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Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις, που προβλέπονται από τις δι-
ατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι:

Είμαι ο αποκλειστικός συγγραφέας της υποβληθείσας Διδακτορικής Διατριβής με τίτλο

«Recent Advances on Dimensionality Reduction for High-dimensional Data Anal-
ysis with Applications». Η συγκεκριμένη Διδακτορική Διατριβή είναι πρωτότυπη και
εκπονήθηκε αποκλειστικά για την απόκτηση του Διδακτορικού διπλώματος του Τμήμα-

τος. Κάθε βοήθεια, την οποία είχα για την προετοιμασία της, αναγνωρίζεται πλήρως και
αναφέρεται επακριβώς στην εργασία. Επίσης, επακριβώς αναφέρω στην εργασία τις πηγές,
τις οποίες χρησιμοποίησα, και μνημονεύω επώνυμα τα δεδομένα ή τις ιδέες που αποτελούν
προϊόν πνευματικής ιδιοκτησίας άλλων, ακόμη κι εάν η συμπερίληψή τους στην παρούσα ερ-
γασία υπήρξε έμμεση ή παραφρασμένη. Γενικότερα, βεβαιώνω ότι κατά την εκπόνηση της
Διδακτορικής Διατριβής έχω τηρήσει απαρέγκλιτα όσα ο νόμος ορίζει περί διανοητικής ιδ-

ιοκτησίας και έχω συμμορφωθεί πλήρως με τα προβλεπόμενα στο νόμο περί προστασίας

προσωπικών δεδομένων και τις αρχές Ακαδημαϊκής Δεοντολογίας.
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Abstract
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Recent Advances on Dimensionality Reduction for High-dimensional Data
Analysis with Applications

by Kimon NTOTSIS

Large amounts of raw data often can fail to perform properly for model estima-
tion, attributed to the existence of multicollinearity between variables, and that is
why they must be pre-processed for better modeling and visualization. To address
raw data barriers, among other difficulties, Dimension Reduction Techniques were
developed in an effort to mitigate the magnitude of over-parametrized solutions
that arise in high-dimensional spaces. The aim of this dissertation, which utilizes
multivariate analysis tools, is to investigate, analyze, compare, and improve cur-
rent techniques while still introducing new ones for dealing with multicollinearity
and reducing the feature space of high-dimensional data. In particular, this doc-
toral thesis initially outlines the theoretical framework concerning the unsupervised
technique, Principal Component Analysis, and its supervised counterpart, the Par-
tial Least Squares method. Due to their ability to obtain dimension reduction when
analyzing high-dimensional datasets, both techniques are considered optimal for
feature extraction. The use of the former in conjunction with other dimension reduc-
tion techniques, as well as the modification of the latter, - so that it may be applied
as a feature selection and feature extraction simultaneously-, were implemented and
thoroughly studied in the fields of econometrics, finance and actuarial science. Fi-
nally, a new unsupervised linear feature selection technique is proposed as a robust
and easily interpretable methodology, termed Elastic Information Criterion, that is
capable of capturing multicollinearity rather accurately and effectively and thus pro-
viding a proper dataset assessment.

HTTPS://WWW.AEGEAN.GR/
https://www.actuar.aegean.gr/index.php/en/




v

ΠΑΝΕΠΙΣΤΗΜΙO ΑΙΓΑΙOΥ

Περίληψη

Σχολή Θετικών Επιστημών

Τμήμα Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διδακτορικό

Πρόσφατες Εξελίξεις για Μείωση Διάστασης στην Πολυδιάστατη Ανάλυση Δεδομένων

με Εφαρμογές

του Κίμων ΝΤΟΤΣΗ

Η ιλιγγιώδης ανάπτυξη της τεχνολογίας καθώς και η συνεχής δημιουργία νέων βάσεων

δεδομένων έχει αναδείξει και αναγάγει τα Big Data Analytics στο επίκεντρο της Σύγχρο-
νης Στατιστικής Ανάλυσης δεδομένων. Ωστόσο, η συνεχής αύξηση των παρατηρήσεων
σε ένα σετ δεδομένων δεν προϋποθέτει πάντα μια πιο αποδοτική στατιστική ανάλυση.
Μεγάλοι όγκοι δεδομένων ενδέχεται να παρεμποδίζουν την αποδοτικότητα και αποτελεσ-

ματικότητα των διαφόρων στατιστικών τεχνικών. Συγχρόνως , στην περίπτωση της μον-
τελοποίησης, μια πληθώρα επεξηγηματικών μεταβλητών για εκτεταμένες χρονικές περιό-
δους μπορεί να προκαλέσει ασυνέπειες στην ερμηνεία των στατιστικών αποτελεσμάτων.
Το πιο σημαντικό εμπόδιο που καλείται να προσπελάσει ο ερευνητής είναι η ύπαρξη πο-

λυσυγγραμμικότητας μεταξύ των μεταβλητών. Πλέον οι ερευνητές που εμπλέκονται σε
διαδικασίες στατιστικής μοντελοποίησης, είναι σε θέση να συλλέγουν και να δημιουργούν
σετ μεγάλων πολυμεταβλητών δεδομένων, δηλαδή σετ που περιέχουν πολλές μεταβλητές
με πάρα πολλές παρατηρήσεις ή/και καλύπτουν μεγάλο χρονικό ορίζοντα. Η προσπάθεια
μοντελοποίησης μιας μεταβλητής με τη χρήση ενός τέτοιου σετ ενδέχεται να αναδείξει

επιπρόσθετα προβλήματα -όπως ανακριβείς και αδόμητες βάσεις δεδομένων καθώς και υπ-
ολογιστική πολυπλοκότητα, σε αντίθεση με τη μοντελοποίηση με τη χρήση μικρότερων
συνόλων.
Η πιο συνήθης συνέπεια στη μοντελοποίηση μεγάλων δεδομένων στη στατιστική ανά-

λυση είναι η ύπαρξη πολυσυγγραμμικότητας, η οποία ορίζεται ως η υψηλή γραμμική συσχέ-
τιση μεταξύ δύο ή περισσότερων μεταβλητών. Σε μικρότερη συχνότητα εντοπίζεται ότι
η πηγή του προβλήματος μπορεί να οφείλεται σε εσφαλμένη χρήση ψευδομεταβλητών στη

μοντελοποίηση, στην ύπαρξη μεταβλητών που εκφράζουν το ίδιο χαρακτηριστικό και έχουν
οριστεί με διαφορετικό τρόπο -άλλη μονάδα μέτρησης ή κατηγοριοποίησης- ή όταν τα δε-
δομένα είναι ανεπαρκή. Η συνύπαρξη αυτών των «συγγενών» μεταβλητών παραδείγμα-
τος χάριν στην ανάλυση παλινδρόμησης μπορεί να οδηγήσει σε ασαφή ή και λανθασμένη

ερμηνεία ενώ συγχρόνως μπορεί να επηρεάσει τη διαδικασία πρόβλεψης. Παρόλο που η
σχετικά μικρή πολυσυγγραμμικότητα είναι συνήθως αβλαβής, η μέτρια και σοβαρή ενδέχε-
ται να βλάψει τη στατιστική ισχύ της παλινδρόμησης και να οδηγήσει σε υπερπροσαρ-

μογή του μοντέλου. Αυτό το φαινόμενο είναι αρκετά συχνό στις μέρες μας λόγω του
πλήθους των μη ελεγχόμενων πληροφοριών. Η έλλειψη «φίλτρων» στα δεδομένα οδηγεί
σε σύνολα δεδομένων με μεταβλητές που είναι, σε σημαντικό βαθμό, συγγραμμικές λόγω
αλληλεπιδράσεων που υποβόσκουν και δυνητικά οδηγούν σε παραπλανητικά μοντέλα (υπ-
ερεκτίμηση/υποεκτίμηση) και ανακρίβεια στην εκτίμηση παραμέτρων.
΄Οσο υφίσταται ο κίνδυνος της πολυσυγγραμμικότητας, η ορθή ερμηνεία της ανάλυσης

δεδομένων μπορεί να χαρακτηριστεί ως αναξιόπιστη. Ως εκ τούτου, η πολυσυγγραμ-
μικότητα έχει φτάσει στο σημείο να αποτελεί μια επιπρόσθετη «πέμπτη» προϋπόθεση στην
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περίπτωση της πολλαπλής και πολυμεταβλητής παλινδρόμησης, μεταξύ των ήδη υπαρχόν-
των που πρέπει να ελεγχθούν πριν την διαδικασία μοντελοποίησης.
Η πολυσυγγραμμικότητα μπορεί να χαρακτηρισθεί ως «δομική» ή «βασισμένη στα δε-

δομένα». Η δομική, γνωστή και ως τέλεια πολυσυγγραμμικότητα, εμφανίζεται όταν σε ένα
σύνολο δεδομένων υπάρχουν μεταβλητές οπού η ύπαρξη τους είναι άρρηκτα συνδεδεμένη

με κάποια άλλη μεταβλητή και δεν μπορούν να οριστούν χωρίς εκείνη. Η συσχέτιση αυτών
των δύο μεταβλητών είναι προσεγγιστικά γραμμική και μπορεί να περιγράφει (υποθέτον-
τας ότι υπάρχει συσχέτιση μεταξύ τουλάχιστον δύο μεταβλητών απο τις συνολικά p ενός
πίνακα Χ) ως:

p

∑
j=1

ajXj = 0

όπου υπάρχουν aj ̸= 0 που επιβεβαιώνουν την εξίσωση. Με άλλα λόγια, είναι ένα μα-
θηματικό τέχνασμα που προκαλείται από τη δημιουργία μεταβλητών με τη χρήση ήδη υπαρ-

χόντων μεταβλητών από το ίδιο σύνολο δεδομένων. Λόγω του ότι υπάρχει μια τέλεια συγ-
γραμμική σχέση μεταξύ των μεταβλητών που περιλαμβάνονται στο μοντέλο, το X⊺X γίνε-
ται ιδιάζων και επομένως δεν είναι εφικτό να χρησιμοποιηθεί η παλινδρόμηση ελαχίστων

τετραγώνων για την εκτίμηση των τιμών των παραμέτρων λόγω της μη αντιστρεψιμότητας

του X⊺X. Επομένως, η τέλεια πολυσυγγραμμικότητα παραβιάζει μία από τις προϋποθέσεις
του μοντέλου γραμμικής παλινδρόμησης.
Η βασιζόμενη στα δεδομένα, γνωστή και ως υψηλή πολυσυγγραμμικότητα, εμφανίζεται

μεταξύ των μεταβλητών στο αρχικό μη επεξεργασμένο σύνολο δεδομένων και είναι ο πιο

κοινός τύπος όταν πρόκειται για παρατηρήσεις πειραμάτων. Σε αυτήν την περίπτωση, η
σχέση μεταξύ των μεταβλητών είναι προσεγγιστικά γραμμική και μπορεί να γραφτεί ως:

p

∑
j=1

ajXj ≈ 0

όπου υπάρχουν aj ̸= 0 που επιβεβαιώνουν την εξίσωση. Υψηλή πολυσυγγραμμικότητα
εντοπίζεται συχνά σε μεγάλα πολυμεταβλητά σύνθετα σύνολα δεδομένων, όπου οι μεταβλ-
ητές μπορούν να ποσοτικοποιηθούν σε μετρήσεις ανόμοιου μεγέθους, το οποίο ενέχει
την ενίσχυση της σημαντικότητας των μη σημαντικών μεταβλητών και κατ’ επέκταση την
απόκρυψη της ισχύς των πραγματικά στατιστικά σημαντικών. Σε αυτήν την περίπτωση,
μπορούν να προκύψουν οι ακόλουθες καταστάσεις σε μια διαδικασία μοντελοποίησης:
(i) Καθίσταται δύσκολη η διάκριση των επιδράσεων των επεξηγηματικών μεταβλητών στη
μεταβλητή απόκρισης κατά τη διάρκεια της διαδικασίας της μοντελοποίησης. ΄Οταν οι
επεξηγηματικές μεταβλητές συσχετίζονται, μοιράζονται ένα κοινό μοτίβο μεταβλητότη-
τας, γεγονός που σημαίνει ότι αυξάνονται και μειώνονται ταυτόχρονα. Ως αποτέλεσμα,
η εκτίμηση της επίδρασης στη μεταβλητή απόκρισης είναι δύσκολη και ως εκ τούτου, τα
παραγόμενα αποτελέσματα είναι παραπλανητικά.
(ii) Επιπλέον, στην παρουσίαση πολυσυγγραμμικότητας, υπάρχουν πολυάριθμοι συνδυασ-
μοί εκτιμώμενων συντελεστών που όλοι παράγουν παρόμοιες προβλέψεις. Αυτό σημαίνει
ότι οι εκτιμήσεις έχουν υψηλή τυπική απόκλιση. Σε αυτές τις περιπτώσεις, ο συντελεστής
προσδιορισμού -το μέτρο που χρησιμοποιείται για την αξιολόγηση της καλής προσαρμογής
ενός μοντέλου-, θα είναι υψηλός και το παραγόμενο μοντέλο θα ερμηνεύεται, εσφαλμένα
λόγω υπερπροσαρμογής, ως επαρκές.
Η τέλεια πολυσυγγραμμικότητα είναι εξαιρετικά ασυνήθιστη και η πιο εύκολα διαχειρί-

σιμη αφού μια ενδελεχής εξέταση των μεταβλητών του μοντέλου μπορεί να την εξαλείψει.
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Ωστόσο, η υψηλή πολυσυγγραμμικότητα -η πιο συνηθισμένη, μπορεί να προκαλέσει σο-
βαρά προβλήματα εκτίμησης και ερμηνείας. Η πιο διαδεδομένη συνέπεια που εμφανίζε-
ται παρουσία υψηλής πολυσυγγραμμικότητας είναι η υπερπροσαρμογή της μοντελοποίησης

λόγω της υπερπαραμετροποίησης που υφίσταται, γεγονός που μειώνει τη ισχύ του μον-
τέλου στο προσδιορισμό των στατιστικά σημαντικών μεταβλητών. Αυτό σημαίνει ότι
το μοντέλο είναι πολύ περίπλοκο ενώ οι δείκτες αξιολόγησης του, όπως ο συντελεστής
προσδιορισμού, είναι παραπλανητικοί. Αντί να περιγράφουν την αναλογία της διακύμανσης
στην εξαρτημένη μεταβλητή που είναι προβλέψιμη από τις ανεξάρτητες μεταβλητές, περι-
γράφουν το τυχαίο σφάλμα στα δεδομένα. Είναι επίσης πιθανό οι εκτιμήσεις παραμέτρων
να μην περιγράφουν με ακρίβεια την επίδραση των σχετικών μεταβλητών στην εξαρτημένη

μεταβλητή. Μπορεί επίσης να έχει ως αποτέλεσμα την αλλαγή του δείκτη και την απεραν-
τοσύνη των συντελεστών μερικής παλινδρόμησης από το ένα δείγμα στο άλλο. Επιπλέον,
αν και αυτό το φαινόμενο φαίνεται αρκετά παράδοξο, έχουν γίνει αναφορές για μη συμβατά
αποτελέσματα μεταξύ του F-test και του t-test όταν υπάρχει πολυσυγγραμμικότητα.
Η πολυσυγγραμικότητα ωστόσο δεν είναι πάντα επιβλαβής. Υπάρχουν περιπτώσεις

που μπορεί να χαρακτηριστεί ως ανύπαρκτη, χαμηλή ή μέτρια. Σε αυτές τις περιπτώσεις
δεν χρειάζεται καμία διαδικασία για την αντιμετώπιση της.
Για την αντιμετώπιση της τροχοπέδης που δημιουργεί η ύπαρξη πολυσυγγραμμικοτη-

τας αναπτύχθηκαν οι λεγόμενες Τεχνικές Μείωσης Διάστασης σε μια προσπάθεια να με-

τριαστεί το μέγεθος των υπερβολικά παραμετροποιημένων λύσεων που προκύπτουν σε

χώρους υψηλών διαστάσεων. Στόχος της παρούσας διατριβής, η οποία χρησιμοποιεί ερ-
γαλεία πολυμεταβλητής ανάλυσης, είναι να διερευνήσει, να αναλύσει, να συγκρίνει και να
βελτιώσει ήδη υπάρχουσες τεχνικές, ενώ παράλληλα να εισάγει νέες για την αντιμετώπιση
της πολυσυγγραμμικότητας και τη μείωση του χώρου χαρακτηριστικών των δεδομένων

υψηλών διαστάσεων.
Πιο συγκεκριμένα στο Κεφάλαιο 2 σκιαγραφείται το θεωρητικό πλαίσιο που αφορά

την μη εποπτευόμενη τεχνική της Ανάλυσης Κύριων Συνιστωσών (ΑΚΣ) καθώς και την
αντίστοιχη εποπτευόμενη μέθοδο των Μερικών Ελάχιστων Τετράγωνων (ΜΕΤ). Λόγω
της ικανότητάς τους να επιτυγχάνουν μείωση διαστάσεων κατά την ανάλυση συνόλων

δεδομένων υψηλών διαστάσεων, θεωρούνται αμφότερες βέλτιστες για δημιουργία νέων
μεταβλητών.
Στο Κεφάλαιο 3 γίνεται αναφορά στα κριτήρια και στους δείκτες που έχουν χρησι-

μοποιηθεί για την αξιολόγηση των τεχνικών που εφαρμόστηκαν στη διεκπεραίωση της

διατριβής.
Ο σκοπός του Κεφαλαίου 4 αφορά τη μοντελοποίηση των δημοσίων συνταξιοδοτικών

δαπανών (ΔΣΔ) διαφόρων ευρωπαϊκών χωρών. Για το σκοπό αυτό, το Κεφάλαιο ασχολεί-
ται με τον εντοπισμό, τη συλλογή και την ανάλυση μεταβλητών, οι οποίες, βραχυπρόθεσ-
μες ή μακροπρόθεσμες, ενδέχεται να έχουν αντίκτυπο στη διαμόρφωση των ΔΣΔ. Συνδυ-
αστικά χρησιμοποιήθηκαν οι τεχνικές των Beale et al. και ΑΚΣ, που εφαρμόστηκαν ώστε
να ληφθεί το βέλτιστο σύνολο μεταβλητών για τη μοντελοποίηση των ΔΣΔ. Η ανάλυση
επικεντρώνεται σε 20 ευρωπαϊκές χώρες για τις οποίες χρησιμοποιήθηκε ένα σύνολο 20
υποψήφιων επεξηγηματικών μεταβλητών για την περίοδο 2001–2015.
Αρκετές έρευνες σχετικά με τη χρήση του ΜΕΤ ως εποπτευόμενης τεχνικής μείωσης

διάστασης έχουν αναπτυχθεί με την πάροδο των ετών στον τομέα της στατιστικής και χη-

μειομετρίας για σκοπούς παλινδρόμησης. Ωστόσο, η ΜΕΤ μπορεί να είναι μια απαιτητική
διαδικασία, ειδικά στην περίπτωση πολυμεταβλητής πολλαπλής παλινδρόμησης λόγω των
χαρακτηριστικών και της πολυπλοκότητας των δεδομένων. Στο Κεφάλαιο 5 παρουσιάζεται
η πρόταση για χρήση της μεθόδου ΜΕΤ ως τεχνική επιλογής μεταβλητών στη γραμμική

παλινδρόμηση για φασματικά σύνολα δεδομένων υψηλών διαστάσεων. Πιο συγκεκριμένα,
τεκμηριώνεται η πρόταση εκμετάλλευσης των συντελεστών παλινδρόμησης που υπολογίζει

η ΜΕΤ για τον εντοπισμό και την εξάλειψη ασήμαντων επεξηγηματικών μεταβλητών από
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την ανάλυση. Με αυτόν τον τρόπο, είναι εφικτή η απομάκρυνση των στατιστικά μη σημαν-
τικών μεταβλητών και η επίτευξή της βέλτιστης μοντελοποίησης σε σύγκριση με τη κλασ-

σική ΜΕΤ. Επιπροσθέτως, η προτεινόμενη τεχνική επιτυγχάνει μια απλούστερη δομή μον-
τέλου τόσο στην μονομεταβλητή όσο και στην πολυμεταβλητή περίπτωση.
Το Κεφάλαιο 6 προτείνει και διερευνά μια εύρωστη και εύκολα ερμηνεύσιμη μεθοδολο-

γία, που ονομάζεται Elastic Information Criterion (EIC), ικανή να συλλαμβάνει την πο-
λυσυγγραμμικότητα με μεγάλη ακρίβεια και αποτελεσματικότητα και έτσι να παρέχει μια

την ορθότερη δυνατή αξιολόγηση του σετ δεδομένων. Η απόδοση του διερευνάται μέσω
προσομοιωμένων και πραγματικών δεδομένων. Το EIC μπορεί να θεωρηθεί ως μια μη εποπ-
τευόμενη γραμμική τεχνική επιλογής μεταβλητών.
Το Κεφάλαιο 7 επιχειρεί να εντοπίσει και να αναλύσει, μέσω τεχνικών πολυμεταβλ-

ητής ανάλυσης, μεταβλητές που συνδέονται (συσχετίζονται) με το Ακαθάριστο Εγχώριο
Προϊόν (ΑΕΠ) και είτε βραχυπρόθεσμα είτε μακροπρόθεσμα επηρεάζουν την διαμόρφωση
του.
Στόχος του Κεφαλαίου 8 είναι η πρόταση μιας καινοτόμου προσέγγισης για ευέλικτη

και ακριβή μοντελοποίηση βαθμολόγησης πιστοληπτικής ικανότητας με τη χρήση όχι μόνο

οικονομικών παραγόντων αλλά και χαρακτηριστικών πιστοληπτικής συμπεριφοράς. Επι-
πλέον, προτείνεται μια πολυδιάστατη αλγοριθμική διαδικασία μείωσης διάστασης προκειμέ-
νου να αναδειχθούν οι στατιστικά σημαντικές μεταβλητές και κατ’ επέκταση να δημιουργη-
θεί ένα αξιόπιστο μοντέλο πρόβλεψης για τη βαθμολόγηση της πιστοληπτικής ικανότη-

τας των εταιριών. Η προτεινόμενη νέα διαδικασία εφαρμόζεται στο ελληνικό σύστημα ξε-
χωριστά για «μικρές» και «μεγάλες» επιχειρήσεις.
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Chapter 1

Introduction to Dimensionality
Reduction

1.1 The issue of multicollinearity

The tremendous increase in the development of technology as well as the creation
of new databases on a variety of topics makes Big Data Analytics (BDA; BD for
Big Data) more efficient to work with. However, more is not always better. Large
amounts of data might sometimes fail to perform properly in data analytics applica-
tions. Indeed, when it comes to modelling, a multitude of explanatory variables for
extensive time periods can cause inconsistencies in the interpretation of statistical
results. The most important obstacle that one has to overcome is the existence of
multicollinearity between the variables.

Nowadays, researchers involved in statistical modelling processes, are able to
collect data on multiple factors over a long time horizon, which may contain mil-
lions of observations. Trying to model a variable having such a large dataset, can
cause additional problems (such as inaccurate and disorderly databases, computa-
tional complexity, and insufficient analytical skills) as opposed to modelling with
smaller datasets. Due to such problems, there was the need for the creation of a
particular category of data analysis, named BDA, which is a very growing branch of
data science. As IBM states, “Big data analysis is the use of advanced analytic techniques
against very large, diverse data sets that include structured, semi-structured, and unstruc-
tured data of different sizes. Big data is a term applied to data sets whose size or type is
beyond the ability of traditional relational databases to capture, manage, and process the data
with low latency. And it has one or more of the following characteristics – high volume, high
velocity, or high variety” IBM (2021).

The most common consequence of such a big dataset modelling in statistical
analysis is the existence of multicollinearity, which is defined as the high linear as-
sociation between two or more variables (i.e., one or more variables can be linearly
predicted from other(s) at a notable degree of accuracy) (Alin (2010)). Not so often
it can be caused by the false use of dummy variables in the modelling, the repeti-
tion of the same kind of variable, or when the data are insufficient, which can be
resolved by collecting more data. The coexistence of these cohort variables in a re-
gression analysis can result in inconclusive or even incorrect interpretation, while it
may affect the forecasting process (Bayer (2018)). Even though relatively small mul-
ticollinearity may cause no harm, moderate and severe one can abate the statistical
power of the regression and lead to overfitting due to variables redundancy. That
phenomenon is quite common nowadays due to the size of unfiltered information.
This results in datasets with variables that are, to a significant extent, collinear due



2 Chapter 1. Introduction to Dimensionality Reduction

to interrelationships that lurk and potentially lead to misleading models (overesti-
mation/underestimation) and inaccuracy in parameter estimation.

In the presence of multicollinearity, the proper interpretation of the data analysis
may not be reliable (Silvey (1969)). Due to this fact, multicollinearity has reached
the point of being an additional “fifth” assumption in the case of multiple and mul-
tivariate regression, among the already existing ones - normality, homoscedasticity,
and independence of the residuals and linearity between the dependent(s) and each
independent variable (Yoo et al. (2014)).

Multicollinearity falls into one of the following two categories namely, struc-
tural and data-based multicollinearity. Structural one, also known as perfect mul-
ticollinearity, occurs when a byproduct variable exists in the dataset along with the
one that originates from and can be expressed (assuming that correlation exist be-
tween at least two variables of the total p in a given X-matrix) as:

p

∑
j=1

ajXj = 0

where, there are aj ̸= 0 that confirms the equation. In other words, is a mathemat-
ical artifact caused by generating predictors with the use of already existing ones.
Due to the fact that a perfect collinear relationship between the variables included
in the model exists, X⊺X becomes singular and thus it is not feasible to use the Ordi-
nary Least Squares (OLS) regression to estimate the value of the parameters due to
X⊺X non-invertibility . Therefore, perfect multicollinearity violates one of the linear
regression model assumptions.

Data-based, also known as high (also abbreviated as extreme or severe) multi-
collinearity, occurs between the variables in the original unprocessed dataset and is
the most common type when it comes to observational experiments. In this case, the
relation between the variables is approximately linear and can be written as:

p

∑
j=1

ajXj ≈ 0

where there are aj ̸= 0 that confirms the equation. High multicollinearity often exists
in big multivariate complex datasets, where variables may be quantified in dissimi-
lar sized measures which can enhance the significance of insignificant variables and
potentially conceal the statistically significant ones (Ueki and Kawasaki (2013), Yue
et al. (2019)). In this case, where (X⊺X)−1 computation is possible, the following
situations can arise in a modelling process: (i) It becomes difficult to distinguish the
effects of predictors on the response variable during a statistical modelling process.
When the rest of the predictors remain unchanged, a regression coefficient expresses
the impact of a one-unit change in the corresponding predictor. When predictors
are correlated, they share a common variability pattern, which means they both in-
crease and decrease at the same time. As a result, estimating how much-correlated
predictors affect the response variable is difficult and therefore, the apparent effects
are deceptive. (ii) Furthermore, when multicollinearity is presented, there are nu-
merous combinations of estimated coefficients that all produce similar predictions.
This means that the estimates have a high standard error. As a result, the T-statistic
t = β̂ j/s.e.(β̂ j) decreases, lowering the power of the hypothesis test H0 : β j = 0.
This means that zero coefficients may not be detected as such but may appear statis-
tically significant, resulting in the existence of redundant variables. In these cases,
the coefficient of determination -the measure used to evaluate a model’s goodness
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of fit (i.e., performance)- will be high, and the produced model will be interpreted as
adequate. However, redundancy causes overfitting of the regression model, which
results in the regression model failing to perform adequately for samples. (iii) Ad-
ditionally, because the produced coefficient estimates are imprecise, predictions of
samples located outside the space covered by the training set will be imprecise as
well.

However, multicollinearity is not always harmful. There are cases that can be
categorized as non-existing, small, and moderate (medium). In these cases, there is
no need for any process for its elimination. Usually, insufficient data may guide the
deceitful existence of multicollinearity (Ntotsis and Karagrigoriou (2021)).

FIGURE 1.1: Triple Venn diagram demonstrating the variation of mul-
ticollinearity

Figure 1.1 displays the five states of multicollinearity. From small multicollinear-
ity between variables X1 and X2 while no existent one between X3 and each of them
in the upper left Venn diagram, to moderate multicollinearity between all three in
the upper right corner, to severe and perfect multicollinearity in figures’ lower half.

Perfect multicollinearity is highly uncommon and the easiest to handle and avoid
by a thorough examination of the model’s variables. However, high multicollinear-
ity -the most habitual, can cause severe estimation and interpretation problems. The
most prevalent consequence which appears in the presence of multicollinearity is
overfitting in regression analysis modelling due to the redundancy of variables,
which reduces the power of the model to identify the statistically significant vari-
ables. That means that the model is too complex and the model’s measures of as-
sessment, such as the coefficient of determination, are misleading because instead
of describing the proportion of the variance in the dependent variable that is pre-
dictable from the independent variables, describe the random error in the data. It is
also possible that parameter estimates may not accurately describe the impact of the
associated variables on the dependent variable. It can also result in the alteration of
the indicator and the immensity of the partial regression coefficients from one sam-
ple to another. Furthermore, although that phenomenon seems quite paradoxical,
reports have been made for non-compatible results between F-test and T-test when
multicollinearity exists (Largey (1996)).
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1.1.1 Review of multicollinearity measures

To detect the multicollinear variables in a set of data and eliminate them, assorted
criteria have been developed over time. Some of these are briefly presented below.
An easy way to have a first glimpse at multicollinearity’s state is through a corre-
lation matrix. Relatively high correlations indicate the possible existence of multi-
collinearity. Dissimilar results about the coefficients between F and T-tests (i.e., in
the regression model, the F-test comes to the conclusion that at least one variable is
statistically significant, while at the same time the T-test suggests that none of the
variables actually is) is an indicator for the existence of harmful multicollinearity.
Although that phenomenon seems quite paradoxical, it has been thoroughly exam-
ined and explained by Largey (1996), as they provide two reasons for the occurrence.
The first one is the existence of multicollinearity in the model, in which the existence
of a relationship can be established but not the individual influence of each variable.
The second reason stems from the value of the degrees of freedom (DF) of the resid-
uals. If the residuals DF are ⩾ 3, then, the significant point of F(k, n−k−1) is lower than
the significant point of F(1, n−k−1) which corresponds to the significant point of the
t-statistics. Hence, when all t-statistics are equal or approximately so, they may all
be non-significant while F is significant. The explanation is that a significant F-ratio
does not indicate the significance of any given regression coefficient but merely the
existence of at least one linear combination which is significantly different from zero.
Additionally, significant R-squared shifts when variables are inserted/removed can
also imply the existence of severe multicollinearity (Geary and Leser (1968)).

There are several partially robust criteria and indices for multicollinearity detec-
tion focusing either on the coefficient of determination and similar measures or on
the eigensystem analysis. Some of the most regularly used are:

Collinearity diagnostics such as eigensystem analysis and Conditional Index (CI)
(Belsley (1991)) can highlight the issue of multicollinearity. Correlation matrix-based
eigenvalues near zero presuppose multicollinearity among the variables (Hair et al.
(2010), Kendall (1957)), while if the CI of Equation 1.1 is greater than 10, empirically,
one can say that it leads to the same conclusion (Belsley (1991), Hair et al. (2010)).

CIj =

√
λev

max
λev

j
, (1.1)

where λev
j is the eigenvalue emerged from the original variables correlation matrix,

λev
max is the maximum eigenvalue, j = 1, 2, . . . , k is the number of variables and λev

1 ≥
λev

2 ≥ · · · ≥ λev
k .

Besides, Kovács et al. (2005) used eigensystem analysis to compose the Red in-
dicator, presented in Equation 1.2, for proper detection. When the indicator ap-
proaches zero, then multicollinearity is low, while when it approaches 1, then it can
be considered high.

Red =

√
∑k

j=1(λ
ev
j −1)2

k√
k − 1

. (1.2)

Farrar-Glauber test (Farrar and Glauber (1967)) approaches the issue with the
comprised of a 3-test procedure that examines the presence of multicollinearity, the
existence of collinear regressors, and the form of their affiliation. They also proposed
the use of a measure based on the ratio of explained to unexplained variance (Farrar
and Glauber (1967)), the large values of which indicate multicollinearity.
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wj = (rjj − 1)×
(

n − k
k − 1

)
, (1.3)

where rjj = 1
1−R2

j
and R2

j is the R-squared of the auxiliary regression of each j variable

against all the others.
Klein (1962) and Theil (1971) independently proposed rules based on R2

j , and its
impact on the overall R-squared. Klein states that if R2

j surpasses the overall R2,
then multicollinearity can be worrisome. On the other hand, Theil’s rule asserts that
if the resulting m from Equation 1.4 is 0, then multicollinearity is absent, while if it
is approximately equal to 1, then it can be considered troublesome.

m = R2 −
k

∑
j=1

(R2 − R2
−j), (1.4)

where R2
−j is the resulting R2 of the full model without the inclusion of the Xj vari-

able.
Leamer (Greene (2002)) suggested a method based on the variance of the esti-

mated coefficients:

Cj =


(

∑k
j=1(Xij − X̄j)

2
)−1

(X′X)−1
jj


1
2

. (1.5)

Equation 1.5 is used for ruling and takes values in [0,1]. When Cj approaches the
left end, then multicollinearity exists; while, when it approaches the right end, then
it can be considered non-existent. Although all the above are well established and
frequently used techniques for multicollinearity detection, the criterion that is the
most frequently used in various fields is the Variance Inflation Factor (VIF) (Gujarati
and Porter (2008)) which uses the coefficient of determination for detection purposes
and is formulated as follows:

VIFj =
1

1 − R2
j
=

1
TOL

(1.6)

VIF indicates how magnified is the variance of an estimator in the presence of mul-
ticollinearity. When no multicollinearity among variables exists, then VIFj = 1 and
when R2

j approaches 1, then VIFj approaches infinity. If VIFj is greater than 5, then
the jth variable is considered multicollinear and is proposed for extraction for a better
result interpretation (Gujarati and Porter (2008)). However, the acceptance range is
subject to requirements and constraints, with most suggesting the acceptance thresh-
old to be equal to 5 or 10. Disregarding its regular usage, VIF lags behind in some
cases. More specifically, as Gujarati and Porter state (2008) “high VIF is neither nec-
essary nor sufficient to get high variances and high standard errors. Therefore, high mul-
ticollinearity, as measured by a high VIF, may not necessarily cause high standard errors”.
Tolerance Limit (TOL) is also a detection measure, closely related to VIF as it is its
denominator. Weisburd and Britt (2013) state that a value under 0.2 indicates severe
multicollinearity.

Lastly, the IND1 indicator proposed by Ullah et al. (2016), can be used for detec-
tion purposes. Its corresponding formula is

IND1j = (R2
j − 1)×

(
1 − k
n − k

)
, (1.7)



6 Chapter 1. Introduction to Dimensionality Reduction

and when IND1j ≤ 0.02, then multicollinearity exists. For more about multicollinear-
ity measures, one can refer to Halkos and Tsilika (2018), and Imdadullah et al. (2016).

When multicollinearity is harmful, then all the aforementioned measures usually
fail to recognize patterns among variables. This occurs as a consequence of model
overfitting. There are several ways to deal with this issue. The most common solu-
tion when such states of multicollinearity exist is to remove the byproduct variables.
However, these methods can be extremely time-consuming and not so trustworthy.
Researchers nowadays tend to prefer the use of dimension reduction techniques
that focus either on variable selection or extraction, either on coefficient penaliza-
tion. Techniques such as Principal Component Analysis and Partial Least Squares
are considered optimal for purpose fulfilment. Alternative approaches such as Least
Absolute Shrinkage and Selection Operator, Ridge, Elastic Net Regularizations, etc.,
have been developed and utilized to address the issue of coefficient penalization
absence and expansion multicollinearity. All these techniques will be thoroughly
discussed in the following Chapters.

1.2 Dimensionality Reduction: The cure to the curse

The curse of dimensionality refers to phenomena that emerge when investigating
and analysing data in high-dimensional spaces that do not occur in low-dimensional
settings. The curse exists because as dimensionality increases, the sample needed
decreases exponentially. The continuous adding of information without increasing
the number of training samples will lead to the dimensionality of the feature space
expanding and eventually to data becoming sparse. In order for the results in a high-
dimensional dataset to be reliable, the dimensionality must grow exponentially with
the available data, which is a rare phenomenon due to data dissimilarities. To ad-
dress this curse, the multicollinearity, and any other potential side issues associated
with BDA, special techniques, namely Dimensionality Reduction Techniques (also
referred to as Dimension Reduction Techniques, DRT; DR for Dimension Reduction)
were developed. The DRT are defined as techniques that converse and project a
high-dimensional space dataset in a low-dimensional space while maintaining un-
altered the variability (information) and properties of the data. Ideally, the proper
utilization of DRTs can lead to the intrinsic dimension of a given dataset; i.e., the
thin line between the maxima variable loss and the minima information lost, that
can acknowledge the observable properties structure and representation of the in-
put dataset. Thusly, it is feasible to have a more effective perception of the data by
“sacrificing” a small portion of its original information. Figure 1.2 gives a brief visual
aspect of how effective the DRT can be in the research area. The left graph illustrates
the original data, while the right graph presents the results researchers retrieve via
DR. In A can be seen, that the experiments have been grouped via the neighbor
retrieval visualizer DRT. This technique also utilizes colors and widths in the com-
ponent boxes to embed the complex information that exists in the original data. A
detailed interpretation of the experiment, one can find in Honeine et al. (2018).
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FIGURE 1.2: The use of a circular link diagram for a visual informa-
tion retrieval interface to a collection of microarray experiments visu-

alized as glyphs on a plane.
Left Figure: Original data. Right Figure: A: Glyph locations have
been optimized by the neighbour retrieval visualizer so that relevant
experiments are close by. For this experiment data, relevance is de-
fined by the same data-driven biological processes being active, as
modelled by a latent variable model (component model). B: Enlarged
view with annotations; each colour bar corresponds to a biological
component or process, and the width tells the activity of the compo-
nent. These experiments were retrieved as relevant for the melanoma
experiment shown in the centre. C: The biological components (nodes
in the middle) link the experiments (left) to sets of genes (right) acti-

vated in them.
Source: Honeine et al. (2018)

Due to the large amount of data existing nowadays, dimension reduction has
become a must-have tool for researchers in order to analyse their data. The bene-
fits that DRT accomplishes prevail over the information loss that requires. Those
beneficial characteristics of DRT can be summarized in eight aspects as presented
below:

• Overfitting is avoided by reducing dimensionality. When there are many fea-
tures in the data, the models become more complex and tend to overfit the
training data.

• Data visualization. When we reduce the dimensionality of higher dimensional
data into two or three components, the data can easily be plotted on a two-
dimensional (2D) or three-dimensional (3D) plot.

• Multicollinearity is addressed by dimensionality reduction. In regression, mul-
ticollinearity occurs when an independent variable is highly correlated with
one or more of the other independent variables. Dimensionality reduction ex-
ploits this by combining highly correlated variables into a set of uncorrelated
variables.

• A lower number of dimensions in data means less training time and computa-
tional resources, which improves the overall performance of machine learning
algorithms -Machine learning problems with many features require extremely
slow training. The majority of data points in high-dimensional space are very
close to the space’s boundary. This is due to a large amount of space avail-
able in high dimensions. Most data points in a high-dimensional dataset are
likely to be far apart. As a result, algorithms are unable to train effectively and
efficiently on high-dimensional data.
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• DR is highly suitable for factor analysis. It can be an effective technique for
identifying latent variables that are not directly measured in a single variable
but rather inferred from other variables in the dataset. These latent variables
are referred to as factors.

• Dimensionality reduction reduces data noise. DR reduces data noise by keep-
ing only the most important features and removing redundant features. This
will improve the accuracy of the model.

• DR can be used for image compression. Image compression is a technique that
reduces the size of an image in bytes while retaining as much of the image’s
quality as possible. The pixels that comprise the image can be thought of as
image data dimensions (columns/variables).

• DR can be used to convert non-linear data into linearly separable data.

However, even though the beneficial characteristics of DR can lead to robust and
efficient analysis results, they might be disadvantageous too. Improper selection
or implementation of a DRT can potentially lead to significant information loss. The
majority of statistical theories and applications dealing with DR are focused on linear
DR, which in many cases is undesirable or non-existing. Finally, when it comes to
feature extraction, most techniques are a bit “abstract”, meaning they apply a rule of
thumb in order to obtain the new variables. That brings up the question, of which
new variables to retain.

1.2.1 Approaches to DRT

The DR techniques can be classified/categorized based on several criteria. Most
prevailed differentiations between the approaches are:

Linear and non-linear DRT

This distinction is based on data characteristics. When linear relations between vari-
ables occur, then the data is transformed to a low dimension space as a linear combi-
nation of the original variables using linear dimensionality reduction. When the data
is in a linear subspace, the original variables are replaced by a smaller set of under-
lying variables. Such approaches include principal component analysis (PCA), mul-
tidimensional scaling (MDS), partial least squares (PLS), linear discriminant analy-
sis (LDA), canonical correlations analysis (CCA), independent component analysis
(ICA), slow feature analysis (SFA), singular value decomposition (SVD), Neighbor
Retrieval Visualizer (NRV), and sufficient dimensionality reduction (SDR). When the
original high-dimensional data contains non-linear relationships, nonlinear dimen-
sionality reduction is used. The data is represented in a lower dimension while the
original distances between the data points are preserved. Such approaches include
kernel principal component analysis, Sammon’s mapping, local linear embedding,
isomap, Laplacian eigen map, and uniform manifold approximation and projection
are among the most regularly used.
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FIGURE 1.3: Linear (PCA) vs non-linear (KPCA) DRT

According to the comparison in the Figure 1.3, KPCA produces an eigenvector
with higher variance (eigenvalue) than PCA. Because KPCA is a circle and PCA
is a straight line for the largest difference of the projections of the points onto the
eigenvector (new coordinates), KPCA has a higher variance than PCA.

Feature extraction and feature selection DRT

Feature (variable) selection methods include algorithms that aim to find irrelevant
and/or redundant variables of a dataset. Then, these variables are removed. A new
dataset has a lower dimension, as it consists of a subset of the variables of the ini-
tial dataset (Guyon and Elisseeff (2003)). In most techniques in this category, all
variables are matched with a value, arising from a criterion. According to its value,
every variable is evaluated and it is decided either on its removal or its selection. The
physical meaning of retained variables does not change at all. Despite the advantage
of interpretability, information captured in interactions and correlations between se-
lected and removed variables is lost (Li and Zeng (2009)). Some popular techniques
of this kind are Information Gain, Relief, Fisher Score, Forward Feature Selection,
Chi-square Test, Backward Feature Elimination, Least Absolute Shrinkage and Se-
lection Operator (Lasso), and Elastic Net (EN). On the contrary, the application of
feature extraction (projection) techniques results in the transformation of a dataset
-data points are projected to low dimensional space. This is achieved with the use
of original variables as elements of combinations that summarize information from
initial variables (Li and Zeng (2009)). This results in the newly generated variables,
(also mentioned as components or latent variables in the literature) being correlated
with the original ones. Among the most applied techniques are PCA, PLS, CCA, and
LDA.
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FIGURE 1.4: The impact of Feature Selection and Feature Extraction
on the original variables

As can be seen in Figure 1.4, when in feature selection, an amount of the original
variables are being selected, while when in feature extraction all variables are uti-
lized for the generation of each of the components with different weights. As can be
seen in the graph, the components have different colours; this is due to the fact that
even though each one contains all original variables, some play a more significant
role in the formation of the component than others.

Supervised and unsupervised DRT

The majority of DRT are unsupervised learning techniques. The distinction between
the above categories lies in the existence of supervised information (class labels) or
not. LDA and PLS are considered supervised techniques since the first extracts the
optimal discriminant vectors when labels are available and the latter uses the re-
sponse variable(s) in order to obtain the latent variables of the model. The most
recognized unsupervised techniques are considered to be PCA and kernel PCA,
which try to maintain the data structure without acknowledging the existence of la-
bels. Several other subcategories of supervision also exist, such as semi-supervised
DRT -which learns from both labelled and unlabelled data, linear and non-linear
(un)supervised DRT, etc.

FIGURE 1.5: Unsupervised (PCA) and Supervised (PLS) DRT
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Figure 1.5 compares PCA and PLS regression based only on the first component.
The plot displays the projected data onto the first component against the observa-
tions (original data points) in both models. In both cases, the regressors will use this
projected data as training data. Despite being the most predictive direction, the un-
supervised PCA transformation dropped the second component, i.e. the direction
with the lowest variance. Because PCA is an entirely unsupervised transformation,
projected data have low predictive power on the target. The PLS regressor, on the
other hand, captures the effect of the direction with the lowest variance because it
uses target information during the transformation: it recognizes that this direction
is actually the most predictive. We notice that the first PLS component is negatively
correlated with the target, which is due to the arbitrary nature of eigenvector signs.
A similar example can be found in Pedregosa et al. (2011).

In this Thesis, the unsupervised DR technique PCA is being thoroughly inves-
tigated in various data types on its own and in combination with other techniques;
almost exclusively for modelling purposes.

Chapter 2 documents in detail the theoretical framework behind PCA (Section
2.1) and its supervised equivalent, PLS method (Section 2.2). Both techniques are
considered optimal for feature extraction due to their ability to obtain DR when
high-dimensional datasets are being analysed. A theoretical comparison between
those two takes place, as well as a comparison concerning their benefits and disad-
vantages (Section 2.3). Additionally, a more contemporary approach to DR, through
regularization techniques is also documented in the final part of (Section 2.4).

Chapter 3 mentions criteria and indices implemented in Chapter 4 – Chapter 8
for assessing the power of models resulted through the analyses considered.

The purpose of Chapter 4 concerns the modelling of public pension expenditures
(PPE) of various European countries. For this purpose, the Chapter deals with the
identification, collection, and analysis of variables, which, either short-term or long-
term, may have an impact on the shaping of PPE. A mixture of the Beale et al. (1967)
technique and PCA was implemented to obtain the optimal set of variables for the
modelling of PPE. The analysis focuses on 20 European countries for which a set of
20 possible explanatory variables for the period 2001–2015, were used.

Several works concerning the utilization of PLS as a supervised dimension re-
duction technique have been developed over the years in the field of chemometrics,
among others, for regression purposes. However, PLS can be a challenging proce-
dure, especially in the case of multivariate multiple regression due to data charac-
teristics and complexity. Thus, in Chapter 5 the proposal of Feature Selection PLS
(FS-PLS) takes place. FS-PLS is a PLS-based method that acts as feature selection and
feature extraction technique at the same time and is utilized in linear regression tasks
that involve high dimensional spectral data sets. More precisely, the suggestion to
exploit the regression coefficients that PLS estimates in order to identify and eject the
insignificant predictor variables from the analysis is documented. In such a manner,
we are able to remove the uninformative variables and obtain, in most cases, better
results than classical PLS regression but with a simpler structure. The comparison
of the proposed algorithm with the classical PLS and PCA occurs in both univariate
and multivariate regression scenarios.

When it comes to variable interpretation, multicollinearity is among the biggest
issues that must be surmounted, especially in this new era of BDA. Since even mod-
erate size multicollinearity can prevent proper interpretation, special diagnostics
must be recommended and implemented for identification purposes. Nonetheless,
in the areas of econometrics and statistics, among other fields, these diagnostics are
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controversial concerning their “successfulness”. It has been remarked that they fre-
quently fail to do proper model assessment due to information complexity, resulting
in model misspecification (Lindner et al. (2020)). Chapter 6 proposes and inves-
tigates a robust and easily interpretable methodology, termed Elastic Information
Criterion (EIC), capable of capturing multicollinearity rather accurately and effec-
tively and thus providing a proper model assessment. Performance is investigated
via simulated and real data. EIC can be considered an unsupervised linear feature
selection technique.

Chapter 7 attempts to locate and analyse via multivariate analysis techniques,
highly correlated variables which are interrelated with the Gross Domestic Product
(GDP) and therefore are affecting either a short-term or a long-term shaping. For the
analysis, three variable selection/extraction techniques were used. The case study
focuses on annual data for Greece from the period 1980 to 2018.

The objective of Chapter 8 is the proposal of an innovative approach to flexible
and accurate credit scoring modelling with the use of not only financial but also
credit behavioural characteristics. In addition, we propose a multidimensional re-
duction algorithm in order to divulge the statistically significant variables that pre-
vail and as an extension to create a reliable prediction model for credit scoring based
on the effective combination of PCA and regularization methods. The proposed
novel procedure is applied to the Greek system separately for small and large enter-
prises with the use of a Credit Bureau database with more than 200,000 cases.
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Chapter 2

Review of Dimensionality
Reduction Techniques

2.1 Principal Component Analysis

As mentioned prior, large amounts of data might sometimes fail to perform properly
in data analytics applications and can cause inconsistencies in the interpretation of
the results. In order to overcome this problem, which most likely comes as a result
of the existence of multicollinearity, various DRT were developed. PCA is able to
reduce the number of random variables, -under specific conditions and constraints,
and create a new smaller set of variables based on the original one. Through this
process, it is easier to interpret different statistical tests without losing the accuracy
of the original variables in the sense that these techniques are intended to retain
variation unchanged as much as possible.

The Beale et al. (1967) technique considers a more simplified version of PCA
and is summarized by the following three-step procedure for discarding variables
in multivariate analysis.

1 Locate the minimum eigenvalue and the corresponding eigenvector of the va-
riance-covariance or correlation matrix.

2 Locate the element of the eigenvector with the highest absolute value. This
value corresponds to a variable which will be removed from the model.

3 Repeat the above steps until p-k variables have been removed.

where p is the number of all variables and k is the number of eigenvalues that are
greater than one. However, when a large amount of data is involved or a more
complex multicollinearity structure exists, these techniques lead to model overesti-
mation or underestimation.

PCA is a commonly applied DRT, introduced by Pearson (1901) and Hotelling
((1933), (1936)). It is a multivariate technique in which a data matrix X (X-matrix),
which includes correlated variables, is transformed into a new one. Variables in the
new matrix, also called Principal Components (PCs), are uncorrelated and ordered
so as to contain the variance of the original X-matrix on a declining scale, starting
from the first one. The beneficial property of the new matrix is that most variation of
the X-matrix is compressed in the first few new variables. These variables, the num-
ber of which is selected by the user, form a low-dimension matrix, an approximation
of X that can be used for modelling purposes.

As Varmuza and Filzmoser state (2009) “PCA can be seen as a method to compute
a new coordinate system formed by the latent variables, which is orthogonal, and where
only the most informative dimensions are used." From a geometrical point of view, an
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X-matrix is projected/mapped to a new space (hyperplane, plane, or line), the coor-
dinate system of which is formed by the PCs, which are oriented in the direction of
maximized variance of data points. “The coordinates of the samples in the new space are
called scores, often indicated with the symbol T. The new dimensions are linear combinations
of the original variables and are called loadings (symbol P).” (Wehrens (2011)).

The PCA of an X-matrix of size n × p is:

X = TpP⊺
p

where T is the matrix containing the scores of the samples, P is the matrix contain-
ing the loadings, and superscript ⊺ indicates the transpose of a matrix. Subscript p
indicates the number of latent variables that can be computed. However, as only a
few Principal Components are almost always used for modelling since they suffice
to explain most of the variance included in X, the original matrix can be written as:

X = TmP⊺
m + E

where m, ranging from 1 to p, indicates the number of selected latent variables and
E is the matrix containing the residual error. Geometrically, that is the perpendicular
distance of each point onto the hyperplane formed by loading vectors. These quan-
tities represent the loss of information because of the projection of X data points into
a low-dimension space. Finally, the new, low-dimension matrix can be written as:

X̃ = TmP⊺
m

where X̃ indicates the approximation of X, that can be used for modelling purposes
discharged of noise.

2.1.1 Steps to build a PCA model

The first step in PCA is centring data matrix X in order to remove arbitrary bias from
measurements. This is achieved by replacing each xij element by:

xij − x̄j

where (x̄j) indicates the mean value of column j. After this process, in the mean-
centred matrix X, each column has a mean of zero. This technically means that data
points have been moved to the centre of the coordinate system while the distances
between them do not change at all.

In some cases, datasets include variables of different magnitudes, because they
are measured in different units. As a result, some variables have different statistical
weights in the analysis. This problem can be solved by replacing each xij element
by:

xij − x̄j

sj

where sj indicates the standard deviation of the jth variable, a process called scal-
ing. In this way, the final columns in X have a mean of zero and a unit variance,
and it should be noted that in this case the relative distance between data points is
changed. However, if predictors are measured in the same units, scaling could cause
the inflation of noise in uninformative variables (Wehrens (2011)).

The next step is to compute the matrices for Principal Components.
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Singular Value Decomposition

A commonly applied technique to compute scores and loadings is the SVD, accord-
ing to which the mean-centred X-matrix is decomposed as:

X = UDV⊺

where U is a matrix of size n × n and its columns are the left singular vectors of
X, while V is a matrix of size p × p and its columns are the right singular vectors
of X. Matrices U and V are orthogonal, meaning each column is orthogonal to the
others. Matrix D is a diagonal n × p matrix, where diagonal elements di are related
to variances of corresponding PCs. These quantities can be computed by:

λi =
d2

i
n − 1

Finally, matrices U, D, V, T, and P are related to each other as follows:

X = (UD)V⊺ = TP⊺

meaning that the matrix of loadings P is set equal to matrix V, while the matrix
of scores T is set equal to matrix [UD].

Eigen Decomposition

In the case of data sets with many original variables, the SVD process is considered
computationally demanding and is avoided. Instead, another method called eigen
decomposition is applied to either covariance matrix Σ or correlation matrix ρ(X).

Each element in a covariance matrix represents the covariance between two vari-
ables, a quantity that measures their joint variability of them, and it is computed
by:

cov(X1, X2) = E[(X1 − E(X1))(X2 − E(X2))]. (2.1)

Given a data set that includes X1, X2, . . . , Xp variables, the covariance matrix is
symmetric as shown below:

Σ =


cov(X1, X1) cov(X1, X2) ... cov(X1, Xp)
cov(X2, X1) cov(X2, X2) ... cov(X2, Xp)

...
...

...
cov(Xp, X1) cov(Xp, X2) ... cov(Xp, Xp)


Diagonal elements of the Σ matrix represent variances of variables, since by def-

inition

Var[X1] = E[(X1 − E(X1))
2] = E[(X1 − E(X1))(X1 − E(X1))] = cov(X1, X1).

As a result, this matrix is also called the variance-covariance matrix.
However, in PCA, the original X variables are mean-centred and Equation 2.1

becomes:

cov(X1, X2) = E[X1X2].
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In terms of a matrix, that includes all p variables, this can be written as E[X⊺X] and
when the variance-covariance matrix refers to a sample data set, it is equal to the
X⊺X matrix.

Correspondingly, each element in the correlation matrix represents a correlation
between two variables, a measure of the linear relationship between them, and it is
computed by:

cor(X1, X2) =
cov(X1, X2)√

Var[X1]
√

Var[X2]
.

Given a data set that includes X1, X2, . . . , Xp variables, the correlation matrix is
symmetric and diagonal elements are equal to one, as shown below:

ρ(X) =


1 cor(X1, X2) . . . cor(X1, Xp)

cor(X2, X1) 1 . . . cor(X2, Xp)
...

...
...

cor(Xp, X1) cor(Xp, X2) . . . 1


since

cor(Xi, Xi) =
cov(Xi, Xi)√

Var[Xi]
√

Var[Xi]
=

Var[Xi]

Var[Xi]
= 1, ∀i.

It should be noted that correlation is independent of the scales of variables, while
covariance is not. This is the reason why the correlation matrix is used when vari-
ables have different measurements; oppositely, the covariance matrix is used when
all variables in X express the same measurement unit. Note that even though the
correlation matrix supposedly handles the differentiation between the unit measure-
ments of the variables, data standardization is highly recommended in the presence
of extreme multicollinearity regardless of the selected matrix.

Finally, the basic elements of the decomposition process are the eigenvalues and
the corresponding eigenvectors, which are related according to the equation:

Xv = λv.

As Cheever (2020) states “In this equation, X is an n-by-n matrix, v is a non-zero
n-by-1 vector, and λ is a scalar (which may be either real or complex).Any value of λ for
which this equation has a solution is known as an eigenvalue of the matrix X. It is sometimes
also called the characteristic value. The vector v, which corresponds to this value is called an
eigenvector”.

As mentioned above, in PCA the PCs are oriented in directions of maximal vari-
ance of data points. In other words, the method initially aims to find the direction of
a unit length vector p1 that maximizes the variance of the score, i.e. the values that
are loaded in vector t1. This is equivalent to maximizing the function g:

g = t⊺1 t1

under the constraint p⊺1 p1 = 1 and considering that t1 = Xp1. Hence:

g = t⊺1 t1 = p⊺1 X⊺Xp1. (2.2)

Using Lagrange multiplier, Equation 2.2 can be transformed into:

g = t⊺1 t1 = p⊺1 X⊺Xp1 − λ(p⊺1 p1 − 1). (2.3)
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Taking partial derivatives:

∂g
∂p1

= 0 ⇒
∂{p⊺1 X⊺Xp1 − λ(p⊺1 p1 − 1)}

∂p1
= 0 ⇒

2X⊺Xp1 − 2λp1 = 0 ⇒

(X⊺X − λIp×p)p1 = 0 ⇒

X⊺Xp1 = λp1. (2.4)

From Equation 2.2 and considering Equation 2.4 :

t⊺1 t1 = p⊺1(X⊺Xp1) ⇒

t⊺1 t1 = p⊺1 λp1 = λp⊺1 p1 ⇒

t⊺1 t1 = λ. (2.5)

Similarly, the rest requested directions of PCs can be computed, under the addi-
tional constraint of orthogonality among all of them.

Finally, it is concluded that the directions of PCs are the directions of eigenvec-
tors of covariance matrix X⊺X. Therefore, loadings matrix P is formed by setting
as columns the eigenvectors of X⊺X and they are ordered according to the value of
the respective eigenvalue. Eigenvectors with larger eigenvalues are set first. In this
way, arising PCs, which consist of the columns in the XP product matrix, have a
maximum variance, because their variance is equal to the respective eigenvalue, as
shown in Equation 2.5.

Eventually, the mechanism of eigenvalue decomposition of a set of predictors X,
where variables Xi are mean-centered, can be summarized in two steps: The creation
of the covariance or correlation matrix and the computation of its eigenvectors and
eigenvalues. Finally, order the eigenvalues in a declining scale and form loadings
matrix P using the eigenvectors. This matrix can be used to produce scores matrix
T, by setting T = XP.

Choosing the number of Principal Components

The major aim of PCA is dimension reduction. In other words, PCA is applied to
replace the p variables-columns of an X matrix with a smaller number m of PCs,
without discarding a significant amount of information (Jolliffe (2002)). Although
typically p PCs can be computed, it’s meaningless to work with all of them. The
crucial question is how many PCs should eventually be included in the PCA model.
The answer is not straightforward, as the analyst should consider a trade-off be-
tween information loss and the insertion of noise. Next, are presented the most
often approaches used to determine the appropriate number of PCs:

• Cumulative Percentage of Total Variation
A direct estimate of the appropriate number of PCs can be formed by the in-
spection of the cumulative percentage of the total variation of X, which can
be explained by the inclusion of different numbers of PCs. It should be noted
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that the percentage of variance explained by the ith PC can be computed by the
formula (Wehrens (2011)):

qi = 100
λi

∑
p
j=1 λj

where λi refers to the eigenvalue of the ith PC and p the overall number of PCs.
Usually, one selects the first m PCs, which absorb 80% − 90% of initial data
variation (Wehrens (2011)):

m

∑
j=1

qi = 100
∑m

j=1 λi

∑
p
j=1 λj

.

• Size of variances of PCs
This approach is also called Kaiser’s Rule and is mainly applied in cases where
PCs are generated by the analysis of the correlation matrix. According to
Kaiser (1960), PCs are included in the PCA model as long as their variance
is larger than 1. However, it should be mentioned that in Jolliffe (1972) is sug-
gested a lower variance threshold, a value of 0.7, due to independency condi-
tions and sampling variances. In the PCA of a covariance matrix, a sufficient
threshold is considered the average value of the eigenvalues.

• Catell’s Scree Test – Scree graph

It is a graphic way to judge the number of PCs. On the Scree graph, also called
the Scree plot, the proportion of variance explained by each PC against the
rank of each PC is plotted. Usually, the curve that connects the points forms an
elbow-like shape. The point located at its angle indicates the last PC to be in-
cluded in the PCA model (Cattell (1966)). When the eigenvalues drop dramat-
ically in size, an additional PC would add relatively little to the information
already extracted.

FIGURE 2.1: Catell’s Scree Test
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Figure 2.1 depicts a typical scree graph for a dataset with ten PCs, as well as
a bar graph-like graph displaying the percentage of variation associated with
each PC (value an top of each box). Based on the results, the top 5 or 6 PCs
maintained the required proportion of variance from the original data (≈ 85%
- 90%).

There have also been proposed Cross-validation and bootstrap techniques, but
they are not common due to the computational cost, especially when processing
large data sets (Jolliffe (2002)).

Generally, it is recommended the use the first 2 or 3 PCs since they contain a
significant amount of the original information and it is possible to visualize them in
a 2- or 3-dimensional space (Figure 2.2).

FIGURE 2.2: Visual representation of PCA on a 2D and 3D space



20 Chapter 2. Review of Dimensionality Reduction Techniques

2.1.2 PCA constructing algorithm step by step in R

Algorithm 1 PCA implementation in R

Input: A data set consisted by a n × p matrix X, where each Xj column represents
a variable.

Output: A data set consisted by a p × w matrix, where w ≤ p is the number of the
selected PC.

Step 1: If data set is standardized then move to Step 2, else do:

xij − x̄j

sj

where sj indicates the standard deviation of the jth variable.

scaled_data <- scale(data, center = TRUE, scale = TRUE)

Step 2: Compute covariance or correlation matrix (only correlation matrix is dis-
played below rounded with to two first decimals).

ρ(X) =


1 cor(X1, X2) . . . cor(X1, Xp)

cor(X2, X1) 1 . . . cor(X2, Xp)
...

...
...

cor(Xp, X1) cor(Xp, X2) . . . 1


cor_matrix <- round(cor(scaled_data, method = c("pearson")),2)

Step 3: Compute eigenvalues and eigenvectors


A11 A12 . . . A1n
A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann




v1
v2
...

vn

 = λ


v1
v2
...

vn


eigen <- eigen(cor_matrix)
eigenvalues <-eigen$values
eigenvectors <- eigen$vectors

Step 4: Compute the Component matrix.

According to Ntotsis et al. (2020), the methodology for the construction of the
components (uncorrelated vectors) is summarized below:
Let us denote by Cj the jth component, λj the corresponding eigenvalue, and vj
the corresponding eigenvector, j = 1, 2, ..., m ,where m represents the total number
of original covariates.
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Hence, Cj is defined most often with one of the following formulas; However,
other variations have also been proposed (the calculation of the first is presented
below)

Cj =
√

λj vj =
√

λj


v1j
v2j
...

vmj

 or Cj = −
√

λj vj = −
√

λj


v1j
v2j
...

vmj

 or Cj =


v1j
v2j
...

vmj


components <- eigenvectors %*% diag(sqrt(eigenvalues))

Step 5: Compute the Principal Component, which can be written as a linear com-
bination between the components and the input matrix.
Each new variable Zj, j = 1, ..., m is a linear function of the components matrix
and the data. We denote by X = {Xij}i=1,2,...,n

j=1,2,...,m the matrix elements of the original
data and by Zj the new covariates, respectively.

Then, for the elements of Zj = (Z1j, ..., Znj)
⊺ we have:

Zij =
m

∑
j=1

XijCj ∀ i = 1, ..., n, j = 1, ..., m.

pca_variables <- matrix(0, nrow(scaled_data), ncol(components))
for (i in 1:nrow(scaled_data)) {
for (j in 1:ncol(components)) {
pca_variables[i, j] <- sum(scaled_data[i, ] * components[, j])}}

Step 6: Select the number of optimal PC

• based on Kaiser’s rule:

kaisers_values <- c()
for (i in 1:ncol(scaled_data)) {
if (eigenvalues[i] >= 0.99) {
kaisers_values[i] <- eigenvalues[i]}}
kaisers_comp <-
components[, c(1:NROW(kaisers_values))]

• based on proportion of variance explained
variance_decomp <-

rbind(
Total_Initial_Eigenvalues = eigenvalues,
# eigenvalues
Percentage_Variance = eigenvalues / sum(eigenvalues),
# variability explained be each component
Cumulative_Variance = cumsum(eigenvalues) / sum(eigenvalues))
variance_decomp
M <- #eigenvalue threshold that determine the number of components
var_dec_values <- c()
for (i in 1:ncol(scaled_data)) {
if (eigenvalues[i] >= M) {
var_dec_values[i] <- eigenvalues[i]}}
var_dec_comp <-
components[, 1:NROW(var_dec_values)]
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2.1.3 Assumptions for performing PCA

When deciding to use PCA to analyse data, it must first be ensured that the data
under examination must be compatible with PCA. This is necessary because PCA
can only be used if the data “passes” 5 assumptions that must be met for PCA to
produce a valid result. In practice, checking for these assumptions involves a few
tests as well as some additional thought about the data, but it is not a tough effort.

However, it is not uncommon if one or more of these assumptions are violated
when analysing data. When working with real-world data rather than textbook ex-
amples, this is not unusual. Even if the evidence contradicts certain assumptions,
there is usually a way to work around it. First, consider the following five assump-
tions:

#1: The variables should be measured on a continuous basis (although ordinal
variables are very frequently used). Continuous variables (i.e., ratio or interval vari-
ables) include revision time (measured in hours), intelligence (measured using an IQ
score), exam performance (measured from 0 to 100), and so on.

#2: The available data should be suitable for DR. The existence of adequate cor-
relations between variables in order to reduce them to a smaller number of compo-
nents.

#3: All variables must be related in a linear relation. The reason for this as-
sumption is that a PCA is based on Pearson correlation coefficients, and as such, the
variables must have a linear relationship. With the use of ordinal data for variables,
this assumption is somewhat relaxed (even if it shouldn’t be). Although a matrix
scatterplot can be used to test linearity, this is often considered overkill because a
scatterplot can contain thousands of linear relationships. Thus, it is recommended a
random sampling testing of this assumption between the variables.

#4: Sampling adequacy is needed, which simply means that large enough sam-
ple sizes are required for PCA to produce a reliable result. Many different guidelines
have been proposed. These are primarily differentiated by whether an absolute sam-
ple size is proposed or a multiple of the number of variables in your sample is used.
A prevail rule of thumb that occurs states that a minimum sample size of 100+ cases
is required for sampling adequacy, which can be determined with several methods,
for instance: (i) the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy for
the entire data set, and (ii) the KMO measure for each individual variable.

#5: There should be no notable outliers. Outliers are significant because they can
have a disproportionate impact on the outcomes.

2.1.4 Principal Component Regression

The Principal Component Regression (PCR) is a linear regression method that uses
PCA and a regression step to overcome the weaknesses of Multiple Linear Regres-
sion (MLR). It is applied in case of multicollinearity between the predictors or/and
in case the number of predictors is large compared to the number of available sam-
ples. Then, the X matrix can be decomposed according to PCA and, after determin-
ing the number of PCs retained in the model, low-dimension matrix T is used in
MLR instead of the X matrix. As described in Wehrens (2011):

Y = XB + E ≃ X̃B + E′ = (TP⊺)B + Ẽ
= T(P⊺B) + Ẽ = TA + Ẽ.
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It is obvious that PCR initially decomposes the data matrix and then replaces it
with scores matrix T in a regression step. Matrix A indicates the regression coeffi-
cients to be computed. The formula for this is:

A = (T⊺T)−1T⊺Y

as computed in classic Linear Regression when the Ordinary Least Squares Method
is applied. It should be noted that values in the A matrix refer to scores. Matrix B
with the regression coefficients that refer to the original variables of X can be com-
puted by:

B = PA = P(T⊺T)−1T⊺Y.

2.2 Partial Least Squares Method

In PCA, analysis is applied to the X data matrix. As a result, arising PCs retained in
the model may not contain information related to the dependent-response variables
they are next meant to predict in the regression step. In other words, valuable for
prediction purposes information may be summarized in PCs that are not included
in the PCA model. Partial Least Squares (PLS) is an alternative method that copes
with this deficiency of PCA and, at the same time, achieves dimension reduction. As
stated in Rosipal and Kramer (2005), “It comprises of regression and classification tasks
as well as dimension reduction techniques and modelling tools." This dissertation explores
PLS in both one-dimensional and multidimensional concepts (i.e., when there is only
one response variable and when there are multiple response variables, respectively).

This method shares the same main idea as PCA: it forms new variables, as lin-
ear combinations of the original, which are uncorrelated. The difference is that they
retain information involved both in X and Y data matrices. So, here, the aim is to
generate latent variables in the direction of maximum covariance between X and Y:
as stated in Wehrens (2011), “PLS explicitly aims to construct latent variables in such
a way as to capture most variance in X and Y, and to maximize the correlation between
these matrices". However, the algorithm to achieve this goal is a bit more compli-
cated, since both X and Y matrices are analyzed. New latent variables are generated
through an iterative procedure, in every step of which is computed a set of scores
vectors, a set of loadings, but also a set of weight vectors. One vector of each type
refers to the X matrix and the other refers to the Y matrix. Next, follows deflation of
X and Y matrices, so as to subtract the information explained by the computed com-
ponents. Deflated matrices are used in the next iteration of the algorithm to generate
new components. Finally, the user selects the number of components of the X matrix
that will be used. Of course, their number is significantly reduced compared to the
number of original variables, since valuable information is summarized in the first
few PCs.

Geometrically, just like PCA, in PLS, the Y-matrix in addition to the X-matrix is
projected to new spaces, the coordinate systems of which are formed by new latent
variables formed by linear combinations of the original ones as mentioned before.
Latent variables of the X matrix are generated so as to be orthogonal, and as a result
uncorrelated, but this is not necessarily the case for latent variables of the Y matrix.

Partial Least Squares analysis of an X matrix of size n × p and a matrix Y of size
n × k is:

X = TαP⊺
α
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Y = UαQ⊺
α

where T and U are scores matrices. Again, the ith columns in T and U matrices, are
the coordinates of the samples in the direction of the ith new latent variable, values
arising from the perpendicular projection of each sample onto this direction and are
measured from the origin. P and Q are loadings matrices, and the superscript ⊺ in-
dicates the transpose of a matrix. In the PLS model, loadings are vectors used in the
deflation process of sequential deflated matrices generated through the algorithm.
The subscript α indicates the number of latent variables that we usually compute
and is equal to min(n,p,k). Since only the first few components are adequate for the
following modelling purposes, the original matrices can be rewritten as (Rosipal and
Kramer (2005))

X = TmP⊺
m + E

Y = UmQ⊺
m + F

where m is a number smaller than α and indicates the number of latent variables
retained in the model. Matrices E and F contain information not explained by the
first m selected Components. Eventually, the new, low-dimension matrix can be
written as:

X̃ = TmP⊺
m

where X̃ indicates the approximation of X, which can be used for further modelling
purposes.

2.2.1 Steps to build a PLS model

The very first step in building a PLS model is mean-centering columns in matrices X
and Y so that each one has zero mean. Additionally, in cases of variables measured
in different units, scaling should be considered. The reason and technique for mean-
centering and scaling are the same as in the PCA model.

Concerning the computation of scores, loadings, and weight vectors, plenty of
algorithms have been proposed. Some of the most known are named: The Eigen-
vector algorithm, by Höskuldsson (1988), Kernel algorithm for PLS introduced by
Lindgren et al. (1993), Nonlinear Iterative Partial Least Squares (NIPALS) algorithm
introduced by Wold (1975), Statistically Inspired Modification of the Partial Least
Squares (SIMPLS) algorithm for PLS proposed by De Jong (1993), Orthogonal Pro-
jections to Latent Structures (O-PLS) proposed by Trygg and Wold (2002). The NI-
PALS algorithm is considered to be the most optimal of the above and thus only its
documentation is displayed in the manuscript.

NIPALS Algorithm

The NIPALS algorithm constructs the PLS model’s matrices in sequential steps. In
every step, the X-scores vector, denoted by t and results from the projection of the X-
data matrix on the direction of the new latent variable, is about to be constructed in
X data space. Y-score vector, denoted by u, arises alike. These directions are defined
by weight vectors w and c, respectively. Mathematically, this can be written as:

t = Xw

u = Yc/(c⊺c).
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Directions of the w and c vectors are found so as to maximize the covariance
between score vectors t and u, a value proportional to the quantity t⊺u. An additional
constraint on unit length weight vectors is applied. To sum up, the problem to be
solved can be written as (Rosipal and Kramer (2005)):

max{cov(t, u)} = max{t⊺u} = max{(Xw)⊺Yc} = max{w⊺X⊺Yc} (2.6)

In every step, the computation of weights and scores is followed by the deflation
of X and Y matrices. This process is based on p and q loadings of X and Y matrices,
respectively, computed as:

p = X⊺t/(t⊺t)

q = Y⊺u/(u⊺u).

Actually, there are several variations on how to run deflation. The choice de-
pends on the aim of PLS modelling. Wold (1975) initially proposed to deflate matri-
ces as follows:

Xnew = Xold − tp⊺

Ynew = Yold − uq⊺.

This version of deflation of Y is used when the PLS model is built to reflect re-
lations between matrices of variables and the algorithm is called PLS modelling. In
case a PLS model is built for prediction, the algorithm is called PLS, when there is
only a one-dimensional Y response variable to be predicted (univariate case), and
M-PLS, when Y, like X, is multidimensional (multivariate case). These variations
run deflation as follows:

Xnew = Xold − tp⊺

Ynew = Yold − btc⊺

where

b = u⊺t/(t⊺t). (2.7)

When the c vector is not scaled to have a unit length (and this is most frequently
the case), as shown below, b is equal to one (Höskuldsson (1988)):

u⊺t = c⊺Y⊺t/(c⊺c) = c⊺(Y⊺t)/(c⊺c) = c⊺c(t⊺t)/(c⊺c) = t⊺t (2.8)

and from Equation 2.7 and Equation 2.8

b = u⊺t/(t⊺t) = t⊺t/(t⊺t) = 1.

In the following, the c vector is not supposed to be scaled, so b is considered
equal to one. Because of this, deflation of the Y matrix becomes:

Ynew = Yold − tc⊺.

Once deflation is completed new matrices Xnew and Ynew, also called residual ma-
trices, are analysed in the next step so that the next latent variable can be extracted.
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2.2.2 Pseudocode for univariate PLS

With this in mind, the procedure for the PLS version can be described as follows:

Algorithm 2 Pseudocode for PLS

Input: A n × p X-matrix and a n × 1 Y-matrix where each Xj column represents an
explanatory variable.

Output: Vectors t, p, w and c.

Step 1: Set the vector u as the Y column, the unique vector of response variable

Step 2: Compute X weight: w = X⊺u/(u⊺u)

Step 3: Scale w to be unit length vector, ||w|| = 1

Step 4: Compute X scores: t = Xw

Step 5: Compute Y weight: c = Y⊺t/(t⊺t)

Step 6: Compute X loadings: p = X⊺t/(t⊺t)

Step 7: Deflation process: Xnew = X − tp⊺

Step 8: Set X = Xnew and go to step 2

The maximal number of such components that have non-zero covariance with Y
is min(n − 1, p), where n the number of samples and p the number of variables in
X-matrix (Boulesteix and Strimmer (2006)).

The way the weight vectors are found ensures that these give the solution to the
problem formulated in Equation 2.6. To prove that we can use the fact that non-
deflation of the Y matrix does not influence the results. Further, let us denote as
X⊺

i the residual matrix that is going to be used for the construction of the ith latent
variable. For this ith dimension we denote as wn−1 the weight vector of (n − 1)th

iteration of steps 2 to 6 before the convergence and as wn the weight vector of nth

iteration before the convergence. Then, as stated in Höskuldsson (1988), the weight
vector can be analysed as:

wn = X⊺
i un−1/(u⊺

n−1un−1) =

= X⊺
i Ycn−1/(u⊺

n−1un−1)(c
⊺
n−1cn−1) =

= X⊺
i YY⊺tn−1/(u⊺

n−1un−1)(c
⊺
n−1cn−1)(t

⊺
n−1tn−1) =

= X⊺
i YY⊺Xiwn−1/(u⊺

n−1un−1)(c
⊺
n−1cn−1)(t

⊺
n−1tn−1).
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Considering that the ith latent variable takes s iterations till convergence is achieved,
then we can conclude that ws and ws−1 do not differ significantly. So, by previous
equation vector ws is eigenvector of matrix X⊺

i YY⊺Xi.
Accordingly, we can find that cs is the eigenvector of matrix Y⊺XiX

⊺
i Y (Höskulds-

son (1988)):

cn = Y⊺tn/(t⊺ntn) =

= Y⊺Xiwn/(t⊺ntn) =

= Y⊺XiX
⊺
i un−1/(t⊺ntn)(u

⊺
n−1un−1) =

= Y⊺XiX
⊺
i Ycn−1/(t⊺ntn)(u

⊺
n−1un−1)(c

⊺
n−1cn−1).

Eventually, ws and cs are the first eigenvectors that correspond to the largest
eigenvalue of X⊺

i YY⊺Xi and Y⊺XiX
⊺
i Y matrices, respectively. Therefore, from SVD

properties, these vectors maximize the quantity of interest in Equation 2.6.
Furthermore, PLS latent variables not only explain maximum covariance be-

tween X and Y but also are mutually orthogonal. The retrospective relation between
residual matrices of the PLS model will help to prove it (Höskuldsson (1988)).

Xj = Xj−1 − tj−1 p⊺j−1 =

= Xj−1 − Xj−1wj−1t⊺j−1Xj−1/(t⊺j−1tj−1) =

= Xj−1[I − wj−1t⊺j−1Xj−1/(t⊺j−1tj−1)] =

= [Xj−2 − tj−2 p⊺j−2][I − wj−1t⊺j−1Xj−1/(t⊺j−1tj−1)] =

= [Xj−2 − Xj−2wj−2t⊺j−2Xj−2/(t⊺j−2tj−2)][I − wj−1t⊺j−1Xj−1/(t⊺j−1tj−1)] = ...

= [Xi − Xiwit
⊺
i Xi/(t

⊺
i ti)]...[I − wj−2t⊺j−2/(t⊺j−2tj−2)][I − wj−1t⊺j−1Xj−1/(t⊺j−1tj−1)].

Next, the proof of orthogonality between scores vectors follows:
Let indices i and j denote now two different directions of extracted latent vari-

ables (suppose i < j). From the retroactive relation above, we can write (Höskulds-
son (1988)):

Xj = [Xi − Xiwit
⊺
i Xi/(t

⊺
i ti)]...[I − wj−2t⊺j−2/(t⊺j−2tj−2)]

[I − wj−1t⊺j−1Xj−1/(t⊺j−1tj−1)] =

= [Xi − Xiwit
⊺
i Xi/(t

⊺
i ti)]Z

where Z some matrix.
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Further,

t⊺i Xj = t⊺i [Xi − Xiwit
⊺
i Xi/(t

⊺
i ti)]Z =

= t⊺i Xi − (t⊺i Xiwit
⊺
i Xi)/(t

⊺
i ti) =

= t⊺i Xi − (t⊺i ti)t
⊺
i Xi/(t

⊺
i ti) =

= t⊺i Xi − t⊺i Xi = 0.

(2.9)

Consequently,

t⊺i tj = t⊺i Xjwj = 0.

This means that score vectors are mutually orthogonal and as a result uncorre-
lated, a very significant property.

When the whole process of extracting latent variables is completed, the involved
t scores vectors, p loadings vectors, w and c weight vectors are combined as column-
vectors and form respectively T scores matrix, P loadings matrix and weight matri-
ces W and C.

However, frequently, for interpretation purposes, another matrix is being com-
puted:

R = W(P⊺W)−1.

The need for R arises because derived weight scores do not refer to the original
matrix X and its original variables, but to the sequential deflated matrices Xi. On the
contrary, each column vector in the R matrix expresses the weights of the original
variables of X at the corresponding dimension (Wehrens (2011)). Algebraically, is
the generalized inverse of matrix P⊺, which is singular, and it is

T = XR.

2.2.3 Pseudocode for multivariate PLS

M-PLS is a more computationally complex procedure, compared to PLS, and can be
described by the following pseudocode:

Algorithm 3 Pseudocode for M-PLS

Input: A n × p X-matrix and a n × k Y-matrix where each Xj column represents an
explanatory variable and Yj represents a response variable.

Output: Vectors t, p, w and c.

Step 1: Set the vector u as the first or any other column of Y

Step 2: Compute X weight: w = X⊺u/(u⊺u)

Step 3: Scale w to be unit length vector, ||w|| = 1
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Step 4: Compute X scores: t = Xw

Step 5: Compute Y weight: c = Y⊺t/(t⊺t)

Step 6: Update u scores vector: u = Yc/(c⊺c)

Step 7: Test convergence of ratio v = ||told − tnew||/||tnew||
• If v > ϵ, go to step 2 (where ϵ set to a number between (10−8, 10−6) for in-

stance)

• If v < ϵ, go to step 8

Step 8: Compute X loadings: p = X⊺t/(t⊺t)

Step 9: Deflation process: Xnew = X − tp⊺ and Ynew = Y − tc⊺

Step 10: Set X = Xnew and Y = Ynew and go to step 2

The way t scores are derived implies that they also contain information about Y.
As a result, they are also good predictors of Y (and that is the reason that deflation
of Y matrix is done by subtracting tc⊺ = tt⊺Y/(t⊺t), where t⊺Y/(t⊺t) is the OLS
estimate v of coefficient in regression Y = tv).

At this point, it should be mentioned that in Wold et al. (2001) it is supported that
deflation of Y matrix is optional, since, as it is stated there “the results are equivalent
with or without Y-deflation".

2.2.4 Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is a linear regression method that uses PLS,
as a method of extracting latent variables and a regression step. It is used when
Multiple Linear Regression is impossible to give a solution to a regression problem
or its solution is not stable. Typical situations include collinear predictors and/or
the need for dimension reduction. Then, PLS or M-PLS can be applied to X and
Y matrices, depending on the dimension of Y. The PLS model with the selected
components is then used in regression:

Y = XB + E ≃ X̃B + Ẽ = (TP⊺)B + Ẽ
= T(P⊺B) + Ẽ = TA + Ẽ.

The above regression scheme, as presented in Wehrens (2011), is identical to PCR.
The difference lies in the computation of scores, which takes into account the re-
sponse variable(s). Regression coefficients are again computed using the Ordinary
Least Squares Method.

A = (T⊺T)−1T⊺Y.

In PLS A and Ẽ are column vectors, while in M-PLS they are matrices, where the
number of their columns is equal to the number of response variables, exactly like
MLR. Matrix B with the regression coefficients that refer to the original variables of
X can be computed by the fact that the inverse matrix of P⊺ is R:
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B = RA = R(T⊺T)−1T⊺Y.

Note: In NIPALS, algorithm loading vectors p are not mutually orthogonal as scores are.
However, it is interesting that in Martens and Naes (1989) it has been proposed another algo-
rithm that generates orthogonal loadings instead, and it is shown that regression coefficients
are the same as those resulting from PLSR (Helland (1988)).

2.3 Limits and extensions of PCA and PLS in the modelling
process

Researchers must be conscious of the DRT they choose, which must be selected
based on data characteristics and peculiarities in addition to the desired outcome
(i.e., the actual purpose) of the analysis. PCA is an unsupervised technique mean-
ing that only X-matrix is analysed, while PLS is considered supervised since the
response variable affects the formulation process of the components.

When in PCA, columns in matrix T are independent. As a result, the matrix T⊺T
is numerically stable, and therefore, the consequences of collinearity in estimating
regression coefficients are eliminated. Furthermore, since dimension reduction is
achieved by selecting only m out of p PCs to retain in the PCA model, the complex-
ity of the final regression model is significantly optimized. PCs can be used to create
informative visualizations of multivariate datasets and in addition, they can be com-
bined with other (supervised) methods, where PCA can be used to pre-process the
dataset. Unlike many unsupervised methods, PCA can be applied even when the
number of available samples is lower than the number of regressors in a dataset.
However, like the majority of feature extraction techniques, PCA arises with some
critical issues. Most importantly, the coefficients arising from the regression step of
PCA refer to new variables. Therefore, the interpretability of the original variables is
lost in the process of creating the new PCs. Additionally, the transformation of orig-
inal variables to PCs can cause the loss of vital information, especially for prediction
purposes. Lastly, the selection of the optimal PCs to be retained for the modelling
process model is subjective, meaning the probability of model overfitting or under-
fitting is unpredicted.

PLS and PCA when modelling, share the same main philosophy as regression
methods; therefore they present similarities when compared. As shown, utilized
score vectors in PLS are mutually orthogonal and thus uncorrelated. As a result,
they can replace correlated predictors in regression and they can effectively lead to
the estimation of coefficients. Because of the mechanism that generates the T ma-
trix, the information compressed in it is directly related to response variables. This
means that PLS can also deal with noisy data. Additionally, when concerning big
data analysis without collinear variables, dimension reduction achieved by PLS can
beneficially reduce model complexity. In that sense, PLS (PCA, and other DRTs) are
helpful when graphical representations are used to get a “big picture” of the data
by giving a better understanding of the structure. PLS successfully deals with the
“small n large p” problem, a situation that other supervised methods cannot over-
come. This situation is very common in regression analysis of biological, chemical,
and other scientific problems in which PLS consists of one of the optimal choices.
Furthermore, a large number of predictors are also associated with a phenomenon
called over-fitting. PLS has been proven to be able to handle multivariate modelling
while performing variable extraction. Another beneficial characteristic of PLS is that
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in the case of a full rank X-matrix, the PLS model that includes as many latent vari-
ables as columns in X gives an identical solution as the MLR model. However, in the
case of correlated original predictors, as is most commonly the case, MLR regression
predictors are misleading due to multicollinearity. On the contrary, PLSR regression
coefficients are shrunk estimates and thus more robust, leading to better predictions.
A multidimensional Y matrix is analyzed in different ways in two methods. In MLR,
a linear regression model is produced for each response variable and the estimates
of the regression coefficients are different in the generated models. In PLS, in the
case of correlated responses, the variation M-PLS can be applied and one regression
model is produced. Hence, regression coefficients are common for all Y variables.
Besides the fact that in this way the analysis is completed very fast, the relations
between the response variables play a significant role in the definition of regression
coefficients. However, in cases there is no correlation between response variables,
individual PLS models are a more appropriate choice.

The main drawback of the PLS method is that the regression coefficients esti-
mated by the regression step of PLS need an extra process, so as to refer to the orig-
inal variables. Additionally, the magnitude of summarized information, eventually
used for predictions may depend on the user and the interpretation of methods that
help choose the retaining components.

PCA and PLS are dimension reduction techniques based on the same main idea:
the aim is to construct latent variables that summarize as much as possible data in-
formation and achieve dimension reduction by using the most informative of them.
Despite their similarities, methods differ in the following:

• PCA achieves its purpose with a simple one-step algorithm and produces el-
ements, meaning scores, and loadings, which refer to the original variables.
On the other hand, PLS make use of iterative procedures, so scores, weights,
and loadings refer to sequential deflated matrices, which impede their direct
interpretation.

• Furthermore, “in PLS dimension reduction and regression is performed simultane-
ously as referred in Yeniay and Goktas (2002). In contrast, the implementation
of the low-dimension matrix, resulting from the PCA of an X-matrix, in a re-
gression scheme is a different step.

• Technically, they differ in the optimization problem they aim to solve in or-
der to extract these latent variables. PCA derives variables by maximizing the
information of the X-matrix that is explained, while PLS maximizes the covari-
ance of X and Y matrices that is explained.

• Their main difference when occupied in regression problems is that PLS in-
volves also information in Y to model the data (supervised method), while
PCA is independent of responses (unsupervised method). There is no guar-
antee that the directions that best explain the predictors will also be the best
directions to use for predicting the response. However, Artemiou and Li (2009)
proved that when PC are used as predictors in a regression, then:

P
(
cor2(Y, Zk) > cor2(Y, Zn)

)
> 1/2 ∀k < n.

• The next statement is directly related to this difference: “Because PLS com-
ponents are developed as latent variables possessing a high correlation with Y, the
optimum number of PLS components is usually smaller than the optimum number of
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PCA components in PCR" (Varmuza and Filzmoser (2009)). It is expected that
the PLSR model will perform better, because it includes information coming
from the overall system of variables that are being modelled, and not from
a part of it, meaning the part of the system that defines matrix X. This has
the advantage of fewer factors to interpret and minimization of computational
cost. In Yeniay and Goktas (2002) it has been proven that PLSR models are
most parsimonious and have higher predictive accuracy.

• When multivariate Y is about to be predicted, PCR will run multiple regression
steps, one for the prediction of each response variable, using the same Princi-
pal Components for all. On the contrary, PLS has a variation, M-PLS, that is
appropriate for dependent response variables. In this case, the same latent
variables will be used for simultaneous prediction of them. The way they are
generated implies that relations between Y responses are taken into account,
leading to a better illustration of the whole investigated system. However, in
the case of independent variables, separate PLSR models perform better; “A
single PLSR model tends to have many components and be difficult to interpret" (Wold
et al. (2001)).

• Generally, PCR and PLSR result in different regression coefficients. However,
when adding components, models tend to become more similar (Boulesteix
and Strimmer (2006)).

2.4 Review of regularization methods

In statistics, econometrics, and machine learning, among other fields, regularization
methods are considered optimal for parsimonious model creation when an immense
number of variables are involved. The use of such methods addresses the problem
of model over-fitting by imposing a low predictor coefficient value when it is sparse
- and by expansion can be exploited as variable selection criteria - and secondly can
sustain the significant estimates in the presence of multicollinearity.

Regularization is a collection of techniques that can help avoid overfitting in the
training set of statistical modelling and convolutional neural networks, improving
the accuracy of deep learning models when they are fed entirely new data from the
problem domain. Some of the most common regularization techniques are the Man-
hattan and Euclidean distances -L1 and L2, respectively; dropout, early stopping,
and data augmentation.

A good model has the ability to generalize well from the training data to any data
from the problem domain; this allows it to make good predictions on data that the
model has never seen before. To define generalization, consider how well the model
has learned to apply concepts to any data rather than just the data it was trained
on during the training process. On the other hand, if the model is not generalized,
an overfitting problem arises. Overfitting occurs when the model performs well
on training data but fails when applied to testing data. It even detects noise and
fluctuations in the training data and learns from them.

The most prevalent types of regularization are Ridge, Lasso, and their aggrega-
tion, Elastic Net Regularization (ENR). These techniques are based on norms and
are particularly useful tools to mitigate the issue of multicollinearity since they are
subject to the premise that smaller weights result in simpler models, which helps to
avoid overfitting. To obtain a smaller matrix, these techniques include a "regulariza-
tion term" in addition to the loss in order to obtain the cost function. For the use of
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regularizations, two tuning parameters are computed. Firstly, the mixing parameter
α ∈ [0, 1], which combats over-fitting by constraining the size of the weights. Sec-
ondly, the non-negative regularization parameter λ minimizes the prediction error
(MSE) by controlling the model’s regularization magnitude.

2.4.1 Tikhonov regularization

Ridge, which was developed by Tikhonov (1943, 1963), manages to shrink the model’s
complexity while preserving all variables involved by minimizing the coefficients of
the insignificant variables (see also Perez-Melo and Golam-Kimbia (2020)). When in
Ridge, α = αr = 0, λ = λr and the penalty function for the β j coefficient of the jth
variable can be expressed:

pαr ,λr(|β j|) = λr × β2
j . (2.10)

2.4.2 Lasso regularization

On the contrary, Lasso, initially introduced in geophysics but popularized in statis-
tics by Tibshirani (1996), manages to shrink the model’s complexity by setting equal
to zero all the insignificant coefficients and by dropping the corresponding variables.
Therefore, it can also act as a variable selection technique that makes the model more
interpretable. When in Lasso, α = αl = 1, λ = λl , and the penalty function for the β j
coefficient can be expressed:

pαl ,λl (|β j|) = λl × |β j|. (2.11)

2.4.3 Elastic Net regularization

Ridge regression tends to shrink the high collinear coefficients towards each other,
while Lasso picks one over the other. To manage both simultaneously, the ENR
was developed as a compromise between the two, in an attempt to shrink and do
a sparse selection simultaneously by mixing Lasso’s and Ridge’s penalties (Hastie
et al. (2001)). The EN linearly combines two Lp metrics and, more precisely, the
Manhattan and Euclidean distances - L1 and L2 penalties respectively, of the Lasso
and Ridge methods (Zou and Hastie (2005)). This capability allows tuning both α
and λ parameters at the same time. Tuning parameter α = αen ∈ [0, 1] and when in
ranges endpoints, then Ridge and Lasso’s regularizations arise respectively. In the
case of Elastic Net tuning parameter λ is denoted as λen, while the corresponding
penalty function for the β j coefficient can be expressed as:

pαen,λen(|β j|) = λen ×
(

1 − αen

2
β2

j + αen|β j|
)

. (2.12)
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FIGURE 2.3: Geometric projection of L1 and L2 Norms’ penalty terms
in the space of the model parameters

In Figure 2.3 β̂ is the OLS solution in all three graphs. A solid shape represents
the constraint region: the square represents Lasso; the circle represents Ridge, and
the rectangle with curved edges represents the Elastic Net regression.

The ellipses represent the error contours. The constraint regions will include β̂ if
the penalty is small or zero (i.e., λ = 0). The ellipses centred on β̂ represent constant
RSS regions, and values on a single ellipse have the same value as RSS. The RSS
increases as we move away from the OLS coefficient estimates.

The Lasso, Ridge, and Elastic Net regression coefficient estimates are represented
by red points where the ellipse touches the constraint region. When the constraint
region is a square, the ellipse will intersect it on one of its axes. A constraint region
that is a circle, on the other hand, will almost never touch the ellipse at an axis (and
none of the coefficients will be zero). Elastic Net is a Lasso-Ridge hybrid regulariza-
tion, and its ellipses will not touch the constraint region at the axis but may come
very close. However, the accuracy of one model based on test data is not guaran-
teed to be greater than the accuracy of the other model based on test data. Hence,
their utilization is not so frequent. The shrinkage of the three models varies sig-
nificantly: The coefficients in ridge regression are reduced by the same proportion,
whereas in lasso regression, the coefficients are shrunk towards zero by a constant
amount (λ/2). Any coefficient less than λ/2 is set to zero. An Elastic Net will fall
somewhere in the middle.

The disadvantage of this method is that it can be computationally time-consuming
due to all the possible αen values (Liu and Li (2017)) that need to be considered, es-
pecially when the case requires the procedure to be repeated as many times as the
number of variables involved. In order to resolve this issue, along with the ones
arising from standard measures of multicollinearity, a new robust criterion will be
proposed in Section 6 as a specialized advanced regularization method.

2.4.4 Data augmentation

The objective of DRT is not only to reduce the dimension of the problem under study,
but also to correct the dimension, i.e., to seek the dimension that leads to the best
solution to the problem. Data augmentation (DA) can be considered as a dimen-
sion "correction" technique that reduces overfitting by "collecting" (producing) new
data. Data augmentation is a regularization technique that is commonly used for
image classification, signal processing, time series, and speech recognition, among
others. The DA is closely associated with oversampling when it comes to data anal-
ysis. Rearranging components of real data to create synthetic signals is a frequent
DA technique in signal processing, while in time series analysis, block bootstrap
augmentation is a preferred DA approach.
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In image recognition, DA is implemented for artificial generation of additional
data from the existing training data by making minor changes to the image, such
as rotation, flipping, cropping, or blurring a few pixels, and this process generates
more and more data. The model variance is reduced by using this regularization
technique, which reduces the regularization error. DA can usually be found in the
area of machine learning the training purposes. Augmentation has the potential to
increase the amount of relevant data in a dataset and hence it is an optimal way to
“feed” information to the neural network in order to train it. The most common
augmentations have been presented below with an image illustration. In Figure 2.4
the implementation of these augmentations takes place on two images of a cat.

• i. Flip
Images can be flipped horizontally and vertically. Vertical flips are not sup-
ported by all frameworks. A vertical flip, on the other hand, is equivalent to
rotating an image by 180 degrees and then performing a horizontal flip.

• ii. Scale
The image can be scaled inward or outward. The final image size will be larger
than the original image size as you scale outward. Most image frameworks
extract a section of the new image that is the same size as the original image.

• iii. Crop
Unlike scale, in this case, sampling of a section of the original image takes place
at random. This section is then resized to the original image size. This is com-
monly referred to as random cropping. The differentiation between approach
and scaling can be seen in Figure 2.4.

• iv. Rotation
One important aspect of this operation to keep in mind is that image dimen-
sions may not be preserved after rotation. If the image is square, rotating it at
right angles will keep the image size intact. If it’s a rectangle, rotating it by 180
degrees will keep the size the same. The final image size will change as the
image is rotated at finer angles.

• v. Translation
The translation is simply moving the image along the horizontal and/or the
vertical axis. This approach is a bit more complex than the others, since if the
input image is the original (unedited) one, then it is impossible to move be-
tween the axes. The most simple way to resolve this issue is to remove the
background of the image and only keep the target point (in this scenario, the
cat), and train the edited image. In Figure 2.4 the assumption that the input
image has a white background beyond its boundary and translates it accord-
ingly. Because most objects can be found almost anywhere in the image, this
method of augmentation is extremely useful. This forces the neural network
to search in every direction.
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FIGURE 2.4: Image data augmentations

2.4.5 Early stopping

It is a cross-validation strategy in which one part of the training set is used as a
validation set and the model’s performance is measured against this set. As a result,
if the model’s performance on this validation set deteriorates, training on the model
is halted immediately.

The basic idea behind this technique is that after each iteration of fitting a neural
network on training data, the model is evaluated on unseen data or the validation
set. So, if performance on this validation set decreases or remains constant over time,
the model training process is terminated. This technique is used to address the issue
of overfitting in the model.

2.4.6 Dropout

Another popular regularization technique that is frequently used in neural networks
is dropout. It essentially means that during neural network training, randomly se-
lected neurons are turned off or "dropped." In DR, variational dropout has been
proposed as a feature selection technique because it works by assigning ranks to
features. This procedure generates a "network" that contains only the important fea-
tures, i.e., those with a low dropout rate.

Because in dropout, the dropping happens randomly for different units on each
layer, each iteration can be viewed as a different model. This means that the error
would be the average of all model errors. As a result, averaging errors from dif-
ferent models, particularly if those errors are uncorrelated, reduces overall errors.
In the worst-case scenario, where errors are perfectly correlated, averaging across
all models will be useless; however, it is known that errors have some degree of no
correlation in practice. As a result, generalization errors are always reduced.
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FIGURE 2.5: Dropout regularization for dimensionality reduction

Figure 2.5 displays how a dropout mechanism can be used as a feature selection
DRT in a neural network-like graph. (A) illustrates a standard neural network with
two hidden layers, and (B) illustrates an example of a thinned network produced by
dropout, with the red units to signify the dropped variables.
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Chapter 3

Model Assessment Criteria

3.1 A guide to evaluate the DRT models

In order to assess the models that the aforementioned methods (among others) gen-
erate, several criteria and indices have been developed. In this section the discussion
about the model assessment criteria that were utilized throughout this thesis, takes
place.

The selection of the optimal number of latent variables to retain in a PLS model
is determined on the basis of the following criteria:

• Wold’s R criterion: It is a criterion specially designed to evaluate PLSR models
by comparing the contribution of a new extracted variable with the previous
one, to the predictive ability of the model. For this purpose, a cross-validation
technique is involved to compute the Predicted Error Sum of Squares (PRESS)
statistic and WR ratio as follows (Li et al. (2002)):

WR =
PRESS(m + 1)

PRESS(m)

where m denotes the number of retained latent variables in the model. The
inclusion of the latent variable that makes WR greater than one, terminates the
construction algorithm and the production of new latent variables. The first m
of them are then included in the model.

• Adjusted Wold’s R criterion: In this permutation of Wold’s R criterion the ratio
WR is compared to the values 0.90 (WR0.90

adj ) and 0.95 (WR0.95
adj ) rather than 1, as

in the original version. As it has been proven in Li et al. (2002), these variations
give better results due to sample variability.

In many cases, when researchers deal with high dimensional datasets, variable
selection leads up to the construction of a PCA/PLS model, in order to remove in-
significant variables at a preparatory level. As a result, the production of sets of
models that differ in the number of predictors they arise from and also differ in
terms of complexity occurs. The selection of the optimal model can emerge from var-
ious model selection criteria (Faraway (2002)). The most frequently utilized criteria
that one can use when in PCA, PLS, and similar techniques have been documented
below:
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3.1.1 Coefficient of Determination – R2

It expresses the percentage of the explained variability in the response variable and
it is computed by:

R2
p =

∑n
i (ŷi − ȳ)2

∑n
i (yi − ȳ)2

where n refers to the number of available observations and p to the number of
retained components. It varies from zero to one, and higher values indicate more
sufficient model performance.

3.1.2 Adjusted Coefficient of Determination – R2
adj

It is a modification of the R2 criterion that penalizes models of higher complexity. It
is computed by:

R2
adj,p = 1 − (n − 1)

(n − p − 1)
(1 − R2)

3.1.3 Akaike Information Criterion – AIC

This criterion can be considered as the relative amount of information lost by the
candidate model: the less information lost, the higher the model’s quality. In other
words, AIC approximates the quality of a candidate model relative to each of the
other candidate models for the data. As mentioned above, the task is accomplished
by combining a criterion that minimizes the loss of information with a maximum
likelihood estimation method (Akaike (1974)). More specifically, AIC is based on the
log-likelihood function and is defined as:

AICp = −2(maximum log-likelihood) + 2p

where p represents the dimension of the vector-parameter θ. The optimal model
is the one with the lowest AIC value.

3.1.4 Bayesian Information Criterion – BIC

BIC is a model identification procedure based on information theory but set within
a Bayesian context. It is an evaluation criterion for models estimated by using the
maximum likelihood method. BIC can be considered as an estimate of a function of
the posterior probability of a model being true, under a certain Bayesian setup, so
that a lower BIC means that a model is considered to be more likely to be the true
model (Schwarz (1978)). BIC is given by

BICp = −2(maximum log-likelihood) + p log n

where p represents the dimension of the vector-parameter θ and n is the number
of observations.

3.1.5 Modified Divergence Information Criterion – MDIC

The Divergence Information Criterion (DIC) proposed by Mattheou et al. (2009)
constitutes a modelling generalization of AIC, based on the Basu, Harris, Hjort, and
Jones (BHHJ) divergence measure (Basu et al. (1998)). The DIC family of procedures,
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like AIC, is an asymptotic approximation as the sample size increases and offers an
alternative based on the so-called divergence measures (Toma (2014)). Let us con-
sider the Modified Divergence Information Criterion (MDIC), a modification of the
DIC proposed by Mantalos et al. (2010). MDIC can be viewed as an approximation
of the expected overall discrepancy, which based on the BHHJ measure, evaluates
the distance between the true and the fitted models. If the model with the smallest
estimator of the expected overall discrepancy is chosen, then it is possible to end up
with a model with an unnecessarily large number of variables. Thus, the Modified
Divergence Information Criterion is a criterion comparable to the AIC. The MDIC
formula is given as:

MDICp = nMQθ̂ + (2π)−
α
2 (1 + α)2+ p

2 p

where, for fθ(·) being the (candidate) model

• p is the order of the model or the number of variables involved,

•

MQθ̂ = −
[(

1 +
1
α

) 1
n

n

∑
i=1

( fθ̂(xi))
α
]
,

• θ̂ is a consistent and asymptotically normal estimator of the parameter vector
θ, and

• α ∈ (0, 1) is the positive index, often chosen to be equal to 0.25.

3.1.6 Root Mean Square Error of Cross Validation – RMSECV

This measure involves cross validation to give an estimation of the variation/ diver-
gence of the predicted values from the true values of unseen observations, in lack of
available data that could be used as a test set. The criterion uses the cross-validation
approach and its value is computed as:

RMSECV =

√√√√∑j
∑i(yij−ŷij)2

Nj

k

where ŷij is the estimation of yij, Nj is the number of observations in the jth fold
and k is the number of folds in cross-validation procedure. Lower RMSECV values
indicate better predictive capacity of the compared models.

3.1.7 Stepwise Regression – step

Stepwise regression is a method of fitting regression models in which the selection
of predictive variables is done automatically. Each step considers a variable for ad-
dition to or subtraction from the set of explanatory variables based on some prede-
termined criterion. This is typically done in the form of (i) forward selection, which
entails starting with no variables in the model, testing the addition of each variable
using a chosen model fit criterion, adding the variable (if any) whose inclusion gives
the most statistically significant improvement in the fit, and repeating this process
until none improves the model statistically significantly, (ii) backward elimination,
which entails starting with all candidate variables, testing the deletion of each vari-
able against a chosen model fit criterion, deleting the variable (if any) whose loss re-
sults in the least statistically significant deterioration of the model fit, and repeating
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this process until no more variables can be deleted without a statistically significant
loss of fit, and so on and (iii) bidirectional elimination, a combination of the above,
testing for variables to be included or excluded at each step.

The common practise of fitting the final selected model followed by reporting
estimates and confidence intervals without adjusting them to account for the model
building process has prompted calls to abandon stepwise model building entirely
or, at the very least, to ensure model uncertainty is correctly reflected. Alternative
model selection techniques, such as, R2

adj (stepR2
adj), AIC (stepAIC), BIC (stepBIC),

DIC (stepDIC), etc., can be utilized from stepwise regression.

3.1.8 Correlation-Based Feature Selection – CFS

A correlation-based Feature (variable) Selection, denoted by CFS (Hall (1999)), can
be used as an alternative approach for DR. The CFS is a measure that evaluates
subsets of variables on the basis of the following Hall’s hypothesis:

An optimal variable subset includes uncorrelated independent variables and si-
multaneously high correlations between each variable with the dependent variable.
If such correlations are available, then the merit of a variable subset S consisting of
N variables is defined as:

MeritSN =
NrYXi√

N + N(N − 1)rXiXi

(3.1)

where MeritSN is the correlation between the summed independent variables and
the dependent variable, N is the number of variables, rYXi is the average of the cor-
relations between the independent variables and the dependent variable, and rXiXi

is the average inter-correlation between the independent variables. Hall presented
a backward elimination procedure, with the use of Equation 3.1 in order to choose
a subset. The full set of variables is evaluated with Equation 3.1, which, in fact, is
the Pearson’s correlation coefficient with standardized variables. Then, a variable is
temporarily removed and the set of variables is evaluated with the aforementioned
equation. If the subset scores are higher than the set before, then the variable is
permanently removed. Otherwise, it is reinstated. The process continues until each
variable is removed once and the effect of its removal is measured. The process stops
when no subset scores are higher than those of the original set.
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Chapter 4

On the Modelling of Pension
Expenditures in Europe1

4.1 Definition of the data framework

The purpose of this work is to identify the appropriate variables and model the Pub-
lic Pension Expenditures as percentage of GDP (PPE), -which will be addressed as
Pension Expenditures or simply as Expenditures in the rest of this manuscript, of
various European countries. As the Organisation for Economic Co-operation and
Development (OECD) (2020) states, “Pension Expenditures, also named pension spend-
ing, is defined by all cash expenditures (including lump-sum payments) on old-age and sur-
vivors pensions. Old-age cash benefits provide an income for persons retired from the labour
market or guarantee incomes when a person has reached a standard pensionable age or ful-
filled the necessary contributory requirements. This category also includes early retirement
pensions: pensions paid before the beneficiary has reached the standard pensionable age rele-
vant to the program. It excludes programmes concerning early retirement for labour market
reasons. Old-age pensions includes supplements for dependants paid to old-age pensioners
with dependants under old-age cash benefits. Old age also include social expenditures on ser-
vices for the elderly people, services such as day care and rehabilitation services, home-help
services and other benefits in kind. It also includes expenditures on the provision of residen-
tial care in an institution. This indicator is measured in percentages of GDP broken down
by public and private sector”.

There are plenty of works in the literature concerning the Pension Expenditures
analysis, most of which are focusing on a single country or a few variables of im-
portance. de La Fuente (2015) analysed the pension system of Spain as a function
of workers Social Security contribution histories, while Karam et al. (2010) studied
and analysed the macroeconomic effects of public pension reforms. Marcinkiewicz
and Chybalski (2014) discussed Pension Expenditures as one of the main indica-
tors of pension system sustainability; proposed a model based on GDP and old-age
dependency ratio, and applied the resulted model to countries with very different
population structures. The same authors, later Marcinkiewicz and Chybalski (2016),
suggested a new typology of pension regimes between OECD countries. The inter-
ested reader may look at Lachowska and Myck (2018), Bonoli and Shinkawa (2005),
Franco et al. (2006) and Bonoli (2003) for additional information and results concern-
ing Expenditures.

1The results of this Chapter have been published in:
i. Ntotsis, K., Papamichail, M., Hatzopoulos, P. and Karagrigoriou, A.: On the Modelling of Pension
Expenditures in Europe, Communications in Statistics: Case Studies, Data Analysis and Applications,
6(1), 50–68, 2020.
ii. Ntotsis, K., Papamichail, M., Hatzopoulos, P. and Karagrigoriou, A.: On the Multivariate Modeling
of Pension Benefits, The European Actuary, Issue No.23, 14–19, 2020.
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In this work we rely on techniques including PCA and Generalized Linear Mod-
els (GLM) (McCullagh and Nelder (1989)) for the modelling PPE by identifying the
appropriate set of variables from a long list of possible explanatory variables which
likely act on and affect the Expenditures. For relevant approaches one can refer to
(Barr (2006), Farrell (2001), Hickman (1968) and Homburg (2000)).

4.2 Preference Data

The modelling of Pension Expenditures, according to the relevant theory (Barr (2006),
Diamonds (2001), Farrell (2017), Hickman (1968), Holzmann (2009), Homburg (2000),
Samuelson (1958), Schneider (2005)) could be based on a number of explanatory
variables. For this work 20 European countries were selected and a total of 20 ex-
planatory variables which are most likely related and possibly affect either directly
or indirectly expenditures have been chosen based on the completeness of avail-
able data collected from Knoema (2022), OECD (2022) and Statistical Office of the
European Communities (Eurostat) (2019). The data which are annual, cover the pe-
riod 2001 to 2015. Note that at the time of this work the data for 2016 and 2017
were not fully available. Based on the available data, in addition to the Overall
dataset (2001-2015), three individual datasets were created corresponding to the
time-periods 2001-2005, 2006-2010 and 2011-2015. The value of each variable for
each time period is taken to be equal to the average of all values of the specific vari-
able for the specific time period. The selected countries are presented in Figure 4.1,
while Figure 4.2 illustrates each country’s GDP robustness compares to other and
each country’s abbreviation. Finally, the explanatory variables, in alphabetical or-
der, are given in Table 4.1.

FIGURE 4.1: Mercator projection of examined countries
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FIGURE 4.2: Percentage of a country’s GDP robustness compared to
the others
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TABLE 4.1: Selected possible explanatory variables

Some of the variables in Table 4.1 are directly related to Pension Expenditures
like Inflation, CAB, GDP and Unemployment Rate ,while others are indirectly re-
lated. The purpose of this analysis is to identify those variables/variables that affect
Expenditures. The relevant analysis is presented in Section 4.3, Section 4.4, and Sec-
tion 4.5.

Note that all variables have been standardized using the average and standard
deviation. The standardization ensures that all variables are measures on the same
scale and as a result we avoid the possibility of recognizing falsely one or more
independent variables as significant. For comparative purposes, the standardized
values have been used throughout this work.

4.3 Dimension Reduction

4.3.1 Discarding Variables Technique

The 20 explanatory variables emerged from various literature studies, although some
of them might not have the expected amount of impact in the formation of Pension
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Expenditures as one would have thought. In order to partially “clean” the limited
useful information from the data, which will result in a more efficient implementa-
tion of PCA, the Beale et al. (1967) discarding variable technique will be used as a
preliminary step of the dimension reduction process. In all three time periods this
technique was not completed; instead it was chosen to be stopped when, based on
theoretical considerations, a very important variable was proposed for exclusion.

Based on the above discussion and taking into consideration the significance of
GDP we arrived at the conclusion that, irrespectively of the time period, only those
variables extracted from the original data before GDP must be excluded from further
analysis, while all other variables should remain and considered for the next step of
the reduction process.

As a result, the variables Exports of Goods and Services, Total Household Spendings,
Short-term Interest Rates, Total Household Saving, and Total Saving Rate have been ex-
tracted from all datasets under examination.

The reduction process continues with the implementation of the PCA using the
remaining 15 variables common to all three time periods. For research purposes, the
standardized data can be accessed through this link.

4.3.2 Principal Component Analysis

In this section we apply the PCA procedure (Artemiou and Li (2009), Artemiou and
Li (2013), Jolliffe (1972), Smallman et al. (2018)) as the main step of the dimension
reduction procedure and obtain the full 15 principal components for each time pe-
riod with the corresponding eigenvalues ranging from almost eight to nearly zero.
PCA was chosen due to the multicollinearity issue, namely of the existence of high
correlated covariates in the data set (correlations among more than 30 pairs of Xi’s
range from |0.5| to |0.98|). The thought behind PCA is the use of an orthogonal trans-
formation to convert a data set with interdependent variables into a new one with
uncorrelated variables (principal components), which are arranged in such a way
so that the first ones maintain the greater part of the variance that exists among all
original variables. With this procedure the reduction of the dimension of the origi-
nal data set is achieved while leaving unchanged as much as possible, the variation
(Jolliffe (2002)).

Based on the overall results and the fact that we wish to avoid losing important
information, we conclude that the first seven components should be kept regardless
of the eigenvalues, because they retain a considerable amount of the total informa-
tion/variability. The described variability played a key role in our decision since the
intention was to keep that many components, so that a considerable proportion of
the original variability will be described by the components chosen. It should be
pointed out that the seven retained components have variability around 90% of the
original variability of the data for each of the three time periods.

Note: To determine which variables are significant in each component, the procedure
used was the following. For the first two of the seven selected components we keep as signif-
icant the variables for which the absolute value of the associated coefficient is at least equal
to 0.70. Although there is no specific rule, a proportion of around 0.70 is considered to be
satisfactory in retaining a sufficient amount of information.

Table 4.2 presents the most significant variables based on the components (coef-
ficients) as a result of the PCA method, for all three datasets examined.

https://www.dropbox.com/scl/fi/m2zzk64snapq65ppa1skx/Confirmation-Data.xlsx?dl=0&rlkey=9aw5z1acicno4yt5or4myvtse
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Dataset 2001-2005 2006-2010 2011-2015

1st Component

GDP (.96) GDP (.96) GDP (.98)
Imports of Goods
and Services (.94)

Imports of Goods
and Services (.93)

Imports of Goods
and Services (.95)

Inflation (.89) Inflation (.94) Inflation (.76)
Investments (.79) Investments (.83) Investments (.81)

Net number of
Migration Flows (.95)

Number of Births (.90) Number of Births (.90) Number of Births (.90)
Private Sector Debt (.93) Private Sector Debt (.95) Private Sector Debt (.87)
Total Labor Force (.91) Total Labor Force (.93) Total Labor Force (.92)

2nd Component
Median Age of

Population (-.70)
Median Age of

Population (.71)*
Unemployment

Rate (.81)**
Long-term

Interest Rates (.75)
3rd Component CAB (.70) CAB (.65) CAB (-.71)

4th Component
Unemployment

Rate (-.80)
Unemployment

Rate (-.54)
CAB (-.46)

5th Component CPI (-.45)
Dempographic

Dependency (.46)
Compensation

of Employees (-.42)

6th Component
Compensation

of Employees (-.52)
Compensation

of Employees (-.60)
Compensation

of Employees (-.46)

7th Component Investments (-.33) Investments (-.40)
Long-term

Interest Rates (.34)

TABLE 4.2: Principal Component Analysis – The seven primary com-
ponents

*The second highest variable coefficient belongs to the CPI (.68)
**The second highest variable coefficient belongs to the Median Age of Population
(.65)

The first component, denoted by Z1, in all three datasets holds at least 50% of the
total variation of the dataset, while the second one, denoted by Z2, holds roughly
20% of it. The rest of the components contain the remaining percentage of variation.
The variables presented in Table 4.2 are the ones that emerge as important and play
the main role in the formation of each component, without signifying that the rest
should be omitted or discarded. Regarding the interpretation, the first component
in all time periods can be viewed as the average of the displayed variables appear-
ing in Table 4.2 and representing macroeconomic, demographic and microeconomic
variables. On the other hand, the second component in the time periods 2001-2005
can be viewed as revealing a comparison between the Median Age of Population
and the Long-term Interest Rates, while in the time periods 2006-2010 and 2011-2015
presents the average between the Median Age of Population with CPI and the Un-
employment Rate with the Median Age of Population, respectively.

By construction, the first component is considered to be the most important, in
which the analysis is primarily based. Having said that, we observed in the above
analysis, that in all three datasets the variables that were significant in every compo-
nent were almost always the same, with the variable playing the primary role and
having the most influence in each of the three sets being GDP.

However, it should be pointed out that there is one important exception. In-
deed, in the third time-period the Net Number of Migration Flows has been found
to be significant in the first component. This variable might have an impact in the
modelling process that was possibly not as important in the past as it is in this par-
ticular time period. This can be due to two very important events that have begun
to emerge in Europe since 2010, the European Migrant Crisis (Garcia-Zamor (2018),
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Lendaro (2013)) and Spanish, Icelandic, Portugese and Greek Economic Crisis (Gib-
son et al. (2014)).

Table 4.2 reveals, according to the model used, not only the importance of each
variable Xi considered in the first place in assessing the value of Y, the public Pen-
sion Expenditures divided by the GDP, but also the distinction between the three
periods of time examined as well. Table 4.2 also ranks the 15 variables used in each
time period by each one’s importance. So the interpretation should be focused ac-
tually on the next aspects: (i) The ranking of the variables according to their impor-
tance at evaluating Y in one period at a time, for every three years’ time examined,
(ii) The behavior of each variable Xi in respect to the different rankings between the
three periods of time.

Public Pension Expenditures / GDP Y Signs
Variable

Classification
GDP X1 - Macroeconomic
Unemployment Rate X2 + Macroeconomic
Total Labor Force X3 - Macroeconomic
Imports of Goods and Services X4 - Microeconomic
CAB (Negative/Positive Amount) X5 +/- Macroeconomic
Investments X6 - Macroeconomic
CPI X7 - Macroeconomic
Median Age of Population X8 + Demographic
Number of Births X9 - Demographic
Net Number of Migrant Flows X10 - Demographic
Demographic Dependency X11 + Demographic
Inflation X12 - Macroeconomic
Long-term Interest Rates X13 + Macroeconomic
Private Sector Debt (Negative Measure) X14 - Microeconomic
Compensation of Employees X15 - Macroeconomic

TABLE 4.3: Correlation signs between Y and Xi based on literature
studies

Considering the 15 variables affecting the cost of the pension system as random
variables, an important aspect to examine is the correlation between each Xi and Y
in Table 4.3. Although the sample of years and data availability might not be so suf-
ficient as to verify 100% the theory, which for the time remains beyond the scope of
this manuscript, it is useful to take Table 4.3 (For reference see Barr (2006), Blanchard
(2000), Bonoli (2003), Carone et al. (2016), Diamonds (2001), Franco et al. (2006),
Garcia-Zamor (2018), Holzmann (2009), Marcinkiewicz and Chybalski (2014), Muto
et al. (2016), Pagès (2015), Plamondon et al. (2003), Samuelson (1958), Schneider
(2005)) as an explanatory summary for variable correlation signs and classification
into macroeconomic, microeconomic and demographic type of variables.

4.4 The Modelling of Pension Expenditures

In this section we proceed with the Stepwise Regression Analysis (Anderson (2009),
Scheffe (1999), Sheather (2009)) using the seven components of PCA from the previ-
ous section as independent variables and Y = logit(Pension Expenditures as percent-
age of GDP) as the dependent variable. Our intention is to identify the significance
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of each component (independent covariate) and obtain an “ideal” model for the Ex-
penditures for descriptive as well as predictive purposes. The logit transformation
was decided to be used in order to achieve the linearity between the dependent vari-
able and each independent one as well as the homoscedasticity of the residuals.

4.4.1 Model Selection, Assessment and Comparison

FIGURE 4.3: Resulting R values for all four examined models

FIGURE 4.4: Resulting R2
adj values for all four examined models

Figure 4.3 and Figure 4.4 contain the top 3 of 7 models, with the omitted ones being
associated with at most 2% improvement.

Model 1:
Y = β0 + β1Z1 + ϵ or Y = β0 + β2Z2 + ϵ

Model 2:
Y = β0 + β1Z1 + β2Z2 + ϵ

Model 3:
Y = β0 + β1Z1 + β2Z2 + β jZj + ϵ,

where j = {4, 7, 5, 6} and corresponds to {2001-2005, 2006-2010, 2011-2015,
overall} datasets respectively.
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The eigenvalues of the top 3 models range from 7.7 to 1.4, while the omitted
ones range from less than 1 down to zero, which is in accordance with the well-
known Kaiser-Guttman rule (Guttman (1954), Kaiser (1960)). Note that Figure 4.3
contains the R values for the three predominant models, while Figure 4.4 contains
the corresponding R2

adj values as well as the corresponding standard error (s.e.) of
the model. For all three models, a different color-based categorization takes place
while each time period is based on a different shade-based categorization.

Based on the results for all three datasets as well as the Overall Model, which
is the average model of the three datasets combined, we conclude that the most
statistically significant variables are Z1 and Z2.

Note that for modelling purposes both variables are used in their free form that
contains not only the significant variables in Table 4.2, but all 15 variables resulted
after the implementation of the Beale et al. (1967) technique.

Note that in two instances a third variable appeared to be of some significance.
Variable Z4 (for 2001-2005) and variable Z7 (for 2006-2010) appear to have some con-
tribution but we choose not to include them in the analysis not only for homogeneity
purposes but also due to the fact that Z1 and Z2 according to PCA, contain more than
65% of the total variation while Z4 and Z7 explain a small (statistically not signifi-
cant) amount of the total variation. Hence, we proceed below with the Multivari-
ate Analysis of the dependent variable Y with Z1 and Z2 as the only independent
ones for all 4 models under investigation. Note that (i) All results were interpreted
with α = 5% and (ii) For the implementation of the regression analysis, the usual as-
sumptions of independence, normality and homoscedasticity of the residuals must
be fulfilled as well as the linear relationship between Y and Zi, i = 1, 2. In addition,
multicollinearity should be verified.

The appropriateness of PCA applied in the datasets under investigation has been
verified by the validity of the assumptions associated with PCA (O’Rourke et al.
(2005)) including the linearity ensured by the transformation considered in the above
analysis. Furthermore, note that the selection of the first two components ensures
that the amount of variability explained is sufficiently high to retain a considerable
degree of the internal structure of the datasets.

4.4.2 Regression

Table 4.4 and Figure 4.5 provide the regression analysis results for Y with respect to
Z1 and Z2 defined in the previous Section.

2001-2005 2006-2010 2011-2015 Overall Model
Model SS F Sig. SS F Sig. SS F Sig. SS F Sig.

Regression .522 6.699 .007 .540 7.606 .004 .439 6.415 .008 .402 5.354 .016
Residuals .663 .604 .581 .638

Total 1.185 1.144 1.020 1.039

TABLE 4.4: Analysis of Variance for all datasets based on the selected
model
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FIGURE 4.5: Regression Coefficients of Pension Expenditures

Figure 4.5 display the multiple regression models (Y = β0 + β1Z1 + β2Z2) for all
examined datasets, in a 3D space.

Based on the results in Figure 4.3 - Figure 4.5, and Table 4.4, one could make the
following observations:

1 The R coefficient ranges from 49% to 77% and the Adjusted R2 from 20% to
44% for all 4 models.

2 From the F-test of analysis of variance (ANOVA) table we conclude that there
is at least one independent variable which is statistically significant (p-values
range from 0.004 to 0.016), which is verified by the appropriate t-test which
states that at least one of Z1 and Z2 is statistically significant for each of the 4
models (p-values range from 0.005 to 0.133).

3 The assumptions of Independence and Homoscedasticity between the resid-
uals as well as the linearity are fulfilled for all 4 models. Furthermore, the
collinearity is small in all cases, while residual analysis reveals that there is a
deviation from Normality in all cases.

4.5 Macroactuarial Justification

In this Section we compare the observed values of the dependent variable Y with the
estimated values that have been obtained from the regression for each of the four
datasets. Note that in Figure 4.6 and Figure 4.7 the observed values are represented
with a solid line (–) while the expected values with a dashed line (...).
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FIGURE 4.6: 2001-2005 and 2006-2010 model
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FIGURE 4.7: 2011-2015 and Overall model

Summarizing, based on Figure 4.6 and Figure 4.7 we can state that our model
selection fits well for most countries in all three datasets as well as in the Overall
Model.

According to the analysis, the most divergent countries are AT, CZ, LV, PL, SK
and ES. We can observe that 4 of the total 6 countries are part of Eastern Europe
as it has been registered by the United Nations. An explanation of this fact is pro-
vided by Müller (2001) who states that “The retirement schemes in several East European
countries underwent fundamental change in recent years”. The common thing between
all these countries is that they have faced significant migration reversal of trends
between the three periods (see Figure 4.8) large enough in comparison to their over-
all population (Eurostat (2019)). In fact, AT, as so classified as a western European
Union (EU) country, was always a receiving migrant country but flows have grown
excessively from 2009 and onwards, creating an unbalanced situation under forma-
tion. Moreover, during the 2011-2015 period examined when X10: Net Number of
Migration Flows variable is appearing very important, a kind of opposite effect is
being observed for the rest of the countries (ES, CZ, LV, PL and SK) four of which
are classified as Eastern EU countries. These countries, except CZ and SK have been
generally sending migrants to the rest of the EU. After 2009, they experienced a dis-
proportionate reversal of the trend (ES, CZ and SK) or a remarkable enhancement of
the trend of sending migrants (LV and PL) as a relatively large proportion of their
population. Also, the GINI index2 of all these countries except AT is high enough,
classifying CZ, LV, PL, SK and ES together as countries with remarkable income in-
equalities connected with increased Y′s (Marinescu and Manafi (2017)). In fact, the
heterogeneity of these countries compared to the observed other countries under
investigation, might have an impact in the creation of deviations.

2The Gini index, also known as the Gini coefficient or ratio, is a statistical dispersion measure in-
tended to represent income or wealth inequality within a nation group.
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FIGURE 4.8: Net Number of Migration Flows 2001-2015 for AT, CZ,
LV, PL, SL (left axis) and ES (right axis)

4.5.1 Macroactuarial Interpretation

As indicated earlier, Table 4.2 reveals both the importance of each X′
i s in assessing Y

and the distinction between the 3 time periods. Also, in all three periods, period 1
(2001-2005), period 2 (2006-2010) and period 3 (2011-2015), seven variables emerge
as the most important in the first component, X1: GDP, X3: Total Labor Force, X4:
Imports of Goods and Services, X6: Investments, X9: Number of Births, X12: Infla-
tion and X14: Private Sector Debt.

Table 4.3 revealed the correlation signs between Y and Xi based on literature
studies. From the statistical analysis results we almost came to the same conclusions
about correlation, apart from X5 and X8, as it can be seen in Figure 4.9. The reason
for this, apart from the limited periods examined, may be that X5: Current Account
Balance, for more than half of the countries is negative in all three periods examined.
Germany is always having a positive CAB with a negative correlation with respect
to Y, which due to the magnitude, increases disproportionally from all country av-
erages. Also, the average correlation of X8: Median Age of Population, although
negative appears to be low (-9%).

FIGURE 4.9: Correlation plot of Y with all Xi’s
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In Figure 4.9 we can see the correlation between PPE and each Xj for all countries.
Each country is classified by a unique colour. The black line connects the average
correlation points, i.e., the average correlation of Y with the Xj for all the countries.

As mentioned above, the first two components and by extension the two new
variables represent the core in evaluating Y. Focusing solely at the variables in Ta-
ble 4.2 that contribute significantly at each PCA component, and Figure 4.9 and Fig-
ure 4.10, we reached the following:

A. Intra period interpretation

i. Period 1: As mentioned above, seven variables emerge as important in the first
Component. The ranking of importance of those variables is by order of maximum
to minimum importance X1, X4, X14, X3, X9, X12 and X6. The four most impor-
tant macroeconomic variables are X1, X3, X9 and X12 and the two most important
microeconomic variables are X4 and X14. Actually, the net indirect taxes upon X4:
Imports of Goods and Services (as Value-added tax, VAT) represent one of the three
components of X1: GDP from the income side (Blanchard (2000)). Another compo-
nent of X1 from the same side is the X15: Compensation of Employees (Blanchard
(2000)) representing from 20% up to 80% of the GDP. Results for this period imply
that almost all information needed for Y is carried by X1, since X15 belongs to the 6th
Component. Also X14: Private Sector Debt is mostly affected by public pension costs
because contributions to social security represent an additional tax which may asym-
metrically burden the private sector’s economic activity. X12: Inflation is usually the
same measure as the GDP deflator and represents the part of the GDP’s evolution
due to the increase of the general level of prices produced in the countries examined,
irrespective of real growth. So when Y is rising, Unemployment rises and X12 falls.
Vice versa when Y is falling, distortions in income distribution in the economy fall
and real pensions are indirectly increased when lower Inflation enables pensioners
to buy the same or even more goods with their decreased pensions.

The demographic variable X9: Number of Births, according to the model, is the
most important demographic variable because births accumulate young population
yearly and immediately affect X11: Demographic Dependency as well as X8: Me-
dian Age of Population. PAYG (Pay As You Go is the practice of financing expendi-
tures directly with contributions of social security rather than investments) systems,
which have prevailed in the last decades and bear almost 100% of pension costs,
if properly function as pension redistributive systems directly from workers to the
pensioners, are most sensitive to the population structure. Three to five workers are
needed to support everyone pensioner.

X13: Long-term Interest Rates belong along with X8 to the 2nd Component. Both
these variables are affected by the country’s deficit or surplus accumulation over
time (Diamonds (2001)). Lower Y′s leads to a more favourable interest rate in the
long run for a country to pump money from the capital markets.

X5: Current Account Balance belongs to the 3rd Component; it represents yearly
the output Gap of a country’s economic activity. It is a deficit or a surplus. If Y
falls, the amount of deficit may fall, or a surplus might be more feasible (Diamonds
(2001)). Actually, Y is negatively correlated with surplus and positive correlated
with deficits.

X2: Unemployment Rate belongs to the 4th Component, it is the fraction of the
number of people being able to work but have lost their jobs (unemployed) to the
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number of people who work plus the unemployed (the Total Labor Force). The
number of unemployed people is also a component of X3: Total Labor Force; Much
of its information is included in X3.

From the results X7: CPI, representing the price increase of the goods consumed
in the countries, bears minor importance belonging to the 5th Component. This
shows that during the short run of this period CPI adds limited information in com-
parison to the information carried by X12: Inflation, i.e., the total overpricing of all
output of the economy. In the long run, these two indicators will coincide. The
demographic Variables X10: Migration Flows, and X11: Demographic Dependency
have been completely eliminated from Period 1 by the method of PCA so they do not
contribute at all to the determination of Y. This might be attributed to the fact that
Migration Flows might have not reached a point of affecting the population struc-
ture with the demographic variables X9, as well as X8, carrying all the information
needed to assess Y in Period 1.

ii. Period 2: The same seven variables as in Period 1 emerge in this time-based
dataset as significant in the 1st Component but with a different order of importance:
X1, X14, X12, X3, X4, X9, X6.

In this period only X8: Median Age of Population belongs to the 2nd Component.
X13: Long-term Interest Rates has been eliminated completely meaning that states
are performing reforms (Carone et al. (2016)) trying to pass a part of the PAYG
system to funded systems not affecting so much the rates of publicly issued bonds.
Also, X7: CPI has been exiled meaning that it may have grown almost identical to
X12: Inflation. X10 remains unimportant according to the modelling also for this
period of time.

X5: Current Account Balance and X2: Unemployment Rate, X15: Compensation
of Employees and X6: Investments still belong to the 3rd, 4th, 6th, and 7th Compo-
nent respectively showing a kind of steady state in the way of affecting Y.

However, X11: Demographic Dependency has earned an advanced place of im-
portance in the 5th Component, entering as a third important demographic variable.
As time goes by, the aging of the population advances and demography plays a more
and more crucial role concerning public pension costs.

iii. Period 3: Again, the same seven variables emerge in the 1st Component, but
an eighth variable, X10: Migration Flows has entered into the 1st Component for the
first time –although completely meaningless in the two previous periods examined.
The new order of importance is X1, X10, X4, X3, X9, X14, X6 and X12. Also, three de-
mographic variables describe Y for this period, in a different way, with X9, X10, and
X11 bearing all the demographic information. However X2: Unemployment Rate is
more important belonging to the 2nd Component, outlying the growing dependency
of the pension system from the Labor Market described by two key variables X3: To-
tal Labor Force and X2 itself. Also X5 the CAB has gained two important places
instead of one during the two previous periods composing both the 3rd and the 4th
Component. Again, here someone can observe the growing influence the pension
system has on the public budget. In this period X8: Median Age of Population has
been eliminated together with X7: CPI.

B. Inter period interpretation

As expected from the three periods examined, the key variables, mainly or pri-
marily affecting the Pension Expenditures are the variables X1, X10, X4, X3, X9, X14,
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X6, X12. Reforms performed by countries reorient the importance of the 15 variables
considered, pushing to lower dependency for the pension costs from the public bud-
get. However, demography gains an advancing role as time goes by in assessing Y.
Migration also, since it alters the population structure of the countries studied, will
be growing more and more important. Macroeconomic variables remain strongly
interrelated with Y and states should take Expenditures of much consideration in
the economic cycle when designing reforms.

4.5.2 The Migration Effect

From experience and the literature concerning Y, the Pension Expenditures (Barr
(2006), Blanchard (2000), Holzmann (2009), Marinescu and Manafi (2017), Müller
(2001), Muto et al. (2016), Pagès (2015), Plamondon (2003), Schneider (2005)), have
been observed to bear correlations between it and various demographic, macro, or
micro variables mentioned in this work. These correlations specify a special mix-
ture of features that characterize each country examined. So, for countries which
traditionally accommodate migrants, having developed in the meantime, work and
educational inclusion policies, migration is negatively correlated with Y because it
drops the median age of the population and favours the reduction of Expenditures.

In this work, variable X10 represents Migration Flows, i.e., immigration minus
emigration population movements between the countries examined and third coun-
tries outside them. The difference in Migration Flows with the other measures (or
variables) examined –except births– is that it represents population changes and not
absolute numbers. In fact, these flows accumulate more people in the population
of European countries examined apart from Latvia and Poland, where they show
a continual negative trend. So on average between 2001 and 2015 the accumula-
tion of migrant population has risen to more than 3% of the total population of the
countries, and amounts to almost 18 million people. There is some general evident
that migration is negatively correlated with Expenditures (Marinescu and Manafi
(2017)). From data sources used (Eurostat (2019)), countries bearing big correlation
of Y and X10 have low correlation of Y and X11: Demographic Dependency ratio and
vice versa, see Alluvial Diagram of Figure 4.10.

FIGURE 4.10: Alluvial Diagram of per country PPE correlation with
Migration Flows and Demographic Dependency
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From Figure 4.10 it is evident that 12 out 20 countries (BE, CZ, FR, GR, IS, PL,
PT, SL, ES, SE, CH, GB) present negative Y and X10 correlations, giving a support to
theory. For half of them (BE, CZ, GR, IS, PT, GB) the negative correlation of Y and
X10 is combined with the high correlation of Y and X11. This may be attributed to the
fact that either they do not incorporate migrants into the country’s economy, or their
pension system is almost independent of demographic dependency and it is based
on minimum flat rate pensions, as in the GB. On the other hand, for 4 countries (AT,
DE, LV, NL) the opposite effect is shown (Positive Y and X10 and negative X11 corre-
lation). For Latvia the low demographic dependency correlation might correspond
more to the fact that Migrant Flows appear to be negative for all five years’ periods
monitored and also to its vast pension reforms even before 2001 reducing the pen-
sion replacement ratio1 to 32%, the benefit ratio2 below 30% and Y around 8%, the
lowest in the EU countries (Carone et al. (2016)).

So, for all countries, migration plays a significant role since the EU countries con-
tinue to attract large immigration flows, which grows more important as far as this
trend continues. In this context, a future analysis concerning the 2016-2020 period
will bring again the migration as the 1st component of importance in measuring
Pension Expenditures.

4.6 Conclusions

In conclusion, in this work, we suggest the same model for all three five-year period
datasets as well as for the Overall time period one based on PCA and regression
analysis for the modelling of the PPE of European countries since 2001. This model
consists of the first two components out of a total of 15, which contain more than
70% of the total information and variability of the original data.

The idea behind this work was to create a model for a plethora of countries, at
first within Europe and later a worldwide one, so we can compare them and also to
achieve the following tasks. Firstly, by reducing the dimensionality of the original
dataset, we obtain a more "easy to use and handle" model and can apply various
statistical methods and techniques without losing the accuracy and information of
the original variables. Secondly, we are able to limit or eliminate the existing multi-
collinearity, and therefore achieve a more accurate model interpretation of the PPE.

The model developed provides, with a minimum average error of fewer than
6‰ for each time period, accurate results for the PPE. Using this as a first step, it
is possible, depending on the data available, to develop in the immediate future,
an evolved time series model that would be capable of predicting the Expenditures
for 10-15 future years from the base year. The forecasting model could be used by
any state that wishes to predict future Pension Expenditures based on its economy.
This calculation primarily serves either as an estimate by itself or as a confirmation
technique for the calculation of Expenditures made by other means.

1Ratio of the last salary to the first pension amount
2Ratio of the country’s average pension to the average salary
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Chapter 5

Feature Selection Partial Least
Squares (FS-PLS): The Utilization
of Partial Least Squares for
Simultaneous Feature Selection
and Extraction.1

5.1 The PLS algorithm for dimension reduction

So, as stated before, PLS is considered to be an effective dimension reduction tech-
nique when it comes to obtaining an optimal statistical model. However, like many
similar feature extraction techniques, we end up with a model that involves all orig-
inal variables, significant, or not. What if there was a way to take advantage of
PLS algorithm in order to utilize it as a variable selection technique? The FS-PLS
is a novel approach that allows the researcher to use the PLS procedure to remove
non-significant variables from the original dataset and obtain a statistically signifi-
cant model with minimum dimension when PLS is applied. FS-PLS provides a new
dataset with simpler structure than the original one and still when its implementa-
tion is compared to PLS and PCA, the model arises from FS-PLS is more efficient
than the corresponding models of PLS and PCA. This "superiority" is due to the
fact that the constructed model of FS-PLS is easier to interpret since all irrelevant
variables have been removed.

The beta coefficients (β) that emerge from the PLSR in conjunction with the num-
ber of selected latent variables can be seen as a general rule of thumb for disregard-
ing variables from a dataset. We propose the following rule to determine if a variable
is significant:

Let us assume a model with Xj, j = 1, . . . , m independent variables and let v
be the number of latent variables that have been selected as optimal from the PLS
regression of the aforementioned model. Let us also assume that βv

j being the cor-
responding coefficient of Xj variable in the v-latent variable (each latent contains all
original variables). Now, let us define Equation 5.1 as follows:

|βv
j | ≤ c, (5.1)

1The results of this Chapter have been submitted for publication as:
Beki, E., Karagrigoriou, A., and Ntotsis K.: The Utilization of Partial Least Squares for Simultaneous
Feature Selection and Extraction (2022)



60 Chapter 5. Feature Selection Partial Least Squares (FS-PLS)

where c ∈ [0.05, |max{βv
j }/2|) is a pre-determined non-negative value close to zero

and |max{βv
j }| is the maximum (absolute) value that exists in the coefficient matrix

of the selected v latent variables. If Equation 5.1 is satisfied for the j-th variable,
i.e. |β1

j | ≤ c, and |β2
j | ≤ c, . . . and |βv

j | ≤ c, then this variable can be labelled as
non-significant. By integrating this β-based constraint in the PLS regression, it is
feasible to discard the insignificant variables and still maintain a robust model. A
fixed value c is expected to complement effectively all other aspects (purpose of the
study, researcher’s judgement, etc.) of the decision-making process. In that sense,
it can be considered as a rule of thumb and is in the judgement of the researcher
which value of c is the one that results the optimal PLS model without underfitting
or overfitting the model under consideration. We recommend a step procedure of
0.05 units (i.e. 0.05, 0.10, 0.15, etc.) until model underfitting is observed based on the
model selection criteria.

The FS-PLS algorithm consists of a two level implementation of the PLSR algo-
rithm. Initially, PLS method is applied on the original dataset and the regression
coefficients of the original variables are estimated with the use of models consisted
of up to three latent variables. Those variables with absolute values of regression
coefficients lower than the testing threshold in all three models are considered in-
significant for the prediction of response variable and they are removed from the
dataset. This distinction between the variables is followed by the application of Par-
tial Least Squares Regression to generate predictive models. Their competency is
evaluated based on information criteria, such as AIC, Adjusted R2 (R2

adj), RMSECV
and Adjusted Wold’s R criterion, that lead to the final model selection.

The following algorithm displays the proposed procedure

Algorithm 4 Pseudocode for FS-PLS

Input: A data set consisted by a n × p matrix X and a n × 1 matrix Y, where each
Xj and Y column represents a variable, and a constant threshold c.
Output: A data set consisted of the minimum variables that can result in the optimal
PLS model.

Step 1: Application of PLSR on original data for the evaluation of regression coef-
ficients.

Step 2: Usage of model selection criteria for number of optimal latent variables
determination

Step 3: Application of the constrain proposed in Equation 5.1 for the location of
the statistically insignificant variables.

Step 4: Removal from the input dataset the variables that Step 3 indicate as in-
significant

Step 5: Repetition of Step 1 on the minimized original data
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5.2 Numerical applications

In this section the application of the FS-PLS on near infrared (NIR) spectroscopy data
is presented.

5.2.1 Univariate FS-PLS regression – FS-PLSR

In the first case, in the gasoline dataset, which is found in the pls package, X ma-
trix includes 401 diffuse reflectance measurements and Y matrix is consisted of one
response variable, that corresponds to the number of octanes of the total 60 obser-
vations. Due to the multicollinearity and the rate of available observations to X-
variables, dimensionality reduction is demanded in order to generate a linear regres-
sion model. Applying the FS-PLS optimization, we first computed the estimators of
PLS-regression coefficients of all 401 variables in models built with up to three com-
ponents. Their absolute values were then compared with predefined constant c of
0.10, 0.20, 0.25 and 0.30. The final X data matrices contextually included only the
predictive variables with absolute values of PLS-coefficients higher than the testing
threshold in one-, two- and three-component models (1 LV, 2 LV, and 3 LV). In the
next step we reapplied the PLSR method to the selected variables and the resulted
models were evaluated based on AIC, R2

adj, WR0.90
adj , and WR0.95

adj and RMSECV. Ta-
ble 5.1 and Table 5.2 summarize the results:

1 LV 2 LV 3 LV 4 LV 5 LV 6 LV
c Attributes WR0.90

adj WR0.95
adj RMSECV AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj

- 401 4 4 7 203 30% 52 94% 3 97% -2 97% -25 98% -36 98%
0.10 374 4 4 7 203 30% 52 94% 4 97% -3 97% -25 98% -36 98%
0.20 307 4 4 7 203 31% 52 94% 6 97% -3 97% -24 98% -35 98%
0.25 245 4 6 6 202 31% 51 94% 9 97% -4 98% -23 98% -35 98%
0.30 217 4 4 6 202 31% 51 94% 12 97% -5 98% -22 98% -35 98%

TABLE 5.1: Information criteria values of FS-PLSR models, where At-
tributes is the number of original variables.

In Table 5.1, the reduction in AIC values in all two-component models and the
simultaneous increase of their R2

adj values is noteworthy. These changes strongly in-
dicate the outstanding enhancement of the corresponding models when the second
component is retained in the model. Further, the most sufficient FS-PLSR model is
proposed, the four-component model, which is based on the 0.30 testing threshold
and it includes only 217 variables in X matrix, which consist of 46% of the initial
observations. This choice is established in accordance with the adjusted Wold crite-
rion, which is specialized to evaluate PLS models, complemented by the high R2

adj
value and the significant reduction in AIC value. It should be noted that AIC values
tend to decrease as more components are added to the model. However, the rate of
decrease is approximately fixed after the addition of the fourth component. More-
over, the criteria values of the models that resulted from the thresholds 0.25 and 0.30
are alike, though the latter constraint conveys to further dimensional reduction. At
this point, it should be mentioned that more restrictive thresholds were tested; they
were found to lead to over-fitted models and rejected.

The results of the PCA regression (PCR) models, generated with the datasets
arising from the aforementioned thresholds, are displayed in Table 5.2. As the most
adequate model is proposed the five-component model of the last threshold, since
R2

adj value is close to 1 and AIC value does not change sufficiently with the addition
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of more components in the model. In contradiction to the FS-PLSR models, the in-
clusion of the second component does not improve the model performance in any
case, while the minimization of RMSECV values proposes much more complicated
models than in FS-PLSR cases.

1 PC 2 PC 3 PC 4 PC 5 PC 6 PC
c RMSECV AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj

- 17 213 17% 215 17% 192 43% 6 97% 6 97% 8 97%
0.10 17 213 17% 215 17% 189 46% 6 97% 6 97% 7 97%
0.20 15 213 17% 214 17% 174 58% 6 97% 5 97% 7 97%
0.25 15 213 17% 214 18% 147 73% 7 97% 5 97% 5 97%
0.30 14 213 17% 214 18% 133 79% 7 97% 5 97% 5 97%

TABLE 5.2: Information criteria values of PCR models

FIGURE 5.1: Percentage of explained variability of FS-PLSR and PCR
models

Additionally, taking into account the R2
adj criterion and the percentages of ex-

plained variability in the models, as displayed in Figure 5.1, we conclude that in FS-
PLSR the two-component and three-component models can lead to reliable results,
preserving the advantage of visualization. Note that all c constrains resulted in simi-
lar explained variability and thus only one’s results are being presented in Figure 5.1.
These FS-PLSR models expose high R2

adj values, while they leave unexplained a neg-
ligible percentage of the response variable. In PCR instead, the inclusion of the first
four components fails to provide a model with sufficient performance. Finally, the
comparison of these methods in terms of AIC values verifies the predominance of
FS-PLSR against PCR: all AIC values in PCR models (with up to three components)
are significantly smaller than the corresponding FS-PLSR model (Table 5.2).

5.2.2 Multivariate FS-PLS regression – FS-MPLSR

In the second case, the performance of the proposed FS-MPLSR optimization over a
multivariate response is investigated (the multivariate case of FS-PLSR will be ad-
dressed by FS-MPLSR in the remaining article). In the Corn dataset (2022), that we
processed, the Y matrix consists of four variables, -moisture, oil, protein and starch,
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and X matrix includes 700 NIR spectroscopic attributes. Note that the FS-MPLSR
algorithmic procedure is similar to the FS-PLSR with the only deference to be the
number of response variables that form the latent variables. In the multivariate case,
the modelling process aims to reveal and enable chemists to predict the moisture, oil,
protein and starch content in different samples. In this situation, the implementation
of Ordinary Least Squares as a linear regression method would be an inappropriate
choice, since the X matrix is characterized by the existence of multicollinearity. Its
mitigation is achieved through dimensional reduction, based on the absolute values
of the FS-PLS-regression coefficients, in a similar way as in the univariate case. The
FS-MPLSR algorithm was applied on the initial dataset to estimate these values. The
computation of Adjusted Wold’s R criterion WR0.90

adj led to the conclusion that the
sufficient modelling of the four Y-variables requires the inclusion of first 5, 21, 7 and
8 FS-PLS components respectively. Based on this conclusion and the use of testing
thresholds we defined the final reduced set of predictors as the intersection of the
following four subsets:

• The first subset included the variables considered as statistically significant for
Y1. The absolute values of regression coefficients of these variables are higher
than the tested thresholds in one- to five-component models.

• The second subset included the variables considered as statistically significant
for Y2. The absolute values of regression coefficients of these variables are
higher than the tested thresholds in one- to twenty one-component models.

• The third subset included the variables considered as statistically significant
for Y3. The absolute values of regression coefficients of these variables are
higher than the tested thresholds in one- to seven-component models.

• The fourth subset included the variables considered as statistically significant
for Y4. The absolute values of regression coefficients of these variables are
higher than the tested thresholds in one- to eight-component models.

The thresholds that we tested were 2, 2.25, 2.50 and they resulted in the removal
of 44, 69, and 99 variables from the original dataset, correspondingly. The new
reduced data matrices were then processed via the FS-MPLSR and PCR methods.
Based on the values of the aforementioned model selection criteria we inferred that
the third threshold examined (2.50) generated the most efficient models. Table 5.3
and Table 5.4 summarize the values. The other options led to over-fitted or under-
fitted models.

1 LV 2 LV 5 LV 7 LV 8 LV
omitted

LV
21 LV

AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj · · · AIC R2

adj
Y1 1 51% 2 52% -50 80% -142 96% -166 97% · · · -366 99%
Y2 -62 27% -62 27% -68 37% -87 55% -154 86% · · · -214 95%
Y3 76 17% 65 32% -35 88% -56 92% -60 92% · · · -181 99%
Y4 153 0% 145 13% 63 78% 28 88% 7 92% · · · -131 99%

TABLE 5.3: Information criteria values of the FS-MPLSR model based
on the remaining 601 attributes (700-99).



64 Chapter 5. Feature Selection Partial Least Squares (FS-PLS)

1 PC 2 PC 5 PC 7 PC 8 PC
omitted

PC
21 PC

AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj · · · AIC R2

adj
Y1 1 52% 1 53% -115 93% -153 96% -151 96% · · · -371 99%
Y2 -62 27% -61 26% -69 38% -116 72% -124 76% · · · -158 88%
Y3 76 17% 74 22% 22 68% -24 86% -56 92% · · · -112 97%
Y4 153 0% 151 0% 120 44% 76 74% 52 83% · · · -47 97%

TABLE 5.4: Information criteria values of the PCR model based on the
remaining 601 attributes.

The optimum FS-MPLSR model retained twenty one components. The model
complexity was determined in accordance with the theory (Wold et al. 2001), which
states that the FS-MPLSR model should include every component that is found to
be significant for at least one variable of the set of responses. In this way infor-
mation in Y matrix is significantly explained, as the percentages of the explained
variability are 99.95% for Y1, 97.06% for Y2, 99.43% for Y3 and 99.55% for Y4, while
the overall information of the new X matrix is utilized. We can infer that the sub-
stantial dimensionality reduction that we achieved through the PLS-optimization,
resulted in the generation of a unique model capable to predict the four responses
at the same time, with the cost of an insignificant percentage of unexplained infor-
mation. Nevertheless, a less strict consideration of the theoretical frame would yield
an eight-component model with the profit of further dimensionality reduction and
with the cost of a less accurate, but yet sufficient, prediction of Y2 response variable.

On the contrary, the PCR method generated four individual models, one for the
prediction of each response variable, that needed twenty one components to cap-
ture 99.95%, 92.51%, 98.21% and 98.17% of the variability of the responses. These
percentages, in combination with the results of the information criteria presented in
Table 5.3, demonstrate that FS-MPLSR model is more adequate in all four responses.

5.3 Concluding Remarks

The aim of this study is to introduce PLS as a method for variable selection in a vari-
ety of fields, including time series analysis. Although this method is commonly used
in a regression analysis, it can also be implemented in various other applications
such as discriminant analysis, and hierarchical modelling. It can handle complex
data sets and situations that cannot be solved by standard methods.

FS-PLS is considered optimal in evaluating more complex structures with a more
realistic and holistic view. It has been proved to be a non-time consuming process
and statistically efficient method with high prediction accuracy. As a recently found
technique in the field, many aspects of its underlying mechanism have recently been
revealed and yet, there is no strictly defined frame for its application. As a result,
the method is considered to be very flexible and many modifications and experi-
mentations can be tested. In this work the utilization of PLS approach was used as
a variable selection criterion and by expansion as a dimension reduction technique.
The FS-PLS procedure was able to remove up to 45% and 14% of the original vari-
ables in two frequently used datasets in chemometrics, one univariate set and one
more complex multivariate one.

Although PLS is considered to be useful in small datasets, through the FS-PLS
methodology it has been found to be useful in high-dimensional and/or big data
analysis. Although, the applications is chosen from the field of chemometrics, the
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applicability was quite wide covering biology, physics, chemistry, business, and so-
cial sciences among others.

In the univariate case, the final selected model is based on only 217 predictors out
of an initial set of 401. The three-component model, which is suggested as optimum,
explains the major part of information captured in the data, while it is parsimonious,
with high prediction ability and can easily be used for visualizations. The compar-
ison with the corresponding PCR model, which was based on information criteria
AIC, R2

adj, and RMSECV, demonstrates that FS-PLSR model gave more sufficient re-
sults.

In the multivariate case, the problem appears to be more complicated. Initially
FS-MPLSR was implemented on the data out of necessity, due to the fact that cor-
relations were observed between the response variables. We estimated regression
coefficients and we determined the significant components for each response vari-
able. We compared the absolute values of the coefficients in significant components
with thresholds and then, we defined four sets of predictors, which contained the
important predictors for the individual responses, respectively. Their intersection
consisted the final set of predictors for the multivariate regression model. This way,
in the final selected model 99 less predictors than in the initial set were included. The
simultaneous process of the response variables generated a single regression model
with AIC values lower than the individual PCR models in all four response vari-
ables. The increased number of constructed models in the PCR method is associated
with high complexity and computational cost of the whole analysis. This, in combi-
nation with the fact that less variability is explained in the second response variable
with the PCR method, leads to the suggestion that a FS-PLSR model is optimum also
in the multivariate case.

Concerning possible future expansion of this work, an ENR in the FS-PLS method
is under development. We aim to investigate the cooperative effects of these two
techniques on high-dimensional multicollinear data in order to make a projection on
a low-dimensional space and thus to construct less complex and more interpretable
linear regression models of high predictive accuracy with a penalized set of predic-
tors.
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Chapter 6

Interdependency Pattern
Recognition in Econometrics: A
Penalized Regularization Antidote1

Several partially robust criteria and indices for multicollinearity have been proposed
over the years, which are based either on the coefficient of determination and similar
measures or in the eigenvalue-eigenvector analysis. Theil’s indicator (1971), Klein’s
rule (1962), TOL, and VIF (Gujarati and Porter (2008)) fall into the first category
while the Farrar-Glauber test (1967), the sum of reciprocal eigenvalues, Red indi-
cator (Kovács et al. (2005)), CI (Belsley (1991), Hair et al. (2010)) and eigensystem
analysis are some of the most frequently used measures that fall into the second
(for a thorough analysis see Section 1.1.1). All these measures commonly use some
sort of rule of thumb to rule about the existence of multicollinearity. For each mea-
sure, at least 2 or even 3 different thresholds can be used; for instance, in the case of
VIF 5, 10, and 20 are considered proper thresholds (see (Gujarati and Porter (2008),
Wooldridge (2014) and Greene (2002), respectively). The question remains though:
at which point extreme multicollinearity is actually extreme? All these methods usu-
ally fail to recognize patterns among variables due to weak or absent coefficients’ pe-
nalization that results in variable over-elimination. So, how can someone properly
address multicollinearity without risking increasing a models’ bias that the omitted
over-eliminated variables might cause? There is always a thin line between the wor-
thiness of variable reduction, on one hand, and the robustness and validity of the
results on the other. For a thorough discussion see Lindnee et al. (2020).

To resolve the issue, regularization techniques are used that are considered op-
timal for parsimonious model creation when an immense number of variables is
involved. These techniques are based on beta coefficients penalization and aim to
reform the coefficients as more unbiased as they can be by assigning weights (“of sig-
nificance”) that punish the insignificant or the less significant variables while simul-
taneously rewarding the statistically significant ones. Ridge (Tikhonov (1943),(1963)),
Lasso (Tibshirani (1996)), and their aggregation, Elastic Net (Hastie et al. (2001), Zou
and Hastie (2005)) are the most frequently used regularization approaches for ad-
dressing this issue. The disadvantage of these methods is that they can be computa-
tionally time-consuming.

1The results of this Chapter have been published as:
Ntotsis, K., Karagrigoriou, A. and Artemiou, A.: Interdependency Pattern Recognition in Economet-
rics: A Penalized Regularization Antidote, Econometrics, 9, 44, 2021.
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In this work, a criterion is proposed based on the combination of penalized co-
efficients; more precisely we propose the generation of a criterion that combines pe-
nalized beta coefficients with a penalized coefficient of determination, both emerg-
ing from the naive Elastic Net and aims to enhance the generalizability of a learned
model. The proposed criterion, namely Elastic Information Criterion (EIC), can be
considered as a non-time or space consuming algorithmic procedure, which is more
accurate than standard measures when it comes to pattern recognition among multi-
collinear variables. Another distinct characteristic of EIC is that it evaluates the exis-
tence and the magnitude of multicollinearity based on a unique data-driven thresh-
old which is reckoned based on data peculiarities and not some approximate rule of
thumb that typical measures rely on. The proposed criterion is expected to play the
role of a supplementary tool in the hands of the researcher to be used in conjunc-
tion with their judgement, experience, and knowledge, together with any special
characteristic associated with the problem/dataset at hand.

A motivating example

In this subsection, an example based on 3 random variables X1, X2, X3 is used as a
motivation for the proposed methodology. X1 and X3 are random samples of size
n = 100 from the standard normal distribution, while X2 is calculated as a function
of X1 through the expression

X2 = u × X1 + σ × ϵ (6.1)

where u is either 2 or 5, ϵ ∼ N (0, 1), and σ a constant that controls the variability
of errors. For σ we use values in the set {0.2, 0.5, 1, 2, 5}. At the same time, u has
been chosen to provide an additional, more general, interdependence structure be-
tween the variables involved. The example involves 10 datasets, each containing a
unique combination of values for u and σ. This example seeks to see the efficiency
rate of EIC and VIF, meaning how many times each measure manages to do proper
variable selection, i.e., to select X3 and either X1 or X2 variable. Note that in all
cases X3, due to its congenital randomness, never exhibits multicollinearity despite
the measure chosen, and hence its interpretation is omitted, without indicating its
ejection from the procedure. Table 6.1 provides the results of 1000 replications of
the above experiment. In Table 6.1, it can be observed that the efficiency rate of VIF

{u,σ}
measure

EIC VIF
Correlation

Range
{2,0.2} 45% 0% [0.98, 1]
{2,0.5} 40% 0% [0.94, 0.98]
{2,1} 24% 1% [0.78, 0.94]
{2,2} 16% - [0.46, 0.83]
{2,5} 7% - [-0.1, 0.59]
{5,0.2} 50% 0% [0.99, 1]
{5,0.5} 67% 0% [0.98, 1]
{5,1} 72% 0% [0.96, 0.99]
{5,2} 70% 0.1% [0.86, 0.96]
{5,5} 35% - [0.45, 0.83]

TABLE 6.1: EIC and VIF efficiency rates comparison for the motivat-
ing example for all u and σ combinations.
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(based on a threshold value equal to 5) is excessively inadequate. More specifically, it
does not make proper variable selection in at least 99 percent of cases. Additionally,
there were cases of {u,σ} ({2,2},{2,5},{5,5}) that multicollinearity was not detected
by VIF. Given the prior knowledge that X2 is indeed a figment of X1, one can con-
clude that multicollinearity is lurking behind the generated randomness. Moreover,
if the methodology to be proposed and presented in the sequel is applied in the mo-
tivating example, the results appear to be remarkable. Indeed, the efficiency rate of
EIC is as high as 72% and, in any case, clearly prevails over VIF regarding variable
over-elimination. Note that the corresponding rates for VIF were almost 0% or non-
existent, meaning that in all replications both X1 and X2 appeared as multicollinear.
The correlation range indicates the minimum and the maximum correlation between
X1 and X2 of each dataset. More precisely, for each {u,σ} combination, the experi-
ment was replicated 100 times and the minimum and maximum correlation values
between the variables, were registered. Among all experiments and all {u,σ} com-
binations, the overall minimum and the overall maximum correlation values were
used to provide the correlation range. The aim was to evaluate the performance of
each measure under different degrees of correlation. Even though high correlations
were detected in most cases (implying the possible existence of multicollinearity),
VIF failed either to recognize it or detect it without being able to identify the prede-
termined pattern between X1 and X2. The example reveals a weakness of the VIF
associated with its failure to identify patterns exhibited by the variables involved.
The development of EIC came out of a necessity to fill this gap in the literature; i.e.,
to provide a measure capable not only to recognize multicollinearity patterns that
lurk behind variables but also to work simultaneously, as a variable selection crite-
rion.

6.1 Elastic Information Criterion

6.1.1 The penalized regularization antidote

In this Section, the Elastic Information Criterion (hereafter EIC) is proposed. EIC
can be considered an extension of the Elastic Net procedure and result in a (computa-
tional) time and space non-consuming algorithmic procedure that has also proven to
be more accurate than typically used measures regarding pattern recognition among
multicollinear variables. The Elastic Net was selected as the optimal regularization
due to its capability to examine the impact of different αen and λen combinations
on the model through a cross-validation procedure. EIC initiated out of necessity
for accurate and effective multicollinearity capture without having variable over-
elimination. Its aim is to detect patterns among the multicollinear variables and
more precisely, which one enacts as a function of the other(s), and remove them,
leaving the one(s) that originated from them intact. The EIC’s results emanate from
the Elastic Net cross-validation procedure, and its formula is given in the following
form:

EICj = αj,en ×

k
∑

p=1
p ̸=j

|βj
p,en|1+αj,en

1 − R2
j,en

≥ 0, j = 1, 2, . . . , k (6.2)
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and

Xj = β
j
0,en +

k

∑
p=1
p ̸=j

β
j
p,enXp (6.3)

where

• k is the total number of regressors (explanatory variables),

• αj,en is the optimal alpha emerging from the Elastic Net procedure and corre-
sponds to the modelling of the Xj variable,

• β
j
0,en is the intercept term in Equation 6.3,

• β
j
p,en is the penalized coefficient of the pth regressor in Equation 6.3,

• R2
j,en is the R2 of the jth variable as predictor regressed against all other regres-

sors.

EIC integrates two aspects of collinearity detection. The primary one, based on
a tolerant method alteration, which aims to reduce the sensitivity of coefficients
throughout the penalty function. The number of β

j
p,en coefficients diversifies from

zero to k since when αj,en= 1, then the variable’s coefficient reduces to zero. The

summation of this function aggregates all the resulting β
j
p,en coefficients emerging

through Elastic Net regression. On the other aspect, the goodness of fit in the linear
model is used as a penalty for multicollinearity disclosure. Lastly, the tuning pa-
rameter αj,en is utilized for penalization smoothing purposes. EIC tends to perform
more precisely for αj,en at or close to the end-point of the [0,1] range. Thus, in order
to limit -in terms of time- the computational burden for αj,en selection, the values
examined range from 0 to 0.1 with step 0.01, the middle point of the αj,en range (0.5),
and from 0.9 to 1 with step 0.01. Note that otherwise the αj,en specification, the same
Cross-validation procedure as in the naive Elastic Net, is followed.

Algorithm 5 Pseudocode for EIC implementation in R
Input: A n × k matrix, namely A, containing the dataset with each Xj column

representing a variable.

Output: A 1 × k data frame containing the EIC value for each Xj variable
indicating the level of multicollinearity.

Procedure: Compute aj,en, β
j
p,en, and R2

j,en parameters of Equation 6.2 for each Xj

variable

Step 1: Set the vector of the considered values alpha (αj,en), namely alpha.sample
<- c(seq(0, 0.1, by = 0.01), 0.5, seq(0.9, 1, by = 0.01)).

Step 2: Perform cva.glmnet function, which is a part of glmnetUtils pack-
age, by setting the following arguments: x = A[, -1], y = A[, 1]) and alpha
= alpha.sample.
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Step 3: The resulting arguments are as follows: alpha is the a1,en, lambda is the
λ1,en, and β

j
p,en are the penalized coefficients of the explanatory variables of the

model considered.

Step 4: Compute the absolute value of each of the resulting β
j
p,en coefficients raised

to the power of 1 + α1,en.

Step 5: Sum all the values resulted through Step 4 in order to calculate the numer-
ator of Equation 6.2.

Step 6: Compute the R2
1 of the X1 variable regressed against every other variable in

the dataset which corresponds to the R2
1,en of Equation 6.2, based on the coefficients

as resulted through Step 3.

Step 7: Replace the result of Step 3-5 on Equation 6.2 and then calculate the EIC1
value, which corresponds to the multicollinearity level of the X1 variable.

Step 8: Repeat Steps 1-6 for the remaining k variables.

6.1.2 Data-driven threshold

To verify the presence of multicollinear variables with EIC, the following threshold
determined by the collection or analysis of data has been proposed.

threshold = λ̄en + 3 × s.e.(λ̄en) (6.4)

where λ̄en =
∑k

j=1 λj,en

k and s.e. stands for the standard error (of the sample mean λ̄en.)
Adding three standard errors to the threshold, which is a typical quality control
bound, reduces the possibility of wrongfully variable rulings.

Given a dataset of k variables and based on Equation 6.2 and Equation 6.4, one
can conclude that a variable does not display multicollinearity for values of EIC
lower than the threshold:

0 ≤ αj,en ×

k
∑

p=1
p ̸=j

|βj
p,en|1+αj,en

1 − R2
j,en

≤ λ̄en + 3 × s.e.(λ̄en) (6.5)

Algorithm 6 Pseudocode for the threshold of EIC in R
Input: A n × k matrix, namely A, containing the dataset with each Xj column

representing a variable.
Output: A single number which serves as threshold for ruling about the existence of
multicollinearity.

Procedure: Compute Equation 6.4 for the input dataset

Step 1: The implementation of Steps 1 and 2 of Algorithm 5 will result in the λ1,en
which corresponds to the X1 variable.
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Step 2: The completion of Algorithm 5 will produce the values of λ1,en, λ2,en, . . . ,
λk,en parameters. Calculate their arithmetic mean.

Step 3: Find the standard error of the mean via the function std.error and triple
the result.

Step 4: Sum the values resulted from Step 2 and 3 to form the threshold value of
Equation 6.4.

Remark: The proposed criterion resolves a defect in classical diagnostic mea-
sures, like VIF, by being capable of detecting interdependency patterns among vari-
ables. In that sense, it provides a powerful and supportive tool in econometric anal-
ysis, which is expected to complement effectively all other aspects (purpose of the
study, researcher’s judgement, etc.) of the decision-making process.

6.2 Numerical Applications

There are continuous and recurrent discussions in econometrics, regarding the way
to effectively address the issue of multicollinearity. It is believed that, to some ex-
tent, this is due to the absence of simulated studies and the fact that in real cases,
available data are simple and direct, which prevents an in-depth understanding of
the issue, when in fact econometric research is considered particularly complex. In
this research area, variables tend to be interdependent, while sample sizes are rela-
tively limited. Therefore, due to the nature of the problem, it is difficult to have an
interpretable application in real data. In order to investigate the validity of EIC, a
real case scenario based on a dataset on the economic growth of a country’s prosper-
ity is presented bellow, followed by a simulated case study. In both experiments, a
comparison concerning the proper variables’ prediction rate, between EIC and var-
ious other measures has been implemented for evaluating the effectiveness of the
proposed methodology.

6.2.1 Real case study

For validation purposes on real data, the following experiment was conducted. For
evaluating a country’s prosperity and having a better understanding of where its
economy is headed, several economic growth indicators have developed through-
out the decades. Some main closely monitored and widely applied indicators in-
clude the Balance of Trade to GDP (BoT), the Government Debt to GDP (GovDebt),
the Gross Domestic Product Growth Rate (GDPGR), the Inflation Rate (InfR), the In-
terest Rate (IntR) and the Unemployment Rate (UnemR). A dataset consisting of
these 6 variables with annual observations covering the time period 2000 to 2020 for
Greece was formulated for illustrating the performance ability of the proposal EIC
criterion as compared with traditional diagnostic measures. Data originated from
the OECD database (2021), the Trading Economics (2011), and the World Bank Open
Data (2021). Based on the dataset, a direct interdependency pattern between GDPGR
and both GovDebt and BoT exists, since the latter two appear as percentages of the
former. According to the relevant bibliography (see e.g. Dumitrescu et al. (2009),
Fried and Howitt (1983), and Oner (2020)), correlations are observed between the
variables involved in the dataset. The aim is (a) to observe whether the measures
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mentioned in Section 1.1.1 can identify the aforementioned interdependency pattern
among the variables, and (b) to observe how EIC corresponds to the same situation.

Individual Multicollinearity Diagnostic Measures
EIC VIF TOL CI F-G wj Leamer IND1

BoT 0 1 1 0 1 1 0
GovDebt 0 0 0 0 1 0 0
GDPGR 1 0 0 0 1 0 0

InfR 0 1 1 1 1 0 0
IntR 0 0 0 1 1 0 0

UnemR 0 1 1 1 1 1 1

TABLE 6.2: Detection of existence (1) or not (0) of multicollinearity by
diagnostic measures

FIGURE 6.1: Neural Network-like infographic for diagnostic mea-
sures performance

In Table 6.2/Figure 6.1 for each variable, the existence (1) or not (0) of multi-
collinearity was detected by various diagnostic measures. As it can be seen, F-G
wj, Leamer, and IND1 measures perform poorly. Thus, the analysis will be focused
solely on the comparison of EIC with VIF, CI, and TOL. In Figure 6.1 the performance
of these measures can be seen in a neural network-like infographic. In the Input
layer, we have the 6 variables of the dataset. In the Filter layer, the implementations
of EIC, VIF, IC, and TOL can be seen in that order. In the Output layer, we have the
three possible multicollinearity scenarios and expect the diagnostic measures to fall
into one of them. Based on the above, the three scenarios are: (i) multicollinearity is
detected only on GDPGR, (ii) multicollinearity is detected on BoT and GovDebt; and
(iii) multicollinearity is detected on all three, namely GDPGR, BoT and GovDebt.

Based on Table 6.2/Figure 6.1 we observe that except EIC, the other measures,
identify as multicollinear some of the variables BoT, InfR, IntR, and UnemR. How-
ever, the EIC restricts the multicollinearity issue solely to GDPGR and identifies it as
the “root” of multicollinearity in the dataset, as can been clearly seen in Figure 6.1
that falls into one of the three scenarios. It must be noted that the selection of this
variable is of great importance due to its linkage to all others, and because this con-
nection goes undetected by all other measures. On the other hand, the results clearly
show that classic diagnostic measures, like VIF, fail to recognize the underlying pat-
tern among the variables involved. On the other hand, the proposed EIC criterion
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not only exposes the pattern but also identifies its root and recommends, correctly,
its removal from the dataset.

This example clearly shows that EIC succeeds in identifying interdependency
patterns when all other diagnostics measures fail. If such patterns are non-existent,
all measures are expected to behave equally well. The superiority of the proposed
criterion lies in the fact that it offers a powerful tool for pattern identification, which
could be useful for researchers.

6.2.2 Simulation case study

This study is based on data generated from a standardized normal distribution with
different scenarios, sample sizes, and number of variables. The number of variables
ranged from 5 to 15, while the number of observations was 10, 50, and 100. Each sce-
nario was replicated for validation purposes, providing similar results in all cases.
Based on the similarity of the results, the decision to present the results for the same
number of variables (10) and the same size of observations (100) throughout the
study was made for comparability purposes.

The study focuses on three datasets with different degrees of correlation among
variables, 20%, 45% and 75% for datasets “low”, “medium” and “high” respectively.
For each dataset, a sized 100 × 10 data frame was created and replicated 5000 times,
with each Xj, j = 1, 2, . . . , k, column representing a variable. For each dataset, sev-
eral variables have been selected to be altered and involved in the analysis as linear
operators of X1 with the subsequent formula:

Xj = u × X1 + σ × ϵ, Xj ̸= X1, (6.6)

where u is a random number in {1, 2, 3, 4, 5}, ϵ ∼ N (0, 1) and σ is a constant
that controls the variability of errors. For σ we use values in the set {0.2, 0.5, 1, 2,
5}. As in the case of the motivating example (Section 6), u has been chosen to pro-
vide an additional, more general, interdependence between the variables involved.
Equation 6.6 was formulated out of necessity for implementing a more general in-
terdependency pattern among the variables involved. Simultaneously, there was a
need to explore the capabilities of the proposed methodology under a more chal-
lenging underlying mechanism (as opposed to the case of a fixed value for the u
coefficient) for the building of the model in Equation 6.6. The selected linear trans-
formations of X1 are: X2 for the low, X2, X3, X4, X6 and X8 for the medium, and all
Xj except X8 and X10 for the high correlation-based category.

FIGURE 6.2: Parallel coordinates graph of EIC vs VIF
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In Figure 6.2 we can observe the proportion of times each variable appears as
multicollinear based on VIF (lower line) and EIC (upper line) in three (low/yellow
- medium/green - high/red) correlation-based categories. Note that only the vari-
ables with non-zero proportions are displayed.

Note that the EIC was chosen to be compared only with the VIF, which is con-
sidered the most widely used diagnostic measure. A random sampling between the
replications was held and the detection process with all measures was implemented,
which did not display noteworthy results and verified the above-claimed decision.

The Parallel Coordinates Graph of Figure 6.2, which was carried out in RAW-
Graphs (Mauri et al. (2017)), provides the percentage of times each Xj variable ap-
pears as multicollinear based on EIC (upper line) and based on VIF (lower line)
with yellow lines corresponding to low, green to the medium and red to the high
correlation-based dataset. High values (close to 1, i.e., 100%) indicate extreme mul-
ticollinearity, while low values (close to 0, i.e., 0%) indicate weak (or absence of)
multicollinearity. As an example, consider the yellow line (low correlation dataset)
associated with the variable X1 (which has been taken to be non-multicollinear). The
EIC correctly identifies the non-multicollinearity of X1 since the upper line is crossed
at a value less than 0.05 (the actual value is 0.01). Meanwhile, VIF fails to identify
the same. Indeed, although the yellow line should have been vertical (crossing the
lower line at about the same value as the upper line) the crossing is observed far to
the right, at a value between 70% and 80% (the actual value is 0.76) indicating that
VIF characterizes, incorrectly, X1 as multicollinear.

Based on the above observations according to Figure 6.2, we can conclude that
only EIC succeeds in correctly identifying the level of multicollinearity of all vari-
ables involved with X1 appearing on the left corner (of the upper line of Figure 6.2)
and all others on the right corner. We also observe that as correlation increases (from
yellow to red), VIF is deceived and fails to recognize the unaltered variable (X1) but
instead, it signifies it, falsely, as the most multicollinear variable, which may result
in variable over-elimination and improper model selection.

FIGURE 6.3: Proper model selection based on EIC and VIF for all three
correlation-based categories.

In the sunburst diagram (Mauri et al. (2017)) of Figure 6.3, one can see the per-
centage rate at which each measure (VIF in the inner circle and EIC in the outer
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circle) managed to properly do correct variable selection in each of the three cate-
gories. In Figure 6.3, VIF tends to do variable over-elimination and by expansion
model misspecification. When the proper variables have been selected (all Xj except
X2 for low, X1, X5, X7, X9 and X10 for medium, X1, X8 and X10 for high), then all
the other (improper) variables have been selected too. Thus, one can state that the
accuracy rate of proper variable selection based on VIF is 0%. On the contrary, the
equivalent rate based on EIC surpasses 50% in all cases.

6.3 Conclusions

Conclusively, the suggested Elastic Information Criterion procedure results in a ro-
bust and easily interpretable methodology for handling multicollinearity along with
the appropriate data-driven threshold. The criterion constitutes a novel shrinkage
and selection method since it is based on both the coefficient of determination and
beta coefficients penalization, emerging in virtue of a biased (towards the endpoints
of the mixing parameter α) Elastic Net, while the threshold has been established
based on λj,en tuning parameter of the same procedure. Thus, EIC is governed by
the same or similar properties as those of Elastic Net. Additionally, it demonstrates
a sufficiently sparse representative model with an adequate proper variable predic-
tion rate, while firmly encouraging a grouping effect even when the significance of
a variable is relatively limited.

The results of the real and simulated data analysis strongly suggest implement-
ing EIC not only for econometric modelling and forecasting but also for classification
purposes due to its high efficiency rate. EIC does not commonly fail with highly cor-
related data as opposed to typically used measures for multicollinearity detection,
while its high prediction accuracy is due to the restricted values of the parameter α.
Furthermore, EIC tends to perform better when the Elastic Net procedure is imple-
mented at or near the αj,en edges while it appears to have a robust variable selection
accuracy rate over both real and simulated case studies. The pivotal characteris-
tic of reduction or ejection of the insignificant coefficients that Elastic Net attains,
manages to enhance its efficiency rate. In comparison to other multicollinearity de-
tection measures, it is evident that EIC prevails in terms of proper variable selection
accuracy. An additional finding of this work is that the implementation of EIC can
be vital in the field of Econometrics, where interrelationships among variables fre-
quently occur. Its capability to identify where (in which variable(s)) the troublesome
multicollinearity lurks and penalize it accordingly minimizes a models’ bias without
resulting in variable under or over-elimination.

EIC, as a criterion for implementing the EN mechanism, is particularly effective
in tackling multicollinearity that lurks behind variables (Hastie et al. (2001), Zou
and Hastie (2005)) . Indeed, as displayed above in all levels and as compared with
the most widely used measures, EIC (a) identifies the existence of patterns among
variables, (b) is capable of recognizing and “selecting” the altered variables, leaving
the unaltered ones intact and (c) achieves extreme values in the presence of perfect
multicollinearity and also in the total absence of it. Based on these characteristics
and properties we can say that the effectiveness of EIC can place it high in the list of
measures that can be used to address the multicollinearity issue and in that sense it
can be considered as a useful and effective tool in the hands of the researcher to be
used in conjunction with their judgement, experience and knowledge together with
any special features associated with the problem/dataset at hand.
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In addition to the contributions of the proposed criterion to the multicollinearity
literature, another advantage of EIC is that it operates as a variable/model selection
criterion and consequently it can be exploited as a dimension reduction technique.
It should be reminded, that these classical dimension reduction techniques, suffer
from the fact that each generated component is a combination of different propor-
tions of the original variables; thus it is often difficult to interpret the results (Zou et
al. (2006)). On the other hand, the proposed EIC criterion manages to preserve the
interpretability of the original variables because it relies simultaneously on shrink-
age and sparse selection.
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Chapter 7

A Comparative Study of
Multivariate Analysis Techniques
for Highly Correlated Variable
Identification and Management1

The purpose of this work is to locate and analyse the interrelationships between
GDP and various variables which are interdependent and often characterized by a
high degree of multicollinearity. The OECD define GDP as “the standard measure of
the value added created through the production of goods and services in a country during
a certain period. As such, it also measures the income earned from that production, or the
total amount spent on final goods and services (less imports). While GDP is the single most
important indicator to capture economic activity, it falls short of providing a suitable measure
of people’s material well-being for which alternative indicators may be more appropriate. This
indicator is based on nominal GDP (also called GDP at current prices or GDP in value)
and is available in different measures” (OECD (2019)). Based on well-established and
proven studies, it is known that GDP can be expressed by

GDP = C + I + G + (Ex − Lm) (7.1)

where C represents the Private Consumption Expenditures, I the Private Domestic
Investments, G the Government Consumption Expenditures, Ex the Total Exports
and Im the Total Imports.

GDP is frequently used by central banks, public entities and private businesses
as a standard measurement for the economic health of a country (Callen (2008)).
For predictive purposes, researchers often rely on economic or financial indices and
model identification procedures. den Reijer (2005) and Schumacher (2007) both stud-
ied the forecasting of Dutch and German respectively, GDP through variable mod-
elling. Later, Akhter et al. (2012) used PCA in order to obtain a model for the GDP
of Bangladesh. Bai et al. (2015) have shown the accuracy of variable analysis in the
evaluation of the economy of a country, including variables such as Unemployment
Rate, Investments, Population and General Government Total Expenditures, which
are part of the current model analysis. Because of its unstable economy, Greece is
the focus of many economic analyses from organizations such as the OECD, Euro-
stat, International Monetary Fund, and there is sufficient material and data on their
websites one can refer to.

1The results of this Chapter have been published as:
Ntotsis, K., Kalligeris, E.N. and Karagrigoriou, A.: A Comparative Study of Multivariate Analysis
Techniques for Highly Correlated Variable Identification and Management, In- ternational Journal of
Mathematical, Engineering and Management Sciences, 5(1), 45-55, 2020.
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The explanatory variables (Table 7.1) that were chosen are highly correlated and
result in severe multicollinearity in the primary model, which appears to be a fre-
quent problem in financial and economic big data analytics (Wang and Alexander
(2019)). For the reduction or even elimination of the multicollinearity, which is a
common issue in data analysis in finance and economics (Kondo et al., (2018)), a
number of dimension reduction techniques were used in order to identify an op-
timal model with a set of new uncorrelated variables/variables. In this work, for
comparative purposes and for measuring the quality of each model, three informa-
tion criteria were used, namely AIC (Akaike (1974), BIC (Schwarz (1978)) and MDIC
(Mantalos et al. (2010)).

Exports of Goods and Services (X1) Investments (X5)
General Government Total Expenditures (X2) Population (X6)
Household Consumption Expenditures (X3) Total Labor Force (X7)

Imports of Goods and Services (X4) Unemployment Rate (X8)

TABLE 7.1: Explanatory variables

In this work we rely on multivariate analysis and in particular, on DRT for the
modelling of the GDP by identifying an appropriate set of variables from a long
list of possible explanatory interdependent variables which likely interact with and
affect the GDP. The choice of GDP is obvious since it is a quantity of great interest
for micro as well as macroeconomics. The case of Greece is chosen due to extreme
economic events of recent years that greatly affected all aspects of economic activity.

7.1 Preference Data

Gross Domestic Product is interrelated, according to relevant theory, with a variety
of explanatory variables which possibly affect GDP.

This work is based on Greece’s economy with annual data collected through
Knoema, OECD and Eurostat for the eight (8) explanatory variables X1–X8 presented
in Table 7.1 for the period 1980- 2018 (39 annual observations). Three (3) missing
values have been replaced by the average values of the preceding and the following
year.

7.2 Dimension Reduction Techniques

Based on the overall results of the implementation of PCA and the fact that it is
preferable to avoid the loss of important information, we conclude that the first two
components (Z1 and Z2) should be kept (see Table 7.2) regardless of the eigenvalues
because they retain a considerable amount of the total information/variability (more
than 95% of the original variability of the data). The described variability played a
key role in the aforementioned decision, since the intention was to keep that many
components, so that a considerable proportion of the original variability will be de-
scribed by the components chosen.
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1st Component (Z1) 2nd Component (Z2)
General Government Total Expenditures (0.97) Investments (0.62)
Household Consumption Expenditures (0.99) Unemployment Rate (0.74)

Imports of Goods and Services (0.97)
Total Labor Force (0.97)

TABLE 7.2: The two primary PCs

Remark: To determine which variables were significant in each component, the
following empirical rule was followed. For the two chosen components, the vari-
ables for which the absolute value of the associated coefficient is at least equal to
0.95 are kept as significant. A value of around 0.95, although there is no specific
rule, is considered to be satisfactory in retaining a sufficient amount of information.

For the problem at hand, the first component, denoted by Z1, holds more than
80% of the total variation of the dataset, while the second one, denoted by Z2, holds
roughly 15% of it. The rest of the components contain the remaining percentage of
variation. By construction, the first component is considered to be the most impor-
tant, on which the analysis is primarily based. Having said that, we observed in
the above analysis, 6 of the total of 8 variables emerge as important according to the
associated coefficients given in parenthesis (see Table 7.2).

Remark: For modelling purposes both PCA significant variables/components
(Z1 and Z2) are used in their full form that contains, not only the significant variables
(with coefficients at least equal to 0.95) which are presented in Table 2, but all m=8
original X′

i s.
As it can be seen from Table 7.2, General Government Total Expenditures, House-

hold Consumption Expenditures, Imports of Goods and Services and Total Labor
Force emerge as important in the first component while Investments and Unem-
ployment Rate in the second one.

Hence, using this technique we proceed with the Multivariate Analysis of the
Gross Domestic Product with Z1 and Z2 as the uncorrelated variables affecting GDP.

The implementation of the MeritSN procedure (Section 3.1.8) results in the with-
drawal of 5 out of the total 8 original variables. The remaining variables, namely
General Government Total Expenditures, Household Consumption Expenditures
and Imports of Goods and Services are considered as the important ones in the mod-
elling of GDP. It must be noted that the same variables together with the Total Labor
Force compose the first and most important component (Z1), of PCA.

7.2.1 Techniques Review

The aforementioned dimension reduction techniques were implemented for the iden-
tification of interrelationships between a number of potentially significant variables
and GDP. While in some cases similarities between the techniques were revealed, all
three highlight different variables as important, as it can be seen in Table 7.3.

Beale et al. PCA CFS
Total Labor Force General Government Total Expenditures General Government Total Expenditures

Unemployment Rate Household Consumption Expenditures Household Consumption Expenditures
Imports of Goods and Services Imports of Goods and Services

Investments
Total Labor Force

Unemployment Rate

TABLE 7.3: Variable selection based on examined criteria
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7.3 Model Selection Criteria

Model identification procedures play a pivotal role in statistics by identifying the
best model among an available class of models. Those techniques are contemplated
as assessors of a quantity. For example, for a given data set the probability of the
proposed model can be used as an assessor, which is essential for the pursuit of
identifying the optimal fundamental structure of the phenomenon under investiga-
tion.

Model identification procedures have been heuristically recommended for time-
varying processes. Kullback and Leibler (1951) developed such a measure that min-
imizes the loss of information. A direct connection between the Kullback-Leibler
(KL) measure and the Maximum Likelihood Estimation (MLE) method, gave rise to
AIC and BIC. In this work, we rely on AIC, BIC and MDIC to obtain the optimal
model.

7.3.1 Model Selection based on AIC

In the previous section three-dimension reduction/variable selection techniques were
used in order to find the optimal explanatory variables for the modelling of GDP,
namely, Beale et al., PCA and Hall’s CFS Selection technique. Using GDP as the
dependent variable and the selected variables of each technique as the independent
ones, the following three models were constructed corresponding to the aforemen-
tioned techniques respectively:

Yi = α11 + β11Xi7 + β12Xi8 + ε i1 i=1,...,39

Yi = α21 + β21Zi1 + β22Zi2 + ε i2 i=1,...,39

Yi = α31 + β31Xi2 + β32Xi3 + β33Xi4 + ε i3 i=1,...,39.

The results based on MDIC in conjunction with those based on AIC and BIC are
provided in Table 7.4

AIC BIC MDIC
Beale et al. 2009 2015 5

PCA 1925 1941 37
CFS 1901 1909 7

TABLE 7.4: Model Selection Summary

From the results in Table 7.4, it appears that the optimal model based on AIC is
the one formulated by Hall’s CFS technique and contains the General Government
Total Expenditures, the Household Consumption Expenditures and the Imports of
Goods and Services as the independent variables.

Additionally, in Table 7.4 the AIC values range from 1900-2000 for all three meth-
ods, with CFS providing the best model. Based on BIC, we conclude the same out-
come as AIC. However, as can be seen from the figure, MDIC provides by far the
most optimal models with values ranging from 5 to 37. Based on this measure, Beale
et al. and CFS provide the optimal models.
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7.4 Conclusion and Future Research

In conclusion, in this work, we attempted via dimension reduction techniques, to
identify interrelationships between the GDP of Greece and a number of variables
which are highly correlated. Beale et al. (1967), PCA and Hall’s CFS techniques were
implemented and suggested different models with different variables (see Table 7.3).

More specifically, Beale et al. proposed a model with the Total Labor Force (X7)
and the Unemployment Rate (X8) as independent variables. This technique clearly
focuses solely on the workforce point of view in order to achieve the optimal model.
PCA, on the other hand, instead of using the original variables, created new uncorre-
lated ones. In fact, PCA promotes a model with two uncorrelated variables (Z1 and
Z2). Through them, 6 out of a total of 8 variables emerge as important, namely X2,
X3, X4, X5, X7 and X8 (see Table 7.2). It should be noted that the variables selected
as significant have also been chosen either by Beale’s or Hall’s models. The third
technique, CFS, proposed a model with the General Government Total Expenditures
(X2), the Household Consumption Expenditures (X3) and the Imports of Goods and
Services (X4) as significant variables affecting GDP.

Based on theoretical background (see Equation 7.1), it appears that the CFS model
covers most part of GDP’s formula and seems to be able to identify and select the
”right” subset of variables from the original ones. Indeed, although CFS does not
select the Investments and the Exports of Goods and Services which both are part
of the variables involved in Equation 7.1, it is able to identify, the Imports of Goods
and Services (which is part of the Imports), the Government Expenditures and the
Household Consumption Expenditures. Note though, that the CFS model also choo-
ses to ignore demographic variables, which affect indirectly and not directly the
modelling of GDP through their interrelationships with all variables involved in
Equation 7.1.

The theoretical interpretation of the results is confirmed by two out of the three
model selection criteria that were used, and their results are provided in Table 7.4.
Both AIC and BIC select Hall’s CFS model, while MDIC selects Beale et al. model.

From the analysis, we see that the PCA model is not optimal in all cases exam-
ined. When it comes to CFS and Beale et al., we observe that, both AIC and BIC,
choose clearly the former, leaving way behind the latter. On the other hand, al-
though MDIC is in favour of Beale et al. (1967), the difference observed as compared
to CFS, could not be considered significant.

The main obstacle that we had to overcome in this work was the problem of
multicollinearity, which is very common, especially when it comes to modelling that
involves big data on various financial characteristics and/or economic indicators.
The case of the GDP of Greece was an ideal example to explore the capabilities of
various multivariate analysis techniques in handling the multicollinearity problem
and identifying a set of influential variables.

Taking that under consideration, it is possible, in a future work, to attempt to ex-
plore how different model selection criteria react or are able to make the right vari-
able/model selection, when multicollinearity is of different magnitude. Through
this process one could be able to identify the criterion which is better adjusted and fi-
nally succeeds in choosing the optimal model when the variables involved are highly
correlated.
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Chapter 8

Multistep Dimension Reduction
for Credit Scoring Modelling1

A credit scoring model (CSM) is an effective and important mechanism that helps
in maximizing the risk-adjusted return of a financial institution, an enterprise or
even an individual. A credit scoring methodology is a type of statistical analysis for
accessing one’s creditworthiness, and as such it has to be as accurate as possible in
terms of prediction. The interest in predictive as well as descriptive performance for
scorecard construction is endless.

Credit rating modelling has been of great interest to Finance and Banking since
as early as the 50s and the 60s. Various techniques have been used over the years
based on logistic regression, discriminant analysis, support vector machines, neu-
ral networks etc. (Eisenbeis (1978), Hardy and Adrian (1985), Bellotti and Crook
(2009), Chen et al. (2011), Yu et al. (2010), Boritz and Kennedy (1995), Kumar (2005),
Paleologo et al. (2010), Mavri et al. (2008), Mavri and Ioannou (2004)).

The objective of this work is the proposal for descriptive (classification) as well
as predictive purposes, of an innovative approach to flexible and accurate credit
scoring modelling which is of significant importance in Finance and Banking due to
its direct connection to one’s creditworthiness.

For the development of a flexible and reliable forecasting modelling approach,
we deal with binary regression type models with financial as well as credit be-
haviour data (Section 8.1.1) and focusing on the classification of businesses accord-
ing to the risk of default (Basel Committee on Banking Supervision (2004)) into two
classes for “good” (i.e., with “no delinquency”) and “bad” (i.e., with “severe delin-
quency”) credit behaviour (Section 8.1.2). Finally, the problem of dimension reduc-
tion in CSM is addressed by combining regularization methods and model identi-
fication techniques. The combination of financial and credit behaviour data (e.g.,
credit behaviour characteristics such as credit limit, current balance, frequency and
amount of loan instalments, etc.) is quite original as most countries and institutions
use only financial data for credit scoring modelling (Boguslauskas et al. (2011)).

For the modelling, we propose a 3(4)-step algorithmic procedure for dimension
reduction with an initial preliminary data pre-processing step (step0). The latter is
used for creating dummy variables using Weight-of-Evidence (WoE), a tool for mea-
suring the degree of strength for separating bad and good enterprises. The main
part of the algorithm is based on dimension reduction techniques taking into con-
sideration a stepwise regression based on AIC (stepAIC) and a PCA. The proposed

1The results of this Chapter have been published as:
Giannouli, P., Karagrigoriou, A., Kountzakis, C.E. and Ntotsis, K.: Multilevel Dimension Reduction for
Credit Scoring Modelling and Prediction: Empirical Evidence for Greece, Communications in Statis-
tics: Case Studies, Data Analysis and Applications, 7(4), 545-560, 2021.
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procedure allows for an optional 4th step based on ENR (Zou et al. (2005)) for further
dimension reduction if the researcher feels that it is of use.

Through this study, we expect to succeed in (a) the categorization/classification
of businesses (enterprises) into good and bad, regarding credit scoring, through sta-
tistically significant explanatory variables and (b) the selection of the optimal fore-
casting model for predicting the credit scoring of Enterprises.

8.1 Data Description and Pre-Processing

The proposed procedure is applied to the Greek system separately for Small and
Large Enterprises/Businesses (according to their revenue - see Section 8.1.1) with
data collected through a Credit Bureau operating as an inter-banking information
system, in Greece. The analysis is based on a random sample of Greek enterprises
collected through a Credit Bureau operating in Greece, for the period 1/1/2012 –
31/12/2014. The dataset consists of 88 variables with the following characteristics:

Enterprises
Number of

Financial Variables
Number of Credit

Behaviour Variables
Total Number of

Observations
Small 27 12 73.661
Large 37 12 131.752

TABLE 8.1: Data characteristics for Small and Large Enterprises

8.1.1 Data Description

The data for the analysis in this work constitute a representative random sample of
4579 Greek businesses chosen from the database of Tiresias S.A., a Credit Bureau
operating as an inter-banking information system in Greece, and have been recently
analysed in Giannouli and Kountzakis (2019). Tiresias database contains financial
data including credit-related data for individuals and all Greek businesses. The ran-
dom sample used in this analysis consists of 1889 Small Businesses (with revenue
at most 700,000 euros) and 2690 Large Businesses (with revenue at least 700,000 eu-
ros). It should be noted that enterprises (i) with insufficient history (of less than six
months), (ii) that have chosen not to display their data in the system, and (iii) with
negative behaviour (bad credit) during the observation period, have been excluded
from the analysis.

In this work, as it is typical in such analyses (Siddiqi (2006)), a period of twelve
months (from 01/01/2014 to 31/12/2014) is used as a performance period and a
2-year period as an observation period (from 01/01/2012 to 31/12/2013).

The purpose of the analysis is the modelling of a response variable represent-
ing business credit behaviour characterized as either “good” or “bad”. (For more
details on the distinction between “bad” and “good” businesses, please see Section
8.1.2). The variables used for the analysis are divided into two main categories that
correspond to

• Financial Data found in the enterprise’s balance sheet including the associated
Financial Ratios (Barnes (1987), Boguslauskas et al. (2011)), and

• Credit Behaviour Data found in the Credit Consolidation System (CCS), the
Default Financial Obligation System (DFO) and the Mortgages and Pre-notations
to Mortgages System (MPS) like Delinquency Index, Credit Limit, Current
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Balance, Current Balance Delinquent, Frequency of instalments (for loans),
Amounts of instalments, Deletion flags etc., and variables emerged from them.
For a full description of the variables used, see Giannouli and Kountzakis
(2019).

In statistical terms, the scope of this work is the modelling of a binary classi-
fication problem for credit scoring. For the analysis, we will be using multivari-
ate analysis techniques including logistic regression and model selection criteria for
the identification of the most significant financial and credit behaviour variables for
predictive purposes. The analysis is performed separately for Small and Large Busi-
nesses with the description of the selected variables given in Appendix B.

8.1.2 Credit Performance Characterization

The models proposed in this work intend to classify businesses’ ratings according
to the risk of default on their obligations. The proposed models include variables
associated with the enterprise’s both past and present financial behaviour. More
specifically, the primary purpose of the proposed model is to discriminate businesses
with a “bad” credit behaviour from those with a “good” credit behaviour based on
the available data for the performance period.

The “bad” and “good” credit behaviour of a business is defined as follows (Basel
Committee on Banking Supervision (2004), Siddiqi (2006)):

1. Businesses with a “Good” (positive) credit behaviour are businesses with no
delinquency, businesses with either maximum delinquency from 0 to 29 days
past due, during the last 12 months or with credit limit utilization over 102%
for 0 to 29 days, concerning Small and Medium-sized Enterprises (SME) Over-
drafts.

2. Businesses with a “Bad” (negative) credit behaviour are businesses showing
severe delinquency, with either

a SME Contracts (excluding Overdrafts) with maximum delinquency dur-
ing the last 12 months, greater or equal to 90 days past due or

b SME Overdrafts with maximum delinquency during the last 12 months,
greater or equal to 90 days past due or credit limit utilization over 102%
for time period greater or equal to 90 days with over limit amount greater
than 100.

3. For the case of Guarantor, the characterization “Bad” refers to case (2) above
with 150 instead of 90 days or more.

It should also be mentioned that an enterprise is characterized as having a “Bad”
credit behaviour if during the performance period, a new DFO (loan denunciation)
has occurred.

Finally, it is noted that the (credit) utilization of an enterprise is the ratio of the
outstanding balance of the enterprise to its credit limit.

8.1.3 Step 0: Data Pre-processing

In order to prepare the data for the main part of the analysis in DR, we proceed in this
section, into standard pre-processing operations by grouping the variables and/or
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forming dummy variables with the use of WoE, also known as attribute strength,
which represents the odds ratio and is defined by Siddiqi (2016):

WoE = ln
(

Distr.Good
Distr.Bad

)
∗ 100 = ln

(
Good/Total Good

Bad/Total Bad

)
∗ 100

where Good/Total Good is the proportion of good businesses having a specific at-
tribute and Bad/Total Bad is the proportion of bad businesses having the same at-
tribute. Such an approach is known to offer a number of advantages, including:

• an easy approach for outlying any infrequent observations and/or classes;

• easy to interpret relationships and explain their nature, therefore providing a
better understanding of the phenomenon under investigation;

• non-linear dependencies can be analysed with the use of linear modelling tech-
niques.

Such a procedure ensures that WoE will be sufficiently different among groups
and hence, it will be expected to maximize the differentiation between bad and good
enterprises, which is the primary objective of the analysis. Indeed, through such
an analysis we focus on the identification of those characteristics that result in the
best separation. Note that for this purpose, we rely on the WoE difference groups
that play a key role in establishing and securing differentiation. As expected, larger
differences resulted in higher predictive ability. It is also noted that WoE must also
be in a logical order (i.e., in a ascending order from the worst to the best group
categorization) for it to make operational sense.

8.2 Proposed Multistep algorithm

In data analysis, the first and most crucial problem that a researcher should over-
come is the correct data interpretation. Indeed, whenever we deal with big datasets
like the ones in this work, we are entering into the field of BDA, where the exis-
tence of collinearity is, among others, one of the most serious problems encountered
associated with unreliable results.

During a preliminary analysis, various models, techniques as well as combina-
tions of techniques have been considered for both datasets for Small and Large En-
terprises, with the optimal combination resulting in a 3(4)-step algorithmic proce-
dure consisting of the following:

Step 1 Data Standardization

Step 2 stepAIC

Step 3 PCA

Step 4 Elastic Net Regularization (optional step).

The purpose of the above algorithm is the dimension reduction which is achieved
in two levels (in Steps 2 and 3): firstly, by the use of the stepAIC procedure applied
to the standardized variables of step 1, and later by performing PCA in the vari-
ables selected by stepAIC. Based on the data and the final results of this study, an
additional step (Step 4) is recommended to be included as optional, in the above
algorithmic procedure. The use of this optional step is recommended if the data
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justify its use. More specifically, after the 3-step algorithm is completed, a logistic
regression analysis is performed using the variables selected in the later step of the
procedure. The optional (4th) step can be considered as a 3rd level dimension re-
duction technique that removes, via ENR (Zou et al. (2005)), those PCs that do not
contribute significantly to the proposed logistic regression model. The optimal mod-
els for both datasets (for Small and Large Enterprises) were selected based on two
frequently used criteria, namely AIC and Adjusted R2.

The proposed algorithmic procedure addresses and succeeds to resolve

a. the problem of multicollinearity and any other consequence of dealing with
BD and

b. the limitation of the explanatory variables (variables) and, on one hand, making
it possible to identify a flexible and easy-to-use model for predictive purposes
and, on the other, a clear and precise interpretation of the results.

Step 1: Data Standardization

In standard data analysis, data standardization is often recommended before PCA.
Indeed, if PCA is performed directly on the original explanatory variables, the newly
emerged PCA variables fail to be (fully) independent, although this is the main goal
of the implementation of PCA. This phenomenon may be attributed to heavy mul-
ticollinearity between explanatory variables with different measurement scales. In
our analysis, we observed a high degree of multicollinearity as indicated by the Vari-
ance Inflation Factor (VIF; results not shown). In order to limit or eliminate it, data
standardization was done, which affected considerably the correlations involved.
After the first step of the procedure, multicollinearity in both datasets was observed
to be significantly reduced although it still existed.

Step 2: Stepwise AIC

After the data standardization, the stepAIC procedure was applied as the first di-
mension reduction/feature selection criterion. This technique is one of the most
common techniques used which attempts to identify the optimal subset of variables
by minimizing the AIC value among the competing candidate models which given
by AIC formula in Chapter 3. StepAIC has the ability to keep intact the larger pos-
sible part of the model’s performance by simplifying it which results in the quantifi-
cation of the amount of information loss. Note that, at each stage of the process, the
technique checks whether variables that were removed in a previous phase become
significant and are required to return to the model. For more, see Cavanaugh (2004),
Shang and Cavanaugh (2008), Yamashita et al. (2007), and Zhang (2016)

Table 8.2 contains the results of Step 2 while presented the selected variables to
be used in Step 3 of the analysis.
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Small Enterprises Large Enterprises
AIC = 1165 AIC = 1215
R2 = 50% R2 = 50%

Adjusted R2 = 50% Adjusted R2 = 49%
9 Financial Variables 10 Financial Variables

Debt Equity Ratio Cash Ratio
Return on Equity Current Assets to Total Liabilities

Working Capital Leverage Net Profit Margin
Total Assets Turnover Ratio Current Liabilities Turnover Ratio

Return on Assets Fixed Assets to Equity
Total Liabilities Working Capital Turnover Ratio

Short-term Liabilities Total Liabilities
Result Curried Forward Long-term Liabilities

Profit Before Taxes Depreciation
and Amortization Expense

Total Fixed Assets

Short-term Liabilities
6 Behaviour Variables 8 Behaviour Variables

Worst Payment Status in Last 3 Months Maximum Utilization Not Revolving
Maximum Number of Months Consecutive
with Over 100% Utilization in Last 6 Months

Worst Payment Status Last Month
vs Last 24 Months

Number of Occurrences with Delinquency
1+ in Last 12 Months

Worst Payment Status in Last 3 Months

Maximum Number of Months Consecutive with
Over 100% Utilization in Last 24 Months

Maximum Number of Months Consecutive with
Over 100% Utilization in Last 6 Months

Current Balance/Delinquency to Current Balance
Number of Occurrences with Delinquency
1+ in Last 12 Months

Worst Payment Status Last Month
vs Last 24 Months

Maximum Number of Months Consecutive with
over 100% Utilization in Last 24 Months

Total Current Balance
Current Balance/Delinquency to Current Balance

For variables interpretation see Appendix B

TABLE 8.2: Small and Large Enterprises model selection summary -
stepAIC

After the implementation of the stepAIC procedure, R2 and Adjusted R2 for
both Small and Large Enterprises remain unchanged as in the original full model.
Nonetheless, a noteworthy decrease in the AIC value can be observed in both cases.
The AIC of the full model drops from 1200 to 1165 and from 1235 to 1215 after the
implementation of the first -stepAIC- the DRT, in Small and Large Enterprises, re-
spectively. Additionally, even if the AIC resulted in the same values for the full and
the stepAIC models, the second one would be preferred due to its simplicity. One
substantial dexterity of StepAIC is that the resulted models contain approximately
only 38% (Small) and 36% (Large) of the variables used in the full model. As a result,
the proposed models are more flexible and thus, preferable for predictive purposes,
than the original ones based on AIC.

Step 3: Principal Component Analysis

The 2nd level dimension reduction procedure is applied to the 15 and 18 explanatory
variables (see Table 8.2) selected by stepAIC for the Small and Large Enterprises,
respectively. For this purpose, the classical PCA technique based on the correlation
matrix is used as the second dimension reduction technique

In both datasets under consideration, we choose to retain the components that
interpret approximately 90% of the overall variability of the original (standardized)
variables. It is noted that various scenarios were studied with 80% and 75% vari-
ability as well as Kaiser’s rule. The model with components (and by extension the
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PCA variables) interpreting 90% of the total variability was the one for which the
AIC and Adjusted R2 values coincide with the corresponding values of the model
obtained by stepAIC at the end of step 2 of the process. Although there is no spe-
cific rule to identify the statistically significant variables for each Vi, a proportion is
considered to be satisfactory when it is able to retain a sufficient amount of the orig-
inal information (Ntotsis et al. (2019)). Please note that this process simplifies the
model (by reducing the number of PCA variables) without sacrificing the validity
and effectiveness of the proposed model.

Based on the above Remark and in order to explain at least 90% of the total vari-
ability, for the Small Enterprises we retain only the first 9 out of 15, Vi variables
while for the Large Enterprises we retain the first 11 out of 18, Vi variables. For fore-
casting purposes, the logistic regression will be applied to both datasets, using the
model with the 90% variability. The results including the coefficient estimates for
both cases under investigation are presented in Tables 3 and 4.

Small Enterprises Regression
Estimate Std. Error test value p-value

(Constant) 0.3155109 0.0075925 41.556 < 2e-16
V1 -0.0662298 0.0016387 -40.416 < 2e-16
V2 -0.0406558 0.0031273 -13.000 < 2e-16
V3 0.0307734 0.0045453 6.770 1.71e-11
V4 0.0187028 0.0057085 3.276 0.00107
V5 0.0049364 0.0066315 0.744 0.45673
V6 0.0001217 0.0094362 0.013 0.98971
V7 -0.0051696 0.0118533 -0.436 0.66279
V8 0.0333873 0.0160883 2.075 0.03810
V9 -0.0375664 0.0199572 -1.882 0.05994
MSE: 0.33 AIC: 1184.08
Multiple R-squared: 0.4984 Adjusted R-squared: 0.496

TABLE 8.3: step 3 - Small Enterprises regression and AIC results

Large Enterprises Regression
Estimate Std. Error test value p-value

(Constant) 0.238662 0.005891 40.515 < 2e-16
V1 -0.045877 0.001012 -45.323 < 2e-16
V2 0.041277 0.002426 17.018 < 2e-16
V3 0.032956 0.003291 10.015 < 2e-16
V4 -0.027626 0.004825 -5.725 1.15e-08
V5 0.033111 0.005120 -6.467 1.18e-10
V6 -0.018376 0.006501 -2.827 0.00474
V7 -0.018376 0.007557 -1.432 0.15239
V8 -0.023566 0.009055 -2.603 0.00930
V9 -0.031837 0.010407 -3.059 0.00224
V10 0.026516 0.011492 2.307 0.02111
V11 -0.049651 0.013419 -3.700 0.00022
MSE: 0.30 AIC: 1268.686
Multiple R-squared: 0.4886 Adjusted R-squared: 0.4865

TABLE 8.4: step 3 - Large Enterprises regression and AIC results
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One can see that AIC and Adjusted R2 values are very close to the correspond-
ing values of the model selected with stepAIC prior to PCA implementation for both
categories of enterprises (see Table 8.2). In other words, both models selected at the
end of step 3 of the algorithmic procedure are much simpler than the ones selected
in step 2 and at the same time retain a considerable amount of information. Hence,
the second dimension reduction approach in step 3 chooses a number of proper vari-
ables for each class of enterprises (with 9 and 11, respectively, for Small and Large
Enterprises). Meanwhile, no significant alteration in Adjusted R2 and AIC results
occurred compared to the full PCA models (with 15 and 18 variables, respectively).

Step 4: Elastic Net regularization – optional DRT

After the dimension reduction is completed, the final model is obtained by using a
logistic regression analysis separately for Small and Large Enterprises using respec-
tively, the 9 and 11 variables selected through the proposed algorithmic procedure.

Taking into account the regression results in Table 8.3 and Table 8.4, we can move
on to an optional third level of dimensionality reduction, as long as the results allow
it. Specifically, the results extracted through logistic regression revealed a number
of statistically non-significant PCA variables (e.g., at significance level α = 5%). The
reduction in the number of variables combined with the fact that the removed vari-
ables are statistically insignificant often results in models with a better AIC due to
a lower penalty term. In order to ratify the above observation, an ENR was imple-
mented.

The implementation of ENR reveals that in the case of Small Enterprises, the
PCA variables V6 and V7 are statistically non-significant (a result also confirmed by
the Student’s t-test). The final proposed model, which can be used for predictive
purposes, given in Table 8.5, has a better AIC than that of step 2 of the procedure
and includes 7 PCA variables (with 15 initial - standardized variables each).

Small Enterprises Regression
Estimate Std. Error test value p-value

(Constant) 0.315511 0.007588 41.581 < 2e-16
V1 -0.066228 0.0016387 -40.449 < 2e-16
V2 -0.040645 0.003125 -13.005 < 2e-16
V3 0.030745 0.004542 6.769 1.73e-11
V4 0.0186688 0.005705 3.272 0.00109
V5 0.033111 0.005120 -6.467 1.18e-10
V8 0.033330 0.016078 2.073 0.03831
V9 -0.037544 0.019945 -1.882 0.05994
MSE: 0.32 AIC: 1180.042
Multiple R-squared: 0.4983 Adjusted R-squared: 0.4967

TABLE 8.5: step 4 - Small Enterprises regression and AIC results

For Large Enterprises in Table 8.4 only V7 is statistically non-significant based on
t-test and also confirmed by ENR. It can also be seen from Table 8.6 that the resulted
model retains its credibility since it has the same AIC value as the model selected in
step 2, although it has one less PCA variable.

Remark 2: The procedure of the optional step 4 technique is applicable, provided that
there is at least one statistically significant variable in the final logistic regression model.
In this particular case study, the contribution for both cases could be considered relatively
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Large Enterprises Regression
Estimate Std. Error test value p-value

(Constant) 0.238662 0.005892 40.515 < 2e-16
V1 -0.045878 0.001012 -45.314 < 2e-16
V2 0.041302 0.002426 17.025 < 2e-16
V3 0.032987 0.003291 10.023 < 2e-16
V4 -0.027586 0.004826 -5.716 1.21e-08
V5 0.033181 0.005120 -6.480 1.09e-10
V6 -0.018380 0.006502 -2.827 0.00474
V8 -0.023551 0.009057 -2.600 0.00936
V9 -0.031751 0.010409 -3.050 0.00231
V10 0.026567 0.011494 2.311 0.02089
V11 -0.049665 0.013422 -3.700 0.00022
MSE: 0.30 AIC: 1268.743
Multiple R-squared: 0.4882 Adjusted R-squared: 0.4863

TABLE 8.6: step 4 - Large Enterprises regression and AIC results

limited since the comprehensive dimensionality is reduced by three (dimensions) which also
contribute to the improvement of the overall performance of the model.

It is worth mentioning that the proposed models are quite useful and more ef-
fective than models based on financial data only. Indeed, both the adjusted R2 and
the model selection criteria verify the superiority of the combination of financial and
credit behavioural data by exhibiting a considerable improvement as compared with
the models based exclusively on financial data.

8.3 Conclusions

The objective of this work is the proposal for descriptive (classification) as well as
predictive purposes, of an innovative approach to flexible and accurate credit scor-
ing modelling for Small and Large Enterprises using a database from a Greek Credit
Bureau.

The originality and one of the main contributions of the proposed modelling
methodology lies in the fact that we effectively blend financial features together with
credit behavioural characteristics that have never been considered before. Further-
more, an algorithmic procedure that has been proposed and implemented into the
methodology constitutes yet, another contribution since it is responsive to the need
for dimension reduction, an issue frequently encountered in practice, especially in
problems classified as falling into the area of BDA. For this, we rely on modern reg-
ularization and classification methods which ensure the construction of flexible yet,
reliable credit scoring models. To the best of our knowledge, this is the first time
that the combination of the above multivariate techniques is being used and imple-
mented effectively, into credit scoring modelling.

As was mentioned earlier, among the advantages and contributions of the pro-
posed methodology one could mention the originality in using a blend of financial
characteristics and data related to the credit behaviour when authorities and institu-
tions tend to rely almost solely on the former. The method is also appealing due to
the use of popular logistic regression analysis. Indeed, it should be noted that after
the 2-level dimension reduction procedure we choose to use standard logistic regres-
sion instead of other complex methods because it has proved its efficiency over the
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years and is easily explained. Finally, the proposed methodology is responsive to
the need for dimension reduction for the construction of a flexible yet reliable credit
scoring model for purposes related to both prediction and description, with both
financial and credit behaviour statistically significant variables.

One of the distinct advantages and contributions of this work lies in the character
of the data used. Indeed, our findings clearly show the importance of using credit
behavioural variables since a number of such variables have been found to play a
key role in building credit scoring models both for Small and Large Enterprises.
More specifically, in the final model for the Small Businesses, each PCA variable de-
pends on 6 credit behavioural variables (out of a total of 15 variables) while for the
Large Enterprises final model each PCA variable depends on 10 credit behavioural
variables (out of a total of 18 variables). The use of such credit behavioural variables
is undoubtedly one of the innovative findings of this work if one takes into consid-
eration that countries and institutions rely almost solely for modelling purposes, on
classical financial variables. Furthermore, the constant need for flexible yet accu-
rate and reliable modelling approaches makes the proposed algorithmic procedure
for dimension reduction, a valuable tool in the hands of researchers and practition-
ers. Indeed, it is also noteworthy that the proposed methodology provides among
others, insurers, financial planners, and lenders with an automated reliable finan-
cial tool for evaluating creditworthiness according to a few statistically significant
financial as well as credit behavioural variables and at the same time making credit
decisions faster and fairer while offering to borrowers increased lending opportu-
nities. In conclusion, the practical implications of these methodologies involve the
construction of binary classification credit-scoring models based on Enterprises’ data
magnitude and peculiarities.

The dimension reduction modelling proposed in the present chapter may be ex-
tended and applied in fiscal debt credit scoring modelling. The significance of the
prediction arising from fiscal debt rating agencies is another direction of possible
extensions. Finally, the importance of predictions concerning both credit risk rating
and fiscal debt rating models may be tested with the development of Support Vector
Machines based on multiple kernels in conjunction with other approaches.
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Chapter 9

Future Research

This dissertation provided the framework around some DRT that have been devel-
oped in an attempt to minimize the extent of the multicollinearity issue and at the
same time reduce the dimensionality of a dataset. The manuscript utilized various
multivariate analysis tools with the aim to study, analyse, compare and improve
existing techniques and introduce new ones for handling multicollinearity and re-
ducing the dimensionality of the resulted model. This Chapter is dedicated to the
future expansion of the aforementioned works.

Chapter 4 concerned the modelling of PPE of various European countries. The
identification, collection, and analysis of variables, which, either short-term or long-
term, may have an impact on the shaping of the response variable was held. A
combination of unsupervised DRT was implemented to obtain the optimal set of
variables for the modelling of PPE. The analysis focused on 20 European countries
for which a set of 20 possible explanatory variables for the period 2001–2015, were
used. The model developed provides, with a minimum average error of fewer than
6‰ for each time period, accurate results for the PPE.

Using the above results as a first step, it is possible, depending on the data avail-
able, to develop in the immediate future, an evolved time series model that would be
capable of predicting the Expenditures for 10-15 future years from the base year. The
forecasting model could be used by any state that wishes to predict future Pension
Expenditures based on its economy. This calculation primarily serves either as an
estimate by itself or as a confirmation technique for the calculation of Expenditures
made by other means.

Chapter 5 proposed the FS-PLS, a PLS-based method that acts as a feature selec-
tion and feature extraction DRT simultaneously, in linear regression tasks. In such
a manner, we are able to remove the uninformative variables and obtain better or
same results as the classical PLS regression but with a simpler structure both in uni-
variate and multivariate scenarios. Concerning the possible future expansion of this
work, an Elastic net-based FS-PLS is under consideration, for further reduction of
the data.

We aim to investigate the cooperative effects of these two techniques on high-
dimensional multicollinear data in order to make a projection on a low-dimensional
space and thus construct less simplex and more interpretable linear regression mod-
els of high predictive accuracy with a penalized set of predictors.

Chapter 6 proposed and investigated a robust and easily interpretable method-
ology, termed EIC, capable of capturing multicollinearity rather accurately and ef-
fectively and thus providing a proper model assessment.

However, as mentioned in the dissertation, EIC is able to locate specific interde-
pendency patterns, our aim so to manage to make it feasible for other dependency
patterns. More precisely, the use of more complex patterns can be applied for data
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coming from different distributions. Furthermore, the use of L0 penalty can play a
key role and possible be the answer to a more versatile EIC formula.

Chapter 7 attempted to locate and analyse via multivariate analysis techniques,
highly correlated variables which were interrelated with the GDP and therefore are
affecting either a short-term or a long-term shaping.

Taking that under consideration, it is possible to attempt to explore how different
model selection criteria react or are able to make the right feature selection when
multicollinearity is of a different magnitude. Through this process, one could be able
to identify the criterion which is better adjusted and finally succeeds in choosing the
optimal model when the variables involved are highly correlated.

The objective of Chapter 8 was the proposal of an innovative approach to flexi-
ble and accurate credit scoring modelling with the use of not only financial but also
credit behavioural characteristics based on a multi-step DRT procedure. The result-
ing DRT-based modelling proposed in the present manuscript may be extended and
applied to fiscal debt credit scoring modelling. The significance of the prediction
arising from fiscal debt rating agencies is another direction of possible extensions.

Finally, the importance of predictions concerning both credit risk rating and fiscal
debt rating models may be tested with the development of Support Vector Machines-
based on multiple kernels in conjunction with other approaches. Additionally, the
produced model can be applied for other countries and a comparison of it’s effec-
tiveness between Greece and other countries can be explored.
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Appendix A

Linear Regression Analysis

This is an optional Chapter and can be considered as an introduction to statistical
modelling, which takes place in many Chapters of this dissertation. For more, see
Sheather (2009) and Wasserman (2004).

Analysis of Variance

ANOVA, or analysis of variance, is a statistical technique developed by Fisher (1918),
(1921), where he introduced the terms variance and analysis of variance is used to
compare two or more populations while different types of effects operate concur-
rently. Essentially, it is a procedure that determines whether those effects are signifi-
cant, what their estimation is, and whether there are differences between population
means (Scheffe (1999)).

An ANOVA table is formed as follows:

Source Sum of Squares DF Mean Squared F Sig.
Explained ESS k-1 MSE = ESS / k-1 F = MSE / MSR
Residuals RSS n-k MSR = RSS / n-k

Total TSS n-1

Note: In some cases, the symbols may differ. Explained Sum of Squares, ESS, can be
seen as regression sum of squares, which is represented by RSS, and residual sum of squares,
RSS, can be seen as error sum of squares, which is represented by ESS. To understand the
procedure, the reader must focus on the meaning behind the symbolisation.

ANOVA interpretation

The purpose of this procedure is to see if there are any differences between the meth-
ods mentioned above. The first step in accomplishing this is to create a hypothesis
test. In statistics, hypothesis testing is a method of determining whether the results
of a survey or experiment are valid and meaningful. The following are the compo-
nents of a hypothesis test:

1. Null and alternative hypotheses.
The null hypothesis, denoted by H0, is always the accepted fact, while the al-
ternative, denoted by Hα, is the one that is questionable and must be examined.

2. Predetermined level of significance
The significance level is defined by the “tolerance” given by the experiment’s
conductor in the presence of error type I.
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Note: When conducting a statistical experiment, the risk of incorrect decision-making
may occur. There are two types of errors that may happen.

• Type I error: reject a true H0

• Type II error: failing to reject a false H0

Let us define,

α = P(type I error)

and

β = P(type II error)

Then, one of the following options about the experiment decision occurred

Options Fail to reject null hypothesis Reject null hypothesis

H0 is true
-

with probability = 1-α
Type I error

with probability = α

Hα is false
Type II error

with probability = β
-

with probability = 1-β

3. Test statistic and critical zone of the test
It used when deciding whether or not the null hypothesis should be rejected.
When H0 is true, it is a random quantity with a known distribution. It is based
on the Halpha, the distribution of the test statistic, and the alpha significance
level. The Halpha value defines the formation of the critical zone.

4. Value of the test statistic
The test value is computed based on the sample values, and if it exists in the
critical zone, the null hypothesis is rejected; otherwise, it is not rejected.

5. The decision to reject or not the null hypothesis
The experiment’s conductor decides whether or not to reject the null hypothe-
sis.

Test Hypothesis

Following that, the AVONA table null hypothesis is used to determine whether there
are any differences between the means. The null and alternatives are written as
follows:

H0 : µ1 = µ2.... = µn

Hα : At least one µi differs from the others

where i=1,2,...,n.
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ESS

Explained Sum of Squares, denoted as ESS, expresses the variability between sam-
pling means as the sum of the squares of the distances of each medium from the total
mean.

ESS =
n

∑
i=1

(Ŷi − Ȳ)2

RSS

Residual Sum of Squares, denoted as RSS, expresses the variability between the sam-
pling means, which is measured as the sum of the squares of the distances of each
medium with the total mean.

RSS =
n

∑
i=1

ε̂2
i

TSS

Total Sum of Squares, denoted by TSS, expresses the overall variability of the obser-
vations

n

∑
i=1

(Yi − Y)2 =
n

∑
i=1

(Yi − Y + Ŷi − Ŷi)
2 =

n

∑
i=1

((Ŷi − Ȳ) + (Yi − Ŷi)︸ ︷︷ ︸
ε̂i

)2

=
n

∑
i=1

((Ŷi − Ȳ)2 + 2ε̂ i(Ŷi − Ȳ) + ε̂2
i )

=
n

∑
i=1

(Ŷi − Ȳ)2 +
n

∑
i=1

ε̂2
i + 2

n

∑
i=1

ε̂ i(Ŷi − Ȳ)

=
n

∑
i=1

(Ŷi − Ȳ)2 +
n

∑
i=1

ε̂2
i + 2

n

∑
i=1

ε̂ i(β̂0 + β̂1xi1 + · · ·+ β̂pxip − Y)

=
n

∑
i=1

(Ŷi − Ȳ)2 +
n

∑
i=1

ε̂2
i + 2(β̂0 − Y)

n

∑
i=1

ε̂ i︸︷︷︸
0

+ 2β̂1

n

∑
i=1

ε̂ ixi1︸ ︷︷ ︸
0

+ · · ·+ 2β̂p

n

∑
i=1

ε̂ ixip︸ ︷︷ ︸
0

=
n

∑
i=1

(Ŷi − Ȳ)2 +
n

∑
i=1

ε̂2
i = ESS + RSS

DF

Degrees of freedom, denoted by DF, of an estimate is the number of independent
pieces of information that went into calculating the estimate and in particular:

• k − 1 are the DF of the divergence from the H0

• n − k are the DF of residuals
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• n − 1 are the total DF

MSE

Explained mean square, denoted by MSR, is defined by the error between the sam-
ple.

MSE =
1

k − 1

n

∑
i=1

(Yi − Ŷi)
2

MSR

Mean square of residuals, denoted by MSE, is defined by the error within the sample.

MSR =
1

n − k

n

∑
i=1

(Yi − Ŷi)
2

F-test

As previously stated, the F-test is the ratio of variation between samples and vari-
ation within samples. This is the test that ANOVA employs to validate the test hy-
pothesis.

If the test fails to reject the H0, then,

F* ∼ F(k−1),(n−k)

Otherwise,
F* > F(k−1),(n−k),α

Sig.

The significant value of the F-test is represented by Sig. in the ANOVA table. Is most
commonly known as the p-value, which is defined as the probability of observing a
random price of test statistics that is equal to or more extreme than the observed one
in terms of H0, given that H0 is rejected. In essence, it is the lowest significance level
at which the H0 is rejected.

Decision cases about the hypothesis test

• If p-value < α, then the H0 is rejected

• If p-value > α, then the H0 is not rejected

• If p-value = α, then no decision about the rejection or not of the H0 can be made

Regression Analysis

In statistics, the term regression was first introduced and used by Galton (1886)
during an experiment in which he introduced the term regression to mediocrity.
Sheather (2009) defines regression analysis as “the study of the dependence of one
variable, the dependent variable, on one or more other variables, the explanatory
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variables, with a view to estimating and/or predicting the (population) mean or
average value of the former in terms of the known or fixed (in repeated sampling)
values of the latter.’.

Linear Regression

This type of regression is used when there is a linear relationship between the re-
sponse variable textit(dependent and the explanatory variable(s) (independent).

Simple linear regression

This type of regression takes place when only one independent variable exists. The
model formation is:

Yi = α + βXi + ε i

where, α and β are called coefficients of regression. More specific α is the value of
the dependent variable Y corresponding to the value X=0 of the dependent variable
and β is the variation of the dependent variable corresponding to a unit change of X.
Finally, ε i is the error term that represents the deviation of the observed value from
the true value of the quantity of interest.

Multiple linear regression

This type of regression takes place when more than one independent variable exists.
The model formation is:

Yi = α + β1Xi1 + β2Xi2 + ...βpXip + ε i

A typical linear regression analysis consists of the following:

• Estimates of coefficients

• Standard Error (SE)

• T- statistics

• P-value of t-statistics

• Number of observations

• Error degrees of freedom

• Root Mean Squared Error

• R-square

• Adjusted R-square

• F-statistics

• P-value of F-statistics
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Interpretation of Linear Regression Elements

The Interpretation of the elements which constitute the Linear Regression Analysis,
with X1,...,Xp the number of the existing independent variables, it follows.

• Estimate
It displays the values for the regression coefficients for predicting the depen-
dent variable from the independent variable, i.e., the values of α, β1, ..., βp.

• SE
SE displays the standard error of each coefficient.

• T-statistics
It displays the t-statistic values, namely the values of the Student’s t-test. A
t-test is commonly used to determine whether a regression coefficient is signif-
icant; i.e., whether it differs or not from zero.
In other words, the null hypothesis of this test is used to decide whether each
variable is statistically significant. The null and alternative are of the form:

H0 : βi = 0

Hα : βi ̸= 0

where i=1,2,...,p

• P-value
This column displays the 2-tailed p-values associated with the t-test and are
used to determine whether a given coefficient is significantly different from
zero.

• Number of observations
The number of observations is the size of the sample.

• Error degrees of freedom
As mentioned before, in ANOVA interpretation, the degrees of freedom of an
estimate is the number of independent pieces of information that enter into the
estimate calculation.

• Root Mean Squared Error
Root Mean Squared Error, denoted by (RMSE), is defined by the standard devi-
ation of the variance. The RMSE of an estimator θ̂ is defined by:

RMSE(θ̂) =
√

MSE(θ̂)

• R-square
R-square, denoted by R2, represents the percentage of the total variability of
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the dependent variable interpreted on the basis of the regression model

R2 =
ESS
TSS

= 1 − RSS
SST

R2 can be also seen via a Venn diagram. The one below displays a simple linear
regression model with one dependent and one independent variable. R2 is the
two-circle intersection*, which shows the extent to which the variation of Y is
interpreted by the variation of X

X

Y

• Adjusted R-Square
Adjusted R-Square, denoted by R2

adj, is used to decide about the usefulness of
the independent variables in the model. The addition of a useless variable to
the model, will cause decrease to the adjusted R-square, while the addition of
a useful variable, will cause increase, but will never exceeds the R2.

• F-statistics
F-test and the associated p-value have been thoroughly analyzed in ANOVA
interpretation.

Regression Assumptions

Analysis of variance as well as regression analysis answers some "questions" about
the given data set that being analyzed. It should be noted though that those answers
are not always trustworthy, or as in the field of statistics referred as statistically sig-
nificant. To come to the conclusion that the model is significant some assuption
must be fulfilled. Those assumptions are called linear regression assumptions and
are based on the residuals ε i of the model. Depending on the formation (i.e., simple,
multiple) those assumptions might differ from case to case, but the following four
are the most important and must be satisfied in every model formations.

• Normality

• Independence

• Homoscedasticity

• Linearity between Y and Xi
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Normality

The errors must follow a normal distribution with zero mean and σ2 variance, sym-
bolized by:

ϵ ∼ N (0, σ2)

Most common tests that check this assumption are the Lilliefors test for normality,
which is an improvement of the Kolmogorov-Smirnov test as well as the Shapiro-Wilk
normality test.

H0 : The residuals come from a standard normal distribution.

Hα : The residuals do not come from such a distribution.

When it comes to real data sets, usually this assumption is not satisfied. For
that reason some transformations have been proposed, which correct this problem.
These transformations are mostly based on functions of the dependent variable with
the Logarithm, Root, and Box and Cox transformations being the most popular ones.

Note: The following theorem establishes the condition for residual independence.
If the residuals are normally distributed and uncorrelated, then they are inde-

pendent. The inverse of the theorem is not true (Gujarati and Porter (2008)).

Independence

The residuals must be independent. There are two methods that are commonly used
to decide on independence. The first is with the execution of the Runs test for inde-
pendence, which states the following hypotheses:

H0 : The values of the residuals come in random order.

Hα : The values of the residuals do not come in random order.

The second way to check independence is based on the previous theorem. After
the normality has been checked, one can check the assumption of correlation via a
Durbin-Watson test with the following hypotheses.

H0 : The residuals are not autocorrelated.

Hα : The residuals are autocorrelated.

Homoscedasticity

The errors must have the same finite variance. Levene’s test for homoscedasticity
is the most common test that checks this assumption, which states the following
hypotheses:

H0 : All population variances are equal.
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Hα : At least one population variance differs from the others.

Linearity

Linearity between Y and Xi can be seen through a scatter diagram.

Note: The assumption of multicollinearity, or simply collinearity, must also be checked
in multiple or multivariate regression.

Graphical Assumptions Interpretation

In recent years, an increasing number of statisticians have begun to use graphical
representations of their data to draw conclusions about various tests. This is not an
exception when it comes to ANOVA assumptions. This point of view grows stronger
by the day as new articles supporting this theory are published, with one of the most
influential being an article by Kozak and Piepho (2018).

The graphs that can check the assumptions above are:

• Normality
The symmetry plot of residuals can be used for the interpretation of normality.
A symmetrical distribution of the residuals around their median suggests the
existence of normal distribution.

• Independence
The residuals versus lagged residuals plot can be used for the interpretation
of correlation. A trend among the residuals indicates a possible correlation
between them. If the residuals plots confirm the assumptions of correlations
and normality, then the residuals are independent.

• Homoscedasticity
The residuals versus the fitted values plot can be used for the interpretation
of homoscedasticity. The increase in the variance as the fitted values increase
suggests possible heteroscedasticity.

• Linearity
Residuals versus every single one independent variable of the model.
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Appendix B

Supplementary Material for
Chapter 8: Multistep Dimension
Reduction for Credit Scoring
Modelling

This Appendix constitutes the supplementary material of the work entitled “Mul-
tilevel Dimension Reduction for Credit Scoring Modelling and Prediction: Empiri-
cal Evidence for Greece" and gives the definitions of the selected variables for both
Small and Large Enterprises. The majority commentary was derived from Tiresias
S.A., private online library.

Variables appearing only in Small Enterprises:

1. Debt Equity Ratio = Total Liabilities / Shareholder Equity. This ratio is used
to evaluate a enterprise financial leverage.

2. Return on Equity (ROE) = Net Income/Average Shareholders’ Equity. Roe is
considered a measure of how effectively management is using a enterprise’s
assets to create profits.

3. Working Capital Leverage = Current Liabilities / Working Capital. Working
capital leverage refers to the impact of level working capital on business’s prof-
itability. The working capital management should improve the productivity of
investments in current assets and ultimately it will increase the return on cap-
ital employed.

4. Total Assets Turnover Ratio = Net Sales / Total Assets. This ratio measures
a enterprise’s ability to generate sales from its assets by comparing net sales
with average total assets. It calculates net sales as a percentage of assets to
show how many sales are generated from each dollar of enterprise assets.

5. Return on Assets (ROA) = Net Income / Total Assets. ROA is an indicator of
how profitable a enterprise is relative to its total assets. ROA gives an idea to
how efficient a business management is at using its assets to generate earnings.

6. Result Curried Forward = profits / damages.

7. Profit Before Taxes Depreciation and Amortization Expense = a profitabil-
ity measure that looks at a enterprise’s profit before the enterprise has to pay
corporate income tax and depreciation and amortization expense.
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Variables appearing only in Large Enterprises:

1. Cash Ratio = the ratio of a enterprise’s total cash and cash equivalents to its
current liabilities and signifies the enterprise’s ability to pay short-term liabili-
ties with its highest liquid assets.

2. Current Assets to Total Liabilities = measures the enterprise’s ability to cover
its total liabilities with its total current assets. This ratio is also used to estimate
the liquidity of the enterprise by showing the enterprise can pay its creditors
with its current assets if the business’s assets ever had to be liquidated.

3. Net Profit Margin = net profit / revenue. This ratio is used to calculate the
percentage of profit a business produces from its total revenue.

4. Current Liabilities Turnover Ratio = (short-term liabilities / net revenues from
sales)* number of days in the period. This ratio indicates the number of days
from the moment some liability arises to the moment it is paid.

5. Fixed Assets to Equity = fixed assets / equity. It measures the contribution
of stockholders and the contribution of debt sources in the fixed assets of the
enterprise.

6. Working Capital Turnover Ratio = net annual sales / average working capital.
This ratio measures how efficiently a enterprise is using its working capital to
support a given level of sales.

7. Long-term Liabilities = an obligation resulting from a previous event that is
not due within one year of the date of the balance sheet.

8. Total fixed Assets (net book value) = Its formula is calculated by subtracting
all accumulated depreciation and impairments from the total purchase price
and improvement cost of all fixed assets reported on the balance sheet.

9. Maximum Utilization- Not Revolving = RCS Maximum percent credit utiliza-
tion – Joint / Prime – Non-Revolving- SME – Updated in last 12 months.

10. Total Current Balance = RCS Total Current Balance – Joint / Prime – Open.
When referring to a loan such as an auto loan or a mortgage, your current
balance is the amount you currently still owe on the loan according to the date
of your statement.

Variables appearing both Small and Large Enterprises:

1. Total Liabilities = the aggregate of all debts an individual or enterprise is liable
for and can be calculated by summing all short-term and long-term liabilities.

2. Short-term Liabilities = a financial obligation that is to be paid within one
year.

3. Worst Payment Status Last Month vs Last 24 Months = RCS Worst Payment
Status – Joint / Prime – Last 1 Month vs. Last 24 Months.

4. Worst Payment Status in Last 3 Months = Worst Payment Status – SME –
Joint/Prime – Last 3 Months.
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5. Maximum Number of Months Consecutive with over 100% Utilization in
Last 24 Months = RCS Maximum Number of Months Consecutive with over
100% of Percentage Credit Utilization in last 24 months - updated in last 12
months – Joint/Prime.

6. Number of Occurrences with Delinquency 1+ in Last 12 Months = RCS Num-
ber of Occurrences of Delinquency 1+ DPD – Joint/Prime – last 12 months.

7. Current Balance / Delinquency to Current Balance = RCS Ratio Current Bal-
ance / Delinquency to Current Balance – Joint / Prime – Open – updated in
last 3 months.

8. Maximum Number of Months Consecutive with over 100% Utilization in
Last 6 Months = RCS Maximum Number of Months Consecutive with over
100% of Percentage Credit Utilization in last 6 Months – Updated in last 3
months – Joint / Prime.
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