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ΠΑΝΕΠΙΣΤΗΜΙO ΑΙΓΑΙOΥ

Περίληψη

Σχολή Θετικών Επιστημών

Τμήμα Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διδακτορικό

Νέες Εξελίξεις στη Μοντελοποίηση Δυναμικών Συστημάτων με

Εφαρμογές

του Εμμανουήλ Νεκτάριου ΚΑΛΛΙΓΕΡΗ

Η παρούσα διδακτορική διατριβή εκπονήθηκε στο Τμήμα Στατιστικής και Αναλο

γιστικών-Χρηματοοικονομικών Μαθηματικών του Πανεπιστημίου Αιγαίου. Στόχος
της, είναι η κάλυψη του κενού στη βιβλιογραφία όσον αφορά τη μοντελοποίηση
δυναμικών συστημάτων που αφορούν δεδομένα επίπτωσης.

Παράγοντες όπως το Περιβάλλον, η Επιστήμη και η Τεχνολογία, αποτελούν
συστήματα με ένα κοινό βασικό στοιχείο, τον χρόνο. Πρώτος, ο ΄Αλμπερτ Αϊν-
στάιν μελέτησε τον χρόνο και τον χαρακτήρισε ως «ψευδαίσθηση». Σχεδόν
κάθε σύστημα τείνει να εξελίσσεται, με διαφορετικούς ρυθμούς και συμπεριφορές,
με την πάροδο του χρόνου. Το γεγονός αυτό κάνει τη φύση τέτοιων συστη-
μάτων, δυναμική. Τα δυναμικά συστήματα αποτελούν ζωτικό εργαλείο για τη
μοντελοποίηση φαινομένων που εξελίσσονται στον χρόνο. Η δημιουργία ενός τέ-
τοιου συστήματος είναι σχετικά «απλή» καθώς χρειάζεται (1) ο προσδιορισμός
της ποσότητας που εξελίσσεται στον χρόνο και (2) να τεθεί ο κανόνας που διέπει
την εξέλιξη αυτή.

Υπάρχουν τρεις τύποι δυναμικών συστημάτων: (1)Διακριτά ή Συνεχή, (2)Πεπερασ-
μένα ή ΄Απειρα, και (3) Ντετερμινιστικά ή Στοχαστικά. Αν και είναι διαθέσιμη μία
πληθώρα θεωρητικών αποτελεσμάτων και εφαρμογών, εξακολουθούν να υπάρχουν
αρκετά αναπάντητα ερωτήματα-κλειδί που αφορούν (κυρίως) τις γενικότερες πτυχές
της δυναμικής και την έλλειψη επαρκούς συμφωνίας μεταξύ ποιοτικών και ποσοτικών

αποτελεσμάτων. Στις μέρες μας, η μελέτη δυναμικών συστημάτων έχει να επιδείξει
μεγάλα άλματα λόγω της ραγδαίας τεχνολογικής εξέλιξης η οποία έχει φέρει στο

προσκήνιο νέους παράγοντες που πρέπει να ληφθούν υπόψη. Ως φυσική συνέπεια
όλων των παραπάνω ο βαθμός πολυπλοκότητας, της ήδη πολύπλοκης έννοιας των
δυναμικών συστημάτων, έχει αυξηθεί απότομα.

Η μοντελοποίηση των μηχανισμών αλλά και των συμπεριφορών που διέπουν τα

δυναμικά συστήματα, βρίσκεται στο επίκεντρο διάφορων επιστημονικών πεδίων.
΄Ενα από αυτά τα πεδία είναι αυτό της επιδημιολογίας το οποίο έχει επηρεαστεί

σε μεγάλο βαθμό από τη δυναμική μοντελοποίηση. Τα επιδημιολογικά συστήματα
μελετώνται εδώ και καιρό μέσω δυναμικών μοντέλων λόγω της άμεσης συσχέτισής

τους με τη δημόσια υγεία και της πολυπλοκότητας που τα συνοδεύουν. Πολλοί
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ερευνητές έχουν στρέψει το ενδιαφέρον τους στη δημιουργία επαρκών μοντέλων

που είναι σε θέση να περιγράψουν και να προβλέψουν την εξέλιξη τέτοιων συστη-

μάτων. Τα μοντέλα αυτά συνήθως προέρχονται από μηχανισμούς υποθέσεων,
διαμορφώνοντας έτσι δυναμικά μαθηματικά μοντέλα που αντιπροσωπεύουν τους

προαναφερθέντες μηχανισμούς τα οποία και εφαρμόζονται/δοκιμάζονται πάνω σε
δεδομένα.

Τα δυναμικά συστήματα έχουν τη μοναδική ικανότητα να συνδυάζουν πολλά (αλλη-
λεπιδρώντα) κομμάτια, οδηγώντας στη δημιουργία μιας νέας «όλα σε ένα» συμπερ-
ιφοράς. Αυτή η συνειδητοποίηση, δηλαδή ότι η συνολική συμπεριφορά ενός συστή-
ματος δεν μπορεί να γίνει κατανοητή μελετώντας μόνο τη συμπεριφορά των επιμέρους

συστατικών του, δημιούργησε μια πληθώρα νέων εννοιών και μαθηματικών ερ-
γαλείων. Ως αποτέλεσμα, η ανάπτυξη ενός δυναμικού μοντέλου δεν είναι εύκολη
υπόθεση, καθώς το τελευταίο θα πρέπει να μπορεί να περιγράψει με επαρκή τρόπο
τα χαρακτηριστικά της υπό μελέτη διαδικασίας.

Η παρούσα διατριβή στοχεύει στο να προσφερθούν νέες προοπτικές στον τομέα

της δυναμικής μοντελοποίησης προτείνοντας νέα, ακριβή, ευέλικτα και εύκολα
εφαρμόσιμα μοντέλα και τεχνικές μοντελοποίησης. ΄Ετσι, στο πρώτο κεφάλαιο
γίνεται μια εκτενής εισαγωγή στο αντικείμενο μελέτης της διατριβής παρουσιά-

ζοντας όλες τις απαιτούμενες ορολογίες. Στο δεύτερο κεφάλαιο γίνεται λεπ-
τομερής παρουσίαση όλων των απαραίτητων εργαλείων και μεθόδων που χρησι-

μοποιήθηκαν στα μετέπειτα κεφάλαια για την ανάπτυξη νέων καινοτόμων τεχνικών

μοντελοποίησης δεδομένων επίπτωσης.

Η παρακολούθηση σε πραγματικό χρόνο της επιδημικής δραστηριότητας στα συστή-

ματα επιδημιολογικής επιτήρησης, είναι συχνά δύσκολο να επιτευχθεί πλήρως λόγω
της εποχικότητας που εμπλέκεται στη σειρά.Με αφορμή το γεγονός αυτό, στο κε-
φάλαιο τρία εξετάζεται η γενική μορφή καθώς και ειδικές περιπτώσεις περιοδικών

αυτοπαλίνδρομων μοντέλων με σκοπό τη μοντελοποίηση δεδομένων επίπτωσης που

αφορούν τα εβδομαδιαία εκτιμώμενα ποσοστά ασθενειών τύπου γρίπης στην Ελ-

λάδα για την περίοδο 2014-2016.

Στο προηγούμενο κεφάλαιο επικεντρωθήκαμε αποκλειστικά στην αποτύπωση της

συμπεριφοράς των δεδομένων επίπτωσης κατά τη διάρκεια τυπικών (μη ακραίων)
περιόδων. Ωστόσο, ο προσδιορισμός της πλήρους πορείας τέτοιων δεδομένων,
όπως τα εκτιμώμενα ποσοστά ασθενειών τύπου γρίπης στην Ελλάδα, είναι χρήσι-
μος για διάφορους λόγους. Για παράδειγμα ο εντοπισμός του τέλους μιας επιδημίας
βοηθά τους υπεύθυνους δημόσιας υγείας στο να καθορίσουν εάν τα νέα κρούσματα

αποτελούν μέρος μίας ήδη γνωστής (ή νέας) έξαρσης. Ως εκ τούτου, στο τέταρτο
κεφάλαιο επιχειρούμε να αποτυπώσουμε τη συμπεριφορά τόσο των μη ακραίων όσο

και των ακραίων περιόδων που εμφανίζονται σε δεδομένα επίπτωσης. Ο προσδιορ-
ισμός των ακραίων περιόδων καθίσταται δυνατός μέσω της ανάλυσης ανίχνευσης

σημείων αλλαγής και αναπτύσσονται τεχνικές επιλογής μοντέλων προκειμένου να

προσδιοριστεί το βέλτιστο περιοδικό αυτοπαλίνδρομο μοντέλο με συμμεταβλητές

που περιγράφει καλύτερα το μοτίβο της υπό εξέταση χρονοσειράς. Επιπροσθέτως,
αναπτύχθηκε ένας προηγμένος αλγόριθμος προκειμένου να βελτιωθεί η ακρίβεια
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του επιλεγμένου μοντέλου.

Το κεφάλαιο πέντε απαρτίζεται από δύο συγκριτικές μελέτες. Η πρώτη έχει ως
στόχο την αξιολόγηση της προβλεπτικής ικανότητας του μοντέλου που προτείνεται

στο κεφάλαιο τρία σε αντιπαραβολή με εναλλακτικά μοντέλα που σχετίζονται με τη

μοντελοποίηση της νοσηρότητας της γρίπης. Στην δεύτερη, εφαρμόσαμε και αξι-
ολογήσαμε πρωτοπόρες μεθόδους που βασίζονται στην ανάλυση σημείων αλλαγής

για τον εντοπισμό αλλαγών σε δεδομένα τύπου γρίπης. Η εμπειρική συγκριτική
μελέτη παρείχε στοιχεία από τα οποία διαφαίνεται δείχνουν ότι οι στατιστικές

μέθοδοι που βασίζονται στην ανάλυση σημείων αλλαγής έχουν αρκετές ελκυστικές

ιδιότητες σε σύγκριση με την τρέχουσα πρακτική για την ανίχνευση επιδημιών.

Συνεχίζοντας την προσπάθεια ανάπτυξης μιας αποτελεσματικής μεθοδολογίας για

τη μοντελοποίηση της πλήρους συμπεριφοράς των δεδομένων επίπτωσης χρονο-

σειρών, στο έκτο κεφάλαιο προτείνεται μια επέκταση του Μαρκοβιανού εναλλασσό-
μενου μοντέλου. Τα συστατικά του επιλέγονται με τεχνικές ποινικοποιημένης πι-
θανότητας με στόχο την επίτευξη υψηλού βαθμού ευρωστίας όσον αφορά τη μον-

τελοποίηση των δυναμικών συμπεριφορών των επιδημιολογικών δεδομένων. Εκ-
τός από τα στατιστικά συμπεράσματα, εφαρμόζεται ανάλυση ανίχνευσης σημείου
αλλαγής για την επιλογή του αριθμού των εναλλαγών, η οποία μειώνει την πολυ-
πλοκότητα της προαναφερθείσας διαδικασίας. Στο πλαίσιο αυτό προτείνεται μια
διαδικασία τριών φάσεων για τη μοντελοποίηση δεδομένων επίπτωσης και ελέγχε-

ται μέσω πραγματικών και προσομοιωμένων δεδομένων.

Βασιζόμενοι (κυρίως) στα αποτελέσματα του προηγούμενου κεφαλαίου, στο κε-
φάλαιο εφτά επιθυμούμε να ξεκινήσουμε τη διερεύνηση μιας «φυσικής» επέκτασης
της μεθοδολογίας που παρουσιάστηκε στο προηγούμενο κεφάλαιο, δηλαδή τη
χρήση ημι-Μαρκοβιανών εναλλασσόμενων μοντέλων για τη μοντελοποίηση δε-
δομένων επίπτωσης. Ως αποτέλεσμα, σε αυτό το κεφάλαιο ορίζουμε το διακρι-
τού χρόνου ημι-Μαρκοβιανό εναλλασσόμενο μοντέλο δεσμευμένου μέσου με συμ-
μεταβλητές. Θα πρέπει να σημειωθεί ωστόσο, ότι η μελέτη που παρουσιάζεται σε
αυτό το κεφάλαιο βρίσκεται υπό εξέλιξη.

Η διδακτορική διατριβή ολοκληρώνεται με σύντομη συζήτηση σχετικά με τα ευρή-

ματα καθώς και τις πιθανές επεκτάσεις της.
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Chapter 1

Introduction

Temple of Hera, Samos, Greece

Environment, Humanity, Science, Technology. All these factors are systems
with one essential element in common; time. First, Albert Einstein studied
time and characterized it as an “illusion”. Abhijit Naskar(1), influenced by
Einstein, stated that “time is basically an illusion created by the mind to aid
in our sense of temporal presence in the vast ocean of space”. Almost every
system tends to evolve, at different rates and behaviors, over time. This fact
makes the nature of such systems, dynamical. Dynamical systems constitute
a vital tool for modelling phenomena that evolve over time. Creating such a
system, is rather simple; First, the quantity that evolves over time needs to
be specified, and second, the rule that governs the latter evolution needs to be set.

Dynamical systems can be divided in three categories: (1) discrete or con-
tinuous; (2) finite or infinite, and; (3) deterministic or stochastic. Although
many theoretical results and applications have been obtained, there are still
several key-questions, regarding (mainly) global aspects of the dynamics and the
lack of a sufficient agreement between qualitative and quantitative results, which
remain unanswered. Nowadays, the study of dynamical systems has faced major
changes due to the rapid technological advancement that has brought various
new factors in the foreground, that need to be considered. As an example,
in the early 80’s differential equation models and techniques of reconstructing
phase spaces from time series data, made their appearance.(2; 3) Furthermore,
increased data availability along with the huge steps forward regarding the com-
puter hardware/power, revived the interest for developing models that determine
a system of governing dynamical equations from a given dataset.(4) As a natural
consequence of all the above, the complexity, of an already complex concept
such that of dynamical systems, has been sharply increased.

Modelling the governing mechanisms and behaviors of dynamical systems, lies at
the heart of several scientific fields. The field of epidemiology for example, has
been highly influenced by dynamical modelling.(5) Epidemiological systems, have
long been studied via dynamic models due to their direct association to public
health and the complexity that are accompanied by.(6)−(12) For almost four
centuries now, many researchers have turned their focus in creating adequate
models that are able to describe and predict the evolution of such systems.(13)
These models usually derive through hypothesizing mechanisms, formulating
dynamic mathematical models that represent the latter mechanisms, and finally
testing those models against data.
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The majority of applications of dynamical systems can be grouped into three
main categories:

• Predictive

The goal is the prediction of future states of the underlying system based on
both past and present states of it. Prediction is usually forward reasoned
from causes to effects.

• Diagnostic

Here, the objective is to identify the possible path of the past states,
that may have led to the present state of the system. Diagnosis is reasoned
backwards from effects (e.g., symptoms) to causes (e.g., diseases).

• Theoretical

There are applications which focus more on providing a theory for the phys-
ical phenomena rather than explaining the past or predicting the future.
For example, a researcher might provide a theory for a particular problem
in the form of a differential equations set, which could be possibly used for
explaining or predicting an outcome. From the researcher’s perspective
though, this set of equations is his primary interest since it describes nodal
aspects of the phenomenon under investigation.

The aforementioned three broad categories, represent the human need for ex-
plaining, understanding and predicting physical phenomena. Regarding the
first two categories, note that some phenomena appear to be highly stochastic
and some others, although deterministic, their governing mechanisms are either
too complicated, or dependent (almost) solely, on accurate observations of the
present state. As a result, the prediction or diagnosis of physical phenomena is
not always feasible.

Dynamical systems have the unique ability of combining many (interacting)
parts, leading to the generation of a new all-in-one behavior. This realization,
i.e., that the total behavior of a system cannot be understood by just inferring
on the behavior of its individual components, created a plethora of new concepts
and mathematical tools. As a result, developing a dynamical model is anything
but an easy task, as the latter needs to describe in a sufficient way the charac-
teristics of the process under study. This doctoral thesis, intends in providing
new insights into the field of dynamical modelling by proposing novel, accurate,
flexible and easily applied models and modelling techniques.

The structure of the thesis is as follows. In Chapter 1 a thorough introduction is
conducted on the topic(s) that will concern us throughout the thesis. In Chapter
2 the materials and methods used are presented in a detailed fashion. In Chapter
3, we develop an alternative approach in order to model seasonality of influenza,
based on a periodic regression modelling. In Chapter 5, a comparative study
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is conducted for evaluating the forecasting performance of the model selected
on Chapter 3 with other models associated with the modelling of influenza
morbidity. In Chapter 4, we propose an algorithmic procedure based on change-
point detection analysis and periodic-type ARMA modeling with covariates for
capturing the behavior of time-series data that exhibit typical and non-typical
periods. In Chapter 5.2, we implement and evaluate cutting-edge changepoint
analysis-based methods, for detecting changes in location of univariate influenza
like illness rate data. In Chapter 6, we propose an advanced regime switching
modeling approach for incidence data. Finally, in Chapter 7 we discuss future
aspects of our work related to the concept of semi-Markov switching modelling
under the discrete time framework.

1.1 Aspects and Methods for Biosurveillance
Infections have plagued humans for millennia, mainly because of human

pathogens which constantly evolve leading to new agents and mechanisms of
transmission. The level of interaction between humans and pathogens, has been
significantly increased over the years as a consequence of human intrusion into
habits that where previously unknown (e.g., global traveling, international food
trading, etc.). The aforementioned, put the health of the population, which
constitutes a valuable asset for both society and health services,(14) at high risk.
Continuous rapid changes in the environment and the socio-economic conditions,
as well as the observed changes in the epidemiology of diseases and the burden
they cause on humanity, are the main axes that impose the necessity for public
health surveillance.(15)−(17) Public health surveillance can be defined as the
“ongoing, systematic collection, analysis, interpretation, and dissemination of
data regarding a health-related event that enables public health authorities to
reduce morbidity and mortality”.(18)

Epidemiological surveillance is a dynamic activity which continuously progresses
and requires systematic monitoring in the field of health sciences and biostatistics.
According to the World Health Organization(19) it is defined as “the continuous,
systematic collection, analysis and interpretation of health-related data needed
for the planning, implementation, and evaluation of public health practice”. The
aforementioned definition includes various aspects such as controlling the validity
of data, analyzing data via advanced statistical methods, as well as extracting
safe conclusions accompanied by scientific and methodological adequacy.(20)
Although epidemiological surveillance is of high importance, it is related solely
to the human population, fact that does not go hand in hand with todays
“standards”. During the past decades, along with the rapid advances in the
scientific areas of computing, engineering, mathematics, statistics and public
health, a potentially powerful surveillance-type science has been emerged, known
as Biosurveillance.(21) It is defined as “the process of active data-gathering
with appropriate analysis and interpretation of biosphere data that might relate
to disease activity and threats to human or animal health whether infectious,
toxic, metabolic, or otherwise, and regardless of intentional or natural origin
in order to achieve early warning of health threats, early detection of health
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events, and overall situational awareness of disease activity” (Homeland Security
Presidential Directive 21, 2014).

The key difference between traditional epidemiological surveillance and the
emerging science of Biosurveillance, is the fact that while epidemiological surveil-
lance tends to target only on human identified cases, Biosurveillance on the
other hand requires the integration of data regarding the health of humans,
animals and plants. As it is reasonable, in order to make such an integration
work properly (i.e. counter possible biological threats) a massive coordinated
operation is required among various stakeholders.

1.1.1 Biosurveillance systems and processes
The history of Biosurveillance, is relatively young in terms of origin since it

constitutes a mixture between the well known processes of disease and public
health surveillances. It is a continuous process (Figure 1.1) which, as opposed to
epidemiological surveillance, monitors disease activity not only in people but also
in plants or animals.(22; 23) By disease activity, it is meant to encompass not
only the emergence and/or manifestation of the disease, but also the preliminary
processes involved in the development and/or evolution of the disease. It mainly
focuses in detecting and characterizing outbreaks of disease as well as monitoring
the environment for several biological agents that are able to cause a disease such
as bacteria, viruses, etc. The early outbreak detection of disease, constitutes
the major challenge of Biosurveillance, since detecting outbreaks the moment
they arise, in a sufficiently timely fashion, could prevent the affected individuals
from getting sick or even more, killed.

Figure 1.1: Biosurveillance process.

Biosurveillance is a multidisciplinary science which traditionally involves exper-
tise from the scientific fields of epidemiology, medicine, microbiology, veterinary,
public health, and health care. Nowadays, as part of the field’s evolution, the in-
creased possibility of more powerful biological threats and activities, has led this
new scientific area to diversify its pool of expertise into more computer-oriented
scientific fields such those of mathematics, (bio)statistics, computer science, and
systems and quality engineering. The importance of the latter fields is reflected
in the need of conducting biosurveillance at real-time and sometimes in forms of
big data; hence, a necessity for timely and efficient automation is emerged as
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pointed out by Wagner et al.(22)

When it comes to biosurveillance, the leading agency nationally is the Center for
Disease Control and Prevention (CDC). The CDC is responsible for collecting,
analyzing, and disseminating national disease occurrence and mortality data
to the public as well as promulgating goals and standards for biosurveillance
systems and encouraging their adoption. However, a Biosurveillance process
operates not only between functions of specialized local governments and health
organizations such as CDC, but also accomplishes to expand these functions
in cooperation with a variety of stakeholders such as laboratories, healthcare
providers, etc. Thus, a “healthy” Biosurveillance process is based upon an
effective communication between the aforementioned stakeholders.

The central element to each Biosurveillance process is the Biosurveillance system
(Figure 1.2). The 21st century, has brought a plethora of advancements in the
field of computing, which led to newer developments of automated Biosurveil-
lance systems. However, such systems whether automated, manual, or both,
must still be systematic in terms of their functionality. As with any engineering
system, a Biosurveillance one should be able to meet its functional requirements
(e.g., specifications of the diseases that must be detected and the time frame
within which detection must occur) in order to be considered operational.

Figure 1.2: Generic biosurveillance system.

The main requirement of such systems is to be able to recognize threat patterns.
After a thorough study on some of the major disease outbreaks in recent history,
a set of nine fundamental threat patterns that a functional Biosurveillance
system must be able to recognize, has been identified:

1. large aerosol release;
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2. building or vessel contamination;

3. small premonitory release or contamination;

4. continuous or intermittent release of and agent;

5. person-to-person contagion;

6. transmission trough commercially distributed products;

7. water-borne transmission;

8. vector- or host- borne transmission; and

9. sexual or parental transmission.

Despite all the advances and advanced equipment, todays Biosurveillance sys-
tems can detect five out of the above nine patterns,(24) while their designer
usually focuses on two or three patterns and partially covers some of the rest.

Finally, one of the most crucial aspects of biosurveillance is outbreak detection.
The term “outbreak detection” refers to the methods that biosurveillance organi-
zations recruit to detect the occurrence of an outbreak. In order to characterized
as efficient, a biosurveillance system must be able to detect an outbreak as
quickly as possible so that treatment could be enabled to those already sick and
at the same time further illness is prevented. The aforementioned depends on
two significant factors: (1) the cost, since early detection is usually expensive
and; (2) the required timeliness, which varies by biological agent and route of
transmission.

1.2 Surveillance Types and Systems
The human race has been threatened several times over its course from

a plethora of diseases. The first references of disease outbreaks, come from
Hippocrates (460-377 bc) who described an outbreak of mumps on the Greek
island of Thasos. Moreover, he described several other outbreaks such those of
malaria and influenza. The Black Plague (1346-1353), killed more than 60%
of European population. Smallpox (18th century) killed annually, over 40000
Europeans. Severe Acute Respiratory Syndrome (SARS), generated widespread
panic in 2003 and was caused by a previously unknown coronavirus (SARS-
CoV-1) i.e., the same family of viruses that caused Middle East Respiratory
Syndrome (MERS) and SARS-CoV-2. The above diseases, and many more,
generated the need for the development of surveillance systems. Surveillance
is a very challenging yet intriguing process that serves multiple public health
functions such as estimating the burden of a disease or injury, determining
the distribution and spread of illness, generating hypotheses and stimulating
research, supporting disease control interventions, evaluating prevention and
control measures, facilitating planning and guiding vaccine development.
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Nowadays, several European countries(25) and Centers for Disease Control
and Prevention (CDC) have developed epidemiological (or sentinel) surveillance
systems in order to record, monitor and analyze the activity of both known and
unknown infectious diseases. The fundamental objective of such systems, is the
early and accurate identification of a single individual with a disease. There
exist two primary types of disease surveillance, passive and active. In passive
surveillance, case reports are supplied voluntarily from various sources, e.g.,
clinicians, laboratories, etc. The reliability of this kind of surveillance, in terms
of completeness and accuracy, is based upon several factors, namely, whether
reporting is legally mandated or a definitive diagnosis can be established, illness
severity as well as the awareness of the medical condition among the public
and the medical community. Although, passive surveillance is consider useful
when it comes to routine surveillance activities, it has a significant flaw. Due to
the fact that more (severe) illness is more likely to be reported, the severity of
passively reported cases have a high chance to differ from those of all cases of
an illness. In active surveillance, case finding can be retrospective, prospective,
or both. Through retrospective case finding, the health status of individuals is
identified from existing data, such as clinical records and death certificates, while
through prospective the identification and collection of information regarding
cases is done the moment they occur. Active surveillance, in which all cases
are identified and reported in a specific geographic area, provides the most
complete and unbiased ascertainment of disease and is optimal for describing
the rate of a disease. In general, data collected through active surveillance,
are considered superior in terms of information than those of passive surveillance.

In Greece, since 1999, a sentinel surveillance system is in operation which
is based on voluntary participation of physicians, general practitioners and
pediatricians of Primary Health Care (PHC) throughout Greece. The sentinel
systems in PHC through registration, processing, analysis and results/conclu-
sions export procedures, provide not only general guidelines for optimal decision
making in health services but also the most important source of primary care epi-
demiological diseases data. Through such systems, the evolution of the frequency
of certain diseases is recorded by carefully selected reporting sites and health
workers who report cases of the disease or syndrome under surveillance, based
on clinical diagnoses. In particular, the sentinel medical doctors send weekly
epidemiological data regarding the number of consultations for all causes and
the number of consultations for each syndrome under surveillance according to
a specified clinical definition. These reporting forms, enable the National Public
Health Organization of Greece to estimate the weekly number of syndrome cases
per 1000 visits, i.e., the proportional morbidity, which reflects the activity of
the syndrome under study.(26)

It is worth to be mentioned that, during the period 2014-2015 the sentinel
system of Greece was reorganized from the ground up under the Operational
Programme “Human Resources Development” of the National Strategic Ref-
erence Framework (NSRF) 2007-2013, action “Primary Health Care services
(private and public) networking for epidemiological surveillance and control
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of communicable diseases”. This reorganization redefined the national priori-
ties regarding the syndromes monitored through the sentinel system, bringing
influenza-like illness (ILI) and gastroenteritis to the center of interest. The study
of the evolution of these two syndromes is a major public health concern, since
despite the fact that they belong to the sentinel epidemiological surveillance
priorities of the country, are also monitored traditionally by sentinel systems
in the European region, while they are high in terms of international interest,
due to their potential for widespread transmission (with ILI also representing
a potential pandemic risk). Moreover, their surveillance through the sentinel
system, enables studying the existence of seasonality, the determination of the
signaled start and end weeks and the intensity of epidemic waves for ILI, as well
as the determination of epidemic outbreaks for gastroenteritis nationwide.

1.3 Case and Outbreak Detection Sources
In various scientific fields, e.g., Medicine, Meteorology, etc., it is of high

importance to monitor for abnormal activities. In the field of Public Health,
case and outbreak detection, via proper surveillance systems, enables authorities
for rapid investigation, pathogen identification, and response. The collected
data can potentially bring to the attention of authorities diseases that were
previously unrecognized and/or underappreciated. Several entities contribute to
that cause such as people (e.g., physicians, veterinarians, nurse practitioners,
etc.), laboratories, biosurveillance organizations and computers. Of course, in
most cases, the final verdict of whether an individual has indeed a disease or
just a syndrome, is left to the distinctive ability of the clinician in charge.

Some common sources of both case and outbreak detection, are the follow-
ing:

i. Sentinel clinicians, due to the nature of the occupation they serve,
constitute perhaps the most common case detection entity. At first, a sick
individual seeks medical attention or is brought to a clinician, who examines
the patient and then establishes a diagnosis. After, if the diagnosis is
considered a notifiable disease, the clinician reports it to a local health
department (for persons) or to a local department of agriculture (for
animals).

ii. Laboratories constitute a valuable source of case reporting, since are able
to detect, through rapid and reliable diagnostic tests, cases of notifiable
diseases. The role of laboratories in case detection is nodal, since the latter
are “process oriented” and therefore, may report cases in a more reliable
way as opposed to clinicians. Note though that a laboratory, is not capable
of detecting a case unless a clinician refers an individual to it.

iii. Screening has been widely used over the years, and even more during
the SARS-CoV-2 pandemic, as a case detection technique. Among others,
it involves interviewing and testing people during an outbreak so that
additional cases (or carriers) of the disease can be identified with the goal
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of preventing further infections. A biosurveillance organization may use
screening in a focused manner (e.g., screening of all students and teachers
in a school), or deploy screening on a wide-scale basis. For example, the
SARS-CoV-2 disease warranted screening all over the world. The majority
of countries, screened citizens in multiple ways such as applying several
testing methods, quarantining infected individuals for a certain period of
time and imposing vertical or horizontal lockdowns.The intensity of the
screening effort, depends mainly on the nature of each outbreak.

iv. Computers give a thunderous present to both case and outbreak de-
tection processes. It is an indisputable fact, that during the past two
decades computers have been through a tremendous development. As
a result, they are considered as a powerful tool for detecting, storing
and analyzing case data. Nowadays, surveillance organizations are using
electronic laboratory reporting systems, which import case detection data
from laboratories.(27)−(30) Because (almost) all infectious diseases initially
make their appearance with a small number of syndromes, computer-based
case detection systems focus on monitoring the most common of them, e.g.,
diarrhea, respiratory issues, influenza-like symptoms, rashes, hemorrhage
and paralysis.

Despite all the advances towards prevention and treatment of infectious diseases,
improved living conditions, and development of effective vaccines and antimicro-
bials, infectious diseases remain among the top causes of death worldwide. This,
along with the fact that some outbreaks are never detected, implies that there
is plenty of room for improving current methods of outbreak detection as well
as developing new ones.

1.4 Incidence Data
Incidence data collected over time appear frequently in several scientific

fields such as medicine,(31) meteorology(32) and public health.(33) Such data,
for various reasons, do not follow a standard or typical model but often expe-
rience outbreaks. Consider, for example, recent work in genomics, looking at
detecting changes in gene copy numbers or in the compositional structure of the
genome(34)−(36) and in finance where interest lies in detecting changes in the
volatility of time–series.(37)−(39)

The term “incidence”, refers to the occurrence of new cases of disease or injury
in a population over a specified period of time and it is usually expressed as
a proportion or rate. As incidence proportion is defined the fraction of new
cases of diseased or injured subject during a specified period over the initial
size of the under study population. Incidence rate is defined in a similar way
as incidence proportion, with the only difference lying in the denominator part.
More specifically, while in incidence proportion the denominator is the initial
size of the population, in the case of incidence rate the latter is being substituted
by the sum of the period each subject was observed totaled.

9
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1.5 State-of-the Art
During the past decade, a widespread implementation of various statistical

modeling techniques is observed in the field of epidemiological surveillance.
This fact, has led several authors to conduct detailed reviews on statistical
surveillance in public health. Sonesson and Bock,(40) presented special aspects
of prospective statistical surveillance as well as techniques for evaluating such
methods. Farrington and Andrews,(41) described the methodological issues
involved in outbreak detection, focusing mainly on infectious diseases, along
with examples from a range of statistical techniques. Buckeridge et al.,(33)
synthesized a research for algorithms dedicated to rapid outbreak detection. To
that end, they examined how to use spatial and other covariate information from
disparate sources to improve the timeliness of outbreak detection. Shmueli and
Burkom,(21) discussed the statistical challenges in monitoring modern biosurveil-
lance data through describing the current state of monitoring in the field and
surveying the most recent biosurveillance literature. Unkel et al.,(42) reviewed
several statistical methods for the prospective detection of infectious disease
outbreaks.

Despite all the existing well-established reviews, detailed recommendations
as to which statistical method is the “best” to use for outbreak detection is not
possible. This is due to the fact that the latter, depends critically on the specific
details of the application and implementation as well as its purpose and context.

Regression is listed among the top outbreak detection techniques. Perhaps
the simplest regression model for outbreak detection is the one described by
Stroup et al.(43) which, although does not incorporate time trends, it ensures
that seasonal effects are automatically adjusted for by design rather than explicit
modeling, thus providing some element of robustness. Another commonly used,
fully parametric, regression model for outbreak detection, is that proposed by
Serfling.(44) Serfling made use of a trigonometric function with linear trend,
assuming Gaussian white noise errors, in order to model historical baselines.
Costagliola et al.,(45; 46) based on Serfling’s model and achieved the detection
of the onset of influenza epidemics. Additionally, Pelat et al.,(47) developed an
automated version of Serfling’s model by considering cubic trend and trigono-
metric terms for prospective and retrospective surveillance purposes. The model
selection method they used, was based on both ANOVA comparisons and Akaike
Information Criterion (AIC).(48; 49) Parpoula et al.,(26) developed Serfling-
type periodic regressions models and compared their performance to typical
forecasting models, concluding that a periodic regression model with quadratic
trend, annual, semi-annual and quarterly periodicity, as well as a moving aver-
age model of three terms had almost similar performance to the one of Pelat et al.

Changepoint analysis(50) has been proven a reliable “ally” for identifying out-
breaks in scientific fields such as Medical,(51) Climate,(52; 53) Public Health,(54)
Bioinformatics(55; 56) and Finance.(57) Changepoint is an instance in time where
statistical properties before and after this time point differ. Such dynamical
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changes are often investigated through non-linear modeling. Erla et al.,(58)
introduced a method to assess the complexity of the electro cortical activity,
based on performing nonlinear prediction of single electroencephalogram (EEG)
signals during photic stimulation (PS) and concluded that non-linear models
can be a useful tool to characterize the dynamics of EEG during PS proto-
cols. Faes et al.,(59) developed a method to perform time-varying nonlinear
prediction of biomedical signals in the presence of non-stationarity and found
the proposed prediction method to be suitable for quantifying the complexity
of biomedical signals exhibiting nonlinear and/or nonstationary behaviors.(60)
Kass-Hout et al.,(61) applied various changepoint detection methods to the
active syndromic surveillance data in order to detect changes in the incidence
of emergency department visits due to daily influenza-like illness. Monitoring
in U.S.A. has tended to rely on detection algorithms such as Early Aberration
Reporting (EARS) despite their limitation on detecting subtle changes and
identifying disease trends. Hence, Kass-Hout et al. compared a combination of
CUSUM method and EARS and concluded that EARS method in conjunction
with change-point analysis is more effective in terms of determining the moving
direction in influenza-like illness (ILI) trends between change-points. Texier
et al.,(62) made use of change-point analysis for evaluating the ability of the
method to locate the whole outbreak signal. Specifically, by using a kernel
change-point model they were led in satisfactory results for the identification
of the start and end of a disease outbreak in the absence of human resources.
Christensen and Rudemo,(63) studied incidence data by using modifications of
well-known hypothesis tests for retrospective detection of single and multiple
change-points. By applying the multiple change-point methodology by means
of modified forward selection, they concluded that the suggested method con-
sists a useful tool for exploratory analysis of two datasets on disease incidence.
Finally, Painter et al.(64) used both offline and online change-point algorithms
for monitoring the quality of aggregate data. Painter and his colleagues, exam-
ined both offline and online detection using time series held at a constant lag
and concluded that transient problems could be detected offline as neighbor-
ing changepoints with high posterior probability. By properly modifying their
offline case conclusion, they achieved online monitoring for data quality problems.

Markov Switching Model,(65) also known as Regime Switching Model, hid-
den (semi-) Markov models, as well as multi-state systems, have been widely
used with satisfactory results.(66)−(68). Shaby et al.,(69) approached meteoro-
logical/climatological phenomena, such as heat waves, via hidden Markov models
for modeling and prediction purposes. Clements and Krolzig,(70) considered
a three state MSM for modeling the Gross National Product of United States.
Cao et al., (71) proposed a Markov Switching Susceptible Infected Recovered
(SIR) epidemic ratio-dependent incidence rate and degenerated diffusion model.
In addition, they obtained a threshold parameter useful for identifying the
stochastic elimination and persistence of the disease under study. Shiferaw,(72)
analyzed the dynamics of case fatality rate (CFR) of SARS-CoV-2, using Regime
Switching Autoregressive (MSAR) models. He concluded that a two or three-
regime MSAR approach could be more appropriate for capturing the non-linear
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behavior of CFR time series data for each one of the most infected countries
around the world. Moreover, his results indicated that increases in CFRs are
more volatile than decreases.

Control charts(73; 74) are a crucial tool for monitoring the characteristics of a
process over time. The methods of Statistical Process Control (SPC) have a
long history of application to problems in public health surveillance, and several
approaches for detecting outbreaks of infectious diseases are directly inspired
by, or related to, SPC methods.(75) Page(50) proposed control charts with
memory, namely, the cumulative sum (CUSUM) and the exponentially weighted
moving average (EWMA) control charts. Over the years, various extensions,
modifications and variants of Page’s control charts have made their appearance
to serve the purposes of public health surveillance.(76)−(86)

There exist multiple reasons that may affect any assessment of the relative
merits of different methods. Some of them are listed below:

1. The scope and the field of application of the public health surveillance
system, e.g. how many parallel data series, which can range from one to
several thousands, are to be monitored;

2. The quality of the data available, including the method of data collection,
and the delay between event occurrence and reporting;

3. The spatio-temporal features of the data, such as count frequency, trend
structure, seasonality, epidemicity, time step and spatial resolution;

4. The non-stationarity and the possible existence of correlations in the
distribution of frequency of data;

5. The possible existence of overdispersion;

6. The features of the outbreaks that may occur, for example explosive or
gradual onset, brief or long duration, low, moderate or high level of severity,
or a mixture of all the above;

7. The use to which the system is to be put, including the post-signal
processing protocols;

8. The availability of processing power and human resources to support the
system and;

9. The choice of metrics to evaluate results.

As it may be understood, the assessment of the effectiveness of statistical and
stochastic modeling techniques for outbreak detection as well as the validity
of their results, which in their turn will result in safe conclusions, requires
the use of evaluation criteria that are appropriately adjusted in order to serve
public health surveillance purposes. However, in the scientific community, there
are no widely accepted evaluation measures for this type of systems.(87; 88)
Consequently, the issue which arises regarding the selection of the optimal
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statistical methodology for studying the changes of epidemic activity, and thus
the early and accurate detection of outbreaks in public health surveillance, as
well as the selection of the appropriate evaluation criteria of these methods, is a
broad, complex and multifactorial research topic. This thematic area remains
to some extent undeveloped, in spite of much discussion and the progress that
have been made.(33; 89; 90)

1.5.1 Serfling model(44)

In 1963, Serfling analyzed pneumonia-influenza death cases with the goal
of establishing an early quantitative measure of the severity of an influenza
epidemic along with its geographic location. His attention focused on statistical
techniques in order to construct standard curves of expected seasonal mortality
against which reported deaths could be compared as they occur. The underlying
idea was that an individual could use historical data to estimate seasonal trends
in influenza and then, for a specific place and time, the interested researcher
could be able to evaluate the amount of deaths occurred above this baseline
rate. At that time, the Communicable Disease Center (i.e., todays Center
for Disease Control and Prevention) was using two methods for estimating
the expected weekly mortality, point-to-point linear and Fourier series with
linear trend. According to Serfling these method came with some weak spots
such as resulting seasonal curves which reflected distracting irregularities of
the data. Hence, he proposed a model (1.1) that combined a linear term, for
the modelling of trend, and sine and cosine terms, for the modelling of seasonality.

The model’s structure is as follows:

yt = α0 + α1t +
n∑

i=1
γicos (θ(t)) +

n∑
i=1

δisin (θ(t)) + ϵt, t = 1, ..., n, (1.1)

where θ is a linear function of t.

Through a thorough investigation of (1.1), via Analysis of Variance (ANOVA)
and least squares, he concluded that the optimal model for baseline influenza
morbidity does not require many sine and cosine terms, rather than one of each:

yt = α0 + α1t + γ1cos
(2πt

n

)
+ δ1sin

(2πt

n

)
+ ϵt, t = 1, ..., n,

where n the week cycles (usually n = 52) and ϵt ∼ GWN
(
0, σ2

)
.

Nowadays, the paper of Serfling seems somewhat “outdated” considering the
wide availability of advanced computer-based methods. Nevertheless, the con-
cept he described keeps till now to be a reasonable and efficient approach to
estimating influenza deaths.
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1.5.2 Pelat et al. model(47)

In early 00’s, time series data started to increase their availability in various
scientific fields and especially on that of disease surveillance. The main problem
with the latter field, was the lack of a dedicated tool to perform and guide analyses.
To that end, Pelat et al. developed an online application, written in HTML, PHP,
JavaScript and R, for the detection and quantification of epidemiological time se-
ries data (http://www.u707.jussieu.fr/periodic_regression/).

The core of the application is based on Serfling’s model and a set of four
basic principals:

i. Determination of the Training Period

In many situations, a wide range of epidemiological time series data
may be at the disposal of the researcher. This though, does not necessarily
imply that all of them should be included in the training period. Over long
periods of time, there is a high chance of occurring changes on both the
way cases are being reported as well as various demographic characteristics.
As a consequence, the goodness of fit of the baseline model to data will
probably be affected. However, a minimum of one year historical data is
required to fit the models of influenza morbidity. In case of more reliable
predictions are of interest, then at least two or even three years of historical
data should be considered.

ii. Purge of the Training Period

In general, modelling long non-epidemic periods enables the identification
of the so called “baseline level”. the truly non-epidemic baseline level.
When it comes to seasonal diseases such as influenza, this becomes hardly
feasible due to the fact that epidemics occur at regular intervals (e.g.,
every half or one year). Two options exist for getting over such an issue.
The first (less common) one requires explicit modeling of the epidemic
periods. The second option is to exclude from the series data that lead to
an epidemic. Regarding the second option, among various rules that are
available in the literature for discarding data the most prevalent ones are:
(1) exclusion of the top 15% (or 25%) values from the training period(91);
(2) removal of data that fall above a given threshold(46) and; (3) exclusion
of whole periods known to be epidemic prone.

iii. Estimation of the Regression Equation

A wide gamma of regression equations exist. Linear(46), Linear on the
log-transformed series,(92) Poisson,(93) and Poisson allowing for over-
dispersion,(94) are only a few. Linear regression is considered a better pick
overall, when dealing with large datasets or incidences while, the use of
log-transformed data or Poisson regression is advised when dealing with
smaller sets of data. Although the regression equation usually incorporates
a first(33; 45; 95) or a second degree polynomial(20; 44; 96) (with respect
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to time) for the modelling of trend, Pelat and his colleagues differenti-
ated themselves. Specifically, they considered a third degree polynomial
with respect to time into the model’s structure, leading to the following
formulation:

M33 = α0 + α1t + α2t2 + α3t3 + γ1 cos
(2πt

n

)
+ δ1 sin

(2πt

n

)
+ γ2 cos

(4πt

n

)
+ δ2 sin

(4πt

n

)
+ γ3 cos

(8πt

n

)
+ δ3 sin

(8πt

n

)
+ ϵt,
(1.2)

where t denotes time, iπt
n denotes periodicity of 1 year (i = 2), 6 months

(i = 4) and 3 months (i = 8), respectively, and ϵt
i.i.d.∼ N

(
0, σ2

)
. As

for M33, it denotes the model that consists of a third degree polynomial
with respect to time for the modelling of trend and three pairs of sine and
cosine terms for the modelling of seasonality.

The model in (1.2), constitutes the pillar of their application since all the
statistical analysis applies on that and eight more different variations of it
(Table 1.1).

Table 1.1: Different variations of M33 model

Trend Periodicity

Model t t2 t3 1 year 6 months 3 months

M11 * *

M12 * * *

M13 * * * *

M21 * * *

M22 * * * *

M23 * * * * *

M31 * * * *

M32 * * * * *

iv. Epidemic Alert Notification

The residuals standard error, could be utilized to asses the variation
that accompanies model fit, as the baseline model is fitted to the obser-
vations. In this way, one is able to obtain forecast intervals for future
observations, given the fact that the baseline model remains the same in
the future. To obtain the epidemic thresholds which signal an unexpected
change typically an upper percentile for the prediction distribution (as-
sumed to be normal) is considered (mainly the upper 95th(46) or 90th(97)
percentile). An increase on the percentile value, will lead inevitably to less
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observations outside the thresholds and more specific detection, whereas
decreasing the threshold will increase sensitivity and timeliness of the
alerts. Subsequently, a rule is used to define when epidemic alerts are
produced, such as an observation(20) (or a series of observations) falls
above the epidemic threshold (e.g., 2 weeks(98) or one month(97)). The
latter step is of high importance since it prevents false alarms caused by
isolated data points.

Nowadays, the application not only is still available but has also been upgraded
to detect epidemics through hidden Markov models. The interested reader can
access it through the following url https://periodic.sentiweb.fr.

1.5.3 Parpoula et al. model(26)

Motivated by the work of Serfling and Pelat et al., Parpoula et al. applied a
retrospective analysis on weekly ILI rate data concerning Greece between the
period September 29, 2014 and October 2, 2016. After concluding that the best
fitting model, in terms of AIC, BIC and R2, was M23 (see Table 1.1), they
conducted a comparative study between M23 and several well known forecasting
models for the case of Greece, namely, linear trend (LT), simple moving average of
3 terms (MA3), a simple exponential smoothing with parameter equal to 0.1065
(SES), Holt’s linear exponential smoothing with parameters equal to 0.0981
& 0.0246, Brown’s quadratic exponential smoothing with parameter equal to
0.0296 (Brown’s model), Winter’s exponential smoothing with parameters equal
to 0.1062, 0.1032 & 0.1036 (Winter’s model) and that of Serfling’s. Through an
exhaustive comparison the best overall forecasting model, in terms of RMSE,
AIC and BIC, turned out to be M23, with MA3 chasing closely (Table 1.2).

Table 1.2: Forecasting performance of each model considered

Model RMSE AIC BIC

M23 12.02 547.89 572.77

LT 48.34 818.44 823.75

MA3 13.51 554.72 565.33

SES 16.06 585.05 587.00

Holt’s 16.94 598.15 606.70

Brown’s 18.87 618.87 620.65

Winter’s 25.55 686.57 694.37

Serfling’s 18.81 610.47 622.91

The models presented in Table 1.2, although adequate for modelling the baseline
behavior of incidence data, they lack when it comes to the modelling of their
non-typical period(s). In addition, the fact that such models do not incorporate
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covariates, at the time that incidence data are influenced by several factors,
constitute their results somewhat “unrealistic”. Considering all the above, in
this PhD thesis we will try to fill in the gap and propose robust models and
techniques for improving the modelling of the whole behavior of time-series
incidence data.
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Chapter 2

Materials and Methods

Bucharest, Romania

In this Chapter we illustrate all the necessary materials and methods used
throughout the thesis for establishing new innovative modelling techniques
for incidence data.

2.1 Periodic Regression Modelling
Periodic regression models made their appearance in the early 60’s(99; 100)

and since then, they have been widely used in scientific areas such as Envi-
ronment, (101)−(103) Hydrology(104) and Econometrics.(105)−(107) The main
objective of such models is to capture the behavior of time-series data that
exhibit both trend and seasonality. In this section, the distinctive characteristics
of such models are presented in a detailed fashion.

In reality, periodic regression models are simply an extension of the well known
seasonal ARMA models proposed by Box and Jenkins.(108) So, why “periodic”
instead of “seasonal”? Mainly for two reasons; first and foremost, in periodic
regression modelling the parameters constitute, as it will become evident through-
out Subsections 2.1.1 to 2.1.3, periodic functions of time and second, to avoid
any confusion with the seasonal ARMA models.

2.1.1 Stationary periodic autoregressive models PARM (p1,
..., pM )

Let us denote by ym,t, t = 1, ..., n, m = 1, ..., M , the observations of a
stationary univariate time-series of M seasons, over a period of n years. A
PARM (p1, ..., pM ) model has the following form:

ym,t =
pm∑
i=1

ϕ
(m)
i ym,t−i + ϵm,t, (2.1)

where pm the AR order per season m, ϕ
(m)
1 , ..., ϕ

(m)
pm are autoregressive seasonally-

varying parameters up to order pm and ϵm,t
i.i.d.∼ GWN(0, σ2).
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In an essence, one could argue that a PARM (p1, ..., pM ) model is a set of
multiple AR(p) models; one for each season of the year. This argument could be
absolutely correct in base of M = 1. Finally, note that some of the parameters
ϕ
(m)
i , i = 1, ..., pm, may be equal to zero and as a consequence the order pm in

(2.1) is the maximum of all pm.

Theoretical periodic autocorrelation and partial autocorrelation func-
tions

In order to obtain the theoretical formulas for the Periodic Autocorrelation
Function (PerACF) and the Periodic Partial Autocorrelation Function (Per-
PACF) of the model in (2.1), it is necessary to recall some useful quantities.

The first one, is the mth-season theoretical periodic autocovariance function at
lag k for ym,t:

γ
(m)
k = Cov (ym,t, ym,t−k)

= E [(ym,t − µm) (ym,t−k − µm−k)] , k = 0, 1, 2, ..., (2.2)

where γ
(m)
k does not depend on the year index t.

Notice that in case of k = 0, (2.2) simply represents the variance of ym,t.

The second quantity, is that of season’s m theoretical PerACF of lag k for
ym,t:

ρ
(m)
k =

E [(ym,t − µm) (ym,t−k − µm−k)]√
E [(ym,t − µm) (ym,t − µm)]E [(ym−k,t − µm−k) (ym−k,t − µm)]

=
γ
(m)
k√

γ
(m)
0 γ

(m−k)
0

, −1 ≤ ρ
(m)
k ≤ 1, (2.3)

and is independent of any scale of measurement.

Based on (2.2) and (2.3), the mth-season PerACF of the model in (2.1) is
defined as:

ρ
(m)
k =

∑pm
i=1 ϕ

(m)
i γ

(m−i)
|k−i|√∑pm

i=1 ϕ
(m)
i γ

(m)
i

∑pm
i=1 ϕ

(m−k)
i γ

(m−k)
i

. (2.4)

As for the mth-season PerPACF of model (2.1), it is equal to its last AR param-
eter ϕ(pm).

Notice that k is defined in such a way so that it will be always positive. This
is due to the fact that γ

(m)
k is not defined for negative time lags since it is not

symmetric with respect to lag k i.e., γ
(m)
k ̸= γ

(−m)
k which leads to ρ

(m)
k ̸= ρ

(−m)
k .
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Periodic Yule-Walker equations

The mth-season periodic Yule-Walker equations, are obtained by setting
k = 1, 2, ..., p in the numerator of (2.4):

γ
(m)
1 =

pm∑
i=1

ϕ
(m)
i γ

(m−i)
|1−i|

γ
(m)
2 =

pm∑
i=1

ϕ
(m)
i γ

(m−i)
|2−i|

...

γ(m)
p =

pm∑
i=1

ϕ
(m)
i γ

(m−i)
|p−i| .

2.1.2 Stationary periodic moving average models PMAM (q1,
..., qM )

Periodic time-series models are governed by coefficients which change period-
ically in time. A class of periodic models suitable for the description of various
seasonal time-series data, is that of periodic moving average processes.

A PMAM (q1, ..., qM ) for ym,t can be written as

ym,t = ϵm,t +
qm∑
j=1

θ
(m)
j ϵm,t−j , (2.5)

where θ
(m)
1 , ..., θ

(m)
qm are moving average parameters up to order qm, which may

vary with the season m and ϵm,t
i.i.d.∼ GWN(0, σ2). For a theoretical analysis of

PMAM (q1, ..., qM ), see Cipra.(109)

2.1.3 Stationary periodic autoregressive moving average
models PARMAM (p1, q1; ...; pM , qM )

A wide variety of (seasonal) time-series cannot be filtered or standardized to
achieve second-order stationarity.(110) This is due to the fact that the correlation
structure of the series is season-depended. For example, consider a river where
high runoff periods occur in the spring and low flows coupled with irrigation
diversions occur in the summer. The stream-flow correlations between March,
April and May, may differ from the correlations between June, July and August.
In such cases, a useful class of models is that of periodic autoregressive moving
average (PARMA) models,(101; 102; 111; 112) which constitute extensions of
the widely used ARMA models to allow parameters that depend on season.
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A PARMAM (p1, q1; ...; pM , qM ) for ym,t can be written as

ym,t =
pm∑
i=1

ϕ
(m)
i ym,t−i + ϵm,t −

qm∑
j=1

θ
(m)
j ϵm,t−j .

In all periodic models discussed in this Section, periodic second-order stationarity
was assumed. This fact raises the necessity for imposing conditions upon the
seasonal coefficients that are not easily expressed in terms of the PARMA.
Luckily, one could circumvent this “problem” by using the results provided by
Gladyshev.(100) As for the parameter estimation part, this is usually achieved
through maximum likelihood estimation, with special cases where the moments
technique is utilized. For more on this topic, and on PARMA modelling in
general, the interested reader may refer to Vecchia(110) and Abu Jahel.(113)

Figure 2.1: Monthly number of deaths due to influenza for a
country (1/1996 - 1/2016) with heavy “notes” of periodicity

2.2 Changepoint Analysis
Abrupt changes (e.g., sudden jumps in level or volatility) is a common phe-

nomenon occurring in the structure of time-series data. The points that the
aforementioned changes occur, are known as changepoints and have the ability to
split the data under analysis into distinct homogeneous segments. The latter is
considered of high importance for various reasons such as validating an untested
scientific hypothesis(114) as well as modelling assumptions(115) and monitoring
and assessing safety critical processes.(116)

Let us denote by {yn
1 } = {y1, ..., yn} a univariate time-series data set. The

goal is to determine the number of changepoints, say m, along with their posi-
tion τ , τ ∈ τm+1

0 where
{
τm+1

0
}
= {τ0 = 0, τ1 = 1, ..., τm+1 = n}.
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The m changepoints will result in splitting the data into m + 1 segments where
the ith segment will consist of yτi

τi−1+1 data. For each segment there may be
a differentiation on the mean, or/and on the variance or even on the whole
distribution. The parameters associated with the ith segment will be denoted by
θi and the corresponding likelihood function is given by the following formula:

L
(
m, τm

1 , θm+1
1

)
= p

(
yn

1 |m, τm
1 , θm+1

1
)

.

From now on, we will denote by p (·|·) the general conditional density function.
In addition, we will assume (1) conditional independence of data across segments,
so that

p
(
yn

1 |m, τm
1 , θm+1

1
)
=

m+1∏
1

p
(
yτi

τi−1+1|θi

)
and (2) that for any segment we can calculate the maximum likelihood estimator
for the segment parameter. The latter is denoted by (θ̂ or θ̂i depending on the
context). Thus we have

max
θ

{
p
(
yτi

τi−1+1|θ
)}

= p
(
yτi

τi−1+1|θ̂
)

.

Figure 2.2: A times series with a shift (change) in mean around
t = 100.

2.2.1 Single changepoint detection
In this Subsection we discuss a variety of methods for single changepoint

detection.
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Likelihood-ratio techniques

A common approach for detecting a single changepoint is via hypothesis
testing. The hypothesis that needs to be investigated is as follows:

H0 : No changepoint, m = 0 vs H1 : A single changepoint, m = 1. (2.6)

A general likelihood-ratio based approach for testing (2.6), was first introduced
by Hinkley(117) in the late 70s, who derived the asymptotic distribution of
the likelihood-ratio test statistic for a change in the mean within a sequence
of normally distributed observations. Since then, Hinkley’s approach has been
extended to detect changes in both mean and variance.(118)−(122)

For the single changepoint detection problem, we need to specify a test statistic
for concluding whether a change has occurred. The likelihood-ratio method
requires calculation of the maximum log-likelihood value under both H0 and H1.

Under H0, the maximum log-likelihood value is equal to

log p
(
yn

1 |θ̂
)

(2.7)

whereas under H1, the maximum log-likelihood of a model with a changepoint
at τ , τ ∈ τm

1 , τ1 = 1, ..., τm = n − 1, is given by the following relationship:

max
τ

{
log p

(
yτ

1 |θ̂1
)
+ log p

(
yn

τ+1|θ̂2
)}

. (2.8)

Based on (2.7) and (2.8), the resulting test statistic is of the following form:

λ = −2
[
log p

(
yn

1 |θ̂
)

− max
τ

{
log p

(
yτ

1 |θ̂1
)
+ log p

(
yn

τ+1|θ̂2
)}]

. (2.9)

Of course, λ-test statistic requires selection of a threshold, say C , so that when
λ > C the null hypothesis is rejected. Rejection of H0, corresponds to detection
of a changepoint. In such a case, the estimation of its position is the value
of τ , τ̂ , that maximizes (2.8). It has to be noted that, changepoint detection
constitutes a complex problem and as a result the usual asymptotic results
of the likelihood-ratio statistic are no longer valid. There exist though some
derivations on the asymptotic distribution of (2.9),(123) which can be used to
give an approximate threshold for any desired significance level.

Penalized likelihood techniques

Penalized likelihood techniques have been quite appealing across the change-
point literature,(124; 125) mainly due to their parsimony property. As compared
to likelihood-ratio based techniques, penalized likelihood ones can be extended
more easily to detect multiple changepoints.

The general penalized likelihood (PL ) of a pk-parameter model, say Mk,
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with unknown parameters Θk and a likelihood L (Θk), is defined as:

PL (Mk) = −2max
Θk

{log L (Θk)} + pkϕ (n) ,

where ϕ (n) is a user-determined penalty function (e.g., AIC (ϕ (n) = 2), BIC
(ϕ (n) = log n), Hannan-Quinn (ϕ (n) = 2 log log n)) to guard against overfit-
ting.

It is clear that the resulted value of PL (Mk), is highly influenced by the
choice of ϕ (n). For example, if one select as ϕ (n) the one of AIC, asymptoti-
cally he will face an overestimation problem related to the correct number of
parameters.

For the detection of a single changepoint problem, Mk represents the model
with k changepoints and Θk =

(
τk

1 , θk+1
1

)
the associated parameter vector with

dimension pk = k + (k + 1) dim (θ).

Concluding, for estimating a single changepoint there is a close relation between
the two techniques discussed in this Subsection, since both involve comparison of
the maximum log-likelihood under H0 and H1, respectively. Their only difference
lies upon the way of calculating the rejection region.

2.2.2 Multiple changepoint detection
Analyzing multiple changepoint models comes with a considerable computa-

tional challenge as the number of possible positions of m changepoints increases
along with m. Consider for example a set of 1000 data points. Then, for a single
changepoint there exist 999 possible positions while for 10 changepoints, there
exist 2 × 1023 ones.

In the following Subsections we discuss various multiple changepoint techniques
that are likelihood-ratio based and can be used for efficiently performing the
maximization required in applying penalized likelihood methods.

Binary segmentation (BinSeg)

Perhaps the most robust search algorithm used across the changepoint liter-
ature, is that of BinSeg.(126)−(129) The main advantage of BinSeg is its ability
to transform (almost) any single changepoint method to a multiple one.

The algorithm begins by testing if a single changepoint τ exists so that

R (yτ
1 ) +R (yn

τ+1) + β < R (yn
1 ) . (2.10)

If (2.10) stands true, then the dataset is dichotomized into two segments, namely
yτα

1 and yn
τα+1 with τα representing the time-point where the change occurred.
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Subsequently, (2.10) is applied to each segment, i.e.

R (yτ
1 ) +R (yτα

τ+1) + β < R (yτα
1 ) (2.11)

and
R
(
yτ

τα

)
+R (yn

τ+1) + β < R
(
yn

τα

)
(2.12)

If at least one of (2.11) and (2.12) holds, then the corresponding data are re-
splitted at the newly identified changepoint(s), and a hypothesis testing similar
to the ones applied in (2.10), (2.11) and (2.12), is performed. The aforedescribed
procedure is repeated until there are no other changepoints detected.

BinSeg is a computationally fast algorithm with a cost of O(n) (n the sample
size). Despite its speed, the algorithm has a big flaw when it comes on the
appropriate selection of C since different choices of it could lead to (substantially)
different estimations of the number of changepoints, m.

For a more thorough discussion on the algorithmic aspect on BinSeg the inter-
ested reader may refer to Eckley et al. (130)

Segment neighborhood (SegNeigh)

An alternative search algorithm to that of BinSeg for changepoint detection
is that of SegNeigh.(34; 131) In this algorithm, a criterion of data fit is defined,
which is no other than the loss function (R(·)), for a segment. In the case of
penalized likelihood we set

R
(
yt

s

)
= − log p

(
yt

s|θ̂
)

. (2.13)

Then a maximum number of segments, say M , is set, which corresponds to (at
most) M − 1 changepoints. The SegNeigh algorithm identifies the optimal parti-
tion of yn

1 across m + 1 segments, m = 0, ..., M − 1, through the minimization
of the following loss function

m∑
i=0

R
(
yτi+1

τi

)
(2.14)

for a partition with changepoints at positions τ1, τ2, ..., τm. Finally, the algorithm
outputs the best partition for m = 0, ..., M − 1 along with the corresponding
minimum value of (2.14).

The SegNeigh search has an O(n2) computational cost, as compared to O(n) of
the BinSeg algorithm. Hence, it is inevitable that this cost makes SegNeigh a
little bit slow (in terms of execution speed). Through this disadvantage though,
the algorithm achieves gaining a significantly improved predictive performance
in simulation studies.(34)
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Optimal partitioning (OP)

Another also quite popular changepoint detection algorithm, is that of OP.
Proposed first by Yao(132) and later by Jackson et al.,(133) the method aims to
the minimization of the following quantity:

m+1∑
i=1

(
R
(
yτi

τi−1
)
+ β

)
. (2.15)

The algorithmic procedure starts from setting a condition on the last changepoint,
say τm, and calculates optimal segmentation of the data up to τm. Thereupon,
τm is moved through from the beginning to the end of the data, leading to
selection of an overally optimal segmentation as the final set of changepoints.
Moving to more technical aspects of the algorithm, let us denote by Q(n) the
minimization from (2.15):

Q(n) = min
τ


m+1∑
i=1

(
R
(
yτi

τi−1
)
+ β

) . (2.16)

If we set τm = τ∗ and condition on its location, then:

Q(n) = min
τ∗

min
τ |τ∗


m+1∑
i=1

(
R
(
yτi

τi−1
)
+ β

)
 . (2.17)

The above procedure can be repeated for the second to last, third to last,...,mth

to last, changepoints. This recursive “nature” of the above conditioning, becomes
more evident if we set the inner minimization in (2.17) equal to Q (τ∗). In such
a way, the latter equation can be re-written as:

Q(n) = min
τ∗

{
Q (τ∗) +R (yn

τ∗+1)
}

. (2.18)

Through (2.18), the global optimal segmentation can be identified by making
use of (optimal) segmentations on subsets of the data. Specifically, (2.18) gives
a recursive “subsistence” to the OP method since the optimal segmentation for
yτ∗

1 is identified which is then utilized for informing the optimal segmentation for
yτ∗+1

1 . When Q(n) is reached the optimal segmentation for yn
1 has been identi-

fied and thus the number as well the location of changepoints, have been recorded.

Finally, the computational cost of the OP procedure is O
(
n2
)
.

Pruned exact linear time (PELT)

Killick et al.,(134) on their attempt for improving the existing multiple
changepoint detection search methods, proposed the PELT algorithm. Based
mainly on the concept of the OP method, they proposed pruning of the values
τ that can never be minima from the minimization performed at each iteration
of Q (τ∗) (see (2.18) and Killick et al.(134)). Let us think a time s during the
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recursions of the OP algorithm so that

Q(s) = min
0≤τ<s

{
Q (τ ) +R (ys

τ+1) + β
}

.

Let also t, be a time such that 0 ≤ τ < s and

Q (τ ) +R (ys
τ+1) + β > Q(s). (2.19)

The way in which t defined, implies that the latter does not constitute the
location of the last changepoint prior to time s.

If we consider a future time T , T > s, we can use the difference

Q (τ ) +R (ys
τ+1) − Q(s)

to identify whether t is the location of the last changepoint prior to T . This
is achieved by placing a condition on t that prevents it from being the future
location of a last changepoint. In such a way, t can be removed from the
minimization at each step of the PELT algorithm. According to the authors,
removal of changepoint sequences that cannot be part of the final changepoints
set, assures the exactness consistency of the PELT method.

Killick and her associates, summarized both the aforementioned condition and
result under the following Theorem.

Theorem 1. Suppose that there exists a constant K such that for all t < s < T ,

R (ys
t+1) +R

(
yT

s+1
)
+ K < R

(
yT

t+1
)

(2.20)

Then if
Q (τ ) +R (ys

τ+1) + K > Q(s) (2.21)

holds, at any future time T > s, t can never be the optimal last changepoint
prior to T .

For the proof of Theorem 1, the reader is referred to Killick et al.(134)

As it follows, if (2.21) is true, then for any T > s the optimal segmenta-
tion with the most recent changepoint before T being at s, will be better than
any which has this most recent changepoint at t. The assumptions concerning
(2.20) can be satisfied by considering a plethora of loss functions such as the
log-likelihood or the penalized log-likelihood. Furthermore, it is necessary to
highlight the condition set in Theorem 1 regarding the exclusion of a candidate
changepoint t from future consideration. This is crucial since it reduces the
amount of computations needed, and hence the computational cost, for obtaining
the final set of changepoints. Finally, it has to be noted that the PELT algorithm
is accompanied by a linear computational cost, i.e., O (n).

The pros and cons of the changepoint methods discussed in this Section, are
summarized in Table 2.1.
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Table 2.1: Characteristics of the changepoint methods discussed

Method Computational Cost Pros Cons

BinSeg O (n) Quick Approximate

SegNeigh O
(
n2) Exact Slow

OP O
(
n2) Exact Slow

PELT O (n) Quick & Exact Not for all distributions

2.3 Regime Switching Modelling

2.3.1 Markov switching model of conditional mean
Various empirical studies have proven that the behavior of time-series vari-

ables may change overtime. Therefore, instead of using one model for the
conditional mean of a variable, we usually use different models for capturing the
aforementioned behavior. If we combine two or more dynamic models through a
Markovian Switching mechanism, then the resulted model is Markov Switching
Model (MSM), i.e., a time-series model of which the parameters change values
based on the regime (state) that fall at time t, t = 1, ..., T .

Let us consider a random system with finite state space, say D = {1, ..., K},
and an unobservable state variable St, t, t = 1, ..., T , which satisfies the first
order Markov property assumption, i.e.,

pij(t) = P (St = j|St−1 = i) = pij ,
K∑

j=1
pij = 1,

where the transition probabilities pij are time invariant i.e., pij(t) = pij , ∀t.

Based on the above, and for a K-state model, the corresponding K × K constant
transition probability matrix is as follows:

pK×K =


P (St = 1|St−1 = 1) · · · P (St = K|St−1 = 1)
P (St = 1|St−1 = 2) · · · P (St = K|St−1 = 2)

... . . . ...
P (St = 1|St−1 = K) · · · P (St = K|St−1 = K)



=


p11 · · · p1K

p12 · · · p2K
... . . . ...

p1K · · · pKK

 .

Let us consider a series of observable random variables Yt = yt with corresponding
hidden states St = st, st ∈ D , t = 1, ...T . A Markov Switching Model of
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Conditional Mean (MSMCM) is defined as:

yt = cst +
p∑

i=1
ϕistyt−i + ϵst , i ≤ t ≤ T , (2.22)

where cst is a switching intercept, ϕist , i = 1, ..., p, are autoregressive (AR)
switching coefficients and ϵst are i.i.d normally distributed random variables
with zero mean and variance σ2

st
.

A distinctive characteristic of the model in (2.22), is that a set of variables can
be significant in state j, but not necessarily in state i, i ̸= j, i, j ∈ D , and vice
versa. Moreover, the formulation of the model, implies that (i) the dependent
variable yt is governed by K-different processes; and (ii) the stochastic transition
through states, is controlled by the pKxK transition probability matrix.

Figure 2.3: A time-series with two regimes (in white and gray,
respectively).

Commonly, Markov Switching Models are also referred to as hidden Markov
models, mainly due to their inclusion to the broader family of state-space models
i.e., statistical models with hidden variables that control observable random
variables. In general though, hidden Markov models are formulated so that the
observable random variables at period t only depend on the hidden state variables
at the same period, while in the Markov Switching context the observable random
variables depend on their historical values as well as the hidden state variables
(Figure 2.4). The latter setting makes the Markov Switching Models more
“suitable” when it comes to time-series problems.
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Figure 2.4: Mechanism of the Markov switching model.

2.3.2 Parameter inference on MSMCM – The expectation-
maximization algorithm

Let θ∗ denote the vector of the unknown parameters of the model in (2.22),
where:

θ∗ = (cst , ϕ1st , ..., ϕpst , σ2
st

, p11, ..., pKK).

There exist several techniques for estimating θ∗, such as Maximum-Likelihood
(ML), Gibbs Sampling, Monte-Carlo, etc. Among them, the widely used and
well-known Expectation-Maximization (EM) algorithm(135) which constitutes
an ML based technique and has been extensively used in the Regime Switching
Modelling context.(136; 137)

Consider
{
yT

1
}
= {y1, ..., yT } to be the sequence of output observations and{

sT
1
}
= {s1, ..., sT } ∈ D , the sequence of the corresponding states. The log-

likelihood function of the complete data yT
1 and the unknown states sT

1 has the
following form:

L
(
yT

1 , sT
1 |θ∗

)
=

T∏
t=1

K∑
st=1

f
(
yt|St = st, yt

1; θ∗
)

P (St = st|yt
1)

⇔ log L
(
yT

1 , sT
1 |θ∗

)
=

T∑
t=1

log
K∑

st=1
f
(
yt|St = st, yt

1; θ∗
)

P
(
St = st|yt

1
)

.

(2.23)

As already mentioned, by construction, the EM algorithm is associated with ML
which arises a serious issue since the necessity of MSMCM to have the state St

depended on the previous one St−1, makes the latter insufficient for ML-type
estimation. The solution to this problem, was provided by Hamilton(138) and is
known as filtering. Specifically, he demonstrated that the likelihood function
of the data yt can be recursively calculated via yt. Hamilton’s filtering process
though, considers that the K-states st are inextricably linked to the past val-
ues of yt and thus, the resulted filtered probabilities may indicate false alarm
regime changes. Kim(139) proposed a backward procedure, known as smoothing,
that is applied on the filtered probabilities of Hamilton’s so that probabilities
conditioned on both past and future observations can be obtained. In such
a way, the resulted smoothed probabilities have significantly reduced chance
of misinterpreting an outlier as an actual regime change. For more on Kim’s
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smoothing algorithm see Chen,(140) Kim and Nelson(141) and Di Persio and
Vettori.(142)

Under the assumptions of model (2.22):

f
(
yt|St = st, yt

1; θ∗
)
=

1√
2πσ2

st

exp

(
−(yt − µst)

2

2σ2
st

)
, t = 1, ..., T ,

where µst = cst +
∑p

i=1 ϕistyt−i.

The EM-algorithm constitutes an iterative process that consists of two steps:
(i) the E-Step in which (smoothed) inferences on St are derived; and (ii) the
M-Step in which the “new” ML estimates of θ∗ are calculated. The E & M
Steps are repeated n-times, where n is the number of iterations needed to reach
the (local) maximum of the likelihood function.

EM Algorithm

For the first iteration set n = 0, and set also some arbitrary initial values
to θ∗, i.e.:

(θ∗)[n] =
(

c[n]st
, ϕ

[n]
1st

, ..., ϕ[n]
pst

,
(
σ2

st

)[n]
, p

[n]
11 , ..., p

[n]
KK

)
.

E-Step

Hamilton’s Filter

1. Set a (naive) guess for the initial probabilities (t = 1):

P
(
S1 = s1|y1; (θ∗)[n]

)
, s1 = 1, ..., K.

2. Set t = 2 and calculate:

P
(
St = st|yt

1; (θ∗)[n]
)
=

K∑
i=1

p
[n]
ist

P
(
St = i|yt

1; (θ∗)[n]
)

, st ∈ D .

3. Based on Bayes’s rule and the total probability theorem, update the
joint probability:

P
(
St = st|yt

1; (θ∗)[n]
)

=
f
(
yt|St = st, yt

1; (θ∗)[n]
)

P
(
St = st|yt

1; (θ∗)[n]
)

K∑
st=1

f
(
yt|St = st, yt

1; (θ∗)[n]
)

P
(
St = st|yt

1; (θ∗)[n]
)

.

4. Set t = t+ 1 and repeat Steps 2 & 3 until the sample size T is reached.

Kim’s Smoother
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1. Set t = T − 1 and calculate:

P
(
St = st|yT

1 ; (θ∗)[n]
)

=
K∑

i=2

P
(
St = st|yt

1; (θ∗)[n]
)

P
(
St+1 = i|yT

1 ; (θ∗)[n]
)

p
[n]
sti

P
(
St+1 = i|yt

1; (θ∗)[n]
) .

2. Set t = t − 1 and repeat Step 1 until t = 1.

Notice that Kim’s smoothing algorithm, requires the values of the filtered
probabilities resulted through the filtering process of Hamilton.

M-Step

1. Set n = n + 1.
2. Calculate more accurate ML estimates for(

c[n]st
, ϕ

[n]
1st

, ..., ϕ[n]
pst

,
(
σ2

st

)[n])
,

through explicit formulas which can be obtained by setting the partial
derivatives of (7.2) equal to zero. Each formula will be a function of
P (St = st|yT

1 ; (θ∗)[n−1]).
3. Calculate

p[n]sti
=

T∑
t=1

P
(
St = i|yT

1 ; (θ∗)[n−1]
) p

[n−1]
sti

P
(

St=st|yt
1;(θ∗)[n−1]

)
P(St=i|yt

1;(θ∗)[n−1])

P
(
St = st|yT

1 ; (θ∗)[n−1]
) .

Repeat the E & M Steps until convergence is achieved and consequently the
final ML estimations for θ∗ are derived.

2.4 Discrete Time semi-Markov Chains
Let us assume a random system that has a finite state space E = {1, ..., N},

N < ∞, for which the time evolution is governed by a stochastic process
Z = (Zt)t∈N. In addition, let us denote by S = (Sk)k∈N the successive time-
points when state changes in (Zt)t∈N and by J = (Jk)k∈N the associated visited
states at these time-points.

Definition 1 (Markov renewal & semi-Markov chain). If (J , S) = (Jk, Sk)k∈N

satisfies the relation

P (Jk+1 = j, Sk+1 − Sk = t|J0, J1, ..., Jk; S1, ..., Sk)

= P (Jk+1 = j, Sk+1 − Sk = t|Jk), j ∈ E, t ∈ N, (2.24)
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then Z = (Zt)t∈N is a semi-Markov chain associated to the Markov renewal
chain (J , S) = (Jk, Sk)k∈N, where

Zt = JN(t) ⇔ Jk = ZSk
,

with N(t) = max{k ∈ N|Sk+1 ≤ t}, t ∈ N, being the counting process of the
number of jumps in the time interval (0, t]. As a result, Zt represents the state
of the system at time t.(143) The fact that (Jk, Sk)k∈N is a Markov renewal
chain, implies that (Jk)k∈N is an embedded Markov chain.

Note that throughout this thesis, we consider (J , S) to be homogeneous that
is equation (2.24) is independent of k.

Figure 2.5: Sample path of a semi-Markov chain.

In order to provide some basic definitions, we introduce now the proper notation.
Consider l, k ∈ N, l ≤ k, two nonnegative integers and let yl, ..., yk ∈ A =
{1, ..., s}, s < ∞. We will denote by Y k

l the vector Y k
l = (Yl, ..., Yk) and we will

write {Y k
l = yk

l } for the event {Yl = yl, ..., Yk = yk}. In the case of a single
state within the state space, i.e., yl, ..., yk ≡ y ∈ A, we denote by {Y k

l = y} the
event {Yl = y, ..., Yk = y}. Finally, the notation {Y k

l = ·} refers to the event
{Yl = ·, ..., Yk = ·}. It is obvious that all the above notations in terms of the
chain Y can be easily expressed in terms of the chain Z.

Definition 2 (Hidden semi-Markov chain of order k). Let Y = (Yt)t∈N be a
homogeneous Markov chain of order k, k ≥ 1, conditioned on the semi-Markov
chain Z which means that ∀y0, ..., yk ∈ A, i ∈ E, t ∈ N∗:

P (Yt+1 = yk|Y t
t−k+1 = yk−1

0 , Y t−k
0 = ·, Zt+1 = i, Zt

0 = ·)
= P (Yt+1 = yk|Y t

t−k+1 = yk−1
0 , Zt+1 = i). (2.25)

The chain (Z, Y ) = (Zt, Yt)t∈N is called a hidden semi-Markov chain of order
k and the probability in (2.25) is known as the emission probability matrix of
the conditional Markov chain Y .
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If in (2.25) the observation process is characterized by the conditional inde-
pendence property, then ∀y ∈ A, i ∈ E, t ∈ N∗:

P (Yt = y|Y t−1
0 = ·, Zt = i, Zt−1

0 = ·)
= P (Yt = y|Zt = i),

where ∑yk
P (Yt+1 = yk|Zt+1 = i) = 1.

For more information on the topic of hidden semi-Markov chains the inter-
ested reader may refer to Barbu and Limnios.(144)
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Chapter 3

On Mixed PARMA Modeling of
Epidemiological Time Series Data

Pass Of Thermopylae, Lamia, Greece

Cite: Kalligeris EN, Karagrigoriou A and Parpoula C. On Mixed PARMA
Modeling of Epidemiological Time Series Data. Communications in Statistics-
Case Studies, Data Analysis and Applications 2020; 6(1): 36-49. �

Chapter’s Goal

Real time surveillance of epidemic activity in epidemiological surveillance
systems, is often difficult to be fully achieved due to the seasonality
involved in the series. In this Chapter, for the modeling of incidence data
(see Section 1.4) concerning weekly estimated influenza like illness (ILI)
ratesa, the general form as well as special cases of PARMA models (see
Section 2.1) are considered. In the upcoming sections, the methodology
followed is the one described in Subsection 1.5.2.

aThe weekly estimated ILI rate, is a time series with specific characteristic properties,
such as trend and seasonality.

3.1 Estimation of the Regression Equation
In this Section, an exhaustive search process (based on periodic mixed re-

gression models) is performed in order to identify the optimal fit of the baseline
model. Thus, linear, quadratic, cubic and quartic (for comparison purposes)
trends are considered, and regarding the seasonal component, the most widely
used periodicities are implemented, i.e., 12, 6, and 3 months. For a review of a
general class of such models see Vasdekis et al. (145)

Note that other terms could also be included in the regression equation. For
example, some authors incorporated variables, such as the day of the week,
holiday, and post-holiday effects,(146) sex and age,(147) or climatological factors
e.g., temperature and humidity.(148) Inclusion of all these terms may offers
more flexibility, but it will be more prone to result in unidentifiable models or
other problems related to model fitting. In the following sections, we focus on
the study of the possible impact of several climatological factors (temperature,
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humidity, wind force, and wind direction) on influenza morbidity.

Several authors have studied the climate changes and how these affect public
health.(149; 150) As a matter of fact, it has already been observed that higher
temperatures are likely to increase heat-related mortality worldwide. In ad-
dition, there is strong evidence that high temperatures are associated with
mortality.(151) The connection between temperature and mortality may be
confounded by a range of measured (or unmeasured) confounders. Confounding
factors are present when a covariate is strongly associated with both the outcome
and exposure of interest, but it is not a result of the exposure and may distort
the association being studied between two other variables. As pointed out by
Touloumi et al.,(152) a fundamental consideration in epidemiological modeling is
to properly control for all potential confounders. Such confounders may include
meteorological indicators, such as relative humidity, seasonality and long-term
trends. In addition, Tsangari et al.(153) concluded that high temperatures dur-
ing warm months can result in increased mortality rates. Since influenza causes
an estimated 290000-650000 deaths worldwide,(154) it is considered reasonable
to study the possible effects of climatological factors on ILI.(148) Motivated by
the aforementioned, additional climatological factors were incorporated into the
model’s structure namely, minimum-maximum-median-mean temperature (temp),
minimum-maximum-median-mean wind direction (wd), and minimum-maximum-
median-mean wind force (wf). Moreover, first-second order auto-regressive terms
and first-second order moving average terms, were also considered.

Combining all the above components, the regression equation is defined by
the following mixed PARMA(2,2) model:

yt = α0 + α1t + α2t2 + α3t3 + α4t4 + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)

+ γ2cos

(
4πt

n

)
+ δ2sin

(
4πt

n

)
+ γ3cos

(
8πt

n

)
+ δ3sin

(
8πt

n

)
+ ϕ1yt−1 + ϕ2yt−2 + ϵt + λ1ϵt−1 + λ2ϵt−2

+ ζ1minwd + ζ2maxwd + ζ3medianwd + ζ4meanwd
+ θ1minwf + θ2maxwf + θ3medianwf + θ4meanwf
+ ω1mintemp + ω2maxtemp + ω3mediantemp + ω4meantemp, (3.1)

where αi, γi, δi, ϕi, λi, ζi, θi, ωi, are the appropriate coefficients of the relevant
terms and ϵt ∼ WN(0, σ2).

Next, a thorough comparison takes place among all candidate periodic mixed
models, i.e.:

• mixed PAR(1)

• mixed PAR(2)

• mixed PMA(1)
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• mixed PMA(2)

• mixed PARMA(1, 1)

• mixed PARMA(2, 1)

• mixed PARMA(1, 2)

• mixed PARMA(2, 1)

with respect to the significance of the climatological factors. Note that all
regression equations for the observed value yt are special cases of Equation (3.1).

The initial model selection process is described step by step as follows: We start
from the simplest model, labeled as PAR(1), by examining the significance of
each of the climatological explanatory variables of the mixed model. If there is
at least one significant, then we keep the model and go on to the next one (e.g.,
PAR(2)). The procedure continuous until the significance of the climatological
factors for each model is examined. Finally, the models kept by the process,
are being compared with respect to Modified Divergence Information Criterion
(MDIC) criterion(155) and the model with the lowest MDIC value is selected.
In our case, and based on the above procedure, a PARMA(2, 1) mixed model
with minimum temperature as a significant covariate (p − value < .001) was
selected.(156)

As a result, the time period and the minimum temperature are the explanatory
variables, the observed time series values, weekly ILI rate (number of ILI cases
per 1000 visits), is the dependent variable and all regression equations for the
observed value yt are special cases of the following PARMA(2, 1) mixed model:

yt = α0 + α1t + α2t2 + α3t3 + α4t4 + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)

+ γ2cos

(
4πt

n

)
+ δ2sin

(
4πt

n

)
+ γ3cos

(
8πt

n

)
+ δ3sin

(
8πt

n

)
+ ϕ1yt−1 + ϕ2yt−2 + ϵt + λ1ϵt−1 + ω1mintemp,

where ϵt ∼ WN(0, σ2), n denotes the sample size, and parameter coefficients
are estimated by least squares regression.

Selection of the best fitting model, in terms of trend and seasonality, is made
possible by an exhaustive search among twelve candidate models (combining the
four trends, namely, linear, quadratic, cubic and quartic, and the three seasonal
periodicities, namely, 12, 6, and 3 months), and the selection process is relied
on Analysis of Variance (ANOV A) comparison (significance level α is chosen to
be 5%) to select between nested models, and on Akaike Information Criterion
(AIC), or Modified Divergence Information Criterion (MDIC), or Bayesian
Information Criterion (BIC) to select between non-nested models.

The latter process is described step by step as follows:
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Step 1: The process starts by comparing (via ANOVA) the simplest model labeled
as M11 (linear trend and 12−month seasonal periodicity), and defined as

M11 : yt = α0 + α1t + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)
+ ϕ1yt−1

+ ϕ2yt−2 + ϵt + λ1ϵt−1 + ω1mintemp, (3.2)

with the two models within it is nested, labeled as M12 (linear trend and
12− and 6−month seasonal periodicities) and M21 (quadratic trend and
12−month seasonal periodicity), which are defined as

M12 : yt = α0 + α1t + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)
+ γ2cos

(
4πt

n

)

+ δ2sin

(
4πt

n

)
+ ϕ1yt−1 + ϕ2yt−2 + ϵt + λ1ϵt−1 + ω1mintemp,

and

M21 : yt = α0 + α1t + α2t2 + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)
+ γ2cos

(
4πt

n

)

+ δ2sin

(
4πt

n

)
+ γ3cos

(
8πt

n

)
+ δ3sin

(
8πt

n

)
+ ϕ1yt−1 + ϕ2yt−2

+ ϵt + λ1ϵt−1 + ω1mintemp.

Step 2: In the case that none of the alternative models (M12 and M21) is signif-
icantly better than the initial one (M11), the process retains M11 and
stops.

Step 3: If one of the two alternative models is better than the initial one (p −
value < 0.05), the algorithmic process keeps it and goes on.

Step 4: If both alternative models are better than the initial one, the algorithmic
process keeps the one with the lowest AIC, MDIC or BIC respectively,
and goes on.

The procedure is repeated until finding the “best overall” model over the twelve
candidate models.

3.1.1 Epidemic alert notification
The epidemic thresholds which signal an unexpected change are typically

obtained by taking an upper percentile for the prediction distribution (assumed
to be normal), usually the upper 95th percentile,(46) or upper 90th percentile.(97)
In addition, a minimum period above the epidemic threshold is also required.
The latter step is important since in this way we avoid making alerts for isolated
data points. In this paper, the rule was set to be “a series of observations fall
above the epidemic threshold during 2 weeks”(47; 91)). This way, the beginning
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of the epidemic is signaled the first time the series exceeds the threshold, and
the end, the first time the series returns below the threshold.

3.1.2 Model identification
We conducted a retrospective analysis; the whole time series with 105 obser-

vations was therefore included in the training period (as done for example in
Parpoula et al.(26)). Then, we chose to exclude the top 15% observations from
the training period (89 values kept out of 105). Based on ANOVA comparisons,
and AIC, BIC and MDIC criteria values, the model selected was M11 with
a linear trend, an annual periodic term (one year harmonics), first and second
order auto-regressive terms, a first order moving average term, and the minimum
temperature. The forecast interval was set to be 95%, that is the upper limit of
the prediction interval which is used as a threshold to detect epidemics. The
alert rule, was chosen to be “an epidemic is declared when 2 weekly successive
observations are above the estimated threshold”.

The mathematical form of M11 is described as follows:

yt = α0 + α1t + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)
+ ϕ1yt−1

+ ϕ2yt−2 + ϵt + λ1ϵt−1 + ω1mintemp.

Table 3.1 presents the estimated parameters, the standard errors (sd), the test
statistic values (t-value) and the associated p-values of the selected model. The
twelve periodic regression mixed models are described in Table 3.2, in which
the components included in each model are indicated by “*”, along with AIC,
MDIC, BIC and R2

GLLM(m)
(157) values of each model. The model finally kept

M11 is in bold italics.

Table 3.1: Selected Model M11

Parameter Estimate sd t-value p-value

α0 10.468 2.128 4.920 < .001

α1 −0.075 0.027 −2.789 0.007

γ1 −10.315 1.444 −7.144 < .001

δ1 12.726 2.144 5.937 < .001

ϕ1 0.811 0.114 7.098 < .001

ϕ2 −0.234 0.090 −2.613 0.011

λ1 0.261 0.135 −2.613 0.058

ω1 0.729 0.172 4.247 < .001
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Figure 3.1 illustrates the model selection pathway using MDIC criterion. The
model selection pathway for ANOVA & AIC and ANOVA & BIC respectively, is
exactly the same as in Figure 3.1 and therefore is chosen not to be presented. In
addition, Figure ?? illustrates the plots of the time series, the predicted baseline
as well as the threshold. In addition, the epidemics detected by the selected
model (M11) appear in light red. Table 3.3 presents the dates and the results
of the retrospective evaluation of the excess influenza morbidity1 in Greece for
2014-2016 along with excess percentages2, using the M11 periodic regression
mixed model.

Figure 3.1: Model selection pathway (ANOVA & MDIC).

1The excess morbidity is defined as the cumulative difference between observations and
baseline over the entire epidemic period.

2Excess percentages were calculated as the observed size divided by the sum of expected
values throughout each epidemic.
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3.1 ESTIMATION OF THE REGRESSION EQUATION

It is worth to be noted that we chose MDIC over AIC or BIC, because of the
interesting characteristics that seems to appear and will be discussed in Section
3.1.3.

Table 3.2: Models selected through the algorithm pathway
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a "T" denotes trend; b "P" denotes periodicity; c "LV" denotes latent variable;
d "IC" denotes information criterion; e "M" denotes model; f "y" denotes year ;
g "m" denotes months; H "MT" denotes minimum temperature.
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Table 3.3: Retrospective evaluation of the excess influenza
morbidity, Greece 2014-2016

SW a EW a Cases Expected cases Excess cases Excess percentage

201501 201512 1151 891 260 29%

201605 201608 316 225 91 40%
a SW and EW denote the signaled start and end weeks for epidemics, respectively.

3.1.3 Model performance evaluation
In this section we evaluate the predictive performance of the selected model

(M11) in comparison with other significance models considered in this analysis.
The selected periodic regression mixed model, identified as the optimal one, was
M11 defined in Equation (3.2) (see also Table 3.2). However, one can easily
observe from Figure 3.1, that the algorithm could have proceed and therefore
stopped at M12, since the p-value is close to α = 5% (0.067). It is worth to be
noted that if we exclusively take into account the AIC, BIC and R2

GLMM(mar)
values, then the “best overall” models would be M21, M31 and M33, respectively.
Thus, one could make a comparison between the aforementioned models (M11,
M12, M21, M31 and M33) in order to ensure the selection of the “best overall”
model with respect to several measures of prediction accuracy of a forecasting
model, such as:

• Mean Error (ME),

• Root Mean Squared Error (RMSE),

• Mean Absolute Error (MAE),

• Mean Percentage Error (MPE),

• Mean Absolute Percentage Error (MAPE) and

• Mean Absolute Scaled Error (MASE).(158)

The results of the comparative study are presented in Table 3.4 where the full
model (M43) has also been included for the shake of completeness.
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Table 3.4: Common accuracy measures

Model ME RMSE MAE MPE MAPE MASE

M11 −2.359224e−16 4.298974 3.040053 0.2782516 48.19166 0.230213

M12 2.179757e−16 4.10272 2.857186 −23.29906 75.60382 0.2163651

M21 4.937659e−17 4.280225 2.9915 7.396555 50.17105 0.2265362

M31 −3.469447e−17 4.009004 2.853861 22.26226 63.17711 0.2161133

M33 7.6736e−17 3.703522 2.757 −69.34156 127.622 0.2087783

M43 9.953614e−17 3.68828 2.783278 −69.73654 132.0232 0.2107683

We observe from that models M21 and M31 are not satisfactory since their
results are never the best for none of the accuracy measures examined. Although,
the results for models M11, M12, and M33, are similar, M11 clearly outper-
forms the others in terms of MPE and MAPE. Even if model M33 was better,
we would choose again M11, since it has the advantage of less explanatory
variables and a R2

GLMM(mar) value very close to the one of M43. Thus, M11 is
the “best overall” model.

It is worth to be noted that MDIC, AIC and BIC values of the models
are in full support of the above results. Indeed, MDIC is clearly in favor of
model M11 (smallest MDIC value). In respect to AIC and BIC values, we ob-
serve that M11 is not the best; however, by choosing alternative models such as
M12, M33 or M43, the gain is not significant enough to balance the complexity
associated with these models. Moreover, the MDIC values tend to get bigger as
more explanatory variables are included in the model. In fact, the penalty given
by MDIC to the models is much bigger compared to the penalty given by AIC.
Thus, the addition of explanatory variables makes MDIC a somewhat “stricter
metric” in comparison with AIC, and nearly the exact opposite of R2

GLMM(mar).

3.2 Concluding Remarks
Conclusively, in this study, we conducted a retrospective analysis of epidemio-

logical time series data (week40/2014 to week39/2016) for Greece. We developed
an alternative approach in order to model seasonality of influenza, based on a
periodic regression model which incorporates an additional auto-regressive and
moving average component into Serfling’s model including additionally clima-
tological and meteorological covariates associated with ILI, with the ultimate
aim of the early and accurate outbreak detection. The model selected (via an
exhaustive search process) as the optimal one succeeded in estimating accurately
the influenza-like syndrome morbidity burden in Greece for the period 2014-2016
as well as the duration of the epidemic waves. Within this framework, the
present work provided general recommendations to serve critical needs of Public
Health for the very early and accurate detection of epidemic activity.
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Chapter 4

Periodic-type ARMA Modeling
with Covariates for Time-Series
Incidence Data via Changepoint
Detection

Eiffel Tower, Paris, France

Cite: Kalligeris EN, Karagrigoriou A and Parpoula C. Periodic-Type Auto-
Regressive Moving Average Modeling with Covariates for Time-Series Incidence
Data via Changepoint Detection. Statistical Methods in Medical Research 2020;
29(6): 1639-1649. �

Chapter’s Goal

In Chapter 3, we focused solely on capturing the behavior of non-
extreme periods of incidence data. However, identifying the full time
course of data such as the ILI rates for Greece (2014-2016) is useful for sev-
eral reasons. Indeed, identifying the end of an epidemic, helps public health
officials in both knowing when response activities can cease and deter-
mining whether new cases are part of an already known (or a new) outbreak.

Hence, in this Chapter we attempt to capture the behavior of both
non-extreme and extreme periods that occur in time-series incidence data.
The identification of extreme periods is made possible via changepoint
detection analysis (see Section 2.2) and model selection techniques are
developed in order to identify the optimal PARMA model with covariates
that best describes the pattern of the time-series. Finally, in the context of
incidence data modeling, an advanced algorithm was developed in order to
improve the accuracy of the selected model.

https://journals.sagepub.com/doi/abs/10.1177/0962280219871587


CHAPTER 4. PERIODIC-TYPE ARMA MODELING WITH COVARIATES
FOR TIME-SERIES INCIDENCE DATA VIA CHANGEPOINT DETECTION

4.1 Changepoint Detection, Periodic ARMA
Modelling, and Estimation Performance

In this Chapter, we make use of the Segment Neighbourhood method which
is arguably the most widely used changepoint search method and like PELT, is
exact. It is worth to be noted that the PELT method was also examined with
derived results almost identical to the ones by SegNeigh. The PELT method
gave satisfactory results but the SegNeigh was preferred since it seems to give
more reliable results as compared with previous analyses based on Serfling-type
periodic regression modeling of the same data.(26) For a comprehensive survey
on changepoint see Fryzlewicz(159) and Aminikhanghahi and Cook.(160)

4.1.1 Modeling of time-series incidence data
In Chapter 3 we extended the work of Pelat et al.(47) and Parpoula et al.(26)

using mixed PARMA models for estimating the non-epidemic period of ILI rate
data. Specifically, they made use of 105 weekly ILI rate observations (τ1, ..., τ105)
for Greece, between September 29, 2014 and October 2, 2016 that were provided
by the National Public Health Organization (NPHO) of Greece.

Identification of extreme periods

In this work, we provide a general, user friendly and computationally fast
algorithmic procedure for estimating not only the baseline level but also the ex-
treme periods of the time-series via changepoint analysis. Firstly, we applied the
changepoint method to the time-series data, using the SegNeigh algorithm,(161)
and changes in mean were found at time-points

• τ13,

• τ25,

• τ66, and

• τ74,
as also seen in Figure 4.1.

Figure 4.1: Changepoints in mean
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The method detected five periods described below in terms of time-points τ .
Two of them were found to be epidemic and are highlighted in red as follows.

• τ1 − τ13 (week40/2014-week52/2014),

• τ14 − τ25 (week1/2015-week12/2015),

• τ26 − τ66 (week13/2015-week53/2015),

• τ67 − τ74 (week1/2016-week8/2016),

• τ75 − τ105 (week9/2016-week39/2016).

Remark 1 The resulted epidemic periods could be explained by both an epi-
demiological and a statistical perspective. From an epidemiological perspective
there are usually certain weeks that are expected to be epidemic prone. However,
the burden of disease varies from year to year according to the specific epidemi-
ological features of ILI syndrome, meteorological factors or even socio-economic
conditions e.g. vaccinations, health policies etc. From a statistical perspective, in
a disease (as well as an ILI rate) surveillance problem, there is little to no control
over disease incidence, the distribution of disease incidence is non-stationary, and
disease incidence (usually) returns to its original state once an outbreak has run
its course. To aid interpretation, the detected changepoints enable experimenters
to divide the whole time series into two types of segments based on the direction
and magnitude of the incidence of disease: severe outbreaks (non-typical activity)
and non-epidemic activity (typical activity), from highest to lowest public health
interest in terms of alarm signals. Therefore, a beginning of an epidemic trend is
a change point whose timely detection will predict occurrence of a new epidemic.
Similar explanations as the ones given above, could be used in several scientific
fields that incidence data occur such as seismology(66)−(68) and meteorology.(69)

Remark 2 The changepoint algorithm identifies all possible time points τκ

where the mean changes significantly. Then the time series is divided according
to the identified time points τκ and then two sample t-tests take place. The
Segment Neighbourhood (SegNeigh) approach by default enables the experimenter
to guarantee a prescribed alarm false detection probability (usually α = 5%).
Irrespectively of the theoretical false detection probability set, the main charac-
teristic of SegNeigh though, is its accuracy which is accomplished through an
exhaustive iteration process (with a computational cost of O

(
n2
)(162)

where
n = sample size). Through the above iteration process the final changepoints
selected have a Pvalue almost equal to 0. As a result, the method almost always
achieves to select the correct time points τκ where the mean changes significantly.
This feature is fully verified in the simulation study (see Section 4.3) where in
all cases the true changepoints have been identified correctly.

Note that the purpose of the changepoint analysis is the identification of epidemic
periods which justifies the splitting of the original dataset into non-extreme
and extreme periods. Several rules have been suggested in the literature in
this respect, such as excluding the 15% or 25% higher values from the training
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period,(91) removing all data above a given threshold,(46) or excluding whole
periods known to be epidemic prone. One of the contributions of the present
work lies on the fact that it does not rely on arbitrary pruning and in that sense
is filling up the gap in the relevant literature.

The modeling of non-extreme periods

For modeling of non-epidemic time-series data, we pruned the observations
that were characterized as epidemic through the changepoint analysis in the
previous subsection. Then, the algorithm proposed in Chapter 3 was executed,
with respect to AIC and ANOVA comparisons, for several models with trend,
periodicity, AR, and MA terms as well as the average minimum weekly tem-
perature which was the only covariate identified as significant among a number
of possibly significant meteorological variables considered. The aforementioned
Periodic-type Auto-Regressive Moving Average (ARMA) models with covariates
are denoted by Mij, were i = 1, 2, 3, 4 corresponds to linear (1), quadratic (2),
cubic (3) and quartic (4) trend, respectively and j = 1, 2, 3 corresponds to
annual (1), 6-month (2) and 3-month (3) periodicity, respectively. Furthermore,
an ARMA(1,1) model was chosen by a preliminary model selection process for
all models considered. The process starts comparing by ANOVA the simplest
model labeled as M11 with the two models in which it is nested, labeled as
M12 and M21. In the case that none of the alternative models (M12 and M21)
is significantly better than the initial one (M11), the process retains M11 and
stops. If one of the two alternative models is better than the initial one, the
algorithmic process keeps it and goes on. In the case that both of the alternative
models are better than the initial one, in terms of the ANOVA comparison, the
algorithmic process keeps the one with the lowest AIC and then goes on. The
procedure is repeated until finding the “best overall” model over the twelve
candidate models Mij, i = 1, 2, 3, 4, j = 1, 2, 3. Figure 4.2 illustrates the model
selection pathway using ANOVA and AIC criterion. The model selected as the
optimal one for baseline influenza morbidity was the M23 with quadratic trend,
12-month, 3-month and 6-month seasonal periodicity, ARMA(1,1) terms and
minimum temperature as meteorological covariate, which is described as follows:

yt = α0 + α1t + α2t2 + γ1cos

(
2πt

n

)
+ δ1sin

(
2πt

n

)

+ γ2cos

(
4πt

n

)
+ δ2sin

(
4πt

n

)
+ γ3cos

(
8πt

n

)

+ δ3sin

(
8πt

n

)
+ ϕ1yt−1 + ϵt + λ1ϵt−1 + ω1mintemp. (4.1)
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Figure 4.2: Model selection pathway (ANOVA & AIC )

Note that BIC has also been considered for all 12 candidate models with
results similar to the ones of AIC. The use of BIC is a guard against overfitting
since it is a consistent criterion that downweighs the penalty as compared to
the sample size, and thus does not suffer from the phenomenon of overfitting
that also affects AIC.

In addition, in order to fully verify the results given by AIC and BIC, we
have calculated AICc which is used in situations of small sample sizes in order
to guard against overfitting. The results, based on the real data, found to be
similar to the ones given by the aforementioned criteria.
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The modeling of extreme periods and estimation accuracy

The selected model M23 described in the previous section resulted a Mean
Squared Error (MSE) of 507.77 which is quite high, indicating a relatively
poor model fit. This is due to the fact that the baseline model is adequate
for capturing non-epidemic periods but not epidemic ones. For improving our
technique we introduce a polynomial approximation of the behavior of the
time-series for each epidemic period (non-typical) identified in the previous
subsection by changepoint analysis and evaluate the estimated rate value ŷ∗

τκ;l of
the τ th

k non-typical time-point by the polynomial of the lth non-typical period.
The chosen polynomials, with respect to the significance of their coefficients,
provide a satisfactory approximation of the epidemic periods. Note that higher
degree polynomials could be used but such a choice was found to increase the
complexity of the procedure without a significant gain.

Let us denote by

• L the number of non-typical periods

• Kl, l = 1, ..., L, the number of time points within the lth non-typical period

• τκ;l the κ - time point within the lth non-typical period.

• ŷb
τκ;l , κ = 1, ..., Kl, l = 1, ..., L, the estimated baseline rate values by

baseline model of each non-typical time-point

• ŷ∗
τκ;l , κ = 1, ..., Kl, l = 1, ..., L, the excess from the baseline model ŷb

τκ;l ,
κ = 1, ..., Kl, l = 1, ..., L, to the actual response yτκ;l and

• ŷm
τκ;l , κ = 1, ..., Kl, l = 1, ..., L, the modified estimated rate values of each

non-typical time-point.

The steps below describe the algorithmic procedure:

Step 1 The proper baseline model is identified, via ANOVA comparisons and AIC,
and is fitted to the whole dataset.

Step 2 The excess y∗ from the baseline model ŷb to the actual response y is
calculated for the time points of the non-typical period(s):

yτκ;l − ŷb
τκ;l = y∗

τκ;l , κ = 1, ..., Kl, l = 1, ..., L.

Step 3 (Optional) The non-typical period(s) could be split into subperiods if
the researcher feels that more than one patterns are present (a graphical
representation may help in deciding).

Step 4 A nth-degree polynomial with respect to time is fitted to the excess values
y∗

τκ;l , κ = 1, ..., Kl, for each non-typical period separately, l = 1, ..., L. If
necessary, for better fitting purposes, use Step 3 (optional).

ŷb
tκ;l = β̂0 + β̂1τκ;l + β̂2τ2

κ;l + ... + β̂nτn
κ;l,
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κ = 1, ..., Kl, l = 1, ..., L.

Step 5 The final estimated rates corresponding to the time-points τκ, κ = 1, ..., Kl,
l = 1, ..., L are calculated according to the following expression:

ŷm
τκ;l =


ŷb

τκ;l + ŷ∗
τκ;l , if τκ;l is a time point of the lth

non-typical period

ŷb
τκ;l , otherwise

, (4.2)

where the upper and lower legs correspond to the estimated rate of typical
and non–typical time–points, respectively.

Note that in this work we made use of Step 3 and thus the new epidemics
(highlighted in red) are

τ1 − τ13, τ14 − τ20, τ21 − τ25, τ26 − τ66, τ67 − τ74, τ75 − τ105.

and thus

τκ;l =



τ14;1, ..., τ20;1, for the l = 1st non-typical period

τ21;2, ..., τ25;2, for the l = 2nd non-typical period

τ67;3, ..., τ74;3, for the l = 3rd non-typical period

.

The methodology proposed in this paper, is quite general and it can be applied
to any type of incidence data as long as extreme/non-typical periods occur.
Indeed, to any set of incidence data we propose the implementation of the
changepoint analysis for identifying the periods of interest (both typical and
non-typical). Then, for the standard/typical observations the baseline model
is identified while for each period of non-typical observations an appropriate
polynomial approximation is considered with respect to the significance of its
coefficients. The combination of the proper baseline and polynomial approxima-
tion provides the complete model describing the entire set of incidence data. In
case of a complex behavior in a certain non-typical period, it is recommended
to cut-off the non-typical period optional Step 3 of the algorithm and consider a
different polynomial for each piece of it in order to secure a more accurate fitting.

Remark 3 Traditionally, epidemic thresholds which signal an unexpected
change are obtained by taking the upper 95th percentile of the baseline predic-
tion distribution. A rule(47),(26) that is “a series of observations fall above the
epidemic threshold during 2 weeks”, is then used to define when epidemic alerts
are produced, in order to avoid making alerts for isolated data points. If such a
rule was applied in the present work the resulted epidemic period obtained almost
coincides with the one obtained via the changepoint methodology. The threshold
technique although simple lacks justification since it does not rely on a formal
statistical procedure for the identification of the epidemic periods as opposed
to the changepoint methodology. Changepoint analysis is based on hypothesis
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testing and Likelihood Ratio Tests in order to test if the mean and/or variance of
a segment (which is differently defined in the algorithmic procedure between each
changepoint method) differs from the mean and/or variance of another segment.
Thus, no arbitrary thresholds, as the aforementioned, are needed in order to
define the start and end of a non-typical period. Note that neither SegNeigh nor
any other changepoint method in general, requires a threshold. This is due to
the fact that there is almost no false detection in changepoint identification (see
Remark 2). As a result, the proposed method achieves the accurate identification
of points of change without entering a waiting period to confirm the identification.

Remark 4 (a) Following the aforementioned step-by-step methodology, we
managed to reduce the MSE to 33.34 which is considerably smaller than the
previous one. Alternative prediction performance measures could also be used
providing similar results.
(b) Note that the residuals are not normally distributed which is expected since
the sample size is too small (despite the fact of being sufficient for retrospective
analysis). As for the correlation, the results given from the real data indicate
that the residuals are uncorrelated for all usual significance levels with a Pvalue
of 0.2811.

In conclusion, according to the proposed methodology, the estimation of the
epidemic time-points for the ILI rate for Greece 2014-2016 (τ1 − τ13, τ26 − τ66,
τ75 − τ105) is obtained by combining the polynomial approximation of the epi-
demic periods with the baseline model based exclusively on non-epidemic time-
points (τ14 − τ20, τ21 − τ25, τ67 − τ74).

4.2 The Overall Model - Final Results
Table 4.1 presents the dates and results of the retrospective evaluation

of the excess influenza morbidity in Greece for 2014-2016 along with excess
percentages, using the model M23. The excess morbidity is defined as the
cumulative difference between observations and baseline over the entire epidemic
period. Excess percentages were calculated as the observed size divided by the
sum of expected values throughout each epidemic.

Table 4.1: Retrospective evaluation of the excess influenza
morbidity, Greece 2014-2016

SW a EW a Cases Expected cases Excess cases Excess percentage
201501 201512 1151 446 704 158%
201601 201608 601 264 337 128%

a SW and EW denote the signaled start and end weeks for epidemics, respectively.

Figure 4.3 illustrates the plots of:

• the observed ILI rate (black line),

• the estimated values following expression (4.2) (red line),
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• the predicted baseline level based on M23 (green line), and

• the estimated threshold (upper bound of 95% prediction interval - red
dotted line) for the whole time-series under study.

Due to the reduction of the MSE value by the methodology discussed in Sub-
section 4.1.1, the estimated rate values describe satisfactorily the underlying
mechanism of the time-series under investigation. It is worth to be noted that
through the proposed methodology we managed to capture the two peaks that
occurred during the first epidemic period as well as the single peak occurred
during the second epidemic period.

Figure 4.3: Estimated influenza morbidity and detected epi-
demics in Greece 2014-2016

Forecasting in the sense of predicting accurately the next time point(s) is
a feature of prospective and not of retrospective analysis as done in this work.
The novelty of the model though in terms of forecasting, lies in the fact that
based on historical data (greater than one year)(47) the model developed can
describe satisfactorily the behavior of the whole time series and thus provides to
the public health officials and agents visual representation of what is expected
for the upcoming year. Both public health agents and public in general could
be prepared properly in order to treat/avoid the ILI syndrome.

4.3 Simulation Study
In this section a simulation study is conducted in order to verify the general

applicability but also explore several capabilities of the proposed methodology.
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Combining the following M23 model

zt = 21.789133 − 0.290946t + 0.001489t2

− 9.567230cos

(
2πt

n

)
+ 12.150802sin

(
2πt

n

)

+ 0.532738cos

(
4πt

n

)
− 1.411999sin

(
4πt

n

)

+ 1.380258cos

(
8πt

n

)
+ 2.256325sin

(
8πt

n

)
+ 0.176566mintemp + 0.94zt−1 + ut + 0.09ut−1,

where ut ∼ N (0, 0.896), t = 1, ..., 105, n = 52.179 (# of 2 calendar years)
and the proposed methodology described in the previous section, an exhaustive
iteration process (1000 iterations) performed and the mean value of three
information criteria, namely AIC, BIC and AICc, for each of the 12 candidate
models is presented in Table 4.2.

Table 4.2: Information criteria mean for each of the 12 candi-
date models

MODEL ID AIC BIC AICc

M11 426.774 443.7892 428.2479
M12 366.0996 387.9763 368.5325
M13 365.3339 392.0721 369.0013
M21 401.3934 420.8393 403.3137
M22 315.5189 365.8263 325.5331
M23 294.475 323.644 298.8703
M31 402.1699 424.0466 404.6028
M32 305.8306 334.5688 307.498
M33 295.9189 327.5186 301.1199
M41 392.1575 416.465 395.1718
M42 299.8777 331.0466 304.2729
M43 296.9612 330.9916 303.0494

The results show that the top 3 model choices for all 3 criteria are the same,
i.e. M23, M33, M43, with M23 and M33 being very close to each other and M43
coming relatively close in the 3rd place with the corrected one selected in all
cases. Similar results are obtained irrespectively of the model considered for
simulations.

4.4 Concluding Remarks
Conclusively, in this study, we established that the changepoint detection

analysis in conjunction with Periodic-type ARMA modeling with covariates
is capable of modeling time-series data with typical and non-typical parts
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and identifying effectively the beginning and end of the extreme periods that
occurred. It is reminded that the changepoint analysis was implemented as
typical yet powerful technique for the purpose of identifying the extreme periods.
In addition, it is worth to be noted that the proposed approach succeeds in:

1. Modeling both the typical and non-typical activity of incidence data, and

2. Improving the estimation performance by increasing the accuracy of the
selected model.

Moreover, there are crucial advantages of the proposed methodology over
the existing ones. Firstly, the changepoint method identified directly the ex-
treme periods, and thus there was no need for an epidemic threshold that was
mostly chosen ad hoc and alert rule to be considered. Secondly, the pruning of
the time-series data is no longer arbitrary, since the time-points identified as
extreme through changepoint analysis, have been automatically pruned. Finally,
the proposed approach captures the behavior of the whole time-series with no
significant loss of accuracy, and hence the derived results could be used for
forecasting purposes.

The proposed methodology was implemented for analyzing ILI rate data for
Greece and also explored through a series of simulated data. Based on these
results, we could safely recommend the use of the proposed methodology to
any incidence data. Indeed, the almost no-false changepoint detection provides
a powerful and accurate mechanism of identifying the beginning and end of
extreme periods which in turn makes the proposed technique useful in any
situation with such type of structure. Furthermore, the use of changepoint
detection analysis along with time-series modeling techniques presented in this
work, seem to provide a useful tool for modeling outbreaks that may occur
in incidence data and at the same time beneficial to the society due to the
consequences associated with the early detection and prevention of extreme,
possibly harmful, events.
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Chapter 5

Comparative Studies
Old Port, Chania, Greece

Chapter’s Goal

In this Chapter, two comparative studies take place. The first
one, aims to evaluate the predictive ability of the model proposed in
Chapter 3 in comparison with alternative models related to the modeling
of influenza morbidity. In the second, motivated by the work done
in Chapter 4, we applied and evaluated pioneering methods based on
changepoint analysis to detect changes in influenza type data. The
empirical comparative study provided evidence that statistical methods
based on change point analysis have several attractive properties compared
to current practice for outbreak detection.

5.1 Part I: A Comparative Study for the Use of
Periodic Regression Models for Detection
of Influenza Outbreaks

Cite: Kalligeris EN, Karagrigoriou A, Lambrou A and Parpoula C. A Com-
parative Study for the Use of Periodic Regression Models for Epidemiological
Surveillance. Proceedings 31st Panhellenic Statistical Conference 2018; 292-301.
�
In 2017, Parpoula et al.(26) modeled ILI rate data for Greece (2014-2016) by
considering a polynomial of 3rd degree for the modelling of trend and sine
and cosine terms (with period one year, six months and three months) for the
modelling of seasonality.

Their analysis was based on the following model:

M33 : yt = α0 + α1t + α2t2 + α3t3 + γ1 cos
(2πt

n

)
+ δ1 sin

(2πt

n

)
+ γ2 cos

(4πt

n

)
+ δ2 sin

(4πt

n

)
+ γ3 cos

(8πt

n

)
+ δ3 sin

(8πt

n

)
+ ϵt.

https://esi-stat.gr/wp-content/uploads/2019/11/%CE%A0%CF%81%CE%B1%CE%BA%CF%84%CE%B9%CE%BA%CE%AC-31o%CF%85-%CE%A3%CF%85%CE%BD%CE%B5%CE%B4%CF%81%CE%AF%CE%BF%CF%85-1.pdf
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Through an exhaustive process, using ANOVA comparisons along with AIC,
BIC information criteria, they concluded that the best fitting model is M23,
that is:

M23 : yt = α0 + α1t + α2t2 + γ1 cos
(2πt

n

)
+ δ1 sin

(2πt

n

)
+ γ2 cos

(4πt

n

)
+ δ2 sin

(4πt

n

)
+ γ3 cos

(8πt

n

)
+ δ3 sin

(8πt

n

)
+ ϵt.
(5.1)

Additionally, using evaluation criteria such as RMSE, AIC, and BIC, the fore-
casting capability of the selected model (M23) was examined in contrast to
typical trend or/and seasonality detection models, i.e.:

• a linear trend (LT),

• a moving average of 3 terms(MA3),

• an exponential smoothing (SES),

• a Holt’s model,

• a Brown’s model,

• a Winter’s model, and

• the standard CDC algorithm for flu detection (Serfling’s model)

According to the aforementioned comparisons, M23 was found to be more accu-
rate (in terms of RMSE values) than the rest of the models under comparison.
Also, based on AIC and BIC criteria, M23 had the smaller and second smaller
value, respectively, and thus, it suited best to the dataset examined. It has to be
noted that in the comparisons, the MA3 model was proven a strong competitor
since it scored a smaller BIC value and satisfactory AIC and RMSE values).

Since the above results constituted the motivating force of the work presented in
Chapter 3, we conducted a comparative study among the model in (3.2) (labeled
here as MXM11), the M23 model in (5.1) and the strong competitor of the latter,
MA3, which is expressed as:

MA3 : yt = ϵt +
3∑

j=1
ϵt−j , t = 1, ..., 105.

The goal of this study is to evaluate the forecasting performance of the model
MXM11 proposed in Chapter 3 with all models considered by Parpoula et al.(26)
Looking at the results of Table 5.1, we conclude that MXM11 clearly outperforms
M23 and MA3 since it succeeds a significant improvement in the values of all
three criteria considered i.e., RMSE, AIC and BIC.
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REGRESSION MODELS FOR DETECTION OF INFLUENZA OUTBREAKS

Table 5.1: Comparative Performance of Forecasting Models

Model RMSE AIC BIC

MXM11 4.30 409.31 429.29

M23 12.02 547.89 572.77

LT 48.34 818.44 823.75

MA3 13.51 554.72 565.33

SES 16.06 585.05 587.00

Holt’s 16.94 598.15 606.70

Brown’s 18.87 618.87 620.65

Winter’s 25.55 686.57 694.37

Serfling’s 18.81 610.47 622.91

5.1.1 Concluding Remarks
In this Chapter, a comparative study was conducted with the goal of eval-

uating the forecasting performance of the model proposed in Chapter 3 with
alternative models associated with the modelling of influenza morbidity. Specifi-
cally, previously proposed models describing the behavior of influenza morbidity
were considered, and the resulted most competitive models, namely, MXM11,
M23 and MA3, were put under comparison in terms of RMSE, AIC and BIC.
The results derived through this study, indicated that among the aforementioned
models the one with the best forecasting performance is the one obtained via
the proposed methodology in Chapter 3, namely MX11.
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5.2 Part II: A Comparative Study of Change-
point Analysis Techniques for Outbreak De-
tection

Parthenon, Athens, Greece

Cite: Parpoula C, Kalligeris EN and Karagrigoriou A. A Comparative Study
of Change-Point Analysis Techniques for Outbreak Detection. Proceedings 21st

European Young Statisticians Meeting, Milosevic B & Obradovic, M eds., Faculty
of Mathematics, University of Belgrade Publications 2019; 85-89. �

The basic tool of the methodology presented in Chapter 4, was the one of
changepoint analysis. Since there exist several changepoint analysis techniques,
in this Chapter a comparative study is conducted among three techniques,
namely

• recursive segmentation and permutation (RS/P),

• MXM11 (see Chapter 3), and

• SegNeigh (see Subsection 2.2.2).

The comparison is performed in the basis of Receiver Operating Characteris-
tic (ROC) curve analysis, and its related statistics/metrics (Accuracy-ACC,
Sensitivity-SENS, Specificity-SPEC, Area Under the ROC curve-AUC) metrics.

5.2.1 Phase I Distribution-Free Changepoint Analysis
Several approaches for detecting outbreaks of infectious diseases in the litera-

ture are directly inspired by, or related to, methods of Statistical Process Control
(SPC). In an epidemiological surveillance problem, the underlying process dis-
tribution is not normal and usually unknown. Hence statistical properties of
commonly used SPC charts could be highly affected. In this paper, we implement
important aspects of univariate distribution-free Phase I change-point analysis
and apply some of the recent developments in this area, in order to develop
a novel SPC charting method that works best for monitoring and outbreak
detection processes.

Let yi represent the ith observation, i = 1, . . . , m, collected from the dis-
tribution of a quality characteristic, either continuous or discrete, Y . When the
process is in-control (IC), these observations are assumed independent with an
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5.2 PART II: A COMPARATIVE STUDY OF CHANGEPOINT ANALYSIS
TECHNIQUES FOR OUTBREAK DETECTION

unknown but common cumulative distribution function (c.d.f.) F0(y), whereas
the out-of-control (OC) state can be described by a multiple change-point model,
that is

Fr(∗) =



F0(y) if 0 < i ≤ τ1

F1(y) if τ1 < i ≤ τ2
...

Fk(y) if τk < i ≤ m

,

where 0 < τ1 < τ2 < . . . < τk < m denote k change points and Fr(∗), r =
0, . . . , k, are unknown c.d.f. which, at one or several times, may shift in position.
Note here that the shift times τi are also assumed to be unknown. This Phase I
analysis procedure provides a statistical test for verifying the hypothesis system

H0 : The process was IC (k = 0) vs. H1 : The process was OC (k > 0)

and identifying the time of the changes when the hypothesis of an IC process
is rejected. This hypothesis testing system (performed in Phase I) requires the
specification of a nominal false alarm probability (FAP). Following the recursive
segmentation and permutation (RS/P) approach of Capizzi and Masarotto,(163)
choosing an acceptable/reasonable FAP value, say α, we test the stability over
time of the level parameter. The following steps need to be executed for level-
changes detection, i.e., detection of single or multiple level shifts.

Let us consider the problem of testing the null hypothesis that the process
was IC against the alternative hypothesis that the process mean experienced an
unknown number of step shifts. In such a case, a set of test (control) statistics
is needed for detecting 1, 2, . . . , K step shifts with K denoting the maximum
number of hypothetical change points. The mean values µ0, . . . , µk, and the
change points are assumed unknown. Further, defining τ0 = 0 and τk+1 = m, it
is also assumed that τr − τr−1 ≥ lMIN , r = 1, . . . , k + 1, where lMIN is a (user
pre-specified) constant giving the minimum number of successive observations
allowed between two change points. For a sequence of individual observations,
the control statistic and the possible change points are computed using a simple
forward recursive segmentation approach. The algorithm starts with k = 0 and
then proceeds in K successive stages. At the beginning of stage k, the interval
[1, m] is partitioned into k subintervals, each having a length greater or equal
to lMIN . At stage k, one of these subintervals is split, adding a new potential
change point. The new change point is selected maximizing

k+1∑
i=1

(τ̂i − τ̂i−1)(ȳ (τ̂i−1, τ̂i) − ȳom)2 (5.2)

conditionally on the results of the previous stages. Here ȳom represents the
overall mean (om) of observations, ȳ(α, b) = 1

b−α

b∑
i=α+1

yi, and 0 = τ̂0 < τ̂1 <

· · · < τ̂k < τ̂k+1 = m are the boundaries of the new partition. The control
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statistic Tk, k = 1, . . . , K is equal to the attained maximum value of Equation
(5.2). Therefore, given a test statistic, its p-value can be calculated, as the
proportion of permutations under which the statistic value exceeds or is equal
to the statistic computed from the original sample of observations. Choosing
an acceptable FAP, say α, then, for p-value< α, the null hypothesis that the
process was IC is rejected.

5.2.2 Comparative Study
This paper focuses on the study of weekly ILI rate data (provided from

the Hellenic Center for Disease Control and Prevention) for Greece, between
September 29, 2014 (week40/2014) and October 2, 2016 (week39/2016), which
were used for analysis purposes. Here, we perform the RS/P approach for
both periods under study (1st period: week40/2014-week39/2015, 2nd pe-
riod: week40/2015-week39/2016) executing L = 100000 permutations with
K = max

(
3, min

(
50,

[
m
15

]))
and lMIN = 5. Our procedure signals possible

changes of the mean (p-value < 0.001 for a change in level). The extracted
signaled start (sw) and end weeks (ew) of the epidemics were sw01-ew14/2015
and sw01-ew08/2016.

In our study, the ability of RS/P method to detect the true (and correct
amount of) change-points is tested through benchmarking. Therefore, RS/P
derived change-points are compared with those derived after executing:

1. the standard CDC and ECDC flu detection algorithm (Serfling’s
model)(44)

M11: yt = α0 + α1t + γ1 cos
(2πt

m

)
+ δ1 sin

(2πt

m

)
+ ϵt,

where yt are the observed time series values (weekly ILI rate), ϵt are centered
zero-mean random variables with variance σ2, m denotes the number of obser-
vations within one year, and model coefficients are estimated by least squares
method,

2. an extended Serfling’s model presented by Parpoula et al.(26)

M23: yt = α0 + α1t + α2t2 + γ1 cos
(2πt

m

)
+ δ1 sin

(2πt

m

)
+ γ2 cos

(4πt

m

)
+ δ2 sin

(4πt

m

)
+ γ3 cos

(8πt

m

)
+ δ3 sin

(8πt

m

)
+ ϵt,

3. a mixed model with a linear trend, 12-month seasonal periodicity,
Auto-Regressive Moving Average (ARMA) terms, that is ARMA(2,1),
and the minimum temperature (mintemp) as a random meteorological
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covariate presented in Chapter 3:

MXM11: yt = α0 + α1t + γ1 cos
(2πt

m

)
+ δ1 sin

(2πt

m

)
+ ϕ1xt−1 + ϕ2xt−2 + ϵt + λ1ϵt−1 + ω1mintemp,

and

4. Segment Neighbourhood (SegNeigh) algorithm which uses an opti-
mization step that searches over all previous change-point locations and picks the
one that gives the optimal segmentation up to time t, presented in Subsection
2.2.2.

As aforementioned, the current approach to influenza surveillance is based
on Serfling’s cyclic regression model (M11). Parpoula et al.,(26) developed
extended Serfling-type periodic regressions models, and through an exhaustive
search process (using ANOVA comparisons and AIC, BIC information criteria)
the best fitting model M23 was selected. The aforementioned procedure allowed
Parpoula et al.(26) to extract the signaled start and end weeks of the epidemics,
i.e., sw01-ew13/2015, sw01-ew08/2016. It is worth to be noted that the signaled
start and end weeks were found to be identical considering either Serfling’s model
(M11) or extended Serfling’s model (M23). Then, the above results motivated
us (see Chapter 3) to incorporate ARMA terms and random meteorological
covariates in the model structure, for identifying the epidemics (sw01-ew12/2015,
sw05-ew08/2016). In addition, in Chapter 4 we established that the changepoint
detection analysis in conjunction with mixed effects periodic ARMA time series
modeling, is capable of modelling time-series data with typical and non-typical
parts and identifying the beginning and end of the extreme periods that occurred
(sw01-ew12/2015, sw01-ew08/2016).

Therefore, we then examine the ability of the RS/P, MXM11 and SegNeigh
approaches to detect the true change-points compared to the standard and
extended CDC and ECDC flu detection algorithm (models M11 & M23). The
diagnostic performance of a test to discriminate between two groups (here,
epidemic from non-epidemic) is typically evaluated using Receiver Operating
Characteristic (ROC) curve analysis, and its related statistics/metrics (Accuracy-
ACC, Sensitivity-SENS, Specificity-SPEC, Area Under the ROC curve-AUC).
Hence we estimated these metrics along with their 95% Confidence Interval (CI)
(exact Clopper-Pearson CIs for ACC, SENS and SPEC, exact binomial CI for
each derived AUC) for each method (as shown in Table 1). Table 1 indicates
that RS/P and SegNeigh approaches (higher ACC, SENS and AUC values)
outperform MXM11, and seem to detect successfully the true change-points
compared to the standard approach to influenza surveillance.
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Table 5.2: Metrics for RS/P, MXM11 and SegNeigh approaches

Metric RS/P MXM11 SegNeigh

ACC (95% CI) 99.05% (94.81% to 99.98%) 95.24% (89.24% to 98.44%) 99.05% (94.81% to 99.98%)

SENS (95% CI) 100.0% (83.89% to 100.0%) 76.19% (52.83% to 91.78%) 95.24% (76.18% to 99.88%)

SPEC (95% CI) 98.81% (93.54% to 99.97%) 100.0% (95.71% to 100.0%) 100.0% (95.71% to 100.0%)

AUC (95% CI) 0.988 (0.944 to 0.999) 0.881 (0.803 to 0.936) 0.976 (0.926 to 0.996)

5.2.3 Concluding Remarks
In this Chapter, we implemented and evaluated cutting-edge changepoint

analysis-based methods for detecting changes in location of univariate ILI rate
data. The empirical comparative study provides evidence that statistical methods
based on change-point analysis have several appealing properties compared to
the current practice for the detection of epidemics. In particular, RS/P and
SegNeigh approaches, both succeeded in early and accurate outbreak detection.
Both RS/P and SegNeigh approaches are advantageous since they can be applied
to historical data without the need for distinguishing between epidemic and
non-epidemic periods in the data, and single or multiple mean shifts can be
detected. Further, RS/P Phase I distribution-free changepoint analysis method
is able to guarantee a predefined false alarm probability without any knowledge
about the (in-control) underlying distribution, whereas SegNeigh algorithm in
conjunction with mixed effects periodic ARMA time series modeling is capable
of modeling time series data with typical and non-typical parts.
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Chapter 6

On Stochastic Dynamic Modeling
of Incidence Data

View of Agia Triada in Karlovasi, Samos, Greece

Cite: Kalligeris EN, Karagrigoriou A and Parpoula C. On Stochastic Dynamic
Modeling of Incidence Data (Under Revision, 2022).

Continuing our attempt(s) to develop an effective methodology for mod-
elling the complete behavior of time-series incidence data, in this Chapter an
extension of the model presented in (2.22), is proposed. Its components are
selected by penalized likelihood techniques with the goal of achieving a high
level of robustness regarding the modeling of dynamic behaviors of epidemi-
ological data. In addition to statistical inference, Changepoint Detection
Analysis is performed for the selection of the number of regimes, which
reduces the complexity associated with Likelihood Ratio Tests. Within
this framework, a three-phase procedure for modeling incidence data is
proposed and tested via real and simulated data.

Let as recall the model of (2.22):

yt = cst +
p∑

i=1
ϕistyt−i + ϵst , i ≤ t ≤ T .

We now define the Markov Switching Model of Conditional Mean (MSMCM)
with covariates which results by incorporating covariates Ωj , j = 1, ..., q, into
the above model’s structure, given that St = st:

yt = cst +
p∑

i=1
ϕistyt−i +

q∑
j=1

γjstΩjt + ϵst , i ≤ t ≤ T (6.1)

where γjst the coefficient associated with the Ωj covariate and cst , ϕist , ϵst as in
(2.22).

The unknown parameters of (6.1), denoted by θ∗, are

θ∗ = (cst , ϕ1st , ..., ϕpst , γ1st , ..., γqst , σ2
st

, p11, ..., pKK),
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and are estimated via the EM algorithm discussed in Subsection 2.3.2.

6.1 Nonnegative Garrote Variable Selection &
Bias

Regularization has been intensely studied on the interface between statistics
and computer science. From various regularization methods that exist, we will
focus on those usually referred to as penalized likelihood techniques. The latter
are based on the idea of nonnegative garrote(164) and aim on the reduction
of model’s complexity by considering a penalty along with the quadratic loss
function which is defined as:

L(ŷ, y) =
T∑

t=1
(yt − ŷt)

2.

Below, some of the most widely used penalized likelihood techniques are being
presented:

1. L1, also known as Lasso (Least absolute shrinkage and selection operator(165))
is defined by:

L(ŷ, y) + λ

[ p∑
i=1

q∑
j=1

(|ϕist| + |γjst|)
]

2. L2, also known as Ridge,(166) is defined by:

L(ŷ, y) + λ

[ p∑
i=1

q∑
j=1

(ϕ2
ist

+ γ2
jst

)

]

3. Elastic-Net(167) is defined by:

1
2τ

L(ŷ, y) + λ

[
α

( p∑
i=1

q∑
j=1

(|ϕist| + |γjst|)
)
+

(
1 − α

2

)( p∑
i=1

q∑
j=1

(ϕ2
ist

+ γ2
jst

)

)]
,

(6.2)

where τ the sample size and α ∈ [0, 1] & λ the tuning parameters that result
the penalty in the loss function. The tuning parameter α, balances the
amount of emphasis given to minimize the loss function versus minimizing
the sum of squared coefficients and/or the sum of absolute coefficients.
Notice that if in (6.2) we set α = 0, then Elastic-Net reduces to Ridge,
while if α = 1, then Elastic-Net reduces to Lasso. Generally, Elastic-Net is
considered preferable over Lasso and Ridge as it neutralizes the limitations
of the two techniques, while it includes them as special cases.(168)

There exists a quite rich literature on nonnegative garrote based techniques
and their application on time-series models. Nardi,(169) studied the Lasso
estimator for fitting autoregressive time-series models via adopting a double
asymptotic framework where the maximal lag may increase with the sample size.
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Chen,(170) proposed an adaptive Lasso regression of the time series on its lags
and the lags of the residuals for identifying the optimal subset autoregressive
moving average model. Furthermore, Medeiros and Eduardo,(171) studied the
asymptotic properties of the adaptive Lasso in sparse, high-dimensional and
linear time-series models. Such techniques though, suffer from two serious
drawbacks: (1) lack of estimation accuracy and; (2) biasedness. In order
to handle the aforementioned issues, k-fold Cross-Validation (CV(k)) will be
used which, as pointed out by Bergmeir et al.,(172) can be applied in cases of
autoregressive models provided the models considered have uncorrelated errors.
Mosteller and Tukey,(173) introduced the CV(k), which constitutes one of the
most popular CV techniques and divides the data into k-groups of equal size
(classical choice k = 10, (174)). Note that higher values of k, lead to less biased
model. Subsequently, the first group is used for testing purposes, while the
remaining k − 1 are used for training the model. The procedure is repeated k
times with the testing group changing each time. In each repetition, the Mean
Squared Error (MSE) is calculated in order to estimate an overall standard error
of CV(k) based on the following formula:

CV(k) =
1
k

k∑
i=1

MSEi.

6.2 The Proposed Methodology
In this Section, the MSMCM with covariates and the methods discussed in

Section 6.1 will be jointly applied in a series of simulated data for identifying:

1. the required order of the autoregressive process;

2. the covariates that have a significant contribution to the problem under
investigation;

3. the regimes occurred.

A key problem that arises in empirical studies is the determination of the number
of states required for an MSM so that an adequate characterization of data
could be achieved. Hamilton(138) offered suggestive evidence that a MSM of
two-states outperforms linear models in terms of forecasts, but no statistical
test can be applied. Likelihood Ratio Tests (LRTs) consist a more formal statis-
tical procedure for determining the number of regimes but are considered too
complicated, since the usual necessary regularity conditions required to apply
the asymptotic theory are no longer met.(175) Another common problem, is the
plethora of available variables. The Markov Switching mechanism, by its nature,
tends to discard only a few of the variables considered due to the fact that most
of them are significant in at least one regime. This may lead to a complex, and
thus difficult to interpret model, and as a result the following question arises “Is
such complexity worth it in terms of information gained?”

In order to handle the aforementioned issues, we propose the following three -
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phase procedure:

Phase 1 Apply a penalized likelihood technique, e.g., Lasso, Ridge, Elastic-Net, etc.,
to the list of candidate explanatory variables (including the appropriate
order of the AR process that are required for applying later the MSM
method) with the goal of extracting the significant ones. The tuning
parameter λ, is the one resulted through CV(k).

Phase 2 Perform Changepoint Detection Analysis(50; 176) to the response variable
and identify the number of changepoints occurred. Based on the associated
graphical representation, define the number of regimes required.

Phase 3 Apply the MS mechanism, considering as explanatory variables and number
of regimes the ones resulted through Phases 1 & 2, respectively. The
regimes are created based on K different models of which the coefficients
are being estimated through the EM algorithm as presented in Subsection
2.3.2.

The advantage of the proposed methodology lies in the fact that it makes use
of a more flexible model while retaining only the most significant variables for
building the switching model, resulting, as it will become evident in the simulation
section, in increased accuracy of the latter, in terms of Mean Squared Error
(MSE) and Akaike’s Information Criterion (AIC). In addition, by implementing
Changepoint Detection Analysis into the procedure, the complexity of LRTs is
avoided resulting into a robust selection of regimes.

6.3 Performance Evaluation of the Proposed
Methodology

In this Section a real case as well as a simulation study are conducted
for testing the proposed methodology. Both studies, are based on a dataset
concerning 105 weekly ILI incidence data for Greece, between September 29,
2014 and October 2, 2016. The state space considered across the studies is
D = {0, 1}, where st = 0 is the non-epidemic state and st = 1 is the epidemic
one, t = 1, ..., 105. Finally, note that the R-package used for fitting the MSMCM
with covariates to the data is MSwM.(177)

6.3.1 Real case study
The vector X˜ contains the set of variables in which the proposed methodology

will be tested on:

X˜T =

(
t, t2, sin

(
iπt

τ

)
, cos

(
iπt

τ

)
, Tmin, Tmax, Tmean, Tmed, WDmed,

WFmax, WFmean, WFmed
)

, i={2,4,8}.
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Observe that the exploratory variables include trend (linear and quadratic) and
periodicity (of 12, 6 and 3 months for i = {2, 4, 8}) as well as 8 meteorological
variables due to their possible effect on ILI(148) namely, the minimum, maximum,
mean and median of the daily temperature (T), maximum, mean and median
wind force (WF) and median wind direction (WD). The data were provided by
the Hellenic National Meteorological Service (HNMS).

The process starts by applying the penalized likelihood technique of pref-
erence on X˜ in order to extract the variables which have a significant impact
to the dependent variable (ILI incidence rate). In our case, all 3 techniques,
namely, Lasso, Ridge and Elastic-Net were used but the preferred one is that
of Elastic-Net since it resulted the lowest overall MSE. Furthermore, for the
selection of the tuning parameter λ, a CV(10) is performed for achieving estima-
tion accuracy and unbiassedness. According to Figure A.1, which represents the
behavior of MSE for different values of logλ, the value of λ which results the
lowest MSE is 0.0734.

Since Elastic-Net constitutes a trade-off between Ridge (α = 0) and Lasso
(α = 1), the value of α ranges from 0 to 1. Based on Figure 6.1, which illustrates
the behavior of various values of α as opposed to both different values of logλ
and their corresponding MSE, the selected value of α is that of 0.729.

Figure 6.1: Behavior of various values of α as opposed to both
different values of logλ and their corresponding MSE.

Finally, after performing Changepoint Detection Analysis to the dataset for
the identification of the number of regimes, we apply the Markov Switching mech-
anism to the variables selected as significant from the Elastic-net method. Figures
6.2 and 6.3 illustrate the regimes occurred, which are described by the models
presented in (6.3) and (6.4), respectively. In particular, we are interested in iden-
tifying two regimes corresponding to the outbreak (week52/2014 − week14/2015
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and week01/2016 − week08/2016) and non-outbreak periods, respectively. Ob-
serve that both models include, besides trend and periodicity, 4 meteorological
variables, namely, minimum (Tmin), mean (Tmean), median (Tmed) tempera-
ture and mean (WFmean) wind force.

Figure 6.2: The first regime (outbreak) resulted through the
proposed methodology.

1st Regime

ŷt = 146.47 − 0.37t − 37.48sin

(
2πt

τ

)
− 2.68cos

(
2πt

τ

)

− 44sin

(
4πt

τ

)
− 23.94cos

(
4πt

τ

)
+ 8.32sin

(
8πt

τ

)
− 14.24cos

(
8πt

τ

)

+ 0.03Tmin + 15.32Tmean − 11.08Tmed + 10.04WFmean − 0.59ŷt−1. (6.3)
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Figure 6.3: The second regime (non-outbreak) resulted through
the proposed methodology.

2nd Regime

ŷt = 19.55 − 0.005t + 18.93sin

(
2πt

τ

)
− 10.65cos

(
2πt

τ

)

− 5.11sin

(
4πt

τ

)
− 2.24cos

(
4πt

τ

)
+ 0.97sin

(
8πt

τ

)
− 0.31cos

(
8πt

τ

)

− 0.23Tmin + 4Tmean − 4.13Tmed + 1.65WFmean + 0.69ŷt−1. (6.4)

The models presented in (6.3) and (6.4) succeed in fully recognizing the
regimes of the dataset under investigation. Specifically, since the data concern
weekly ILI rate observations, the first regime refers to an epidemic (outbreak)
while the second one to a non-epidemic (non-outbreak).

The transition probability matrix given in Table 6.1, indicates that the
probability of changing a regime from t to t + 1 is very low. As a result, if yt

falls into a regime (outbreak or non-outbreak) then yt+1 has a high probability
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of falling into the same regime. This “consistency” designates how well-behaved
is the proposed methodology considering that the occurrence of a false alarm is
extremely rare.

Table 6.1: Transition probabilities resulted through the pro-
posed methodology.

Regime 1 Regime 2

Regime 1 0.971 0.036

Regime 2 0.029 0.964

For the resulted model, the values of MSE and AIC show that the model is
preferable than the one obtained by the classical MSMCM without a penalized
likelihood technique. This conclusion will be verified in the following section
where a series of simulations will be conducted for 5 different type of models.

6.3.2 Simulation study
In Chapter 4 we proposed an advanced methodology for the modeling of

incidence data concerning various scientific fields such as medicine, seismology,
meteorology, etc. Based on (1) the aforementioned methodology and; (2) on
the real data of the previous section, a series of simulations is performed for
verifying the findings of the real case study as well as establishing the general
applicability of the proposed methodology. Specifically, based on the following
general model:

y1t = 21.78 − 0.29t + 0.001t2 + 12.15sin

(
2πt

τ

)
− 9.56cos

(
2πt

τ

)

− 1.41sin

(
4πt

τ

)
+ 2.99cos

(
4πt

τ

)
+ 0.17Tmin + 0.95yt−1 + ϵ1st , (6.5)

where
ϵ1st

i.i.d∼ N (0, σ2
1st

= 15.3),

and its 4 variants y2t-y5t (Table A.1), 500 datasets, consisting of 105 observations
each, were simulated. Note that although, for presentation purposes, the results
discussed concern a single dataset from the 500 simulated, similar results apply
for all datasets as it becomes evident in Table 6.3.

After selecting the proper value of α and λ, as discussed in the Real Case
Study section, the Markov Switching modeling mechanism is applied to the
variables extracted through Elastic-Net. Figures 6.4 and 6.5 illustrate the
regimes occurred, which are described by the models presented in (6.6) and
(6.7), respectively with the transition probability matrix given in Table 6.2.
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Figure 6.4: The first regime resulted through the proposed
methodology.

1st Regime

ŷt = 82.63 − 0.15t − 14.94sin

(
2πt

τ

)
− 14.94cos

(
2πt

τ

)
− 59.94sin

(
4πt

τ

)

+ 12.14cos

(
4πt

τ

)
− 11.62sin

(
8πt

τ

)
+ 17.22cos

(
8πt

τ

)
− 0.31ŷt−1 − 0.36ŷt−2.

(6.6)
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Figure 6.5: The second regime resulted through the proposed
methodology.

2nd Regime

ŷt = 12.1 − 0.06t − 1.44sin

(
2πt

τ

)
− 2.64cos

(
2πt

τ

)
+ 0.05sin

(
4πt

τ

)

+ 0.86cos

(
4πt

τ

)
− 0.08sin

(
8πt

τ

)
+ 0.75cos

(
8πt

τ

)
+ 0.63ŷt−1 − 0.05ŷt−2.

(6.7)

The models presented in (6.6) and (6.7) once again achieve to fully recognize the
regimes occurred to the simulated incidence dataset (first regime–non-epidemic,
second regime–epidemic).
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Table 6.2: Transition probabilities resulted through the pro-
posed methodology.

Regime 1 Regime 2

Regime 1 0.9 0.02

Regime 2 0.09 0.97

For comparative purposes, we present models (6.8) and (6.9) for the two
regimes resulted by applying only the MSMCM with covariates (that is, without
the proposed methodology) to X˜ (see Figures A.2 and A.2), meaning that no
penalized likelihood technique has been preceded.

1st Regime

ŷt = 11.54 − 0.10t − 0.0001t2 + 5sin

(
2πt

τ

)
− 5.13cos

(
2πt

τ

)

+ 1.1sin

(
4πt

τ

)
+ 1.04cos

(
4πt

τ

)
− 0.36sin

(
8πt

τ

)
+ 0.87cos

(
8πt

τ

)

+ 0.3854Tmin − 0.10Tmax + 0.31Tmean − 0.22Tmed − 0.02WDmed

+ 0.0266Wmax + 0.2401Wmean + 1.3301Wmed + 0.5851ŷt−1 − 0.1286ŷt−2.
(6.8)

2nd Regime

ŷt = −20.67 + 4.28t − 0.0572t2 + 26.6sin

(
2πt

τ

)
− 10.9cos

(
2πt

τ

)

− 56.94sin

(
4πt

τ

)
+ 7.43cos

(
4πt

τ

)
− 9.82sin

(
8πt

τ

)
+ 12.66cos

(
8πt

τ

)

+ 2.1Tmin + 2.49Tmax − 41.18Tmean + 37.7Tmed − 0.44WDmed

+ 2.9Wmax − 19.53 + 17.66Wmed − 0.61ŷt−1 − 0.07ŷt−2. (6.9)

Results like the above are obtained for each of the 500 simulated datasets and
for each of the 5 models considered (y1t − y5t).

Table 6.3 presents the resulted overall mean values of MSE (along with the
corresponding standard deviations) and AIC of each model considered for the
simulations. Notice that the proposed methodology achieves a considerable
reduction of MSE and AIC in almost all cases.
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Table 6.3: Overall mean values (standard deviations) of MSE
and AIC of the five models considered for the 500 simulations.

Model MSEa MSEb AICa AICb

y1t 241.00 (71.81) 241.25 (73.15) 596.68 (30.94) 605.31 (31.78)

y2t 243.75 (77.10) 243.51 (76.74) 598.33 (31.81) 606.12 (31.97)

y3t 619.14 (94.74) 628.65 (99.33) 698.25 (15.89) 709.26 (16.75)

y4t 635.53 (105.36) 645.54 (111.62) 700.81 (17.47) 711.73 (18.73)

y5t 638.52 (104.80) 646.94 (108.42) 700.60 (17.38) 712.17 (17.17)

The overall values of MSE and AIC of each model considered for the simulations witha

and withoutb applying the proposed methodology;

Moreover, Table 6.4 indicates that over 90% of the simulated models resulted
through the proposed methodology, performed better (in terms of AIC) than
the ones where the typical methodology applied. The aforementioned, are also
imprinted into Figures A.2 and A.3, where the occurring regimes fail to be
accurately recognized. Hence, by comparing the models in (6.6) and (6.7) with
the ones in (6.8) and (6.9), the latter are:

1. far to complex and thus difficult to interpret;

2. based solely on the EM algorithm with the risk of overfitting.

Table 6.4: Best performance (%) of AIC with and without
applying the proposed methodology to the models considered.

Model AICa AICb

y1t 92.76% 7.24%

y2t 91.45% 8.55%

y3t 94.74% 5.26%

y4t 93.42% 6.58%

y5t 94.08% 5.92%

a = with and b = without
applying the proposed

methodology;

6.4 Concluding Remarks
Conclusively, in this study we proposed an advanced regime switching mod-

eling approach for incidence data. The Elastic-Net method was used for variable
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pre-selection purposes, along with k-fold Cross-Validation for bias encountering
purposes. After applying Changepoint Detection Analysis to the dataset for
selecting the number of regimes, the Markov Switching mechanism was applied
to the variables selected through the Elastic-Net process.

One of the main innovative features of the proposed methodology, is the use of
the Elastic-Net method for variable pre-selection purposes (along with k-fold
Cross-Validation for bias encountering purposes). Although the “screening
before fitting” is an arguable issue, our findings clearly show that the variables
discarded through a regularization process (i.e., Elastic-Net), were the ones with
insignificant (or negligible significant) impact to the overall explanatory capa-
bility of the switching model. Hence, the results of the proposed methodology
found to be superior to those associated with the “after fitting” screening, i.e.,
the selection process relied solely on the Markov Switching mechanism in terms
of:

- MSE and AIC;

- robustness regarding the selection of regimes;

- simplicity/interpretability of the final selected model;

- estimation performance since there was an improvement (in terms of MSE
and AIC) compared to the model resulted through the Markov Switching
mechanism.

Consequently, the proposed three-phase procedure results in a robust, easily
interpretable, user friendly and low-dimensional modeling scheme and as such, it
is highly recommended to be applied to any type of data that experience typical
and non-typical phases in fields such as epidemiology, medicine, seismology,
meteorology and finance.

79





Chapter 7

On Some Future Extensions &
Generalizations

Notre Dame Cathedral, Rouen, France

Cite: Kalligeris EN, Karagrigoriou A, Makrides A, Parpoula C and Barbu VS.
On Some Aspects of Semi-Markov Switching Models. Proceedings 22nd Euro-
pean Young Statisticians Meeting, Makrides, A. et al. eds, Panteion University
Publications 2021; 46-50. �

Based (mainly) on the results of Chapter 6, in this Chapter we wish to
initiate the exploration of a natural extension of the methodology presented
in the previous Chapter, namely the use of semi-Markov switching models
for the modelling of incidence data. As a result, in this Chapter we define
the discrete time semi-Markov Switching model of conditional mean with
covariates. Note though, that the work presented in this Chapter constitutes
a work in progress on some aspects of discrete-time semi-Markov switching
models.

Based on Definition 2, we now define the semi-Markov switching model of
conditional mean with covariates.

Let us suppose a series of observations
{
yT −1

0
}

and
{
zT −1

0
}

a hidden state
variable which follows a first order semi-Markov chain which is characterized by
the following semi-Markov kernel q:

qij(t) = P (Jk = j, Sk+1 − Sk = t|Jk−1 = i).

Definition 3 (Discrete Time semi-Markov Switching Model of Conditional
Mean with Covariates). A semi-Markov switching model of conditional mean
with covariates Ω1, ..., Ωq for yt, t ∈ N∗, is defined by:

yt = czt +
p∑

i=1
ϕiztyt−i +

q∑
d=1

γdztΩd + ϵt, t = 0, 1, ..., T − 1, (7.1)

where czt is a switching intercept, ϕizt, i = 1, ..., p, are autoregressive (AR)
switching coefficients, γdzt the coefficient associated with the Ωd covariate, d =

https://www.eysm2021.panteion.gr/publications.html
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1, ..., q, and ϵt are i.i.d zero-mean normally distributed random variables with
variance σ2

zt
.

Under the model in (7.1) and for a N -state setting, one could consider various
underlying (discrete) distributions for the waiting (sojourn) times between states.

7.1 Parameter Inference
Consider a series of observations

{
yT −1

0
}

and
{
zT −1

0
}

a hidden state variable
as in Section 2.4. Moreover, suppose that the number of sojourn (waiting) times,
denoted by v0, v1, ..., vR, fulfills the obvious equality:

v0 + v1 + ... + vR = T .

The relationship between the sojourn times and the state sequence can be
simplified by reducing the entire sequence of states z0, z1, ..., zT −1 to the sequence
of states j0, j1, ..., jR which have been visited:

j0 := {z0, z1, ..., zv0−1}
j1 := {zv0 , zv0+1, ..., zv0+v1−1}
...

jR := {zv0+v1...+vR−1 , zv0+v1...+vR−1+1, ..., zT −1}.

Ferguson in (178) introduced the classical form of the complete (noncensored)
data likelihood which allows only for sequences in which the last observation
coincides with an exit from the hidden state. This form though, comes with
some limitations since the summation includes all the possible paths considered
in the complete-data likelihood and as a result the probability of obtaining an
analytical solution is negligible. Furthermore, it assumes that the exit from
a state coincides with the end of the sequence of observations Y T −1

0 since the
sojourn times vr, r = 0, ..., R sum up to T . This results in the forbiddance of the
consideration of semi-Markov chains with absorbing states which is unrealistic
for most applications. Considering the aforementioned, Guédon(179) proposed
the implementation of the survivor function into (7.1):

L˜ ′
complete

(
zT −1

0 , Y T −1
0 |θ

)

=
T −1∑
t=0

log
R−1∑
r=1

f(yt|Zt, Y t
0 ; θ)Pj0wj0(v0)Pjr|jr−1wjr−1(vr−1)PjR|jR−1WjR(vR),

(7.2)

where
Wjr(vr) =

∑
ur≥vr

wjr(ur),
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is the survivor function for the sojourn time in state jr and θ ∈ Rm, m ∈ N, is
the a parameter vector.

The estimator resulting through L˜ ′
complete

(
zT −1

0 , Y T −1
0 |θ

)
is known as partial

likelihood estimator. Estimating the likelihood of semi-Markov switching model
constitutes an incomplete (censored) data problem since the only accessible
quantity is the observations. This fact makes the Expectation-Maximization
(EM) algorithm the most suitable ML estimation technique for such models. For
more on the estimation of censored semi-Markov switching models the interested
reader may refer to Barbu(144) and Guédon.(179)

7.2 Concluding Remarks
In this Chapter, we discussed the concept of semi-Markov switching models

under the discrete time framework. The fundamental aspects of such models
were presented. To that end, the proper notations as well as the formulation of
discrete time semi-Markov switching models of conditional mean with covariates
were provided together with the associated parameter inference.
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Chapter 8

Discussion and Conclusion
A journey full of new places and experiences

Before closing the thesis, we wish to briefly recall on the tools and findings
provided.

In Chapter 3, we developed an alternative approach in order to model sea-
sonality of influenza, based on a periodic regression model which incorporates
additional auto-regressive and moving average components into Serfling’s classi-
cal model including additionally climatological and meteorological covariates
associated with ILI, with the ultimate aim of the early and accurate outbreak
detection. The model selected (via an exhaustive search process) as the optimal
one succeeded in estimating accurately the influenza-like syndrome morbidity
burden in Greece for the period 2014-2016 as well as the duration of the epidemic
waves.

In Chapter 4, we established that the changepoint detection analysis in conjunc-
tion with Periodic-type ARMA modeling with covariates, is capable of modeling
time-series data with typical and non-typical parts and identifying effectively
the beginning and end of the extreme periods that occurred. The proposed
approach captures the behavior of the whole time-series with no significant loss
of accuracy, and hence the derived results could be used for forecasting purposes.

In Chapter 5, a two comparative studies were conducted. The first one had the
goal of evaluating the forecasting performance of the model MXM11 selected via
the proposed methodology of Chapter 3 with other models associated with the
modelling of influenza morbidity like the ones of M23 and MA3 (see Parpoula
et al.(26) and Serfling,(44) respectively). The results derived indicated that
among them the one with the best forecasting performance was the one of MX11.
In the second comparative study, we implemented and evaluated cutting-edge
changepoint analysis-based methods for detecting changes in location of uni-
variate ILI rate data. The empirical comparative study provided evidence that
statistical methods based on changepoint analysis have several appealing proper-
ties compared to the current practice for the detection of epidemics. RS/P and
SegNeigh approaches, both succeeded in early and accurate outbreak detection
and they can be applied to historical data without the need for distinguishing
between epidemic and non-epidemic periods in the data, and single or multiple
mean shifts can be detected. We concluded that, RS/P Phase I distribution-free
changepoint analysis method is able to guarantee a prescribed false alarm prob-
ability without any knowledge about the (in-control) underlying distribution,



CHAPTER 8. DISCUSSION AND CONCLUSION

whereas SegNeigh algorithm in conjunction with mixed effects periodic ARMA
time series modeling is capable of modeling time series data with typical and
non-typical parts.

In Chapter 6, we proposed an advanced regime switching modeling approach for
incidence data. The Elastic-Net method was used for variable pre-selection pur-
poses, along with k-fold Cross-Validation for bias encountering purposes. After
applying Changepoint Detection Analysis to the dataset for selecting the number
of regimes, the Markov Switching mechanism was applied to the variables selected
through the Elastic-Net process. The proposed three-phase procedure resulted in
a robust, easily interpretable, user friendly and low-dimensional modeling scheme.

Finally, in Chapter 7 we discussed future aspects of our work related to the
concept of semi-Markov switching models under the discrete time framework
and the proper notations as well as the formulation of discrete time semi-Markov
switching models of conditional mean with covariates were provided together
with the associated parameter inference.

This PhD thesis focused on the development of new modelling techniques for
capturing the behavior of dynamical systems. To that end, and having as a
reference point a dataset containing 105 ILI-rate incidence data for Greece (2
year window, 2014-2016), we achieved in:

1. Developing three novel methodologies; one for capturing the non-extreme
(baseline) behavior of incidence data (Chapter 3), and two for capturing
both the extreme and non-extreme behavior of incidence data (Chapters 4
and 6).

2. Conducting two useful comparative studies (Chapters 5 and 5.2) to evaluate
the fitting and forecasting performance of the aforementioned methodolo-
gies, and;

3. Providing the appropriate formulation of a future plan on the semi-Markov
switching model of conditional mean with covariates (Chapter 7).

Concluding, the work done throughout the thesis has been devoted solely on
providing new insights and perspectives on the modelling of dynamical systems.
Having studied the latter from the incidence data point of view, useful tools for
capturing the behavior of such data were provided that could be proven beneficial
to the society due to the consequences associated with the early detection and
prevention of extreme, possibly harmful, events. We would like to close, with
the hope that this PhD thesis will constitute a small useful handbook for the
modelling of incidence data and dynamical systems in general.
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Appendix A

Supplementary Material for
Chapter 6

Table A.1: Models used for the simulation of the datasets.

Trend Periodicity Autoregressive Covariate

Model t t2 1 year 6 months AR(1) Minimum Temperature

y2t * * * * *

y3t * * * *

y4t * * *

y5t * *

Table A.2: Transition probabilities resulted through the typical
methodology.

Regime 1 Regime 2

Regime 1 0.94689649 0.1705281

Regime 2 0.05310351 0.8294719
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Figure A.1: Behavior of MSE for different values of (logλ).
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Figure A.2: First regime resulted through the typical method-
ology.
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Figure A.3: Second regime resulted through the typical method-
ology.
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