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Abstract

Department of Statistics and Actuarial-Financial Mathematics

University of the Aegean

Doctor of Philosophy

by Aliki E. Sagianou

The continuous increase in life expectancy observed in recent years, especially in devel-

oped countries, as well as the actuarial risks raised due to the ageing population have

triggered scientists and actuaries to develop appropriate models in order to model and

project mortality rates. A great enabler to achieve this is the stochastic mortality models

which serve as a steppingstone for the development of plans for managing the mortality

risk for the sake of safeguarding the solvency of insurance organisations.

In this context, this doctoral thesis aims to further explore the domain of mortality

modelling and identify the methodologies empowering the existing models, highlight

their advantages and disadvantages and use them to draw a research line for further

contributing to the domain.

Based on this analysis, this thesis introduces and evaluates a new multiple-component

stochastic mortality model, namely the Hatzopoulos-Sagianou (HS) model, which goes

beyond the prominent solutions, aiming to address the identified limitations. HS offers

a dynamic model structure and is based on a parameter estimation methodology, which

aims to reveal significant and distinct age clusters by identifying the optimal number of

incorporated period and cohort effects. The latter maximise the captured variance of

the mortality data, enable the attribution of an identified mortality trend to a unique

age cluster and contribute to the interpretability of the modelling results.

Having HS as the basis, this thesis further extends the model through the use of various

link functions, and diverse distributions in the model’s estimation method and differen-

tiates the HS approach by modelling the number of deaths using the Binomial model.

In addition, the HS is reformed by introducing a new form of link functions with a

particular focus on the use of heavy-tailed distributions leading to an enhanced estima-

tion methodology, improving even more the model’s goodness-of-fit, and producing more

fine-grained age clusters.



The above-mentioned developments lead to a software implementation of the HS in the

form of a Matlab toolbox called: HS-Tool. The latter provides the means for repli-

cating the full cycle of a mortality model, i.e., fitting the stochastic mortality model,

assessing its goodness-of-fit and performing mortality projections. The HS-Tool intro-

duces codebase-related improvements that contribute to the model’s ability to provide

a “plug ’n’ play” user experience, while the integration of multi-criteria decision making

methods in the model’s workflow achieve increased tool automation and convergence to

“optimal” values for critical model parameters.

The model’s qualities are supported by experimental results showing that the HS model

is able to achieve high scores over diverse qualitative and quantitative evaluation metrics,

while the identified mortality rates come into agreement with well–established findings

of the mortality literature.



Greek Abstract

(Εκτεταμένη Περίληψη)

Τμήμα Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Σχολή Θετικών Επιστημών

Πανεπιστήμιο Αιγαίου

Διδακτορική διατριβή

της Αλίκης Ε. Σαγιάνου

Η συνεχής αύξηση του προσδόκιμου ζωής που παρατηρείται τα τελευταία χρόνια, ιδιαίτερα

στις ανεπτυγμένες χώρες, καθώς και οι αναλογιστικοί κίνδυνοι που εγείρονται λόγω της

γήρανσης του πληθυσμού έχουν ωθήσει την επιστημονική κοινότητα και τους αναλογιστές

στην ανάπτυξη κατάλληλων μοντέλων προκειμένου να αναλύσουν και να προβλέψουν τους

ρυθμούς θνησιμότητας των πληθυσμών. ΄Ενα σημαντικό εργαλείο για να επιτευχθεί αυτό ε-

ίναι τα στοχαστικά μοντέλα θνησιμότητας που αξιοποιούνται στην ανάπτυξη ολοκληρωμένων

σχεδίων για τη διαχείριση του κινδύνου θνησιμότητας με απώτερο στόχο τη διασφάλιση της

φερεγγυότητας των ασφαλιστικών οργανισμών.

Στο πλαίσιο αυτό, η παρούσα διδακτορική διατριβή στοχεύει να διερευνήσει περαιτέρω τον

τομέα της μοντελοποίησης θνησιμότητας και να μελετήσει τις μεθοδολογίες που χρησιμο-

ποιούνται από τα υπάρχοντα μοντέλα, να καταγράψει τα πλεονεκτήματα και τα μειονεκτήματά

τους και να τα αξιοποιήσει για να χαράξει μια ερευνητική γραμμή που θα συνεισφέρει στον

τομέα.

Με βάση αυτή την ανάλυση, η παρούσα διατριβή εισάγει και αξιολογεί ένα νέο στοχαστικό

μοντέλο θνησιμότητας πολλαπλών παραγόντων ηλικίας-περιόδου-γενεάς, με την ονομασία

Χατζόπουλος-Σαγιάνου (HS), το οποίο ξεπερνά τις υπάρχουσες λύσεις και στοχεύει στην

αντιμετώπιση των αδυναμιών που εντοπίστηκαν στην βιβλιογραφία. Το HS προσφέρει μια

δυναμική δομή και βασίζεται σε μια μεθοδολογία εκτίμησης παραμέτρων που στοχεύει στην

αποκάλυψη παραγόντων που αντιστοιχούν σε σημαντικούς (από άποψη πληροφορίας) ρυθ-

μούς θνησιμότητας διακριτών ηλικιακών ομάδων, προσδιορίζοντας τον βέλτιστο αριθμό πα-

ραγόντων ηλικίας-περιόδου-γενεάς. Σκοπός της μεθόδου είναι να εξάγει τη μέγιστη δυνατή

πληροφορία από τα δεδομένα θνησιμότητας, να αντιστοιχίσει μία μοναδική ηλικιακή ομάδα

σε μία ξεκάθαρη τάση θνησιμότητας και να καταστήσει δυνατή την εύκολη ερμηνεία των

αποτελεσμάτων της μοντελοποίησης.



΄Εχοντας ως βάση το HS, αυτή η διατριβή επεκτείνει περαιτέρω το μοντέλο με τη χρήση

διάφορων συναρτήσεων σύνδεσης (link functions) και διαφορετικών κατανομών στη μέθοδο

εκτίμησης του μοντέλου και διαφοροποιεί το HS μοντελοποιώντας τον αριθμό των θανάτων

χρησιμοποιώντας το Διωνυμικό μοντέλο.

Επιπλέον, το HS αναδιαμορφώνεται με την εισαγωγή μιας νέας μορφής συναρτήσεων σύν-

δεσης με ιδιαίτερη έμφαση στη χρήση κατανομών βαριάς ουράς που, βελτιώνοντας ακόμη

περισσότερο την απόδοση του μοντέλου. Τα παραπάνω οδηγούν στη δημιουργία μιας ερ-

γαλειοθήκης Matlab με το όνομα: HSTool. Το τελευταίο δίνει τη δυνατότητα της ανα-

παραγωγής όλων των απαραίτητων διαδικασιών ενός μοντέλου θνησιμότητας, δηλαδή την

προσαρμογή του μοντέλου στα δεδομένα θνησιμότητας, την αξιολόγηση της απόδοσης του

και την πρόβλεψη ρυθμών θνησιμότητας. Το HSTool εισάγει βελτιώσεις που συμβάλλουν

στην ευχρηστία του μοντέλου, ενώ ενσωματώνει μεθόδους λήψης αποφάσεων πολλαπλών

κριτηρίων που αυξάνουν το επίπεδο αυτοματισμού του εργαλείου και βοηθού στον προσδιο-

ρισμό των «βέλτιστων» τιμών κρίσιμων παραμέτρων.

Τα πλεονεκτήματα του HS υποστηρίζονται από πειραματικά αποτελέσματα που δείχνουν

την αποτελεσματικότητα του βάσει ποσοτικών και ποιοτικών κριτηρίων αξιολόγησης, ενώ οι

ρυθμοί θνησιμότητάς συμφωνούν με γνωστά ευρήματα της σχετικής βιβλιογραφίας.
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Chapter 1

Introduction

The continuous increase in life expectancy observed in recent years, especially in devel-

oped countries, as well as the actuarial risks raised due to the ageing population, have

triggered scientists and actuaries to develop appropriate models in order to model and

project mortality rates. Although the increase in life expectancy is a bright sign of so-

cial, medical and scientific progress, it poses challenges to governments, private pension

plans and life insurers, as it significantly affects the cost of pensions. To address those

challenges the insurance industry needs to adopt policies and tools that can counterbal-

ance the negative effects of the so-called longevity risk. In this direction, major effort

has been put by the insurance industry and academia to analyse, model and control the

inherent market risks in order to provide the means to safeguard the solvency of insur-

ance organisations. In this regard, the need for managing the longevity risk reinforces

the investigation for novel techniques in order to understand and model the mortality

dynamics.

Undoubtedly, a great tool to achieve this is the stochastic mortality models. Regardless

of the peculiarities of each implementation, mortality models aim to analyse mortality

by decomposing the mortality rates in the dimensions of age, period and cohort (or

year of birth). The aforementioned dimensions enable the analysis of mortality rates of

individuals as they age, aid to the understanding of medical and social progress, and act

as enablers to shed light on the lifelong mortality effects. In this direction, mortality

models can be used to support the analysis, modelling, and management of the inherent

market risks for the sake of safeguarding the solvency of organisations.

1
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Towards this direction, Solvency II was introduced, and came into effect on 1 January

2016, to tackle the lack of risk sensitivity of Solvency I which could lead to inaccurate

assessment of risks and sub-optimal allocation of capital to deal with them (Rae et al.

(2018)). That is, Solvency II instructs the so-called Solvency Capital Requirement (SCR)

to be risk-based, and not just a fixed percentage of the mathematical reserve or the risk

capital. However, in order to converge to a reliable estimation for the SCR, one needs

to use as a ground truth a credible set of evidence.

The increasing use of complex quantitative models in applications throughout the finan-

cial world, has rendered the “Model Risk” a major concern. Such risk is generated by

the potential inaccuracy and inappropriate use of models in business applications. The

same applies to the insurance sector when it comes to the mortality models. Since the

latter are a key enabler in the process of managing the longevity risk, it becomes clear

that it is of paramount importance to ensure that the modelling process is performed

with high fidelity, it produces accurate estimations, enables the results interpretation,

and remains consistent with historical data.

Having identified several gaps in the mortality modelling literature, this doctoral thesis

seeks new methods that can address the reported limitations and provide a new ro-

bust multiple-component mortality model with agile characteristics. Under this prism,

the next section details the motivation and objectives of this thesis, while Section 1.2

highlights the contribution of this work.

1.1 Motivation and Objectives

Mortality modelling is a cardinal process in the context of insurance companies, as the

modelling results and estimations are used as the basis for several other estimations,

processes, and business operations such as pricing of life-related insurance products,

pension products, social security and medical insurance management, longevity risk

management and estimation of SCR.

Thus, since mortality models are a link of this operational chain, we need to guaran-

tee their operational stability and accuracy when it comes to the identification of the

mortality rates of studied populations. In fact, this is a requirement that falls under
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the ”Model Risk” notion. According to the Federal Reserve (2011) “The use of mod-

els invariably presents model risk, which is the potential for adverse consequences from

decisions based on incorrect or misused model outputs and reports. Model risk can lead

to financial loss, poor business and strategic decision making, or damage to a bank’s

reputation”. Such a risk may occur as a result of potential fundamental errors in the

model or by producing inaccurate outputs (Aggarwal et al. (2016)).

In this direction, it is of paramount importance to further investigate the mortality mod-

els of the literature in order to identify potential limitations that could lead to degraded

performance, and can potentially trigger cascading effects to other depended business

processes. To this end, a research question is posed on whether, and to which extend,

the existing mortality models can accurately model the mortality rates considering the

different mortality behaviour appearing among different age ranges on different popu-

lations. In fact, as it will be explained in detail in Chapter 2, the existing mortality

models present a rather rigid structure and consider only 1 to 3 components (age-period

and age-cohort components), and sometimes even with pre-specified age effect terms.

Hence, the ability of such models to capture the necessary amount of information of

the mortality data, and, in turn, to model the mortality rate of a population with high

accuracy, warrants further investigation.

The limited number of components contributes to the parsimony of a model, to its

simplicity, even its usability from the analyst’s standpoint. In fact, those characteristics

are claimed to be desirable for a mortality model according to Cairns et al. (2008),

Plat (2009). Such an approach is good enough if one needs to perform a quick and

superficial analysis. However, one could wonder whether there is a trade-off between

a model’s parsimony and its ability to accurately capture the dynamics of mortality in

a given population. Considering that one dimension of model risk is a model’s ability

to perform accurately, it becomes clear that, in order to perform an in-depth analysis

of mortality, we need to investigate the dynamic model structures that can adapt to

the peculiarities of the mortality data, rather than expecting rigid models to perform

adequately under different analysis testbeds.

In addition, the existing models come with limited “interpretability” when it comes to

the extracted mortality trends. In other words, the identified components are not clear,

and the extracted mortality trend is attributed to the whole age range or a mix of age
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ranges of a population. This behaviour cannot ease the in-depth analysis of mortality on

specific age clusters, as legacy models offer a generic representation of mortality dynamics

without being evident which ages are reflected in an identified mortality trend. In this

direction, there is a need to attribute a specific mortality trend to a unique age cluster

in order to perform a fine-grained analysis and enable informed decision making for

post-modelling operations.

Given the above-mentioned observations, the motivation of this PhD thesis is to investi-

gate novel methodologies that tackle the limitations of existing models, can provide agile

characteristics to mortality models and enable the in-depth analysis of mortality trends

by increasing the interpretability of the generated results. In a nutshell, the objectives

(and simultaneously the research pillars) of this PhD thesis are as follows:

Objective 1: We intend to review the mortality modelling-related literature in order

to identify the methodologies empowering the existing mortality models and highlight

their advantages and disadvantages. Through this analysis we intend to identify open

research challenges than need to be addressed.

Objective 2: Propose a new mortality model which will go beyond the prominent

solutions of the domain, aiming to address the identified limitations. The qualities of

the model shall be advocated by comparative experimental results.

Objective 3: Investigate methods that can contribute to the mortality modelling do-

main and further improve models and their operational reliability in terms of model

fitting and mortality forecasting.

Objective 4: Provide technical artefact to the community to support the insurance

industry to its mission-critical operations towards achieving solvency and foster research

in Academia.

As detailed in the next subsection, the novelties of this work mainly lie in the last three

objectives, as the first one basically explores the related literature for identifying possible

gaps, shortcomings, and research directions.
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1.2 Contributions

As already pointed out, the main intent of this PhD work is to investigate new method-

ologies that will provide the missing flexibility to the mortality modelling in order to

escape from the static modelling behaviour and to provide enhanced interpretability of

the modelling results.

To this end, our work exploits the beneficial characteristics of Generalised Linear

models (GLMs) and Sparse Principal Component Analysis (SPCA) to construct a

dynamic multiple-component stochastic mortality model, namely the Hatzopoulos-

Sagianou model (HS) and to address some of the limitations identified in the related

literature. The modelling process is driven by the Unexplained Variance Ratio (UVR),

a heuristic metric, which contributes to the identification of the most informative com-

ponents in order to maximise the captured variance of the mortality data. In this way,

the HS model gains a highly informative structure in an efficient way, and it is able

to designate an identified mortality trend to a unique age cluster. The advantageous

characteristics of the designed model are advocated by a thorough experimental testbed

used to evaluate the efficiency of the proposed model in terms of fitting and forecast-

ing performance over several datasets. The acquired results come into agreement with

well-established findings in the mortality literature.

Initially, our work provides a comprehensive analysis of well-established mortality mod-

els, and offers an application that brings them into direct comparison with the HS model

under diverse qualitative and quantitative evaluation metrics. In addition, we further

extend the designed model by formulating it in terms of conditional probabilities of

death, qt,x, and by adopting various link functions. Given this, new HS extensions are

derived using the off-the-shelf link functions, namely the complementary log–log, logit

and probit, while we also reform the model by introducing a new form of link functions

with a particular focus on the use of heavy-tailed distributions. The above-mentioned

research actions, lead to the creation of the HSTool, a Matlab toolbox that offers to

the community the implementation of the HS model. The tool extends further the op-

erational capabilities of the HS model by enhancing the estimation process of HS with

multi-criteria decision making methods in order to offer increased level of automation

and increased usability.
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More specifically, the contribution of this PhD thesis with respect to our publications

in scientific journals is as follows:

• The introduction and evaluation of a new multiple component stochastic mortality

model, namely the Hatzopoulos-Sagianou (HS) model.1 The main pillars of this

contribution are:

– The design and development of a new stochastic mortality model, which

utilises multiple age–period and age–cohort interaction terms based on a dis-

ruptive parameter estimation method which uses the Sparse Principal Com-

ponent Analysis (SPCA) and Generalised Linear Models (GLMs).

– Introduction of a novel methodology based on the Unexplained Variance Ratio

(UVR) metric in order to pinpoint the most important age–period and age–

cohort components and define the optimal sparsity factor of SPCA.

– Extensive evaluation of the new model and comparative analysis of the ob-

tained results against well-known existing mortality models.

– Design of a backtesting testbed (out-of-sample comparison) in order to eval-

uate the ability of each model in terms of prediction.

• Extensions on the Hatzopoulos–Sagianou multiple-component stochastic mortality

model based on the use of different link functions and probability distributions 2.

In this context, we:

– We extend the stochastic mortality model HS formulated in terms of qt,x,

using Generalised Linear Models and by adopting various link functions. We

illustrate through experimental results that the HS model remains robust and

consistent under all modelling variations.

– We introduce a new set of link functions, with particular focus on heavy-tailed

distributions, and we evaluate their applicability in the context of mortality

through the HS extensions. This approach leads to the definition of a new

estimation methodology for the HS model.

1Peter Hatzopoulos and Aliki Sagianou (2020) Introducing and Evaluating a New Multiple-
Component Stochastic Mortality Model, North American Actuarial Journal, 24:3, 393-445, DOI:
10.1080/10920277.2019.1658606

2Aliki Sagianou and Peter Hatzopoulos (2022) Extensions on the Hatzopoulos–Sagianou Multiple-
Components Stochastic Mortality Model, Risks, 10(7):131, DOI:10.3390/risks10070131
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– We compare the efficiency of the new model extensions versus established

mortality models in fitting and forecasting modes.

– We highlight the lessons learned to inform the community on the adoption of

the various link functions in a model’s estimation methods having witnessed

the beneficial impact of this approach to our model’s efficacy.

• A software implementation and technical documentation of the HS model in the

form of a Matlab toolbox under the name HSTool 3. The contributions of this

work are as follows:

– The offering of a Matlab toolbox, namely HSTool, of the HS model presented

in Hatzopoulos & Sagianou (2020) supported by the necessary material for the

replication of mortality analysis testbeds and the use of model’s commands.

– Documentation of new codebase-related improvements that contribute to the

model’s stability and ability to provide a calibrated operation for a “plug ’n’

play” user experience.

– Introduction of multi-criteria decision making methods in the model’s work-

flow to achieve increased tool automation and convergence to “optimal” values

for critical model’s parameters.

– Documentation of the code commands for replicating the full cycle of a

mortality model, i.e., fitting the stochastic mortality model, assessing its

goodness-of-fit and performing mortality projection.

3Peter Hatzopoulos and Aliki Sagianou. HSTool: A Matlab toolbox for the Hatzopoulos–Sagianou
Multiple-Component Stochastic Mortality Model. [Working paper - To be submitted]
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1.3 Thesis Structure

The next chapter presents the fundamental background of mortality modelling. More

specifically, Chapter 2 elaborates on the data and notation used in mortality in order

to introduce the reader to the domain specifics. In addition, it provides a thorough

documentation of well-known mortality models, documents the theoretical background

of commonly used quantitative and qualitative metrics, and concludes with a summary

of the literature highlights.

Chapter 3 deals with the design, development and evaluation of the new multiple compo-

nent stochastic mortality model, namely the Hatzopoulos-Sagianou model (HS model).

More specifically, this chapter documents the model’s disruptive estimation methodol-

ogy that delivers a dynamically defined model structure, while an extensive comparative

analysis against the existing models of the literature is performed.

Chapter 4 presents extensions of the HS model by deploying various link functions, using

generalised linear models, and diverse distributions in the model’s estimation method.

More precisely, the HS approach is differentiated by modelling the number of deaths

using the Binomial model, while new HS extensions are derived using off-the-shelf and

newly introduced link functions.

Chapter 5 offers a handbook of the software implementation of the HS model in the

form of a Matlab toolbox called: HS-Tool. The chapter offers a complete technical

documentation and illustrates the capabilities of the toolbox through examples and

applications to mortality data.

The last chapter provides a discussion over the results and the contributions of this PhD

thesis. Additionally, it provides directions for future research.



Chapter 2

Background

This chapter provides an overview of the mortality modelling domain and offers the

necessary preliminary information that will help the reader follow the methodologies

and technical content presented in the next chapters of this thesis. Initially, the chapter

elaborates on the data and notation commonly used in the mortality domain, provides

an overview of the existing mortality models, and more details on the well-established

models of the literature. This chapter also elaborates on the evaluation metrics used to

ratify the goodness-of-fit performance and forecasting capabilities of the models. Those

metrics will be used for benchmarking the existing models of the literature against the HS

model and its extensions. Last but not least, Section 2.2 proceeds to the documentation

of the specifics of the Generalised Linear Models, as those are a key ingredient of the

HS parameter estimation methodology.

2.1 Data and Notation

The data used in the experimental testbeds of this thesis consist of the random variable

of the number of deaths, Dt,x where dt,x denotes the observed number of deaths, the

central exposures to risk, Ec
t,x, and the corresponding initial exposures to risk, E0

t,x,

at age x last birthday during calendar year t. The data take the form of a rectangular

structure (t, x) over a unit range of individual calendar years t (t1, . . . , tn) and individual

ages, x, last birthday (x1, . . . , xa). That is, the probability that a person at age x and

calendar year t will die within one year is defined as qt,x = dt,x/E
0
t,x. The crude central

9
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mortality rate for any age x and calendar year t is defined as mt,x = dt,x/E
c
t,x. Ec

t,x is

often derived based on an approximation of the number of those aged x years old during

their last birthday half way through year t, or based on an estimation of the average

of said population at the beginning and end of that year. The E0
t,x is defined as the

population size on January 1st, at age x in calendar year t. Initial exposures are then

approximated by E0
t,x ≈ Ec

t,x + 1
2dt,x. We model the number of deaths as independent

Poisson or Binomial realisations, i.e., Dt,x follows the Poisson distribution with mean

Ec
t,x ×mt,x (Brillinger (1986), Brouhns et al. (2002)), or the Binomial distribution with

mean E0
t,x × qt,x. When the context is clear, we may write Et,x to refer to E0

t,x or Ec
t,x.

2.2 Generalised Linear Model framework in mortality

modelling

This section provides an overview of the Generalised Linear Model framework and how

this is applied in the context of mortality modelling. In fact, GLM framework is a

key enabler for the estimation methodology of the newly introduced mortality model

presented in Chapter 3, as well as for the extensions presented in Chapter 4.

In a generalised linear model (see, e.g., McCullagh & Nelder (1989)), each outcome of

a random variable Y, whose components are independently distributed with mean µ, is

considered to originate from certain distributions belonging to the exponential family.

There is a wide range of probability distributions, such as the Binomial, Poisson, Gamma

and Normal distributions. The explanatory variables, X, define the mean, µ, of the

distribution via:

E(Y) = µ = g−1(Xβ)

where E(Y) is the expected value of Y, where Y is a vector of response variables. Xβ

is the linear predictor, a linear combination of parameters β whose values are usually

unknown and have to be estimated from the data. X is a matrix of explanatory variables,

and β is a vector of parameters. g is the link function.

The model’s independent variables are incorporated through the linear predictor (η).

The link function relates it to the expected value of the data and it is expressed as a

linear combination of the unknown parameters β.
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The linear predictor and the mean of the distribution function are related via the link

function. A number of considerations need to be taken into account when choosing

the most appropriate link function. The exponential of the response’s density function

determines a well-defined canonical link function. Although, for algorithmic purposes,

in some cases, it makes sense to use a non-canonical link function.

Therefore, there are three components to any GLM (McCullagh & Nelder (1989)):

• The random component—refers to the probability distribution of the response

variable (Y). The components of Y have generated from an exponential family of

probability distributions.

• The systematic component—specifies the explanatory variables (X) in the model

producing the so-called linear predictor η = Xβ.

• The link function, g—specifies the connection between the random and systematic

components. Specifically, it denotes how the expected value of the response relates

to the linear predictor of explanatory variables, e.g., η = g(µ) or g−1(η) = µ.

Hence, as is the case for the generalised linear models, the same applies to the stochas-

tic mortality models. The corresponding three components, plus a forth one on the

parameter constraints, in a stochastic mortality model are (Villegas et al. (2018)):

1. The random component : the number of deathsDt,x follows the Poisson distribution

with mean Ec
t,x×mt,x, or the Binomial distribution with mean E0

t,x× qt,x, so that

Dt,x ∼ Poisson(Ec
t,x ×mt,x)

or

Dt,x ∼ Binomial(E0
t,x, qt,x)

from which E(Dt,x) = Ec
t,x ×mt,x ⇒ E(Dt,x/E

c
t,x) = mt,x

or E(Dt,x) = E0
t,x × qt,x ⇒ E(Dt,x/E

0
t,x) = qt,x.
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2. The systematic component : the effects of age x, calendar year t and cohort c = t−x

are captured through a predictor ηt,x given by:

ηt,x = αx +

p∑
i=1

β(i)
x κ

(i)
t +

q∑
j=1

βc(j)
x γ(j)c (2.1)

ηt,x = g(E(Dt,x/Et,x)) is the link function used to transform the response variable

(which is a measure of mortality rates) at age x and for year t, into a form suitable

for modelling, and link it to the proposed predictor structure ((Villegas et al.

2018)). The term αx represents the main age profile of mortality by age. βx reflects

the age effect for each period component, while βc
x the age effect for each cohort

component. The term κt refers to the period-related effects and corresponds to the

mortality trend. The term γc reflects the cohort-related effects, where c = t − x.

p(≥ 1) and q(≥ 0) are indexes referring to the period and cohort components

included in the model structure.

In fact, similar to Hunt & Blake (2021) and Villegas et al. (2018), who considered

q = 1, formula 2.1 reflects the generic structure of an age–period–cohort stochastic

mortality model, reflecting the methodology of generalised linear models (McCul-

lagh & Nelder (1989)).

3. The link function g associating the random component and the systematic com-

ponent, so that

g

E

(
Dt,x

Et,x

) = ηt,x

for an appropriate exposure to risk, Et,x.

There are several link functions that can be used as suggested by Haberman &

Renshaw (1996), Currie (2016) for the context of mortality models, and McCullagh

& Nelder (1989) in the wider context of GLMs. As it will be explained in details in

Section 4.2, the extensions of the HS model will be based on the qt,x formulation,

using a wide set of canonical and non-canonical link functions.

4. The set of parameter constraints: most of the stochastic mortality models have

identifiability problems in the parameter estimation. In an effort to avoid this issue,

a set of parameter constraints is required to ensure unique parameter estimates.

Notably, as will be documented in Chapter 3, the HS model does not need any
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parameter constraints as the model does not face identifiability problems during

parameter estimation and always provides a unique solution due to its estimation

methodology (Hatzopoulos & Sagianou (2020)).

2.3 Stochastic Mortality models

In this section, we introduce the reader into the context of mortality models. Specifically,

we outline some background information about the related models that take place in

the comparative evaluations in Chapters 3 and 4 of this thesis.

A number of stochastic models have been developed to analyse the mortality improve-

ments. Lee & Carter (1992) proposed a stochastic mortality model which is able to

fit to the historical data using only one age-period component without any cohort ef-

fect. Even though, the Lee Carter (LC) model is considered a stepping stone in the

mortality literature, as mentioned by many authors, LC model bears several weaknesses

and limitations (Booth et al. (2006)). Numerous variations of the LC model have been

introduced in an effort to deal with the reported limitations. Such a model variation is

proposed by Renshaw & Haberman (2006) which, apart from time components, incor-

porates a cohort effect, resulting into an age–period–cohort version of the LC model. In

this way, the Renshaw–Haberman (RH) model provides an improved fit to the historical

data compared to the basic LC model. Similarly, Yue et al. (2008) proposed an age–shift

model, that includes two second–order interaction terms (age–period and age–cohort).

Yue et al. (2008) suggested that the reduction shift of ages for different time periods can

be treated as a “cohort” effect, introducing an age–period–cohort model. Also, Hynd-

man & Shahid Ullah (2007) used several Principal Components (PCs) to capture the

differential movements for specific–age mortality rates. Hyndman & Shahid Ullah (2007)

smoothed the observed log–mortality rates, using constrained and weighted penalised re-

gression splines, and decomposed the fitted curves using functional principal component

analysis. Additionally, a simplified version of the RH model, is the Age-Period-Cohort

(APC) model (Currie (2006)). In this model, the age, period and cohort effects influence

mortality rates independently. APC model has a long–standing tradition in the fields

of medicine and demography (Hobcraft et al. (1985), Clayton & Schifflers (1987)), but

it had not been widely used in the actuarial literature until it was considered by Currie

(2006). Other important stochastic mortality models, which are usually used in the
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literature are the two–factor Cairns–Blake–Dowd (CBD) model introduced by Cairns

et al. (2006b) and its extensions (Cairns et al. (2009)). These models are known in the

literature for their ability to perform better for the higher ages. Moreover, Plat (2009)

(PL) introduced a model which combines the advantageous features of the CBD and the

LC models to produce a new one that operates under full age ranges and captures the

cohort effect. Furthermore, Hatzopoulos & Haberman (2011) (HH) proposed a multi-

ple component model as an extended version of the Hatzopoulos & Haberman (2009)

by introducing an alternative estimation method for modelling the (age–period–cohort)

mortality effects via Sparse Principal Component Analysis (SPCA).

In the following paragraphs we focus on the LC (Lee & Carter (1992)), RH (Renshaw &

Haberman (2006)), APC (Currie (2006)) and PL (Plat (2009)) and CBD (Cairns et al.

(2006b)) –and its extensions (Cairns et al. (2009))– mortality models, as those are the

most well-known models and are part of the most known mortality modelling software

packages, like Lifemetrics toolkit (Coughlan et al. (2007)) and StMoMo (Villegas et al.

(2018)).

2.3.1 Lee - Carter (LC) model

In a seminal work, Lee & Carter (1992) proposed the following model for central mor-

tality rates:

log(m̃t,x) = αx + β(1)
x κ

(1)
t (2.2)

i.e., p = 1 and q = 0, according to the generic formula (2.1).

However, there is an identifiability problem in parameter estimation and in order to

ensure this property, the following set of parameter constraints are defined:

∑
x

β(1)
x = 1 and

∑
t

κ
(1)
t = 0
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2.3.2 Renshaw - Haberman (RH) model

Renshaw & Haberman (2006) generalised the LC model and proposed a model which

incorporates a cohort effect and it has the following form:

log(m̃t,x) = αx + β(1)
x κ

(1)
t + βc

x
(1)γ(1)c (2.3)

i.e., p = q = 1, according to the generic formula (2.1).

This model has similar identifiability problems as the LC model, and in order to ensure

this property the following constraints are defined:

∑
x

β(1)
x = 1,

∑
t

κ
(1)
t = 0,

∑
x

βc
x
(1) = 1,

∑
c

γ(1)c = 0

2.3.3 Age - Period - Cohort (APC) model

Currie (2006) proposed a special case of the RH model and defined a simpler model

called Age-Period-Cohort (APC) model with the following form:

log(m̃t,x) = αx + n−1κ
(1)
t + n−1γ(1)c (2.4)

i.e., p = q = 1 and β
(1)
x = βc

x
(1) = n−1, according to the generic formula (2.1).

In addition, the following constrains are imposed to ensure the identifiability of the

model:

∑
t

κ
(1)
t = 0 and

∑
c

γ(1)c = 0

One more constraint is needed in order to keep the overall shape of the fitted αx’s

as close as possible to the historical average log death rate at age x, using a tilting

parameter, δ. The tilting parameter is defined via an iterative scheme, as proposed by

Cairns et al. (2009) and according to Lifemetrics implementation. This implies that

δ = −
∑

x(x−x̄)(αx−ᾱx)∑
x(x−x̄)2

where, ᾱx = n−1
∑

t log(m̃t,x).
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2.3.4 Plat (PL) model

Plat (2009) proposed a multiple component model which includes three age-period effects

and a cohort effect with pre-specified age effect terms. The PL model has the following

form:

log(m̃t,x) = αx + κ
(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t + γ(1)c (2.5)

i.e., p = 3, q = 1, β
(1)
x = 1, β

(2)
x = (x̄ − x), β

(3)
x = (x̄ − x)+ and βc

x
(1) = 1, according to

the generic formula (2.1).

This model incorporates multiple age–period components. κ
(1)
t represents changes in

the level of mortality for all ages, while κ
(2)
t allows changes in mortality to vary among

ages as the improvement rates can differ for different age classes. κ
(3)
t captures the

dynamics of mortality rates at lower ages, which can be different at some times (i.e., the

developments like AIDS, drugs and alcohol abuse, and violence).

Similarly to the above-mentioned models, in order to ensure the identifiability of the

model, the following set of parameter constrains are imposed:

∑
t

κ
(3)
t = 0,

∑
c

γ(1)c = 0 and
∑
c

cγ(1)c = 0

Plat (2009) mentions that the above identifiability constraints are set using the same

approach as in Cairns et al. (2009), model M6. Both the second and the third constraints

are same as those in Cairns et al. (2009), model M6, whereas Plat (2009) considers one

additional constraint, which is used in order to normalise the estimates for κ
(3)
t .

2.3.5 CBD models

Cairns et al. (2006b) proposed a model which incorporates only two age-period com-

ponents with pre-specified age effect terms, while there are no static age function and

cohort terms. The CBD model has the following form:

logit(q̃t,x) = κ
(1)
t + (x− x̄)κ

(2)
t (2.6)
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i.e., p = 2, q = 0, β
(1)
x = 1 and β

(2)
x = (x− x̄), according to the generic formula (2.1) and

x̄ is the mean age in the sample range.

There is no need for parameter constraints for the CBD model as this structure has no

identifiability issues.

Cairns et al. (2009) extended the original CBD model, which was presented previously,

and introduced several variations by adding a quadratic age effect and a cohort term.

The Quadratic CBD model and its simpler predictor structures have the following form:

logit(q̃t,x) = κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σ̂2

x)κ
(3)
t + γ(1)c (2.7)

i.e., p = 3, q = 1, β
(1)
x = 1, β

(2)
x = (x− x̄), β

(3)
x = ((x− x̄)2− σ̂2

x) and βc
x
(1) = 1, according

to the generic formula (2.1). x̄ is the mean age in the sample range and the constant σ̂2
x

is the mean of (x− x̄)2.

logit(q̃t,x) = κ
(1)
t + (x− x̄)κ

(2)
t + γ(1)c (2.8)

i.e., p = 2, q = 1, β
(1)
x = 1, β

(2)
x = (x− x̄) and βc

x
(1) = 1, according to the generic formula

(2.1) and x̄ is the mean age in the sample range.

logit(q̃t,x) = κ
(1)
t + (x− x̄)κ

(2)
t + (xd − x)γ(1)c (2.9)

i.e., p = 2, q = 1, β
(1)
x = 1 and β

(2)
x = (x − x̄) and βc

x
(1) = (xd − x), according to

the generic formula (2.1). x̄ is the mean age in the sample range and xd is a constant

parameter.

Similarly to the above-mentioned models, in order to ensure the identifiability of the

models, the following set of parameter constrains are imposed:

∑
c

γ(1)c = 0,
∑
c

cγ(1)c = 0 and
∑
c

c2γ(1)c = 0

2.3.6 Model Fitting

In the mortality literature, several software implementations and packages have been

developed and made available to the community for making the use of the models a
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trivial process for mortality analysts and actuaries. Regardless of the peculiarities of

each implementation, the aim is to provide the means to fit the mortality models and

perform the parameter estimation.

As reported in Villegas et al. (2018), the demography package Hyndman et al. (2015)

capitalises on the Lee & Carter (1992) model and its variants presented in Lee & Miller

(2001), Booth et al. (2002) and Hyndman & Shahid Ullah (2007). The ilc package

Butt et al. (2014) offers the Renshaw and Haberman model and the Lee–Carter model

under a Poisson regression framework. The LifeMetrics R functions (Coughlan et al.

(2007)) consider the Cairns–Blake–Dowd (CBD) models and their extensions introduced

in Cairns et al. (2009), the Lee–Carter model (using Poisson maximum likelihood),

the age–period–cohort model (Osmond (1985), Currie (2006)) and the Renshaw and

Haberman model. StMoMo presented in Villegas et al. (2018) and has become a well-

established mortality modelling R package which provides the tools for fitting stochastic

mortality models, assessing their goodness-of-fit and performing mortality projections.

In fact, StMoMo encompasses the vast majority of stochastic mortality projection models

proposed to date.

Overall, each implementation or model may utilise a different parameters estimation

method. For instance, Lee & Carter (1992) estimated model parameters using singular

value decomposition (SVD) in the context of least squares fitting method, while Renshaw

& Haberman (2003) minimised the deviance of their predictor structure. Maximisation

of the log-likelihood has been used for the age, period and cohort parameters estima-

tion in Brouhns et al. (2002), Renshaw & Haberman (2006) and Cairns et al. (2009)).

Brouhns et al. (2002) described a fitting methodology for the Lee-Carter model based

on a Poisson model. Since then, this method has been adopted for parameter estimation

also for Renshaw & Haberman (2003), Renshaw & Haberman (2006) and Cairns et al.

(2009).

In the context of this PhD thesis, the parameter estimation of the models (LC, RH, APC

and PL), that take part in the comparative analysis of Chapters 3 and 4, is achieved

by using the R-code of the software package LifeMetrics (Coughlan et al. (2007)). Note

that, the PL model is not part of the LifeMetrics by-default. One can use the archive

provided by the Pensions Institute1, in order to calibrate the stochastic mortality model

1https://www.pensions-institute.org/papers.html (fitModelsPlat.rtf)

https://www.pensions-institute.org/papers.html
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introduced in Plat (2009). This code complies with the specifications of the existing

code of the LifeMetrics tool. In this tool, the parameters estimation is performed by

maximising log–likelihood via the Newton-Raphson iterative process. The estimation

process of a parameter utilises the following updating scheme (Goodman (1979), Brouhns

et al. (2002)):

θ̂(n+1) = θ̂(n) − ∂ℓ(n)/∂θ

∂2ℓ(n)/∂θ2

starting with an initial value for each parameter. Under the assumption of a Poisson

distribution, the log-likelihood is

L(dt,x, d̂t,x) =
∑
t

∑
x

{
dt,x log(d̂t,x)− d̂t,x − log(dt,x!)

}
(2.10)

and under the assumption of a Binomial distribution, is

L(dt,x, d̂t,x) =
∑
t

∑
x

{
dt,x log

(
d̂t,x
E0

t,x

)
+ (E0

t,x − dt,x) log

(
E0

t,x − d̂t,x

E0
t,x

)
+ log

(
E0

t,x

dt,x

)}
(2.11)

In both cases, the expected number of deaths for each model is

d̂t,x = Et,xg
−1

αx +

p∑
i=1

β(i)
x κ

(i)
t +

q∑
j=1

βc(j)
x γ(j)c

 (2.12)

with g−1 denoting the inverse of the link function g, for an appropriate exposure to risk,

Et,x.

2.4 Evaluation Metrics

One of the main objectives of this PhD thesis is to provide an extensive experimen-

tal testbed in order to evaluate the mortality models from multiple perspectives and

reveal their advantages and disadvantages and their modelling capabilities. To do so,

it is important to document the evaluation metrics that will be used throughout the

experimental testbeds of this thesis. More specifically, we choose to conduct a thorough

evaluation over several performance metrics, while we go for metrics that enable the

qualitative and quantitative performance analysis of both the fitting and forecasting
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processes of the models. Thus, in order to be aligned with the good practices of the do-

main, we make use of Information Criteria and Percentage Error Tests, as documented

in Sections 2.4.1 and 2.4.2 respectively. It has to be noted, that in the context of Chap-

ter 3, this thesis introduces a set of additional qualitative and quantitative metrics (e.g.,

the Unexplained Variance Ratio (UVR) in Section 3.3) which are tailored to the evalua-

tion testbeds described in that chapter. That is, in this section we opt to document the

performance metrics which are predominantly applied in the domain and are applied

horizontally to all the testbeds of this thesis.

2.4.1 Information Criteria

For evaluating the goodness-of-fit of different models that have different number of pa-

rameters, it is common in the mortality literature to use information criteria driven by

likelihood. Those criteria are known to penalise those models which include more pa-

rameters. In this direction, the Akaike Information Criterion (AIC) and its correction

(AICc), which is more suitable for small samples and the Bayesian Information Criterion

(BIC) are defined as follows:

AIC = −2l + 2npar and its correction AICc = AIC +
2npar(npar + 1)

N − npar− 1

and

BIC = −2l + npar logN

where l is the log-likelihood, N = n × a is the number of observations and npar is the

number of parameters being estimated. The model, for each dataset, having the lowest

AIC, AICc and BIC values are preferable.

2.4.2 Percentage Error Tests

In order to quantify the fitting and forecasting quality of an estimator, the standard

statistical approach is to use the Mean Squared Percentage Error (MSPE) test. MSPE

measures the average of the squares of the errors, which is the difference between the

estimator and what is estimated. MSPE is the second moment of the error, and thus

incorporates both the variance of the estimator and its bias. MSPE can be written

as the sum of the variance and the squared bias of the estimator. In the mortality
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modelling context, a small MSPE value indicates low bias and variance of the estimated

central death rates. In addition, another measure is the Mean Absolute Percentage

Error (MAPE). MAPE is used to measure how close the estimations are to the actual

values, in order to quantify the magnitude of the error. MAPE expresses the accuracy

and when is multiplied by 100 represents a percentage error. These measures are defined

for all ages from x1 to xa and for all years t1 to tn as:

MSPE =
1

(tn–t1 + 1) · (xa–x1 + 1)

∑
t

∑
x

(
m̃t,x −mt,x

mt,x

)2

MAPE =
1

(tn–t1 + 1) · (xa–x1 + 1)

∑
t

∑
x

|m̃t,x −mt,x|
mt,x

where m̃t,x is either the in–sample or out–of–sample estimated central mortality rate

and the mt,x is the observed crude central mortality rate.

2.5 Mortality model design criteria

The continuous developments in the stochastic mortality modelling, led the community

to identify a set of criteria that the models need to meet in order to be considered

reliable. The following checklist has been created by consolidating the various criteria

which have been highlighted in Cairns et al. (2006a), Cairns et al. (2008), Cairns et al.

(2009), Plat (2009), Cairns et al. (2011).

1. Mortality rates should be positive.

2. The model should be consistent with historical data.

3. Long-term dynamics under the model should be biologically reasonable.

4. Parameter estimates should be robust relative to the period of data and range of

ages employed.

5. Model forecasts should be robust relative to the period of data and range of ages

employed.

6. Forecast levels of uncertainty and central trajectories should be plausible and con-

sistent with historical trends and variability in mortality data.

7. The model should be straightforward to implement using analytical methods or

fast numerical algorithms.
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8. The model should be relatively parsimonious.

9. It should be possible to use the model to generate sample paths and calculate

prediction intervals.

10. The structure of the model should make it possible to incorporate parameter un-

certainty in simulations.

11. At least for some countries, the model should incorporate a stochastic cohort effect.

12. The model should have a non-trivial correlation structure.

13. The model should be applicable for a full age range.

14. The model should be transparent and not be treated as a “black box”.

15. The model should provide a good fit to the historical data.

16. The model should rank well against other models by criteria such as the BIC.

As can be inferred, the above-mentioned points constitute a long list of requirements

that research endeavours on the design of mortality models need to consider. As stated

in the 2nd of objective of this doctoral thesis, our goal is to propose a new mortality

model which will go beyond the prominent solutions aiming to address the identified

limitations of existing models. That is, our research and development actions need to be

aligned with the identified requirements and, if possible, to identify additional desired

characteristics to extent this list.



Chapter 3

Introducing and Evaluating a

New Multiple Component

Stochastic Mortality Model

This chapter builds on top of the analysis conducted in Chapter 2, and introduces

and evaluates a new multiple component stochastic mortality model, namely the

Hatzopoulos-Sagianou model (HS). Our proposal is based on a parameter estimation

methodology, which aims to reveal significant and distinct age clusters by identifying

the optimal number of incorporated period and cohort effects. Our methodology adopts

Sparse Principal Component Analysis and Generalised Linear Models (GLMs), which

firstly introduced in Hatzopoulos & Haberman (2011), while it incorporates several nov-

elties. Precisely, our approach is driven by the Unexplained Variance Ratio (UVR)

metric to maximise the captured variance of the mortality data and to regulate the

sparsity of the model with the aim of acquiring distinct and significant stochastic com-

ponents. In this way, the introduced model gains a highly informative structure in an

efficient way, while it is able to designate an identified mortality trend to a unique age

cluster. In this chapter. we also provide an extensive experimental testbed to evalu-

ate the efficiency of the proposed model in terms of fitting and forecasting performance

over several datasets (Greece, England & Wales, France and Japan), while we compare

our results to those of well-known mortality models (Lee–Carter, Renshaw–Haberman,

Currie (APC), and Plat). The HS model is able to achieve high scores over diverse

23
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qualitative and quantitative evaluation metrics and outperforms the rest of the models

in the majority of the experiments. Our results advocate the beneficial characteristics

of the proposed model and come into agreement with well–established findings of the

mortality literature.

3.1 Introduction

As thoroughly analysed in Chapter 2, each of the mortality models bears beneficial and

desirable characteristics, while, taking realistically, they are not free of weaknesses. Con-

sidering the extensive stochastic mortality literature, such a model should incorporate

some fundamental and desirable characteristics. One of the most important charac-

teristics of a model is its ability to fit accurately the most important features of the

historical mortality data. Therefore, it is desirable for a model to have multiple factors

in order to capture the improvement rates that differ at different age ranges. In this

way, a model should reveal non-trivial correlation structures between changes in mor-

tality rates among the different ages. A contemporary model should have the ability to

incorporate cohort effects. According to the literature and based on several implemen-

tations on mortality data (Cairns et al. (2009), Plat (2009)), those models that do not

incorporate cohort effects fail to provide a good fit to the historical data, especially for

those countries where a cohort effect has been observed. In addition, a mortality model

should be consistent among diverse datasets and the parameters’ estimations should be

robust across the range of the used data. However, the above mentioned desirable char-

acteristics inevitably bring in a higher complexity to a model in terms of the number of

the incorporated parameters and the implementation’s stiffness. Thus, it is important

to keep the balance between the effectiveness of a model and its overall complexity.

To this end, in this chapter, a new multiple component stochastic mortality model is

proposed. Our approach aims to combine the aforementioned advantageous character-

istics to provide a model which is able, not only to accurately fit to historical data and

provide a solid base for forecasting mortality rates, but also to capture the age-shifts of

mortality improvements under a robust and parsimonious manner. To do so, our model

is based on a new parameters estimation method, which adopts fundamental elements

of the Hatzopoulos & Haberman (2011) (HH) model. We evaluate and we prove the ef-

ficiency of our model through an extensive experimental testbed. More specifically, this
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chapter provides a comprehensive and comparative analysis of our model with respect to

the Lee-Carter (LC), Renshaw-Haberman (RH), Age-Period-Cohort (APC), Plat (PL)

models, utilising mortality data from various countries. Note that, the selected models

are widely used in the literature (Coughlan et al. (2007), Cairns et al. (2009), Dowd

et al. (2010), Mitchell et al. (2013)), and they are selected among others for their ability

to operate in the whole age range. Our analysis is performed using data from Greece,

England & Wales, France and Japan, for males, as those provided by Human-Mortality-

Database and Eurostat. These datasets form a comprehensive testbed to fully explore

the capacity of each mortality model, as they consist of diverse time periods and data

quality.

In short, the contributions of the work presented in this chapter are as follows:

• We propose a new stochastic mortality model, which utilises multiple age–period

and age–cohort interaction terms, and we introduce a parameter estimation

method. This method adopts Sparse Principal Component Analysis (SPCA) and

Generalised Linear Models (GLMs), which firstly introduced in Hatzopoulos &

Haberman (2011), while it incorporates several novelties.

• We introduce a novel methodology based on Unexplained Variance Ratio (UVR)

metric in order to pinpoint the most important age–period and age–cohort com-

ponents incorporated in the proposed model. The optimal model structure is

acquired by defining the optimal scalar s which regulates the sparsity in SPCA.

• We extensively evaluate our model over several metrics and diverse datasets, while

we compare its efficiency against well-known existing mortality models.

• In the comparative evaluation, we use a backtesting framework (out-of-sample

comparison) in order to evaluate the ability of each model in terms of prediction.

We forecast the period and the cohort indexes using three different forecasting

models, namely the Random Walk with Drift (RWD) model, optimum Arima

models based on Bayesian Information Criterion (BIC) test and a specific class of

Dynamic Linear Regression (DLR) models.

The rest of this chapter is organised as follows: Given the preliminaries presented in

Chapter 2, Section 3.2 presents the proposed mortality model including its structure

and the utilised estimation method. Section 3.3 outlines the evaluation methodology we

followed, and the comparative results are analysed in Section 3.4. Note that, due to the
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extensive analysis, the majority of the described results are given in the Appendices of

this thesis (Appendices A, B and C). Section 3.5 provides an overall discussion on the

findings and concludes this chapter.

3.2 The proposed Stochastic Mortality Model

In this section we present the proposed stochastic mortality model. In contrast to the

models presented in Section 2.3, our model utilises a different semi–parametric estima-

tion method. In the context of our model, we propose an estimation method following

the one presented in Hatzopoulos & Haberman (2011), utilising Generalised Linear Mod-

els (GLMs) and Sparse Principal Component Analysis (SPCA). Even if we adopt these

fundamental elements, the proposed estimation method bares major advantages which

are discussed in Section 3.4.7. In addition, we present the Unexplained Variance Ratio

(UVR) method, which is used to determine the sparsity factor (s–value) required in

the SPCA method, as well as to define the most important age–period and age–cohort

components which are incorporated in the proposed model.

3.2.1 Estimation Methodology

3.2.1.1 Age–Period effect estimation methodology

As described in the Section 2.1 of Chapter 2, our data consist of the number of deaths

(Dt,x), with their corresponding central exposure to the risk (Ec
t,x), for each calendar

year t = t1, . . . , tn and for each age x = x1, . . . , xa last birthday. The number of deaths,

Dt,x, follows a Poisson distribution with mean Ec
t,x ·mt,x (Brillinger (1986), Booth et al.

(2006)). The form of our data is shown in Figure 3.1 (parallelogram BCDE). Intuitively,

each vertical line represents the data of each calendar year t, which are used to estimate

the age–period effects. To do so, a GLM approach is applied, with response variables

Dt,x, for each calendar year t independently, while the logarithmic exposure variables

(i.e., log(Ec
t,x)) are handled as an offset by using the natural log link function:

log(m̂t) = bt · LT (3.1)
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Figure 3.1: Data form.

where, L = {lx,k−1}, k = 1, . . . , k1, is an (a × k1)-dimensional matrix of orthonormal

polynomials with degree of k1 − 1 for age x, and bt denotes the vector of the GLM–

estimated parameters for calendar year t. Therefore, for all calendar years t = t1, . . . , tn,

a random (asymptotically normal) matrix B = {bt,k−1}, k = 1, . . . , k1, of order (n×k1),

containing the GLM–estimated parameters, is produced using the GLM approach.

The overall optimum degree k1−1 of the orthonormal polynomials is determined by the

following tests: X2 test, Sign test, Run test, Ljung–Box Q test, Likelihood ratio test and

Bayesian information criterion. The overall optimum degree k1 − 1 (considering all the

calendar years), is chosen to be that value which minimises the total BIC value for all

calendar years. An additional verification for defining the optimum degree is employed

by detecting which k1 value gives the maximum number of statistically acceptable p–

values of the aforementioned tests (for calendar years). If these two methods (BIC,

p–values) give different optimum k1 values then we choose the larger one, in case we

need to capture specific intrinsic mortality characteristics more accurately (for example

the “accident hump” effect), otherwise we choose the smaller optimum k1, if we need a

more parsimonious model or the mortality data quality is pure.

For reducing further the dimensionality of the problem by keeping only those factors

which explain most of the information in the data, Sparse Principal Component Analysis

(SPCA) is applied to the associated covariance matrix of the GLM–estimated parameters

B. According to Luss & d’Aspremont (2006)1, given the covariance matrix A = Cov(B),

the (dual) problem of finding a sparse factor which explains the maximum amount of

variance in the data can be written as follows:

min λmax(A+ U), s.t. |Uij | ≤ s (3.2)

1the associated Matlab package can be found in https://www.di.ens.fr/~aspremon/DSPCA.html

https://www.di.ens.fr/~aspremon/DSPCA.html
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where s is a scalar which defines the sparsity. In order to define the appropriate “opti-

mum” s–value, we propose the Unexplained Variance Ratio (UVR) approach which is

discussed in Section 3.2.1.3.

The covariance matrix U in equation (3.2) is the solution to the problem. By applying

eigenvalue decomposition on U , the associated matrix of eigenvectors P , of order (k1 ×

k1), is acquired. Thus, the log–graduated central mortality rates, for each calendar year

t, can be decomposed as:

log(m̂t) = bt · LT =
(
b̄+ brt

)
· LT = b̄ · LT + brt · LT =

= b̄ · LT + (brt · P ) · (P−1 · LT ) = α̃+ κt ·G
(3.3)

where, α̃ = b̄ ·LT is the main age–profile, b̄ is a k1–dimensional vector which denotes the

column arithmetic mean of matrix B, and brt is a k1–dimensional vector which denotes

the re-scaled vector: brt = bt − b̄, for each calendar year t. The matrix G = P−1 · LT , of

order (k1 × a), corresponds to the age–effect scores, with rows β(i) = eTi · LT , for each

ith–component and values β
(i)
x = eTi ·lTx , where ei denotes the ith–column of the (k1×k1)–

dimensional matrix P = {ei}, i = 1, . . . , k1 and lx = (lx,0, lx,1, . . . , lx,k1−1) denotes the

xth–row vector of the matrix L. The vector κt = brt ·P is the period–effect scores. Hence,

for all calendar years t, the (n × k1)–dimensional matrix Y = {κ(i)t }, i = 1, . . . , k1 is

defined, with columns κ(i) for each i–component and values κ
(i)
t = (κ

(1)
t , . . . , κ

(k1)
t ).

Thus, an alternative expression for the log–graduated mortality rates, for calendar year

t and age x is:

log(m̂t,x) = α̃x +

k1∑
i=1

β(i)
x · κ

(i)
t (3.4)

Our goal is to reduce the number of age–period components from k1 to p:

log(m̂t,x) = α̃x +

p∑
i=1

β(i)
x · κ

(i)
t + εt,x (3.5)

where, the residuals or the disturbance term εt,x ∼ N(0, vx) is the error component at

age x in year t and denotes the deviation of the model represented by the excluded

Sparse Principal Components (SPCs). The corresponding method in order to define
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the most important p age–period components following the model structure given by

equation (3.5) is described in Section 3.2.1.3.

At this point, one can realize the importance of GLM and SPCA in the context of

our model. Firstly, the GLM approach does not involve identifiability problems in

parameter estimation, giving a unique solution. Besides, the GLM-polynomial structure

produces the matrix B, which inherits all the mortality dynamics incorporated in central

mortality rates, m̂t,x, reducing the dimension of the problem from a to k1, and also

produces components which are based on the graduated mortality rates. In addition,

by applying SPCA to the covariance matrix of the GLM–estimated parameters, we are

able to extract most of the information of the data by utilizing only a few components,

which explain the maximum amount of variance in the data. Most importantly, for

non–stationary time series, as Hatzopoulos & Haberman (2011) have been analyzed and

compared, SPCA gives a better clustering and more distinguished mortality dynamics

than Principal Component Analysis (PCA). An overview of the proposed age–period

construction methodology is given in Algorithm 1.
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Algorithm 1: Age–Period component structure
Data: D, E, k1
Result: M

1 Input : D : (n× a)-matrix with values Dt,x, ∀t, x
2 E : (n× a)-matrix with values Et,x, ∀t, x
3 k1 − 1 : optimum degree of polynomials

4 Output : M : (n× a)-matrix representing log(m̂t,x) = α̃x +
∑p

i=1 β
(i)
x · κ(i)

t

66 Define parameters
7 x← x1, . . . , xa; a← length(x); // ages

8 t← t1, . . . , tn; n← length(t); // calendar years

1010 for i← 0 to k1 − 1 do
11 L← create orthonormal polynomials ∀x;
12 end
1414 B ← GLM(L,D) with offset log(E), ∀t;
1616 A← Cov(B);
1818 initial s ← is a set of values around the area of the Var(bt1,0);
2020 for s ∈ initial s do
21 U ← SPCA(A, s);
22 P ← eig(U); // P : eigenvectors of U
23 b̄← mean(B);
24 Br ← B − b̄;
25 α̃x ← b̄ · L; // main age-profile

26 Y ← Br · P ; // Y = {κ(i)} i-period effect, ∀i ∈ [1, k1]

27 G← P−1 · LT ; // G = {β(i)} i-age effect, ∀i ∈ [1, k1]
28 for i← 1 to k1 do
29 if (UV R(i) < 50%) and (UV R(i) reveals unique age cluster) then
30 cand s← s;
31 include this i-component to the model structure;

32 else
33 reject s;
34 end

35 end
// repeat the same procedure for the next initial s value

36 end
// cand s← is a vector with acceptable initial s values using UVR technique

3838 filtered s← from cand s choose those s-values which achieve the maximum number of significant p
components;

4040 opt s← from filtered s choose the s-value which gives the minimum BIC value
// after UVR criterion we have concluded in the optimum s value and the optimum

age-period components (p)
4242 for i← 1 to n do
43 M(i, 1 : a)← Y (i, 1 : p) ·G(1 : p, 1 : a) + α̃;
44 end
45 return M ;

3.2.1.2 Age–Cohort effect estimation methodology

The age–cohort components are estimated in a similar way with the age–period compo-

nents, under the assumption that the cohort effect has dynamics that are independent

of the period effect (Renshaw & Haberman (2006)). Therefore, according to equation

(3.5), the residuals εt,x are modelled in age–cohort effects, by applying the GLM ap-

proach. Hence, our data, Dt,x, E
c
t,x and m̂t,x, are processed as cohorts. As can be seen

intuitively in Figure 3.1 (parallelogram BADF), each diagonal line represents the data
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for each cohort c = t−x = c1, . . . , cnc , where nc = n+(a−1), which are used to estimate

the age–cohort effects. For the implementation of the GLM approach to the cohort data,

the values outside the range of available calendar years (i.e., Figure 3.1, triangles ACB

and DFE), are set equal to zero. The GLM approach is applied, with response variables

the number of deaths, for each cohort c independently, while the logarithmic exposures

and the log–graduated mortality rates with p age–period effects (equation (3.5)) are

handled as an offset:

log( ˆ̂mc) = bc · (Lc)T (3.6)

where, Lc = {lcx,k−1}, for k = 1, . . . , k2, is an (a×k2)-dimensional matrix, which contains

the orthonormal polynomials with degree of k2 − 1 for age x and bc denotes the vector

of the GLM–estimated parameters for each cohort c. Thus, a (nc × k2)–dimensional

matrix Bc = {bc,k−1}, k = 1, . . . , k2, which contains the GLM–estimated parameters for

all cohorts c = c1, . . . , cnc , is produced.

The optimum degree k2 − 1 of the orthogonal polynomials Lc is determined using the

same tests and criteria described in the Section 3.2.1.1, in age–period effect estimation

methodology.

By applying eigenvalue decomposition on the matrix of the GLM–estimated parameters

Bc using the common PCA (or equivalent SVD) technique, the associated matrix of

eigenvectors P c = (ec1, . . . , e
c
k2
), of order (k2 × k2), is produced. In this step, we apply

PCA to cohort dynamics, as the most important non–stationary mortality dynamics have

been incorporated in age-period effect structure, and the remaining cohort–effects consti-

tute stationary processes. Under the proposed SPCA structure, the first few age–period

interaction terms explain the vast majority of the mortality variance (see Table A.17)

and therefore they capture the most significant non–stationary mortality dynamics.

Hence, the cohort log–graduated central mortality rates, for each cohort c, can be de-

composed as:

log( ˆ̂mc) = bc · (Lc)T =
(
b̄c + brc

)
· (Lc)T = b̄c · (Lc)T + brc · (Lc)T =

= b̄c · (Lc)T + brc · P c · (P c)−1 · (Lc)T = α̃c + γc ·Gc
(3.7)

where, α̃c = b̄c · (Lc)T is the main age–profile, b̄c is a k2–dimensional vector which

denotes the column arithmetic mean of matrix Bc, and brc is a k2–dimensional vector
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which denotes the re-scaled vector: brc = bc − b̄c, for each cohort c. The matrix Gc =

(P c)−1 · (Lc)T , of order (k2× a), is the age–effect scores, with rows βc(j) = (ecj)
T · (Lc)T ,

for each jth–component and values β
c(j)
x = (ecj)

T · (lcx)T , where ecj denotes the jth–

column of the matrix P c and lcx = (lcx,0, l
c
x,1, . . . , l

c
x,k2−1) denotes the xth–row vector of

the matrix Lc. The vector γc = brc · P c is the cohort–effect scores, thus for all cohorts

c, the (nc × k2)–dimensional matrix Y c = {γ(j)c }, j = 1, . . . , k2 is defined, with columns

γ(j) for each j–component and values γ
(j)
c = (γ

(1)
c , . . . , γ

(k2)
c ).

After reducing the number of components from k2 to q, an alternative expression for the

cohort log–graduated mortality rates, for cohorts c = c1, . . . , cnc and ages x = x1, . . . , xa

is:

log( ˆ̂mc,x) = α̃c
x +

q∑
j=1

βc(j)
x · γ(j)c + εc,x (3.8)

The corresponding method in order to define the most important q age–cohort compo-

nents is described in Section 3.2.1.3. An overview of the proposed age–cohort construc-

tion methodology is given in Algorithm 2.

3.2.1.3 Sparsity regulation for optimal component selection

This section describes the methodology followed to define the optimal number of p

and q components of the equations (3.5) and (3.8) respectively. Initially, it is worth

to mention that, the number of p optimum components retained for representing the

age–period effects is very important for the identification of the q age–cohort effects.

By choosing fewer factors than the optimum p number, then these disregarded period

effects will be used as cohort effects, in a non–stationary and more complex manner,

whereas, by choosing more age–period factors, then the cohort structure will break down,

as these additional age–period components, will describe significant cohort effects (for

cases where cohort effects have been observed), otherwise they will describe insignificant

mortality dynamics. The optimal model structure is defined through the optimality of

the s–value. Different choices of s–value, uncover different SPCs in the mortality data.

Thus, the process of defining the optimal model structure is reflected in defining the

optimal scalar s, which in turn regulates the sparsity in SPCA. The definition of the

s–value is not a straight–forward process as it depends on the experimental data, and in
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Algorithm 2: Age–Cohort component structure

Data: D, E, M , k2
Result: M c

1 Input : D : (nc × a)-matrix with values Dc,x,∀c, x
2 E : (nc × a)-matrix with values Ec,x,∀c, x
3 M : (nc × a)-matrix with values Mc,x,∀c, x
4 k2 − 1 : optimum degree of polynomials

5 Output : M c : (nc × a)-matrix representing log( ˆ̂mc,x) = α̃c
x +

∑q
j=1 β

c(j)
x · γ(j)

c

77 Define parameters
8 x← x1, . . . , xa; a← length(x); // ages

9 c1 ← t1 − xa; cnc
← tn − x1 ;

10 c← c1, . . . , cnc
; nc ← length(c); // cohorts

1212 for i← 0 to k2 − 1 do
13 Lc ← create orthonormal polynomials ∀x;
14 end
1616 Bc ← GLM(Lc, D), offset: log(E) and the age–period effects, (M), ∀c;
17 P c ← PCA(Bc); // P c : eigenvectors of Bc

18 b̄c ← mean(Bc);
19 Br ← Bc − b̄c;
20 α̃c ← b̄c · Lc; // main age-profile

21 Y c ← Br · P c; // Y c = {γ(j)} j-cohort effect, ∀i ∈ [1, k2]

22 Gc ← (P c)−1 · (Lc)T ; // Gc = {βc(j)
x } j-age effect, ∀i ∈ [1, k2]

23 for i← 1 to k2 do
24 if (UV Rc(i) < 50%) and (UV Rc(i) reveals unique age cluster) then
25 include this i-component to the model structure
26 end

27 end
// after UVR criterion we have concluded in the optimum age-cohort

components (q)
2929 for i← 1 to nc do
30 M c(i, 1 : a)← Y c(i, 1 : q) ·Gc(1 : q, 1 : a) + α̃c;
31 end
32 return M c;

most cases, requires deep domain knowledge and multiple experiments for each dataset.

However, in the context of our model we provide an automated approach which utilises

the Unexplained Variance Ratio (UVR) criterion for converging the optimal s–value.

In fact, through the UVR, we first locate a range of initial s–values. Based on our

experimental study, this range includes the values of the area around the variance of the

GLM–parameter bt1,0. For each trial s–value we define the UVR, for each component

and for each age, as a modified version of the one considered in Li et al. (2004). We

calculate the empirical variance of the time series of log mortality rates and the variance

of the error between the estimated log mortality rates and the crude ones, for each age

x and each component i. The ratio of these two variances for successive components
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defines the UV Rx(i) value:

UV Rx(i) =



Var
(
log(mt,x)−αx−β

(1)
x κ

(1)
t

)
Var
(
log(mt,x)−αx

) , i = 1

Var
(
log(mt,x)−αx−β

(1)
x κ

(1)
t −β

(i)
x κ

(i)
t

)
Var
(
log(mt,x)−αx−β

(1)
x κ

(1)
t

) , i = 2, . . . , p

(3.9)

Hence, for the first component (i = 1), we calculate the ratio between the variance of the

crude central mortality rates and the variance of the error between the estimated central

mortality rates and the crude ones, including only the first component. These UV Rx(1)

values will indicate which ages are explained by the first most important component.

Then, in order to evaluate the contribution of each added component, we calculate each

UV Rx(i), for i > 1 with respect to the first component. In this way, we evaluate if

any added i–component, for i = 2, . . . , k1, explains further significant information for a

different range of ages, with respect to the first component.

An empirical threshold value for significant UV R–values is when UV Rx(i) < 50%. By

following, the 50% rule, for significant UV Rx(i) values, we set the restriction that the

explained variance has to be greater than the associated unexplained one. However, this

is not a constant value, but an experimental threshold, which can be tuned depending

on the data and our preferences. Thus, one can select more informative “optimal”

components by using a more stringent threshold. If less stringent threshold values are

used, the model will define different and less significant components, as expected. This

is because the determination of the UV R value affects the optimality of the s value, and

hence, different s–values uncover different SPCs in the mortality data. Though, a less

stringent threshold value (i.e., greater than 50%) would be suggested in case of poor

mortality data. We note that, the UV Rx(i) values are pure numbers and independent

on the scale of the variance. Thus, for a given s–value, we evaluate the particular

model structure in terms of the UV Rx(i) values, for i = 2, . . . , k1. If these UV R–values

reproduce a distinct and unique significant clustering of ages, for the i–component, and

UV Rx(i) < 50%, then we accept this particular s–value, and we also include the i–

component to the model structure.

Given the above, if there are significant ages in a neighbourhood of an age, then this
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implies the existence of a significant cluster of ages. If any particular s–value gives

a unique cluster of ages for at least one component then this s–value is a candidate

optimum one. Otherwise, if the s–value does not reveal any cluster or it reveals more

than one clusters (i.e., the same component describes different mortality dynamics for

diverse range of ages), for all components, then it is rejected. Therefore, it is desirable

that the above approach should produce distinct and unique key age groups of UVR

neighbouring significant values. Among all the candidate s–values, we choose those that

maximise the number of significant SPCs. Therefore, based on this approach, we end

up with a filtered set of accepted s–values, which maximised the significant SPCs, as

defined by the UVR criterion. Among these filtered s–values, we get the optimum value

which is the one that gives the minimum BIC value.

A similar approach is applied to the cohort effects for the derivation of the optimum

number of cohort related factors, according to the equation (3.7). Since, the cohort

structure is define through a process based on PCA, there is no sparsity factor involved.

Thus, our method concludes to the optimum number of age–cohort components by

selecting those that provide a UV Rc
x(j) < 50%, for j = 1, . . . , k2 and reveal a unique

age cluster. We calculate the ratio of the variance of the error between the estimated

central mortality rates and the crude ones including the p age–period components, and

the variance of the error between the estimated mortality rates and the crude ones

including the p age–period components and the jth age–cohort component.

Hence, the UV Rc
x(j) value for each age–cohort component is defined as:

UV Rc
x(j) =

Var
(
log(mt,x)− αx −

∑p
i=1 β

(i)
x · κ(i)

t − βc
x
(j) · γ(j)

c

)
Var
(
log(mt,x)− αx −

∑p
i=1 β

(i)
x · κ(i)

t

) , j = 1, . . . , q

In this way, we evaluate the contribution of each added age–cohort component by cal-

culating each UV Rc
x(j), for j = 1, . . . , q, with respect to the p age–period components.

3.2.2 Final Model Structure

According to the UVR-based method, after estimating the significant age–period and

age–cohort effects the final estimates of the log–graduated central mortality rates in age,
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period and cohort effects are defined, following equations (3.5) and (3.8):

log(m̃t,x,c) = log(m̂t,x) + log( ˆ̂mc,x) = α̃x +

p∑
i=1

β(i)
x · κ

(i)
t + α̃c

x +

q∑
j=1

βc(j)
x · γ(j)c

for the calendars years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t − x =

c1, . . . , cnc .

Therefore, the estimated log–graduated central mortality rates can be alternatively de-

composed in a matrix form as follows:

log(m̃) = b̄ · LT + b̄c · (Lc)T+

+

 p∑
i=1

κ
(i)
t eTi

 · LT +

 q∑
j=1

γ(j)c (ecj)
T

 · (Lc)T
(3.10)

and according to the generic formula (2.1),

αx = α̃x + α̃c
x = b̄ · LT + b̄c · (Lc)T ,

β(i)
x = eTi · lTx , κ

(i)
t = brt · ei

βc
x
(j) = (ecj)

T · (lcx)T , γ(j)c = brc · ecj

Consequently, the total number of parameters which are needed in order to define the

proposed model include: two parameters to define the order of orthogonal polynomials

k1 and k2, k1 + k2 parameters to estimate the age profile αx, (n+ k1) · p parameters for

the estimation of the age–period scores, and (nc + k2) · q parameters for the estimation

of the age–cohort scores. Thus, the total number of the parameters incorporated in

the proposed model is: 2 + (k1 + k2) + p · (n + k1) + q · (nc + k2). The total number

of the model parameters is affected, among others, by the number of the identified

age–period components (i.e., p). The optimal number of p is in turn affected by the

s–value. Notably, the s–value depends on the inherent characteristics of the mortality

data, as mentioned in section 3.2.1.3. However, the number of the identified age–period

components is by no means proportional to the size of s–value.

Note that, the estimation of the proposed model is done sequentially by first fitting

the age–period effects and then the age–cohort effects. However, it has to be stated

that swapping the order of the estimation process is not feasible in the context of our

particular model structure, due to its inherent characteristics. The utilisation of a Poison
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GLM estimation implies that deaths are independent among the ages and hence, GLM

estimates can be estimated in a Poisson model. Thus, in this setting, it is not possible

to estimate the age–cohort effects first, since deaths are not independent among the

ages. Additionally, a complete cohort (of at least 90 calendar years) is needed for the

estimation procedure, due to utilisation of the GLM approach. That is, in cases where

mortality data have a limited calendar range, like in Greek and Japanese datasets, the

main trends and the captured maximum amount of variance would be inadequate. A

swapping approach is discussed and implemented in Hatzopoulos & Haberman (2015).

3.3 Evaluation methodology

In this section we describe the experimental methodology followed for evaluating the

performance of the mortality models presented in Sections 2.3.1 to 2.3.4, and provide a

comparative analysis against the HS model, in order to prove its capacity. Note that,

the CBD (Cairns et al. (2006b)) model and its extensions (Cairns et al. (2009)) are not

considered in the evaluation, as those models are designed for higher ages only, and

their fit quality for the whole age ranges is relatively poor (Cairns et al. (2009), Plat

(2009)). We intend to provide an extensive experimental testbed in order to evaluate the

models from multiple perspectives. More specifically, we choose to conduct a thorough

evaluation over several datasets and performance metrics, while we compare the fitting

and forecasting performance of the proposed model with respect to the other mortality

models.

3.3.1 UVR analysis

Initially, by using the UVR metric described in Section 3.2.1.3, we can visualise the

significant amount of variance explained by each of the components of a model, and in

which group of ages this variance corresponds to. Therefore, we apply this method, to

all models that take part in the evaluation, to derive the age clusters and the corre-

sponding unexplained variance reflected by each component. In this respect, UVR gives

a qualitative overview of each model structure.

However, it has to be stated that for the PL model, we utilise a modified version of

the UVR metric. The UV Rx(i) values, for each added component, are calculated with
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respect to all the previous (i−1)–components, and not with respect to the 1st component

as defined for the proposed model in Section 3.2.1.3. Thus, for the PL case, we calculate

the ratio of the variances of the error, which is between the estimated mortality rates and

the crude ones, including i–components (in age–period/cohort effects), and the variances

of the error, which is between the estimated rates and the crude ones including (i− 1)–

components. Hence, the difference between the two UVR approaches, is reflected only

on PL’s 3rd age–period component. In our model, each added component is derived

independently with respect to the 1st component. In all mortality experiments, the

1st age–period factor accounts for the vast majority of the total explained variance,

as defined later in Section 3.3.3.1 and all the remaining components explain relative

deviations from the 1st interaction term. On the other hand, in PL model each added

component explains relative deviation from all the previous age–period components in

a cumulative manner due to the different construction and estimation employed.

3.3.2 Forecasting

In order to evaluate the ability of the mortality models in terms of prediction we use

a backtesting framework with a k–step ahead forecast and we compare the out–of–

sample forecasted mortality rates to the actual ones. For providing an objective and

unbiased evaluation, we forecast the period and the cohort indexes using three different

forecasting models namely, the Random Walk with Drift (RWD) (ARIMA(0,1,0) with

drift), the appropriate ARIMA model based on Bayesian Information Criterion (BstAr),

and a specific class of Dynamic Linear Regression (DLR) models. In fact, RWD model

is a widely adopted forecasting model in the mortality literature (mainly for simplicity

reasons), while BstAr is the ARIMA model that can achieve the best BIC performance.

For the determination of the BstAr model, the R–code of the software package “forecast”

(Hyndman et al. (2019)) was used. DLR models is another class of time series forecasting

and for the realisation the Captain Toolbox for Matlab (Young et al. (2009)) was used.

That is, the forecasting process consists of the following steps:

1. Fit the models to the mortality experience for years t1, . . . , tn−k and for ages

x1, . . . , xa.

2. Predict the mortality rates k years ahead for years tn−k+1, . . . , tn.
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3. Calculate the error between the out–of–sample forecasted mortality rates and the

actual mortality rates for years tn−k+1, . . . , tn.

4. Evaluate the models using percentage error tests.

Therefore, forecast estimates are needed for the period and cohort dynamics: κ
(i)
t and

γ
(i)
c . Specifically, regarding the projection using RWD, each i–period index is modelled

using RWD, whereas each j–cohort index is modelled using BstAr, having checked all

relevant ARIMA(p,d,q) models for p, d, q = 0–5. Regarding the forecasting approach

based on the BstAr, the latter approach is used to model each of the i–period and

j–cohort indexes.

Moreover, in the case of DLR models we utilise a specific class: Yt = a + δt · t + ϵt,

where Yt denotes either the period or cohort dynamics, for each calendar year t, with

the slope being a stochastic time variable parameter that follows a smoothed random

walk process: ∆δt = ϕ·∆δt−1+ζt−1, 0 < ϕ ≤ 1 and ∆δt = δt−δt−1 denotes the difference

operation. The innovations ϵt and ζt are assumed to be white noise random variables.

If ϕ < 1, Yt is being modelled as a linear stochastic variable having a slightly tilted

s-shape for the short–medium forecasts and also smooth progression to the mortality

dynamics. If ϕ = 1, Yt is being modelled as a non–linear stochastic variable giving

either an accelerating or a decreasing mortality improvement. Experiments with various

mortality experiences have shown that the time related non–stationary SPCs can be

represented adequately under this particular DLR model structure. Therefore, these

two nested DLR structures (ϕ < 1 and ϕ = 1) are compared based on the BIC of the

mortality model, in order to choose the most appropriate between the two, for each

of the period and cohort indexes of each stochastic mortality model. According to

Kass & Raftery (1995), one can consider a model selection based on BIC to be roughly

equivalent to a model selection based on a Bayes factor. Thus, by applying the two

DLR structures to a mortality model, we can have two variations of the same model.

Then, we can select the appropriate DLR structure based on the observed BIC difference

between these two variations of the model. The difference of the BIC values is defined

as, ∆BIC = BIC(i)−BIC(b), where BIC(b) denotes the BIC value for the “best” model

variation, where the “best” is the one having the lower BIC value and BIC(i) denotes

the BIC value for the alternative model variation. In this direction, Kass & Raftery

(1995) suggested the following rules of thumb:
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• If ∆BIC ≤ 2, there is no clear evidence against or in favour of the two models.

• If 2 < ∆BIC ≤ 6, one can say that there is positive evidence against model i, i.e.,

there is a difference in favour of model b.

• If 6 < ∆BIC ≤ 10, there is a strong evidence against model i.

• If ∆BIC > 10, there is a very strong evidence against model i, and model b is by

far the most appropriate.

In the context of this chapter, we examine whether ∆BIC > 2 in order to judge upon

the most appropriate DLR structure for a model.

3.3.3 Evaluation Metrics

Our evaluation incorporates several kinds of quantitative criteria in order to approach

the problem of diverse perspectives. For evaluating the fitting performance of each

model to historical data, we utilise the Bayesian Information Criterion (BIC), the Akaike

Information Criterion (AIC) and the percentage error tests, Mean Squared Percentage

Error (MSPE) and the Mean Absolute Percentage Error (MAPE). Those have been

defined in Section 2.4. On top of the above, in order to measure the total amount of

the information captured by each model we make use of the Unexplained Variance (UV)

and Explanation Ratio (ER) metrics, which are detailed in Sections 3.3.3.1 and 3.3.3.2

respectively.

Moreover, in order to evaluate the models in terms of forecast, we compare the out–of–

sample forecasted central mortality rates to the actual ones using the MSPE and the

MAPE tests.

Additionally, we aim to provide a final comparative ranking that reflects the overall

performance of the models both for the fitting and forecasting modes. To do so, we use

the Friedman’s statistic test (F–test) Iman & Davenport (1980) and the Bonferroni–

Dunn test (BD–test) Dunn (1961).

3.3.3.1 Explanation Ratio (ER)

In order to quantify the total contribution obtained by each individual period or cohort

component, for each in–sample dataset, taking into account the whole age range, we
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calculate the explained variance of each component including all ages. Particularly, we

calculate the sum of the variances of the log crude mortality central rates for all ages,

and the sum of the variances of the error between the estimated log mortality rates

considering i-components, and the log crude mortality rates, for all ages. Then, one

minus the ratio of these two variances defines the ER(i):

ER(i) = 1−

∑
xVar

(
log(m̃

(i)
t,x)− log(mt,x)

)
∑

xVar
(
log(mt,x)

)
where, m̃

(i)
t,x denotes the estimated mortality rates including i–components for i =

1, 2, . . . , p, p + 1, . . . , p + q, where p and q correspond to the number of period and co-

hort components respectively. The difference between two successive ER(i) values, i.e.,

∆ER(i) = ER(i)− ER(i− 1), for i = 1, . . . , p+ q, with ER(0) = 0 gives the magnitude

of the contribution by each added component.

3.3.3.2 Unexplained Variance

Unexplained Variance (UV) is used as an additional overall in–sample measure of fit for

each particular age x. UVx of each age x, is calculated including all age–period–cohort

components of a model. UVx is calculated using the variance of the time series of log

crude mortality rates and the variance of the error between the in–sample estimated log

mortality rates and the log crude mortality rates, for each age (Mitchell et al. (2013)).

The ratio of these two variances defines the UVx:

UVx =
Var(errort,x)

Var(log(mt,x))

where, errort,x = log(m̃t,x)− log(mt,x) and the variance is taken through time.

It has to be noted that, UV is a different measure than UVR. Specifically, as described

in Section 3.2.1.3, UVR is destined to reveal the contribution of each age–period and/or

age–cohort component, as well as, to reveal in which age cluster a specific mortality

trend of a component belongs to. On the other hand, UV metric provides an overall

view of the variance captured by the entirety of a stochastic mortality model, for each

age.
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3.3.3.3 Comparison of mortality models

To compare the overall fitting and forecast performance of the evaluated mortality mod-

els over diverse datasets, we utilise the Friedman’s statistic test (F–test) (Friedman

(1940)) and the Bonferroni–Dunn test (BD–test) (Dunn (1961)).

F–test uses the null hypothesis H0: the accuracy is the same among mortality models,

against the hypothesis H1: the accuracy is differed among mortality models. By using

F-test, we examine whether there is significant difference in the rank of at least one

mortality model. The statistic is:

T =
12

υ · κ(κ+ 1)
·

κ∑
j=1

 υ∑
i=1

Rij

2

− 3 · υ · (κ+ 1)

where, υ denotes the number of different datasets, κ denotes the number of different

mortality models, and Rij denotes the rank of a relevant Statistical Criterion, for the

j–mortality model and i–dataset. As the relevant Statistical Criterion of the F-test, we

utilise the Percentage Error tests (MAPE, MSPE) for the forecasting approach, and the

Percentage Error tests (MAPE, MSPE) and BIC for the fitting approach.

F-test is a non–parametric analogue of ANOVA with repeated measures, and has ap-

proximately a X 2–distribution with (κ−1)–degrees of freedom, when the null hypothesis

is true (Demšar (2006)). Iman & Davenport (1980), showed that Friedman’s T is unde-

sirable conservative and derived a better statistic:

F =
(υ − 1) · T

υ · (κ− 1)− T

that has approximately a F–distribution with (κ − 1) and (κ − 1) · (υ − 1) degrees of

freedom.

If the null–hypothesis is rejected, we can proceed with the two tailed Bonferroni–Dunn

test (Dunn (1961)), where all mortality models are compared with the “best” model,

based on Nemenyi test (Nemenyi (1963)). The performance of two models is significantly

different if the corresponding values of average ranks, R̄j =
∑υ

i=1 Rij

υ , differ by at least

the critical difference:

CD = qα ·
√

κ · (κ+ 1)

6 · υ
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where qa denotes the critical value (see Demšar (2006), Table 5, for qα values at signifi-

cant level α = 5% and α = 10%). In this way, we make (κ− 1)–comparisons, comparing

each model with the “best” model, where “best” model is the one having the best average

rank value, R̄j .

3.4 Results

This section details on the datasets, the experimental optimum parameters of HS model

and the results of our evaluation and comparative study. Due to the extensive exper-

imental results, and for readability reasons, the reader should refer to the appendices

that consolidate the majority of our results.

3.4.1 Mortality data

In this section, we describe the historic mortality data used in our evaluation. We fit five

mortality models to data of four different countries. The datasets are provided by the

Human-Mortality-Database (HMD) and Eurostat and have the following characteristics:

• Greece (GR), Males, calendar years 1961–2013, individual ages 0–84 (joint dataset

from both HMD and Eurostat sources)

• England & Wales (E&W), Males, calendar years 1841–2016, individual ages 0–89

(from HMD)

• France (FR), Males, calendar years 1816–2015, individual ages 0–89 (from HMD)

• Japan (JP), Males, calendar years 1947–2016, individual ages 0–89 (from HMD)

Specifically, in order to evaluate each mortality model in terms of in–sample and out–

of–sample performance, we handle the above mentioned mortality data to acquire the

datasets described in Table 3.1.

3.4.2 Optimum parameters of the proposed model structure

Table 3.2 presents the parameters used to fit the proposed model structure, for each

dataset. More specifically, Table 3.2 contains the number of the optimum parameters of
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Country in–sample out–of–sample

GR
1961-2013
1961-2008 2009-2013
1961-2003 2004-2013

E&W

1841-2016
1841-2006 2007-2016
1841-1996 1997-2016
1841-1986 1987-2016

FR

1816-2015
1816-2005 2006-2015
1816-1985 1986-2015
1816-1965 1966-2015

JP
1947-2016
1947-2006 2007-2016
1947-1996 1997-2016

Table 3.1: Datasets used in the evaluation.

the GLM orthonormal polynomials, k1 (equation (3.1)) and k2 (equation (3.6)), for the

period and cohort effects respectively. Additionally, the optimum s–values under the

UVR approach (Section 3.2.1.3), with the corresponding ratio s/Var(bt1,0)–values for

each dataset are given, while p and q denotes the optimum number of period (equation

(3.5)) and cohort (equation (3.8)) components, according to the approach described in

Section 3.2. One can observe that the optimum s–value for each dataset is consistently

close to the variance of the GLM’s first polynomial parameter bt1,0. This variance

corresponds to the overall, age–average, variance of the log–central mortality rates in

period effects. The ratio s/Var(bt1,0) gives minimum value 0.78 and maximum value

1.45. Also, we note the high consistency of the optimum parameters among the dataset

samples, for each country.

3.4.3 Age-period effects analysis

Figures A.1, A.2, A.4, A.6 and A.10 in Appendix A.1, provide a graphical representation

of the 1st age–period component and the corresponding UVR values for all mortality

models and datasets. According to the UV Rx(1) values, one can observe that for the

most of the models, the 1st component fails to adequately explain the mortality dynamics

for the entirety of the age range. Consequently, additional components are needed

to capture the rest of the mortality dynamics. Moreover, we can detect similarities

among LC, APC and HS structures (Figures A.1, A.4 and A.10). For these models,
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Country years ages s s/Var(bt1,0) k1 p k2 q

GR 1961-2013 0-84 2.55 0.81 16 4 8 1

1961-2008 0-84 1.96 0.85 16 3 8 1

1961-2003 0-84 1.56 0.88 16 3 8 1

E&W 1841-2016 0-89 54.50 1.07 29 5 3 2

1841-2006 0-89 57.91 1.37 29 5 4 2

1841-1996 0-89 36.49 1.04 29 5 5 2

1841-1986 0-89 29.49 1.02 29 5 5 2

FR 1816-2015 0-89 61.42 1.36 33 4 5 2

1816-2005 0-89 51.22 1.45 33 4 5 2

1816-1985 0-89 29.11 1.31 33 4 5 2

1816-1965 0-89 18.71 1.44 33 3 0 0

JP 1947-2016 0-89 33.61 1.16 23 5 7 1

1947-2006 0-89 19.10 0.78 23 5 4 1

1947-1996 0-89 22.99 1.12 23 5 4 1

Table 3.2: Optimum parameters according to the HS model structure (3.10) for each
dataset

the most significant UV Rx(1) values concern the young and the middle ages and there

are similarities on the mortality dynamics (κ
(1)
t –values). Furthermore, according to the

Explanation Ratio (ER) metric defined in Section 3.3.3.1, as can be seen in Table A.17,

their 1st age–period component consistently embrace the majority of the total variance.

In contrast, RH and PL models do not present similar characteristics and their 1st

component describe different mortality dynamics among different datasets (Figures A.2

and A.6). Specifically, the 1st age–period component of the RH model has significant

UVR values at: ages 0–15 for GR, ages 0–18 and 40–60 for E&W, ages 0–20 and 50–80

for FR and ages 0–60 for JP data. Regarding PL model, the 1st age–period component

has significant UVR values at ages 0–20 and 60–70 for GR, ages 0–40 for E&W, ages

15–40 for FR and ages 30+ for JP. Also, RH and PL are not able to explain most of the

variance in the data as displayed in Table A.17, where for some cases like the E&W and

FR datasets, the ER values are negative.

The aforementioned more complicated structures regarding the 1st age–period com-

ponent of the RH and PL models, i.e., the fact that they explain different mortality

dynamics, while they do not capture the maximum amount of variance in the data, are
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carried over to the remaining components of the models (either to the remaining age–

period or to the age–cohort). Specifically, the 2nd age–period component of PL model

shown in Figure A.7, has significant UV Rx(2) values for the ages (50+) for GR, E&W

and FR datasets, and for the ages 16–20, for JP dataset. Moreover, the ER values, for

E&W and FR experiences, are negative. The 3rd age–period component described in

Figure A.8, explains mostly the ages 20–40 for GR, and for the rest countries explains

the ages 0–40 (except for ages around 20, and particularly for E&W experience has the

biggest ER values).

Based on our results, the HS model reflects several characteristics that have already ac-

knowledged by the mortality literature. Specifically, the first characteristic corresponds

to the 2nd HS age–period component (Figure A.11), which explains the relative diversity

from the 1st main component for the old ages (mostly for ages 50+). One can observe a

significant relative mortality improvement, especially after 1990’s (except for JP, where

there is a linear trend since the 1970’s). Therefore, the 2nd component reflects an accel-

eration of the rate of improvement for the higher ages, which is aligned to the “ageing

of mortality improvement”, as has been noted by Horiuchi & Wilmoth (1998), Glei &

Horiuchi (2007) and Willets (2004). In terms of explained variance, the ER values range

between 1.3% and 11%.

In addition, the 3rd age–period component of HS model (Figure A.12), supports another

characteristic which is noted by the existing literature. This component represents rel-

ative diversity from the 1st main component for the young–adult ages (mostly for ages

20–35, according to the UV Rx(3) values). Specifically, based on the period compo-

nent for GR, E&W and FR, one can observe a relative deterioration until 1990’s (with

one–decade delay for FR, Figure A.12, graph HS.32), whereas later, there is a relative

improvement. Particularly for GR dataset, one can observe a even greater improvement

after 1990’s. Moreover, as reported by Brock & Griffiths (2003), for E&W, the mortality

rate for individuals aged from 20 to 35 is increased from the mid–1980’s. Crucially, the

mortality rates at these ages are quite unstable due to the corresponding small number

of deaths. However, as reported in Brock & Griffiths (2003), the causes of the deaths at

these ages are mainly due to accidents, suicides and/or drug and alcohol abuse. Even

though these deaths are considered “avoidable” and the death rates are relatively low,

they contribute considerably to years of life lost. In addition, Brock & Griffiths (2003)

note some findings regarding the causes of deaths in this particular age range, which
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appear in chronological order. Land transport accidents were the most common cause of

deaths during 1960–1980, suicides emerged from the 1990’s onwards, and drug–related

poisoning mortality tripled from 1979 to 2001. Accordingly for FR, some findings with

respect to the causes of deaths at this age group, are mentioned by Meslé (2006). He

reports that, one cause that slowed down the improvement in life expectancy (between

ages 15 and 30), from 1950’s, was the negative trends in violent deaths. In addition,

AIDS mortality affected the life expectancy negatively, between ages 25 and 45, for

the period 1980–1992, whereas the life expectancy increased because of the decrease

in violent deaths in the period 1992–2002. Hence, the 3rd HS age-period component

comes to an agreement with the literature findings regarding the young–adult ages. The

corresponding ER values range between 1% and 4%.

An additional characteristic, corresponds to the 4th age–period component illustrated in

Figure A.13. This component represents the relative diversity from the 1st main compo-

nent and, according to the UV Rx(4) values, reflects the mortality trend for ages 30–45,

for GR, E&W and JP datasets. One can observe a strong deterioration in mortality

after 1980’s, whereas there is a relative improvement for GR after 1990’s, and a steep

improvement for JP after 2000’s. In addition, according to E&W, we observe a high

increase in mortality trend from the mid–1980’s. However, as reported by Brock & Grif-

fiths (2003), the causes of deaths at this age group are mainly due to the HIV/AIDS (the

impact of AIDS is mostly toward people aged 25–49 (United Nations (2004)) and drugs–

alcohol abuse. Concerning E&W, Brock & Griffiths (2003) mentioned that for people

aged 35–44, there is a steep increase in mortality rates related to alcohol abuse, from the

mid–1980s, having actually twice the value in mortality rates for those aged 40–44. The

majority of deaths relates to HIV/AIDS, from 1985 to 2001, appeared in young adults.

According to Brock & Griffiths (2003), after introducing more effective treatments in

1996, although the number of newly diagnosed cases had not decreased, mortality rates

related to AIDS had decreased dramatically. Furthermore, for JP, Marugame et al.

(2005) report that lung cancer is a cause of deaths at ages between 30 and 49, having

an increasing trend in mortality after 1958, while decreasing after mid–1970. This can

be also observed in the 4th period component in our results. The related ER values are

in most cases less than 1%.

Another significant characteristic is reflected to the 4th age–period component for the

FR data in Figure A.14, which corresponds to age 0, according to the UV R
(4)
x values. It
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can be seen a relative strong improvement in mortality after 1950’s, whereas after 1980’s

a relative deterioration. According to Meslé (2006), from 1950 to 1980, the contribution

of infant mortality to improved life expectancy is high and represents almost half of the

improvements. They also refer that this fact is a consequence of the decline in mortality

from infectious and respiratory diseases which are mainly congenital infant diseases. The

related ER values are around the value of 0.5%

A last characteristic corresponds to the 5th age–period component for E&W and JP

mortality experience as shown in Figure A.15. According to the UV Rx(5) values, this

component refers to ages 16–21. The 5th period component presents a relative deteri-

oration in mortality until 1980’s–1990’s, whereas later there is a relative improvement.

This range of ages is commonly referred in the actuarial literature as the accident hump

effect. Specifically, for E&W, as reported on the Brock & Griffiths (2003), the causes of

the deaths at these ages are mainly due to land transport accidents include all motor

vehicle and train accidents during the period 1960–1980, and most of these deaths were

due to motor vehicle traffic accidents. The corresponding ER values are in most cases

less than 0.5%.

3.4.4 Age–cohort effects analysis

Figures A.3, A.5, A.9, A.16 and A.17 provide a graphical representation of the estimated

parameters for the 1st age–cohort component of each model. According to the UVR

values, APC and PL models explain mostly the very young and old ages jointly. RH’s

age–cohort component displays the most unstable behaviour and gives significant UVR

values: at ages 0–1 and 50+ for GR, at ages 0–1, 20–40 and 50+ for E&W, at ages

20–40 and 80+ for FR and at ages 0–1, 5–10, 20–40 and 60+ for JP experience. The

related ER values, for RH model range between 7% and 375%, for APC model between

6.5% and 44% and for PL model between 6% and 93%.

At first, in order to verify the need for incorporating cohort components in the HS

model, we examine the deviance residuals of the age–period model structure (equation

(3.5)). Figure A.18 illustrates the deviance residuals when those are treated as period

effects and as cohort effects. In the former case, the shape of the residuals verifies the

appropriateness of the selected age–period components. In the latter case, the noticeable

patterns of the graph support the need for incorporating cohort components.
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Notably, HS model utilises one cohort for GR and JP datasets and two cohorts for E&W

and FR in a consistent manner despite the related low ER values (in most cases they

are less than 0.1%). The 1st age–cohort effect illustrated in Figure A.16 explains mostly

the ages between 45–75, while the 2nd age–cohort effect in Figure A.17 explains the old

ages (75+).

By examining the 1st age–cohort effect, one can observe similar trends between GR and

E&W, and between FR and JP. Specifically, for GR and E&W, for the cohorts born from

1900’s until 1910’s there is a mortality deterioration, from 1920’s until 1945’s there is a

mortality improvement, and from 1945’s a mortality deterioration. Therefore, one can

observe the so–called “golden cohorts” effect, in which people born within the period

1925 to 1945 experience noteworthy improvements in mortality compared to the nearby

decades. These cohort effects have been observed and analysed in several works Renshaw

& Haberman (2006), Booth & Tickle (2008) and Cairns et al. (2009, 2011). Especially,

Cairns et al. (2011) note that cohorts born around 1930 have experienced strong rates

of mortality improvement between ages 40 and 70 in contract to cohorts born 10 years

earlier or 10 years later, while the cohort born around 1950 seems to have experienced

worse mortality than the immediately preceding cohort. An additional feature revealed

by the HS model structure for the same range of ages, refers to people born in 1910’s,

where it is observed a worse mortality improvement compared to the nearby decades.

This feature comes into agreement with the “smoking effect” mentioned in Willets (2004)

and Booth & Tickle (2008). Regarding FR and JP, one can observe that for the cohorts

born from 1900’s until 1920’s there is a relative mortality improvement, from 1920’s

until mid 1930’s a relative mortality deterioration, and from mid 1930’s until mid 1940’s

a relative mortality improvement and a mortality deterioration later. These findings

are in accordance with Willets (2004), where the mortality trends for JP males have

followed a different pattern, showing the existence of two distinctive cohorts: males

born in 1910-1920 and those born in 1935-1945. Also, Janssen et al. (2005), reports that

the mortality for men declines stagnated among French generations born after 1920.

The 2nd age–cohort effect in Figure A.17 reveals similar patterns for E&W and FR. It can

be seen that for the cohorts born before 1900 there is a relative mortality improvement,

and starting from 1910 a relative mortality deterioration. This cohort refers to old ages

(75+) and describes a second “golden cohort” effect at the end of 19th century for these

ages.
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It has to be stated that the graphs in Figures A.16 and A.17 have been truncated,

excluding some of the initial and the last years, in order to focus exactly at the point of

interest. This is because these cohort scores refer mostly to the middle–old or very old

ages (according to their UVR values) and therefore the last years have values close to

zero, as a result of the estimation method described in Section 3.2.

3.4.5 Comparative analysis

In this section, we present the results of the quantitative analysis used to measure the

efficiency of each model for both the fitting and forecasting process.

3.4.5.1 In–sample results

In Appendix A.4, Tables: A.1–A.4 display the in–sample results of the log–likelihood

based tests (AIC, BIC) and of the PE tests (MSPE, MAPE), for each country (we display

only the datasets with the full range of calendar years). The best scores are highlighted

with bold. As can be seen, the HS model outperforms the rest of the models for the

majority of the datasets.

With regard to the in–sample performance, the reader can get an overview of the quality

of fit of all models based on their average ranking using the F–test (Iman & Davenport

(1980)). Moreover, in addition to the F–test, we use the post-hoc BD–test (Dunn

(1961)) in order to investigate the significant differences among the models, following the

methodology described in Section 3.3.3.3. The results of the comparisons regarding the

fitting performance based on the BIC, MSPE and MAPE metrics are given in Table 3.3.

Hence, F–test is performed over 5 mortality models and 14 datasets, for each of the

BIC, MSPE and MAPE metrics. F is distributed according to the F–distribution with

(4)(52) degrees of freedom. The p–values, of the F–test, bare values of order 10−17,

10−27 and 10−14, respectively and therefore, the null hypothesis is rejected for all met-

rics. Therefore, there is a significant difference in the ranking of at least one mortality

model. The CD values of the BD–test are 1.49 and 1.34 at 5% and 10% significant

level respectively. According to Dunn (1961), the performance between the HS model

(denoted as “best” model according to the average ranking) and each of the LC, APC,

and PL models, is significantly different as the corresponding values of average ranks
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MSPE - Ri,j MAPE - Ri,j BIC - Ri,j

LC RH APC PL HS LC RH APC PL HS LC RH APC PL HS

GR
1961-2013 3 1 5 4 2 4 1 5 3 2 4 1 5 2 3
1961-2008 2 1 4 5 3 4 1 5 3 2 3 1 4 2 5
1961-2003 2 1 5 4 3 4 1 5 3 2 3 1 4 2 5

E&W

1841-2016 3 2 5 4 1 4 2 5 3 1 4 2 5 3 1
1841-2006 3 2 5 4 1 3 2 5 4 1 4 2 5 3 1
1841-1996 3 2 5 4 1 3 2 5 4 1 4 2 5 3 1
1841-1986 3 2 5 4 1 3 2 5 4 1 4 2 5 3 1

FR

1816-2015 4 2 5 3 1 5 2 4 3 1 4 2 5 3 1
1816-2005 4 2 5 3 1 4 2 5 3 1 4 2 5 3 1
1816-1985 5 2 4 3 1 4 2 5 3 1 3 2 5 4 1
1816-1965 5 2 4 3 1 4 2 5 3 1 4 2 5 3 1

JP
1947-2016 4 2 5 3 1 4 2 5 3 1 4 2 5 3 1
1947-2006 4 2 5 3 1 4 2 5 3 1 4 1 5 3 2
1947-1996 3 2 5 4 1 4 2 5 3 1 4 2 5 3 1∑

i Rij 48 25 67 51 19 54 25 69 45 17 53 24 68 40 25
R̄j 3,4 1.8 4.8 3.6 1.4 3.9 1.8 4.9 3.2 1.2 3.8 1.7 4.9 2.9 1.8(∑

i Rij

)2
2,304 625 4,489 2,601 361 2,916 625 4,761 2,025 289 2,809 576 4,624 1,600 625∑

j

(∑
i Rij

)2
10,380 10,616 10234

T 44.57 51.31 40.40
F 50.70 142.37 33.67
p–value 2.5·10−17 2.4·10−27 7.3·10−14

R̄j − R̄b 2.0 0.4 3.4 2.3 2.6 0.6 3.7 2.0 2.1 3.1 1.1 0.1

Table 3.3: In–sample fitting performance and comparison of mortality models, for
each dataset, under the MSPE, MAPE and BIC criteria, with CD = 1.49 and CD =
1.34 using the critical values q0.05 = 2.498 and q0.10 = 2.241 at significant level α = 5%

and α = 10% respectively. R̄b denotes the average ranking of the “best” model.

differ by at least the CD values for the MPSE and MAPE metrics. Between the HS and

RH there is no significant difference in their performance. Regarding the BIC criterion,

the performance of the RH model is significantly different, only compared to the LC and

APC models. In fact, the APC has the lowest performance under all the metrics. Con-

sequently, based on the MSPE and MAPE metrics, the HS model has the best ranking

and its overall performance differs significantly from LC, APC and PL models. Based

on the BIC criterion, the RH and HS models have almost identical performance and

differ significantly from the LC, APC and PL models.

Additionally, in Appendix A.3, Figure A.19, complementary results for the fitting process

are presented by the Unexplained Variance (UV) graphs, for each model and for each

country, using the dataset samples containing the entirety calendar years, according

to the methodology described in Section 3.3.3.2. One can observe that, the HS model

significantly outperforms the rest of the models in all countries, except for the GR, where

all models are relatively poor in explaining the fluctuations of young adult ages. We

should stress that in Table 3.4, depicts the percentage of ages where the HS model has
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LC RH APC PL

GR 96% 49% 72% 60%

E&W 100% 100% 100% 100%

FR 100% 100% 100% 100%

JP 100% 81% 100% 99%

Table 3.4: Percentage of ages where HS model achieves better Unexplained Variance
values.

better UV with respect to the rest of the models. For example, for GR data, the HS

model has better UV values for the 72% of the ages compared to the APC.

3.4.5.2 Out–of–sample results

As far as the forecasting analysis is concerned, we deploy the backtesting framework

described in Section 3.3 in order to compute the forecasted mortality rates. The ϕ

parameter of the best DLR nested models, as described in Section 3.3.2, according to the

Kass & Raftery (1995) rules, and the optimum parameters of the selected ARIMA(p,d,q)

models, based on minimum BIC values, for each stochastic mortality model and for each

dataset are shown in Table A.16 and Table A.15, respectively.

Tables A.5–A.14 in A.5 provide a detailed an overview for the efficiency of the models

by giving the out–of–sample results for the PE tests, for each dataset and each forecast

model. By taking a look over the average MSPE and MAPE scores of the three fore-

casting models, one can observe that the our model, in the vast majority of the datasets,

outperforms the rest of the models.

In addition, similar to the in–sample comparison, we compare the models based on

their average ranking using the F–test and the post-hoc BD–test. Table 3.5 provides the

results of the comparisons based on the average MSPE and average MAPE metrics given

in A.5–A.14. Hence, F–test is performed over 5 mortality models and 10 datasets. The

value F is distributed according to the F–distribution with (4)(36) degrees of freedom.

The p–values, of the F–test, bare values of order 10−6 and 10−4, respectively. That

is, the null hypothesis is rejected for all metrics, giving a significant difference of at

least one model. Regarding the BD–test, the CD values are 1.77 and 1.58 at 5% and

10% significant level respectively. Therefore, the pair–wise comparison between the best
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AVG MSPE - Ri,j AVG MAPE - Ri,j

LC RH APC PL HS LC RH APC PL HS

GR
1961-2008 4 2 1 5 3 5 3 4 1 2
1961-2003 5 1 4 3 2 4 2 5 3 1

E&W
1841-2006 2 4 3 5 1 4 5 2 3 1
1841-1996 2 3 4 5 1 3 5 2 4 1
1841-1986 2 3 4 5 1 2 5 3 4 1

FR
1816-2005 3 2 4 5 1 3 2 4 5 1
1816-1985 3 2 4 5 1 3 4 2 5 1
1816-1965 3 2 5 4 1 3 2 4 5 1

JP
1947-2006 4 2 5 3 1 4 2 5 3 1
1947-1996 2 5 4 3 1 3 5 4 2 1∑

i Rij 30 26 38 43 13 34 35 35 35 11
R̄j 3.0 2.6 3.8 4.3 1.3 3.4 3.5 3.5 3.5 1.1(∑

i Rij

)2
900 676 1,444 1,849 169 1,156 1,225 1,225 1,225 121∑

j

(∑
i Rij

)2
5038 4,952

T 21.52 18.08
F 10.48 7.42
p–value 9.8·10−6 1.8·10−4

R̄j − R̄b 1.7 1.3 2.5 3 2.1 2.2 2.2 2.2

Table 3.5: Forecast performance and comparison of mortality models, for each
dataset, under the MSPE and MAPE criteria, with CD = 1,77 and CD = 1,58 us-
ing the critical values q0.05 = 2.498 and q0.10 = 2.241 at significant level α = 5% and

α = 10% respectively. R̄b denotes the average ranking of the “best” model.

model, which is the HS model, and each of the rest, gives significant CD values based

on the MAPE metric, i.e., the performance of our model is significantly different to

the other models according to the MAPE criterion. Regarding the MSPE metric, the

performance of the proposed model is significantly different, except for the cases of the

LC model (only for α = 5%) and the RH model. Also we observe that, PL model has the

lowest performance ranking. Consequently, the HS model has the best ranking in both

MSPE and MAPE criteria, and based on the MSPE metric the HS model is significant

better from LC, APC and PL models (at 10% significant level).

All in all, our results advocate that the proposed model outperforms the other models,

especially in forecast terms. Notably, although the performance of the RH is not signifi-

cantly different from our model based on the fitting performance, the forecasting ability

of our model is significantly different under the MAPE metric. One can observe that

LC and APC models perform better in forecast rather than in fitting, while the opposite

behaviour is observed for PL and RH models.
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3.4.6 Comparative analysis using shorter datasets

In this section, we present a comparative analysis using datasets of shorter periods.

Overall, by observing the results in subsection 3.4.5, the proposed model outperforms

the LC, RH, APC and PL models, both in terms of in–sample and out–of–sample per-

formance for most of the datasets. However, HS model lacks slightly when it comes

to the dataset of Greece. It is noticeable that the Greek dataset is the one having the

shorter period (starting in 1961), which contrasts to the rather long periods for E&W

and France (starting in 1841 and 1816). Over the past two centuries different dynamics

have driven the change in mortality. Therefore, one could say that is reasonable the

HS model, which deploys multiple age-period and age-cohort effects, to outperform the

other more limited models. Motivated by this observation, in order to verify whether

the better performance of the HS model is a result of the extremely long fitting periods

or not, we conduct a thorough evaluation over shorter datasets, while we compare the

fitting performance of the proposed model with respect to the other mortality models.

By following the same rationale as in the previous subsection, we evaluate the fitting

performance of each mortality model to historical data of shorter period, utilising the

most significant performance metrics and we present the results of the quantitative

analysis. Table 3.6 presents the characteristics of each dataset and the parameters used

to fit the HS model structure. Note that, all the model are fitted on the same datasets

with the aim of providing an unbiased quantitative analysis and to investigate further

the behaviour of HS model in shorter datasets.

Country years ages s s/Var(bt1,0) k1 p k2 q

GR 1961-2013 0-84 2.55 0.81 16 4 8 1

E&W 1961-2016 0-89 11.41 1.32 38 4 4 1

FR 1961-2015 0-89 11.81 1.17 23 4 5 1

JP 1961-2016 0-89 19.71 1.41 23 5 7 1

Table 3.6: Optimum parameters according to the HS model structure (3.10) for
datasets of shorter periods

By observing Table 3.6, one could notice that the optimal s–values have been affected

compared to those presented in Table 3.2. This is a justified outcome, as the optimality

of the s–value, as described in subsection 3.2.1.3, is related to the magnitude and the

variance of the data.
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In Appendix A.4, Table A.1 and A.8, Tables: A.18–A.20 present the in–sample results

of the log–likelihood-based tests (AIC, BIC) and the PE tests (MSPE, MAPE), for each

dataset. The best scores are highlighted in bold.

Regarding the PE tests, the HS model outperforms the rest of the models, whereas

regarding the Information Criteria, the RH have better performance, for all datasets.

In addition, with regard to the fitting performance, the reader can have an overview of

the quality of fit of all models based on their average ranking using the F–test (Iman

& Davenport (1980)). Moreover, we use the post-hoc BD–test (Dunn (1961)) in order

to investigate the significant differences among the models, following the methodology

described in Section 3.3.3.3. The results of the comparisons based on the BIC, MSPE

and MAPE metrics are given in Table 3.7.

MSPE - Ri,j MAPE - Ri,j BIC - Ri,j

LC RH APC PL HS LC RH APC PL HS LC RH APC PL HS

GR 1961-2013 3 1 5 4 2 4 1 5 3 2 4 1 5 2 3
E&W 1961-2016 3 2 5 4 1 4 2 5 3 1 5 1 4 2 3
FR 1961-2015 5 2 4 3 1 5 2 4 3 1 5 1 4 3 2
JP 1961-2016 4 2 5 3 1 4 2 5 3 1 4 1 5 3 2∑

i Rij 15 7 19 14 5 17 7 19 12 5 18 4 18 10 10
R̄j 3.8 1.8 4.8 3.5 1.3 4.3 1.8 4.8 3.0 1.3 4.5 1 4.5 2.5 2.5(∑

i Rij

)2
225 49 361 196 25 289 49 361 144 25 324 16 324 100 100∑

j

(∑
i Rij

)2
856 868 864

T 13.6 14.8 14.4
F 17 37 27
p–value 6.9·10−05 1.2·10−06 6.4·10−06

R̄j − R̄b 2.5 0.5 3.5 2.3 3.0 0.5 3.5 1.8 3.5 3.5 1.5 1.5

Table 3.7: Fitting performance and comparison of mortality models, for each shorter
dataset, under the MSPE, MAPE and BIC criteria, with CD = 2.79 and CD = 2.51
using the critical values q0.05 = 2.498 and q0.10 = 2.241 at significant level α = 5% and

α = 10% respectively. R̄b denotes the average ranking of the “best” model.

F–test is applied over 5 mortality models and 4 datasets, for each of the BIC, MSPE and

MAPE metrics. F is distributed according to the F–distribution with (4)(12) degrees

of freedom. The p–values, of the F–test, bare values of order 10−05, 10−06 and 10−06,

respectively and therefore, the null hypothesis is rejected for all metrics. Hence, there is

a significant difference in the ranking of at least one mortality model. The CD values of

the BD–test are 2.79 and 2.51 at 5% and 10% significant level respectively. According

to Dunn (1961), the performance only between the HS model (denoted as “best” model

according to the average ranking) and the APC model is significantly different for the

MSPE. The performance between the HS model and each of the LC and APC models
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is significantly different for the MAPE metric, as the corresponding values of average

ranks differ by at least the CD values. Among the HS, RH and PL, there is no significant

difference in their performance.

Regarding the BIC criterion, the performance of the RH model is significantly different,

only compared to the LC and APC models. In fact, the APC has the lowest performance

under all the metrics. Consequently, based on the MSPE and MAPE metrics, the HS

model has the best ranking and its overall performance differs significantly from LC and

APC models. Based on the BIC criterion, the RH model differs significantly only from

the LC and APC models.

Additionally, in order to measure the total amount of the information captured by each

model we make use of the Explanation Ratio (ER) metric. According to the ER metric

defined in Section 3.3.3.1, as can be seen in Table A.21, the HS model consistently

captures the most amount of variance compared to the rest of the models.

Consequently, according to the evaluation results for the shorter datasets, one can ob-

serve that the HS model consistently outperforms the other models in terms of the MSPE

and MAPE metrics, even if there is no significant difference from the performance of the

RH and PL models. Additionally, HS captures the most amount of the variance of the

data. It can also be observed that RH model performs better from the rest of the mod-

els regarding the BIC, whereas there is no significant difference from the performance

of the HS and PL models, even though the latter are multiple component models and

incorporate more parameters.

Additionally, during our experiments on shorter datasets, the HS model was still able to

designate an identified mortality trend to a unique age cluster, as it is the case for long

period data. However, we opt not to include the graphs of the parameter estimates and

the UV R values in order to keep the evaluation within reasonable limits.

Based on our experimental results, it can be safely argued that the HS model outperforms

the rest of the models, but lacks slightly in BIC due to the incorporation of more

variables. Moreover, the RH model ranked second, whereas the PL model follows next.

The LC and APC models come at the last positions of the ranking. Overall, based

on the results of both short and long period datasets, strong evidences are provided to

support the beneficial characteristics of the HS model.
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3.4.7 Notable differences of Hatzopoulos and Haberman [2011]

As stated in Section 3.2, our proposal adopts two fundamental methods which were first

employed in Hatzopoulos & Haberman (2011) (HH), namely SPCA and GLM. Even

though our proposal shares this common ground with HH model structure, it presents

major improvements and differences.

Specifically, a main relative disadvantage in HH estimation method is that N bootstrap

samples, of normally distributed GLM–estimated parameters, are calculated in order to

choose the “optimum” s–value in the SPCA. This process is repeated for each candidate

sparsity factor leading to a quite complex estimation method. Instead, our work intro-

duces a new method based on the Unexplained Variance Ratio (UVR) metric to pinpoint

the “optimum” s–value among the candidates, while according to our experiments the

set of the candidate values is located in the area around the variance of the bt1,0 value.

Our approach downgrades the computational complexity of the estimation method by

N times.

The aforementioned difference is reflected in the models’ results as well. Due to the

different estimation method, the models capture different age clusters that correspond

to the age–period effects. For the same data (E&W, males, 1841–2006), HS derives 5 age–

period components (Table 3.2 and Figures A.10–A.15), while Hatzopoulos & Haberman

(2011) presented 7. One can observe that the first 5 age–period components of our model

are relative similar to the 1st, 2nd, 4th, 6th and 3rd age–period components of the HH,

respectively. However, even if these components seem to be similar there are notable

peculiarities among them. The 6th period component of the HH model identifies two

different age clusters (ages 31–41 and ages 5–7) in contrast to the HS model, which has

the ability to reveal unique age clusters for each period component. Regarding the 5th

and 7th age–period components of the HH and according to the bootstrap approach, the

former refers to ages 10–14 and age 1, while the latter refers to ages 42–48 and age 0.

However, as has been discussed in Hatzopoulos & Haberman (2011), the ages 0 and 1

exhibit low dependence with respect to other ages, and therefore these two components

combine different mortality dynamics.

Therefore, by using the UVR, the estimation method of the HS model is driven to

maximise the captured information in a more effective way. In addition, due to the

condition of finding those s–values that deduce to unique age clusters, our estimation
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method converges to more informative and efficient stochastic components than the HH

model. Hence, HS model is able to designate a unique mortality trend to a specific

cluster of ages.

Additionally, a notable difference can be found in the construction of the two models.

According to the Hatzopoulos & Haberman (2011) model structure (equation 3a), the

cohort effects are estimated by combining both observed and forecasted estimations,

after obtaining forecast values in period effects (Figure 1, triangle BCG in Hatzopoulos

& Haberman (2011)). This means that the final estimated log–graduated mortality

rates are based, not only on the observed, but also on the forecasted mortality rates. In

fact, according to age–period–cohort expanded model structure given in equation 3a, the

HH model fits the central mortality rates in cohort effects, in parallelogram DCGF in

Figure 1. Thus, for t = t1, . . . , tn and x = x1, . . . , xa, one can observe that the mortality

rates residing in triangle ADF are not being estimated in terms of cohort, but are only

estimated by the age–period model structure. Hence, the final estimates omit the cohorts

from t1 − x2 to t1 − xa. On the contrary, as has been described in Section 3.2.1.2, the

estimation method proposed in this work estimates the age–cohort components by using

simple GLM polynomial structures without applying any forecast method in period

effects. Therefore, the final log–graduated mortality rates are estimated based only

on the observed mortality rates defined by parallelogram BCDE in Figure 3.1. The

aforementioned characteristics reveal a different model structure between the HH and

HS model.

Comparing the age–cohort components of Figures A.16–A.17 and Figure 8 in Hatzopou-

los & Haberman (2011), it is obvious that the HS model produces distinct and more

interpretable mortality dynamics for particular age ranges. On the downside, the HH

model ends up with 3 age–cohort components with quite complicated structure, explain-

ing unrelated range of ages. This happens mainly for two reasons. On the one hand, the

estimation method of HH is based on bootstrap for defining the optimal s–value. This

kind of selection of the s–value leads to a more indistinct determination of the significant

age–period components and, in this way, these defects are carried over to the age–cohort

effects. In particular, the inclusion of the 7th age–period component leads the cohort

structure of HH to break down, while in the HS model the ages 40–50 are part of the

significant ages explained by the 1st age–cohort component (Figure A.16). On the other

hand, the fact that the more complicated age–cohort effects of HH are derived out of
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both forecasted and observed estimations, can affect the final results in an ambiguous

way.

Overall, the proposed method provides a remarkably faster and simpler approach for

estimating the mortality rates, and thus more friendly for experimental results. Addi-

tionally, our model captures the relevant significant interaction components in a more

efficiently and distinct manner.

3.5 Discussion

This Section provides an overall discussion upon the findings of the mortality models’

evaluation, while it summarises the contributions of our work with respect to our results.

With reference to the Tables 3.3–3.5, and those residing in Appendix A.4 and A.5, we

can derive an overall performance ranking for the examined models.

The LC model is the simplest one having the lowest number of parameters, but the

absence of additional age–period and age–cohort effects is reflected in its in–sample

results. Although the LC model scores one of the lowest in–sample performances (4th

ranking among all criteria), it performs much better in forecast terms (2nd and 3rd

ranking in MSPE and MAPE criteria respectively).

The APC model, although it is simple and has distinct and consistent components

(Figures A.4–A.5), achieves the lowest scores, both in fitting and forecasting (5th ranking

for the fitting and 4th or 5th ranking for the forecasting performance). It has to be stated

that, the APC model is the only one that separates the age, period and cohort effects

independently, utilising a constant age effects in the period and cohort components.

Therefore, although LC and APC models lack of certain desirable characteristics, par-

ticularly in terms of fitting performance, the simple structure and the consistent period

or cohort trends (Figures A.1 and A.4–A.5) enable them to score better forecast perfor-

mance.

The RH model performs relatively well for the in–sample data (1st or 2nd best scores),

but in terms of forecast achieves relative poor results (2nd and 4th ranking). In fact,

RH model achieves better results from LC, APC and PL models for most of the tests.

However, RH model can be questioned for its robustness. Figures A.2 and A.3 reveal its
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unstable and complicated age–cohort structure, which can justify to an certain extend

the worse forecast performance.

Regarding the PL model, although in the in–sample tests it has an average performance

(it ranks 3rd), in terms of forecast it has the lowest ranking. Also, according to the UVR

values (Figures A.6–A.9), one could say that, for each additional component, the PL

model cannot define mortality dynamics which are attributed to a distinct and consistent

age range. In addition, the corresponding mortality trends κt’s and γc’s scores, are rather

complicated and difficult to interpret. This feature affects negatively to a certain extent

its forecast performance.

According to the above, it can be noted that the LC and the APC models have the inverse

behaviour with respect to the PL and the RH model, regarding the fitting and forecasting

performance. This finding is aligned to the conclusion of Cairns et al. (2011) who claim

that a good fit to historical data does not guarantee sensible forecasts. Specifically, the

LC and APC achieve better performance in forecast terms, mainly due to their simpler

structure and to their robust behaviour, while the PL and RH perform worse in forecast,

due to lack of robustness, consistency and interpretability of the relevant components.

The RH model is known to have important stability and robustness issues explained

by some identifiability problems as reported by Hunt & Villegas (2015). In fact, these

issues could explain to an extent the unstable UVR values, negative ER values, poor

forecasting performance and non-robust parameter estimates. Notably, Hunt & Villegas

(2015) proposed an approach that can resolve some to the issues of the RH model.

This approach is implemented by Villegas et al. (2018) using the R package StMoMo.

However, for consistency reasons we opt to include in our comparative analysis the initial

model as provided by Lifemetrics tool.

The HS model has an excellent performance and ranks first among the compared mod-

els, both in terms of fitting and forecasting. Notably, the HS model gives significant

differences compared to the remaining models, based on MAPE metric, both in terms

of fitting and forecasting performance, while based on MSPE metric, HS model is sig-

nificant better than LC, APC and PL.

As a general outcome of the above comparisons, it can be noted that the multiple com-

ponent models, which includes interaction age effects in period and cohort components,
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give a more accurate mortality overview concerning both the fitting and the forecasting

performance.

We introduce a novel estimation method for constructing the age–period and age–cohort

effects, which is driven by the UVR criterion. In particular, a fast and relative simple

approach is described in Section 3.2 with the aim of selecting the optimum sparse factor,

s–value. In this way, the optimum s–value reveals distinct age–period and age–cohort

dynamics. Therefore, our estimation method leverages the SPCA in conjunction with

UVR criterion, in order to choose the relative components, as well as to pinpoint the

exact age clusters that significantly contribute to particular mortality dynamics.

It has to be stated that, for all the datasets, the proposed model is consistently com-

posed of three significant common age–period effects and one common age–cohort effect.

The first common age–period component explains mostly the young and the middle ages

(Figure A.10), which captures the vast majority of the explained variance (Table A.17)

since those ages historically account for most of the mortality improvements. The second

age–period component (Figure A.11) describes the “ageing of mortality improvement”,

as it reflects an acceleration of the rate of mortality improvement at higher ages. This ev-

ident segregation between the young and the old ages designates the mortality dynamics

more precisely, and more importantly, results to an improved forecast performance. The

third common age–period component (Figure A.12), describes the young–adult ages,

where most of the deaths are due to external causes and drugs. Although the mortality

rates at these ages are relatively low, they contribute considerably to years of life lost.

Furthermore, significant supplementary age–period components are employed based on

a dataset’s peculiarities. These components describe, either the ages 30–45 in which

deaths are mostly connected to the HIV/AIDS and drugs (Figure A.13 for GR, E&W

and JP datasets), or the infant diseases (Figure A.14 for FR dataset), or the “accident

hump” effect (Figure A.15 for E&W and JP datasets). The common age–cohort com-

ponent (Figure A.16) refers to middle–old ages, and the findings are in accordance with

the relative literature (“golden cohort” and “smoking” effect) as discussed in Section

3.4. In addition, for datasets with long mortality history (EW and FR), our model gives

another “golden cohort” effect for the very–old ages, at the end of the 19th century

(Figure A.17). In fact, the necessity of incorporating cohort effect is supported by the

deviance residual plots in A.2, where the graphs show a clear cohort pattern. Although,
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the corresponding ER values are very low, these cohort components facilitates the de-

scription of well–known mortality characteristic (“golden cohort”, “smoking effects”) in

a robust manner.

As stated above, due to our model structure and the utilised estimation method, the age-

cohort effects of the HS model explain mostly the old ages and produce low ER values

(Table A.17), as most of the variance of the mortality data is captured by the age–period

components. During our experimental study, we noticed that the age–cohort components

do not have any effect on the out–of sample performance, and for this reason, forecasting

the cohort effects, γc indexes, is unnecessary. Therefore, the associated forecast models

of the cohort effect in Tables A.15 and A.16 are omitted, as the log–graduated forecasted

mortality rates are estimated under the age-period model structure.

Our results are aligned to well-established findings of the mortality literature and this

advocates the beneficial characteristics of the proposed model. The utilisation of the

SPCA in association with the UVR-driven estimation method produce interpretable

distinct mortality dynamics for particular age ranges. Furthermore, it can be observed

from Figures A.10–A.17 that our model is robust, as it describes different mortality

datasets with high consistency and accuracy, both in terms of fit and forecast.

We may conclude that, the new estimation method results to a model that satisfies all

the desirable characteristics considered by Cairns et al. (2009). In comparison to the

Hatzopoulos & Haberman (2011), our model embraces the two fundamental elements of

SPCA and GLM, but despite this common ground the newly introduced model brings

in several novelties that boost the capabilities of our model in terms of computational

complexity, simplicity, efficiency and interpretability.



Chapter 4

Extensions on the

Hatzopoulos–Sagianou

Multiple-Components Stochastic

Mortality Model

In this chapter, we present extensions of the Hatzopoulos–Sagianou (2020) (HS) multiple-

component stochastic mortality model which presented in the previous chapter of this

doctoral thesis. Our aim is to thoroughly evaluate and stress test the HS model by de-

ploying various link functions, using generalised linear models, and diverse distributions

in the model’s estimation method. In this chapter, we differentiate the HS approach by

modelling the number of deaths using the Binomial model commonly employed in the

literature of mortality modelling. Given this, new HS extensions are derived using the

off-the-shelf link functions, namely the complementary log–log, logit and probit, while

we also reform the model by introducing a new form of link functions with a particular

focus on the use of heavy-tailed distributions. The above-mentioned enhancements con-

clude to a new methodology for the HS model, and we prove that it is more suitable than

those used in the literature to model the mortality dynamics. In this regard, this chapter

offers an extensive experimental testbed to scrutinise the efficiency, explainability and

capacity of the HS extensions using both the off-the-shelf and the newly introduced form
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of link functions over datasets with different characteristics. The introduced HS exten-

sions bring an improvement by approximately 16% to the model’s goodness-of-fit, while

they uncover more fine-grained age clusters. In addition, we compare the performance

of the HS extensions against other well-known mortality models, both under fitting and

forecast modes. The results reflect the advantageous features of the HS extensions to

deliver a highly informative structure and enable the attribution of an identified mortal-

ity trend to a unique age cluster. The above-mentioned improvements enable mortality

analysts to perform an in-depth and more detailed investigation of mortality trends for

specific age clusters and can contribute to the attempts of academia and industry to

tackle the uncertainties and risks introduced by the increasing life expectancy.

4.1 Introduction

Regardless of the peculiarities of each mortality model implementation, the aim is to

analyse mortality by decomposing the mortality rates in the dimensions of age, period

and cohort (or year of birth). As described in Section 2.1, a generic formula (see Equation

(2.1)) is defined and can represent the majority of stochastic mortality models in line

with the principles of generalised linear models (GLMs) Hunt & Blake (2021), Currie

(2016), Villegas et al. (2018). The complete documentation of the principles, the theory

and application of GLMs can be found in McCullagh & Nelder (1989).

In short, in the context of GLMs, the results of the dependent variables are considered

to originate from certain distributions belonging to the exponential family. This is a

wide range of probability distributions, such as the Binomial, Poisson, Gamma and

Normal distributions. The GLMs are a generalisation of the classical linear models.

More specifically, the GLMs generalise linear regression by allowing the linear model

to connect to the response variable using a link function. Thus, the latter enables the

connection of the linear predictor and the mean of the distribution function. In general,

various link functions can be used, but as is the case in the GLM literature, the so-

called canonical link functions are the prominent ones used in the mortality literature

by stochastic mortality models. The canonical link functions are the log and the logit

for the Poisson and Binomial distributions, respectively. Despite the canonical ones, the

complementary log–log and probit link functions have also been used for the Binomial

distribution.



Chapter 4. Extensions on the Hatzopoulos–Sagianou Multiple-Components Stochastic
Mortality Model 65

In the context of GLMs, some requirements must be taken into account in order to select

the proper link function. The same applies for mortality models. Early attempts in the

mortality modelling field consider as a requirement that the data should be transformed

in order to obtain an approximately linear predictor structure Hunt & Blake (2021).

To achieve this, one has a wide range of options of link functions to utilise. Notably,

there are several studies in the wild that use and experiment on various link functions

in order to more accurately model either mortality rates or death probabilities and

even to extend already known or introduce new flavours of stochastic mortality models

Haberman & Renshaw (1996), Currie (2016). In this line of thought, StMoMo gives the

ability to parameterise the models’ estimation process. However, it limits the choices

only to the use of the canonical link functions, while GLM-based estimation could be

performed under various link function options and there is no a priori reason why other

links should not work well. Motivated by this fact, our work aims to explore and expand

the range of choices of link functions used in the context of mortality modelling. To do

so, we conduct our investigation using the HS model and we introduce a new form of

link functions that extend the model and its capacity by offering new HS flavours.

In view of the above, this chapter extends the stochastic mortality model of the HS,

which was introduced in Chapter 3 using central mortality rates, mt,x, under the Poisson

distribution and log link function, by formulating it in terms of conditional probabilities

of death, qt,x, and the Binomial distribution using a wide set of link functions. In fact,

the extension of the HS model is twofold. On the one hand, we adapt the HS to be

modelled using off-the-shelf, i.e., well-known, link functions in the literature, namely the

logit, complementary log–log and probit. This approach is in line with the rationale

used in tools such as StMoMo for ratifying models both in the Poisson and the Binomial

cases, while it calls forth the HS model to prove its capacity on a new experimental

testbed. On the other hand, we introduce a new form of link functions in an effort to

further improve the goodness-of-fit and the explainability of the model, and we evaluate

their applicability in the context of mortality through the HS extensions. A particular

focus is given to the use of heavy-tailed distributions. From a modelling perspective,

heavy-tailed distributions are important when extreme events must be part of the model.

For example, although the probability of shock cases, such as mortality during World

War II or the COVID-19 pandemic, is small, the magnitude of the impact is so large

that these events are vital in capturing the mortality dynamics in an accurate manner,
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i.e., to ensure that the high variability due to the extreme events (e.g., κ3t in Figure B.1)

can be explained by the model.

To the best of our knowledge, it is the first time that those link functions are tested in

the mortality domain. Therefore, we build a multidimensional testbed, and we showcase

that the HS retains its robust characteristics, i.e., (i) the identification of the significant

incorporated period and cohort effects, (ii) the identification of distinct stochastic com-

ponents and (iii) the attribution of an identified mortality trend to a unique age cluster.

We assess the capabilities of the HS extensions using the data of males from England

and Wales and also Greece provided by the Human-Mortality-Database.

In short, the contributions of the work presented in this chapter are as follows:

• We extend the stochastic mortality model HS formulated in terms of qt,x, using

generalised linear models and by adopting various link functions. We illustrate

through experimental results that the HS model remains robust and consistent

under all modelling variations.

• We introduce a new set of link functions, with a particular focus on heavy-

tailed distributions, and we evaluate their applicability in the context of mortality

through the HS extensions. This approach leads to the definition of a new estima-

tion methodology for the HS model. To the best of our knowledge, it is the first

time that those link functions are evaluated in the mortality modelling domain.

• We compare the efficiency of the new model extensions versus the established

mortality models in fitting and forecasting modes. For the latter case, we use an

out-of-sample approach to assess the prediction ability of each model by using the

Random Walk with Drift (RWD) model and optimum ARIMA models based on

the Bayesian Information Criterion (BIC) test.

• We highlight the lessons learnt to inform the community about the adoption of

the various link functions in the models’ estimation methods having witnessed the

beneficial impact of this approach to our model’s efficacy.

The rest of this chapter is organised as follows: In Section 4.2, we present the newly

introduced methodology and the updated estimation method for the HS extensions using

the off-the-shelf and the new form of link functions. Section 4.3 outlines the evaluation
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approach and the performance results of the HS extensions. Section 4.4 provides an

overall discussion on the findings and concludes the chapter. In addition, Appendix B

offers technical details and the graphical representations of the generated results.

The reader may refer to Section 2.1 for the notation used and to Section 2.2 for back-

ground information for the GLM framework.

4.1.1 A summary of the Hatzopoulos–Sagianou (HS) Model method-

ology

Before we proceed to the documentation of the necessary adaptations of the model in

order to introduce a new form of link functions and test their applicability to the HS in

Section 4.2, we offer a synopsis of the estimation method of the HS model. For more

details, the reader can refer to Chapter 3.

HS is a dynamic multiple-component model that includes p age–period and q age–cohort

non-predefined effects. The HS model has the following form:

log(mt,x) = αx +

p∑
i=1

β(i)
x κ

(i)
t +

q∑
j=1

βc(j)
x γ(j)c

The number of age–period and age–cohort effects vary depending on the experimental

dataset, i.e., the intrinsic mortality peculiarities of the examined population for a given

time frame. The estimation methodology for defining the most important p age–period

and q age-–cohort components is briefly described below. The model structuring method

is unfolded in four steps, each of which utilises a method which brings to the model its

competitive advantages as will be described later.

Step #1: GLM is applied, with the number of deaths being the response variable, Dt,x,

for each calendar year t independently, by using the log link function, i.e., the canonical

link function for the Poisson distribution, and we treat the logarithmic exposure variables

(i.e., log(Ec
t,x) ) as an offset. The predictor structure is:

ηt,x = log
(
E
(
Dt,x

))
= log(Ec

t,x ×mt,x) = log(Ec
t,x) + log(mt,x)
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Therefore, treating age as an explanatory variable, the linear predictor is produced using

an orthonormal polynomial structure in age effects for each calendar year independently.

That is, the following predictor structure is defined as:

log(m̂t) = bt · LT (4.1)

where, bt corresponds to the vector of the GLM-estimated parameters for calendar year

t. Given this, a random (asymptotically normal) matrix B = {bt,k−1}, k = 1, . . . , k1,

of order (n × k1), includes the GLM-estimated parameters for all calendar years t =

t1, . . . , tn. L = {lx,k−1}, k = 1, . . . , k1, is a (a × k1)-dimensional matrix of orthonormal

polynomials with degree of k1 − 1 for age x.

Step #2: This step aims to keep in the model only the factors explaining most of the

data’s information in order to decrease the dimensionality of the problem. To do so,

SPCA is applied to the covariance matrix of the GLM-estimated parameters B. Given

the covariance matrix, A = Cov(B), as stated in Luss & d’Aspremont (2006), the (dual)

problem of defining a sparse factor, which will allow to capture the maximum amount

of data’s variance, can be formulated as follows:

min λmax(A+ U), s.t. |Uij | ≤ s (4.2)

where s is a scalar that defines the sparsity. The definition of the “optimum” s value

and, consequently, the most important p age–period (and corresponding q age–cohort

components) is achieved using the unexplained variance ratio (UVR) approach.

Step #3: Hatzopoulos & Sagianou (2020) introduced a heuristic methodology based

on UVR metric to define the optimal model structure, i.e., to incorporate the most

important (i.e., informative) age–period and age–cohort components. This methodology

is described in detail in Section 3.2.1.3. It must be stated that the optimal model

structure is achieved through the process of defining the optimal s value. In other words,

the definition of the optimal model structure coincides with the definition of the optimal

scalar s, which in turn controls the sparsity in SPCA. This process is driven by the

UVR metric in order to converge to components that maximise the captured variance of

the mortality data and to acquire distinct and significant stochastic components, which

enable the attribution of an identified mortality trend to a unique age cluster. The
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aim is to decrease the number of age–period components from k1 to p. The excluded

components are then treated as residuals.

Overall, the HS estimation methodology takes advantage of the SPCA and the UVR

criterion, not only for pinpointing the informative p components but also for uncovering

the age clusters that significantly contribute to the mortality trend of each component.

This approach results in the following model:

log(m̂t,x) = α̃x +

p∑
i=1

β(i)
x · κ

(i)
t + εt,x (4.3)

where the residuals εt,x at age x in year t denote the deviation of the model as a result

of the excluded sparse principal components (SPCs).

The estimation process for the age–cohort components follows a similar approach to that

for the age–period ones. However, the cohort structure is defined using principal compo-

nent analysis. Thus, the UVR method determines the optimal number q of age–cohort

components by pinpointing those that, again, reveal unique age clusters.

Step #4: The complete model structure is synthesised. Following the UVR-based

method, after having estimated the significant (informative) age–period and age–cohort

effects, we conclude to the final estimates of the log-graduated central mortality rates

in age, period and cohort effects:

log(m̃t,x,c) = αx +

p∑
i=1

β(i)
x · κ

(i)
t +

q∑
j=1

βc(j)
x · γ(j)c

for the calendar years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t − x =

c1, . . . , cnc .

4.2 Methodology

In this section we proceed to the documentation of the extended form of the HS model,

formulated in terms of qt,x (while the initial version presented in Chapter 3 was in terms

of mt,x), and we adapt the HS to be modelled using: (i) off-the-shelf link functions in the

literature, namely the logit, complementary log–log and probit, and (ii) by introducing a

new form of link functions in an effort to further improve the goodness-of-fit of the model
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and to evaluate their applicability in the context of mortality through the HS extensions.

The aforementioned cases are described in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 HS Model Using Off-the-Shelf Link Functions

We extend the HS model through the formulation in terms of qt,x and by adopting the

estimation methodology described in Section 4.1.1 making the appropriate configura-

tions. Under this prism, the data include the number of deaths (Dt,x) and the initial

exposure to risk (E0
t,x), for t = t1, ..., tn and for x = x1, ..., xa.

We treat dt,x as a random variable, Dt,x and the initial exposures E0
t,x as fixed, then

Dt,x follows a Binomial distribution with mean E0
t,x × qt,x and let Qt,x =

Dt,x

E0
t,x

be the

random variable corresponding to qt,x =
dt,x
E0

t,x
. In the case of the Binomial distribution,

the following three link functions can be used:

i logit: η = log
(

q
1−q

)
ii probit: η = Φ−1(q) where Φ(·) is the Normal cumulative distribution function.

iii complementary log–log: η = log(− log(1− q))

Thus, and according to McCullagh & Nelder (1989) and Currie (2016), we have 0 < q < 1

and a link should satisfy the condition that it maps the interval (0, 1) onto the whole

real line (e.g., −∞ < logit(q) <∞).

At this point, we follow the four steps mentioned in Section 4.1.1 to model the age–period

and age–cohort components. Therefore, a GLM approach is applied for each calendar

year t independently, with dependent variable Dt,x, binomial error, E0
t,x weights, the

corresponding link function and linear predictor η = b ·X. We note that the exposures

are introduced into the Poisson model (see Ch.3) as an offset, but into the Binomial

model as a weight, and the model matrix, X, is a matrix of orthonormal polynomials,

so that:

• ηt = logit(E(Qt)) = logit

(
E
(

Dt,x

E0
t,x

))
= log

(
qt

1−qt

)
= bt · LT

or ηt = probit(E(Qt)) = Φ−1(qt) = bt · LT

or ηt = cloglog(E(Qt)) = log(− log(1− qt)) = bt · LT
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where bt corresponds to the vector of the GLM-estimated parameters for calendar year

t. Given this, a random (asymptotically normal) matrix B = {bt,k−1}, k = 1, . . . , k1,

of order (n × k1), includes the GLM-estimated parameters for all calendar years t =

t1, . . . , tn. L = {lx,k−1}, k = 1, . . . , k1, is a (a × k1)-dimensional matrix of orthonormal

polynomials with degree of k1−1 for age x. The optimal degree k1−1 of the orthonormal

polynomials is defined by using a variety of statistical tests.

Then, we continue with the next two steps by applying the SPCA to the associated

covariance matrix of the GLM-estimated parameters B and, in tandem with the UVR

approach, we come to the following age–period stochastic mortality model:

ηt,x = logit(qt,x) = α̃x +

p∑
i=1

β(i)
x · κ

(i)
t + εt,x

In a similar way, we deploy the rest of the link functions, i.e., the probit and cloglog, in

order to define the corresponding HS variations for the age–period part of the model.

Finally, the age–cohort components are estimated in a way similar to that of the age–

period components, and then the final form of the estimates of the age–period–cohort

stochastic mortality model is defined as:

ηt,c,x = logit(q̂t,c,x) = αx +

p∑
i=1

β(i)
x · κ

(i)
t +

q∑
j=1

βc(j)
x · γ(j)c

for the calendar years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t − x =

c1, . . . , cnc . In a similar way, one can deploy the rest of the off-the-shelf link functions.

4.2.2 Introducing a New Form of Link Functions in the Mortality Mod-

elling

Triggered by the probit case, where the cumulative distribution function of the standard

normal distribution is used, we generalise this rationale as the inverse of any continuous

cumulative distribution function can be used for the link, as long as a proper transfor-

mation is given to satisfy the condition that the CDF’s range should be mapped to the

whole real line.

As is the case for the probit, the same applies to the newly proposed form of link

functions. We treat dt,x as a random variable, Dt,x and the initial exposures E0
t,x as



Chapter 4. Extensions on the Hatzopoulos–Sagianou Multiple-Components Stochastic
Mortality Model 72

fixed, then Dt,x follows a Binomial distribution with mean E0
t,x×qt,x and let Qt,x =

Dt,x

E0
t,x

be the random variable corresponding to qt,x =
dt,x
E0

t,x
. As noted in Section 4.2.1, we have

0 < qt,x < 1. Thus, the link function that we choose should satisfy the condition that

it maps the interval (0, 1) to the whole real line. Following this rationale, there are

the following three categories to be considered and provide a transformation method,

depending on the cumulative distribution chosen:

1. The cumulative distribution as link function, maps q, 0 < q < 1, to −∞ <

F−1(q; ξ, θ) <∞, so that:

ηt = F−1
(
E(Qt); ξ, θ

)
= F−1

E

(
Dt

E0
t

)
; ξ, θ

 = F−1 (qt; ξ, θ) = bt · LT

or

E

(
Dt

E0
t

)
= qt = F (ηt; ξ, θ)⇔ qt = F (bt · LT ; ξ, θ)

For instance, some distributions that can be used are: Normal, Logistic, Extreme

value, Gumbel, etc.

2. The cumulative distribution as link function, maps q, 0 < q < 1, to 0 <

F−1(q; ξ, θ) <∞, so the logarithmic form of the cumulative distribution is needed

to map q, to −∞ < log(F−1(q; ξ, θ)) <∞, the natural scale for regression, so that:

ηt = log(F−1(E(Qt); ξ, θ)) = log
(
F−1(qt; ξ, θ)

)
= bt · LT

or

E

(
Dt

E0
t

)
= qt = F (exp(ηt); ξ, θ)⇔ qt = F (exp(bt · LT ); ξ, θ)

For instance, some distributions that can be used are: Generalised Pareto, Weibull,

Fréchet, etc.

3. The cumulative distribution as link function, maps q, 0 < q < 1, to 0 <

F−1(q; ξ, θ) < 1, so we need the logit of the cumulative distribution so that maps

q, to −∞ < logit(F−1(q; ξ, θ)) <∞, the natural scale for regression, so that:
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ηt = logit(F−1(E(Qt); ξ, θ)) = logit
(
F−1(qt; ξ, θ)

)
= log

(
F−1(qt; ξ, θ)

1− F−1(qt; ξ, θ)

)
= bt · LT

or

E

(
Dt

E0
t

)
= qt = F

(
exp(ηt)

1 + exp(ηt)
; ξ, θ

)
⇔ qt = F

(
exp(bt · LT )

1 + exp(bt · LT )
; ξ, θ

)

For instance, Beta distribution can be used in this case.

In this work, particular focus is given to the use of heavy-tailed distributions. From

a modelling perspective, heavy-tailed distributions are important when extreme events

must be part of the model. For example, although the probability of shock cases, such

as mortality during World War II or the COVID-19 pandemic, is small, the magnitude

of the impact is so large that these events are vital in capturing the mortality dynamics

in an accurate manner. In this regard, as will be showcased in Section 4.3, we document

the use of the Generalised Pareto and Beta distributions through the corresponding

extensions of the HS model.

Table 4.1 summarises the transformations of the HS model along with key characteristics.

Table 4.1: Link functions transformations of the HS model.

Dist Link Name Link Function η = g(µ) =
Xβ

Mean Function µ =
g−1(Xβ)

Logit log
(

µ
1−µ

)
= Xβ µ = exp(Xβ)

1+exp(Xβ)

Cloglog log(− log(1− µ) = Xβ µ = 1− exp(− exp(Xβ))

Probit Φ−1(µ) = Xβ µ = Φ(Xβ)

Inverse CDF

F−1(µ; ξ, θ) = Xβ, if −∞ <
F−1(x) <∞

µ = F (Xβ; ξ, θ)

log(F−1(µ; ξ, θ)) = Xβ, if
0 < F−1(x) <∞

µ = F (exp(Xβ); ξ, θ)

B
in
om

ia
l

logit(F−1(µ; ξ, θ)) = Xβ, if
0 < F−1(x) < 1

µ = F
(

exp(Xβ)
1+exp(Xβ) ; ξ, θ

)

Based on the analysis given above, one needs to estimate the parameters of each possible

distribution. That is, in the context of the HS model, the estimation methodology

outlined in Section 4.1.1 needs to be revised in order to incorporate the estimation
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process of the parameters of each possible distribution. This revised method is described

in the following subsection.

4.2.2.1 HS Revised Estimation Methodology

The revised estimation process follows the rationale and the methodology steps analysed

in Chapter 3 by making appropriate configurations. The ultimate goal is the definition of

the age–period and age–cohort effects, but this time, by including the task of estimating

the parameters of the adopted distribution.

In this section, we opt to showcase how the estimation process is updated using the 2nd

case of the new form of the link function, namely the logarithm of the inverse cumulative

distribution, as documented in Section 4.2.2, i.e., −∞ < log(F−1(q; ξ, θ)) < ∞, where

F is a cumulative distribution (e.g., Generalised Pareto). The same process can also be

followed for the rest of the identified cases in Section 4.2.2, but we opt to document one

of the cases for simplicity reasons.

In this regard, the estimation of the parameters of the adopted distribution requires the

estimation of the (ξ, θ) pairs for both the age–period and the age–cohort part of the

model, referring to them as (ξt, θt) and (ξc, θc), respectively.

Hence, regarding the age–period effects, before we follow the four steps of the estimation

methodology described in Section 4.1.1, we first need to determine the parameters of

the selected distribution and the respective link function.

For fitting the probabilities of deaths, qt,x, to the chosen cumulative distribution, we

need to pinpoint a particular pair (ξt, θt) of parameter values from the set of all possible

pairs, so that the q̂t,x will be estimated as close as possible to the observed data. To

build an unambiguous approach, this parameter estimation process must be driven by

a measure of distance or discrepancy between the observed qt,x and the fitted q̂t,x (e.g.,

classical least square) or by maximising the model’s log-likelihood. In our case, we opt

for the log-likelihood maximisation approach given by:

L(dt,x, d̂t,x) =
∑
t

∑
x

{
dt,x log

(
d̂t,x
E0

t,x

)
+ (E0

t,x − dt,x) log

(
E0

t,x − d̂t,x

E0
t,x

)
+ log

(
E0

t,x

dt,x

)}
(4.4)
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where

d̂t,x = E0
t,x · F (exp(α̃x +

p∑
i=1

β(i)
x · κ

(i)
t ); ξt, θt)) (4.5)

and the pair of parameters (ξt, θt) is the one that maximises the aforementioned measure.

The fitted q̂t,x are estimated by using the GLM approach. Thus, a GLM approach is

applied for each calendar year t independently, with dependent variable Dt,x, and the

initial exposures E0
t,x are handled as a weight. By using the appropriate link function,

the following predictor structure is defined:

ηt = log(F−1(E(Qt); ξ
t, θt)) = log

F−1

E

(
Dt,x

E0
t,x

)
; ξt, θt




= log
(
F−1(qt; ξ

t, θt)
)
= bt · LT

(4.6)

where bt corresponds to the vector of the GLM-estimated parameters for calendar year t,

having chosen the optimum parameter values (ξt, θt). Given this, a random (asymptot-

ically normal) matrix B = {bt,k−1}, k = 1, . . . , k1, of order (n× k1), includes the GLM-

estimated parameters for all calendar years t = t1, . . . , tn. L = {lx,k−1}, k = 1, . . . , k1,

is a (a× k1)-dimensional matrix of orthonormal polynomials of k1 − 1 degree for age x.

The optimal degree k1 − 1 of the orthonormal polynomials is defined by using a variety

of statistical tests.

According to the steps described in Section 4.1.1, SPCA is applied to the covariance

matrix of B to decrease the dimensionality of the problem. Note that we apply the

UVR approach, not only to define the “optimum” s value for the sparsity but also to

define the most significant p age–period components. In such a manner, the number of

age–period components is decreased from k1 to p. Thus, the age–period form (logarithm

of the inverse cumulative distribution in this case) of the model is as follows:

log(F−1(qt; ξ
t, θt)) = α̃x +

p∑
i=1

β(i)
x · κ

(i)
t + εt,x (4.7)

where the disturbance term εt,x ∼ N(0, vx) (or residuals) is the error component at age

x in year t and reflects the deviation of the model due to the excluded components.

Regarding the age–cohort components, the estimation process is, in a way, similar to that

for the age–period components. Therefore, our data, Dt,x, E
0
t,x and qt,x, are processed
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as cohorts.

Thus, the GLM approach is applied for each cohort c = t−c = c1, ..., cnc, with dependent

variable Dc,x. Note that the exposures are introduced as a weight, and the p age–period

effects (Equation (4.7)) are handled as an offset, so that:

ηc = log(F−1(qc; ξ
c, θc)) = bc · (Lc)T + offset (4.8)

offset = log(F−1(q̂t; ξ
t, θt)) = α̃x +

p∑
i=1

β(i)
x · κ

(i)
t

where bc corresponds to the vector of the GLM-estimated parameters for each cohort c.

Given this, a random (asymptotically normal) matrix Bc = {bc,k−1}, k = 1, . . . , k2, of

order (nc × k2), includes the GLM-estimated parameters for all cohorts c = c1, . . . , cnc .

Lc = {lcx,k−1}, for k = 1, . . . , k2, is an (a × k2)-dimensional matrix of orthonormal

polynomials with k2 − 1 degree for age x. Note that the pair of optimum parameter

values (ξc, θc) for the age–cohort components are defined by following the same approach

as described in the age–period case, i.e., by maximising the log-likelihood of the model.

To do so, this process is driven again by Equation (4.4), but dt,x and E0
t,x are processed

as cohorts and d̂c,x is defined as:

d̂c,x = E0
c,x · F

exp

α̃c
x +

q∑
j=1

βc(j)
x · γ(j)c + offset

 ; ξc, θc

 (4.9)

The optimum degree k2−1 of the orthogonal polynomials Lc is achieved using the same

statistical tests as was the case for the age–period effect estimation methodology.

Finally, we apply eigenvalue decomposition to the matrix of the GLM-estimated param-

eters Bc and, in tandem with the UV Rc approach described in Hatzopoulos & Sagianou

(2020), which is used to determine the optimum number of age–cohort components, we

come to the following age–cohort stochastic mortality model:

ηc,x = log(F−1(qc,x; ξ
c, θc)) = α̃c

x +

q∑
j=1

βc(j)
x · γ(j)c + εc,x (4.10)
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Hence, by combining Equations (4.7) and (4.10), the final form of the age–period–cohort

stochastic mortality model is defined as:

ηt,c,x = log(F−1(q̂t,x; ξ
t, θt) + log(F−1(q̂c,x; ξ

c, θc) = αx +

p∑
i=1

β(i)
x · κ

(i)
t +

q∑
j=1

βc(j)
x · γ(j)c

(4.11)

for the calendar years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t − x =

c1, . . . , cnc .

According to the aforementioned method, after estimating the significant age–period

and age–cohort effects utilising the SPCA, UVR and GLM approaches, we conclude to

the final estimates of the probabilities of death in age, period and cohort effects.

It becomes clear that the UVR plays an important role in the formation of the model.

That is, the UVR takes the form given in Equation (4.12), specifically for the case

log(F−1(q; ξ, θ)), where F is the chosen cumulative distribution. We prompt the reader

to refer to Section 3.2.1.3 for more information on the use of the UVR metric.

In short, the aim is to measure the variance of the time series of the log(F−1(qt,x; ξ
t, θt))

and the variance of the error between the estimated probabilities of death and the

actual ones (for each age x and each component i). The ratio of these two variances

for successive components defines the UV Rx(i) value. Based on the updated estimation

methodology described in this section, the UVR metric is given in Equation (4.12).

UV Rx(i) =



Var
(
log(F−1(qt,x;ξt,θt))−αx−β

(1)
x κ

(1)
t

)
Var
(
log(F−1(qt,x;ξt,θt))−αx

) , i = 1

Var
(
log(F−1(qt,x;ξt,θt))−αx−β

(1)
x κ

(1)
t −β

(i)
x κ

(i)
t

)
Var
(
log(F−1(qt,x;ξt,θt))−αx−β

(1)
x κ

(1)
t

) , i = 2, . . . , p

(4.12)

In a similar way, one can adapt the HS model to the rest of the link functions documented

in Table 4.1.

Implementation-wise, our model and the proposed extensions have been developed in

Matlab, which enables a user to define their own link functions. Taking advantage of

this functionality, we fit the Binomial model with new link for the probabilities of death
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qt,x using the following command:

B = glmfit(Lx, qt,x, ”binomial”, ”link”,new F, ”weights”,E0
t,x, ”constant”, ”off”)

Details of the user-defined link new F are given in Appendix B.1.

4.3 Application

In this section, we elaborate on the experimental approach followed to evaluate the

performance of the HS model using the newly proposed methodology presented in Section

4.2. In order to offer a fair and straightforward comparison to the performance of

the HS model, we opt for the same evaluation metrics and datasets as in Chapter 3.

In addition, we perform a comparison with other well-known mortality models of the

literature, namely the Lee & Carter (1992) (LC), Renshaw & Haberman (2006) (RH),

Currie (2006) (APC) and Plat (2009) (PL) models. This section also describes the

datasets and the experimental parameters of the HS model extensions and analyses the

results of the evaluation through a comparative analysis.

Moreover, we evaluate the models in terms of forecast. That is, we provide a back-testing

framework to forecast 10 years ahead in order to compare out-of-sample estimations

against the actual values. Based on this, we measure the efficiency of the models using

the MSPE and the MAPE metrics. For providing an objective and unbiased evaluation,

we forecast the κt and the γc indexes using two different approaches, namely the Random

Walk with Drift (RWD) (ARIMA(0,1,0) with drift), and the appropriate ARIMA model

based on Bayesian Information Criterion (ARIMA).

It has to be noted that our evaluation considers two experimental setups to evaluate the

capacity of the HS extensions on datasets having both long and short periods. More

specifically, apart from the E&W dataset that offers an extremely long fitting period, we

apply the models to the Greek dataset, which begins in 1961 and contrasts to the rather

long periods of the E&W mortality data that start in 1841. The motivation behind this

approach lies in the fact that the utilisation of a different link function and distribution

could make the difference to the fitting process and deliver a more accurate model fit, as
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the link function and the distribution could aid in capturing the intrinsic characteristics

of the data in a more precise way.

4.3.1 Evaluation Metrics

We have chosen a set of quantitative criteria in an effort to approach the problem

from different angles. Both Information Criteria and Percentage error tests are used

to evaluate the fitting performance of the models. Specifically, we use the Bayesian

Information Criterion (BIC), the Akaike Information Criterion (AIC), the Mean Squared

Percentage Error (MSPE) and the Mean Absolute Percentage Error (MAPE). These

metrics have been defined in Section 2.4. Additionally, when it comes to the qualitative

analysis of the results, we adopt the unexplained variance ratio (UVR) which is used to

reveal the magnitude of the captured information by each age–period and age–cohort

component, as has been defined in Section 3.3.3.2.

4.3.2 Evaluation Results

In this section, we present the data and the optimum parameters of the HS model

and its extensions used to evaluate the proposed methodology described in Section 4.2.

Sections 4.3.2.2 and 4.3.2.3 document the results and proceed with the comparative

analysis.

4.3.2.1 Mortality Data and the Optimum Parameters

The historic mortality data used are the same presented in Chapter 3 for the purpose

of making our results directly comparable. We have selected datasets of both long and

short periods to evaluate the behaviour of all extensions of the HS model in an effort to

validate its modelling capacity both in the case of highly informative and non-informative

data. The latter are provided by the Human-Mortality-Database and Eurostat, having

the following characteristics:

• Greece (GR), males, calendar years 1961–2013, individual ages 0–84.

• England and Wales (E&W), males, calendar years 1841–2016, individual ages 0–89.
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Tables 4.2 and 4.3 present the parameters used for fitting each model structure for each

of the aforementioned datasets. The tables contain the number of optimum parameters

of the GLM polynomials, k1 (Equation (4.6)) and k2 (Equation (4.8)), for the age–period

and age–cohort effects, respectively. In addition, the tables document the optimum s

values, while p and q denote the optimum number of the period (Equation (4.7)) and

cohort (Equation (4.10)) components, according to the approach described in Section 4.2.

ξt, θt and ξc, θc are the parameters (see Section 4.2.2.1) of the adopted distribution for

the age–period and the age–cohort part of the model, respectively.

Table 4.2: Optimum parameters for each HS model extension structure for the E&W
dataset.

Country: E&W Years: 1841–2016 Ages: 0–89 (Years)

Model s k1 p k2 q ξt θt ξc θc

HS log 54.50 29 5 4 2 - - - -
HS lgt 55.19 30 5 14 2 - - - -
HS cll 6.40 30 5 14 2 - - - -
HS prbt 9.26 30 5 10 2 - - - -
HS beta 4.13 30 5 8 2 6.00 1.25 4.00 1.25
HS prt 71.45 23 6 4 1 16.50 1.00 11.50 1.00

Table 4.3: Optimum parameters for each HS model extension structure for the GR
dataset.

Country: Greece Years: 1961–2013 Ages: 0–84 (Years)

Model s k1 p k2 q ξt θt ξc θc

HS log 2.55 16 4 8 1 - - - -
HS lgt 2.52 16 4 8 1 - - - -
HS cll 2.58 16 4 8 1 - - - -
HS prbt 0.21 16 5 8 1 - - - -
HS beta 2.18 20 5 8 1 1.25 0.50 1.00 0.25
HS prt 3.37 20 5 8 1 4.00 1.00 7.00 1.00

In our application, we make use of the Generalised Pareto and Beta distributions to

offer the HS prt and the HS beta model extensions, respectively. The former utilises

the probability density function for the Generalised Pareto distribution with shape pa-

rameter ξ ̸= 0, scale parameter θ, as given in Equation (4.13), based on the Matlab

implementation given in MATLAB (n.d.b).

f
(
x|ξ, θ

)
=

(
1

θ

)(
1 + ξ

x

θ

)−1− 1
ξ

(4.13)
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and the respective cumulative distribution function is defined as:

F
(
x|ξ, θ

)
= 1−

(
1 + ξ

x

θ

)− 1
ξ

(4.14)

In our implementation, we set the scale parameter θ = 1. Equation (4.13) can take the

form of the Lomax distribution as a special case of the Generalised Pareto distribution,

with ξ = 1
α and θ = λ

α . In that case, the probability density function is

f
(
x|α, λ

)
=

α

λ

(
1 +

x

λ

)−1−α

(4.15)

where α = 1
ξ and λ = θ

ξ .

For the Beta extension, we make use of the probability density function of Equa-

tion (4.16), with first shape parameter ξ and second shape parameter θ, following the

Matlab implementation given in MATLAB (n.d.a).

f
(
x|ξ, θ

)
=

1

B(ξ, θ)
xξ−1(1− x)θ−1

(4.16)

and the respective cumulative distribution function is defined as:

F
(
x|ξ, θ

)
=

B(x|ξ, θ)
B(ξ, θ)

(4.17)

where B(ξ, θ) is the beta function and B(x|ξ, θ) is the incomplete gamma function.

4.3.2.2 E&W Data Performance Analysis

E&W Quantitative Analysis Table 4.4 summarises the quantitative results that

reflect the efficacy of the HS model and its extensions for the fitting process in terms

of the log-likelihood-based tests (AIC, BIC) and PE tests (MSPE, MAPE). The best

scores are highlighted in bold, with the HS prt extension being dominant among them.
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Table 4.4: Results of the quantitative tests for E&W mortality dataset.

Model k1 npar Log-
Likelihood

AIC BIC MSPE
(%)

MAPE
(%)

HS log 29 1598 −135,970.84 275,137.68 287,394.81 0.329 3.696
HS lgt 30 1634 −125,713.76 254,695.52 267,228.78 0.336 3.694
HS cll 30 1634 −168,056.21 339,566.43 352,813.03 0.449 4.707
HS prbt 30 1622 −115,111.76 233,467.52 245,908.73 0.346 3.693
HS beta 30 1343 −129,916.62 262,519.24 272,820.45 0.381 3.945
HS prt 23 1492 −113,143.64 229,271.28 240,715.35 0.346 3.596

A key observation that clearly supports the motivation of this chapter is that the HS

model under the binomial form and qt,x modelling reached a higher level of performance.

More specifically, four out of the five extensions performed better than the original

HS log model, showing better goodness-of-fit through the log-likelihood, AIC and BIC

metrics and a slight improvement for the MAPE. Notably, even though the BIC is

destined to penalise complex structures, the HS lgt and HS prbt extensions score a better

BIC even when having more parameters than the HS log, meaning that the additional

ones contribute substantially to the improvement of fit. In fact, the better performance

of the HS lgt and HS prbt will be noted also on the qualitative results later in this

section. Among the HS extensions based on the off-the-shelf link functions, the HS prbt

is the one achieving the best performance under all metrics, having also less parameters

than the HS lgt and HS cll. On the downside, the HS cll extension had the lowest

performance among the collected results. When it comes to the structure of the models

of the HS lgt, HS cll and HS prbt extensions, according to Table 4.2, the number of

the generated p and q components remains the same as those of the HS log. However,

a slight deviation is noted for the k1 and k2 factors, which also justifies the increased

number of parameters noted in Table 4.2. Overall, as will be shown in the qualitative

analysis, the HS extensions remain consistent when it comes to the identified p and q

components and the corresponding age ranges which are revealed.

When it comes to the quantitative results of the HS extensions based on the new form

of link functions, i.e., the HS beta and HS prt cases, the latter is the one dominating

among all, while the former is ranked around the performance achieved for the HS lgt,

HS cll and HS prbt cases. According to Table 4.4, the HS beta incorporates the lowest

number of parameters, resulting in a more simple model structure, but this is reflected

as an inefficiency in the rest of the qualitative metrics, implying that the HS beta cannot
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capture the E&W data dynamics in an efficient manner. When it comes to the incor-

porated p and q components, the HS beta still remains consistent, as will be discussed

in the qualitative analysis, but fails to make a difference in terms of the quantitative

metrics.

Notably, the case of the HS prt extension is of special interest as it outperforms the

rest of the extensions and the original HS log for all metrics, apart from a negligible

deficiency on the MSPE. More specifically, contrary to the HS log, the HS prt has an

improvement of 16.24%, 16.67% and 16.79% for the BIC, AIC and log-likelihood metrics,

respectively, while the MAPE is improved by 2.7%. According to Table 4.4, the HS prt

comes with a decreased number of parameters and a smaller number of the optimum

parameters of the GLM orthonormal polynomials (k1). Hence, the HS prt extension

concludes to a simpler model which also produces lower error in the fitting process. In

addition, according to the p and q parameters in Table 4.2, the HS prt has identified one

age–period component more (i.e., 6) and one age–cohort component less (i.e., 1). Such

a difference may sound minor, but as will be documented in the qualitative analysis, it

is quite substantial for the explainability of mortality.

Moreover, the results of the quantitative evaluation of the well-known stochastic mortal-

ity models are given in Table 4.5. According to the table, and having selected the best

model from the extensions in Table 4.4, we notice that the HS prt not only performs

better compared to the HS log but also achieves the best scores among the rest of the

well-known stochastic mortality models.

Table 4.5: Results of the quantitative tests for well-known stochastic mortality models
against HS prt for E&W dataset.

Model npar Log-Likelihood AIC BIC MSPE (%) MAPE (%)

LC 354 −1,075,745.35 2,152,198.70 2,154,913.98 7.131 18.473

RH 707 −553,002.06 1,107,418.13 1,112,841.02 5.369 14.896

APC 528 −1,157,738.25 2,316,532.50 2,320,582.42 20.541 23.522

PL 880 −762,205.25 1,526,170.51 1,532,920.37 9.136 15.737

HS log 1598 −135,970.84 275,137.68 287,394.81 0.329 3.696

HS prt 1492 −113,143.64 229,271.28 240,715.35 0.346 3.596

E&W Qualitative Analysis The results of the qualitative analysis aim to com-

plement the numeric ones presented in Table 4.4. To do so, Appendix B.2 offers the
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graphical representation of the age–period and age–cohort components for both the off-

the-shelf HS extensions and those following the new form of link function. The graphical

representation reveals the identified mortality trends and eases the attribution of a trend

to a specific age cluster.

Figures B.1 and B.2 provide a graphical representation of the age–period components

and the corresponding UVR values for all the HS extensions. One can observe that

the HS extensions remain consistent with the HS log and reveal the same age clusters.

However, in some cases, according to the UVR values, the HS extensions under the

Binomial form can capture more information from the mortality data. More specifically,

according to UV Rx(1), the HS prbt, HS beta and HS prt model structures are able to

grasp more information regarding the 60+ ages. In fact, this reflects a slightly different

mortality trend in the κ1t factor for the HS prt. The κ1t for the HS prbt and HS beta is

factorised in a different way than the other cases, that is why the corresponding graphs

seem to be dislocated. Despite this fact, the HS prbt and HS beta generate κ1t graphs

which are almost identical to the HS prt case.

UV Rx(3) and UV Rx(4) refer to the 20-25 and 30-40 age clusters, respectively.

The lower UVR values achieved by the HS prbt structure, which are illustrated in

Figures B.1 and B.2, confirm the good performance advocated by the quantitative per-

formance reported in Table 4.4.

When it comes to Figure B.2, the HS extensions have revealed a more

clear age cluster compared to the HS log. More specifically, according

to UV Rx(5), the HS log had initially identified a mixed age cluster for

the 10–20 and 20–25 age ranges. In this work, all the HS extensions

clearly attribute the κ5t mortality trend to the 10–20 age range, while the

20–25 age cluster is clearly addressed by the 3rd age–period component. Overall, the

HS prt structure is of special interest. Again, one can notice that the HS model for the

Generalised Pareto case remains consistent as, in general terms, the identified age–period

and age–cohort components reveal fine-grained age clusters and ease the attribution of

a mortality trend to distinct age ranges. In fact, the most important outcome of the

application for the HS prt is the identification of one additional and distinct age–period

component. UV Rx(6) is a new informative component that reveals the mortality trend

for the 25–30 age range. As aforementioned, the focal point of UV Rx(3) is the 20–25
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age range, while a significant and clear trend for the 10–20 age cluster is revealed in

κ5t as advocated by UV Rx(5). In fact, in the case of the HS log, the 10–20 cluster was

included in the captured variance of the 5th age–period component along with the vari-

ance of the 20–30 age range. Considering these facts, the HS prt model generated more

fine-grained age clusters, and it eases the attribution of a mortality trend to unique age

clusters, contributing significantly to the explainability of the model. This behaviour

justifies the improvement of around 16% in the quantitative metrics in contrast to the

HS log.

Moreover, in Figure B.3, one can notice that for the HS prt, only one age–cohort com-

ponent is identified. This is a normal outcome, as the age–period modelling process has

captured most of the data variance and resulted in one additional age–period component

(six in total). As a result, the residuals bear the information for the identification of one

age–cohort component. Generally, this modelling behaviour results in a less complex

model structure which incorporates less parameters as shown in Table 4.2.

Overall, when it comes to the off-the-shelf HS extensions, the HS prbt case seems to

perform better both in the qualitative and quantitative evaluation results. When using

the new form of link function, the HS prt case is the one that stands out among all

cases.

4.3.2.3 Greek Data Performance Analysis

Based on Table 4.3, the Greek dataset covers a shorter period (from 1961) in contrast to

the rather long period for the E&W data. One could say that it is reasonable for multiple

component models, such as the HS model and the introduced extensions, to achieve good

results. That is, in order to verify that the better performance of the HS extensions (as

happened for the case of the E&W data) is not solely attributed to the extremely long

fitting periods, we also conduct the evaluation using the shorter GR dataset, and we

assess the consistency and performance of the Binomial HS extensions with respect to

the original Poisson model (HS log) presented in Hatzopoulos & Sagianou (2020) and in

Chapter 3.

In fact, according to the Human-Mortality-Database and as reported in the HMD-Greek-

data, the GR dataset contains inconsistencies and is of poor quality. Hence, due to the
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limited time period of the GR data and the low quality, we form a more challenging basis

for a model to thrive. In addition, we aim to prove through experimental results that the

model extensions inherit the beneficial characteristics of the HS model and can perform

even better through the use of the suggested transformations of our methodology, being

at the same time consistent with the identification of mortality trends for unique age

clusters.

GR Quantitative Analysis Following the same approach as in Section 4.3.2.2, Ta-

ble 4.6 summarises the quantitative results that reflect the efficacy of the HS model and

its extensions for the fitting processes. The best scores are highlighted in bold, with the

HS prt being the dominant and the HS beta being very close to the HS prt.

Table 4.6: Results of the quantitative tests for the Greek mortality dataset.

Model k1 npar Log-
Likelihood

AIC BIC MSPE
(%)

MAPE
(%)

HS log 16 447 −20,176.13 41,246.26 44,112.84 4.109 10.115
HS lgt 16 447 −20,069.65 41,033.29 43,899.88 4.080 10.065
HS cll 16 447 −20,133.42 41,160.85 44,027.43 4.104 10.079
HS prbt 16 516 −19,569.21 40,170.43 43,479.50 4.078 10.074
HS beta 20 540 −19,358.74 39,797.48 43,260.47 3.444 9.515
HS prt 20 540 −19,353.29 39,786.59 43,249.58 3.449 9.498

As advocated by the quantitative results, also for the case of the short GR dataset,

the HS model under the binomial form and qt,x modelling achieved better performance

scores. More specifically, all four extensions performed better than the original HS log

model, showing better goodness-of-fit through the log-likelihood, AIC and BIC metrics

and a slight improvement for the MAPE. However, it must be mentioned that the

improvement is not as significant as the one achieved for the E&W case. Taking a closer

look at the performance of the HS extensions for the off-the-self link functions, the

HS prbt is the one that stands out in contrast to the HS lgt and HS cll, which achieve

quite similar performances with the initial HS log. In fact, the HS prbt has a negligible

improvement for the MSPE and the MAPE, but the improvement in the log-likehood,

AIC and BIC needs to be highlighted. As can be seen, the HS prbt is based on 516

parameters, leading one to expect higher BIC and AIC scores due to the more complex

structure. Though, despite the higher number of parameters, the HS prbt structure

achieves a better BIC, meaning that the additional parameters contribute substantially
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to the improvement of fit. In fact, the better performance of the HS prbt is more evident

in the qualitative results which are analysed later in this section. According to Table 4.3,

the number of the generated p and q components of the HS lgt and HS cll extensions

remain the same as those of the HS log (i.e., 4) and so does the k1 factor. However, for

the HS prbt, a new additional age–period component is identified; thus, p = 5, and as

will be noted in the qualitative analysis, this component contributes to the explainability

of the model.

A case of special interest is the application of the HS prt, for which the new form of link

functions led to a notable improvement of the model. More specifically, Table 4.6 reports

that the HS prt achieves a significant improvement for all the evaluation metrics, apart

from the MSPE, for which the HS beta is slightly better. More specifically, contrary to

the HS log, the HS prt has an improvement of 1.96%, 3.54% and 4.25% for the BIC,

AIC and log-likelihood metrics, respectively, while the MSPE is improved by 16.06%

and the MAPE by 6.10%. Even though the magnitude of improvement is less than

the improvement for the case of the E&W data, one needs to consider the challenging

nature of the Greek mortality data, where the room for improvement is rather limited. In

addition, the HS beta achieves almost identical performance to the HS prt and, without

a doubt, it is also a competitive extension for the GR case.

The HS log model was slightly lacking in performance when compared with the

Renshaw–Haberman Renshaw & Haberman (2006) and Plat Plat (2009) models, specif-

ically in the case of the Greek data, as reported by the comparative study given in

Hatzopoulos & Sagianou (2020) and as can be seen in Table 4.7. By utilising the pro-

posed methodology, the HS prt and HS beta extensions have significantly improved the

goodness-of-fit. In addition, according to the p and q parameters in Table 4.3, the HS prt

and HS beta have identified one age–period component more (i.e., 5), as was the case

with the HS prbt, and this contributes substantially to the explainability of mortality.

The results of the quantitative evaluation against the well-known stochastic mortality

models LC, RH, APC and PL are given in Table 4.7. According to the table, and having

selected the best model from the extensions in Table 4.6, we note that the HS prt is

the model variation that achieves a similar performance to the RH model in terms of

the quantitative tests. However, the RH can be questioned for its robustness, as it faces

difficulties to converge and presents unstable behaviour (Hunt & Villegas (2015)).
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Table 4.7: Results of the quantitative tests for well-known stochastic mortality models
against HS prt for GR dataset.

Model npar Log-Likelihood AIC BIC MSPE (%) MAPE (%)

LC 221 −21,213.44 42,868.89 44,286.15 4.287 11.379
RH 441 −18,633.10 38,148.19 40,976.30 3.790 9.460
APC 272 −21,317.67 43,179.33 44,923.65 5.405 12.715
PL 378 −19,113.68 38,983.36 41,407.45 5.395 10.371
HS log 447 −20,176.13 41,246.26 44,112.84 4.109 10.115
HS prt 540 −19,353.29 39,786.59 43,249.58 3.449 9.498

It must be noted that the HS prt achieved a significant improvement in the case of the

E&W data, contrary to the GR. As discussed before, the Generalised Pareto belongs

to the heavy-tailed distributions family. That is, it is expected to perform better when

extreme values are part of the data. As can be seen from the κit figures in Appendices B.2

and B.3, the E&W data include several high peaks in contrast to the GR. That is why

the HS prt seems to have a greater performance improvement in the E&W case.

GR Qualitative Analysis The results of the qualitative analysis complement the

numeric ones presented in Table 4.6 by explaining the UVR for the identified age clusters.

The graphical representations of the identified age–period and age–cohort components

of the Greek dataset are given in Appendix B.3. Figures B.4 and B.5 provide a graphical

representation of the age–period components and the corresponding UVR values for the

HS extensions.

As a general remark, one might note that all the extensions remain consistent, but the

HS prbt, HS beta and HS prt identified an extra (5th) age–period component. Overall,

slight differences in the UVR graphs and the mortality trends can be noticed among the

other extensions.

The HS prbt is of special interest as its structure leads to the definition of more fine-

grained age clusters. More specifically, focusing on Figure B.4, UV Rx(1) reveals that

the HS prbt is able to grasp more information regarding the 60+ ages. UV Rx(4) is a

component that reflects the difficulty to identify clear trends on the Greek mortality

data. As can be seen, the interpretation of the cluster is quite difficult, as for all model

extensions, there is no strong indication of the age cluster which is being highlighted. On

the bright side, the HS prbt is able to identify a quite clear cluster and the correspond-

ing mortality trend for the 30–40 age cluster. In addition, UV Rx(2) shows a clearer
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concentration of the explained variance to the ages around 80, in contrast to the rest

of the extension which makes an attribution to the 70–80 cluster. In fact, the HS prbt

has identified a clear cluster for the ages of 70 in UV Rx(5) of Figure B.5. Hence, it

is evident that the HS prbt structure achieved a clean cut in the 70–80 cluster, and it

eases the attribution of a trend to a specific age cluster. In addition, despite the differ-

ent structure achieved for the age–period components (i.e., 5 instead of 4), UV Rc
x(1) in

Figure B.6 remains consistent and still captures considerable variance of the data.

When it comes to the HS prt, as advocated by the quantitative results, it achieved

a noticeable improvement from the HS log case, and this is actually reflected in the

figures of Appendix B.3. UV Rx(2) for the HS prt can significantly explain the variance

of the 80s age range, while the focal point of UV Rx(3) is on the 20s. The middle

ages of 40–50 are addressed by UV Rx(4), and finally, a newly identified cluster for

the 70s is highlighted in UV Rx(5). Almost the same behaviour can be seen for the

HS beta extension. The most important outcome of the application for the HS prt

and HS beta, as was the case for the HS prbt, is the identification of the 5th age–

period component. This was not initially uncovered by the HS log model. Thus, the

addition of the new component justifies the improvements noted for the quantitative

performance metrics. The HS prt model remains consistent as the identified age–period

and age–cohort components reveal fine-grained age clusters and ease the attribution of

a mortality trend to distinct age ranges, even when operating over the non-informative

Greek dataset.

When it comes to the age–cohort components, Figure B.6 shows that for the HS exten-

sions, UV Rc
x(1) remains consistent and still captures a considerable variance of the data

for all cases. However, due to the existence of the 5th age–period component for the

HS prbt, HS beta and HS prt, the age–cohort differs slightly from that of the HS log,

HS cll and HS lgt. Nonetheless, the age–cohort components are still informative, they

denote a clear age cluster and contribute to the explainability of the model.

4.3.2.4 Out-of-Sample Results

The results of the quantitative analysis for the forecasting process complement the com-

parative evaluation. In order to evaluate the HS prt extension under the out-of-sample
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mode, the model needs to be fit to a shorter dataset, excluding the years to be fore-

casted. This implies that the fitting and estimation processes will be executed again in

order to define the necessary model parameters. The parameters of the HS prt for the

E&W and GR datasets for the shorter periods are given in Table 4.8.

Table 4.8: Optimum parameters for HS prt structure for the E&W and GR shorter
datasets.

Model: HS prt

Country Years Ages s k1 p k2 q ξt θt ξc θc

E&W 1841–2006 0–89 56.58 29 6 4 1 15 1.00 11.50 1.00
GR 1961–2003 0–84 1.55 20 3 8 1 5.50 1.00 11.50 1.00

According to the results of Tables 4.9 and 4.10, the HS prt model under the RWD and

ARIMA achieves lower error scores and demonstrates a consistent behaviour also under

the forecasting mode. More specifically, for the E&W case, the difference in the MSPE

and MAPE is considerable, comparing to the other well-known models. This is not

only attributed to the high goodness-of-fit performance of the model, which provides

a solid base to be extrapolated, but also due to the fact that the HS model defines

multiple components which reveal the clear mortality trends of unique age clusters. On

the contrary, the unreasonably high error values of the RH and PL models come, to a

certain extent, as a result of their unstable behaviour during the fitting process and the

limitations of their structure and estimation process. The results for the GR dataset

in Table 4.10 show overall a more consistent behaviour for all models. The HS log was

slightly lacking in performance in contrast to the PL and RH models. However, the

newly derived HS prt extension was able to outperform the rest of the models both

under the MSPE and the MAPE metrics in the RWD and ARIMA approaches.

Overall, it seems that the HS model, due to its structure, i.e., it is a multiple-component

model which reveals unique age clusters, and the notable goodness-of-fit performance

achieved by utilising the newly introduced methodology, delivers an informative—and

close to the actual data—basis that can lead the out-of-sample process to a more precise

prediction.
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Table 4.9: Results of the percentage error tests for predicted mortality rates of 10
years out-of-sample for well-known stochastic mortality models against HS prt for E&W

dataset.

MSPE (%) MAPE (%)

RWD ARIMA RWD ARIMA

HS prt 3.206 5.550 13.219 18.852

HS log 3.221 7.135 13.271 20.800

RH 271.861 271.861 58.085 58.085

LC 29.508 29.509 49.838 49.837

PL 586.784 371.845 62.748 55.635

APC 86.494 84.316 46.192 46.131

Table 4.10: Results of the percentage error tests for predicted mortality rates of 10
years out-of-sample for well-known stochastic mortality models against HS prt for GR

dataset.

MSPE (%) MAPE (%)

RWD ARIMA RWD ARIMA

HS prt 8.446 8.549 14.961 15.067

HS log 8.691 10.390 15.332 15.857

RH 8.361 8.581 15.440 15.275

LC 10.398 10.333 20.320 20.964

PL 8.860 11.163 18.402 15.148

APC 10.054 10.077 21.364 21.599

4.4 Discussion and Conclusions

This section offers a discussion over our experimental results and highlights the lessons

learnt by the adoption of the various link functions in a model’s estimation methods,

having witnessed the beneficial impact of the proposed methodology to our model’s

efficacy.

Our aim was to extend the HS model and investigate its behaviour when formulated in

terms of qt,x, using generalised linear models and by adopting various link functions. Our

motivation originates from similar endeavours in the literature Haberman & Renshaw

(1996), Currie (2016) and is aligned with the capabilities offered by well-known tools,
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such as StMoMo Villegas et al. (2018)). To the best of our knowledge, it is the first

time that a systematic approach is documented for the adoption of this new form of link

functions, F−1(x; ξ, θ) for the mortality modelling domain, along with the necessary

transformations to satisfy the condition that the CDF’s range should be mapped to the

whole real line. We argue that the ability to use various link functions can lead to the

better performance of the mortality models, as showcased through the use of the HS

model in the context of this chapter.

An additional point to be highlighted is the integration of heavy-tailed distributions

(Generalised Pareto in our case). The motivation is two-fold. On the one side, the

proposed methodology of Section 4.2 enables the mortality analyst to apply such kinds

of distributions in a mortality model in case the intrinsic characteristics of the mortality

data fit better to a heavy-tailed distribution profile, i.e., when extreme events must be

part of the modelling. In this context, the proposed methodology eases an analyst to

adapt a model depending on the data, the time period and the case to be analysed,

without being limited only to the off-the-shelf link functions and distributions. Based

on our results for the κt graphs given in the appendices, one can observe that the long

period of the E&W data includes several mortality trend peaks (extreme values) as a

result of the mortality during critical events of the 20th century. However, the Greek

mortality data and the respective κt graphs do not imply the presence of extreme events

and outliers. Thus, despite the fact that the improvement on the use of the new form

of link functions and different distributions is evident based on the quantitative and

qualitative results, the improvement is greater for the E&W for which we finally applied

the Generalised Pareto heavy-tailed distribution to better fit to the nature of the data.

Even though the rationale behind the use of the heavy-tailed distribution in the mortality

realm is valid, we need to note that this outcome needs to be further evaluated. In fact,

we aim to continue in this line of research and to explore in our future endeavours the

behaviour of such distributions in mortality modelling.

In addition, it has to be noted that the adaptation of a mortality model to the new

form of link functions implies an additional step in the model’s estimation process, as

explained in detail in Section 4.2.2, in order to estimate the ξ and θ parameters. In

terms of the codebase, this requires the addition of an extra, but simple routine, which

can tackle this problem. Overall, the complexity of the process is slightly increased but

we argue that the potential benefit outweighs the added complexity.
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The above-mentioned highlights are advocated by our experimental results, while the

efficacy of the HS model extensions support the motivation of this work. In fact, the

transition to the use of the Binomial distribution has improved the performance of the HS

model under the vast majority of the adopted link functions. Notably, the performance

improvement for the reference model of the HS log was even greater in the case of the

HS prt extension for the E&W data, where we noted an improvement of 16.24%, 16.67%

and 16.79% for the BIC, AIC and log-likelihood metrics, respectively, while the MAPE

improved by 2.7%. In the case of the short GR dataset, the HS prt extension was the one

that outperformed the rest, achieving a similar performance with the HS beta, proving

again that the selection of the correct distribution and link function can further boost

the performance of a mortality model even in cases where we need to operate over a poor

and non-informative dataset. During our experiments, we applied several distributions,

including the Generalised Extreme value, Gumbel, Fréchet, Weibull and Burr, and we

experimented with other various datasets (e.g., French data). In order to keep the length

of this chapter within reasonable limits, we chose to present the best results. However,

our methodology enables an analyst to apply virtually any distribution in the modelling

process. In addition, we offered a comparative analysis among the HS extensions and

other well-established mortality models of the literature, both under the fitting and

forecasting modes. The results showed that the HS prt achieved the best goodness-of-

fit performance, while under the forecasting mode, the new HS prt extension improved

the position of the HS and outperformed the rest of the models in terms of prediction

accuracy.

In addition, we need to note that the HS improvement through the introduced extensions

is not solely reflected in the quantitative results, but most importantly, it is reflected

in the qualitative ones. The HS model was able to improve its performance in the

identification of more fine-grained age–period and age–cohort components, and thus

prove that the proposed methodology retains the model’s efficacy and consistency, and

it can boost even more its explainability through the attribution of a mortality trend to

unique age clusters. This feature is one of the unique characteristics of the HS model in

contrast to other models of the literature.

Overall, our application advocates that different mortality data imply the need for a

different model transformation in order to increase the goodness-of-fit, capture the data

dynamics and uncover interesting characteristics in the mortality trend of individual age
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clusters. Our results show that even a top-notch mortality model, such as the HS, has

room for improvement, as the adaptation with an appropriate link function can lead to

even better qualitative and quantitative performance.



Chapter 5

HSTool: A Matlab toolbox for

the Hatzopoulos–Sagianou

Multiple-Component Stochastic

Mortality Model

In this chapter we offer a software implementation of the Hatzopoulos–Sagianou

multiple-component stochastic mortality model in the form of a Matlab toolbox called:

HSTool. The HSTool offers the age-period-cohort stochastic mortality model presented

in Hatzopoulos & Sagianou (2020), and delivers a practical approach of its -unique of its

kind- estimation method. The HS is based on the use of Sparse Principal Component

Analysis and Generalised Linear Models, while it is driven by the Unexplained Variance

Ratio metric to maximise the captured variance of the mortality data and to regulate

the sparsity of the model with the aim of acquiring the optimal number of distinct and

significant stochastic components. In the context of this chapter we enhance the origi-

nal model by introducing codebase-related improvements utilising multi-criteria decision

making methods to converge to “optimal” values for critical model’s parameters, offering

increased tool automation and “plug ’n’ play” user experience. The HSTool provides

the means for fitting the stochastic mortality model, assessing its goodness-of-fit and

performing mortality projections. In this chapter, we offer a complete handbook and we

95
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illustrate some of the capabilities of the toolbox by applying the model to the England

and Wales population so that to perform a demonstration on its usage.

5.1 Introduction

Unfolding the qualities of mortality models just on the paper would not have a substan-

tial contribution to the mortality modelling domain. That is, software implementations

and packages have been developed and made available to the community for making the

use of the models a trivial process for mortality analyst and actuaries. For instance, and

as reported in Villegas et al. (2018), the demography package Hyndman et al. (2015)

capitalises on the Lee & Carter (1992) model and its variants presented in Lee & Miller

(2001), Booth et al. (2002) and Hyndman & Shahid Ullah (2007)). The ilc package

Butt et al. (2014) offers the Renshaw and Haberman model and the Lee–Carter model

under a Poisson regression framework. The LifeMetrics R functions Coughlan et al.

(2007) consider the Cairns–Blake–Dowd (CBD) models and their extensions introduced

in Cairns et al. (2009), the Lee–Carter model (using Poisson maximum likelihood), the

age–period–cohort model Osmond (1985) Currie (2006) and the Renshaw and Haberman

model. StMoMo presented in Villegas et al. (2018) and has become a well-established

mortality modelling R package which provides the tools for fitting stochastic mortality

models, assessing their goodness-of-fit and performing mortality projections. In fact,

StMoMo encompasses the vast majority of stochastic mortality projection models pro-

posed to date.

In this line of thought, this chapter aims to provide a Matlab implementation of the

Hatzopoulos & Sagianou (2020) (HS) multiple-component stochastic mortality model in

order to contribute to the domain from a more practical standpoint and add one more

tool to the arsenal of mortality analysts. Hence, through this chapter we aim to replicate

the methodological innovations that were initially published in the peer-reviewed work

of Hatzopoulos & Sagianou (2020) and provide a tool for fitting the stochastic mor-

tality model, assessing its goodness-of-fit and performing mortality projections. The

toolbox reproduces the estimation methodology of the HS model, while it introduces

improvements in the code implementation logic that aids the HS model to converge to

the optimal model structure, i.e., to identify the most informative age-period and age-

cohort components, easier. The qualities of the parameter estimation methodology of
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HS, its performance and efficacy have been evaluated over several datasets in Hatzopou-

los & Sagianou (2020), and a thorough comparison has been performed, based on diverse

qualitative and quantitative evaluation metrics, advocating its beneficial characteristics

and surpassing other well-known mortality models, in terms of fitting and forecasting

performance. Thus, in order to increase the impact of our work and further contribute

to the domain, this chapter aims to the documentation of the codebase of HS and the

provision of a technical guide to steer other researchers and professionals on the use of

the model in their testbeds, addressing the need of the community for full-fledged tools

instead of solely theoretical approaches.

Overall, the following points summarise the contributions of this chapter.

• The offering of a Matlab toolbox, namely HSTool, of the HS model presented

in Hatzopoulos & Sagianou (2020) supported by the necessary material for the

replication of testbeds and use of model’s commands. This chapter can be seen as

a complete handbook of the HSTool.

• Documentation of new codebase-related improvements that contribute to the

model’s stability and ability to provide a calibrated operation for “plug ’n’ play”

user experience.

• Introduction of multi-criteria decision making (MCDM) methods in the model’s

workflow to achieve increased tool automation and convergence to “optimal” values

for critical model’s parameters.

• Documentation of different model’s functions variations to enable more advanced

users to carry out experiments by testing different parameterisations given differ-

ent datasets so that to explore the capabilities of the model and mortality data

peculiarities.

• Documentation of the code commands for replicating the full cycle of a mortality

model, i.e., fitting the stochastic mortality model, assessing its goodness-of-fit and

performing mortality projections.

The rest of this chapter is organised as follows: Section 5.2 documents the code structure

of HS, the introduced improvements in its codebase and the details of each available

function of the HSTool. For each function, Section 5.2 documents the methodology
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behind it, the inputs/outputs and indicative execution examples. Finally, Section 5.3

provides a short discussion and concludes. The reader may refer to Section 2.1 to recall

the data and notation used and to Section 2.2 for background information for the GLM

framework. In addition, the reader can refer to Section 4.1.1, where an outline of the

methodology of the HS model is provided, summarising its estimation methodology and

its beneficial characteristics.

5.2 HSTool - A Matlab toolbox for HS model

This section provides an overview of the code structure of the HS model, focusing on

the core functions that one need to call in order to create a complete mortality analysis

testbed. We support the documentation with pseudocodes in order to intuitively steer

the user on the use of the tool. Algorithm 3 shows a complete mortality analysis testbed,

while the individual commands are further elaborated in the next sections. In addition,

in Section 5.2.2 we elaborate on improvements on the codebase of the HS toolbox since

its debut back in 2020 in Hatzopoulos & Sagianou (2020).

5.2.1 HS mortality modelling testbed structure

As will be documented in Sections 5.2.3 to 5.2.9, the HSTool provides a set of core

functions to the user in order to replicate the full cycle of a mortality model, i.e., fitting

the stochastic mortality model, assessing its goodness-of-fit and performing mortality

projection and simulation. Thus, Algorithm 3 intuitively shows an indicative sequence

of commands to be called for this purpose and for supporting even inexperienced users

throughout the execution of a complete testbed.

Initially, the data loading takes place. The hsdataload() function is executed. The

user needs to define the system path where the mortality dataset resides, as well as

indexes that indicate the range of years and ages (rows and columns respectively) to

be loaded depending the scope of the mortality analysis. Once the data are loaded,

they are used as input to the hsfit(). The latter command undertakes the complete

model construction, including both the estimation of the age-period and age-cohort

components, and outputs a set of estimated parameters.The input to the hsfit() is the

loaded data and the MCDM method that will be used for the definition of a set of the
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optimal values of the model and the final optimal structure. This is further explained

in Section 5.2.4.

After fitting the model, the hsevaluate() undertakes the calculation of the metrics for

evaluating the goodness-of-fit including all possible metrics. The HSTool enables also

the execution of mortality forecasting and simulation functions using the hsforecast()

and hssimulate() functions respectively. The former takes as inputs the time series

reflecting the mortality rates to be extrapolated along with the corresponding method

to be applied (ARIMA or DLR). This function outputs the forecasted time series and

the necessary evaluation values. The hssimulate() executes a bootstrapping method-

ology for performing a simulation by extrapolating the mortality rates derived from the

hsforecast() function. The last step is the execution of the hsbootstrap() function

in order to analyse the parameter uncertainty.

The documentation of the individual functions of the aforementioned execution flow is

given in the following sections. For each function, we document the inputs/outputs,

we offer the theoretical background behind each function, while execution examples are

provided.

Algorithm 3: Indicative testbed of HS

1 Input : file : Mortality dataset in xls format
2 Indexes : Indexes denoting the range of years and ages to be fitted

3 Output : Model : (n× a)-matrix of log(m̃t,x) = αx +
∑p

i=1 β
(i)
x κ

(i)
t +

∑q
j=1 β

c
x
(j)γ

(j)
c

4 Evaluation metrics : Quantitative and qualitative evaluation results
5 Forecasted mort. rates : Mortality rates extrapolated for h-years ahead.
6 Mortality paths : Simulated future mortality paths.
7 Param. uncertainty : Parameter uncertainty using bootstrap procedure.

99 data← hsdataload(xlsfile, xlssheet, dataIndexes);
1111 model← hsfit(data,MCDMmethod);
1313 eval metrics← hsevaluation(model);
1515 forecasted rates← hsforecast(model);
1717 mortality paths← hssimulate(model);
1919 parameter uncertainty ← hsbootstrap(model);
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5.2.2 HS codebase improvements

In this section we elaborate on the improvements which are introduced to the HS model

in the context of this chapter. Apart from the implementation and the documentation

of the toolbox per se, this chapter aims to enhance the modelling process based on the

following additions:

• Integration of MCDM methods for defining the “optimal” values for

critical parameters:

In the previous version of HS in Hatzopoulos & Sagianou (2020), the final decision

of the appropriate values for some critical parameters was taken by the user based

on the results of the conducted analysis. That is, the user had to manually scru-

tinise the results and conclude to the “optimal” values based on her/his domain

knowledge and experience. In order to address this limitation, we adopt MCDM

methods in the HS workflow to automate the decision making on that specific

parameters and ensure that -if not the optimal- a near “optimal” solution will be

selected. MCDM is used for the definition of the followings:

– Optimal values k1 and k2 of the orthonormal polynomials.

– Optimal selection of the “optimal” age-period components for the final model

structure.

More details on the criteria and the MCDM methods are given in Section 5.2.4.

• Dynamic searching approach of the UVR threshold instead of the defi-

nition of an empirical threshold:

In Hatzopoulos & Sagianou (2020), an empirical threshold of UV R(i) < 50%

was defined in order to decide whether a age-period or age-cohort component was

informative enough to be included in the model structure. In this version of the

HS codebase, the selection of the appropriate components is based on a heuristic

method of graph analysis for pinpointing the local minima on the UV R(i) figures

that reveal the optimal UVR thresholds and the purity of the respective age range

reflected in the i candidate age-period or age-cohort component. Thus, the method

converges to the optimal components that maximise the captured information

of the mortality data revealing clear mortality trends that can be attributed to
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specific and unique (per component) age clusters. The previous approach was still

able to identify clear age clusters but, it would have accepted any component i

having a UV R(i) < 50%. The current approach, forces the search approach to

capture a UVR graph starting from the lowest possible value (global minimum),

i.e., it can be as more informative as possible, and reach even a quite loose upper

level (e.g., UV R(i) < 60%) in an effort to cover a wide search space for the

identification of the appropriate components. More specifically, the new approach

requires that the identified thresholds of the age cluster reflected in the UV R(i)

shall have at least a δ amount of UVR values. Figure 5.1 presents an example of a

UVR graph (right) that illustrates a clear age range (ages 30 to 40) having a very

low UVR global minimum (0.31). This purity of the UVR curve is reflected in the

mortality trend of the respective κt (left). The specific process is placed in lines

8-10 of Algorithm 4 (for the estimation of the age-period components) and in lines

5-8 in Algorithm 5.
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Figure 5.1: Plots of κ
(4)
t and UV Rx(4) for E&W dataset

5.2.3 Mortality data loading

Description The mortality data aimed to be analysed are given as input to the model

prior to the execution of the fitting process (See Section 5.2.5). The latter will decompose

the mortality rates to the dimensions of age, period and cohort effects. Thus, the HSTool

handles data as those provided by the Human-Mortality-Database in order to be aligned

with the standard practices. The general structure of the hsdataload() function is given

below.
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[dtx, etx, mtx, logmtx, datavrbls] = hsdataload (xlsfile, xlssheet,
datafx, datalx, dataft, datalt, fitfx, fitlx, fitft, fitlt);

Inputs The input parameters of the hsdataload() function are given bellow.

Parameter Description

xlsfile Points to the xls file in the file system holding the mortality data. The
data have the shape illustrated intuitively in Table 5.1.

xlssheet Denotes the excel sheet to be loaded. Normally this factor refers to the
male or female data.

datafx First age x in the dataset.
datalx Last age x in the dataset.
dataft First year t in the dataset.
datalt Last year t in the dataset.
fitfx First age x to be selected for model fitting.
fitlx Last age x to be selected for model fitting.
fitft First year t to be selected for model fitting.
fitlt Last year t to be selected for model fitting.

Outputs The output parameters of the hsdataload() function are given bellow.

Parameter Description

dtx Matrix of deaths data.
etx Matrix of observed exposures.
mtx Matrix of crude mortality rates.
logmtx Matrix of logarithmic crude mortality rates.
datavrbls Structure which encapsulates variables and metadata generated

during the data loading process.
datavrbls.ages Vector of ages selected to be fitted.
datavrbls.years Vector of the years selected to be fitted.
datavrbls.cohorts Vector of the cohorts to be fitted.
datavrbls.fitfx First age x selected for model fitting.
datavrbls.fitlx Last age x selected for model fitting.
datavrbls.fitft First year t selected for model fitting.
datavrbls.fitlt Last year t selected for model fitting.

Documentation As aforementioned the hsdataload() is a core function of the

HSTool as it is used for loading the mortality data in the analysis testbed. As can

be inferred from input variables, the user needs to define the excel file in which the

mortality data reside. The data shape is illustrated intuitively in Table 5.1. The dataset

columns consist of the Years, Ages, Number of Deaths and the Exposure to Risk. In the

illustrated example the Years are in the range of 1841-2016, the Ages from 0 to 110+.

In addition, in the hsdataload() the user defines the age and year ranges of the dataset
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YEARS AGES #DEATHS EX. TO RISK
1841 0 41,525 245,435.36
1841 1 14,014 221,712.36
...

...
...

...
1841 110 0 0
1842 0 44,115 239,745.69
1842 1 14,771 221,800.34
...

...
...

...
1842 110+ 0 0
2016 0 1506 357,650.19
...

...
...

...
2016 110+ 0.7 0.17

Table 5.1: Mortality data shape as provided by Human-Mortality-Database

being loaded, as well as the age and year ranges which will be used in the model’s fitting

process. Thus, the fitting ages and years must be a subset of the dataset’s range.

Given the inputs, the hsdataload() undertakes the data curation for the generation of

the dtx, etx, mtx, logmtx and datavrbls considering the age and year ranges instructed

for the fitting process. The datavrbls encapsulates several supportive variables and

metadata generated during the data loading process, as documented above. Those

variables can be useful for the user and can be used as input to other functions provided

by the HSTool.

Example An indicative example of the hsdataload() execution is given bellow. The

England andWales dataset for males will be used as the main dataset for all the execution

examples throughout this work. The dataset has the following characteristics:

• England & Wales (E&W), Males, calendar years 1841–2016, individual ages 0–89

>> [dtx, etx, mtx, logmtx, datavrbls] = hsdataload(’E&W_data_(1841 - 2016)’,
’males’, 0, 110, 1841, 2016, 0, 89, 1841, 2016);

The mortality data have been loaded!

>> dtx
dtx =

1.0e+04 *
Columns 1 through 6

4.1525 1.4014 0.7531 0.5038 0.3627 0.2768
4.4115 1.4771 0.7592 0.4859 0.3426 0.2602
4.4550 1.4315 0.7111 0.4716 0.3350 0.2508
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>> etx
etx =

1.0e+05 *
Columns 1 through 6
2.4544 2.2171 2.0367 1.9336 1.9000 1.9386
2.3975 2.2180 2.1175 1.9816 1.8988 1.8766
2.4245 2.1674 2.1300 2.0669 1.9553 1.8843

>> mtx
mtx =
Columns 1 through 6
0.1692 0.0632 0.0370 0.0261 0.0191 0.0143
0.1840 0.0666 0.0359 0.0245 0.0180 0.0139
0.1837 0.0660 0.0334 0.0228 0.0171 0.0133

>> logmtx
logmtx =
Columns 1 through 6
-1.7767 -2.7613 -3.2975 -3.6475 -3.9586 -4.2490
-1.6928 -2.7091 -3.3283 -3.7082 -4.0150 -4.2784
-1.6942 -2.7174 -3.3997 -3.7803 -4.0667 -4.3192

>> datavrbls
datavrbls =

ages: [1x90 double]
years: [1x176 double]

cohorts: [1x265 double]
fitfx: 0
fitlx: 89
fitft: 1841
fitlt: 2016

5.2.4 Multi-criteria Decision Making

Description This section elaborates on the Multi-criteria Decision Making (MCDM)

approaches introduced in the HStool. More specifically, the adoption of such methods in

the HS codebase extends the methodology presented initially in Hatzopoulos & Sagianou

(2020) and contribute to the model’s stability and ability to provide a calibrated op-

eration for “plug ’n’ play” user experience, increased tool automation and convergence

to “optimal” values for critical model’s parameters. It must be noted that the MCDM

functions are not top-level functions of the toolbox, but they aim to enhance the op-

eration of the hsfit() function (See Section 5.2.5) in the background. However, the

contribution of these functions to our offering is crucial and, thus, it is vital to document

the methodology followed. Note that, as aforementioned in Section 5.2.2, the addition
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of MCDM is one of the enhancements in the tool’s operational flow. That is, this sec-

tion is dedicated on how the MCDM methods contribute in the HS model. The general

structure of the MCDM function is given below.

[index_max] = MCDM (mcdmmethod, decMatrix, w1,w2,w3,w4,w5);

Inputs The input parameters of the MCDM functions are given bellow.

Parameter Description

mcdmmethod The multi-criteria decision making method (SAW or TOPSIS) to be
used for the definition of the optimal k-degree of the orthonormal poly-
nomials and the final decision on the optimal p and q components.

decMatrix The decision matrix, i.e., the matrix containing the options (rows) to
be evaluated based on the defined criteria (columns) (See Table 5.2).

w1 Weight of the MCDM method for Avg.Hypothesis t criterion (See Ta-
ble 5.2).

w2 Weight of the MCDM method for Avg.Hypothesis x criterion (See Ta-
ble 5.2).

w3 Weight of the MCDM method for AICc criterion (See Table 5.2).
w4 Weight of the MCDM method for AIC criterion (See Table 5.2).
w5 Weight of the MCDM method for BIC criterion (See Table 5.2).

Outputs The output parameters of the MCDM() functions are given bellow.

Parameter Description

index max Value indicating the index of the decision matrix (decMatrix) which
points to the optimal option for the decision making problem.

Documentation HStool implements two well-known MCDM methods namely, the

Simple Additive Weighting (SAW) (Fishburn (1967)) and Technique for Order of Pref-

erence by Similarity to Ideal Solution (TOPSIS) (Hwang & Yoon (1981)), as methods

used to solve multi-attribute decision problems. In this way, we aim to provide targeted

enhancements to the execution workflow of the HS model in order to solve in an effi-

cient manner some decision making puzzles that was left upon the analyst’s shoulders

in Hatzopoulos & Sagianou (2020).

A Simple Additive Weighting (SAW): SAW can be also found in the literature

under the names Weighted Sum Model (WSM) or Weighted Linear Combination

(WLC). It was the first method introduced in the MCDM domain and remains the
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most widely used one due to its simplicity and effectiveness. In problems where m

options exist and n criteria drive the decision, the SAW scores the options using

the following expression:

Scoresaw = max
i

n∑
j=1

αijwj , for i = 1, 2, 3, . . . ,m (5.1)

Scoresaw is the best (max) among the m options, αij is the normalised value of the

i-th alternative in terms of the j-th criterion, and wj is the weight of importance of

the j-th criterion. In single-dimensional cases, where all the units are the same, the

use of SAW is straightforward. In multi-attribute decision making a normalisation

procedure is used for transforming the different measurement units of attributes

to a comparable unit (Triantaphyllou (2000)). Thus, αij needs to be normalised.

Among various normalisation techniques that can be found in the literature, in this

work we use the following ones for transforming the beneficial and cost criteria.

• Benefit criteria: αij =
rij

rmax

• Cost criteria: αij = 1− rij
rmax

where rij is the actual value of the i-th alternative in terms of the j-th criterion

and rmax is the max value among the values of the j-th criterion. The wj are

weights assigned to regulate the decision process. The analyst may chose to treat

all criteria equally or to boost some others by assigning a higher wj value.

B Technique for Order of Preference by Similarity to Ideal Solution (TOP-

SIS): The basic concept of this method is that the selected alternative should have

the shortest distance from the ideal solution and the farthest distance from the

negative-ideal solution in some geometrical sense. The TOPSIS method assumes

that each criterion has a tendency of monotonically increasing or decreasing util-

ity. Therefore, it is easy to define the ideal and negative-ideal solutions. The

Euclidean distance approach was proposed to evaluate the relative closeness of the

alternatives to the ideal solution. Thus, the preference order of the alternatives

can be derived by a series of comparisons of these relative distances.

The TOPSIS method considers a decision matrix (DM) having m alternatives in

its rows which are evaluated in terms of n criteria. xij denotes the performance

measure of the i-th alternative in terms of the j-th criterion. TOPSIS takes specific
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steps until the final ranking of alternatives: (i) the construction of a normalised

DM, (ii) Construction of the Weighted Normalised DM, (iii) Determination of the

ideal and negative-ideal solutions, (iv) Calculation of the separation measure, (v)

Relative Closeness to the Ideal Solution, and (vi) Rank the Preference Order.

The normalisation converts the various criteria dimensions into non-dimensional

criteria. An element rij of the normalised DM is calculated as follows using the

notion of the Euclidean distance:

rij =
xij√∑m
k=1 x

2
kj

Given the normalised rij , the Weighted Normalised DM V is generated by multiply-

ing each rij with a user-defined weight (W = (w1, w2, . . . , wn), (where:
∑

wj = 1)).

The Weighted Normalised matrix V has the following form:

V =



w1r11 w2r12 ... wnr1n

w1r21 w2r22 ... wnr2n

. .

. .

. .

w1rm1 w2rm2 ... wnrmn


Then, the determination of the ideal (A∗) and negative-ideal (A−) solutions follows,

based on the following expressions:

A∗ = {(max
i

νij |j ∈ J), (min
i

νij |j ∈ J ′), i = 1, 2, 3, . . . ,m} = {ν1∗ , ν2∗ , . . . , νn∗}

A− = {(min
i

νij |j ∈ J), (max
i

νij |j ∈ J ′), i = 1, 2, 3, . . . ,m} = {ν1− , ν2− , . . . , νn−}

where: J = {j = 1, 2, 3, . . . , n and j is associated with the benefit criteria},

J ′ = {j = 1, 2, 3, . . . , n and j is associated with the cost/loss criteria}.

Given the above, the separation measure can be calculated as follows:

Si∗ =

√√√√ n∑
j=1

(νij − νj∗)2, for i = 1, 2, 3, . . . ,m (5.2)
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Si− =

√√√√ n∑
j=1

(νij − νj−)
2, for i = 1, 2, 3, . . . ,m (5.3)

where, Si∗ is the distance (in the Euclidean sense) of each alternative from the

ideal solution, and Si− is the distance (in the Euclidean sense) of each alternative

from the negative-ideal solution.

Given equations 5.2 and 5.3, the relative closeness of an alternative Ai to the ideal

solution can be calculated as follows:

Ci∗ =
Si−

Si∗ − Si−
(5.4)

where 1 ≥ Ci∗ ≥ 0, and i = 1, 2, 3, . . . ,m. Apparently, Ci∗ = 1, if Ai = A∗, and

Ci− = 0, if Ai = A−.

Finally, the ranking of all alternatives will reveal the best one that has the shortest

distance to the ideal solution Ci∗ .

Having documented the theoretical background, we elaborate on the placement of the

methods in the HSTool workflow. More specifically, the MCDM methods contribute in

solving the following two problems:

• The identification of the “optimal” degree of k1 and k2 of the orthonormal poly-

nomials (See Algorithm 4, Lines 2-3 and Algorithm 5, Lines 2-3).

• The identification of the “optimal” set of p components, which capture most of

the variance of the mortality data and will be incorporated in the model structure.

(See Algorithm 4, Line 12)

In both cases, multiple criteria are taken into consideration in an effort to decide which

are the best solutions, given a wide set of information criteria and statistical tests.

Table 5.2 provides an example of the decision matrix that illustrates how the different

options and the criteria look like. As can be seen, several criteria are used based on

the use of Information Criteria and statistical hypothesis tests. More specifically, the

information criteria used are AIC, its modification AIC, and the BIC. Their calculation

is a straightforward process and is further discussed in Section 5.2.6.
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Avg.Hypothesis t (%) Avg.Hypothesis x (%) AICc AIC BIC

39.33 66.33 1,4263.47 14,252.35 15,239.95
35.5 64 15,600.76 15,589.64 16,577.24
...

...
...

...
57.5 73.5 10,229.27 10,205.72 11,635.81

Table 5.2: Instance of decision matrix of the multiple criteria decision making methods

The Avg.Hypothesis t and Avg.Hypothesis x indicate the average of the percentages of

the results of a set of statistical hypothesis tests which are calculated over the residuals

for the dimensions of t (years) and x (ages), respectively. More specifically, the following

six statistical tests are used:

• Ljung–Box (Ljung & Box (1978))

• Sign (Dixon & Mood (1946))

• Runs (Bradley & Bradley (1968))

• Kolmogorov-Smirnov (Massey (1951))

• Engle’s ARCH (Engle (1982))

• Jarque-Bera (Jarque & Bera (1987))

Given this, the average of the percentages of the test decision for the non-rejected null

hypothesis, for each statistical test, is calculated. Each test, evaluates the residuals in

order to check whether the results of the fitting process meets a desired quality (e.g.,

the Runs test returns a decision for the null hypothesis that the values in a data vector

come in random order). Thus, the average over all tests provide an overview on the

quality of the fitting process over the acquired residuals. That is, the Avg.Hypothesis t

and Avg.Hypothesis x take part in the MCDM to steer the decision making towards the

“optimal” result.

5.2.5 Model Fitting

Description The HSTool offers the hsfit() function for fitting the stochastic mortal-

ity model to the loaded data. This function undertakes the execution of the parameters

estimation method, following the steps described in Section 4.1.1. Two function vari-

ations are given to enable more advanced users to carry out experiments by testing

different parameterisations so that to explore the capabilities of the model and the mor-

tality data peculiarities. That is, the first function bellow unfolds all the available input
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parameters that a user may wish to modify, while the second offers a parsimonious func-

tion invocation in which the necessary parameters are set to default values. Those values

have been defined by us, based on our domain knowledge and HS modelling experience

in order to offer a calibrated operation. The general structure of the hsfit() function

is given below.

[lgmtxhat, mtxhat, ax, betax, kappat, betac, gammac, fitvrbls] =
hsfit (dtx, etx, logmtx, datavrbls, init_s, last_s, stp_s, maxiter, info,
gapchange, mcdmmethod, w1, w2, w3, w4, w5);

[lgmtxhat, mtxhat, ax, betax, kappat, betac, gammac, fitvrbls] =
hsfit (dtx, etx, logmtx, datavrbls);

Inputs The input parameters of the hsfit() function are given bellow.

Parameter Description

dtx Matrix of deaths data.
etx Matrix of observed exposures.
logmtx Matrix of logarithmic crude mortality rates.
datavrbls Structure which encapsulates variables and metadata generated during

the data loading process.
init s Initial value of sparsity factor S.
last s Last value of sparsity factor S.
stp s Step of changing the S iterative.
maxiter Maximum number of iterations to be executed in DSPCA function

which performs the Sparse Principal Component Analysis (See Sec-
tion 5.2.10).

info Parameter to tune the DSPCA reporting verbosity.
gapchange Required change in gap from first gap in DSPCA (default: 1e-4).
mcdmmethod The multi-criteria decision making method (SAW or TOPSIS, see Sec-

tion 5.2.4) to be used for the definition of the optimal k-degree of the
orthonormal polynomials and the final decision on the optimal p and q
components.

w1 Weight of the MCDM method for Avg.Hypothesis t criterion (See Sec-
tion 5.2.4, Table 5.2).

w2 Weight of the MCDM method for Avg.Hypothesis t criterion (See Sec-
tion 5.2.4, Table 5.2).

w3 Weight of the MCDM method for AICc criterion (See Section 5.2.4,
Table 5.2).

w4 Weight of the MCDM method for AIC criterion (See Section 5.2.4,
Table 5.2).

w5 Weight of the MCDM method for BIC criterion (See Section 5.2.4,
Table 5.2).
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Outputs The output parameters of the hsfit() function are given bellow.

Parameter Description

lgmtxhat Matrix of the logarithmic estimated mortality rates.
mtxhat Matrix of estimated mortality rates.
ax Vector with the estimated values of age effect which repre-

sents the main age profile of mortality αx.
betax Matrix with the estimated values of each age-related effect

β
(i)
x for each period component, where i = 1, 2, . . . , p.

kappat Matrix with the estimated values of each period-related ef-

fect κ
(i)
t , where i = 1, 2, . . . , p.

betac Matrix with the estimated values of each age-related effect

β
c(j)
x for each cohort component, where j = 1, 2, . . . , q.

gammac Matrix with the estimated values of each cohort related ef-
fect γ

(j)
c , where j = 1, 2, . . . , q, and c = t− x.

fitvrbls Structure which encapsulates variables generated during the
HS fitting process.

fitvrbls.s Value of the sparsity factor of SPCA.
fitvrbls.k1 Degree of the orthonormal polynomial used for the estima-

tion of the age-period components.
fitvrbls.k2 Degree of the orthonormal polynomial used for the estima-

tion of the age-cohort components.
fitvrbls.p Number of age-period components incorporated in the

model.
fitvrbls.q Number of age-cohort components incorporated in the

model.
fitvrbls.uv ratio Matrix with the UVR values of each age-period component,

UV Rx(i), where i = 1, 2, . . . , p.
fitvrbls.uvc ratio Matrix with the UVR values of each age-cohort component,

UV Rc
x(j), where j = 1, 2, . . . , q.

fitvrbls.ttl lglklh Total log-likelihood of the model.
fitvrbls.nobs Number of observations.
fitvrbls.npar The number of parameters being estimated in HS.

Documentation The estimation process of the HS model has been thoroughly doc-

umented in Hatzopoulos & Sagianou (2020) while in Section 4.1.1 we provided an

overview.

The goal of the hsfit() function is to define the p age-period and q age-cohort compo-

nents to be included in the model structure. The hsfit() function takes as input the

number of deaths, the exposures and the logarithmic crude mortality rates. Those in-

puts are readily created using the hsdataload() function as exemplified in Section 5.2.3.

Algorithms 4 and 5 summarise the code-related procedures executed in the context of
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the hsfit() function. The improvements made in the HS codebase are abstractly high-

lighted with blue color in the algorithms. The documentation does not aim to thoroughly

describe the estimation method, but to highlight the points where the method has been

enhanced with the additions reported in Section 5.2.2.

As described in Step#1 in Section 4.1.1, the HS model applies GLM in order to generate

the GLM-estimated parameters B = {bt,k−1}, k = 1, . . . , k1. To do so, we need first to

define the optimal degree k1 of the orthonormal polynomials, as those generated using

the Gram–Schmidt process. In Hatzopoulos & Sagianou (2020) the user had to decide

the degree k1 based on the BIC values of the GLM fitted model. To enhance the process,

we adopted the MCDM methods presented in Section 5.2.4 in order to increase the tool’s

automation level and take an informed decision on the “optimal” k1 degree. Thus, the

degree is determined based on the information criteria AIC, AICc and BIC and the

average result of the hypothesis testing of a set of statistical tests. Note that, this

improvement is applied also for the case of the k2 degree for the age-cohort estimation.

Another enhancement in the model’s estimation process is the addition of a dynamic

approach for the definition of the UVR threshold, instead of the use of an empirical

one. As explained in Section 5.2.2, the process is now based on the analysis of the UVR

curve, finding the lowest possible UVR value (global minimum) of the curve, and then

searching even a quite loose upper level (e.g., UV R(i) < 60%) in an effort to cover a

wide search space for the identification of the appropriate components. This addition

leads to a more efficient implementation contrary to the Hatzopoulos & Sagianou (2020),

making sure the most of the data variance will be captured by the model.

The last enhancement, but the most important one, is the addition of MCDM for de-

ciding the final and optimal model structure. More specifically, as denoted in step#3 in

Section 4.1.1, the definition of the optimal model structure coincides with the definition

of the optimal scalar s. That is, the estimation method of HS examines iteratively a

range of s values, and each one can lead potentially to a different model structure (for the

p age-period components). Those are treated as candidate solutions. That is, MCDM is

used in this work for taking the decision on the “optimal” set of age components to be

incorporated in the final model structure. In Hatzopoulos & Sagianou (2020) the user

had to scrutinise manually the results, having BIC as an indicator, to conclude to the

optimal components. This process has a full degree of automation, as the optimal model
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structure is now being determined based on the information criteria AIC, AICc and BIC

and the average result of the hypothesis testing of a set of statistical tests. Note that,

this improvement is applied only for the case of the p age-period components, as the

estimation of the q age-cohort components is straightforward due to the use of PCA.

Example Using again the E&W data as the basis, the inputs for the hsfit() function

have been created using the hsdataload() function as exemplified in Section 5.2.3.

Then, hsfit() is called as follows:

>> [lgmtxhat, mtxhat, ax, betax, kappat, betac, gammac, fitvrbls] =
hsfit (dtx, etx, logmtx, datavrbls);

The fitting process started....

Figure 5.2: Generation of orthonormal polynomials

Figure 5.3: Checking sparsity factor s

The fitting process has been completed!

>> fitvrbls
fitvrbls =

s: 54.2900
k1: 34
k2: 8
p: 5
q: 2

uv_ratio: [90x5 double]
uvc_ratio: [90x2 double]
ttl_lglklh: -1.3665e+05

nobs: 15840
npar: 1640

>> plot(datavrbls.ages, betax(4,:))
title(’\beta^{(4)}_x’)
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xlabel(’ages’)

>> plot(datavrbls.years, kappat(:,4))
title(’\kappa^{(4)}_t’)
xlabel(’years’)

>> plot(datavrbls.ages, fitvrbls.uv_ratio(:,4))
title(’UVR_x(4)’)
xlabel(’ages’)

>> plot(datavrbls.ages, betac(1,:))
title(’\beta^{c(1)}_x’)
xlabel(’ages’)

>> plot(datavrbls.cohorts, gammac(:,1))
title(’\gamma^{(1)}_c’)
xlabel(’cohorts’)

>> plot(datavrbls.ages, fitvrbls.uvc_ratio(:,1))
title(’UVR^c_x(1)’)
xlabel(’ages’)
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5.2.6 Goodness-of-fit analysis

Description The evaluation of the goodness-of-fit of the HS model on a given dataset

is based on a set of quantitative and qualitative criteria in order to approach the anal-

ysis from different angles. To do so, the HSTool provides the hsevaluate() func-

tion to provide the evaluation results for all the selected quantitative metrics and the
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hsresiduals() in order to calculate and plot the residuals of the fitted model. When it

comes to the qualitative results, we use the native Matlab command plot() to visualise

the outputs, as those generated from the hsfit() function. More specifically, as part

of the fitvrbls object, we can visualise the UV R(i) and UV Rc(j) values, which are

used to illustrate the purity of a model’s component, as well as the age cluster which is

attributed to the identified mortality trend revealed by each corresponding κ
(i)
t and γ

(j)
c .

Therefore, the following criteria are supported in HSTool :

• Quantitative criteria:

– Information Criteria: Bayesian Information Criterion (BIC), Akaike Informa-

tion Criterion (AIC) and the corrected Akaike Information Criterion (AICc).

– Percentage error tests: Mean Squared Percentage Error (MSPE) and the

Mean Absolute Percentage Error (MAPE).

– Explanation Ratio (ER): Used for quantifying the total contribution obtained

by each individual period or cohort component.

• Qualitative Critεria:

– Unexplained Variance Ratio (UVR): Used for revealing the magnitude of the

captured information by each age–period and age–cohort component.

– Residuals: Identification of regular patterns for checking whether a model

can describe all the features of the data appropriately.

The general structure of the hsevaluate() and hsresidual() functions are given below.

[aic, aicc, bic, mape, mspe, er] = hsevaluate(mtxhat, mtx, logmtx, ax,
kappat, betax, gammac, betac, fitvrbls);

[sdrestx, dev] = hsresiduals(dtx, etx, lgmtxhat, datavrbls,
fitvrbls, ’visualise’);
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Inputs The input parameters of the hsevaluate() and hsresiduals() functions are

given bellow.

Parameter Description

hsevaluate()

mtxhat Estimated mortality rates.
mtx Matrix of crude mortality rates.
logmtx Matrix of the logarithmic estimated mortality rates.
ax Vector with the estimated values of age effect which represents the

main age profile of mortality αx.
kappat Matrix with the estimated values of each period-related .

betax Matrix with the estimated values of each age-related effect β
(i)
x for

each period component, where i = 1, 2, . . . , p.

gammac Matrix with the estimated values of each cohort related effect γ
(j)
c ,

where j = 1, 2, . . . , q, and c = t− x.

betac Matrix with the estimated values of each age-related effect β
c(j)
x for

each cohort component, where j = 1, 2, . . . , q.
fitvrbls Structure which encapsulates variables generated during the HS

fitting process.

hsresiduals()

dtx Matrix of deaths data.
etx Matrix of observed exposures.
lgmtxhat Matrix of the logarithmic estimated mortality rates.
datavrbls Structure which encapsulates variables generated during the data

loading process.
fitvrbls Structure which encapsulates variables generated during the HS

fitting process.
visualise Option to instruct whether the function will generate a plot (“on”)

or not (“off”).

Outputs The output parameters of the hsevaluate() and hsresiduals() functions

are given bellow.

Parameter Description

hsevaluate()

aic Akaike Information Criterion.
aicc Corrected Akaike Criterion.
bic Bayesian Information Criterion.
mape Mean Absolute Percentage Error.
mspe Mean Squared Percentage Error.
er Explained Variance.

hsresiduals()

sdrestx Matrix of standardised deviance residuals.
dev Matrix of deviance residuals.
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Documentation This paragraph documents the theoretic background and scope of

the various metrics used to evaluate the goodness-of-fit of the model.

Information Criteria is a common practice in the domain for the evaluation of mor-

tality models. AIC, AICc and BIC, are defined as follows:

AIC = −2l + 2npar, and its correction AICc = AIC +
2npar(npar + 1)

N − npar− 1

and

BIC = −2l + npar logN

where N is the number of observations (fitvrbls.nobs), l is the log-likelihood

(fitvrbls.ttl lglklh) and npar is the number of parameters (fitvrbls.npar) be-

ing estimated in HS, and is calculated based on the following formula:

npar = 2 + (k1 + k2) + p ∗ (n+ k1) + q ∗ (nc + k2)

where n is the index of last calendar year (i.e., t = t1, . . . , tn) and nc is the index of the

last cohort (i.e., c = c1, . . . , cnc).

Percentage error tests are used to measure the difference between the estimator and

what is estimated, so that to measure the fitting quality of an estimator. For all ages

from x1 to xa and for all years t1 to tn, these measures are defined as follows:

MSPE =
1

t · x
∑
t

∑
x

(
m̂t,x −mt,x

mt,x

)2

and MAPE =
1

t · x
∑
t

∑
x

|m̂t,x −mt,x|
mt,x

where, m̂t,x is the estimated central mortality rate and mt,x is the observed crude central

mortality rate.

Explanation Ratio (ER) is used in order to quantify the total contribution obtained

by each individual period or cohort component. Considering the whole age range defined

in the hsdataload(), we calculate the explained variance of each component including

all ages. Particularly, we calculate the sum of the variances of the log crude mortality

central rates for all ages, and the sum of the variances of the error between the estimated
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log mortality rates considering the i-component, and the log crude mortality rates, for

all ages. Then, one minus the ratio of these two variances defines the ER(i):

ER(i) = 1−

∑
xVar

(
log(m̃

(i)
t,x)− log(mt,x)

)
∑

xVar
(
log(mt,x)

) (5.5)

where, m̃
(i)
t,x denotes the estimated mortality rates including the i–component for i =

1, 2, . . . , p, p+1, . . . , p+q, where p and q correspond to the number of period and cohort

components respectively. Each ER(i) values, i = 1, . . . , p + q, gives the magnitude of

the contribution of the i component.

Unexplained Variance Ratio is used in order to capture and visualise the significant

amount of variance captured by each of the model’s components, and to illustrate the

age clusters where this variance corresponds to, easing the attribution of a mortality

trend to a specific age cluster. Hence, UVR gives a qualitative overview of each model

structure. For more details on the definition of the UVR metric we prompt the interested

reader to refer to Hatzopoulos & Sagianou (2020). Note that the UVR figures and the

corresponding Matlab commands to visualise them were documented in the examples of

Section 5.2.5.

Residuals Another common measure of the goodness-of-fit of a mortality model is the

residuals of the fitted model. By detecting regular patterns in the visualised residuals,

one can identify if the model can describe all the features of the data appropriately.

According to Villegas et al. (2018), with a Poisson random component, it is appropriate

to look at the scaled deviance residuals defined as:

devt,x = 2

dt,x log( dt,x
et,x ∗ m̂t,x

)
−
(
dt,x −

(
et,x ∗ m̂t,x

))

rt,x = sign
(
dt,x −

(
et,x ∗ m̂t,x

))√devt,x

ϕ̂
and ϕ̂ =

∑
t

∑
x devt,x

N − npar

Example Using again the E&W data as the basis, the hsevaluate() and the

hsresiduals() functions are called as indicated below. In addition, execution examples

using the native Matlab plot() function are given for visualising the qualitative results.

Note that, the hsdataload() and the hsfit() need to be executed beforehand.
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>>[aic, aicc, bic, mape, mspe, er] = hsevaluate(mtxhat, mtx, logmtx, ax,
kappat, betax, axc, gammac, betac, fitvrbls);

>> aic
aic =

2.7657e+05
>> aicc
aicc =

2.7695e+05
>> bic
bic =

2.8915e+05
>> mape
mape =

0.0378
>> mspe
mspe =

0.0035
>> er
er =

0.9272 0.0352 0.0255 0.0060 0.0015 0.0006 0.0001

>> [sdrestx_final, dev] = hsresiduals(dtx, etx, lgmtxhat, datavrbls,
fitvrbls,’on’);
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Figure 5.6: Scatter plots of deviance residuals for the HS model fitted to the E&W
data for ages 0-89 and the period 1841-2016.

5.2.7 Mortality Forecasting

Description Forecasting mortality rates is a typical approach in the modelling

testbeds as a logical step after the decomposition of the mortality rates in the dimensions

of age, period and cohort. The mortality dynamics are reflected by the κ
(i)
t terms which

are treated as time series that can be extended years ahead. Thus, HSTool provides

the relevant function hsforecast() in order extrapolate the mortality rates including

the estimation of the respective confidence intervals. To do so, HSTool utilises Dynamic

Linear Regression (DLR) or ARIMA models. DLR models is class of time series fore-

casting and for its realisation the Captain Toolbox for Matlab (Young et al. (2009))
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is used. In the ARIMA case, the toolbox deploys a routine for the determination of

the best ARIMA model considering the best BIC performance acquired among all the

(p,d,q) combinations. The hsforecast() function receives as input, among others, the

estimated values of a period index, as has been created from the hsfit() function, and

forecasts the index for h–steps (years) ahead.

The general structure of the hsforecast() function is given below:

[lgmtx_for, mtx_for, kappat_for,uci_for, lci_for, forecastvrbls] =
hsforecast(h,’method_for’, kappat, betax, ax, datavrbls, alpha, ’visualise’);

Inputs The input parameters of the hsforecast() function is given bellow.

Parameter Description

h Years ahead to be forecasted.
method for Method to be used for forecasting. It can be “DLR” or “ARIMA”.

kappat Matrix with the estimated values of each period index κ
(i)
t , where i =

1, 2, . . . , p.

betax Matrix with the estimated values of each age-related effect β
(i)
x for each

period component, where i = 1, 2, . . . , p.
ax Vector with the estimated values of age effect which represents the main

age profile of mortality αx.
datavrbls Structure which encapsulates variables generated during the data load-

ing process.
alpha Significance level 0.05 (default) — scalar value in the range 0 to 1.
visualise Option to instruct whether the function will generate a plot (“on”) or

not (“off”).

Outputs The output parameters of the hsforecast() function is given bellow.

Parameter Description

lgmtx for Matrix of the forecasted logarithmic mortality rates.
mtx for Matrix of forecasted mortality rates.
kappat for Matrix of the forecasted values of each period index

κ
(i)
t .

uci for Matrix of the upper bounds of the confidence interval.
lci for Matrix of the lower bounds of the confidence interval.
kappat for Matrix of the forecasted values of each period index

κ
(i)
t .

forecastvrbls Structure which encapsulates variables generated dur-
ing the forecasting process.

forecastvrbls.dlr se Standards error of the fit using DLR process.
forecastvrbls.dlr model The ϕ–parameters of the DLR model.
forecastvrbls.arima mse Mean Square Error from the ARIMA process.
forecastvrbls.arima model The best ARIMA model (p,d,q).
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Documentation As aforementioned HSTool utilises Dynamic Linear Regression

(DLR) or Best ARIMA model for mortality forecasting, while it generates the respective

confidence intervals.

• Dynamic Linear Regression (DLR): Specifically for the DLR models, the

HSTool utilises a specific class:

Yt = a+ δt · t+ ϵt, (5.6)

where Yt denotes the period dynamics, for each calendar year t, with the slope

being a stochastic time variable parameter that follows a smoothed random walk

process: ∆δt = ϕ · ∆δt−1 + ζt−1, 0 < ϕ ≤ 1 and ∆δt = δt − δt−1 denotes the

difference operation. The innovations ϵt and ζt are assumed to be white noise

random variables. If ϕ < 1, Yt is being modelled as a linear stochastic variable

having a slightly tilted s-shape for the short–medium forecasts and also smooth

progression to the mortality dynamics. If ϕ = 1, Yt is being modelled as a non–

linear stochastic variable giving either an accelerating or a decreasing mortality

improvement. Experiments with various mortality experiences have shown that

the time related non–stationary SPCs can be represented adequately under this

particular DLR model structure. Therefore, these two nested DLR structures

(ϕ < 1 and ϕ = 1) are compared based on the BIC of the mortality model,

in order to choose the most appropriate between the two for each period index.

According to Kass & Raftery (1995), one can consider a model selection based

on BIC to be roughly equivalent to a model selection based on a Bayes factor.

Thus, by applying the two DLR structures we can have two variations of the same

model. Then, we can select the appropriate DLR structure based on the observed

BIC difference between these two variations of the model. The difference of the

BIC values is defined as, ∆BIC = BIC(i)−BIC(b), where BIC(b) denotes the BIC

value for the “best” model variation, where the “best” is the one having the lower

BIC value and BIC(i) denotes the BIC value for the alternative model variation.

In this direction, Kass & Raftery (1995) suggested the following rules of thumb:

– If ∆BIC ≤ 2, there is no clear evidence against or in favour of the two models.

– If 2 < ∆BIC ≤ 6, one can say that there is positive evidence against model

i, i.e., there is a difference in favour of model b.
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– If 6 < ∆BIC ≤ 10, there is a strong evidence against model i.

– If ∆BIC > 10, there is a very strong evidence against model i, and model b

is by far the most appropriate.

In the context of our work, we examine whether ∆BIC > 2 in order to judge upon

the most appropriate DLR structure.

• ARIMA: Regarding the projection using Best ARIMA, each i–period index is

modeled considering all the relevant ARIMA(p,d,q) models for p, d, q = 0–3.

Thus, the tool applies a routine for the creation of the models and the evaluation

based on BIC performance for each (p,d,q) combination.

To do so, we assume that κ
(i)
t period indexes follow a general univariate

ARIMA(pi, qi, di) with drift, so that:

∆diκ
(i)
t = δ

(i)
0 +ϕ

(i)
1 ∆diκ

(i)
t−1+· · ·+ϕ(i)

pi ∆
diκ

(i)
t−pi

+ξ
(i)
t +δ

(i)
1 ξ

(i)
t−1+· · ·+δ(i)qi ξ

(i)
t−qi

, (5.7)

where ∆ is the difference operator, δ
(i)
0 is the drift parameter, ϕ

(i)
1 . . . ϕ

(i)
pi are the

autoregressive coefficients with ϕpi ̸= 0, δ
(i)
1 , . . . , δ

(i)
qi , are the moving average co-

efficients with δ
(i)
qi ̸= 0 and ξ

(i)
t is a Gaussian white noise process with variance

σ2(i)ξ.

The time series model in Equation 5.6 and 5.7 can be used to obtain projected (sim-

ulated) values of a period index κ
(i)
tn+h to derive forecasted (simulated) values of the

predictor

log(m̃t+h,x) = αx +

p∑
i=1

β(i)
x κ

(i)
t+h (5.8)

Example The forecasting example shown below is based on the E&W data used before

in the hsfit(). We demonstrate the use for the case of the ARIMA model for 50

years ahead projection. In addition, the native Matlab plot() function is used for the

visualisation of the foretasted κ
(i)
t period indexes and the mortality rates.

>> [lgmtx_for, mtx_for, kappat_for,uci_for, lci_for, forecastvrbls] =
hsforecast(50, ’ARIMA’, kappat, betax, ax, datavrbls, 0.05, ’on’);

forecastvrbls =
arima_model: ’(0,1,0)(3,2,0)(0,2,0)(0,1,0)(0,1,0)’

dlr_se: []
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dlr_model: []
arima_mse: [50x5 double]

>>kappat_for(:,1)’
ans =
Columns 1 through 6
14.8880 15.0229 15.1579 15.2929 15.4279 15.5628

.....
Columns 49 through 50
21.3667 21.5016

>> lci_for(:,1)’
ans =
Columns 1 through 6
13.2910 12.7645 12.3919 12.0990 11.8569 11.6511

.....
Columns 49 through 50
10.1879 10.2094

>> uci_for(:,1)’
ans =
Columns 1 through 6
16.4849 17.2814 17.9239 18.4868 18.9988 19.4746

.....
Columns 49 through 50
32.5454 32.7939
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Figure 5.7: Forecast of the period index κ
(1)
t with random walk with drift
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5.2.8 Mortality Simulation

Description HSTool provides the hssimulate() function in order to generate fu-

ture trajectories of the identified age-period indexes. In order to simulate the indexes

the hssimulate() function wraps the native estimate()1 and simulate()2 function

of Matlab. The function takes as input, among others, the period index, as well as

the number of simulated trajectories and years ahead. The general structure of the

hssimulate() function is given below:

[kappat_sim, uci_sim, lci_sim, mn_sim, simvrbls] = hssimulate(h, N,
kappat, datavrbls, alpha, ’visualise’);

Inputs The input parameters of the hssimulate() function is given bellow.

Parameter Description

h Years ahead to be forecasted.
N Number of trajectories to be generated.

kappat Matrix with the estimated values of each period index κ
(i)
t , where i =

1, 2, . . . , p.
datavrbls Structure which encapsulates variables generated during the data load-

ing process.
alpha Significance level 0.05 (default) — scalar value in the range 0 to 1.
visualise Option to instruct whether the function will generate a plot (“on”) or

not (“off”).

Outputs The output parameters of the hssimulate() function is given bellow.

Parameter Description

kappat sim Matrix with the simulated values for period index κ
(i)
t .

uci sim Vector of the upper bounds of the confidence interval.
lci sim Vector of the lower bounds of the confidence interval.

mn sim Vector of the mean values for period index κ
(i)
t .

simvrbls Structure which encapsulates variables generated during
the simulation process.

simvrbls.arima res Infers residuals of a univariate ARIMA model fit to data.
simvrbls.arima model The best ARIMA model (p,d,q).

1Mathworks - Fit autoregressive integrated moving average (ARIMA) model to data. Online: https:
//www.mathworks.com/help/econ/arima.estimate.html

2Mathworks - Simulate Stationary Processes. Online: https://www.mathworks.com/help/econ/

simulate-stationary-arma-processes.html

https://www.mathworks.com/help/econ/arima.estimate.html
https://www.mathworks.com/help/econ/arima.estimate.html
https://www.mathworks.com/help/econ/simulate-stationary-arma-processes.html
https://www.mathworks.com/help/econ/simulate-stationary-arma-processes.html
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Example The simulation example shown below is based on the E&W data used before

in the hsfit(). We demonstrate the generation of 25 trajectories for 50 years ahead for

κ
(1)
t .

>> [kappat_sim, uci_sim, lci_sim, mn_sim, simvrbls] = hssimulate(50, 25,
kappat(:,1), datavrbls, 0.05, ’on’);

simvrbls =
arima_res: [176x1 double]
arima_model: ’(0,1,0)’

>> kappat_sim
kappat_sim =
Columns 1 through 6
14.3229 15.6368 15.8368 13.6646 15.2944 15.5287
14.1278 16.5217 15.2274 14.7226 15.5444 15.5909
14.0460 15.7399 15.1495 14.7562 16.1140 15.4038
15.3616 16.6649 16.9554 15.5282 16.6281 16.7641
15.6645 16.7013 17.8361 15.7665 15.6550 16.7597

>> uci_sim’
ans =
Columns 1 through 6
17.2536 18.8460 18.7000 19.0065 19.0034 19.5953

.....
Columns 49 through 50
38.3487 39.8068

>> mn_sim’
ans =
Columns 1 through 6
15.0843 15.3555 15.6745 16.0838 16.2527 16.4384

.....
Columns 49 through 50
23.0347 23.2068

>> lci_sim’
ans =
Columns 1 through 6
13.2860 13.6880 14.0624 13.1090 13.5165 13.1158

.....
Columns 49 through 50
10.8271 11.7517

5.2.9 Bootstrapping

Description HSTool provides the hsbootstrap() function in order to analyse the pa-
rameter uncertainty. As advocated also in Villegas et al. (2018), parameter uncertainty
can be attributed to diverse sources of risk, including the uncertainty due to forecasting
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Figure 5.8: Simulated period index κ
(1)
t (left), 95% percentile confidence interval

(Right)

errors and the uncertainty from the estimation process of the model’s parameters. That
is, the bootstrap procedure is used in HSTool for measuring the parameter uncertainty.
The general structure of the hsbootstrap() function is given below:

[ax_boot, betax_boot, kappat_boot, uci_boot, lci_boot] = hsbootstrap(samples,
mtxhat, etx, fitvrbls, datavrbls, alpha, ’visualise’);

Inputs The input parameters of the hsboostrap() function is given bellow.

Parameter Description

samples Number of bootstrap samples.
mtxhat Matrix of estimated mortality rates.
etx Matrix of observed exposures.
fitvrbls Structure which encapsulates variables generated during the HS fitting

process.
datavrbls Structure which encapsulates variables and metadata generated during

the data loading process.
alpha Significance level 0.05 (default) — scalar value in the range 0 to 1.
visualise Option to instruct whether the function will generate a plot (“on”) or

not (“off”).
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Outputs The output parameters of the hsboostrap() function is given bellow.

Parameter Description

ax boot Matrix (a × N) of the N-bootstraped values of age effect of the age
profile of mortality αx.

betax boot Matrix (3-dimensional k1× a× N) with the N-bootstraped values of

each age-related effect β
(i)
x for each period component.

kappat boot Matrix (3-dimensional n × k1 × N) with the N-bootstraped values

values for period index κ
(i)
t .

uci boot Matrix of the upper bounds of the confidence interval.
lci boot Matrix of the lower bounds of the confidence interval.

Documentation HSTool adopts the semi-parametric bootstrap method proposed by

Brouhns et al. (2005) to take into account the sampling errors of the GLM process in

the estimated SPCs, generating also the associated confidence intervals.

N bootstrap samples d
(i)
t,x, i = 1, 2, . . . ,N are generated as realisations from the Pois-

son distribution with mean d̂t,x. Each sample is used to re-estimate the model so that

to get N parameter estimations of B(i) which contains the GLM–estimated parame-

ters as produced using the GLM approach. Then, we get N parameter estimations

α
(i)
x , β

(1),(i)
x , . . . , β

(p),(i)
x , κ

(1),(i)
t , . . . , κ

(p),(i)
t , i = 1, . . . ,N, by executing the HS estimation

process N times. As suggested in Renshaw & Haberman (2008), we make use of the

fitted number of d̂t,x instead of the observed dt,x. Once the HS is bootstrapped we can

simulate it forward to obtain simulated trajectories which account for both the forecast

error in the period indexes and the error in the model fitting. Having the N model real-

isations, the 95% percentile confidence and prediction intervals CI = [p0.025, p0.975] can

be generated. According to Hatzopoulos & Haberman (2009) the bootstrap confidence

interval avoids the normal assumption and is more reliable than the standard normal

interval.

Example The bootstrapping example shown below is based on the E&W data used

before in the hsfit(). We demonstrate the generation of 5000 samples.

>> [ax_boot, betax_boot, kappat_boot, uci_boot, lci_boot] =
hsbootstrap(5000, mtxhat, etx, fitvrbls, datavrbls, 0.05, ’on’);
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5.2.10 HSTool Dependencies

The HSTool has the following dependencies:

• DSPCA Toolbox: This is a Matlab toolbox for Sparse Principal Component Anal-

ysis. This toolbox needs to be part of a system’s path in order to be able to

perform the SPCA operations for reducing the dimensionality of the problem of

identifying the p age-period components. The tool has been introduced in Luss

& d’Aspremont (2006). A complete user guide on the installation and use can be

found in https://www.di.ens.fr/~aspremon/PDF/DSPCAUserGuide.pdf

• CAPTAIN Toolbox: It provides access to novel, mainly recursive, algorithms for

various important aspects of identification, estimation, non-stationary time series

analysis and signal processing, adaptive forecasting and automatic control system

design. HSTool uses CAPTAIN for the realisation of the DLR functionalities used

in the context of the forecasting the estimated mortality rates. CAPTAIN was

introduced in Young et al. (2009) and complete documentation can be found in

http://captaintoolbox.co.uk/Captain_Toolbox.html

5.3 Conclusion

In this chapter we introduced the HSTool, a Matlab toolbox for the Hatzopoulos &

Sagianou (2020) multiple-component stochastic mortality model. The chapter offers a

complete technical documentation of the functionalities of the tool supported by the

necessary documentation of the background methodologies and examples of the func-

tionalities execution. In this context, we documented the HSTool core functionalities

for realising the Mortality Data Loading, Model fitting, Goodness-of-fit analysis, Multi-

criteria decision making and Forecasting, Simulation and Bootstraping functionalities.

The aforementioned functionalities are those that enable a user to create a comprehen-

sive mortality modelling testbed and fully evaluate the HS model under diverse datasets

and conditions.

Apart from the realisation of the HS model in the form of a Matlab toolbox, this chapter

has introduced a number of improvements in the operational behaviour of the model

https://www.di.ens.fr/~aspremon/PDF/DSPCAUserGuide.pdf
http://captaintoolbox.co.uk/Captain_Toolbox.html
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compared to the initial approach presented in Hatzopoulos & Sagianou (2020) back in

2020.

More specifically, we introduced the use the multi-criteria decision making methods

(SAW and TOPSIS) to support the decision making and model’s convergence to “op-

timal” values for critical model’s parameters, based on the use of diverse performance

criteria. Thus, on the one hand, these methods used for identifying the optimal k1 and

k2 degrees of the orthonormal polynomials produced by the model’s graduation process

based on the use of GLM, and on the other hand, for the identification of the optimal

p age–period components that comprise the final model structure. The introduction of

such enhancements came to augment the model’s operation and alleviate the user from

manually scrutinising the model’s results and setting empirical thresholds to define the

optimal parameters to be finally used. Hence, HSTool offers a high level of automation

and enhanced user experience by still enabling testing under different parameterisations

to explore the capabilities of the model and the peculiarities of mortality data.

In addition, another enhancement was the introduction of a dynamic searching approach

of the UVR thresholds of the age–period and age–cohort components. More specifically,

in Hatzopoulos & Sagianou (2020), an empirical threshold value for significant UVR

values was set to UV R(i) < 50%. However, the determination of the UVR value affects

the optimality of the s value and, hence, different s values uncover different components

in the mortality data under different stringent or loosen UVR threshold values. That is,

HSTool delivers a new approach for the analysis of the local minima of the UVR graphs

that guarantee that the model converges to the optimal components that maximise the

captured information.

Overall, this chapter aspired to unfold the qualities of HS model not just on the paper,

but to make substantial contribution is the mortality modelling domain by providing the

complete tool to the community. In this direction, this work has provided the necessary

material steering the users on the use of model’s commands for replicating the full cycle

of a mortality model, i.e., fitting the stochastic mortality model, assessing its goodness-

of-fit and performing mortality projection.



Chapter 6

Conclusions and Future

Directions

6.1 Conclusions

This chapter summarises the contribution of this doctoral thesis and provides research

directions for future work. In the frame of mortality modelling, this thesis created a

steppingstone by analysing the behaviour of existing mortality models in the context

of a comparative evaluate testbed, and used it to go beyond the prominent and well-

established solutions. This was done by introducing new methods and tools that can

provide accurate modelling and foster research in academia. Reaching to the end of this

doctoral thesis, it becomes clear that there was room for improvement in the mortality

domain, as the rigid structures of the well-established models of the literature cannot

offer a fine-grained and in-depth analysis of the mortality trends.

More specifically, as described in Chapter 2, there is a wide set of well-established

mortality models, but as advocated in Chapter 3, those still have limitations and pose

open research challenges.

That is, Chapter 3 performed a comparative analysis of the aforementioned models

in terms of model fitting and mortality rates prediction in order to benchmark their

performance. Given this, Chapter 3 introduced the HS model that adopted a dynamic

structure with multiple age–period and age–cohort interaction terms, estimated using

131
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Generalised Linear Models (GLMs) and Sparse Principal Component Analysis (SPCA).

The model gains a highly informative structure in an efficient way thanks to the use of

the Unexplained Variance Ratio (UVR) metric, and it is able to designate an identified

mortality trend to a unique age cluster, tackling a major limitation on the interpretability

of modelling results in the domain. Notably, the HS model is able to achieve high scores

over diverse qualitative and quantitative evaluation metrics and outperforms the rest of

the models in the majority of the experiments, while the model comes into agreement

with well-established findings in the mortality literature.

As a next step, Chapter 4 introduced a set of HS extensions, as we identified that there

was room for improvement to the initial HS model. That is, we formulated the HS model

in terms of qt,x and we made use of various link functions and diverse distributions in

the model’s estimation method. We gave particular focus on the use of heavy-tailed

distributions, and we evaluated their applicability in the context of mortality through

the HS extensions.

Chapter 5 aimed to have a practical impact for this thesis through offering the HSTool, a

Matlab package for the HS model, along with the necessary material for the replication

of testbeds and the use of the model’s commands. In addition, this chapter extended the

initial HS codebase by introducing multi-criteria decision making methods in the model’s

workflow to achieve increased tool automation and convergence to “optimal” values for

critical model’s parameters. That is, this chapter completed a series of contributions of

this doctoral thesis by enabling the replication of the full cycle of a mortality model,

i.e., fitting the stochastic mortality model, assessing its goodness-of-fit and performing

mortality projections.

Table 6.1 provides a mapping between the objectives (see Section 1.1), the key contri-

butions of this thesis and the corresponding published works to peer-reviewed scientific

journals. In other words, this mapping describes how our research endeavours fulfilled

the initial goals set for contributing in the mortality modelling domain. Hence, this

table summarises our path towards the completion of this PhD thesis.
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Obj. Chapt. Contribution Publication

2 3 Introduction and evaluation of a new multiple compo-
nent stochastic mortality model, namely the Hatzopoulos-
Sagianou (HS) model

Hatzopoulos
& Sagianou
(2020)

2, 3 3 Introduction of Unexplained Variance Ratio (UVR) metric
in order to pinpoint the most important age–period and
age–cohort components and the optimal model structure.

Hatzopoulos
& Sagianou
(2020)

1 3 Extensive evaluation of the new model and comparative
analysis of the obtained results against well-known exist-
ing mortality models.

Hatzopoulos
& Sagianou
(2020)

3 4 Extensions on the Hatzopoulos–Sagianou multiple-
component stochastic mortality model based on the use
of different link functions and probability distributions.

Sagianou &
Hatzopoulos
(2022)

2, 3 4 Introduction of a new set of link functions, with particu-
lar focus on heavy-tailed distributions, and applicability
evaluation in the context of mortality through the HS ex-
tensions.

Sagianou &
Hatzopoulos
(2022)

3 4 Lessons learnt to inform the community on the adoption
of the various link functions in a models’ estimation meth-
ods.

Sagianou &
Hatzopoulos
(2022)

1, 2 3, 4 Design of a backtesting testbed (out-of-sample compari-
son) in order to evaluate the ability of each model in terms
of prediction

Hatzopoulos
& Sagianou
(2020),
Sagianou &
Hatzopoulos
(2022)

4 5 A software implementation and technical documentation
of the HS model in the form of a MATLAB package under
the name HSTool

Hatzopoulos &
Sagianou (n.d.)

3, 4 5 Introduction of multi-criteria decision making methods in
the model’s workflow to achieve increased tool automation
and convergence to “optimal” values for critical model’s
parameters

Hatzopoulos &
Sagianou (n.d.)

Table 6.1: Overall PhD Thesis Contribution.

6.2 Summarising the advantageous characteristics of HS

As was mentioned in the introduction, several mortality models have been introduced in

the literature, and each time a new model aims to address open challenges and gaps. The

HS has the same purpose. Having highlighted the limitations of existing models based

on the comparative study presented in Chapter 3, we summarise here the advantageous

characteristics of the HS.

• Introduces a dynamic structure with multiple age-period and age-cohort compo-

nents - Legacy models have a static structure and consider only 1 to 3 components.
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To name a few, Lee & Carter (1992) model offers 1 age-period component. Ren-

shaw & Haberman (2006) offer 1 age-period and 1 age-cohort, and Plat (2009)

offers 3 period and 1 cohort components, with pre-specified age effect terms.

• Its estimation methodology reveals significant and distinct age clusters by identify-

ing the optimal number of incorporated period and cohort effects, and enables the

interpretability of the identified mortality trends. - Legacy models have a static

structure and they do not provide distinct age clusters to enable the attribution

of an identified trend to a specific age range. In this sense, their components are

not clear, and the extracted mortality trend is attributed to the whole age range

or a mix of age ranges.

• Its estimation methodology is driven by the Sparse Principal Component Analy-

sis and the Unexplained Variance Ratio (UVR) to identify the most informative

components in order to maximise the captured variance of the mortality data. -

Legacy models aim solely to maximise the log-likelihood of the model.

• Due to its extensible structure (i.e., its components are not predefined), differ-

ent age-period and age-cohort components can be identified on different mortality

datasets, as different datasets (and countries) can have different mortality be-

haviour. - Legacy models, due to their static structure, always offer the same

number of components regardless of the dataset provided.

• Can operate over the whole age range and, thus, it can identify all the significant

age clusters having high information variance (using the UVR metric). Thus, it

can offer a holistic view for mortality behaviour over a dataset. On the other hand,

there are legacy models that, either cannot operate by design over the whole age

range (e.g., CBD models), or they do not include the necessary components in

order to uncover the mortality trends for distinct and fine-grained age clusters.

• Can be used for in-depth analysis of mortality on specific age clusters. Legacy

models offer a generic representation of mortality dynamics without specifying

which ages are reflected in a mortality trend.

• Based on the extended methodology presented in Sagianou & Hatzopoulos (2022),

the HS enables the adoption of virtually any distribution as link functions in the

estimation process, in order to improve the goodness-of-fit and better adapt to the
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intrinsic information of the mortality data analysed. Legacy models make use only

of a standardised set of link functions (usually log and logit).

• The HS model has been proven to outperform well-known models of the literature

over diverse qualitative and quantitative evaluation metrics (MAPE, MSPE, AIC,

BIC, Explained variance), as can be seen in Hatzopoulos & Sagianou (2020) and

in Sagianou & Hatzopoulos (2022).

All the aforementioned qualities are advocated by the quantitative and qualitative exper-

imental results in Hatzopoulos & Sagianou (2020) and Sagianou & Hatzopoulos (2022).

In addition, in Hatzopoulos & Sagianou (n.d.) we aim to make the HS available to the

community and offer a tool to realise the above-mentioned qualities and introduce im-

provements in the model’s algorithm for increased automation and operational stability.

6.3 Meeting the mortality modelling design criteria

As described in Section 2.5, a list of criteria has been defined in the mortality literature

as a set of qualities that need to be met by a mortality model or to be considered as

design requirements that researchers need to follow in their endeavour of introducing a

new model. Table 6.2 summarises this analysis on the satisfaction of the criteria by the

models used in the comparative study of this Phd thesis, while the last column refers

to the HS model. In fact, part of this table was initially presented in Plat (2009) and,

in the context of this work, we extend it by adding the results regarding the HS model,

and notably, by including more criteria in the analysis.

More specifically, criteria 16 to 19 have been included as desirable characteristics that

coincide with the advantages of the HS model structure as summarised in the previous

section. As can be seen, none of the models included in the comparative study meets

the criteria that the HS introduces.
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Criteria Renshaw
&
Haber-
man
(2006)

Currie
(2006)

Lee &
Carter
(1992)

Plat
(2009)

Hatzopoulos
&
Sagianou
(2020)

1. Positive mortality rates + + + + +
2. Consistency with historical data + + +/- + +
3. Long-term biological reasonableness + + + + +
4. Estimation robustness +/- + + + +
5. Forecasts biological reasonable + + +/- + +
6. Straightforward to implement + + + + +
7. Parsimony +/- +/- + +/- +
8. Possibility generating sample paths + + + + +
9. Allowance parameter uncertainty + + + + +
10. Incorporation of cohort effects + + - - +
11. Non-trivial correlation structure +/- +/- - + +
12. Applicable for a full age range +/- +/- +/- - +
13. Transparent - not a “black box” + + + + +
14. Good fit to the historical data +/- - - + +
15. Rank well against other models + - - + +
16. Dynamic structure - - - - +
17. Adaptability to population idiosyncrasies - - - - +
18. Attribution of trend to clear age clusters - - - - +
19. Maximisation of captured information - - - - +

Table 6.2: Comparison of mortality models - Satisfaction of criteria

In the following points we explain how the HS model meets each of the criteria:

1. Positive mortality rates: Positive mortality values are derived from our model

structure since all the link functions in our modelling are being used with Poisson

or Binomial GLM structure.

2. Consistency with historical data: Section 3.4 provided a thorough discussion on

the model results and documented how the HS comes into agreement with well-

established findings in the mortality literature. This ability of the HS is attributed

to the dynamic linear regression modelling and to the polynomial expansion ap-

proach for modelling age patterns of mortality. The latter offers great flexibility in

the graduation process since most continuous functions can be approximated by a

polynomial to any degree of accuracy in the form of a Taylor power series.

3. Long-term biological reasonableness: The HS is aligned with historical data, as

well as with mortality dynamics that have been widely recognised in the mortality

literature. Its ability to identify clear mortality trends for distinct age clusters aid

to the identification of certain dynamics, such as the “accident hump”, the “golden
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cohort effect”, the “smoking effect” and the “ageing of mortality improvement”

(See Section 3.4). This ability comes as a result of the use of SPCA and the UVR

metric.

4. Estimation robustness: The diverse evaluation testbeds built in the context of

Chapters 3 and 4 verify this criterion. The HS was stress-tested using various

datasets both for short and long modelling periods.

5. Forecasts biological reasonable: The forecasting results are biologically reasonable.

The HS was tested under diverse out-of-sample setups achieving better results than

the rest of the well-established mortality models.

6. Straightforward to implement: The methodology of the HS has been fully docu-

mented in Chapter 3, while pseudocodes that describe the model’s operational flow

are presented in Algorithms 1 and 2. The HS has been implemented in Matlab

offered as a toolbox, namely HSTool. In addition, Chapter 5 offered a complete

handbook of the HSTool.

7. Parsimony: The incorporation of age period and cohort effects occurs in a dynamic

manner. Thus, depending on the mortality dataset being modelled, a different

number of parameters is estimated. One could argue that the incorporation of

multiple parameters (e.g., for E&W 5 age-period and 2 age-cohort) is opposed to

the parsimony criterion. However, as advocated by our results, all the incorporated

age and cohort terms are significant and they contribute to the explainability of

the mortality trends. In addition, even under the BIC metric, the HS achieved

the best performance among all the models, even if its structure incorporated the

highest number of parameters. This implies that the added components are indeed

necessary to be incorporated in the model structure.

8. Possibility generating sample paths: HS is able to generate sample paths utilis-

ing bootstrapping and generate percentile confidence intervals, as can be seen in

Sections 5.2.8 and 5.2.9.

9. Allowance parameter uncertainty: The generation of sample paths is an important

criterion to witness parameter uncertainty. By using semi-parametric bootstrap,
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parameter uncertainty can be incorporated in the HS model, as proposed in Sec-

tion 5.2.9. HS takes into account the sampling errors of the GLM process in the

estimated components, generating also the associated confidence intervals.

10. Incorporation of cohort effects: The age-period-cohort structure of HS model in-

corporates q stochastic cohort effects. The number of the components varies de-

pending on the mortality dynamics of the population being modelled.

11. Non-trivial correlation structure: The HS model structure incorporates p age-

period and q age-cohort components, implying a non-trivial correlation structure.

12. Applicable for a full age range: The model is applicable to the whole age range,

as can be seen in the evaluation testbeds of Chapters 3 and 4.

13. Transparent - not a “black box”: The methodology of the HS has been clearly

documented in Chapter 3, while its operational flow is presented in Algorithms 1

and 2. In that sense, the model is transparent and users can understand its internal

workings.

14. Good fit to the historical data: The HS model achieved exceptional performance

under several quantitative and qualitative performance criteria, as reported in

Chapters 3 and 4.

15. Rank well against other models: Chapters 3 offered a comparative analysis on the

performance of the HS against other well-known models in the literature. The HS

outperforms the rest of the models in the majority of the experiments.

16. Dynamic structure: As advocated by its structure, the HS model incorporates a

no-predefined number of p age-period and q age-cohort components. The p and

q, and the components per se, are estimated dynamically during the execution of

the fitting process of the model. Thus, HS ensures that the final model structure

will incorporate the necessary number of components for offering a fine-grained

decomposition of the mortality rates. Its dynamicity contrasts with the rigid model

structures of other models.

17. Adaptability to population idiosyncrasies: The varying number of p and q compo-

nents make the HS model to adapt to the mortality dynamics of each population
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(or dataset) being analysed. Considering that HS has the ability to perform accu-

rately, it becomes clear that, adaptability is a key criterion for performing an in-

depth analysis of mortality. HS does not consider pre-defined factors that instruct

a definite behaviour to the model, but its estimation method helps the model to

adapt. When data change, we cannot expect that rigid models can always perform

adequately and adapt to the data mortality dynamics.

18. Attribution of trend to clear age clusters: The principal components identified by

the SPCA method are scrutinised by the estimation process using the UVR metric.

The latter is able to quantify the data variance of a component and identify a

unique age cluster to which the identified mortality trend is attributed to. This

characteristic contributes to the interpretability of the modelling results. Legacy

models do not provide distinct age clusters and cannot enable the attribution of

an identified trend to a specific age range.

19. Maximisation of captured information: The estimation process of HS is driven

towards acquiring as much as possible of the variance of the mortality data. This

is achieved through the SPCA, which provides a better clustering of significant

age-period and age-cohort factors, supported by the UVR metric which instructs

the model to incorporate in the structure the most informative p and q components

(See Table A.7).

6.4 Future Research Directions

This PhD thesis has mainly contributed to the field of mortality modelling by introducing

a new model and a set of supportive methodologies for addressing key limitations of this

research field. Undoubtedly, the quest for novel methods and tools should be continuous.

It becomes clear that mortality modelling is a steppingstone for other business and

research directions where the advancements in mortality modelling can have a positive

impact. To this end, this subsection elaborates on possible next steps and future research

directions.

• HSTool extensions - A key outcome of this PhD thesis is an open source version of

the HSTool as a Matlab toolbox. This version of the tool realises the model version
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presented in Hatzopoulos & Sagianou (2020) including the enhancements related

to the optimisation based on the use of multi-criteria decision making methods.

After establishing the HSTool and acquiring the feedback of the community, several

enhancements can follow based on the HS extensions published in Sagianou &

Hatzopoulos (2022) in order to make available the HS model formulated in terms

of qt,x and to make use of various link functions and diverse distributions in the

model’s estimation method.

• Applications of the HS for optimal allocation of Solvency Capital Requirement - In

the context of Solvency II, the longevity risk is a concern that drives the allocation

of Solvency Capital Requirement. Mortality models have been a link in the chain

of operations for the determination of SCR. To this end, a future direction will be

the evaluation of the HS model, and a comparative study against other models,

on the effect that the more accurate fitting and forecasting performance of the HS

model may have on the allocation of SCR.

• Use of Artificial Neural Networks for accurate predictions of mortality rates - In

the context of this PhD thesis, the ARIMA and DLR where used as the main

methods to extrapolate mortality rates and perform out-of-sample forecasts. Neu-

ral Networks and Deep Neural Networks attract significant attention nowadays and

provide new opportunities for modelling mortality (Deprez et al. (2017), Levantesi

& Pizzorusso (2019)). In this direction, such methods can be used to directly pro-

cess mortality rates to produce forecasts with increased accuracy. This approach is

worthy of investigation when considering its integration in the modelling life-cycle.

Such estimations of future mortality rates can contribute to pricing of insurance

products and in the longevity risk management.
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Figure A.1: LC model: first age–period component for all countries (GR, EW, FR,
JP).
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Figure A.2: RH model: first age–period component for all countries (GR, EW, FR,
JP).
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Figure A.3: RH model: age–cohort component for all countries (GR, EW, FR, JP).
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Figure A.4: APC model: first age–period component for all countries (GR, EW, FR,
JP).
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Figure A.5: APC model: age–cohort component for all countries (GR, EW, FR, JP).
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Figure A.6: PL model: first age–period component for all countries (GR, EW, FR,
JP).
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Figure A.7: PL model: second age–period component for all countries (GR, EW, FR,
JP).
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Figure A.8: PL model: third age–period component for all countries (GR, EW, FR,
JP).
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Figure A.9: PL model: age–cohort component for all countries (GR, EW, FR, JP).
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Figure A.10: HS model: first age–period component for all countries (GR, EW, FR,
JP).
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Figure A.11: HS model: second age–period component for all countries (GR, EW,
FR, JP).
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Figure A.12: HS model: third age–period component for all countries (GR, EW, FR,
JP).
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Figure A.13: HS model: fourth age–period component for countries GR, EW and JP.
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Figure A.14: HS model: fourth age–period component for FR country.
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Figure A.15: HS model: fifth age–period component for EW and JP.
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Figure A.16: HS model: first age–cohort component for all countries (GR, EW, FR,
JP).
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Figure A.17: HS model: second age–cohort component for EW and FR.
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A.2 Deviance Residuals according to the proposed age–

period model structure
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Figure A.18: Deviance Residuals presented in calendar years (left) and cohort (right)
according to the HS model structure (4.3), for all countries (GR, EW, FR, JP).
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A.3 Unexplained Variance for all models
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Figure A.19: Unexplained Variance for all ages and each model, for all countries (GR,
EW, FR, JP).
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A.4 Quantitative tests for the fitting process

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 221 -21,213.44 42,868.89 44,286.15 4.287 11.379

RH 441 -18,633.10 38,148.19 40,976.30 3.790 9.460

APC 272 -21,317.67 43,179.33 44,923.65 5.405 12.715

PL 378 -19,113.68 38,983.36 41,407.45 5.395 10.371

HS 447 -20,176.13 41,246.26 44,112.84 4.109 10.115

Table A.1: Greece, males: quantitative tests for the fitting process

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 354 -1,075,745.35 2,152,198.70 2,154,913.98 7.131 18.473

RH 707 -553,002.06 1,107,418.13 1,112,841.02 5.369 14.896

APC 528 -1,157,738.25 2,316,532.50 2,320,582.42 20.541 23.522

PL 880 -762,205.25 1,526,170.51 1,532,920.37 9.136 15.737

HS 1,598 -135,970.84 275,137,68 287,394.81 0.329 3.696

Table A.2: England & Wales, males: quantitative tests for the fitting process

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 378 -1,683,773.46 3,368,302.92 3,371,250.62 10.810 17.430

RH 755 -494,751.55 991,013.10 996,900.68 3.581 11.262

APC 576 -1,935,221.43 3,871,594.86 3,876,086.58 22.775 24.065

PL 976 -1,243,376.24 2,488,704.49 2,496,315.46 9.199 16.179

HS 1560 -234,746.31 472,612.62 484,777.70 0.529 4.748

Table A.3: France, males: quantitative tests for the fitting process

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 248 -136,173.79 272,843.59 274,517.17 1.918 9.668

RH 495 -53,081.31 107,152.61 110,493.02 0.541 4.772

APC 316 -228,562.40 457,756.80 459,889.26 4.425 14.414

PL 456 -93,807.81 188,527.62 191,604.85 1.321 7.524

HS 663 -43,898.17 89,122.35 93,596.47 0.277 3.387

Table A.4: Japan, males: quantitative tests for the fitting process
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A.5 Quantitative tests for the forecasting process

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 10.672 10.576 10.633 10.627 21.006 21.285 21.491 21.261
RH 9.697 9.792 9.564 9.684 16.952 17.016 16.865 16.944
APC 8.378 8.325 8.483 8.395 19.814 19.938 19.787 19.846
PL 9.181 18.251 16.081 14.504 14.216 16.386 14.959 15.187
HS 10.420 10.390 11.052 10.621 15.331 16.098 14.651 15.360

Table A.5: Greece: percentage error tests for 5 years out–of–sample forecasted mor-
tality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 10.398 10.333 10.985 10.572 20.320 20.964 21.932 21.072
RH 8.361 8.581 8.838 8.593 15.440 15.275 15.383 15.366
APC 10.054 10.077 10.206 10.112 21.364 21.599 21.037 21.333
PL 8.860 11.163 9.400 9.808 18.402 15.148 19.028 17.526
HS 8.691 10.390 6.966 8.682 15.332 15.857 13.989 15.059

Table A.6: Greece: percentage error tests for 10 years out–of–sample forecasted mor-
tality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 29.508 29.509 35.256 31.424 49.838 49.837 52.518 50.731
RH 271.861 271.861 148.885 230.869 58.085 58.085 48.008 54.726
APC 86.494 84.316 90.684 87.165 46.192 46.131 46.626 46.316
PL 586.784 371.845 49.022 335.884 62.748 55.635 33.099 50.494
HS 3.221 7.135 2.101 4.152 13.271 20.800 9.887 14.653

Table A.7: E&W: percentage error tests for 10 years out–of–sample forecasted mor-
tality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 27.069 26.967 30.428 28.155 45.517 45.316 49.972 46.935
RH 42.439 42.439 63.437 49.438 53.258 53.258 62.328 56.281
APC 81.839 72.442 104.406 86.229 45.766 45.547 48.532 46.615
PL 585.665 135.145 48.224 256.345 77.350 49.652 37.688 54.897
HS 8.072 15.473 2.970 8.838 21.374 31.008 12.670 21.684

Table A.8: E&W: percentage error tests for 20 years out–of–sample forecasted mor-
tality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 29.369 29.495 28.063 28.976 44.253 44.342 43.967 44.187
RH 53.006 53.006 63.493 56.502 59.295 59.295 63.043 60.544
APC 67.311 52.618 112.472 77.467 41.885 43.421 48.096 44.467
PL 285.011 27.417 34.811 115.746 73.084 30.423 37.915 47.141
HS 16.632 24.894 4.638 15.388 30.189 38.640 17.094 28.641

Table A.9: E&W: percentage error tests for 30 years out–of–sample forecasted mor-
tality rates
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MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 17.665 16.921 20.539 18.375 34.905 34.657 36.288 35.283
RH 16.023 15.415 16.093 15.844 33.337 31.565 30.131 31.678
APC 124.585 126.383 132.376 127.781 55.970 56.185 56.919 56.358
PL 425.771 1,659.819 138.278 741.289 73.922 132.045 51.059 85.675
HS 2.868 5.497 1.354 3.240 12.929 19.007 8.961 13.632

Table A.10: France: percentage error tests for 10 years out–of–sample forecasted
mortality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 53.237 59.410 43.466 52.038 57.113 59.630 52.800 56.514
RH 53.144 53.861 43.539 50.181 61.797 62.209 56.704 60.237
APC 67.024 61.199 205.816 111.346 45.698 45.219 63.328 51.415
PL 135,771.806 141,779.438 2,821.128 93,457.457 1,012.532 1,026.364 277.732 772.209
HS 19.314 27.480 8.387 18.394 34.344 40.784 19.145 31.424

Table A.11: France: percentage error tests for 30 years out–of–sample forecasted
mortality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 106.298 401.509 30.881 179.563 66.921 103.098 42.813 70.944
RH 54.834 55.401 57.353 55.863 63.138 63.485 64.525 63.716
APC 85.590 181.443 12,725.362 4,330.798 50.313 60.429 291.085 133.942
PL 937.737 919.067 8,253.562 3,370.122 112.916 118.272 355.095 195.428
HS 34.427 45.672 8.998 29.699 37.558 43.695 18.577 33.277

Table A.12: France: percentage error tests for 50 years out–of–sample forecasted
mortality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 7.760 5.863 6.911 6.845 19.519 17.117 18.275 18.304
RH 3.354 4.639 2.788 3.594 15.298 14.943 12.435 14.225
APC 14.879 12.346 13.689 13.638 31.272 28.614 29.739 29.875
PL 4.219 3.583 4.131 3.978 14.937 14.094 14.558 14.530
HS 1.689 3.414 0.930 2.011 9.122 12.222 6.770 9.371

Table A.13: Japan: percentage error tests for 10 years out–of–sample forecasted
mortality rates

MSPE(%) MAPE(%)
ARIMA

DLR
AVG
MSPE

ARIMA
DLR

AVG
MAPERWD BstAr RWD BstAr

LC 10.948 15.332 8.516 11.599 24.708 30.667 21.348 25.574
RH 93.601 143.306 121.922 119.610 51.572 52.387 50.549 51.503
APC 20.432 15.873 17.310 17.872 37.895 32.581 33.981 34.819
PL 8.741 15.017 11.418 11.725 19.701 26.155 23.112 22.989
HS 5.390 2.451 3.124 3.655 17.395 11.210 13.426 14.010

Table A.14: Japan: percentage error tests for 20 years out–of–sample forecasted
mortality rates
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A.6 ARIMA and DLR models

LC RH APC PL HS

κ
(1)
t κ

(1)
t γ

(1)
c κ

(1)
t γ

(1)
c κ

(1)
t κ

(2)
t κ

(3)
t γ

(1)
c κ

(1)
t κ

(2)
t κ

(3)
t κ

(4)
t κ

(5)
t

GR
1961-2008 (0,2,2) (0,1,1)+c (0,1,5)+c (0,1,1)+c (0,2,3) (0,1,1)+c (0,1,2)+c (0,2,2) (0,2,3) (0,1,1)+c (1,1,0)+c (0,1,1) - -
1961-2003 (0,2,2) (4,2,0) (0,2,3) (0,1,1)+c (0,2,3) (0,1,1)+c (0,1,1)+c (0,2,2) (1,2,2) (0,1,1)+c (5,1,0) (0,1,1) - -

EW
1841-2006 (2,1,2)+c (0,1,0)+c (4,2,1) (0,1,5)+c (1,2,1) (0,1,0) (0,1,0) (0,2,1) (0,2,1) (0,1,0)+c (0,1,3)+c (3,0,0) (1,1,4) (0,1,5)
1841-1996 (2,1,2)+c (0,1,0)+c (2,2,2) (0,1,5)+c (1,2,1) (0,1,0) (0,1,0) (0,2,1) (1,2,1) (0,1,0)+c (0,1,3)+c (3,0,0) (2,1,2) (2,0,1)
1841-1986 (2,1,2)+c (0,1,0)+c (5,1,0) (0,1,5)+c (0,2,2) (0,1,0) (0,1,0) (0,2,1) (1,1,1) (0,1,0)+c (0,1,3)+c (3,0,0) (3,0,0) (2,1,2)+c

FR
1816-2005 (0,1,5)+c (1,2,2) (1,1,2)+c (0,1,3) (0,2,1) (0,1,5) (0,1,5) (5,1,0) (3,2,0) (1,1,1)+c (1,1,1) (0,1,5) (1,1,3) -
1816-1985 (0,1,5)+c (0,1,5)+c (0,2,2) (0,1,3)+c (2,2,3) (0,1,5) (0,1,5) (3,1,2)+c (0,2,5) (1,1,1)+c (0,1,5) (1,1,1) (0,1,3) -
1816-1965 (0,1,5) (1,1,1)+c (4,2,1) (1,1,1) (2,2,3) (0,1,5) (0,1,5) (3,1,2) (0,0,5) (1,1,1)+c (0,1,5) (0,1,1) - -

JP
1947-2006 (0,2,3) (0,2,2) (0,2,3) (0,2,2) (1,2,3) (1,1,1)+c (0,1,0)+c (0,1,0)+c (1,2,1) (0,2,3) (0,1,3)+c (0,2,1) (3,0,0) (4,0,0)
1947-1996 (0,2,2) (3,2,0) (1,1,0)+c (3,2,0) (1,2,1) (0,2,1) (0,1,0)+c (0,1,0)+c (0,2,2) (0,1,3)+c (0,1,3)+c (0,2,1) (2,0,0) (2,0,1)

Table A.15: ARIMA(p,d,q) models for each stochastic model and country. The parameter c represents the drift value.

ϕ
LC RH APC PL HS

κ
(1)
t κ

(1)
t γ

(1)
c κ

(1)
t γ

(1)
c κ

(1)
t κ

(2)
t κ

(3)
t γ

(1)
c κ

(1)
t κ

(2)
t κ

(3)
t κ

(4)
t κ

(5)
t

GR
1961-2008 1 0.814 0.867 1 0.818 1 0.768 0.980 0.953 1 1 1 - -
1961-2003 1 1 0.988 1 0.834 1 1 0.888 0.945 1 1 1 - -

EW
1841-2006 0.969 0.944 0.958 0.948 1 0.949 1 0.971 0.731 0.897 1 0.852 1 0.939
1841-1996 1 1 0.657 0.925 0.662 0.915 1 0.971 0.676 0.890 1 0.808 0.937 1
1841-1986 0.921 1 0.839 0.862 0.899 0.892 1 0.968 0.632 0.888 1 1 1 0.939

FR
1816-2005 0.949 0.989 0.947 1 0.915 0.799 0.793 0.822 0.922 1 1 1 1
1816-1985 0.887 1 1 1 0.886 0.795 0.770 0.822 0.800 1 1 1 1 -
1816-1965 1 1 1 1 1 0.792 0.737 0.805 0.648 1 1 1 - -

JP
1947-2006 0.860 0.912 0.977 0.864 0.822 0.878 0.902 0.897 0.947 0.876 1 0.922 0.906 0.884
1947-1996 0.856 0.886 0.814 0.859 0.851 0.872 0.894 0.880 0.952 0.879 1 0.920 0.889 0.933

Table A.16: The ϕ–parameters of the best DLR models for each stochastic mortality model and for each dataset.



A
p
p
en

d
ix

A
–
E
va
lu
a
tio

n
resu

lts
o
f
th
e
experim

en
ta
l
testbed

s
o
f
C
h
a
p
ter

3
164

A.7 Explanation Ratio

LC RH APC PL HS

Total κ
(1)
t γ

(1)
c Total κ

(1)
t γ

(1)
c Total κ

(1)
t κ

(2)
t κ

(3)
t γ

(1)
c Total κ

(1)
t κ

(2)
t κ

(3)
t κ

(4)
t κ

(5)
t γ

(1)
c γ

(2)
c Total

GR
1961-2013 70.85 18.65 60.53 79.18 36.07 25.04 61.11 16.36 4.45 -37.98 92.78 75.61 73.50 1.73 2.58 1.33 0.71 79.85
1961-2008 71.13 3.56 74.59 78.15 30.76 29.98 60.74 18.90 6.12 -31.58 79.94 73.38 72.51 2.66 0.98 0.08 76.23
1961-2003 71.48 42.53 34.19 76.72 27.26 36.00 63.26 24.48 7.42 -16.64 56.62 71.88 72.52 1.30 1.89 0.96 76.67

EW

1841-2016 87.98 -12.31 104.35 92.04 60.10 30.78 90.88 35.58 -8.27 47.02 20.57 94.90 92.75 3.49 1.43 1.25 0.63 0.06 0.02 99.63
1841-2006 90.95 -239.76 336.60 96.84 57.06 32.91 89.97 30.55 -9.08 51.91 20.55 93.93 93.85 2.09 2.66 0.48 0.43 0.06 0.03 99.59
1841-1996 92.84 -278.01 374.60 96.59 54.30 34.94 89.24 25.89 -7.84 52.81 21.72 92.58 92.27 3.35 2.89 0.41 0.50 0.07 0.01 99.50
1841-1986 92.94 -249.26 345.65 96.39 52.28 35.70 87.98 13.25 -5.79 49.67 33.56 90.69 92.20 2.78 3.32 0.61 0.46 0.08 0.01 99.46

FR

1816-2015 89.93 -71.38 163.37 91.99 52.84 36.77 89.61 49.55 -43.19 33.90 53.90 94.16 93.91 1.98 3.06 0.31 0.05 0.02 99.33
1816-2005 88.37 -84.32 178.41 94.09 48.35 39.83 88.18 38.29 6.35 35.30 12.94 92.88 92.79 2.08 3.86 0.47 0.06 0.03 99.29
1816-1985 85.54 -82.55 176.90 94.35 41.24 44.23 85.47 22.97 7.47 41.15 17.59 89.18 89.33 6.33 2.52 0.71 0.04 0.04 98.97
1816-1965 76.70 -182.46 274.75 92.29 41.74 36.00 77.74 26.62 13.55 35.37 6.03 81.57 84.82 10.95 2.13 97.90

JP
1947-2016 94.12 91.63 6.98 98.61 82.94 6.64 89.58 69.29 7.05 12.57 8.55 97.46 95.95 1.41 1.56 0.28 0.13 0.08 99.41
1947-2006 94.58 78.34 20.50 98.84 81.62 7.81 89.43 57.67 9.83 9.66 19.75 96.91 95.08 2.54 1.22 0.21 0.18 0.03 99.26
1947-1996 94.92 88.13 10.29 98.42 80.02 9.90 89.92 56.21 11.33 8.33 20.34 96.21 95.18 2.68 0.89 0.26 0.35 0.04 99.40

Table A.17: Explanation Ratio values for all stochastic mortality models and for all datasets (all values are percentages (%)).
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A.8 Results for the fitting process using shorter datasets

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 234 -38,293.21 77,054.41 78,581.30 0.889 6.621

RH 467 -25,891.57 52,717.14 55,764.39 0.460 4.172

APC 288 -36,943.05 74,462.09 76,341.34 1.301 7.630

PL 400 -27,041.30 54,882.60 57,492.66 0.895 5.236

HS 569 -27,718.17 56,574.35 60,287.16 0.342 4.171

Table A.18: England & Wales, males: quantitative tests for the fitting process using
shorter datasets

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 233 -40,757.42 81,980.84 83,497.00 0.968 6.516

RH 465 -27,624.86 56,179.72 59,205.54 0.419 4.140

APC 286 -39,793.13 80,158.26 82,019.30 0.793 6.237

PL 396 -29,615.83 60,023.65 62,600.48 0.573 4.794

HS 491 -27,944.53 56,871.06 60,066.06 0.333 3.787

Table A.19: France, males: quantitative tests for the fitting process using shorter
datasets

Model npar Log-Likelihood AIC BIC MSPE(%) MAPE(%)

LC 234 -45,914.59 92,297.18 93,824.07 0.621 5.682

RH 467 -32,388.50 65,711.01 68,758.26 0.361 3.976

APC 288 -58,615.67 117,807.34 119,686.59 1.219 7.612

PL 400 -41,060.84 82,921.69 85,531.75 0.613 5.233

HS 579 -32,510.93 66,179.85 69,957.92 0.307 3.481

Table A.20: Japan, males: quantitative tests for the fitting process using shorter
datasets
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LC RH APC PL HS

Total κ
(1)
t γ

(1)
c Total κ

(1)
t γ

(1)
c Total κ

(1)
t κ

(2)
t κ

(3)
t γ

(1)
c Total κ

(1)
t κ

(2)
t κ

(3)
t κ

(4)
t κ

(5)
t γ

(1)
c Total

EW 1961-2016 92.89 62.19 34.26 96.45 77.49 12.46 89.95 62.28 -11.74 19.80 18.14 94.48 94.07 1.59 0.60 0.68 0.24 97.18
FR 1961-2015 93.27 43.10 53.86 96.96 81.82 12.19 94.01 71.85 -0.07 -20.66 44.91 96.03 92.82 1.44 2.15 1.28 0.14 97.82
JP 1961-2015 96.55 76.48 21.58 97.98 87.50 5.08 92.58 84.56 -1.85 8.62 5.60 96.93 96.69 0.53 0.93 0.28 0.15 0.11 98.68

Table A.21: Explanation Ratio values for all stochastic mortality models, for shorter datasets (all values are percentages (%)).
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B.1 Definition of User-Defined Link Functions in Matlab

We consider the class of models for the probability of deaths with Binomial errors and

a user-defined link function. We suppose D ∼ B(E, q) have the Binomial distribution

and let Q = D/E0 be the random variable corresponding to q.

Here, q = E(Q) is the mean of Q, E0 is the initial exposure and η is a linear function

of the explanatory variables. A user-defined link in MATLAB requires three functions:

the link function itself, i.e., η as a function of q, the inverse link function, i.e., q as a

function of η, and the derivative of η with respect to q. As defined in Section 4.2.2, we

reported three cases depending on the cumulative distribution chosen.

1. The cumulative distribution as link function g, maps q, 0 < q < 1, to −∞ <

F−1(q; ξ, θ) <∞, so that:

η = F−1(q; ξ, θ)

q = F (η; ξ, θ)

dη

dq
=
(
F−1(q; ξ, θ)

)′
=

1

f(F−1(q; ξ, θ); ξ, θ)

2. The cumulative distribution as link function, g, maps q, 0 < q < 1, to 0 <

F−1(q; ξ, θ) <∞, so the logarithmic form of the cumulative distribution is needed

to map q, to −∞ < log(F−1(q; ξ, θ)) <∞, the natural scale for regression, so that:

η = log
(
F−1(q; ξ, θ)

)
q = F

(
exp(η); ξ, θ

)
dη

dq
=

1

F−1(q; ξ, θ)
·
(
F−1(q; ξ, θ)

)′
=

1

F−1(q; ξ, θ) · f(F−1(q; ξ, θ); ξ, θ)

3. The cumulative distribution as link function, g, maps q, 0 < q < 1, to 0 <

F−1(q; ξ, θ) < 1, so we need the logit of the cumulative distribution so that maps

q, to −∞ < logit(F−1(q; ξ, θ)) <∞, the natural scale for regression, so that:

η = logit
(
F−1(q; ξ, θ)

)
= log

(
F−1(q; ξ, θ)

1− F−1(q; ξ, θ)

)

q = F

(
exp(η)

1 + exp(η)
; ξ, θ

)
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dη

dq
=

(
F−1(q; ξ, θ)

)′
F−1(q; ξ, θ) · (1− F−1(q; ξ, θ))

=
1

f
(
F−1(q; ξ, θ)

)
· F−1(q; ξ, θ) · (1− F−1(q; ξ, θ))

Note that there is no need to define the derivative of any cumulative distribution, as

this can be achieved by using the probability distribution function as described below.

By using the chain rule:

f(f−1(x)) = x

and therefore
d

dx
f(f−1(x)) =

d

dx
x = 1 (B.1)

and also by chain rule

d

dx
f(f−1(x)) = f ′(f−1(x)) · (f−1)′(x) (B.2)

Thus, by (B.1) and (B.2), we have

f ′(f−1(x)) · (f−1)′(x) = 1

(f−1)′(x) =
1

f ′(f−1(x))

Thus, in our case, by replacing f with F , we have

(F−1)′(x) =
1

F ′(F−1)(x)
=

1

f(F−1(x))

In addition, the Matlab code for the user-defined link function is:

link = @(mu) log(gpinv(mu, xi , theta ));

derlink = @(mu) 1./( gpinv(mu,xi ,theta ).* gppdf(gpinv(mu ,xi,theta),xi,theta ));

invlink = @(eta) gpcdf(exp(eta),xi,theta);

new_F = {link , derlink , invlink };

B = glmfit(Lx,qtx ,’binomial ’,’link’,new_F ,’weights ’,etx0 ,’constant ’,’off’)

where B contains the GLM-estimated parameters, etx0 contains the initial exposures,

Lx is the matrix of the orthonormal polynomials and qtx is the probability of deaths.
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B.2 Age–Period, Age–Cohort Components and Unex-

plained Variance Ratio Graphical Representations for

E&W Dataset
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Figure B.1: First to fourth age-period component for E&W dataset.
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Figure B.2: Fifth and sixth age-period component for E&W dataset.
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Figure B.3: First and second age-cohort component for E&W dataset.
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B.3 Age–Period, Age–Cohort Components and Unex-

plained Variance Ratio Graphical Representations for

GR Dataset
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Figure B.4: First to fourth age-period component for GR dataset.
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Figure B.5: Fifth age-period component for GR dataset.
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Figure B.6: Age-cohort component for GR dataset.
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Algorithm 4: hsfit() age-period components estimation workflow

1 Input : D : (n× a)-matrix with values Dt,x,∀t, x
2 E : (n× a)-matrix with values Et,x, ∀t, x
3 Output : M : (n× a)-matrix representing log(m̂t,x) = α̃x +

∑p
i=1 β

(i)
x · κ(i)t

55 Define parameters
6 x← x1, . . . , xa; a← length(x); // ages

7 t← t1, . . . , tn; n← length(t); // calendar years

89 L← create orthonormal polynomials using Gram–Schmidt process;
1011 [Lbest, k1]← MCDM(L); // Best orthon.pol. with degree of k1 − 1 using

MCDM

1213 B ← GLM(Lbest, D) with offset log(E), ∀t;
1515 A← Cov(B);
1717 initial s ← is a set of values around the area of the Var(bt1,0);
1919 for s ∈ initial s do
20 U ← SPCA(A, s);
21 P ← eig(U); // P : eigenvectors of U
22 b̄← mean(B);
23 Br ← B − b̄;
24 α̃x ← b̄ · L; // main age-profile

25 Y ← Br · P ; // Y = {κ(i)} i-period effect, ∀i ∈ [1, k1]

26 G← P−1 · LT ; // G = {β(i)} i-age effect, ∀i ∈ [1, k1]
27 for i← 1 to k1 do
2829 [points, UV Rvalues]← get local minima of UVR(i)
3031 threshold← get cluster thresholds ([points, UV Rvalues])

// Define UVR(i) thresholds

3233 if ( threshold > δ) and (UV R(i) reveals unique age cluster) then
3535 Components← keep this i-component to the model structure

36 end

37 end
3839 cand solutions ← calculate evaluation metrics for Components;

// cand solutions is a 2D array holding the candidate p components

// repeat the same procedure for the next s value

40 end
4142 optimal solution ← MCDM(method, cand solutions, weights); // Define best p

using MCDM

// optimal solution holds the results of the optimum s value and the

optimum age-period components (p)
4444 for i← 1 to n do

// Generation of log-graduated mortality rates for age-period

effects

45 M(i, 1 : a)← Y (i, 1 : p) ·G(1 : p, 1 : a) + α̃;

46 end
47 return M ;



Chapter 6. Conclusions and Future Directions 176

Algorithm 5: hsfit() age-cohort components estimation workflow

1 Input : D : (nc × a)-matrix with values Dc,x,∀c, x
2 E : (nc × a)-matrix with values Ec,x, ∀c, x
3 M : (nc × a)-matrix with values Mc,x, ∀c, x
4 Output : M c : (nc × a)-matrix representing log( ˆ̂mc,x) = α̃c

x +
∑q

j=1 β
c(j)
x · γ(j)c

66 Define parameters
7 x← x1, . . . , xa; a← length(x); // ages

8 c1 ← t1 − xa; cnc ← tn − x1 ;
9 c← c1, . . . , cnc ; nc ← length(c); // cohorts

1011 Lc ← create orthonormal polynomials using Gram–Schmidt process;
1213 [Lc

best, k2]← MCDM(Lc); // Best orthon.pol. with degree of k2 − 1 using

MCDM

1415 Bc ← GLM(Lc
best, D), offset: log(E) and the age–period effects, (M), ∀c;

16 P c ← PCA(Bc); // P c : eigenvectors of Bc

17 b̄c ← mean(Bc);
18 Br ← Bc − b̄c;
19 α̃c ← b̄c · Lc; // main age-profile

20 Y c ← Br · P c; // Y c = {γ(j)} j-cohort effect, ∀i ∈ [1, k2]

21 Gc ← (P c)−1 · (Lc)T ; // Gc = {βc(j)
x } j-age effect, ∀i ∈ [1, k2]

22 for i← 1 to k2 do
2324 [points, UV Rc

values]← get local minima of UV Rc(i)
2526 threshold← get cluster thresholds ([points, UV Rc

values])
// Define UV Rc(i) thresholds

2728 if ( threshold > δ) and (UV Rc(i) reveals unique age cluster) then
3030 include this i-component to the model structure

31 end

32 end
// after UVR criterion we have concluded in the optimum age-cohort

components (q)
3434 for i← 1 to nc do

// Generation of log-graduated mortality rates for age-cohort

effects

35 M c(i, 1 : a)← Y c(i, 1 : q) ·Gc(1 : q, 1 : a) + α̃c;

36 end
37 return M c;
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