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1. Introduction 

 

At the beginning of the 20th century, the Russian mathematician A. A. 

Markov, in an attempt to explain the "uncertainty" in the alternation of vowel and 

consonant letters in Pushkin's poem "Onegin", introduced the theory of Markovian 

processes. In 1957, Bellman introduced the theory of dynamic programming. He 

developed a retrospective procedure that calculates optimal values of profit or cost 

functions through an appropriate function equation. Dynamic programming is 

used in finite or infinite time horizon problems in which a stochastic process is 

controlled by a sequence of actions. 

The main goal is to find a rule of selection of actions that controls the 

process in the optimal way. Markovian decision processes were introduced by 

Bellman and were the result of a combination of Markovian process theory and 

dynamic programming. 

Over the last four decades they have been the subject of research by many 

researchers. They have found application in various fields of science, such as 

Business Research, Biology, Ecology and Informatics. In particular, they have been 

proved very useful in problems of optimal inventory control, optimal control of 

queues and biological populations, optimal maintenance and replacement of 

machinery, optimal management of networks and telecommunications. 

Systems that evolve over time with "randomness" as the main feature of 

their evolution, are called stochastic dynamic systems. 

In this chapter the basic elements of the theory of stochastic programming 

potential are presented, by introducing the Markovian decision processes at a 
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discrete time. Various models in finite time horizon problems will be described 

and analyzed. 

1.1. Epidemics in the history of mankind  

 

The history of epidemics is very fascinating and must be taught. The earliest 

reference to a possible epidemic, probably a plague epidemic, is found in the Bible. 

The plague is described as a plague that struck the Philistines because they had 

stolen the ark of the covenant from the people of Israel. So the Philistines were 

punished for their sin. These events date to about the second half of the 11th 

century BC. 

 

1.1.1. The Black Death 

 

The most well-known case of an epidemic is Black Death. It was one of the 

most devastating pandemics in human history. The first official records of the 

pandemic began in October 1347, when Genoese merchant ships from the port of 

Kafa on the Black Sea, which approached the port of Messina in Sicily full of the 

dead and dead, transmitted the disease to Europe. This disease had two forms: 

inguinal (or septic) and pulmonary. It was transmitted instantly and aided by poor 

hygiene, lack of medical knowledge of the time and the ensuing superstitious 

preventions, at the beginning of 1348 it had already spread from Italy, throughout 

central France, until the winter of the same year in southern England and, then to 

the Netherlands. The epidemic resulted in the loss of almost a third of Europe's 

population. Its total human toll is estimated at 75 to 100 million dead in Europe 
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and Asia. The epidemic struck again in the following years of the 14th century, 

with short breaks, thus completely reversing the demographic growth that had 

occurred in the middle of the 13th century. The world population returned to the 

levels before 1347 only in the 17th century. 

 

1.1.2. The plague of Athens 

 

An epidemic that many researchers have been dealing with for a very long 

time is the plague of Athens (430-428 BC) which is described in great detail by 

Thucydides. It reports the symptoms and the progression of the disease that 

resulted in the death of 1050 of the 4000 soldiers in a campaign. A plague so great 

(like this) and with such catastrophic consequences that it had no equal in human 

history. This is how Thucydides described -in the history of the Peloponnesian 

War- the epidemic that broke out in Athens and changed the military balances in 

the long Athens-Sparta war. Historians argue about the nature of the disease, with 

some arguing that it was typhus or chickenpox, and we may never know what 

really struck the people of Athens. Thucydides traced the roots of the plague to 

Ethiopia and estimated that the epidemic wiped out about one-third of the 

population of Athens, with the city's troops receiving an irreparable blow. 

 

1.1.3. The plague of Justinian 

 

At a time when the armies of the almighty Byzantine emperor Justinian 

were reviving the old glory of the Roman Empire by reclaiming lost lands, an 

internal enemy was showing its scary teeth: circa 540 AD. an unknown disease 
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born of the rodents of Egypt was transported by ships to Constantinople. The 

plague is estimated to have killed 5,000 people a day, wiping out about half the 

city's population. The pandemic, however, was not limited to the walls of 

Constantinople, but spread to Europe and Asia and was the deadliest epidemic of 

antiquity. Fifty years after its first manifestation, 25-100 million people had lost 

their lives. 

 

1.1.4. The third plague pandemic 

 

In the 1850s, China's Yunnan Province was set to become the gloomy setting 

for the third (and last) plague pandemic to hit the world. Infectious fever affected 

the inhabitants of the area, killing tens of thousands, while around the end of the 

19th century the epidemic spread to the surrounding areas (Hong Kong, India, 

South Africa, Ecuador, San Francisco, etc.), with devastating consequences. : 12 

million people would lose their lives. However, the scientific knowledge 

developed by the doctors' fight against the disease ensured that the world would 

never see a fourth plague pandemic in its history. 

 

1.1.5. The first cholera pandemic 

 

Cholera has plagued humanity for centuries, with Hippocrates implying it 

in his medicine, but it was for a time limited to the Ganges Delta in India. In 1817, 

however, travelers transmitted the disease, through trade routes, throughout the 

country and the neighboring areas now occupied by Burma and Sri Lanka. "Asian 

cholera", as it was called in the West (which had not been hit by cholera until 1830) 
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claimed the lives of thousands, and eventually hit the Philippines and Iraq, where 

18,000 people died in the first three weeks of the epidemic. "Asian cholera" was 

the first of the 7 cholera pandemics that would break out on the planet. 

 

1.1.6. The polio epidemic of 1916 

 

Paralytic disease has infected thousands in America, killing more than 6,000 

people. The 1916 polio pandemic counted 9,000 cases in New York alone, which 

led to quarantine throughout the United States. Polio, however, was to haunt 

America for decades, with 25% of patients dying. And people had to wait until the 

1950s for the vaccine to be developed by Jonas Salk. 

 

1.1.7. The yellow fever of Memphis 

 

In 1878 thousands of Cubans fled their homeland as a result of the country's 

ten-year war for independence from Spain. On their trip to America, however, 

they inadvertently carried the yellow fever. New Orleans was the victim of the 

first yellow fever epidemic known to the New World, with the disease ascending 

the Mississippi River and spreading to Memphis. By the end of the year, more than 

5,000 Memphis residents had lost their lives, and the total loss in the Mississippi 

Valley was 20,000. 
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1.1.8. The flu pandemic of 1918-1919 

 

World War I had a serious contender for lethality: the "Spanish flu," as it 

goes down in history. The flu crisis has killed tens of millions and infected about 

1/3 of the world's population. The victims of the virus died quickly and painfully. 

Even the law on mandatory masks in public places failed to curb its deadly action. 

Autopsies of the corpses struck by the "Spanish flu" showed that the lungs of the 

dead were full of fluid. Patients actually died from drowning. 

 

1.1.9. The COVID-19 pandemic 

 

For a year now, COVID-19 has been sweeping the globe, causing more than 

1.89 new deaths. Greece until the night of Thursday 14.01.2020 counted 5,387 

human losses. On the occasion of the pandemic, the interdisciplinary collaboration 

contributed to the timely emergence of the large clinical study "Solidarity", 

conducted under the auspices of the World Health Organization (WHO), that 

hydroxychloroquine and the combination of lopinavir / ritonavir efficacy, were of 

no benefit to inpatients. Similarly, other clinical studies have shown that only 

dexamethasone and secondarily remedisivir have been shown to be effective 

against severe COVID-19 disease. In addition, ongoing clinical trials are 

evaluating the efficacy and safety of innovative therapies, such as plasma delivery 

from recovering patients with active COVID-19, as well as specific monoclonal 

antibodies. In November, the US Food and Drug Administration (FDA) approved 

emergency use of the monoclonal antibody vamlanivimab in the treatment of mild 

to moderate COVID-19 infection in adult and pediatric patients, as well as a 
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combination of monoclonal antimicrobials and treatment of mild to moderate 

infection. Monoclonal antibodies appear to be effective in the early stages of the 

disease, in untreated patients, especially those over 65 years of age and those with 

comorbidities, in order to prevent serious disease and complications. 

Although COVID-19 is a mild disease in over 85% of cases, with a total 

mortality of 0.2% -1%, in 5% of patients with severe disease, causes an attack on 

many organs. In the envelope of the virus there are spikes (protein S) which attach 

to the receptors of the angiotensin converting enzyme type 2 (ACE 2) and in this 

way the virus enters the body and causes the corresponding symptoms. ACE 2 

receptors are present in the cells of the respiratory tract (sore throat, cough, 

dyspnea, pneumonia), myocardium (heart failure, myocardial damage), kidneys 

(acute renal failure), upper and lower digestive tract (nausea), nausea, nasal 

mucosa (anosmia) and other tissues. In severely ill patients, however, what causes 

the collapse of all vital systems and organs occurs suddenly, while the patient is 

hospitalized, is the "cytokine storm syndrome", an overreaction of the body's 

defense systems that inexplicably turns indistinguishably against the virus, but 

also against the organism itself, resulting in severe damage to vital organs. The 

body produces and mobilizes cytokines when it is in a state of war. Inadequate 

and excessive, however, their overproduction and overactivation causes toxicity 

and damage to vital organs and systems. 

The safe and effective vaccine is only one way to provide effective 

immunity to the general population against COVID-19. That is why the Pfizer / 

BioNTech and Moderna vaccines have received an emergency authorization 

(EUA) from the FDA. These vaccines have gone through all the testing stages done 

for each vaccine before they get marketing authorization. Specifically, they have 

been tested in the so-called Phase 3 placebo trials (placebo). These tests were 
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performed on a group of 30,000 to 60,000 people, the more groups being tested 

with each vaccine. Indicatively, human papillomavirus vaccine trials were 

performed on 30,000 people and pneumococcal vaccine trials on 35,000 people. 

Therefore, similar procedures were initiated quickly, COVID-19 vaccines have 

been tested in as many individuals as any other vaccine. And what these tests have 

shown is that there is no such thing as an unusual, serious side effect. Obviously, 

someone cannot know for sure if there are any new rare, serious side effects until 

after the release of these vaccines. Exactly the same, however, applies to any 

medical product! It is understandable that people are hesitant about the vaccine 

now that it is available. But safety is a top priority and reinforces the many reasons 

why they should trust vaccination. 

Effective response to the pandemic must focus on controlling the spread of 

the virus beyond treatment protocols and safe and effective vaccines. Control of 

the spread of the virus is based on the basic observance of the usual public health 

measures with social distancing, the extensive and correct use of a mask and the 

observance of hygiene measures. At the same time, the extensive use of diagnostic 

tools (molecular and antigenic tests) contributes to the rapid diagnosis of patients, 

their isolation and the investigation and quarantine of contacts, while their 

sampling application to the public provides epidemiological evidence for 

community dispersal and reception control measures. At this stage, efforts to treat 

SARS-CoV-2 infection aim to stop the virus from multiplying and the immune 

response, which is often excessive and self-destructive. The treatment strategy of 

the disease has been based on these pillars, with the search for an effective antiviral 

drug and the appropriate immunomodulatory intervention in the necessary time. 

However, the most important moment for the final treatment of the pandemic will 
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be the universal application of vaccination, aiming to cover 60% -70% of the total 

population. 

Until the beginning of August 2021, more than 4.5 million deaths have been 

confirmed worldwide. There is considered to be an incomplete report of cases, 

especially in cases with milder symptoms (Li et al.,2020; Sun et al.,2020). 

The epidemiological analysis of the event showed a possible pattern of a 

"mixed outbreak" - there was probably a continuous common outbreak in the Juan 

Seafood Market in December 2019, possibly due to various zoonotic events (China 

CDC Weekly,2020; Novel Coronavirus Pneumonia Emergency Response 

Epidemiology Team,2020). After that, epidemiologists determined that the 

outbreak was most likely a source (transmitted from person to person), possibly 

due to the virus's ability to mutate (Wang  et al.,2020;Li et al.,2020).Therefore, as 

the number of cases has increased, the importance of the market has decreased (Li 

et al.,2020). 

Until March 13th, more than 5,300 deaths had been attributed to COVID-

19. According to the China National Health Center, most of those who died were 

elderly patients - about 80% of the deaths recorded were over the age of 60 and 

75% had pre-existing health conditions such as cardiovascular disease and 

diabetes (The New York Times ,2020).The mortality rate of cases is estimated at 

about 2-3% (World Health Organization,2020). 

The first confirmed death was in Uhan (Holm et al.,2020). The first death 

outside China occurred in the Philippines (Ramzy et al.,2020; NBC News,2020), 

and the first death outside Asia was in Paris. 

The ability to predict the evolution of an epidemic is based on the use of 

mathematical models. Perhaps the most popular concept in this science is the key 
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reproduction number, the Rt index, which tells how many people each virus 

carries. If it is more than 1, then the epidemic spreads because more cases are 

produced than are treated. If it is below 1, then the epidemic is eradicated because 

more cases are treated than those infected. Mathematical epidemiological models 

estimate this number from many sources, such as numbers of diagnoses, 

hospitalizations, intubations, and deaths, but also how long it takes for the 

infection to show symptoms. But there is another category of epidemiological 

models that aims to draw conclusions about the course of the epidemic in the long 

run, for example in 3 weeks or 3 months. These crown models fail in the case of 

coronavirus. This is due to several factors, the main one of which is the 

phenomenon of over-transmission: most infections are due to a small number of 

people and under very specific conditions. Thus, the epidemic course does not 

behave in a homogeneous way, as the models assume, but depends significantly 

on the fulfillment of over-transmission conditions. Simply put, the epidemic 

behaves in the long run like meteorological phenomena, chaotic. Therefore, good 

short-term forecasts can be made, but long-term forecasts fail. 

Last March the world forcibly entered a new daily routine in hospitals and 

had to change the way they are organized and operate. Doctors had to get 

acquainted with the personal protection measures and be strict in their 

implementation, to devise ways of remote monitoring of patients. It all happened 

thanks to their ingenuity and donations of appropriate equipment. It was very 

difficult because they did not know how the disease behaves. They succeeded by 

applying the "good clinical practice" that they have been following for so many 

years in the treatment of the seriously ill. They now have experience, organization 

and knowledge about the course of the disease, although it never ceases to amaze 

them. Unfortunately, however, there is accumulated staff fatigue. 
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The pandemic has tragically highlighted the shortcomings in the NSS. The 

country was found with many young doctors working abroad and the region's 

hospitals understaffed, especially in front-line specialties such as Pulmonology, 

Pathology and nursing staff. Hundreds of patients with respiratory failure were 

treated in hospitals. The few physicians and the few pulmonologists and intensive 

care physicians heroically undertook the difficult task of supporting these patients. 

However, the pulmonology clinics in the country's hospitals are minimal and the 

pulmonologists are almost completely absent from the lists of auxiliary curators. 

A constant request of the Hellenic Pulmonary Society in recent decades has been 

the creation of pulmonology clinics in all hospitals in the country. The pandemic 

has violently shown the priorities that need to be addressed immediately, so that 

new doctors stay in the health system permanently and old students return to an 

attractive academic and health environment. The pandemic must leave a staffed 

and structured health system. 

Nurses all these months experienced situations unprecedented. It was very 

positive that there was timely information from the competent bodies regarding 

the characteristics of the virus and the ways of its transmission. Thus, there was 

the possibility of preparing the medical staff, in a way that ensured the protection 

and safety of both themselves and the patients. They were called to follow the 

rapid spatial adjustment, in order to create clinics and units for patients with 

coronavirus, but also the urgent need for reorganization of staff as well as training 

in order to ensure the proper staffing of the newly established nursing 

departments. Loss of human life is a painful situation, whether for patients or the 

medical staff. Of course, in the second case, the management may be more 

difficult, due to the intense emotional charge. Nurses as human beings can bend, 

but as health professionals stand up and fight for all those who need them. 
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Chronic patients, most of whom belong to vulnerable groups, were 

naturally more affected by all social groups, experiencing fear, insecurity, anxiety 

and uncertainty. 78% of the patients who participated (a total of 2,354 people) in 

the study conducted by the Hellenic Patients 'Association on the effect of the 

pandemic on patients' access to the health system stated that they experienced 

stress or anxiety. 65% said they had a problem accessing the health system, 29% 

canceled an appointment and 26% had trouble communicating with their doctor. 

19% of patients did not seek medical attention at all, fearing possible exposure and 

infection with the virus. It is certain that late care will affect the outcome of most 

chronic diseases and should be treated as an additional burden on the health 

system. The Patients' Association of Greece very quickly adapted its actions to the 

new conditions. The "TOGETHER" helpline started operating at the beginning of 

April, which has so far served more than 2,600 beneficiaries. At the heart of its 

actions is the defense of patients' rights, such as safe access and supply of 

medicines, prescriptions, special purpose licenses, as well as the submission of 

proposals for the upgrade of the health system. 

The more the pandemic hit the body, the more it hit the human soul. 

According to statistics from the operation of the Psychosocial Support Line 10306, 

in lockdown conditions stress and fear for the coronavirus (82%), insecurity for 

tomorrow financially and personally (70%) and the feeling of isolation and fatigue 

(65%). There is growing anger and sadness about rising deaths. One in 3 report 

some form of depression and 31% increased anxiety, while 10% of callers suffer 

from a mental disorder. The government acted swiftly and decisively to provide 

psychological support to those affected by the pandemic. In addition to Line 10306, 

which operates as a free communication channel, anonymously and 

confidentially, staffed by trained and experienced mental health professionals, 
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psychological and psychosocial support programs are being developed through a 

telemedicine and teleconsultation platform. There is also a system being created 

for the protection and empowerment of addicts who are at risk due to a pandemic 

with the contribution of KETHEA and OKANA. A parallel goal of this initiative is 

to inform and raise awareness of drug addicts about coronavirus protection 

through streetworkers networks. 

The Coronavirus Epidemic 2019 (COVID-19) is a current pandemic caused 

by the SARS-CoV-2 coronavirus and was first identified in Wuhan, the capital of 

China's Hubei Province, in December 2019. (World Health Organization,2020). To 

date, more than 113 million cases have been confirmed in 215 countries and 

regions, more than 2.51 million deaths from the disease have occurred, and more 

than 89 million people have recovered. 

The virus is transmitted between people through droplets produced when 

they sneeze or cough. The time between exposure and onset of symptoms is 

usually 2 to 14 days. Symptoms may include fever, cough, and difficulty breathing 

(Rothan et al.,2020), while scientific research suggests that possible loss of taste 

and smell are complementary signs of viral infection. Complications may include 

pneumonia and acute respiratory distress syndrome. 

 

1.2. Markovian decision-making processes at discrete time 

 

Let a stochastic process Xn, n=0,1,2,… where the random variable Xn 

represents the state of a system at a time n. All the states of the system are finite or 

infinite numbered. Assume that it is the sum of the non-negative integers 0,1,2,... 

The system is inspected at the time points of t=0,1,2… which we consider to be 
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equidistant from each other. The state of the system is observed at each time of 

inspection and an action is selected from a set of alternative actions. If there is a 

fixed integer N ≥ 1 such that the actions for the control of the system are selected 

at the time points 0,1,2,…N-1 and the process stops at the time point, N then it is 

said that a system of finite time horizon of N steps is examined. Otherwise, if the 

total action selection time points set is infinite, then the system is considered to be 

a system over an infinite time horizon.  

Suppose the ongoing stochastic process, Xn, n=0,1,2…, is observed at the 

time points t =0, t=1,… t=N-1, t=N. Suppose that at some time of inspection t, the 

system is in state i and action a is selected from a set of alternative actions A(i). It 

is assumed that the set A(i)) for each state i is finite. 

 The system described above is a Markov decision process in discrete time 

if: 

(a) There is a cost C(i,a) which depends only on state i and action a as an economic 

consequence of the choice of action a the time at which the system is in state i. 

(b) The next time point the system’s state is j with probability pij(a) which depends 

only on action a and states i and j. 

 The term "Markovian" is justified by the fact that the cost C(i,a) and the probability 

of transition pij(a) depend on the "past" of the process only through the current 

state i of the process and the action a selected in state i.  

A policy π is a rule by which actions are selected at time points n = 0,1,2…. There 

are different types of policies. Their classification depends on whether or not they 

are "randomized" as well as on whether they depend on the "history" of the 

process. By "random" we mean that policy according to which, when the process 

is in state i, an action a is selected with probability, Pα,α ∈ Α(i) at some point in 



18 

 

time of action selection. Stationary policies are of particular interest due to the 

simplicity of their definition. A stationary policy is a policy according to which the 

choice of an action at any time point t=0,1,2,… depends only on the state of the 

process at that time point. Therefore a stationary policy f is completely determined 

by a sequence {fi}, i=0,1,2,… where fi ∈ A(i) is the selected action whenever the 

procedure is in state i at an time point of an  action’s selection. 

The real problem is to find the policy that, for each initial state of the process, 

minimizes a predetermined cost function. The cost function defines the optimality 

criterion of the problem. The most commonly used optimization criteria are the 

minimization of total expected (deflated) cost and the minimization of long-term 

expected average costs per time unit. 

The interest is focused in a finite time model using the criterion of minimizing the 

total expected cost. 

 

1.3. Finite time horizon models 

 

Suppose we observe and inspect a system at the times t =0,  t=1,…,t=N-1, t=N. 

Assume that if at some time point the system is, for example, in state i,  then an 

action (decision) α ∈ A(i) can be chosen and that, under the influence of this action, 

the state of the process at the next time point of its inspection is the state j with a 

probability of pij(α). This transition entails a cost, the average (expected) value of 

which is equal to C(i,α,). For each state i, the total A(i) of actions (or decisions) is 

considered finite. 

The problem is to find the policy, ie a rule of actions choice, which minimizes the 

expected cost which is received from the time point  t=0 to t=N.  Let V(i,t), t=0,…,N  
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minimum cost from time point  t to N,  if the system at time t is in state i. If  t=N it 

is obviously true that:  

If t=N-1, 

 

𝑉(𝑖, 𝑁 − 1) = min
𝑎∈𝐴(𝑖)

𝐶(𝑖, 𝑎) 

 

Which means that at the time point t=N-1 the optimal policy selects that action that 

minimizes the right part of the forementioned relation. 

Suppose that at time t the system is in state i and an action α is selected. Then the 

cost is C(i,α) and the next state is j with probability pij(α). The best that can be 

achieved in terms of expected cost if at time t an action α is chosen the best cost 

achieved is : 𝐶(𝑖, 𝑎) + ∑  𝑗 𝑝𝑖𝑗(𝑎)𝑉(𝑗, 𝑡 + 1).  Since V(i,t) is the best to be achieved it 

holds that: 

 

𝑉(𝑖, 𝑡) = 𝑚𝑖𝑛
𝑎∈𝐴(𝑖)

  [𝐶(𝑖, 𝑎) +∑  

𝑗

𝑝𝑖𝑗(𝑎)𝑉(𝑗, 𝑡 + 1)] 

 

The forementioned Equation is known as the dynamic programming equation or 

optimization equation and provides a method for calculating the V(i,0) reductive. 

First the quantity V(i,N-1) is calculated  using the relation  

𝑉(𝑖, 𝑁 − 1) = min
𝑎∈𝐴(𝑖)

𝐶(𝑖, 𝑎).  Then for t=N-2, the V(i,N-2) can be calculated and 

repeating the same process (N-2) times the calculation of V(i,0) is achieved. 
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The optimal policy is as follows: When the procedure is at time t=N, N-1,…,1, in 

state i, then the action that maximizes its right part of the forementioned relation 

is selected. The above claim can be proved by induction with respect to t. 

 

1.4. Some examples of finite time horizon models 

 

Let a population of people who can be infected with two communicable diseases. 

Assume that the total population size is N and that at most one person can be 

affected by one of the two diseases. Consider the two diseases to be in competition 

in the sense that if one person is infected with disease r (r=1,2) remains infected 

with this disease and cannot be infected by the other. 

 Disease transmission stops when the total number of people infected with 

diseases 1 and 2 equals with N, which is believed to certainly happen in finite time. 

The transitions of the epidemic process are: 

 

(𝑥, 𝑦) → (𝑥 + 1, 𝑦) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
𝑐1𝑥

𝛼

𝑐1𝑥
𝛼 + 𝑐2𝑦

𝛽

(𝑥, 𝑦) → (𝑥, 𝑦 + 1) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
𝑐2𝑦

𝛽

𝑐1𝑥𝛼 + 𝑐2𝑦𝛽

 

 

Where c1, c2, α, β, positive constants. The variable x represents the number of 

people infected with the disease 1 and the variable y represents the number of 

people infected with the disease 2. The positive real numbers α and β can be 

attributed to the term "infectious power" 1 and 2, respectively, and justify it as 

follows. 
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If the spread of a communicable disease in a population of susceptible individuals 

depends more on whether a susceptible person is susceptible to the disease and 

less on whether a person infected with the disease can transmit it to the rest of the 

population, then the rate at which new people will be infected with the disease 

does not particularly depend on the number of people who have already been 

infected with the disease. 

In this case it can be assumed that the “infectious power” of diseases 1 and 2 is low 

and the positive real numbers α and β take values close to Zero. In the opposite 

case, in which the infectious power of diseases 1 and 2 is high, it can be considered 

that parameters α and β take values >1. In this case the epidemics spread to the 

population at a very fast pace. 

Suppose that disease 1 causes serious symptoms in a person who has been infected 

with it and reduces his productivity. The presence of a person infected with the 

disease 1 brings some costs to society which is considered to be stable and equal 

to the unit. Assume that disease 2, compared to disease 1, is less harmful to a 

person infected with it. It is believed that the presence of a person infected with 

the disease 2 does not bring any cost to society. 

The control of the epidemiological process at any time can be carried out by 

selecting an action. Consider that one action, which can control the process at any 

time, is to vaccinate against the mild disease 2 any number of susceptible 

individuals that have remained in the population and have not been affected by 

either disease. It is considered that vaccinating a person with mild illness 2 incurs 

a cost that is equal to K> 0. 

Another action that is also considered to be able to control the epidemic process at 

any time is to isolate some or all of the people who have been infected with the 
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serious disease 1. It was assumed that isolating a person with a serious illness 1 

incurs a cost equal to L>0. 

We are concerned with finding that policy which, for any initial state of the 

epidemic process, minimizes the total expected cost. Because the procedure 

considered that stops when the total number of people affected by diseases 1 and 

2 equals to N, the problem of finding the optimal policy is a finite horizon problem. 

The epidemic procedure described above finds possible application in the case of 

the well-known spinal cord disease, polio. Disease 1 can be considered as the 

severe form of polio while disease 2 can be considered as its mild form. 

The following ecological interpretation can also be attributed to the epidemic 

process. Consider two species of living organisms that grow in a habitat that has a 

maximum capacity of N. Type 1 is considered to be a parasite whose presence is 

harmful. The presence of a parasite incurs a cost that is constant and equal to the 

unit. Type 2 is considered to be a mild species, the presence of which is harmless. 

The presence of a mild species does not incur any costs. Consider policies that 

control the growth of living organisms in the habitat at all times, either by 

intentionally introducing mild species or by isolating or removing any number of 

pests from the habitat. Intentionally introducing a mild species incurs a cost equal 

to K> 0 while isolating or removing a parasite incurs a cost equal to L> 0. 

For each situation (x,y) of the epidemic procedure, let V(x,y) be the minimum 

expected cost and W(x,y) the minimum expected cost when the process takes place 

according to the probabilities given in the forementioned relations  and then the 

best policy is adopted. 
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As far as the process stops when x+y=N, the optimization equation for the problem 

of minimizing the total expected cost over a finite time horizon takes the following 

form: 

 

𝑉(𝑥, 𝑦) = 𝑚𝑖𝑛{𝐾 + 𝑉(𝑥, 𝑦 + 1),𝑊(𝑥, 𝑦)},0 < 𝑥 + 𝑦 < 𝑁
 

where 

𝑊(𝑥, 𝑦) =
𝑐1𝑥

𝛼

𝑐1𝑥𝛼 + 𝑐2𝑦𝛽
[1 + 𝑉(𝑥 + 1, 𝑦)] +

𝑐2𝑦
𝛽

𝑐1𝑥𝑎 + 𝑐2𝑦𝛽
𝑉(𝑥, 𝑦 + 1),0 < 𝑥 + 𝑦 < 𝑁

 

 

And  

 

𝑉(𝑥, 𝑁 − 𝑥) = 0,0 ≤ 𝑥 ≤ 𝑁 

 

When the procedure is in the (x,y) state and the inequality 𝐾 + 𝑉(𝑥, 𝑦 + 1) <

𝑊(𝑥, 𝑦) is valid, then the optimal policy is to choose action (ii), ie to vaccinate in 

mild illness 2 one of the susceptible individuals who have been remained in the 

population and have not been affected by either of the two diseases. In this case 

the procedure goes to the state, (x, y+1). 

When the process is in the state (x,y) and the inequality 𝑊(𝑥, 𝑦) ≤ 𝐾 + 𝑉(𝑥, 𝑦 +

1)is valid  then the optimal policy selects action (i), ie it does not proceed in the 

development of the epidemic process. 

The forementioned equations allow to calculate numerically the minimum 

expected cost V(x,y) for each state (x,y) of the process for which 0 <x + y <N. In 

addition, they determine the action chosen by optimal policy for each situation 

(x,y),0<x+y<N. 
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The minimum expected cost is calculated sequentially for the states (1,N-2), (2,N-

3),…(N-1,0), (1,N-3),…(N-2,0),…,(1,0) from the equations  referred above 

retrospectively. 

A numerical example is shown below. Consider the case in which N=10, K=1, α=2, 

β=1, c1=1.5 and c2=1.  
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2. Basic Epidemiological Models 

 

2.1. Modelization in Epidimiology 

 

Modelization an epidemic is a complex phenomenon. The creation and 

spread of an infection is determined by various factors such as the environment in 

which the virus is located and grows, the population exposed to it, and the 

dynamics of the population being studied. The role of mathematics in 

epidemiology is to model the creation and spread of a virus. 

To achieve this, scientists follow a method by which the population is 

divided into smaller groups or compartments depending on individuals’ 

vulnerability to the virus that develops in the system. These models are called 

dividing models in epidemiology and contribute to the understanding of the 

systems by which the virus operates. The most well-known compartments in each 

epidemic model are the susceptible S, the infectious I and the recovered R. For 

example in models containing only compartments S and I, the population N is 

initially divided only into these compartments. S represents people who are 

healthy but susceptible to infection and I represents people who are infected but 

able to recover. From this separation of the two groups S and I in the population 

comes the simplest epidemic model SI. Then of course the segregation can become 

particularly rich and there may be additional groups of the population. 

In different models, individuals can move randomly from one 

compartment to another at a certain rate rather than in a deterministic way, as 

stochastic models can better capture the dynamics of the spread of an infection. 

Studying the SI model it is observed that healthy individuals can move randomly 
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from compartment S to I at a rate of infection resulting from interactions with 

infected individuals. Accordingly, infected individuals can move from 

compartment I to S at some rate of recovery and this is a result of recovery from 

infection. As mentioned above, in addition to the models with only two 

compartments, there are other epidemic models that record more features of a 

disease. This is achieved by adding more compartments, such as R representing 

individuals who are no longer prone to infection. This compartment can symbolize 

the dead, the vaccinated or the immunized individuals. Next the focus is done on 

epidemic models, susceptible-infected-sensitive SIS and susceptible-infected-

recovered SIR models. 

 

2.2. Introduction to Epidemic Models  

 

Epidemic models aim to predict the evolution of epidemics. Mathematical 

models of this kind are particularly important, as epidemics are the leading cause 

of death worldwide. Infections cause millions of deaths each year, mainly in 

developing countries (Zhou & Liu 2003). Thus, these models play an important 

role in predicting the effect of infectious diseases. Mathematical modelization can 

contribute to a better understanding of the spread of infectious disease and of 

control policies testing (Meyers, 2007; Kao, 2002).  

Moving on to the historical development of mathematical epidemiology, in 

1911 Ross's simple epidemic model was presented and followed in 1927 Kermack-

McKendrick's simplest epidemic SIR model proposed to explain the rapid rise and 

fall in the number of infectious diseases observed in epidemics such as the plague 

(London 1665-1666, Bombay 1906) and cholera (London 1865).  
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Although vaccination can be given for many infectious diseases, they will 

continue to plague many people and cause death, especially in developing 

countries. In developed countries, chronic diseases such as cancer and heart 

disease receive more attention than infectious diseases, which however cause the 

most deaths in the world. Recently, the HIV virus that causes AIDS has become a 

very important infectious disease in developing as well as in developed countries. 

The mechanism of transmission of an infectious disease from one infected 

person to another susceptible person is understood for almost all infectious 

diseases and it is also known how diseases spread through a chain of transmission 

of infections. The interaction of transmission in a population is quite complex and 

so it is very difficult to understand the dynamics of the spread of an infectious 

disease without knowing the typical structure of the corresponding mathematical 

model. An epidemiological model uses the microscopic description, that is, the 

role of an infected person, to predict the macroscopic behavior of the spread of the 

disease across the population. 

In many sciences it is possible to conduct experiments to obtain information 

and to test hypotheses. Experiments with infectious diseases that spread to human 

populations are usually impossible, immoral, or very expensive. The information 

available is usually from epidemics that occur naturally without human intent and 

are usually inadequate due to lack of information. This lack of reliable information 

makes accurate estimation of the displayed parameters difficult and therefore only 

a range of values can be estimated for some parameters. 

Since repetitive experiments and reliable data are not available in 

epidemiology, mathematical models and computer simulations will be used to 

conduct the necessary theoretical experiments. Thus, calculations can be made for 

a variety of values of variables and initial conditions. 
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Mathematical models have some limitations but also possibilities that must 

be taken into account. Many times the questions cannot be answered using 

epidemiological models, but other times the researcher can achieve the right 

combination of available data, interesting questions and a mathematical model 

and, thus, lead to answers. 

Comparisons and comparisons can lead to a better understanding of the 

process of transmitting an infectious disease. Modeling can be used to compare 

different diseases in the same population or the same disease in different 

populations or the same disease in different time periods. 

Epidemiological models are also useful for comparing the effects of a 

possible outbreak prevention attempt or control of the disease transmission 

process. These models are usually the only practical approach to answering the 

question of which prevention or control process is most effective. 

Quantitative predictions of epidemiological models involve uncertainty as 

the models are usually ideal, with many simplifications and assumptions, since 

many parameter values can only be estimated and not accurately measured. 

However, the predictions for the relative validity of the various control methods 

are usually reliable and strong in the sense that we come to the same conclusions 

for a wide range of parameter values but also for a variety of models. Optimal 

vaccination strategies can theoretically be found using models. 

Longini et al., (1978) used an epidemiological model to decide which age 

group to be vaccinated first to minimize the cost or number of deaths in a flu 

epidemic. Certainly, more information about the effectiveness of the vaccine as a 

function of time will be needed to be able to estimate the age at which the vaccine 

should be given to achieve optimal results. So epidemiological models can help to 

get this useful information. 
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An underestimated value of epidemiological models is that they lead to 

clear assumptions about the biological and social mechanisms by which the 

disease spreads. The values of the parameters used in the epidemiological models 

must have a clear correlation with indisputable physical quantities, such as the 

rate of interface or reproduction of the disease, ie the rate at which an infected 

person transmits the disease to another susceptible person. the duration of the 

disease, the incubation time of the disease coke. 

The models can be used to estimate many quantitative assumptions. For 

example, one model could test the hypothesis that AIDS would be reduced if a 

large percentage of the heterosexual, sexually active population used systemic 

condoms. Models can also predict the spread or eradication of a disease. For 

example, Heathcote (2000) predicted that rubella and congenital rubella syndrome 

would eventually disappear from the US because the level of vaccination (using 

the combination of measles - mumps and rubella vaccine) is well above the 

threshold required to acquired immunity to measles. An epidemiological model 

can also be used to determine the sensitivity of forecasts to changes in parameter 

values. Once the values of the parameters that have the greatest influence on the 

forecasts are determined, it will then be possible to carry out studies to better 

estimate these parameters. 

In this chapter some types of epidemic models, which are analyzed by three 

different stochastic modeling processes, will be examined. The first model is 

described by the Discrete Time Markovian Chain (DTMC), the second model by 

the continuous time Markovian chain (CTMC) and the third model by the 

stochastic differential equation (SDE). These three models differ from each other 

in relation to the time and state of the variables. 
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In the DTMC model the time and the state variable are discrete random 

variables, in the CTMC model time is continuous, but the variable state is a distinct 

random variable and in the SDE model both temporal and state variables are 

continuous random variables. However, for the moment most models created by 

scientists have been relied on the continuous time Markovian chain according to 

Keeling and Ross (Keeling & Ross, 2008). 

Also, the status of the process is determined by the number of susceptible 

individuals. For this reason, it is understood that a population of N- individuals 

will need a large number of differential equations to describe the ease of 

propagation. For example, in a population with N individuals, the modelization 

of a continuous time SIS model would require N + 1 differential equations, while 

for the SIR model (N + 1) (N + 2) / 2 differential equations (Keeling & Ross, 2008).  

Finally, the three apartments into which the population is divided 

(vulnerable, infectious, recovered), represent its’ different states. 

 

2.3. Symbols of Models 

 

Vulnerable people, i.e. those who can be more easily infected with a 

contagious disease, are denoted by S (susceptible). Infected people, i.e. those who 

have been infected with the disease and can transmit the disease, are symbolized 

by I (infective). People who are infected but for various reasons cannot transmit 

the disease (have acquired immunity or have been quarantined, etc.) are denoted 

by R (recovery). Individuals who are infected and are in the incubation phase are 

denoted by E. 

The main types of models are: 
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• S-I-S: They are the models in which individuals do not acquire immunity 

after they get well and therefore, can be re-infected with the disease. 

Vulnerable- Infected- Vulnerable 

• SIR: They are the models in which people, after getting well, acquire 

permanent immunity and cannot transmit the disease. Vulnerable-

Infected-Immunity 

• SIRS:  They are the models in which people, after recovering, acquire 

temporary immunity and then can become infected again and transmit the 

disease. Vulnerable-Infected-Immunity-Vulnerable 

• SI: They are the models in which people after being infected cannot be 

cured. Vulnerable-Infected 

• SΕIR: They are the models in which people after becoming infected can 

only become contagious when the incubation period of the disease is over. 

•  

2.4. Vulnerable-Incubation-Infected-Immunity 

 

SIR models are generally more suitable for diseases caused by viruses such 

as measles, mumps and smallpox. SIS models are suitable for models with diseases 

caused by bacteria such as meningitis, plague and venereal diseases but also for 

diseases with protozoa such as malaria and trypanosomiasis (sleep disease or 

encephalitis). SI models are suitable for diseases such as AIDS where there is no 

cure yet. 

A basic principle in epidemiology is the existence of limit values, i.e. critical 

values for quantities such as interface rate, population size, population density, 

mortality rate, etc., which play a decisive role in the birth of an epidemic or not 

and also determine the rate of its spread or elimination. 
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2.5. Simple Epidemic Model of an Epidemic in an Unstable 

Population 

 

Assuming we have an unstable population where there are endemics, expatriates, 

births and deaths. Suppose we have: 

• x Vulnerable people in the sense that they can be infected with a contagious 

disease 

• y infected people who can transmit the disease 

Assuming, in the time period dt the number of people who can infect is μ x y dt 

people and at the same time some infected people have either died, been isolated 

or have become well and have acquired immunity. 

If one says that vy dt people have left like this. If during this period ρ dt new 

vulnerable individuals are added then we have the following model: 

 

𝑥′ = −𝜇 × 𝑦 + 𝜌

𝑦′ = 𝜇𝑥𝑦 − 𝑣𝑦
 

 

where μ, ν, ρ are positive constants. 

 

If (x0, y0) is a point of equilibrium such that x '= 0, y' = 0 then we have: 

 

−𝜇x0y0 + 𝜌 = 0
𝜇x0y0 − vy0 = 0
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With         x0 =
𝑣

𝜇
, y0 =

𝜌

𝑣
  

Seeing how the population will behave if one approaches the equilibrium point 

with a neighboring point, he linearizes close to the equilibrium point by applying 

perturbation theory. Poses for 

 

x = x0(1 + 𝜉)    
𝜅𝛼𝜄

y = y0(1 + 𝜂)
 

 

where ξ and η are very small quantities, i.e. ξ−0 and η−0 and replacing in the 

system (deleting quantities that have product of ξ and η because they are too 

small) takes 

 

ξ '= - σ (ξ + η) 

η '= νξ 

 

where σ = μρ / ν. 

Substitutes ξ in the second equation and takes 

 

η '' + ση '+ σνη = 0 

 

with initial conditions η = η0, η '= 𝑣𝜉0 for t = 0. 
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The equation has a solution 

 

𝜂 = 𝑒−
𝜎𝑡
2 {𝜂0 cos𝜔𝑡 +

1

𝜔
(𝑣𝜉0 +

1

2
𝜎𝜂0) sin𝜔𝑡} 

 

whereas ω2 = σ ν - σ 2/4. 

This is how it turns out: 

 

𝜉 = 𝑒−
𝜎𝑡
2 {𝜉0 cos𝜔𝑡 +

𝜎

2𝜔
(𝑣𝜉0 + 2𝜂0) sin𝜔𝑡} 

 

If ω 2> 0, ie 4ν> σ or 4ν2> μρ then the population after oscillating around the equilibrium 

point will return to it with exponential damping. 

 

2.6. Simple epidemic model (SI) in a stable population 

 

Assuming there is a closed society, that is, a stable N population where there are 

no endemics or expatriates, nor births and deaths, and that they are evenly mixed. 

It can also be assumed that the infectious disease has no incubation period and 

that there is no cure for the disease. 

 Let's say that: 

• S-vulnerable individuals 

• I-infected individuals 
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Suppose that the rate of transmission of the disease is proportional to the number 

of susceptible individuals and proportional to the number of infected individuals. 

The equations that describe the model are: 

 

𝑆′ = −𝛼𝑆𝐼
𝐼′ = 𝛼𝑆𝐼

 

 

where 𝛼 is a positive quantity. 

If there is a fixed population, i.e. S (t) + I (t) = N then the equivalent system results 

by substitution: 

 

𝑆(𝑡) = 𝑁 − 𝐼(𝑡)

𝐼∣′(𝑡) = 𝛼[𝑁 − 𝐼(𝑡)]𝐼(𝑡)
 

 

This non-linear SDC is known as the logistic growth equation and was named after 

Pierre François Verhulst in 1845, a Belgian mathematician and physician who 

studied population development models. 

They are separable variables, so dividing by follows: 

 

1

[𝑁 − 𝐼(𝑡)]𝐼(𝑡)
𝐼′(𝑡) = 𝛼

  
           𝑜𝑟

̇

1

[𝑁 − 𝐼(𝑡)]𝐼(𝑡)

𝑑𝐼

𝑑𝑡
= 𝛼

 

 

and concluding: 
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∫  
𝑡

0

1

[𝑁 − 𝐼(𝑡)]𝐼(𝑡)

𝑑𝐼

𝑑𝑡
𝑑𝑡 = ∫  

𝑡

0

𝑎𝑑𝑡 ⇒

∫  
𝐼(𝑡)

𝐼(0)

1

(𝑁 − 𝑢)𝑢
𝑑𝑢 = 𝑎𝑡 ⇒

1

𝑁
∫  
𝐼(𝑡)

𝐼(0)

(
1

𝑁 − 𝑢
+
1

𝑢
)𝑑𝑢 = 𝑎𝑡 ⇒

[ln 𝑢 − ln (𝑁 − 𝑢)]𝐼(0)
𝐼(𝑡) = 𝑎𝑁𝑡 ⇒

[ln 𝐼(𝑡) − 𝐼(0)] − [ln (𝑁 − 𝐼(𝑡) − ln (𝑁 − 𝐼(0)] = 𝑎𝑁𝑡 ⇒

𝐼(𝑡) =
𝐼(0)𝑁𝑒𝑎𝑁𝑡

𝑁 − 𝐼(0) + 𝐼(0)𝑒𝑎𝑁𝑡
⇒

𝐼(𝑡) =
𝐼(0)𝑁

𝐼(0) + [𝑁 − 𝐼(0)]𝑒−𝑎𝑁𝑡

 

 

 

Concluding the accounting curve, one observes that as it turns out t → ∞ 

eventually everyone Ι→ 𝛮,  will be infected. 

 

2.7. Deterministic SIS and SIR models 

 

2.7.1. SIS model 

 

In the SIS epidemic model, a susceptible person will become ill when it 

comes in contact with an infectious one. Then it will infect the people with whom 

it will associate. After treatment, infected people do not become immune to the 

disease and rejoin the vulnerable group. The SIS model expresses in some way the 

experience that in some diseases individuals do not acquire a long immunity time 

after the disease and therefore become immediately vulnerable after healing. Some 

hypotheses related to this model are that, all individuals belong to the vulnerable 



37 

 

group and there are no deaths from the epidemic. Such models have been applied 

to sexually transmitted diseases. 

The following figure shows the evolution of an epidemic SIS model. There 

are two groups of the population in the figure, the group with the susceptible 

individuals S and the group with the infectious individuals I. The dashed arrows 

indicate the transition from one group to another and vice versa.   

 

 

Figure 1. Representation of the SIS epidemic model 

 

The system of differential equations used to describe the SIS epidemic model is: 

 

𝑑𝑆

𝑑𝑡
=
−𝛽

𝛮
+ (𝛽 + 𝛾)𝛪 

𝑑𝐼

𝑑𝑡
=
𝛽

𝛮
𝑆𝐼 − (𝛽 + 𝛾)𝛪 

 

where β> 0 denotes the average number of contacts per person per year, with γ> 0 

the rate of recovery or mortality, i.e. the number of recovered or dead during a 

day, with b≥0 the rate of births and with N = S(t) + I(t) the total size of the 

population. 
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 As initial conditions, S(0)>0, I (0)>0 and N =S(0)+I(0). Also, the initial 

assumption is that the birth and death rates are equal, so that the population size 

dN/dt =0 remains constant.  

 Next, the basic reproduction rate will be defined, which consists of the 

expected number of new infections, these new infections are sometimes called 

secondary infections, from a single infection in a population where all individuals 

are susceptible and given by the relationship: 

 

𝑅0 =
𝛽

𝑏 + 𝛾
 

 

When R0>1 the infection will be able to start spreading to a population, but 

not if R0<1. Therefore, if R0>1, there is more than one transmission from an 

infectious person and then there is an epidemic. 

In general, the higher the value of R0, the more difficult it is to control an 

epidemic. In this case the epidemic can be avoided by reducing R0. This can 

happen by vaccinating the population and thus reducing the initial vulnerable 

population. 

Τhe length of the infectious period is defined as the fraction 1/(b + γ). 

According to the following theorem the asymptotic solution of the SIS model of 

the relations mentioned above is as follows: 

 

Theorem 2.1: If S(t) and I(t) are a solution of the aforementioned model then 

i. If R0≤1, then lim
𝑡→∞

(𝑆(𝑡), 𝐼(𝑡)) = (𝑁, 0)  (disease-free equilibrium state). 
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ii. ii. If R0> 1, then     lim
𝑡→∞

(𝑆(𝑡), 𝐼(𝑡)) = (
𝑁

𝑅0
, 𝑁(1 −

1

𝑅0
)  (endemic 

equilibrium state). 

The term "disease-free equilibrium" defines the state in which there is no 

disease in the population. On the other hand, the term "endemic equilibrium state", 

defines the state in which the disease cannot be completely eliminated, but 

remains in the population. 

 

2.7.2. SIR model 

 

The SIR model is an epidemic model that estimates the theoretical number 

of people infected with a contagious disease in a closed population during the 

infectious period. Kermack and McKendrick define the deterministic epidemic 

model with a stable population of N individuals and three states S, I, and R.  

In this epidemic model, infected people have the potential to develop immunity, 

unlike the previous model, and thus pass on to the R (recovered) group of the 

population. The epidemic is noted to end when I(t)=0, i.e. there are no infectious 

individuals. The SIR model has been applied to childhood diseases such as 

chickenpox, measles and mumps. Therefore, the features that govern the SIR 

model are:  

1. the population is considered stable and is divided into three groups-

departments 

2. the set of susceptible S or S(t) (if the abundance of the set depends on time) 

3. the set of patients I or I(t) 

4. the set of recovered R or R(t) 
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In the figure Below the epidemic SIR model is represented. 

 

 

Figure 2. Representation of the SIR Epidemic Model 

 

The differential equations used to describe the epidemic SIR model are as follows 

 

𝑑𝑆

𝑑𝑡
=
−𝛽

𝛮
𝑆𝐼 + 𝑏(𝐼 + 𝑅) 

𝑑𝐼

𝑑𝑡
=
𝛽

𝛮
𝑆𝐼 − (𝛽 + 𝛾)𝛪 

𝑑𝑅

𝑑𝑡
= 𝛾𝛪 + 𝑏𝑅 

 

where β>0, γ>0, b≥0 and the total population size satisfies the relation 

N=S(t)+I(t)+R(t). The initial conditions are S(0)>0, I (0)>0, R(0) ≥0 and 

N=S(0)+I(0)+R(0) or otherwise the initial condition of the susceptible, infectious 

and deleted is equal to the population. Also, in this model it is assumed that the 

percentage of births and deaths is equal to keep the population size constant 

dN/dt=0. The following theorem gives the asymptotic solution of the deterministic 

SIR model of the aforementioned relation. 

 

Theorem 2.2: If S(t), I(t) and R(t) are a solution of the aforementioned model, then: 
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i. If R0≤1, then lim
𝑡→∞

(𝐼(𝑡)) = 0   (disease-free equilibrium state). 

ii. If R0>1, then lim
𝑡→∞

(𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) = (
𝑁

𝑁0
,
𝑏𝑁

𝑏+𝛾
(1 −

1

𝑅0
) ,

𝛾𝛮

𝑏+𝛾
(1 −

1

𝑅0
))  

(endemic equilibrium state). 

iii. Assuming b=0. If 𝑅0
𝑆(0)

𝑁
> 1, there is an initial increase in the number 

of patients I(t) (epidemic), if 𝑅0
𝑆(0)

𝑁
≤ 1, then it decreases 

monotonically to zero (disease-free equilibrium). 

Let define as initial replacement number the quantity 𝑅0
𝑆(0)

𝑁
 which indicates 

the average number of secondary infections produced by an infectious person at 

the beginning of the epidemic. In case (iii) it is observed that the disease disappears 

from the population, but if the initial replacement number is greater than one, the 

population is subject to an "epidemic outbreak". 

If R0<1, the person affected by the disease will infect less than a person 

before recovering, so the outbreak of the epidemic will be gradually extinguished, 

i.e. dI/dt <0. The number of susceptical individuals initially decreases and then 

becomes stable. Also, the number of infections is initially reduced and eventually 

zeroed, which indicates that the epidemic is not spreading. The number of 

recovered R(t) first increases and then stabilizes. These conclusions are reflected 

in following figure 
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Figure 3. States of the model for R0<1 

 

On the other hand, when R0>1, the infected person will infect more than one 

persons, so the epidemic will spread, i.e. dI/dt>0. The number of susceptible 

individuals decreases initially and then stabilizes while at the same time the 

number of infectious people increases over the same period of time, which 

indicates the spread of the epidemic. The number of deleted increases at a slower 

rate and eventually stabilizes. In contrast, when R0<1, the increase is at a higher 

rate. Then following figure is given in case R0> 1. 

 

 

Figure 4. States of the model for R0>1 
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2.8. DTMC-Discrete TimeMarkov Chain Models 

 

Discrete-time Markov models are commonly used for the study of 

pathogens with relatively short and constant durations infectivity. Usually, in 

these models the timeline step Δt determines the duration of the infectious period. 

However, it is required a time step Δt that represents the interval between two 

consecutive decision time points, which is determined by the decision maker and 

will depend on the context of the under consideration problem. Therefore, disease 

transmission models that will support the reception of dynamic decisions need to 

be flexible enough to integrate th different Δt, which vary within a reasonable 

range and are determined by the receiver decisions.  

As mentioned in the introduction, the DTMC model consists of distinct random 

variables. These variables are S(t), I(t) and R(t) ∈{{0, 1, 2, ..., N} in time t∈{0, Δt, 2Δt, 

...} and symbolize the susceptible, the infectious and the recovered individuals of 

the population, respectively. Below the DTMC SIS and DTMC SIR models are 

analyzed. 

 

2.8.1. Discrete Time Epidemic Model SIS (DTMC SIS) 

 

In the DTMC SIS epidemic model, there is only one independent random 

variable, I(t) which symbolizes the new infectious individuals, because S(t) = N-

I(t), where N is the constant total population size. As far as the stochastic 

procedure is concerned {𝐼(𝑡)}𝑡=0
∞  , each random process variable has the following 

probability function: 
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𝑝𝑖(𝑡) = 𝑃{𝐼(𝑡) = 𝑖} 

 

with i = 0,1,2,…, N and t = 0, Δt, 2Δt, ..., where ∑ 𝑝𝑖(𝑡) = 1𝑁
𝑖=0  and 𝑝(𝑡) =

(𝑝0(𝑡), 𝑝1(𝑡), … 𝑝𝑁(𝑡))
𝑇  the probability vector associated with I(t). Also, the 

stochastic process  {𝐼(𝑡)}𝑡=0
∞    has the Markov feature: 

 

𝑃{𝐼(𝑡 + Δ𝑡) ∣ 𝐼(0), 𝐼(Δ𝑡),… , 𝐼(𝑡)} = 𝑃{𝐼(𝑡 + Δ𝑡) ∣ 𝐼(𝑡)} 

 

that is, the process at time t+Δt depends only on the process at the previous step 

of time t.  

Next the relationship between I(t) and I (t+Δt) will be determined. The 

probability transition from state I(t)=i to state I(t+Δt) = j, i → j, at time Δt, is defined 

as follows: 

 

𝑝𝑖𝑗(𝑡 + Δ𝑡, 𝑡) = 𝑃{𝐼(𝑡 + Δ𝑡) = 𝑗 ∣ 𝐼(𝑡) = 𝑖} 

 

When the probability of transition pji(t+Δt,t)  does not depend on t and 

pji(Δt), the process is said to be temporally homogeneous. In addition, to reduce it 

number of time transitions Δt another assumption is made for time step Δt 

selecting it small enough so that the number of infectious individuals changes by 

at most one person in the time interval Δt, ie i → i + 1, i → i-1 or i → i. 

However, there may be new infection, death or recovery during of the time 

interval Δt. The latter hypothesis can be modified if the time step cannot be 

arbitrarily chosen small enough. In that case the transition probabilities must be 
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defined for all possible transitions that may occur, i→ i+2, i→ i+3, etc. In the simple 

case of three transitions, the transition probabilities are calculated using the 

coefficients, multiplied by Δt.  

The transition probabilities for the epidemic model DTMC are: 

 

𝑝𝑗𝑖(Δ𝑡) =

{
 
 

 
 
𝛽𝑖(𝑁 − 𝑖)

𝑁
Δ𝑡,     𝑗 = 𝑖 + 1

(𝑏 + 𝛾)𝑖Δ𝑡,     𝑗 = 𝑖 − 1

1 − [
𝛽𝑖(𝑁 − 𝑖)

𝑁
+ (𝑏 + 𝛾)𝑖] Δ𝑡,     𝑗 = 𝑖

0,     𝑗 ≠ 𝑖 + 1, 𝑖, 𝑖 − 1

 

 

where, the probability of a new infection from i→i+1 is pi+1.i(Δt)= βi(N-i)Δt/N 

and the probability of death or recovery from i→i-1, is pi-1,i(Δt)=(b+γ)iΔt. Finally, 

the probability that there is no state change, ie from i→i, is pi,i(Δt) = 1-[βi (N-i)/N + 

(b+γ)i]/∆t. It has to be emphasized  that neither in the determinist, but nor in the 

stochastic model is it necessary to assume that the number of births is equal to the 

number of deaths in order not to affect the constant sample size, N. 

In order to simplify the possibility of transition the following symbols can 

be used, a new infection will be denoted by b(i)Δt and death or recovery will be 

denoted by d(i)Δt, so: 

 

𝑝𝑗𝑖(Δ𝑡) = {

𝑏(𝑖)Δ𝑡𝑗 = 𝑖 + 1
𝑑(𝑖)Δ𝑡, 𝑗 = 𝑖 − 1

1 − [𝑏(𝑖) + 𝑑(𝑖)]Δ𝑡, 𝑗 = 𝑖
0, 𝑗 ≠ 𝑖 + 1, 𝑖, 𝑖 − 1
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The sum of the three transitions is equal to one, because these transitions 

represent all possible changes in state i during time interval Δt. To ensure that 

these probabilities of transition are in the interval [0,1], the time step Δt must be 

selected small enough  

 

max
𝑖∈{1,2,…𝑁}

{[𝑏(𝑖) + 𝑑(𝑖)]𝛥𝑡} ≤ 1 

 

From the Markov capacity and the previous probabilities of transition, the 

transition probabilities pi(t+Δt) can be expressed based on the probabilities 

transition time t. Thus, in time t+Δt: 

 

𝑝𝑖(𝑡 + Δ𝑡) = 𝑝𝑖−1(𝑡)𝑏(𝑖 − 1)Δ𝑡 + 𝑝𝑖+1(𝑡)𝑑(𝑖 + 1)Δ𝑡 + 𝑝𝑖(𝑡)(1 − [𝑏(𝑖) + 𝑑(𝑖)]Δ𝑡) 

where i=1,2,...,N and b(i)=βi(N-i)/N, d(i)=(b+γ)i. 

 

The transition probabilities from one situation to another can be expressed 

as an Array format. Each entry in the Array is a probability of transition, the array 

is called a transition array and is denoted as P(Δt). Then for the forming of a 

stochastic transition array the states from 0 to N have to be in order. The array 

P(Δt) is an array of dimensions (N+1)x(N+1) with the same sum of columns and is 

given below 
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(

 
 
 
 
 
 

1 𝑑(1)Δ𝑡 0 ⋯ 0 0
0 1 − (𝑏 + 𝑑)(1)Δ𝑡) 𝑑(2)Δ𝑡 ⋯ 0 0
0 𝑏(1)Δ𝑡 1 − (𝑏 + 𝑑)(2)Δ𝑡 ⋯ 0 0
0 0 𝑏(2)Δ𝑡 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑑(𝑁 − 1)Δ𝑡 0
0 0 0 ⋯ 1 − (𝑏 + 𝑑)(𝑁 − 1)Δ𝑡 𝑑(𝑁)Δ𝑡
0 0 0 ⋯ 𝑏(𝑁 − 1)Δ𝑡 1 − 𝑑(𝑁)Δ𝑡)

 
 
 
 
 
 

 

 

Therefore, the DTMC SIS epidemic procedure has been fully defined, 

{𝐼(𝑡)}𝑡=0
∞ . From the initial probability vector p(0), it follows that p(Δt) = P(Δt) p(0). 

The aforementioned relation expressed through the stochastic array and vector 

gets: 

 

𝑝(𝑡 + 𝛥𝑡) = 𝑃(𝛥𝑡)𝑝(𝑡) = 𝑃𝑛+1(𝛥𝑡)𝑝(0) where t=nΔt. 

 

The mean value of the epidemic process for time t is given by: 

 

𝐸(𝐼(𝑡)) =∑𝑖𝑝𝑖(𝑡)

𝑁

𝑖=0

 

 

Then, for t+Δt, multiplying and summing the above equations with i results: 
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𝐸(𝐼(𝑡 + Δ𝑡)) =∑  

𝑁

𝑖=0

𝑖𝑝𝑖(𝑡 + Δ𝑡)

=∑  

𝑁

𝑖=1

𝑖𝑝𝑖−1(𝑡)𝑏(𝑖 − 1)Δ𝑡 + ∑  

𝑁−1

𝑖=0

𝑖𝑝𝑖+1(𝑡)𝑑(1 + 𝑖)Δ𝑡 +∑  

𝑁

𝑖=0

𝑖𝑝𝑖(𝑡) −

∑  

𝑁

𝑖=0

𝑖𝑝𝑖(𝑡)𝑏(𝑖)Δ𝑡 −∑  

𝑁

𝑖=0

𝑖𝑝𝑖(𝑡)𝑑(𝑖)Δ𝑡

 

 

 

Replacing of b(i) and d(i) with the relations βi(N-i)/N and (b+γ)i respectively 

 

𝐸(𝐼(𝑡 + Δ𝑡))

= 𝐸(𝐼(𝑡)) +∑  

𝑁

𝑖=1

𝑝𝑖−1(𝑡)
𝛽(𝑖 − 1)(𝑁 − (𝑖 − 1))

𝑁
Δ𝑡 − ∑  

𝑁−1

𝑖=0

𝑝𝑖+1(𝑡)(𝑏 + 𝛾)(𝜄 + 1)Δ𝑡

= 𝐸(𝐼(𝑡)) + [𝛽 − (𝑏 + 𝛾)]Δ𝑡𝐸(𝐼(𝑡)) −
𝛽

𝑁
Δ𝑡𝐸(𝐼2(𝑡))

 

 

where 𝐸(𝐼2(𝑡)) = ∑ 𝑖2𝑝𝑖(𝑡)
𝑁
𝑖=1 . Because the relation is valid 𝐸(𝐼2(𝑡)) ≥ 𝐸2(𝐼(𝑡)) the 

mean value satisfies the following inequality 

 

𝐸(𝐼(𝑡 + Δ𝑡)) − 𝐸(𝐼(𝑡))

Δ𝑡
≤ [𝛽 − (𝑏 + 𝛾)]𝐸(𝐼(𝑡)) −

𝛽

𝑁
𝐸2(𝐼(𝑡))

Δ𝑡 → 0 , 

𝑑𝐸(𝐼(𝑡))

𝑑𝑡
≤ [𝛽 − (𝑏 + 𝛾)]𝐸(𝐼(𝑡)) −

𝛽

𝑁
𝐸2(𝐼(𝑡))

=
𝛽

𝑁
[𝑁 − 𝐸(𝐼(𝑡))]𝐸(𝐼(𝑡)) − (𝑏 + 𝛾)𝐸(𝐼(𝑡))
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The right side of Relation is the same as the differential equation for I(t). If I(t) and 

S(t) are replaced with E(I(t) and N-E(I(t)), respectively. Finally, from the inequality 

that exists in the relation above it is clear that the differential inequality shows that 

the mean value of random variable I(t) of the stochastic SIS epidemic model is less 

than solution of I (t) in the deterministic model of differential equations. 

 The following is a figure of a stochastic DTMC SIS epidemic model, where 

i = 0, 1, ..., N are the infectious states. 

 

 

Figure 5. Representation of the Stochastic Epidemic Model DTMC SIS 

 

The states {0,1 ..., N} present in the model can be divided into two sets 

consisting of the repeated zero state, {0} and the transitional situations, {1, ..., N}. 

The state {0}is called “absorbing state”. 

As it is observed in the Figure above, the state {0} is a closed set, however 

any situation from {1,2, ..., N} can be approached from any other situation as the 

situations {1 2, ..., N} are not closed sets because the relation p01(Δt)> 0 is valid. For 

transitional situations it also applies that the elements of the stochastic array have 

the feature: 

𝑃𝑛 = (𝑝𝑖𝑗
(𝑛)) 
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where pij(n) is the (i, j) element of the n-th power of the stochastic array 𝑃𝑛 

Still, for every j and every transitional state i holds: 

lim
𝑛→∞

𝑝𝑖𝑗
(𝑛)

= 0  

The limit of 𝑃𝑛 with n → ∞ is a stochastic array with all rows being zero 

except the first one which has the unit everywhere. From Relation 𝑝(𝑡 + Δ𝑡) =

𝑃(Δ𝑡)𝑝(𝑡) = 𝑃𝑛+1(Δ𝑡)𝑝(0) and the theory of Markov chains: 

lim
𝑡→∞

𝑝(𝑡) = (1,0,0, … ,0)𝑇 where t=nΔt. 

The population is approaching equilibrium state without disease (disease-

free equilibrium) with a probability of absorption per unit, regardless of size of the 

basic reproduction rate. The stochastic result is compared with the asymptotic 

effect of the deterministic epidemic SIS model, as the stochastic result is 

asymptomatic. Also, the convergence to disease-free equilibrium is achieved very 

slowly, while the average time to have a state of equilibrium disease-free 

equilibrium depends on the initial conditions and parameter values.  

 

2.8.2. Discrete Time Epidemic Model SIR (DTMC SIR) 

 

The DTMC SIR epidemic model, consists of distinct random variables S(t), 

I(t) and R(t) which indicate the number of susceptible, infectious and recovered 

individuals at time t, respectively. This model has as independent random 

variables S(t) and I(t) and dependent random variable R(t) given by the relation 

R(t) = N-S(t) -I(t). The common probability of the process {𝑆(𝑡), 𝐼(𝑡)}𝑡=0
∞  is given by 

the relation 

 



51 

 

𝑝(𝑠,𝑖)(𝑡) = 𝑃{𝑆(𝑡) = 𝑠, 𝐼(𝑡) = 𝑖} 

 

The transition probabilities are given by: 

 

𝑝(𝑠+𝑘,𝑖+𝑗),(𝑠,𝑖)(Δ𝑡) = Prob {(Δ𝑆, Δ𝐼) = (𝑘, 𝑗) ∣ (𝑆(𝑡), 𝐼(𝑡)) = (𝑠, 𝑖)} 

where ΔS=S(t+Δt) - S(t). 

So, 

 

𝑝(𝑠+𝑘,𝑖+𝑗),(𝑠,𝑖)(Δ𝑡) =

{
 
 
 

 
 
 
𝛽𝑖𝑠
𝑁Δ𝑡′

    (𝑘, 𝑗) = (−1,1)

𝛾𝑖Δ𝑡,     (𝑘, 𝑗) = (0,−1)
𝑏𝑖Δ𝑡,     (𝑘, 𝑗) = (0,−1)

𝑏(𝑁 − 𝑠 − 𝑖)Δ𝑡,     (𝑘, 𝑗) = (1,0)

1 −
𝛽𝑖𝑠

𝑁Δ𝑡
− [𝛾𝑖 + 𝑏(𝑁 − 𝑠)]Δ𝑡    (𝑘, 𝑗) = (0,0)

0,     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

Δt is chosen to be quite small as the desired probabilities transition interval 

is [0,1]. The states are classified into pairs and so the calculation of the stochastic 

array becomes complex in relation with the SIS epidemic model and its form 

depends on their layout situations (s, i). 

The Markov property is formulated as follows 

 

𝑝(𝑠,𝑖)(𝑡 + Δ𝑡) = 𝑝(𝑠+𝑙,𝑖−1)(𝑡)
𝛽

𝑁
(𝑖 − 1)(𝑠 + 1)Δ𝑡 + 𝑝(𝑠,𝑖+𝑙)(𝑡)𝛾(𝑖 + 1)Δ𝑡 + 𝑝(𝑠−𝑙,𝑖+𝑙)(𝑡)𝑏(𝑖 + 1)Δ𝑡

+𝑝(𝑠−1,𝑖)(𝑡)𝑏(𝑁 − 𝑠 + 1 − 𝑖)Δ𝑡 + 𝑝(𝑠,𝑖)(𝑡) (1 − [
𝛽

𝑁
𝑖𝑠 + 𝛾𝑖 + 𝑏(𝑁 − 𝑠)] Δ𝑡)
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Finally, the mean values of the states S(t) and I(t) are: 

 

 

𝐸(𝑆(𝑡)) = ∑ 𝑠𝑝(𝑠,𝑖)(𝑡)
𝑁
𝑆=0    

and 

𝐸(𝐼(𝑡)) =∑ 𝑖𝑝(𝑠,𝑖)(𝑡)
𝑁

𝑖=0
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3. Epidemic Model and Parameter Uncertainty 

 

In this section we will look at the simple SIR epidemic model. The size of the 

population will be considered constant and the population at time t is assumed to 

consist of susceptible S(t), infected I(t) and recovered R(t) individuals. If the 

population is constant, it holds that N(t) = S(t) + I(t) + R(t) and the procedure is 

fully described by the state {(S(t), I(t)): t ≥ 0} = (s, i). Susceptible individuals S(t) are 

vulnerable to infection. Infected individuals I(t) are able to infect susceptible 

individuals and recovered R(t) individuals have been removed and have no effect 

on the spread of infection (Panagiotidou & Dimitrakos, 2020). The situation of the 

population is evolving according to a continuous Markovian process 

 

(( ( Δ ), ( Δ )) ( 1, 1) ( ( ), ( ) ( , )) Δ (Δ ),

(( ( Δ ), ( Δ )) ( , 1) ( ( ), ( ) ( , )) Δ (Δ )

P S t t I t t s i S t I t s i si t o t

P S t t I t t s i S t I t s i i t o t





+ + = − + = = +

+ + = − = = +

∣

∣
(1) 

 

where β > 0 is the infection rate parameter and γ > 0 is the removal rate parameter, 

all other transitions have probability o(Δt). For the relative removal rate parameter, 

ρ = γ / β we determine the transition probabilities 

 

,si si

s
p q

s s



 
= =

+ +
    (2) 

 

with psi and qsi being independent of i. 
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The simplest cost function we will consider is the expected non-intervention cost 

function and the final expected size of the epidemic. The final size is the total 

number of susceptible people throughout the epidemic. The expected final size of 

the epidemic without intervention, Cρ(s, i) is determined as 

 

( , ) (1 ( 1, 1)) ( , 1)siC s i p C s i qC s i  = + − + + −     (3) 

 

with s, i ≥ 1 and Cρ (s, 0) = 0 with s ≥ 0, Cρ (0, i) = 0 with i ≥ 0. 

The two interventions that we will consider are the isolation of infectious 

individuals from the population and the isolation of infectious individuals along 

with the immunization of the entire population. 

As unit costs, we define the cost of an infected person. The policy we have adopted 

allows at any time to isolate infected individuals at a certain cost, L per person. 

We define as WL, ρ (s, i) the expected future cost for a single transition and then we 

can calculate the expected future cost VL, ρ (s, i) for the adoption of an optimal policy 

starting from (s, i), so we have 

 

( )

 

, ,

, , ,

( , ) 1 ( 1, 1) ( , 1)

( , ) min ( , 1), ( , )

nL si L si L

L L L

W S i p V s i q V S i

V s i L V s i W s i

  

  

= + − + + −

= + −
  (4) 

 

with s, i ≥ 1 and boundary conditions VL, ρ (s, 0) = 0 for s ≥ 0, VL, ρ (0, i) = 0 for i ≥ 0. 

In state (s, i) the best policy is to isolate an infectious person if L + VL, ρ (s, i-1) ≤ WL, 

ρ (s, i) and not to isolate if L + VL, ρ (s, i-1) > WL, ρ (s, i). Also note that there is a positive 
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chance that at least one susceptible person will avoid infection and therefore VL, ρ 

(s, i) ≤ Cρ (s, i) < s applies. Next, we can set a limit uL, ρ (s) such that for 1 ≤ i ≤ uL, ρ (s) 

we isolate all infectious individuals, while for i > uL, ρ (s) there is no intervention in 

the population. The limit of isolation is given by the relation 

 

   , , , ,( ) max : ( , 1) ( , ) max : ( , )L L Lu s i L V S i W s i i Li WL S i   = + −  =    (5) 

 

for s ≥ 1, and given the optimal policy it follows that VL, ρ (s, i) = min {Li: WL, ρ (s, i)} 

with s, i ≥ 1. The function VL, ρ (s, i) is a non-decreasing function for every s, i and 

holds that uL, ρ (s) ≤ uL, ρ (s + 1) for s ≥ 0 (Abakuks, 1974). 

In addition, we will assume that we adopt a policy that allows the immunization 

of either all susceptible individuals or none of susceptible individuals. (Abakuks, 

1974) proved that for this policy there is a limit of immunization and related 

properties. However, instead of studying the total immunization policy, we will 

look at a policy that allows the isolation of infectious individuals, while 

immunizing the entire population. 

Therefore, at any time we can isolate any number of infectious individuals, each 

at cost L > 0, immunize the entire susceptible population at cost A + sK, where A ≥ 

0, 0 ≤ K < 1, A + K > 0, or otherwise there is no intervention in the population. Also, 

for K ≥ 1 the cost of non-intervention is always less than the cost of immunization 

and we have the isolation policy. 

In addition, we denote by VL, A, K, ρ (s, i) the expected future cost of adopting an 

optimal policy starting with (s, i) and by WL, A, K, ρ (s, i) the expected future cost of 

waiting to make a single transition and adopt an optimal policy. Then we have: 
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  (6) 

 

with s, i ≥ 1 as well as VL, A, K, ρ (s, 0) = 0 with s ≥ 0, VL, A, K, ρ (0, i) = 0 with i≥0. 

In case for any state (s, i) it holds that WL, Α, Κ, ρ (s, i) < min {A + sΚ, L + VL, Α, Κ, ρ (s, i-1)} 

then intervention does not exist, if L + VL, Α, Κ, ρ (s, i-1) < Α + sΚ and if L + VL, Α, Κ, ρ (s, i-

1) ≤ WL, Α, Κ, ρ (s, i) then isolate infectious individuals. In case A + sK ≤ {L + VL, A, K, ρ (s, 

i1), WL, A, K, ρ (s, i)} we immunize the entire susceptible population. In addition, we 

conclude that when the costs are equal, total immunization prevails over isolation, 

which in turn prevails over non-intervention. 

Furthermore, (Abakuks, 1974) proves the existence of the quantities SL, Α, Κ, ρ (s) and 

RL, Α, Κ, ρ (s), so that the optimal policy in state (s, i) is to isolate all infectious 

individuals for 1≤ s ≤ SL, A, K, ρ (s), no intervention for SL, A, K, ρ (s) < i ≤ RL, Α, Κ, ρ (s) and 

immunize all susceptible individuals for s > RL, A, K, ρ (s). Finally, it proves that VL, Α, 

Κ, ρ (s, i) is a non-decreasing function for every s and i, that SL, Α, Κ, ρ (s) is non-

decreasing in s and that SL, A, K , ρ (s) ≤ uL, ρ (s), where uL, ρ (s) is the isolation boundary. 

 

3.1. Effect of changes in parameter values 

 

In this section, we will examine the effects of changing the parameters of the 

epidemic model on expected costs and intervention policies, assuming that the 

parameter values are known. In the following sections we will first consider an 

optimal isolation policy and then give corresponding results when the 
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immunization of the entire susceptible population is allowed as well as the 

isolation of infectious individuals. (Panagiotidou & Dimitrakos, 2020). 

Isolation policies 

In the following we will mention some theorems on which the isolation policy is 

based. First, we consider the optimal cost function for the isolation policy. We 

consider the effect of changes in the value of the relative isolation rate, ρ on the 

optimal cost function VL, ρ (s, i) and the effect on the isolation boundary uL, ρ (s).  

 

Theorem 1: Since s, i ≥ 0 then VL, ρ (s, i) is a non-increasing function of the relative 

isolation rate, ρ. In addition, VL, ρ (s, i) → min {Li, s} when ρ → 0 and VL, ρ (s, i) → 0 

when ρ → 1. 

 

Proof: 

We will first show by induction that VL, ρ (s, i) is a non-increasing function of the 

relative isolation rate, ρ. The result is true for s = 0, since VL, ρ (0, i) = 0 for i ≥ 0, by 

definition. Assume that for a given s ≥ 1, VL, ρ (s-1, i) is a non-increasing function of 

the relative isolation rate, ρ for i ≥ 0. We know that for i = 0, VL, ρ (s, i) = 0. Assume 

that for some i ≥ 1, VL, ρ (s, i-1) is a non-increasing function of the relative isolation 

rate, ρ. From equations (4) and (2), for ρ, ε ≥ 0 we have (Clancy & Green, 2007). 
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We have 1 + VL, ρ + ε (s-1, i + 1) + VL, ρ + ε (s, i-1) ≥ 0 and yields: 

 

 ( ), , ,( , ) 1 ( 1, 1) ( , 1)L L L

s
W s i V s i V s i

s s
     



 
+ + + + − + + −

+ +
  (8) 

 

Subtracting WL, q (s, i) we get 
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From expression (5) we have: 
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Thus, by induction at i and s, VL, ρ (s, i) is a non-increasing function of the relative 

isolation rate, ρ for s, i ≥ 0. Then, to show that VL, ρ (s, i) → min {Li, s} with ρ → 0, 

we observe that the result holds for s = 0. From (2) we have psi → 1 and qsi → 0 with 

ρ → 0. Assume that for a given s ≥ 1, for all i, we have VL, ρ (s-1, i) → min {Li, s-1} 

with ρ → 0. After formula (4), as VL, ρ (s, i-1) is greater than s, we have WL, ρ (s, i) → 

1 + min {L (i + 1), s- 1} with p → 0. From the relation (5) VL, ρ (s, i) → min {Li, L + s, 
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Li + L + 1, s} = min {Li, s} with ρ → 0. Finally, to show that VL, ρ (s, i) → 0 as ρ → ∞, 

observe that the result holds for s = 0. From (2), psi → 0 and qsi → 1 with ρ → ∞. 

Assume that for a given i ≥ 1, for all s, VL, ρ (s, i- 1) → 0 with ρ → ∞. Thus from (5) 

it follows that VL, ρ (s, i) → 0 with ρ → ∞. By induction in i, we get the result. 

Having considered the effect of changes in the value of the relative isolation rate, 

ρ on the optimal cost function VL, ρ (s, i) we then consider the effect on the isolation 

limit uL, ρ (s). (Panagiotidou & Dimitrakos, 2020). 

 

Theorem 2: For s ≥ 0, the isolation boundary uL, ρ (s) does not increase in ρ. In 

addition, uL, ρ (s) → max {i∈Z: i < s / L} with ρ → 0 and uL , ρ (s) → 0 with ρ → ∞. 

 

Proof 

We will assume that for some ρ the s, i are such that i ≤ uL, ρ (s). That is, optimal 

policy requires isolating all infectious individuals in the condition (s, i). Then VL, ρ 

(s, i) = Li and for every ε > 0 with ε ≤ ρ, from Theorem 1, VL, ρ-ε (s, i) ≥VL, ρ (s, i) = Li. 

Thus VL, ρ-ε (s, i) = Li which implies that i ≤ uL, ρ-ε (s), and implies that uL, ρ (s) does not 

increase in ρ. (Clancy & Green, 2007). 

(Abakuks, 1973) proved that uL, ρ (s) < s / L for ρ > 0 holds. We get s, i ≥ 1 so that i < 

s / L. Then, from the proof of Theorem 1 we have, WL, ρ (s, i) → min {Ls + L + 1, s} 

with ρ → 0, so that for quite small ρ → 0, WL, ρ (s, i) > Li. Therefore, for a fairly small 

ρ> 0 we have i ≤  uL, ρ (s) and uL, ρ (s) → max {i𝜖Z: i < s / L} with ρ → 0. From Theorem 

1, given s ≥ 0, VL, ρ (s, 1) → 0 with ρ → ∞. Because the intervention cost is constant 

in L then uL, ρ (s) = 0 for large ρ. 

If we assume, for example, that the infection is more serious than reality, that is, if 

we underestimate the value of ρ, from Theorem 2 we have that it is best to 
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intervene by isolating the infectious individuals. In addition, Theorem 1 shows 

that we may not underestimate, but may overestimate, the cost of the best policy. 

If we overestimate ρ, opposite conclusions apply. 

On whether or not to intervene when the true value of ρ is unknown, knowing the 

state (s, i) of the population, then we intervene by isolating all infectious 

individuals if ρ < ρ0 (s, i) when 0≤ ρ0 (s , i) ≤ ∞, otherwise there is no intervention. 

Therefore, it is enough to know if ρ is above or below ρ0 (s, i) and it is not necessary 

to know exactly the value of ρ. However, as the state (s, i) of the process evolves, 

its relative value ρ0 will change and the process can go through states (s, i) so that 

the value ρ0 (s, i) is within the range of reasonable values ρ. 

Although our primary interest is the uncertainty about the epidemiological 

parameters β, γ or equivalents for ρ, it is possible that we do not know the cost of 

isolation, L. According to the above results on the effect of changes in ρ, we have 

the following with the effect of changes in L. 

 

Theorem 3: Since s, i ≥ 0, then VL, ρ (s, i) is a non-decreasing function of L. In addition, 

VL, ρ (s, i) → 0 with L → 0 and VL, ρ (s , i) → Cρ (s, i) as L → ∞. 

 

Proof: 

We will first show that VL, ρ (s, i) is a non-decreasing function of L, by induction. It 

holds for s = 0, with VL, ρ (0, i) = 0. We assume that for a given s ≥ 1, VL, ρ (s-1, i) is a 

non-increasing function of L for every s. We also know that VL, ρ (s, 0) = 0 for s ≥ 0, 

L ≥ 0. We will now assume that for some i ≥ VL, ρ (s, i-1) is a non-decreasing function 

of L. Then (Clancy & Green, 2007) 
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 

 
, , ,

, ,

,

min ( , 1), ( , )

min ( , 1), ( , )

( , )

L L L

L L

L

V L V S i W s i

L V s i W S i

V S i

     

 



+ + += + + −

 + −

=

  (12) 

 

By induction, VL, ρ (s, i) is a non-decreasing function of L for s, i ≥ 0. Moreover, since 

VL, ρ (s, i) = min {Li, WL, ρ (s, i)} we have that VL, ρ (s, i) → 0 when L → 0 for any s, i ≥ 

0. 

Finally, to show that VL, ρ (s, i) → Cρ (s, i) when L → ∞, note that for L > s the cost 

of isolating a single infectious individual is greater than the cost of infecting all 

susceptible individuals and it is best not to isolate infectious individuals, so VL, ρ (s, 

i) = Cρ (s, i) for L > s. Next, we assume that the isolation threshold uL, ρ (s) does not 

increase with respect to L for every s ≥ 0, L ≥ 0 and we have the following. 

 

Theorem 4: Given s ≥ 1, then uL, ρ (s) → ∞ when L → 0 and uL, ρ (s) → 0 when L → ∞. 
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Proof: 

For s, i ≥1 from the relation (4) WL, ρ (s, i) ≥ psi = s / (s + ρ) > 0, so that for a fairly 

small L we have Li <WL, ρ (s, i ) and the best policy for the situation (s, i) is to isolate 

all infectious individuals. That is, for every s, i ≥ 1, uL, ρ (s) ≥i for all small enough 

L, so that uL, ρ (s) → ∞ when L → 0. From Theorem 3 for s ≥ 1, VL, ρ (s, 1) → Cρ (s, 1) 

when L → ∞, which means that for a large enough L, VL, ρ (s, 1) < L, so that uL, ρ (s) 

= 0 for every large enough L. (Clancy & Green, 2007). 

 

3.2. Isolation or total immunization policies 

 

In this section we will refer to results that correspond to the results of the previous 

section on isolation or total immunization policy, without giving evidence of these 

results. For proofs and more detailed information you can refer to (Green, 2005) 

for the best isolation policies. 

 

Theorem 5: Given s, i ≥ 0 then the optimal cost function VL, A, K, ρ (s, i) satisfies the 

following 

(i) VL, A, K, ρ (s, i) is a non-increasing function of ρ with VL, A, K, ρ (s, i) → min {Li, A + 

sK, s} when ρ → 0 and VL, A, K, ρ (s, i) → 0 when ρ → ∞. 

(ii) VL, Α, Κ, ρ (s, i) is a non-decreasing function of each of L, Α and Κ with VL, Α, Κ, ρ (s, 

i) → 0 when min {L, A + K} → 0 and VL, Α, Κ, ρ (s, i) → Cρ (s, i) when min {L, A + K} → 

∞. 

As mentioned in the previous section, the form of optimal isolation policy or total 

immunization contains the quantities SL, A, K, ρ (s) and RL, A, K, ρ (s) so that the optimal 
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condition policy (s, i) isolates all infectious individuals when 1 ≤ i ≤ SL, A, K, ρ (s), does 

not intervene when SL, A, K, ρ (s) < s ≤ RL, A, K, ρ (s) and immunizes all susceptible 

individuals when i > RL, A, K, ρ (s). It is also proved that SL, A, K, ρ (s) = RL, A, K, ρ (s) 

(Abakuks, 1974) for large s, and it is given that 

φ(s)=max{i𝜖Z: Li < A+sK} 

for s ≥ 1. If SL, Α, Κ, ρ (s) = RL, Α, Κ, ρ (s) holds then SL, Α, Κ, ρ (s) = φ (s) = RL, A, Κ, ρ (s). Note 

that for any s ≥ 1, φ (s) is a non-decreasing function of L and a non-increasing 

function of A, K. Also, similar to Theorem 2 we have in Theorem 6 the following 

results. 

 

Theorem 6: Given s ≥ 0, 

i) SL, A, K, ρ (s) is non-increasing in ρ. 

ii) RL, Α, Κ, Q (s) is non-decreasing in ρ. 

iii) For s < A / (1-K), we have SL, Α, K, ρ (s) → max {i𝜖Z: i <s = L} and RL, A, K, ρ (s) → ∞ 

when ρ → 0. For s ≥ A / (1-K), we have SL, Α, K, ρ (s) → φ (s) and RL, A, K, ρ (s) → φ (s) 

when ρ → 0. 

iv) SL, Α, K, ρ (s) → 0 and RL, A, K, ρ (s) → ∞ when ρ → ∞ 
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4. Models of Markovian Procedure Decisions in 

Epidemiology and Medical Treatments 

 

4.1. Introduction to MDP Models 

 

In this research, Markov Decision Process (MDP) will be studied and how they 

find application in Epidemiology and Medical Therapies. The Markovian Decision 

Process Theory (MDP) theory is based on a combination of two theories, the 

Markovian Processes and Dynamic Programming. Markovian Processes were 

introduced in the early 20th century by the Russian mathematician Markov, while 

Dynamic Programming theory was introduced by Bellman in 1957. Dynamic 

Programming develops a retrospective process that calculates optimal values of 

cost-benefit functions through an equation. It is also used in finite or infinite time 

horizon problems, in which a stochastic process is controlled by a sequence of 

actions. Bellman, continuing his research, combined the above two theories and 

introduced the Markov Decision Processes (MDP), which for the last four decades 

have been applied in various fields of science, such as, among others, Business 

Research, Epidemiology, Ecology. and Informatics. The problems faced by the 

application of this theory have as their main feature randomness. In the field of 

Epidemiology and Medical Therapy, most cases involve uncertainty and doctors 

have to carry out a difficult task as they judge the health of patients. Each patient 

responds differently to the treatment that will be given to him, the medical 

material that is available each time varies as well as the regimen of the treatment 

that is administered may be different depending on the judgment of the respective 

doctor. All of the above are sources of uncertainty and physicians should take 
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subjective action to address each incident. However, mathematical decision 

models provide information about the nature of optimal decisions and can assist 

in treatment decisions. Markovian Decision Procedures (MDPs) are an appropriate 

technique for certain types of treatment decisions. MDP models find optimal 

solutions to stochastic decision-making problems. An MDP model aims to provide 

the best policy which is a decision policy to optimize a specific criterion. This 

differentiates them from other stochastic modeling techniques. But MDPs also 

have drawbacks. As the size of the problem increases, their solution is not given 

accurately. However, there are many techniques that provide an approximate 

solution. Also, finding medical data is a problem for the application of MDP 

because it is very difficult and costly. More specifically, the analysis of an MDP 

model requires information on certain characteristics such as decision time 

horizons, situations, actions, costs and transition probabilities. In each decision 

period or time, the system provides us with the necessary information so that from 

the situation in which we find ourselves we choose the appropriate action through 

a set of actions. The chances of transition depend on the situation but also on the 

choice of energy. So at a certain point in time following a rule of decisions that can 

depend either only on the present situation or on the situations of the past one can 

choose an action. For future situations the policy to be followed is the one that will 

provide the necessary information for the choice of actions. A Markovian policy is 

a policy according to which the choice of an action at any time n = 0,1,2, ... depends 

only on the time n and on the state of the process at that time. 

For the application of a Markovian decision process is considered a stochastic 

process 𝑋𝑛 with n = 0,1,2…, 𝑁 where the random variable 𝑋𝑛 denotes the state of a 

system at time n. System states can have a finite or infinite number of counts. The 
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system is inspected at times 𝑡 = 0,1,2…, 𝑁 as well as its condition at this time. 

Finally, an action is selected from a set of actions. 

The above system is called a finite time horizon system of 𝑁 steps, if there is a fixed 

integer 𝑁 ≥ 1 such that the actions for controlling the system are selected at times 

𝑡 = 0,1,…, 𝑁 -1 and the process stops at time, 𝑁. In contrast, the system is called an 

infinite time horizon if the set of energy selection time points is infinite. 

 

4.2. Usefulness of MDP Models in Medical Care 

 

MDP models are very useful and are applied to solve medical problems. Their 

usefulness lies in the fact that medical problems are often complex and 

complicated. We also often observe that doctors are called upon to make treatment 

decisions at different times and this complicates the problem. 

For a physician, for example, the life expectancy of a patient whose health progress 

follows an MDP model may be at stake. However, we understand that the path of 

the model until the answer to the patient's life expectancy is finally found is 

complex, as the patient may go into different health states from the initial point of 

decision to healing or death. Modeling these transitions requires a large number 

of status changes at multiple time points. This is why MDP models are popular in 

medical decision making as they allow a simpler representation of future 

conditions and possible transitions that may occur until the patient recovers or 

dies. 

Therefore, MDP models have the advantage that through them decisions can be 

made at different time periods. Evaluation of the actions to be taken is not based 

on a one-time decision, as is the case with other decision models. For example, 
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organ transplantation can be formulated as an MDP model, in which when a donor 

organ is available the possible options are either for the patient to accept the organ, 

or to reject it and wait for a more appropriate one. Therefore, at different times and 

depending on the patient's condition there is the flexibility to choose different 

actions. 

In conclusion, we conclude that in almost any case where one wants to optimize a 

process over multiple time periods one can use an MDP model. 

 

4.3. MDPs Model Methodology 

 

Stochastic Dynamic Programs and Markovian Decision Processes contribute to the 

modeling of dynamic systems under uncertainty. Their main goal is to develop 

models and make decisions in an optimal way so that there is a transition of the 

system to the expected state. 

The discrete-time MDP model is applied as decisions are made sequentially to 

optimize a defined performance criterion. At the same time, the model is a link 

between the previous, current and future decisions of the system. This connection 

is made by defining the system states which are defined as variables and include 

the relevant information for future decision making. 

Next, the system evolution methodology of an MDP model will be analyzed. The 

state of the system, the energy taken, the costs incurred, and the transition of the 

system to a new state follow a known probability distribution. Status variables 

need to be defined so that, given the current situation, future transitions and cost 

rewards are independent of the past, thus following the hypothesis of a Markov 

process. In addition, decisions are considered to occur sequentially. 



68 

 

4.4. MDPs in Discrete Time Models 

 

This work will also develop finite-time MDP models. Initially, the Markov 

decision process in discrete time will be described. Let 𝑋𝑛 be n = 0,1,2, .. the 

stochastic process that represents the state of the system. At the time of inspection 

𝑡 with 𝑡 = 0,1,2,… the system is in state i and 73 the action a is selected, where a∈Α 

(𝑖). A (𝑖) is the set of possible actions, even if it is finite. 

At the next time, the system goes to state j with probability 𝑝𝑖𝑗(𝑎) which depends 

only on energy a and states 𝑖  and j. Also, for every possible action performed there 

is a cost C (𝑖, a) which depends only on state 𝑖 and action a as a consequence of the 

choice of action a the time at which the system is in state 𝑖. 

Next, as policy π we call a rule μ by which actions are selected at time n = 0,1,2,…. 

The goal of an MDP model is to find a policy that minimizes costs. The cost 

function is defined by the optimality criterion. The criterion of minimizing the total 

expected cost will be used. Therefore, we consider V (𝑖, 𝑡) with 𝑡 = 0,…, 𝑁, the 

minimum cost when the system is in state i, the time interval [0, 𝑁].  

For 𝑡 = 𝑁 -1 it is valid 

 

𝑉(𝑖, 𝑁 − 1) = 𝑚𝑖𝑛
𝑎∈𝐴(𝑖)

 𝐶(𝑖, 𝑎) 

 

for 𝑡 = 𝑁, has as boundary condition V (𝑖, 𝑁) = 0. 

Below is the relation, known as the dynamic programming equation or 

optimization equation, for the system which at time 𝑡 is in state i and the action a 

is selected. 
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𝑉(𝑖, 𝑡) = 𝑚𝑖𝑛
𝑎∈𝐴(𝑖)

  [𝐶(𝑖, 𝑎) +∑  

𝑗

𝑝𝑖𝑗(𝑎)𝑉(𝑗, 𝑡 + 1)] 

 

At time 𝑡 selecting action a results in the best possible cost in terms of expected 

cost. Through the dynamic programming equation it is possible to calculate V (𝑖, 

0). Initially, the quantity V (𝑖, 𝑁 -1) from Equation (1.1) has been calculated. 

Then, by induction setting in the optimization equation 𝑡  = 𝑁 -2 the quantity V (𝑖, 

𝑁 -2) is calculated. The same procedure is followed and the quantity V (𝑖, 0) is 

calculated. The optimal policy is the policy which at time 𝑡 = 1,2,…, 𝑁 -1, 𝑁 is in 

state 𝑖 and minimizes the right-hand side of the optimization equation. Finally, the 

same procedure is followed in case we are interested in maximizing the expected 

profit. 

 

4.5. MDPs in Infinite Time Models 

 

In the previous paragraph the theory of finite time horizon MDP models was 

developed. In this section, we will develop the theory of MDPs in Infinite Time 

Models following the same procedure and the same assumptions with the 

difference that it is in infinite time 𝑡, with t∈ (0, ∞). It is understood that the data 

required in these models is infinite and this is quite difficult to happen. For this 

reason it is considered that the data change slowly over time in order to achieve 

their homogeneity. In order to solve the problems that exist in the MDP models of 

infinite time horizon, the concept of stagnant policy is introduced. A policy is 

defined as stationary if it is non-random and the action selected by it at time n 

depends only on the state of the process at time n. Regarding the theorems applied 
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to such a model, it is observed that they do not differ much from those applied to 

the finite time horizon MDP model. It is assumed that there is a real positive 

number B, such that for every ADA action (𝑖) and for every situation 𝑖 of the 

procedure it holds | C (𝑖, α) | 

 

𝑉𝜋(𝑖) = 𝐸𝜋 [∑  

∞

𝑡=0

𝛼𝑡𝐶(𝑋𝑡, 𝑎𝑡) ∣ 𝑋0 = 𝑖]                      

 

where α is constant, which is called the deflation factor and α∈ (0,1). The 

deflationary factor is introduced as there is an economic incentive, since the cost 

to be paid in the future has a lower value than the present. Defined is the bound 

average price below the policy π. The quantity 𝑉𝜋 (𝑖) is well defined as the costs C 

(𝑖, α) are blocked and α <1, and implies | 𝑉𝜋 (𝑖) | ≤Β / 1 -a. 

Demanded in this case, too, is the best policy that minimizes the total expected 

deflated costs. The α-optimal policy is the policy for which * applies 

𝑉𝜋∗(𝑖) = 𝑖𝑛𝑓
𝜋
 𝑉𝜋(𝑖) 

for each initial state 𝑖 ≥0. It is considered as 𝑉𝑎 (𝑖) = 𝑖𝑛𝑓
𝜋
 𝑉𝜋 (𝑖) and the policy π * is 

called α-optimal if Vπ * (𝑖) = Vα (𝑖), for each initial state 𝑖 ≥0. The optimality 

equation for the Infinite time horizon model is given by the relation 

 

𝑉𝑎(𝑖) = 𝑚𝑖𝑛
𝜋
 {𝐶(𝑖, 𝑎) + 𝑎∑  

∞

𝑗=0

𝑝𝑖𝑗(𝑎)𝑉𝛼(𝑗)} 
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for each initial state 𝑖 ≥0. 

Next, we consider B (I) the set of blocked real-time functions in the process state 

space and Vπ∈B (Ι) for each policy π. The stationary policy is a function f: I → Α 

(i), where I is the state space of process f (𝑖) is the energy selected in state i. For 

each stationary policy f the function Tf is defined: B (I) → B (I), such that 

 

(𝑇𝑓𝑢)(𝑖) = 𝐶(𝑖, 𝑓(𝑖)) + 𝑎∑  

∞

𝑡=0

𝑝𝑖𝑗(𝑓(𝑖))𝑢(𝑗) 

 

Therefore, from relation (1.6) for each function u∈B (I) the quantity 𝑇𝑓𝑢 is a 

function whose value in state 𝑖  is given by the above formula. The function 𝑇𝑓𝑢 is 

a blocked function and holds that 𝑇𝑓𝑢 ∈B (I). Finally, 𝑇𝑓𝑢 is interpreted as the value 

(Tf u) (𝑖) in condition 𝑖 and is the expected cost if policy f is used first and after a 

period the process stops receiving a final cost equal to αu (j) if the final state is state 

j. Therefore, for the calculation of the recurring cost 𝑇𝑛 𝑓𝑢 for n ∞ ∞ steps the 

relation is used 

 

𝑇𝑛 𝑓𝑢(𝑖) = 𝐶(𝑖, 𝑓(𝑖)) + 𝑎∑  

∞

𝑗=0

𝑝𝑖𝑗(𝑓(𝑖))(𝑇𝑓𝑢)(𝑗) 

 

receiving a final cost equal to anu. Since α <1 and the function u is blocked it holds 

that 𝑇𝑓𝑢 → 𝑉𝑓. 

Next, an important theorem for stagnant fa policy is given. 
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Theorem 1.1: Let fa be a stationary policy which is in state 𝑖  and the action that 

minimizes the right member of relation (1.1) is chosen, i.e. we have fa (𝑖) to be 

 

𝐶(𝑖, 𝑓𝑎(𝑖)) + 𝑎 ∑  ∞
𝑗=0 𝑝𝑖𝑗(𝑓𝑎(𝑖))𝑉𝛼(𝑗) = 𝑚𝑖𝑛

𝛼∈𝐴(𝑡)
 {𝐶(𝑖, 𝑎) + 𝑎 ∑  ∞

𝑗=0 𝑝𝑖𝑗(𝑎)𝑉𝑎(𝑗)}      

         

then 𝑉𝑓𝑎 (𝑖) = 𝑉𝛼(𝑗) for every i≥0 and therefore the fa policy is α-optimal. 

The above theorem proves that there is a stationary α-optimal policy determined 

by the 1st relation. Therefore, we can calculate the minimum total expected deflated 

cost 𝑉𝛼(𝑗) with i≥0 and find the stagnant policy in state 𝑖, which selects the action 

that minimizes the quantity called the policy optimization quantity, 𝐶(𝑖, 𝑎) +

𝑎 ∑  ∞
𝑗=0 𝑝𝑖𝑗(𝑎)𝑉𝑎(𝑗). 

A widely used technique used to find the best policy is the policy iteration 

algorithm. This algorithm works assuming that we have at our disposal a finite set 

of states. To begin with, there was an initial policy stance f. Calculate the quantities 

𝑉𝑓 (𝑖) 𝑖 = 1,…, n through the graphical system of equations n to n unknown 

 

𝑉𝑓(𝑖) = 𝐶(𝑖, 𝑓(𝑖)) + 𝑎∑  

∞

𝑗=0

𝑝𝑖𝑗(𝑓(𝑖))𝑉𝑓(𝑗) 

for 𝑖 = 1,…, n. 

 

The stationary policy f * is in state 𝑖 by selecting the action α, a∈A (i) which 

minimizes the  
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quantity 𝐶(𝑖, 𝑎) + 𝑎 ∑  ∞
𝑗=0 𝑝𝑖𝑗(𝑎)𝑉𝑓(𝑗) 

 

The new policy f * is obtained by selecting f * (𝑖) = ai provided that the action f * (𝑖) 

is selected the same as the action of the previous f (𝑖) when this action minimizes 

the above expression. 

Because the number of possible policy stances is finite, since the number of stances 

is finite, one will arrive at a stagnant policy for which there is no further 

improvement. So the new f * policy will be the same as the previous f and the 

algorithm will terminate. Finally, f * is the non-optimal policy. 

 

4.6. Partially Observed MDPs (POMDP) Models 

 

Until now, for the finite and infinite time horizon MDP models studied, there was 

accurate information about their condition. But often no one has accurate data on 

their model. If, for example, the results of a patient's medical examination were 

given as data in an MDP model, they are subject to the error that may arise in the 

examination. 

Therefore, Partially observed MDPs (Partially observed MDPsPOMDP), which are 

an extension of MDP models, were developed to address lack of information 

problems (Sondik ,-1978). In such models there is uncertainty in what state the 

system goes into. For this reason, the aim is to adopt an optimal policy based on 

the system's observations and the above. In this case, one can use an adequate 

statistical assessment of the situation instead of the partially observed situation, 

which can be interpreted as a probability of estimating the actual situation of the 
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system based on the observations. In this way, it has a complete model in terms of 

information (Streibel,1965). 

Finally, to emphasize that even with this technique one can arrive at models that 

are difficult to calculate even for medium-sized systems of situations and factors. 

For this reason, approximate techniques must be used to effectively create realistic 

solutions to problems. 

 

4.7. Semi-Markovian Decision Making Procedures (Semi-MDPs) 

 

In healthcare and other applications, decisions can occur at regular intervals, such 

as how often treatments are given to patients depending on their state of health. 

The time between these transitions may depend on the action selected or may 

occur randomly. In these cases, an extension of MDPs is the Semi-Markovian 

Decision Processes (Semi-MDPs), which can be used effectively. Through 

transformations and redefinitions, technical and algorithmic solutions similar to 

those of discrete-time MDPs models have been developed. 

 

4.8. Application of MDP SIR Epidemic Model in Seasonal 

Influenza 

 

In this Section we chose to present an application of the Markov decision-making 

process, using a finite-time MPD model for seasonal influenza and highlighting 

the best health policies through the mathematical model of SIR disease spread. 
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For the study of seasonal flu, two health policies have been adopted, ie ways of 

intervention in order to control its transmission. The first way is the vaccination 

and administration of drugs, while the second way is some interventions to reduce 

the transmission, such as social exclusion (quarantine), the use of a mask and the 

closure of structures that will be implemented in the population. 

However, the model of influenza is very simple and does not realistically approach 

the spread of the disease. Several hypotheses have been made to simplify the use 

of an MDP model to create optimal health policies. Initially, it is assumed that the 

number of new infections during each period can be observed by the decision 

maker and that an infected person comes in contact with the rest of the population 

over a period of time, transmits the virus and then removes (isolates) by the 

population. By relaxing these hypotheses, he can use the generalized Markov 

models for infectious diseases Yaesoubi & Cohen (2011) as well as the partially 

observed POMDP models to characterize optimal health policies (Sondik,1978). 

More specifically, the best health policy adopted is to maximize the health of the 

general population during an epidemic, as opposed to other policies aimed at 

identifying optimal health policies for vaccine distribution prior to the onset of an 

epidemic without considering interventions. which can be used during the 

epidemic. 

In addition, health policy is adopted in real time, allowing interventions at any 

time and responds to the changing 80 characteristics of the disease (infectivity, 

levels of antimicrobial resistance), to the characteristics of the population 

(prevalence of diseases, percentage of healthy individuals) and resource 

constraints (vaccines, antimicrobials, staff and budget). 
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In addition, the control of an epidemic such as seasonal flu is determined by the 

availability of effective vaccines and drugs and the availability of money and 

resources for the supply of vaccines, the diagnosis, treatment of new cases and the 

implementation of transmission reduction interventions during the epidemic. 

Thus, the best health policy to maximize the overall health of the population is, for 

example, minimizing the number of deaths or hospitalizations or maximizing 

other measures, such as quality-adjusted life years. 
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5. Summary 

 

Uncertainty is a key feature in the day-to-day reality of various companies and 

organizations. For example, in a department store, customers' daily requirements 

for a particular product vary from day to day. In a private telephone company, 

customers' calls for help due to possible network failures reach the call center with 

unforeseen frequency. 

In each of the above cases, the problems that arise and the exact times of their 

solution, can not be predicted in advance. Uncertainty seems to be an inevitable 

feature. The researcher is faced with a decision. The various stochastic models 

constructed are used to compare and evaluate researchers' decisions in cases 

where uncertainty is so significant that it cannot be ignored. In the case of the 

department store, the researchers will suggest to the owner alternative rules for 

ordering the product. In the case of a telephone company, the researcher must 

properly distribute the company's support staff to satisfy all complaining 

customers. He must therefore make a decision that will help the optimal operation 

of the company. In the case of the computer center the researcher should prevent 

the congestion of the system as much as possible by making critical decisions. For 

the product manufacturing company, the researcher is invited to propose optimal 

rules for preventive maintenance or repair of the Machinery. In all the above cases, 

it is observed that the uncertainty can be managed by the respective researcher. 

The introduction of uncertainty into a mathematical model often increases its 

complexity. During the 20th century, the development of mathematical theory of 

stochastic models allowed for a more complete analysis. Business Research is one 

of the applied sciences in which stochastic models play a dominant role. 

Informatics, Economics, Biology, Ecology, Medicine are still some scientific fields 
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in which stochastic models are now central. The main objectives of the Stochastic 

Modeling Course are: 

(a) To transmit the central ideas of Stochastic Modeling and to show how they can 

be used in various models at a mainly applied but also at a theoretical level. 

(b) To reveal the interaction of two scientific areas that are usually presented as 

separate "clusters" of Science: Stochastic Processes and Stochastic Modelization. 

(c) To highlight the importance of stochastic models through their construction 

and analysis in various scientific fields. 

To summarize, in this thesis we have studied the effect of changes in parameter 

values on the optimal cost function and the optimal energy for Nonpharmaceutical 

Interventions (NPIs), first for an isolation policy and then for an isolation policy in 

parallel with the general immunization of the population. The results show that if 

the state (s, i) of the process is known, then to determine the optimal energy it is 

not necessary to know the exact value of the relative isolation rate, ρ but only to 

know if ρ is greater or less than the value ρ0 (s, i). (Panagiotidou & Dimitrakos, 

2020). 
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