ability of state 0 p0(t) is obtained by solving the differential equation (2.74) with this
matrix, and the system reliability function is determined as R(t) = 1− p0(t).

2.2.3 Markov Reward Models

Basic Definition and Model Description

The Markov approach was used to find several significant reliability indices of MSS in the
previous subsections. Assume other indices like state frequencies and the mean number
of system failures throughout an functional period. The fact which is really significant is
the Markov reward models assumed here are quite useful for MSS life cycle cost analysis
and reliability-related cost computation.

The continuous-time Markov chain with a set of states {1, . . . , K} and transition
intensity matrix q=[qij], i, j = 1, ..., K is considered in this model. If the process remains
in any state i for the period of the time unit, a particular amount of money rii should be
salaried.

It is recommended that a particular amount of money rii be salaried each time that
the process transits from state i to state j. These amounts of money rii and rij are
referred to as rewards. Rewards can be interpreted in a variety of ways, not only as
money. It could be the energy of a power generation system or the productivity of a
production line.

The Markov process with rewards is designated a Markov process with rewards re-
lated with its states and transitions. A new matrix r=[rij], i, j = 1, ..., K of rewards
is defined, for these. The process reduces to a standard continuous-time discrete-state
Markov process if all rewards are zero.

Remark that the rewards rii and rij have different dimensions. Thus, reward rii is
measured in cost units per time unit, if rij is measured in cost units. The value that is
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important is the total expected reward accumulated up to the moment t under specialized
initial conditions.

The total expected reward accumulated up to time t is defined by Vi(t), given the
initial state of the process at the moment t = 0 is state i.

In order to find the total expected rewards, we should solve the following system of
differential equations under specialized initial conditions.

dVi(t)

dt
= rii +

K∑
j=1,j 6=i

qijrij +
K∑
j=1

qijVj(t), i = 1, ..., K. (2.119)

The following steps can be taken to obtain System (2.119).
Consider that at the moment t = 0 the process is in state i. The process can either

stay in current state or transit to another state j, within the time increment ∆t. If it
is in state i throughout time ∆t, the expected reward accumulated during this time is
rii∆t. Because the process is still in state i at the start of the time interval [∆t,∆t+ t],
the expected reward for this interval is Vi(t) and for the total interval [0,∆t + t] is
Vi(∆t+ t) = rii∆t+ Vi(t). The probability that the process will remain in state i for the
time interval ∆t equals 1 minus the probability that it will move to any other state j 6= i
for this interval:

πii(0,∆t) = 1−
K∑

j=1,j 6=i

qij∆t = 1 + qii∆t. (2.120)

Further, throughout time ∆t the process can transit to another state j 6= i with the
probability πii(0,∆t) = 1 + qii∆t. In this instance, the expected reward accumulated
throughout the time interval [0,∆t] is rij. At the start of the time interval [∆t,∆t + t]
the process is in state j. Since, the expected reward for this interval is Vj(t) and the
expected reward for the interval [0,∆t+ t] is Vi(∆t+ t) = rij + Vj(t).

To calculate the total expected reward we should summarize the products of rewards
and associated probabilities for all of the states. Hence, for small ∆t we have

Vi(∆t+ t) ≈ (1 + qii∆t)[rii∆t+ Vi(t)] +
K∑

j=1,j 6=i

qij∆t[rij∆t+ Vj(t)], i = 1, ..., K.

(2.121)

Ignoring the terms with an order larger than ∆t the last expression can be rewritten
by the following form:

Vi(∆t+ t)− Vi(t)
∆t

= rii +
K∑

j=1,j 6=i

qijrij +
K∑
j=1

qijVj(t), i = 1, ..., K. (2.122)

Since, we determine the vector column of total expected rewards V (t) with compo-
nents V1(t), ..., VK(t) and the vector column u with components
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ui = rii +
K∑

j=1,j 6=i

qijrij, i = 1, ..., K, (2.123)

we will get Equation (2.119) in matrix notation:

d

dt
V(t) = u + qV(t). (2.124)

The system (2.119) can be solved under initial conditions Vi(0) = 0, i = 1, . . . , K.
For the designating of the steady-state solution of (2.119), we can solve the following

system of algebraic equations

0 = u + qV(t). (2.125)

where 0 is a vector column with zero elements.

2.2.4 Semi-Markov Models

As previously stated, when the transition time between any states is distributed expo-
nentially, a discrete-state continuous-time stochastic process can only be described as a
continuous-time Markov chain. This aspect severely limits the Markov chain model’s ap-
plication to problems in the real world. A semi-Markov process model is one technique to
examine processes with arbitrarily distributed sojourn periods. A semi-Markov model’s
key advantage is that it permits non-exponential distributions for state transitions and
generalizes certain types of stochastic processes. Therefore, in real world the lifetime and
repair times are not exponential, this is very significant. Semi-Markov processes have
a complicated general theory, but here we consider certain sections of reliability eval-
uation utilizing semi-Markov processes that don’t require a lot of calculations. In the
real-world, the engineers can examine the reliability of MSSs with arbitrary transition
periods without Monte-Carlo simulation, using relatively simple calculation approaches.
This particularly associates to MSS steady-state behavior.

Embedded Markov Chain and Definition of Semi-Markov Process

For designating a semi-Markov process, assume a system that at any moment t ≥ 0 can
be in one of various achievable states o1, ..., oK .

The system behavior is determined by the discrete-state continuous-time stochastic
output performance process O(t) ∈ {o1, ..., oK}. The following equation gives the initial
state i of the system and one-step transition probabilities:

O(0) = oi, i ∈ {1, ..., K}, (2.126)

πjk = P{O(tn) = ok|O(tn−1) = oj}, j, k ∈ {1, ..., K}.

where πjk is the probability that the system move from state j with output performance
rate oj to state k with output performance rate ok. The probabilities πjk, j, k ∈ {1, ..., K}
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designate the one-step transition probability matrix π = [πjk] for the discrete-time chain
O(tn), where transitions from one to another state may happen only at discrete time
moments t1, t2, ..., tn−1, tn, .... So, a Markov chain O(tn) is named Markov chain embedded
in stochastic process O(t), or embedded Markov chain.

For every πjk 6= 0 a random variable corresponds T ∗jk with the cdf

Wjk(t) = Wjk(T
∗
jk ≤ t) (2.127)

and pdf wjk(t). The random variable T ∗jk is a conditional sojourn time in state j and
describes the time that the system stays in the j under the assumption that the system
transits from state j to state k.

Figure 2.7 depicts a graphical representation of possible realization of the assumed
process. At the initial time instant O(0) = oi, the process transits from the initial state i
to state j, with output performance rate oj, with probability πij. The process is in state
i throughout random time T ∗ij with cdf Wij, if the next state is state j. The probability
of the transition from state j to other state k is πjk, since the process transits from state
j. If the system transits from state j to state k, there is in state j throughout random
time T ∗jk with cdf Wjk up to the transition to state k.

Figure 2.7: Semi Markov stochastic process, where the G(t) has been noted with O(t)
(Lisnianski, A. et al.(2010)).

This process can be continued over an arbitrary period T .
If the future state and the associated sojourn time in the present state must be

determined independently of the process’s previous history, the stochastic process O(t)
is called a semi-Markov process. In this instance, the chain O(tn) will be a Markov chain
with one-step transition probabilities πjk, j, k ∈ {1, ..., K} and be called an embedded
Markov chain.

Hence, in order to determine the Semi Markov process one has to determine the initial
state of the process and the matrices π = [πjk] and W (t) = [Wij(t)], ∀ j, k ∈ {1, ..., K}.
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Notice that in the process in which we skip the arbitrarily distributed times between
transitions and we interest the time instants of transitions is called homogeneous discrete
time Markov chain. Nevertheless, the process lose Markov properties, if we take into
account the sojourn times in several states. Thus, Markov process is considered the
process only at time instants of transitions. This explanation for the name of the process
semi-Markov.

The kernel matrix Q(t) is the most fundamental determination of the semi-Markov
process. The matrix element Qij(t) defines the probability that a one-step transition
from state i to state j occurs throughout the time interval [0, T ]. One-step transition
probabilities for embedded Markov chain can be calculated as follows:

πij = lim
t→∞

Qij(t) (2.128)

using kernel matrix and the cdf Wij(t) of the conditional sojourn time in state i given by:

Wij(t) =
1

πij
Qij(t). (2.129)

According to the kernel matrix, the cumulative distribution function Wi(t) of uncon-
ditional sojourn time Ti in every state i can be designated as

Wi(t) =
K∑
j=1

Qij(t) =
K∑
j=1

πijWij(t). (2.130)

Thus, the probability density function of the unconditional sojourn time in state i with
output performance rate oi can be written

wi(t) =
d

dt
Wi(t) =

K∑
j=1

πijwij(t). (2.131)

Based on (2.131), the mean unconditional sojourn time in state i can be obtained as

T̄i =

∫ ∞
0

twi(t)dt =
K∑
j=1

πijT̄
∗
ij, (2.132)

where T̄ ∗ij is the mean conditional sojourn time in state i given that the system transits
from state i to j.

The stochastic behavior of a semi-Markov process is totally defined by the kernel
matrix Q(t) and the initial state. When studying MSS reliability, the following principles
can be used to find the kernel matrix for a semi-Markov process. Transitions between
states are frequently carried out as a result of occurrences such as failures and repairs.
The cumulative distribution function of time between each occurrence is known. The
transition is made based on which occurrence comes first in a competition between the
occurrences.
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Figure 2.8 presents state-transition diagram for the semi-Markov process, which has
3 possible transitions from initial state 0. When events of various types 1,2, and 3 occur,
the process will transition from state 0 to states 1, 2, and 3. The time between events of
type 1 is random variable T0,1 with cumulative distribution function W0,1(t). The process
transits from state 0 to 1, if an event of type 1 happens first. The random variable
T0,2 determines the time between events of type 2 with cumulative distribution function
W0,2(t). The process transits from state 0 to 2, if an event of type 2 happens before the
others.

Figure 2.8: State Transition Diagram of simplest semi-Markov Process, where the Fij(t)
has been noted with Wij(t) (Lisnianski, A. et al.(2010)).

The time between events of type 3 is random variable T0,3 with cdf W0,3(t) and the process
transits from state 0 to 3, if an event of type 3 happens first.

The probability that the random variable T0,1 that is lower than T0,2 and T0,3, under
the assumption T0,1 ≤ t, is the probability Q01(t) in which the process will transit from
state 0 to 1 up to time t.

Thus,

Q01(t) = P{(T0,1 ≤ t)&(T0,1 > t)&(T0,3 > t)} (2.133)

=

∫ t

0

dW0,1(s)

∫ ∞
t

dW0,2(s)

∫ ∞
t

dW0,3(s)

=

∫ t

0

[1−W0,2(s)][1−W0,3(s)] dW0,1(s).

Similarly, we receive

Q02(t) =

∫ t

0

[1−W0,1(s)][1−W0,3(s)] dW0,2(s), (2.134)

Q03(t) =

∫ t

0

[1−W0,1(s)][1−W0,2(s)] dW0,3(s). (2.135)
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The kernel matrix for a semi-Markov process with the state-transition diagram shown
in Figure 2.8, given by the following form

Q(t) =


0 Q01(t) Q02(t) Q03(t)
0 0 0 0
0 0 0 0
0 0 0 0

 . (2.136)

Expressions (2.134) – (2.136) can be easily generalized to any number of transitions
from initial state 0.

Evaluation of Reliability Indices Based on Semi-Markov Processes

For finding the MSS reliability indices, should be made the system state-space diagram.
The difference in the semi-Markov model is the times of transition may be distributed
arbitrarily. According to the transition time distributions Wij(t), kernel matrix Q(t)
should be determined based on the method introduced in the previous section.

In analysis of semi-Markov process, a prime problem is the finding the state proba-
bilities. Let θij(t) be the probability that the process that begins in initial state i at time
t = 0 will be in state j at time t. It was shown that probabilities θij(t), i, j ∈ 1, . . . , K,
can be derived from the solution of the following system of integral equations:

θij(t) = δij[1−Wi(t)] +
K∑
k=1

∫ t

0

qik(τ)θkj(t− τ)dτ, (2.137)

where

qik(τ) =
dQik(τ)

dτ
, (2.138)

Wi(t) =
K∑
j=1

Qij(t), (2.139)

δij =

{
1, if i = j,

0, if i 6= j.
(2.140)

The system of linear integral equations (2.137) is the primary system in semi-Markov
processes theory. With the system’s solving, we can find all the probabilities θij(t), i, j ∈
{1, ..., K}, for a semi-Markov process with a given kernel matrix [Qij(t)] and initial state.

According to the probabilities θij(t), i, j ∈ {1, ..., K}, we can easily find significant
reliability indices. Consider that system states are ordered based on their output perfor-
mance rates oK ≥ oK−1 ≥ ... ≥ o2 ≥ o1 and demand on ≥ d ≥ on−1 is fixed. State K with
output performance rate gK is the initial state. In this instance, system instantaneous
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availability is used as the probability that a system starting at moment t = 0 from state
K will be at moment t ≥ 0 in every state oK , ..., on. Thus,

A(t, d) =
K∑
j=n

θKi(t). (2.141)

The mean system instantaneous output performance and the mean instantaneous
output performance deficiency can be calculated as

Et =
K∑
i=1

oiθKi(t) (2.142)

and

Dt(d) =
n−1∑
i=1

(d− oi)θKi(t) · 1(d > oi). (2.143)

In the general instance, the system of integral equations (2.137) can be solved only
numerically. The method of the Laplace–Stieltjes transform can be used to determine
an analytical solution of the system. As was done for Markov models, we define a
Laplace–Stieltjes transform of function w(x) as

w̃(s) = L{w(x)} =

∫ t

0

e−sxw(x)dx. (2.144)

Applying the Laplace–Stieltjes transform to both sides of (2.137) we get

θ̃ij(s) = δijΨ̃i(s) +
K∑
k=1

πikw̃ik(s)θ̃kj(s), 1 ≤ i, j ≤ K, (2.145)

where Ψ̃i(s) is the Laplace–Stieltjes transform of the function

Ψi(t) = 1−Wi(t) =

∫ ∞
t

wi(t)dt = P{Ti > t} (2.146)

and, thus,

Ψ̃i(s) =
1

s
[1− w̃i(s)]. (2.147)

The system of algebraic equations (2.145) determines Laplace–Stieltjes transform of
probabilities θij(t), i, j ∈ {1, ..., K}, as a function of the main parameters of a semi-
Markov process.

It is also possible to get the steady-state probabilities, if we solve this system. The
formulas for computation of steady-state probabilities are given below. Steady-state
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probabilities θij = lim
t→∞

θij(t) are independent of the initial state of process I, and for their

definition, we can use the index θj. It is demonstrated that

θj =
pjT̄j
K∑
j=1

pjT̄j

, (2.148)

where pj, j = 1, . . . , K are steady-state probabilities of the embedded Markov chain and
these are the solutions of the following system:


pj =

K∑
i=1

piπij j = 1, ...K,

K∑
i=1

pi = 1.

(2.149)

Keep in mind, the first K equations in (2.149) are linearly dependant and we cannot

solve the system without the last equation
K∑
i=1

pi = 1.

For finding the reliability function, a new semi-Markov model should be constructed
in the same way as the respective Markov models: all states corresponding to output
performance rates less than fixed demand d should be merged into a single absorbing
state 0. All transitions that come back the system from this absorbing state should be
prohibited. The reliability function is derived from this new model as R(d, t) = θK0(t).

2.3 Statistical Analysis of Reliability Data for MSS

2.3.1 Basic Concepts of Statistical Estimation Theory

In this section, we’ll go through the fundamentals of using statistical approaches to MSSs
reliability assessment. We’ll remain to the Markov model concept and use contemporary
techniques for estimation of transition intensity rates. But first, we’ll need explain the
fundamentals of statistical estimating theory.

Assume we conduct an experiment with a random outcome X, X ∈ R, where R is de-
fined the sample space, or the collection of all possible outcomes of our experiment. Now,
we consider the circumstance X = {x1, ..., xn}, in which xi are independent observations
of n items, selected at random from a population. The set {x1, ..., xn} is determined as
a random sample of size n and every xi is an observation.

A sample is typically consisted of independent and identically distributed random
observations, in statistics. This means that observations of a given sample are obtained
independently and under the same conditions.

Let X1, ..., Xn be a random sample from a distribution Fθ that is stated up to a
vector of unknown parameters θ. For example, the sample could come from a Poisson
distribution with unknown mean value or a Normal distribution with unknown mean and
variance. While it is common in probability theory to assume that all of a distribution’s
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parameters are known, this is not the case in statistics, where one of the major problems
is to utilize observed data to make conclusions about unknown parameters.

Consider that the probability law of X which has a well-known mathematical type,
say, with pdf f(x; θ1, ..., θk), where θ1, ..., θk are unknown parameters of the population.
Consider for instance the normal distribution

f(x;µ, σ) =
1

σ
√

2π
exp{−(x− µ)2/2σ2}, −∞ < x < +∞,

where µ and σ are unknown parameters of the population, so

{θ1, θ2} = {µ, σ}.

There will always be an infinite number of sample values functions, known as statistic,
which can be offered to estimate one or more of the parameters. Typically, a statistic
S = S(X) is each function of X. Any statistic used to estimate the value of an unknown
parameter θ is called an estimator of θ. While the estimate is the observed value of the
estimator.

Obviously, the best estimate is the one that is closest to the true value of the parameter
to be estimated. Especially, the best estimate may be defined as the statistic whose
distribution is as concentrated as possible to the true value of the parameter. Thus, the
primary estimate problem in the previous case can be phrased as follows:
Define the sample observations’ functions

θ̂1(x1, ..., xn), ..., θ̂k(x1, ..., xn)

so that their distribution is as concentrated as possible to the parameters’ true value. As
estimators, the estimating functions are established.

Properties of Estimators

Certain estimators’ properties are the consistency, unbiasedness, efficiency, and suffi-
ciency.

Consistency: An estimator θ̂ is consistent if the probability that θ̂ will deviate from
parameter θ more than every constant amount ε > 0, approaches zero as the sample size
n grows up. Typically, let θ̂n be an estimator of parameter θ according to sample of size
n. Thus, {θ̂n} is a consistent following of estimators of θ if ∀ε > 0

lim
n→∞

P{|θ̂n − θ| > ε} = 0. (2.150)

Apparently, consistency is a property regarding the behavior of an estimator for great
values of sample size n, i.e., as n→∞ . Its behavior, when n is finite, is neglected.

Unbiasedness: This is a property related with finite n. A statistic θ̂n = θ̂n(x, ..., xn) is
characterized as an unbiased estimate of parameter θ if

E{θ̂n} = θ, (2.151)
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The estimator’s bias is given by

bθ̂ = [E{θ̂n} − θ]. (2.152)

the bias bereaves a statistic result of representativeness by systematically distorting it.
It is not the same as a random error that can deform at every chance but balances out
on the average. It is worth mentioning that, the bias is a systematic error. The bias is
zero for an unbiased estimator.

It was proved that unbiased estimator is always consistent estimator. A consistent
estimator, on the other hand, is not always unbiased.

Efficiency: This is an significant criterion for evaluating an estimator’s quality. It is
preferable to get a close estimate to the true value. The variance is a measure of closeness,
hence an estimator’s efficiency is inversely related to its variance. A consistent estimator,
θ̂1, will be more efficient than another estimator, θ̂2, if V ar{θ̂1} < V ar{θ̂2}, where V ar{}
is the variance. The most efficient estimator is one that has sampling variance lower than
that of any other estimate, in a category of consistent estimators for a parameter. When
there is such an estimator, it gives a criterion for the measure of efficiency of the other
estimators.

If we have a θ̂1 which is the most efficient estimator with variance V1, and another
estimator θ̂2 with variance V2, afterwards the efficiency E of θ̂2 is determined as

E =
θ̂1

θ̂2

. (2.153)

Obviously E cannot be grater than 1.

Sufficiency: If an estimator θ contains all the information in the sample about a param-
eter θ, it is said to be sufficient for that parameter. No other estimator generated from
the same sample can give further information about the parameter, if it is sufficient.

Main Estimation Methods

In this subsection, we will present the two most common ways of estimation obtains
considered in statistics are Point and Interval estimations. The estimates are called point
estimates, can define a separate quantity as an estimate of θ. Such are, the maximum
likelihood method and the method of moments, for designating estimators of unknown
parameters. Also, in the interval estimation, rather than expressing a special value as
our estimate of θ, we give an interval within which we believe that lies. Moreover, we
assess how much confidence we can place in such an interval estimate. We demonstrate
how to get an interval estimate of the unknown mean of a normal distribution with a
known variance.

Point Estimation

The Point Estimation is an estimation technique which suggest that the unknown param-
eters should be estimated by matching population moments with the appropriate sample
moments.
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The method of moments is an estimation strategy which propose that estimating un-
known parameters by matching population moments with the relevant sample moments.

We consider that the sample {x1, ..., xn} was derived using n observations of the
continuous random variableX. Of course, one can determine the sample mean and sample
variance, which are the first and the second moments, as the corresponding sample’s
expected values of size n by the following forms:

x̄ =
1

n

n∑
i=1

xi (2.154)

and

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2.155)

Thereafter, x̄ and S2 can be utilized as point estimates of the distribution mean µ and
variance σ2, respectively. It’s worth noting that estimator of variance (2.155) is biased
because x̄ is estimated from the same sample. Nevertheless, this bias can be removed
away by multiplying it by n/(n− 1):

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2. (2.156)

The sample moments are equated to the relevant distribution moments using the
method of moments. The estimators of the distribution parameters are determined from
the solutions of the equations. The method of moments estimates are usually consistent,
although they may not be efficient.

In statistics, a kind of estimator known as the maximum likelihood estimator is com-
monly used. This technique is based on the concept of computing parameter values that
maximize the probability of obtaining a specific sample. The following logic is used to
get at it.

Let f(x1, ..., xn|θ) as the joint probability mass function of the discrete random vari-
ables X1, X2, ..., Xn and let it be their joint probability density function when they are
jointly continuous random variables. Since, θ is considered unknown, we express f as a
function of θ.

Since f(x1, ..., xn|θ) reflects the likelihood that the values x1, x2, ..., xn would be ob-
served when θ is the real value of the parameter, a sensible estimate of θ would appear
to be the value offering the greatest likelihood of the observed values.

Alternatively, the maximum likelihood estimate θ̂ is the value of θ which maximize
f(x1, ..., xn|θ) where x1, x2, ..., xn are the observed values. The function f(x1, ..., xn|θ) is
usually stated to as the likelihood function of θ.

In defining the maximizing value of θ, it is commonly useful to use the fact that
f(x1, ..., xn|θ) and log[f(x1, ..., xn|θ)] have their maximum at the same value of θ. As a
result, we may get θ̂ by maximizing log[f(x1, ..., xn|θ)].
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Interval Estimation

Assume that X1, ..., Xn is a sample from a normal population with unknown mean µ and
known variance σ2. It has been shown that X̄ = 1

n

∑n
i=1 Xi is the estimator for µ. We

don’t expect that the sample mean X̄ to exactly equal µ, but we expect it to be close.
Thus, rather than a point estimate, it can be useful to be able to define an interval within
which we have a some degree of confidence that µ lies within. To get such an interval
estimator, we use the probability distribution of the point estimator. Let’s have a look
at how it functions.

Since, the point estimator X̄ is normal with mean µ and variance σ2/n, it follows that

X̄ − µ
σ/
√
n

=
√
n
X̄ − µ
σ

has a standard normal distribution. Hence,

P
{
X̄ − 1.96

σ√
n
< µ < X̄ + 1.96

σ√
n

}
= 0.95

Meaning, 95% of the time, the sample average X̄ will be such that the distance between
it and the mean µ will be less than 1.96 σ√

n
. If we observe the sample and X̄ = x̄, then

we say that “with 95 percent confidence”

x̄− 1.96
σ√
n
< µ < x̄+ 1.96

σ√
n
.

2.3.2 Classical Parametric Estimation for Binary-State System

Basic Considerations

For binary-state systems, we assume statistical methods for estimating the reliability
model parameter, for example the λ of the Exponential distribution. The propose is to
determine the parameter’s point estimate and its confidence interval.

In general, estimation of parameters can be based on both field data and data received
through a particular reliability or life test. On the test of reliability, a sample of items is
put to the test in the same environment in which they are expected to work. All failure
times are registered. There are two different kinds of testing. The first is testing with
failed item substitution, in which each item should be substituted with a new one after
it fails, and the second is testing without substitution. For further analysis, a following
of recorded times to failure is termed a given sample. An complete sample is one in
which all objects failed throughout a test and all failure timings are known for a specific
observation period.

Taking an complete sample of observations is commonly impractical in the actual
world. Often we pause the test after a certain amount of time has passed or since a
certain number of failed items has been observed. Else, the test gets too time consuming
or too costly. So, for certain items the lifetime is censored, i.e., the information about it
has the form “the lifetime exceeds some value t”. Contemporary products are ordinarily
reliable enough so that a complete sample is a rare. Broadly, reliability data are not
complete and we are using censored samples.
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Define N , the number of elements on the test, and we suppose that all elements tested
at the same time.

If just r items fail throughout the test period, T , the failure times are known, and the
failed items are not replaced, the sample is referred to as singly censored on the right at
T. In this instance, we only know that the failure times of N−r unfailed items are longer
than the test period T . Right censored at T means that the exact value of an observation
is unknown, but it is known that it is larger than or equal to T .

The failure time for an component is called left censored when the failure time is
unknown but known to be less than a specific value. This form of censoring is never
utilized in reliability.

The time-terminated test is a test that ends at a predefined nonrandom time T .
Throughout the test time, the number of failures observed, r, will be a random variable.
Type I right censoring refers to a situation like this. In the time-terminated life test, n
components are placed on a test and the number of them that failed throughout the test
period, as well as the time to failure for each them, is recorded.

The failure-terminated test is a test that ends at a predefined nonrandom number of
failures in advance have been observed. In this instance, the period of the test is a random
variable. Type II right censoring refers to a situation like this. Both time-terminated
and failure-terminated reliability tests can be run with or without replacement of every
failed item.

Exponential Distribution Point Estimation

Time-terminated Test with Replacement

Assume that N identical items are used on test with replacement. The test ends after
a stated time Ts. Thereafter, the total time T on test, which includes both failed and
unfailed items, is calculated as

T = NTk. (2.157)

If r failures have been observed up to time Ts, then we can find the component failure
rate using the maximum likelihood point estimate:

λ̂ =
r

T
. (2.158)

So, we can take the respective estimate of the items’ mean time to failure:

ˆMTTF =
T

r
. (2.159)

Note that, the number of units tested throughout the test, ntest, is

ntest = N + r. (2.160)

If we use only one component on test (N = 1) and record r failures throughout the
total time T , then we can be obtained
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λ̂ =
r

T
=

r

Ts
. (2.161)

Remember that expressions (2.158)–(2.161) are true if replacement times are negligibly
small. If it is not so, thereafter the entire accumulated replacement time, TR, should be
determined and the failure rate can be estimated by the following equation:

λ̂ =
r

Ts − TR
. (2.162)

Time-terminated Test Without Replacement

Assume that N identical items are used on test without replacement. As in the previous
case, the test ends after a stated time, Ts, throughout which r failures were recorded.
Thereafter, the total time T on test, which includes by both failed and unfailed items is

T = (N − r)Ts +
r∑
i=1

ti, (2.163)

where,

ti : time of record up to failure for failed component i,

r∑
i=1

ti : accumulated time on test of the r failed components,

(N − r)Ts : accumulated time on test of the unfailed components.

Failure-terminated Test with Replacement

Assume thatN identical components are used on test with replacement and an component
is used as soon as it fails. The test ends after a time, Tr, when the rth failure has
happened.

The total time T , related with failed and unfailed components is

T = NTr. (2.164)

When the distribution of the time to failure is Exponential, then λ can be estimated
as

λ̂ =
r

T
=

r

NTr
. (2.165)

The corresponding estimate of mean time to failure is obtained by

ˆMTTF =
T

r
. (2.166)
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Now, the total number of components tested is

ntest = N + r − 1, (2.167)

because the test ends when the last failed component fails, and so the last failed compo-
nent is not replaced.

Failure-terminated Test Without Replacement

Assume that N identical components are used on test without replacement – when a
failure happens, the failed component is not replaced by a new one. The test ends after
a time, Tr, when the rth failure has happened.

The total time T , is given by

T = (N − r)Tr +
r∑
i=1

ti, (2.168)

where,

ti : time of record up to failure for failed component i,

r∑
i=1

ti : accumulated time on test of the r failed components,

(N − r)Tr : accumulated time on test of the unfailed (surviving) components.

When the distribution of the time to failure is Exponential, then λ can be estimated
as

λ̂ =
r

T
=

r

(N − r)Tr +
r∑
i=1

ti

. (2.169)

The estimate of mean time to failure is obtained by

ˆMTTF =
T

r
=

(N − r)Tr +
r∑
i=1

ti

r
. (2.170)

In this instance the total number of components tested is

ntest = N (2.171)

since no components are being replaced.
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Interval Estimation for Exponential Distribution

Here assumed the failure-terminated test and presented that if the the distribution of
the time to failure is Exponential with parameter λ, the variable 2rλ

λ̂
= 2λT has the χ2

distribution with 2r degrees of freedom. Hence, we can write the following expression:

P
{
χ2
a/2;2r ≤

2rλ

λ̂
≤ χ2

1−a/2;2r

}
= 1− α. (2.172)

Considering λ̂ = r
T

after resetting we will have a two-sided confidence interval for the
true value of λ:

P
{

1

2T
χ2
a/2;2r ≤ λ ≤ 1

2T
χ2

1−a/2;2r

}
= 1− α. (2.173)

Thus, we can get the one-sided confidence interval or the upper confidence bound:

P
{
λ ≤ 1

2T
χ2

1−a/2;2r

}
= 1− α. (2.174)

For the time-terminated test the specific confidence bounds are not provided. The
approximate two-sided confidence interval for the failure rate, λ, was given as

P
{

1

2T
χ2
a/2;2r ≤ λ ≤ 1

2T
χ2

1−a/2;2r+2

}
= 1− α. (2.175)

The respective the one-sided confidence interval or the upper confidence bound is
calculated by

P
{
λ ≤ 1

2T
χ2

1−a/2;2r+2

}
= 1− α. (2.176)

2.3.3 Estimation of Transition Intensities via Output Perfor-
mance Observations

Multi-State Markov Model and Observed Reliability Data. Problem Formu-
lation

Absolutely, a binary-state system is the most basic example of a MSS with two distinctive
states. In the previous sections, we were mentioned in the Point estimation for transi-
tion intensities of binary Markov models. Despite the fact that this is an real practical
problem, there have been essentially no investigations into it in multi-state environment
until recently.

For example, in the ground of power system reliability assessment, it has been known
that using basic two-state models to describe big generating units in generating capacity
adequacy assessments might result in negative assessments. Many utilities use multi-state
models instead of two-state representations to evaluate unit reliability more accurately.
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These models use the steady-state probabilities of a unit remaining at various gener-
ating capacity levels. A long-run probability of a unit remaining at a specific capacity
level is usually simply described as the part of the function time when the unit is at this
capacity level. The investigation of the short-term behavior of MSSs cannot be relied on
steady-state probabilities. The research should be conducted using a broad MSS model
with known transition intensities between any of the model’s states. The goal is to esti-
mate these transition intensities based on actual MSS failures and repair statistics, which
is represented by the observed realization of an output performance stochastic process.

The appropriate method for point and interval estimate of transition intensities via
output performance observation will be presented below. The moethod was primarily
presented in Lisnianski (2008).

Figure 2.9 shows a general Markov model of an Multi State system with minor and
major failures and repairs.

In the model, there are N states, with every state i ∈ [1, ..., N ] has its own output
performance level oi. In most cases, state N is related with the nominal output perfor-
mance level and state 1 is related with total system failure, and all subsequent states
i ∈ [2, ..., N −1] are related with the respective limited output performance levels oi. The
transition intensity from state i to state j is determined as qij.

Figure 2.9: General Markov model for a Multi State System, where the aij has been
noted with qij (Lisnianski and Levitin 2003).

Thus, MSS output performance is known for each time t ∈ [0, T ], where T is the
complete observation time, as well as the respective times of MSS transitions from each
output performance level oi to level oi, i, j ∈ [1, ..., N ].

Figure 2.10 shows an example of a single realization of such a stochastic process.
The stochastic process OA(t) is a discrete-state continuous-time process. The follow-

ing definitions are provided for this stochastic process.
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T
(m)
i : sojourn time of the system of mth remaining in state i throughout observation

time T ,

ki: accumulated number of system enters state i or accumulated number of system exits
from state i to another state, throughout observation time T ,

kij : accumulated number of system transitions from state i to another state j 6= i,
throughout observation time T .

Figure 2.10 shows the realization throughout the MSS observation time T remained
in state N(kN = 4) four times, once it transited from state N to state N−1(kN,N−1 = 1),
from state N to state 3(kN,3 = 1), and from state N to state 1(kN,1 = 1).

Figure 2.10: Multi State System output performance OA(t) as a stochastic process, where
the GA(t) has been denoted with OA(t) (Lisnianski, A. et al., 2010).

Hence, the reliability data for Multi State System that can be given from the obser-
vation of the output performance stochastic process throughout time T are the following.

For every state i are known:

1. {T (1)
i , ..., T

(ki)
i } sample of system sojourn times in state i throughout T ,

2. kij number of system transitions from state i to another state j throughout T and
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3. ki number of system remains in state i or number of system exits from state i to
another state, throughout T .

The goal is to estimate transition intensities qij, i, j ∈ [1, ..., N ] according to a single
realization of discrete-state continuous-time stochastic process OA(t) that was observed
throughout time T .

Method Description

As previously stated, the stochastic process OA(t) is a discrete-state, continuous-time
Markov process. We present a new stochastic process that is associated to the OA(t)
process .

If we avoid random times between transitions from state i to state j 6= i in process
OA(t) and we interest only time moments of transitions, then the process will be a discrete-
state, discrete-time Markov chain.

A Markov chain OAm(n), n = 0, 1, 2, ..., embedded in process OA(t), is a chain that
can only be examined at time instants of transitions in the underlying process OA(t). The
embedded Markov chain OAm(t) is absolutely determined by its initial state’s probability
distribution and one-step transition probabilities πij, i, j = [1, ..., N ].

Figure 2.9 shows the transitions between several states of the model as a result of
events such as failures and repairs. Since, a Markov model describes a Multi State
System is described, the cdf Wij(t) of time between transition from state i to another
state j 6= i is determined by the respective transition intensity such as

Wij(t) = 1− e−qij(t), (2.177)

where qij is the transition intensity from state i to state j.

The distribution of the so-called conditional sojourn time Tij in state i, which describes
the system sojourn time in state i under the premise that the unit transits from state
i to state j, is designated by the function Wij(t). A one-step transition probability of
discrete-state, continuous-time process OA(t) is defined as the probability Qij(t) that the
unit will transit from state i to state j up to time t, if it is in state i at initial time
instant t = 0. These probabilities Qij(t), i, j = 1, ..., N determine kernel matrix Q(t) for
stochastic process OA(t):

Q(t) = |Qij(t)|. (2.178)

The following way can be used to calculate these one-step probabilities for a kernel
matrix. Each probability Qik(t) determines the probability that random variable Tik will
be minimal among all other random variables Tij, j 6= i, j 6= k, j = 1, ..., N, which
designates all achievable transitions from state i to another state. So, ∀ k 6= i we will
have

Tik = min {Ti1, ..., Ti,k−1, Ti,k+1, ..., TiN} . (2.179)
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Relied on (2.179) we get the one-step probability Qik(t) as the probability that under
the assumption Tik ≤ t the random variable Tik will be lowest than the others Tij j 6=
i, j 6= k, j = 1, ..., N.

Thus, ∀ i = 1, 2, ..., N and k 6= i can be derived the following form

Qik(t) = P {(Tik ≤ t)&(Ti1 > t)&...&(Ti,k−1 > t)&(Ti,k+1 > t)&...&(TiN > t)}

=

∫ t

0

dWik(s)

∫ ∞
t

dWi1(s)...

∫ ∞
t

dWi,k−1(s)

∫ ∞
t

dWi,k+1(s)...

∫ ∞
t

dWiN(s)

(2.180)

=

∫ t

0

[1−Wi1(s)]...[1−Wi,k−1(s)][1−Wi,k+1(s)]...[1−WiN(u)]dWik(s).

Using (2.180) and considering in equation (2.177), one obtains

Qik(t) =
qik∑N
j=1 qij

(
1− e−

∑N
j=1 qijt

)
. (2.181)

The cumulative distribution function Wi(t) and the probability density function wi(t)
of unconditional sojourn time Ti in any state i, according to one-step probabilities
Qij(t), i, j = 1, ..., N can be given as:

Wi(t) =
N∑
k=1

Qik(t) = 1− e−
∑N
j=1 qijt

(2.182)

wi(t) =
N∑
j=1

qij

(
1− e−

∑N
j=1 qijt

)
The unconditional sojourn time Ti is an exponentially distributed random variable

with mean

Timean =
1∑N

j=1 qij
=

1

A
, (2.183)

where A =
∑N

j=1 qij.

If we use the sample {T (1)
i , T

(2)
i , ..., T

(ki)
i }, we can take an estimation T̂imean of the

mean unconditional sojourn time according to time-terminated test

T̂imean =

∑ki
j=1 T

(j)
i

ki
. (2.184)

The following expression can be used to estimate the sum A of intensities of all
transitions that leave state i based on (2.183) and (2.184):
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Â =
1

T̂imean
=

ki∑ki
j=1 T

(j)
i

. (2.185)

The sum of intensities for all transitions that depart from any state i may be estimated
using formula (2.185). An extra formula can be obtained in the following approach to
estimate individual transition intensities.

In order to obtain, the one step transition probabilities for embedded Markov chain
OAm(t), we are based on kernel matrix Q(t):

πij = lim
t→∞

Qij(t). (2.186)

Considering expression (2.181) we will have

πik = lim
t→∞

Qik(t) = lim
t→∞

{
qik∑N
j=1 qij

(
1− e−

∑N
j=1 qijt

)}
=

qik∑N
j=1 qij

(2.187)

or equivalently

qik = πik

N∑
j=1

qij. (2.188)

The probabilities of one-step transition πik of an embedded Markov chain can be
approximated as a ratio of respective numbers of transitions based on an observed single
realization of the output performance stochastic process.

π̂ik =
kik
ki
. (2.189)

When estimates (2.185) and (2.189) are substituted into expression (2.188), the tran-
sition intensity is estimated as follows:

q̂ik = π̂ikÂ =
kik
ki

1

T̂imean
=

kik
T∑ i

, i, k = [1, ..., N ], i 6= k, (2.190)

where T∑ i is the system’s accumulated time residence in state i throughout total obser-
vation time T .

For a Markov MSS with N states the sum
∑N

j=1 qij = 0, since

q̂ii = −
N∑

j=1,i 6=j

q̂ij. (2.191)
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Algorithm for Point Estimation of Transition Intensities for Multi-State Sys-
tem

For a Markov multi-state systems with N available states, the following data processing
algorithm is recommended.

1. Compute accumulated time of the system’s stay in state i throughout total obser-
vation time T :

T∑ i =

ki∑
m=1

T
(m)
i .

2. Estimate transition intensity q̂ij from state i to state j 6= i using the following form:

q̂ij =
kij
T∑ i

.

3. For j = i, estimate the transition intensities using the following equation:

q̂ii = −
N∑

j=1,i 6=j

q̂ij.

Interval Estimation of Transitions Intensities for Multi-State System

The output performance of the Multi State system was observed throughout time T ;
thus, in this instance we are dealing with a time-terminated test. Hence, according to
expression (2.175), one can write the following two-sided confidence interval for the true
value of qij:

P
{

1

2T∑ i

χ2
a/2;2kij

≤ qij ≤
1

2T∑ i

χ2
1−a/2;2kij+2

}
= 1− α. (2.192)

According to expression (2.176), the respective upper confidence bound or the one-side
confidence interval for the true value of qij can be given as

P
{
qij ≤

1

2T∑ i

χ2
1−a;2kij+2

}
= 1− α. (2.193)



Chapter 3

The H-class of Distributions

If A is a n× n matrix, then the permanent of A, stated by per A, is determined as

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i)

where Sn is the set of permutations of 1, 2, ..., n. So, The permanent is defined similarly
to the determinant, except that all terms in the expansion are given a positive sign.

If a1, a2, ... are column vectors, thereafter

[a1 a2 ...]

i1 i2

will state the matrix obtained by taking i1 copies of a1, i2 copies of a2 and so on.

SupposeX1, ..., Xn independent random variables with distribution functions F1, ..., Fn
and densities f1, ..., fn and X1:n ≤ ... ≤ Xn:n the respective order statistics.

Below we present that the density of any order statistic is easily written in terms of
a permanent. Thus, the density of Xr:n(1 ≤ r ≤ n) is obtained by

hr:n(x) =
1

(r − 1)!(n− r)!
per


F1(x) 1− F1(x) f1(x)
. . . .
. . . .

Fn(x) 1− Fn(x) fn(x)

 , −∞ < x <∞

In the same way, the distribution function of Xr:n(1 ≤ r ≤ n) can be written in terms
of permanents. Thus, the distribution function of Xr:n(1 ≤ r ≤ n) is obtained by

Hr:n(x) =
n∑
i=r

1

i!(n− i)!
per


F1(x) 1− F1(x)
. .
. .

Fn(x) 1− Fn(x)

 , −∞ < x <∞

75
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If S ⊂ N = {1, 2, ..., n} thereafter S ′ will be the complement of S in N and |S| will
be the cardinality of S. The Xr:S designated the r− th order statistic for {Xi|i ∈ S} and
Hr:S(x), the distribution of Xr:S. We will replace S with its cardinality, when there is
no confusion. For constant x, F will be the column vector (F1(x), ..., Fn(X))′ and 1 the
column of all ones. At last, A[S|.) is denoted the matrix given from A by taking all the
rows whose indices are in S.

Theorem 3.1: (Balasubramanian, K. et al. (1991)) For arbitrary F1, F2, ..., Fn and
n ≥ 2,

a) Hr:n(x) =
n−r∑
j=0

(−1)n−r−j
(
n− j − 1

n− r − j

) ∑
|S|=n−j

H|S|:S(x)

b) Hr:n(x) =
r−1∑
j=0

(−1)r−j−1

(
n− j − 1

n− r

) ∑
|S|=n−j

H1:S(x).

Assume the random variable X has an arbitrary distribution function F (x). Two
families of distribution functions with a positive parameter λ are defined as follows:

Family I: F λ(x) = [F (x)]λ, λ > 0

and

Family II: Fλ(x) = 1− [1− F (x)]λ, λ > 0.

If X(λ) with distribution function F λ(x) and X1, ..., Xn are distributed independently
as X(λ1), ..., X(λn) respectively. Then

H|S|:S(x) =
∏
i∈S

F λi(x) =
∏
i∈S

[F (x)]λi

= [F (x)]λS = F λS(x), λS =
∑
i∈S

λi

and from (a) of Theorem 3.1, can be obtained

Hr:n(x) =
n−r∑
j=0

(−1)n−r−j
(
n− j − 1

n− r − j

) ∑
|S|=n−j

F λS(x).

Also, if X(λ) with distribution function Fλ(x) and X1, ..., Xn are independent dis-
tributed as X(λ1), ..., X(λn) respectively. Then
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H1:S(x) = 1−
∏
i∈S

[1− Fλi(x)] = 1−
∏
i∈S

[1− F (x)]λi

= 1− [1− F (x)]λS = FλS(x), λS =
∑
i∈S

λi

and from (b) of Theorem 3.1, can be obtained

Hr:n(x) =
r−1∑
j=0

(−1)r−j−1

(
n− j − 1

n− r

) ∑
|S|=n−j

FλS(x).

It has been established (Makrides A., (2022)) that any distribution of the following
structure

F (x;λ) = 1− e−λ(H(x)), x ≥ 0 (3.1)

is closed under minimum, where λ > 0 is the shape parameter. Then, for an increasing
function H(x) with H(0) = 0, (3.1) represents a class of distributions called the ”H-class”.
The main feature of the family (3.1) is that the cdf of the minimum ordered statistic of a
random sample X1, X2, ..., Xn from (3.1) falls into the same family (see Barbu, V. et al.
(2017)). Assuming that h(·) is the derivative of H(·), it is easy to see that the density
function of a typical member of the H-class (3.1) is

f(x;λ) = λh(x)e−λ(H(x)) (3.2)

while the reliability function is given by

R(x;λ) = 1− F (x;λ) = e−λ(H(x)). (3.3)

Then, for all members of the H-class the following equations hold

F (x;λ) = 1− (1− F (x; 1))λ (3.4)

and

R(x;λ) = (R(x; 1))λ (3.5)

where F (x;λ) & R(x;λ) represent the cumulative and reliability functions of the typical
members of the H-class with shape parameter λ = 1. Representative members of the
family are classical distributions like the Exponential and Weibull. Note that additional
distributional parameters associated with H(·), may also be involved in (3.1). Note
further that H(·) may not necessarily be a distribution.
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3.1 H-class: A class closed under minima

In this section we establish that the H-class in (3.1) is closed under minima which is a
significant property which is vital in the statistical inference of the multi-state setting of
the next section.

Theorem If X1, X2, ..., Xn are independent identically distributed random variables’ from
(3.1), then the cdf Fmin and the reliability function Rmin of X(1) satisfy properties (3.4)
& (3.5).

Proof: For the required cdf we can easily see that

Fmin(x;λ) = P (X(1) ≤ x) = 1−
n∏
i=1

(P (Xi ≥ x))

= 1− [R(x;λ)]n = 1− [e−λH(x)]n

= 1− e−nλH(x)

and

Rmin(x;λ) = 1− Fmin(x;λ) = e−nλH(x)

such that

fmin(x;λ) = n[1− F (x;λ)]n−1f(x) = n[R(x;λ)]n−1f(x)

= n[e−λH(x)]n−1f(x)

which belongs to H-class in (3.1) with shape parameter nλ.

Remark The results of this section can be generalized by dropping the assumption of
identically distributed random variables. Indeed, if one considers the case of independent
random variables which though are not necessarily identically distributed (inid) and as-
sumes a random sample X1, X2, ..., Xn with the cumulative distribution function of Xi,
i = 1, ..., n denoted by

F (x;λi) = 1− e−λiH(x) (3.6)

then, Theorem still holds with Fmin belonging to the H-class (3.1) with parameter
n∑
i=1

λi,

that is

Fmin(x;λ
∼

) = 1− e
−

n∑
i=1

λiH(x)
(3.7)

where λ
∼

= (λ1, ..., λn)′ and also

R(x;λ
∼

) = e
−

n∑
i=1

λiH(x)
. (3.8)
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3.2 Distributions of H-class

Below we present classical distributions that belong in the H-class.

Exponential distribution: The simplest family of distributions that is a subset of
H-Class, is non other than the Exponential, where the H(·) function is linear.

f(x) = λ e−λx and F (x) = 1− e−λx, xε[0,∞), λ > 0

Hence, H(x) = x and h(x) = 1, with the parameter λ of H-class being the same as the λ
of the Exponential distribution.

Figure 3.1: Plot of multiple pdfs of Exponential where the black line is for λ = 5, red is for λ = 10, green is for
λ = 15 and blue is for λ = 20.

Rayleigh distribution: The next simplest family that belongs to H-Class, is Rayleigh,
where the H(·) function is quadratic.

f(x) = x
σ2 e

−( x√
2σ

)2
and F (x) = 1− e−( x√

2σ
)2
, xε[0,∞), σ > 0

Hence, H(x) = x2 and h(x) = 2x, with parameter λ = 1
2σ2 .

Figure 3.2: Plot of multiple pdfs of Rayleigh where the black line is for σ = 5, red is for σ = 10, green is for σ = 15
and blue is for σ = 20.
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Weibull distribution: The next members of H-Class, is Weibull, where the H(·) function
is a polynomial of order k.

f(x) = k
a

(
x
a

)k−1
e−(t/a)k and F (x) = 1− e−(x/a)k , x ≥ 0, aε(0,+∞), kε(0,+∞)

Hence, H(x) =
(
x
a

)k
and h(x) = k

a

(
x
a

)k−1
, with parameter λ = 1.

Figure 3.3: Plot of multiple pdfs of Weibull where the black line is for a = 1 and k = 5, red is for a = 1 and k = 10,
green is for a = 1 and k = 15 and blue is for a = 1 and k = 20.

Gompertz distribution: Then we have Gompertz distribution, with the H(·) function
being of exponential form.

f(x) = a ebx−
a
b

(ebx−1) and F (x) = 1− e−(a
b

)(ebx−1), xε[0,∞), a, b > 0

Hence, H(x) = ebx − 1 and h(x) = bebx, with parameter λ = a
b
.

Figure 3.4: Plot of multiple pdfs of Gompertz where the black line is for a = 0.08 and b = 5, red is for a = 0.08 and
b = 10, green is for a = 0.08 and b = 15 and blue is for a = 0.08 and b = 20.
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Pareto distribution: Last but not least, we have Pareto distribution, with the H(·)
function being of logarithmic form.

f(x) = aba

xa+1 = a
(
b
x

)a 1
x

= a
(
eln( b

x
)a
)

1
x

and

F (x) = 1− eln( b
x

)a = 1− e−a ln(x
b

), xε[b,∞), a, b > 0

Hence, H(x) = ln(x
b
) and h(x) = 1

x
, with parameter λ = a.

Figure 3.5: Plot of multiple pdfs of Pareto where the black line is for a = 5 and b = 1, red is for a = 10 and b = 1
and green is for a = 15 and b = 1.

3.3 Approximation of non H-class distributions

Consider the Modified Weibull distribution introduced in Delgarm, L. et al. (2015) defined
by

G(z) = 1− e−azγeβz , z > 0, a, γ > 0, β ≥ 0 (3.9)

and

g(z) = azγ−1(γ + βz)eβz−az
γeβz , z > 0, a, γ > 0, β ≥ 0. (3.10)

If N is a random variable with zero-truncated Poisson mass distribution with param-
eter λ then the conditional distribution of the minimum ordered statistic X = Z(1) of a
random sample from (3.9) given N, is obtained by

fX|N(x|n) = ane−anx
γeβxxγ−1(γ + βx)eβx, x > 0, a, γ > 0, β ≥ 0 (3.11)

and

FX|N(x|n) = 1− e−anxγeβx (3.12)
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Summing over all values of N we obtain the marginal distribution given below

fX(x) = aλxγ−1(1− e−λ)−1(γ + βx) eβx−ax
γeβx−λ(1−e−axγeβx ). (3.13)

The above distribution is known as the Modified Weibull Poisson (MWP) distribu-
tion with cumulative distribution function

F (x) =
eλ

eλ − 1

(
1− e−λ(1−e−axγeβx )

)
, x > 0, a, γ > 0, β > 0. (3.14)

Figure 3.6: The left plot shows the multiple pdfs of MWP where the black is for λ = 5, a = 1/2, β = 1/2 and γ = 2,
red is for λ = 5, a = 1/2, β = 1/4 and γ = 2, green is for λ = 5, a = 1/2, β = 1/8 and γ = 2 and blue λ = 5, a = 1/2,
β = 1/16 and γ = 2. The right plot shows the multiple pdfs of MWP where the black is for λ = 5, a = 1/2, β = 1/2 and
γ = 2, red is for λ = 5, a = 1/4, β = 1/2 and γ = 2, green is for λ = 5, a = 1/8, β = 1/2 and γ = 2 and blue λ = 5,
a = 1/16, β = 1/2 and γ = 2.

The Modified Weibull Poisson (MWP) is of special interest in Reliability the-
ory since it combines zero-truncated Poisson distribution (which give us the number of
parts of the machine that will fail) and Weibull distribution (which is an appropriate
distribution for modelling time until failure). Thus, Poisson will give us how many parts
have failed, Weibull will give us at what time each one of them failed and the minimum
between them, will answer us what is the minimum time until the first failure of the
machine.
However the MWP is that it does not belong to the H-class. This is because of the
constant eλ

eλ−1
that appears in equation (3.14). Hence, we have to search which distri-

butions of H-class best approximate it. The criterion based on which we will deem two
distributions close to one another will be the ratio of their densities to be close to one.

In order to showcase the ability to approximate MWP by H-class distributions we
present below multiple examples.
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We start to find the best approximation of MWP with parameters λ = 5, β = 4, a = 1
and γ = 2. Which are chosen arbitrarily. By trial and error, we find that the ratio is
closed to one for Gompertz with parameters a = 0.8 and b = 10 in the interval (0.1,0.4).
In this interval, MWP has an overall probability of P(0.1 < X < 0.4) = 0.7645428.

Figure 3.7: The left plot shows the pdf of MWP(λ = 5, β = 4, a = 1, γ = 2) with black line and the pdf of
Gompertz(a = 0.8, b = 10) with purple line, while the right plot shows the cdf of distributions. The central plot shows the
ratio of the densities of MWP & Gompetz distribution.

Moreover, the best approximation of MWP with parameters λ = 10, β = 1/16, a =
1/16 and γ = 2, is Gompertz with parameters a = 1/2 and b = 1 in the interval (0.5,2.5).
In this interval, MWP has an overall probability of P(0.5 < X < 2.5) = 0.8266786.

Figure 3.8: The left plot shows the pdf of MWP(λ = 10, β = 1/16, a = 1/16, γ = 2) with black line and the pdf of
Gompertz(a = 1/2, b = 1) with purple line and the right plot shows the cdf of these. The central plot shows the ratio of
densities.
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Another example is the approximation of MWP with parameters λ = 5, β = 1/16, a =
1/16 and γ = 2, from Weibull with parameters a = 1.8 and k = 2 in the interval (0,4).
In this interval, MWP has an overall probability of P(0 < X < 4) = 0.9796949.

Figure 3.9: The left and right plots show the pdf and cdf of MWP(λ = 5, β = 1/16, a = 1/16, γ = 2) with black line
and Weibull(a = 1.8, k = 2) with purple line respectively. The central plot shows the ratio of densities.

Also, the approximation of MWP with parameters λ = 5, β = 1/2, a = 1 and γ = 2
is Weibull with parameters a = 1/2 and k = 2 in the interval (0.3,1.3). In this interval,
MWP has an overall probability of P(0.3 < X < 1.3) = 0.7413275.

Figure 3.10: The left and right plot show the pdf and the cdf of MWP(λ = 5, β = 1/2, a = 1, γ = 2) with black line
and Weibull(a = 1/2, k = 2) with purple line, respectively. The central plot shows the ratio of densities.
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Furthermore, the best approximation of MWP with parameters λ = 5, β = 1/200, a =
1/200 and γ = 2, we find that is closed to one for Rayleigh with parameter σ = 5 in the
interval (1,16). In this interval, MWP has an overall probability of P(1 < X < 16) =
0.9581969.

Figure 3.11: The left and right plots show the pdf and the cdf of MWP(λ = 5, β = 1/200, a = 1/200, γ = 2) with
black line and Rayleigh(σ = 5) with purple line, respectively. The central plot shows the ratio of densities.

At last, the approximation of MWP with parameters λ = 1/100, β = 1/100, a = 1/800
and γ = 2, is Rayleigh with parameter σ = 17 in the interval (15,40). In this interval,
MWP has an overall probability of P(15 < X < 40) = 0.1005515.

Figure 3.12: The left and right plots show the pdf and the cdf of MWP(λ = 1/100, β = 1/100, a = 1/800, γ = 2)
with black line and Ra(σ = 17) with purple line, respectively. The central plot shows the ratio of the densities of MWP &
Rayleigh distribution.
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3.4 The Semi-Markov Model under the H-class

A specific system with N states is considered in this work which has the property that
the next state to be visited after state i is the one for which Tik is the minimum, where
Ti1, Ti2, ..., TiN are the waiting times at state i before moving to state 1, 2, 3, ..., N . Under
these settings the following equations hold true for the class of distributions (3.1).

Qik(t) =
λik
N∑
j=1

λij

1− e
−
N∑
j=1

λijH(t)



pik =
λik
N∑
j=1

λij

Wi(t) = 1− e
−
N∑
j=1

λijH(t)

wi(t) =
N∑
j=1

λijh(t)

1− e
−
N∑
j=1

λijH(t)


where Wi(t) coincide with the distribution Wik(t) that does not depend on the visited
state k thus the subscript ”k” is omitted. Similarly, the pdf is denoted by wi(t).

3.5 Parameter Estimators of the H-class distribu-

tions

Consider the following counting processes: First, for any states i, kεE and tεR+, let us
introduce the counting processes Ni(t) = the number of visits to state i of process (Jn)nεN
up to time t, where (Jn)nεN describe the states at time instant Sn and (Sn)nεN are the
successive time points. Also, Nik(t) = the number of jumps of (Jn)nεN from state i to
state j up to time t :

Ni(t) =

N(t)−1∑
n=0

1{Jn=i} =
∞∑
n=0

1{Jn=i, Sn+1≤t}

Nik(t) =

N(t)∑
n=1

1{Jn−1=i,Jn=k} =
∞∑
n=1

1{Jn−1=i,Jn=k,Sn≤t}
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where i, kεE, tεR+ and N(t) is defined by N(t) = max{n ∈ N|Sn ≤ t}, as the amount of
transitions up to time t.

Let M be the total observation time. We proceed now with the general form of the
likelihood formula for L trajectories.

The evolution of the system, taking into account several sample paths l = 1, ..., L of
a semi-Markov process, {j(l)

0 , x
(l)
1 , j

(l)
1 , x

(l)
2 , ..., j

(l)

N(l)(M)
}, can be expressed as

L =
L∏
l=1

λ
(l)
j0
p
j
(l)
0 j

(l)
1
f
j
(l)
0

(x
(l)
1 ) ... f

j
(l)

N(l)(M)−1

(x
(l)

N(l)(M)
) (3.15)

(3.16)

=

(∏
iεE

λ
N

(L)
i,0

i

)∏
i,jεE

p

L∑
l=1

N
(l)
ik (M)

ij

 L∏
l=1

∏
iεE

N
(l)
i (M)∏
j=1

fi(x
(l,r)
i )

 (3.17)

where,

• N (L)
i,0 =

L∑
l=1

1{J(l)
0 =i}

• N (l)
i (M): the number of exits from state i up to time M of the lth trajectory, l=1,...,L.

• Nik(L,M) =
L∑
l=1

N
(l)
ik (M)

• N (l)
ik (M): the number of transitions from state i to state j up to time M of the lth

trajectory, l=1,...,L.

• x(l,r)
i : the sojourn time in state i during the rth visit, r = 1, ..., N

(l)
i (M) of the lth

trajectory, l=1,...,L.

• Ni,M(L) =
L∑
l=1

1{J(l)

N(l)(M)
=i} is the number of visits of state i, as last visited state, over

the L trajectories; observe that
∑

iεE Ni,M(L) = L

The above likelihood under the class (3.4) can be rewritten as

L =

(∏
iεE

λ
Ni,0(L)
i

)(
L∏
l=1

∏
i,kεE

λ
N

(l)
ik (M)

ik

)
×

×
∏
l,i,j

{(
1− F (x

(l,r)
i )

)∑
kεE

λik f(x
(l,r)
i )

1− F (x
(l,r)
i )

}
and we get the estimator of λik given by

λ̂ik(L,M) = −Nik(L,M)
L∑
l=1

B
(l)
(i)(M)

,
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where

B
(l)
(i)(M) =

N
(l)
i (M)∑
k=1

log
(

1− F (X
(l,r)
i

)
.

The initial probabilities can be estimated using the following expression

λ̂i(L,M) =
N

(L)
i,0

L
.

Using the proper expression among the previous ones, for the parameter estimates,
the following estimators can be easily obtained:

p̂ik(M) =
λ̂ik(L,M)
N∑
j=1

λ̂ij(L,M)

=
Nik(M)

Ni(M)
, (3.18)

Ŵi(t,M) =

(
1− e

−H(t)
∑
jεE

λ̂ij(L,M)
)

(3.19)

and

Q̂ik(t,M) =
λ̂ik(L,M)∑

jεE

λ̂ij(L,M)

(
1− e

−H(t)
∑
jεE

λ̂ij(L,M)
)
. (3.20)

3.5.1 The case of general H-class

In the general case of H-class of distributions, the estimator of the parameter λik becomes

λ̂ik(L,M) =
Nik(L,M)

L∑
l=1

N
(l)
i (M)∑
j=1

H
(
X

(l,r)
i

) (3.21)

where for H(·) one can consider any distribution function.

3.5.2 The case of Gompertz distribution

The estimator of the parameter λik for Gompertz can be modified as

λ̂ik(L,M) =
Nik(L,M)

L∑
l=1

N
(l)
i (M)∑
k=1

(
eb(x

(l,r)
i ) − 1

) (3.22)
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3.5.3 The case of Weibull distribution

The estimator of the parameter λik for Weibull can be modified as

λ̂ik(L,M) =
Nik(L,M)

L∑
l=1

N
(l)
i (M)∑
k=1

(
(x

(l,r)
i )k

) (3.23)

3.5.4 The case of Rayleigh distribution

The estimator of the parameter λik for Rayleigh can be modified as

λ̂ik(L,M) =
Nik(L,M)

L∑
l=1

N
(l)
i (M)∑
k=1

(
(x

(l,r)
i )2

) (3.24)
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Conclusion

The main purpose of this thesis was the study of semi-Markov Processes and Reliability
Analysis, via theoretical issues and applications. After the presentation of the neces-
sary theory on Order Statistics and multi-state systems, we introduced the H-class of
distributions which is closed under minimum. The H-class is a very significant family of
distributions, as it contains various distributions with the great variety of distributional
shapes. However, some distributions, that we are interested in, do not belong to the
H-class, like the MWP distribution.

In this work, we achieved two important goals. The first goal was the approximation
of distributions which are not part of the H-class, i.e. they are not closed under minimum,
by members of the H-class. More specifically, we focus on the Modified Weibull Poisson
which is of great interest in Reliability theory since it combines zero-truncated Poisson
distribution and the Weibull distribution for the simultaneous inference for the number
of failures and the times to failure. The second goal was, using the multi-state systems
and semi-Markov methodology, the construction of maximum likelihood estimators for
the parameters of the distribution of H-class. These results are significant because they
are providing a framework for statistical inference as well as the transition probabilities
among the system’s states for the members of H-class, but also for any distribution that
can be approximated by members of H-class.

Last but not least, the flexibility of the approach can be guaranteed by the variety
of distributions that belong in the H-class and whose distributional shapes cover a wide
range of functional forms.
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Appendix A

Lemma: (Limnios, N. et al. (2001)) We have:

1. Sn →∞ (a.s.) as n→∞.

2. Nt →∞ (a.s.) as t→∞.

Proof: (1) For any fixed a > 0, by the Chebychev inequality, we get

P(Sn ≤ a) = P(e−Sn ≥ e−a) ≤ E(e−Sn)

e−a
= ea(Ee(X1))n.

Therefore F (0) < 1 we have Ee(X1) < 1, which yields

P( lim
n→∞

Sn ≤ a) = lim
n→∞

P(Sn ≤ a) = 0.

(2) Due to the equality {Sn−1 > t} = {Nt < n} we can write, for any fixed n ∈ N∗,

P( lim
t→∞

Nt < n) = lim
t→∞

P(Nt < n) = lim
t→∞

P(Sn−1 > t) = 0.

Limit Theorems for the Counting Process

In the sequel, we will suppose that µ = E(X1) < +∞.

Theorem (Strong Law of Large Numbers)(Limnios, N. et al. (2001))

1

t
Nt

a.s.−→ 1

µ
as t→ +∞.

Proof: We have Nt → ∞ as t → ∞ (a.s.). On the other hand, from the inequalities
SNt ≤ t < SNt+1, we deduce that

X1 + ...+XNt

Nt

≤ t

Nt

<
X1 + ...+XNt +XNt+1

Nt

.

Now, since XNt+1 <∞ (a.s.), it follows that

XNt+1/Nt → 0 (a.s.) as t→ +∞.
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We see now that the left and right terms of the above inequalities tend to the same limit
(as a consequence of the strong law of large numbers for i.i.d. random variable). Since
E(X1) = µ, the proof is achieved.



Appendix B

R code
####===== pdf MWP====####

f <= function (x , lambda , alpha , beta , gamma) {
y <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )*exp(beta*x=alpha* ( xˆgamma)
*exp(beta*x)=lambda*(1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}

###=====lambda=5, a lpha=1/2 , be ta=c (1/2 ,1/4 ,1/8 ,1/16) ,gamma=2
xs <=seq (0 , 2 , length=100)
ys2 <=f ( xs , lambda=5, alpha=1/2 ,beta=1/2 ,gamma=2)
ys3 <=f ( xs , lambda=5, alpha=1/2 ,beta=1/4 ,gamma=2)
ys4 <=f ( xs , lambda=5, alpha=1/2 ,beta=1/8 ,gamma=2)
ys5 <=f ( xs , lambda=5, alpha=1/2 ,beta=1/16 ,gamma=2)

plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 2 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
l ines ( xs , ys5 , type=” l ” , col=4,lwd=2)
legend ( ” t op r i gh t ” , cex =0.55 ,c ( ”MWP( lambda=5, alpha=1/2 , beta=1/2 ,gamma=2)” ,
”MWP( lambda=5, alpha=1/2 , beta=1/4 ,gamma=2)” , ”MWP( lambda=5, alpha=1/2 , beta=1/8 ,gamma=2)” ,
”MWP( lambda=5, alpha=1/2 , beta=1/16 ,gamma=2)” ) , col =1:4 , l t y=rep ( 1 , 4 ) , lwd=rep ( 2 , 4 ) )

###=====lambda=5, be ta=1/2 , a lpha=c (1/2 ,1/4 ,1/8 ,1/16) ,gamma=2
xs <=seq (0 , 4 , length=100)
ys2 <=f ( xs , lambda=5,beta=1/2 , alpha=1/2 ,gamma=2)
ys3 <=f ( xs , lambda=5,beta=1/2 , alpha=1/4 ,gamma=2)
ys4 <=f ( xs , lambda=5,beta=1/2 , alpha=1/8 ,gamma=2)
ys5 <=f ( xs , lambda=5,beta=1/2 , alpha=1/16 ,gamma=2)

plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 2 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
l ines ( xs , ys5 , type=” l ” , col=4,lwd=2)
legend ( ” t op r i gh t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/2 , alpha=1/2 ,gamma=2)” ,
”MWP( lambda=5, beta=1/2 , alpha=1/4 ,gamma=2)” , ”MWP( lambda=5, beta=1/2 , alpha=1/8 ,gamma=2)” ,
”MWP( lambda=5, beta=1/2 , alpha=1/16 ,gamma=2)” ) , col =1:4 , l t y=rep ( 1 , 4 ) , lwd=rep ( 2 , 4 ) )

####=====pdf Exp====####

f <= function (x , lambda ) {
y <= lambda*exp(=lambda*x )

}

###=====lambda=c (5 ,10 ,15 ,20)
xs <=seq ( 0 , 1 . 5 , length=100)
ys2 <=f ( xs , lambda=5)
ys3 <=f ( xs , lambda=10)
ys4 <=f ( xs , lambda=15)
ys5 <=f ( xs , lambda=20)
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plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 5 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
l ines ( xs , ys5 , type=” l ” , col=4,lwd=2)
legend ( ” t op r i gh t ” , cex =0.9 ,c ( ”EXP( lambda=5)” , ”EXP( lambda=10)” , ”EXP( lambda=15)” ,
”EXP( lambda=20)” ) , col =1:4 , l t y=rep ( 1 , 4 ) , lwd=rep ( 2 , 4 ) )

####=====pdf Rayleigh====####

f <= function (x , sigma ) {
y <= ( x/ ( sigma ˆ2))*exp((=x ˆ2)/(2*sigma ˆ2))

}

###=====lambda=c (5 ,10 ,15 ,20)
xs <=seq (0 ,55 , length=100)
ys2 <=f ( xs , sigma=5)
ys3 <=f ( xs , sigma=10)
ys4 <=f ( xs , sigma=15)
ys5 <=f ( xs , sigma=20)

plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 0 . 2 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
l ines ( xs , ys5 , type=” l ” , col=4,lwd=2)
legend ( ” t op r i gh t ” , cex =0.9 ,c ( ”Ra( sigma=5)” , ”Ra( sigma=10)” , ”Ra( sigma=15)” ,
”Ra( sigma=20)” ) , col =1:4 , l t y=rep ( 1 , 4 ) , lwd=rep ( 2 , 4 ) )

####=====pdf Weibul l====####

f <= function (x , a , kappa) {
y <= (kappa/a )* ( ( x/a )ˆ (kappa=1))* (exp(=(x/a )ˆkappa ) )

}

###=====a=1,kappa=c (5 ,10 ,15 ,20)
xs <=seq ( 0 , 1 . 5 , length=100)
ys2 <=f ( xs , a=1,kappa=5)
ys3 <=f ( xs , a=1,kappa=10)
ys4 <=f ( xs , a=1,kappa=15)
ys5 <=f ( xs , a=1,kappa=20)

plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 8 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
l ines ( xs , ys5 , type=” l ” , col=4,lwd=2)
legend ( ” t o p l e f t ” , cex =0.9 ,c ( ”WEI( a=1,kappa=5)” , ”WEI( a=1,kappa=10)” ,
”WEI( a=1,kappa=15)” , ”WEI( a=1,kappa=20)” ) , col =1:4 , l t y=rep ( 1 , 4 ) , lwd=rep ( 2 , 4 ) )

####=====pdf Gompertz====####

f <= function (x , a , b ) {
y <= a*exp(b*x=((a/b)* (exp(b*x)=1)))

}

###=====alpha =0.08 , be ta=c (5 ,10 ,15 ,20)
xs <=seq ( 0 , 1 . 5 , length=100)
ys2 <=f ( xs , a =0.08 ,b=5)
ys3 <=f ( xs , a =0.08 ,b=10)
ys4 <=f ( xs , a =0.08 ,b=15)
ys5 <=f ( xs , a =0.08 ,b=20)

plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 8 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
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l ines ( xs , ys5 , type=” l ” , col=4,lwd=2)
legend ( ” t op r i gh t ” , cex =0.9 ,c ( ”Gomp( a =0.08 ,b=5)” , ”Gomp( a =0.08 ,b=10)” , ”Gomp( a =0.08 ,b=15)” ,
”Gomp( a =0.08 ,b=20)” ) , col =1:4 , l t y=rep ( 1 , 4 ) , lwd=rep ( 2 , 4 ) )

####=====pdf Pareto====####

f <= function (x , alpha , beta ) {
y <= ( alpha* (betaˆ alpha ) )/ ( x ˆ( alpha +1))

}

###=====,a lpha=c (5 ,10 ,15) , be ta=1
xs <=seq (1 , 3 , length=100)
ys2 <=f ( xs , alpha =5,beta=1)
ys3 <=f ( xs , alpha =10,beta=1)
ys4 <=f ( xs , alpha =15,beta=1)

plot ( xs , ys2 , type=” l ” , lwd=2, xlab=”x” , ylim = c ( 0 , 3 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys3 , type=” l ” , col=2,lwd=2)
l ines ( xs , ys4 , type=” l ” , col=3,lwd=2)
legend ( ” t op r i gh t ” , cex =0.9 ,c ( ”Pa( alpha =5, beta=1)” , ”Pa( alpha =10, beta=1)” ,
”Pa( alpha =15, beta=1)” ) , col =1:3 , l t y=rep ( 1 , 3 ) , lwd=rep ( 2 , 3 ) )

####=====r a t i o mwp & gompertz====####

#No1

#gompertz
f 1 <= function (x , a , b ) {

y1 <= a*exp(b*x=((a/b)* (exp(b*x)=1)))
}

#mwp
f 2 <= function (x , lambda , alpha , beta , gamma) {

y <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )
*exp(beta*x=alpha* ( xˆgamma)*exp(beta*x)=lambda* ( 1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}

xs <=seq ( 0 , 0 . 6 , length=100)
ys1 <=f 2 ( xs , lambda=5,beta=4, alpha =1,gamma=2)
ys2 <=f 1 ( xs , a =0.8 ,b=10)

plot ( xs , ys1 , type=” l ” , main=”PDF of Gompertz & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 5 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.55 ,c ( ”MWP( lambda=5, beta =4, alpha =1,gamma=2)” ,
”Gomp( a =0.8 ,b=10)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#ra t i o
ys3 <=ys1/ys2
plot ( xs , ys3 , type=” l ” , col=” red ” , main=” Ratio o f d e n s i t i e s ” , lwd=2, xlab=”x” ,
ylim = c ( 0 , 2 ) , y lab=expression ( r a t i o ) )

#No2

#gompertz
f 1 <= function (x , a , b ) {

y1 <= a*exp(b*x=((a/b)* (exp(b*x)=1)))
}

#mwp
f 2 <= function (x , lambda , alpha , beta , gamma) {

y <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )
*exp(beta*x=alpha* ( xˆgamma)*exp(beta*x)=lambda* ( 1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}
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xs <=seq (0 , 3 , length=100)
ys1 <=f 2 ( xs , lambda=10,beta=1/16 , alpha=1/16 ,gamma=2)
ys2 <=f 1 ( xs , a=1/2 ,b=1)

plot ( xs , ys1 , type=” l ” , main=”PDF of Gompertz & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.55 ,c ( ”MWP( lambda=10, beta=1/16 , alpha=1/16 ,gamma=2)” ,
”Gomp( a=1/2 ,b=1)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#ra t i o
ys3<=ys1/ys2
plot ( xs , ys3 , type=” l ” , col=” red ” , main=” Ratio o f d e n s i t i e s ” , lwd=2, xlab=”x” ,
ylim = c ( 0 , 2 ) , y lab=expression ( r a t i o ) )

####=====r a t i o mwp & we i bu l l====

#No1

#we i b u l l
f 1 <= function (x , a , kappa) {

y <= (kappa/a )* ( ( x/a )ˆ (kappa=1))* (exp(=(x/a )ˆkappa ) )
}

#mwp
f 2 <= function (x , lambda , alpha , beta , gamma) {

y <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )
*exp(beta*x=alpha* ( xˆgamma)*exp(beta*x)=lambda
* ( 1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}

xs <=seq (0 , 5 , length=100)
ys1 <=f 2 ( xs , lambda=5, alpha=1/16 ,beta=1/16 ,gamma=2)
ys2 <=f 1 ( xs , a =1.8 ,kappa=2)

plot ( xs , ys1 , type=” l ” , main=”PDF of Weibull & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 0 . 7 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/16 , alpha=1/16 ,gamma=2)” ,
”WEI( a =1.8 , kappa=2)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#ra t i o
ys3 <=ys1/ys2
plot ( xs , ys3 , type=” l ” , col=” red ” , main=” Ratio o f d e n s i t i e s ” , lwd=2, xlab=”x” ,
ylim = c ( 0 , 2 ) , y lab=expression ( r a t i o ) )

#No2

#we i b u l l
f 1 <= function (x , a , kappa) {

y <= (kappa/a )* ( ( x/a )ˆ (kappa=1))* (exp(=(x/a )ˆkappa ) )
}

#mwp
f 2 <= function (x , lambda , alpha , beta , gamma) {

y <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )
*exp(beta*x=alpha* ( xˆgamma)*exp(beta*x)=lambda* ( 1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}

xs <=seq ( 0 , 1 . 5 , length=100)
ys1 <=f 2 ( xs , lambda=5, alpha=1/2 ,beta=1,gamma=2)
ys2 <=f 1 ( xs , a=1/2 ,kappa=2)
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plot ( xs , ys1 , type=” l ” , main=”PDF of Weibull & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 2 . 5 ) , y lab=expression ( f ( x ) ) )
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/2 , alpha =1,gamma=2)” ,
”WEI( a=1/2 , kappa=2)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#ra t i o
ys3 <=ys1/ys2
plot ( xs , ys3 , type=” l ” , col=” red ” , main=” Ratio o f d e n s i t i e s ” , lwd=2, xlab=”x”
, ylim = c ( 0 , 2 ) , y lab=expression ( r a t i o ) )

####=====r a t i o ray l e i gh=MWP=====

#No1

#ray l e i g h
f 1 <= function (x , sigma ) {

y <= ( x/ ( sigma ˆ2))*exp((=x ˆ2)/(2*sigma ˆ2))
}

#mwp
f 2 <= function (x , lambda , alpha , beta , gamma) {

y2 <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )
*exp(beta*x=alpha* ( xˆgamma)*exp(beta*x)=lambda* ( 1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}

xs <=seq (0 ,20 , length=100)
ys1 <=f 2 ( xs , lambda=5,beta=1/200 , alpha=1/200 ,gamma=2)
ys2 <=f 1 ( xs , sigma=5)

plot ( xs , ys1 , type=” l ” , main=”PDF of Rayle igh & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 0 . 1 5 ) , ylab=expression ( f ( x ) ) )
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/200 , alpha=1/200 ,gamma=2)” ,
”Ra( sigma=5)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#ra t i o
ys3 <=ys1/ys2
plot ( xs , ys3 , type=” l ” , col=” red ” , main=” Ratio o f d e n s i t i e s ” , lwd=2, xlab=”x” ,
ylim = c ( 0 , 5 ) , y lab=expression ( r a t i o ) )

#No2

#ray l e i g h
f 1 <= function (x , sigma ) {

y <= ( x/ ( sigma ˆ2))*exp((=x ˆ2)/(2*sigma ˆ2))
}

#mwp
f 2 <= function (x , lambda , alpha , beta , gamma) {

y2 <= alpha*lambda* ( x ˆ(gamma=1))*((1=exp(=lambda ))ˆ(=1))* (gamma+beta*x )
*exp(beta*x=alpha* ( xˆgamma)*exp(beta*x)=lambda* ( 1=exp(=alpha* ( xˆgamma) *exp(beta*x ) ) ) )

}

xs <=seq (0 ,50 , length=100)
ys1 <=f 2 ( xs , lambda=1/100 ,beta=1/100 , alpha=1/800 ,gamma=2)
ys2 <=f 1 ( xs , sigma=17)

plot ( xs , ys1 , type=” l ” , main=”PDF of Rayle igh & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 0 . 0 6 ) , ylab=expression ( f ( x ) ) )
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=1/100 , beta=1/100 , alpha=1/800 ,gamma=2)” ,
”Ra( sigma=17)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )
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#ra t i o
ys3 <=ys1/ys2
plot ( xs , ys3 , type=” l ” , col=” red ” , main=” Ratio o f d e n s i t i e s ” , lwd=2, xlab=”x” ,
ylim = c ( 0 , 2 ) , y lab=expression ( r a t i o ) )

####=====cd f MWP & Gompertz====

#gompertz
F1 <= function (x , a , b ) {

y1 <= (1=exp(=(=(a/b)*(1=exp(b*x ) ) ) ) )
}

#mwp
F2 <= function (x , lambda , alpha , beta , gamma) {

y2 <= (exp( lambda )/ (exp( lambda)=1))*(1=exp(=lambda* ( 1=exp(=alpha* ( xˆgamma)*exp(beta*x ) ) ) ) )
}

#No1

xs <=seq ( 0 , 0 . 6 , length=100)
ys1 <=F2( xs , lambda=5,beta=4, alpha =1,gamma=2)
ys2 <=F1( xs , a =0.8 ,b=10)

plot ( xs , ys1 , type=” l ” , main=”CDF of Gompertz & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 2 ) , y lab=expression (F( x ) ) )
abline (h=1, col=” red ” , lwd=2)
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta =4, alpha =1,gamma=2)” ,
”Gomp( a =0.8 ,b=10)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#No2

xs <=seq (0 , 3 , length=100)
ys1 <=F2( xs , lambda=10,beta=1/16 , alpha=1/16 ,gamma=2)
ys2 <=F1( xs , a=1/2 ,b=1)

plot ( xs , ys1 , type=” l ” , main=”CDF of Gompertz & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 2 ) , y lab=expression (F( x ) ) )
abline (h=1, col=” red ” , lwd=2)
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=10, beta=1/16 , alpha=1/16 ,gamma=2)” ,
”Gomp( a=1/2 ,b=1)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

####=====cd f MWP & Weibul l====

#we i b u l l
F1 <= function (x , a , kappa) {

y1 <= 1=exp(=(x/a )ˆkappa)
}

#mwp
F2 <= function (x , lambda , alpha , beta , gamma) {

y2 <= (exp( lambda )/ (exp( lambda)=1))*(1=exp(=lambda* ( 1=exp(=alpha* ( xˆgamma)*exp(beta*x ) ) ) ) )
}

#No1
xs <=seq (0 , 5 , length=100)
ys1 <=F2( xs , lambda=5,beta=1/16 , alpha=1/16 ,gamma=2)
ys2 <=F1( xs , a =1.8 ,kappa=2)

plot ( xs , ys1 , type=” l ” , main=”CDF of Weibull & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 2 ) , y lab=expression (F( x ) ) )
abline (h=1, col=” red ” , lwd=2)
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l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/16 , alpha=1/16 ,gamma=2)” ,
”WEI( a =1.8 , kappa=2)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#No2
xs <=seq (0 , 1 , length=100)
ys1 <=F2( xs , lambda=5,beta=1/2 , alpha =1,gamma=2)
ys2 <=F1( xs , a=1/2 ,kappa=2)

plot ( xs , ys1 , type=” l ” , main=”CDF of Weibull & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 2 ) , y lab=expression (F( x ) ) )
abline (h=1, col=” red ” , lwd=2)
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/2 , alpha =1,gamma=2)” ,
”WEI( a=1/2 , kappa=2)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

####=====cd f MWP & Rayleigh====

#ray
F1 <= function (x , sigma ) {

y1 <= 1=exp((=x ˆ2)/(2*sigma ˆ2))
}

#mwp
F2 <= function (x , lambda , alpha , beta , gamma) {

y2 <= (exp( lambda )/ (exp( lambda)=1))*(1=exp(=lambda* ( 1=exp(=alpha* ( xˆgamma)*exp(beta*x ) ) ) ) )
}

#No1
xs <=seq (0 ,20 , length=100)
ys1 <=F2( xs , lambda=5,beta=1/200 , alpha=1/200 ,gamma=2)
ys2 <=F1( xs , sigma=5)

plot ( xs , ys1 , type=” l ” , main=”CDF of Rayle igh & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 2 ) , y lab=expression (F( x ) ) )
abline (h=1, col=” red ” , lwd=2)
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=5, beta=1/200 , alpha=1/200 ,gamma=2)” ,
”Ray( sigma=5)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

#No2
xs <=seq (0 ,50 , length=100)
ys1 <=F2( xs , lambda=1/100 ,beta=1/100 , alpha=1/800 ,gamma=2)
ys2 <=F1( xs , sigma=17)

plot ( xs , ys1 , type=” l ” , main=”CDF of Rayle igh & MWP” , lwd=2, xlab=”x” , ylim = c ( 0 , 1 . 2 ) , y lab=expression (F( x ) ) )
abline (h=1, col=” red ” , lwd=2)
l ines ( xs , ys2 , type=” l ” , col=” purple ” , lwd=2)
legend ( ” t o p l e f t ” , cex =0.6 ,c ( ”MWP( lambda=1/100 , beta=1/100 , alpha=1/800 ,gamma=2)” ,
”Ray( sigma=17)” ) , col=c (1 , ” purp le ” ) , l t y=rep ( 1 , 5 ) , lwd=rep ( 2 , 5 ) )

####=====poso s t i a i a=====

#ray
F4 <= function (x , sigma ) {

y1 <= 1=exp((=x ˆ2)/(2*sigma ˆ2))
}

#we i b u l l
F3 <= function (x , a , kappa) {

y1 <= 1=exp(=(x/a )ˆkappa)
}

#gompertz
F1 <= function (x , a , b ) {

y1 <= (1=exp(=(=(a/b)*(1=exp(b*x ) ) ) ) )
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}

#MWP
F2 <= function (x , lambda , alpha , beta , gamma) {

y2 <= (exp( lambda )/ (exp( lambda)=1))*(1=exp(=lambda* ( 1=exp(=alpha* ( xˆgamma)*exp(beta*x ) ) ) ) )
}

#ra t i o 1
myfun1 <=F2(0 .4 ,5 ,4 ,1 ,2 ) =F2 ( 0 . 1 , 5 , 4 , 1 , 2 )
my fun1 <=F1 (0 .4 ,0 .8 ,10) =F1 ( 0 . 1 , 0 . 8 , 1 0 )

#ra t i o 2
myfun2 <=F2 ( 2 . 5 , 1 0 , 1/16 ,1/16 ,2)=F2 ( 0 . 5 , 1 0 , 1/16 ,1/16 ,2)
my fun2 <=F1 ( 2 . 5 , 1/2 ,1)=F1 ( 0 . 5 , 1/2 ,1)

#ra t i o 3
myfun3 <=F2 (4 ,5 ,1/16 ,1/16 ,2)=F2 (0 ,5 ,1/16 ,1/16 ,2)
my fun3 <=F3(4 ,1 .8 ,2)=F3 ( 0 , 1 . 8 , 2 )

#ra t i o 4
myfun4 <=F2 ( 1 . 3 , 5 , 1/2 ,1 ,2)=F2 ( 0 . 3 , 5 , 1/2 ,1 ,2 )
my fun4 <=F3 ( 1 . 3 , 1/2 ,2)=F3 ( 0 . 3 , 1/2 ,2)

#ra t i o 5
myfun5 <=F2 (16 ,5 ,1/200 ,1/200 ,2)=F2 (1 ,5 ,1/200 ,1/200 ,2)
my fun5 <=F4(16 ,5)=F4 (1 , 5 )

#ra t i o 6
myfun6 <=F2(40 ,1/100 ,1/100 ,1/800 ,2)=F2(15 ,1/100 ,1/100 ,1/800 ,2)
my fun6 <=F4(40 ,17)=F4 (15 ,17)
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