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Iepiinyn

To ocvomuata eAéyyov Tavtdttoc mov Paciloviar oe PINS kot kmdotkovg mpocPaocng 1 o€
QLGLOLOYIKG Propetpikd (.. ip1do paTion, SUKTUAKO OTOTOITMO, K.0.) YPNOCIUOTO0DYV TO
povtélo avbevtikomoinong oto onpeiov ewodov (entry-point authentication model). To
HoVvTELO anTd €xel emkpiOel Eviova emeldn eivor evdlmTo oe emBécelg Tov cuuPaivovv petd
™V apyIkn avbevtikonoinom. Opiopéva amd Ta eV AOY® GUOCTHLATE AUOVOVTOL EVOVTL TETOIWV
emBécewv ekteA®VTAG €va mPdcoheto Pripa EAEYYOV TOWTOTNTOG OE KPIiolwo onueio tng
ovovedpiog oAAG dev eivar ONUOPIAN} ©TOLG YPNOTEG AOY® TNG EMAVAAAUPOVOLEVNS

avbevtikomoinong (repetitive authentication).

O1 KIvNTEC GLOKEVES KAl Ol EPAPLOYES TOVG YPNOYLOTOOVV TO LOVTELO avBevTIKOTOINONG GTO
onUeloL €GOS0V Y10 TOV EAEYYO TNG TAVTOTNTAG TOV ¥pNoTAV. Eva onuoavtikd péinua omodte
givon va kaBoplotel edv 1 Kyt cvokevn PpiokeTotl ota xépla Tov YvRolov ypnotn (genuine
USer) Kot, avticTolyo, 4V 0 YVAGLOG XPNOTNG Eival oVTOG TOL ¥PNOUOTOLEL TIG gvaicOnTES
vanpecieg katd ™ ddpkele pog ocvvedpiag. Ilpog enidvon avtov tov {nthuatog €yovv
npotafei ot Piproypagio o cvothuata Xvveyovc Avbeviikomoinong (Continuous
Authentication — CA) pe ypnon Zvuneprpopikdv Biopetpikdv (Behavioral Biometrics — BB).
Ta CA ocvotuata amotelobv évo mpocheto pétpo acealeicg mov mapakolovdel
BlopeTpikn cuUTEPLPOPE TV YPNOTAOV ETAVATPOSIOPILOVTAS CLUVEYXDS TNV TAVTOTNTO TOVG
Katd TN OldpKew pog mePLddov ovvoeons. H mpaxtikny epappoyr tovg eivor ORmG
TEPLOPIOUEVNG EKTOOTC AOY® dvo BepeMmodv eddelyewv. H mpdn EAAetym eotidletan o€ un
TeYVIKd CNnTMHOTO, OTT®MG Y10, TOPAOELY LD, OE OVTIAMWELS GYETIKEG LE TOLG POPOLE KOl TIG
TPOCOOKIEC TV UEALOVIIKOV YPNOTOV Kol o ovrtilopuPovopeveg avnovyieg y tnv
WOTIKOTNTA TOV PropeTpik®dv toug. H devtepn EAdeyn eotidleTon 6To TPOPANUO TV YELONDG
DETIKOV/YELODG APVNTIKOV OTOTELEGUATOVY, dNAadT, o€ (nTApaTa ac@dlelag (Security) kot

evypnotiag (usability).

H napovoa dwdaktopkn dwatpipr) mepthapfavel téooepa epguvntikd otddta. [podxettan yio
EPELVNTIKG OTAdWL €VOG €VIOIOVL €PELVNTIKOV €PYOV. XTO TPMOTO EPELVNTIKO GTAO10
mopovctdletal pio eKTeTApéVN PBAOYPOQIKTY OVOCKOTN G TOV YOPTOYPOUPEL TNV TEPLOYN TNG
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épeuvag Ko apopd otnv teyvoroyic BBCA kot v amddoon TovV GUGTNUAT®OV HUNYOVIKIG
uédnonc. Emmiéov, mapovoidletor po PPAoypa@iky] avackOTnon oYETIKN UE TOVG TOAVOVG
eopeic emiBeong ota cvotiuato BBCA kot emonpaivovtol ToAAG VTOGYOUEVA AVTILETPAL.
Eniong, mpaypatonoteitar po tagvounon tov cvumeplpopikdv Propetpikdv (Behavioral
Biometrics - BB) og entd kotnyopieg kot pio aviivon twv nebodoroyidv e cLAAOYNG Kot
e€aywyng tov yapakmmplotikov (feature extraction) tovg. Téhoc, evtonilovtal ot TPOKANGELS,

TOL OVOLYTE TPOPANOTO KOt Ol LEAAOVTIKES TACELS.

210 06e0TEPO £PELVNTIKO GTASI0 NG TAPOVGOS dSTPIPNG, dlepeLVATAL 1| ETIOPACT SLOPOPOV
TOPAYOVIOV GUUTEPLPOPIKNG TpdOeong vioBétnong g teyvoroyiag (Behavioral Intention —
Bl) péoow poag véag evoopdtwong tov Moviéhov Amodoyng Texvoroyiag (Technology
Acceptance Model - TAM) kat g Oswpiag Atdyvong Kawvotopiog (Diffusion of Innovation
Theory - DOI). Erniong, avantocoeton éva véo Bempntikd mAaicto pe dopég omwe Kivdvvol
Acopdrelag & Tlpootaciag Ipocomikov Asgdopévov (Security & Privacy Risks - SPR),
Avnovuyieg Idiwtikotntag tov Blopetpikav (Biometrics Privacy Concerns - BPC) xou
AvtihapBavopevog Kivovvog Xpnong g Teyvoloyiog (Perceived Risk Of Using the
technology - PROU). EmuAéov, ypnowomombnkav ot dopéc Epmiotooivn oty Teyxvoloyia

(Trust in Technology - TT) kot Kowvotopia (Innovativeness - Innov).

Almotodnke 01t ot kOprot Atgvkorvvtég (Facilitators) tng Zvumepipopikng ITpdOeomng
Yw0émong g Teyvoroyiag (Behavioral Intention - BI) sivar n Epmotocivn oty
Teyvoroyia (Trust in Technology - TT), akolovBovpevn and ™ ZvpPatotnto (Compatibility
- COMP), mv AvtihapPavopevn Xpnowotmro (Perceived Usefulness - PU) xat v
Kawotopia (Innovativeness - INNOV). H mapodoa épguva deiyvel emiong 0t T0. dtopo
EVOLOPEPOVTOL AYOTEPO YO TNV EVKOAID YpNONG TNG TEXVOAOYiOG Kol €ivanl TpdBupa va
Buciacovy Yo va emtuyovy peyoAvtept acedieia. H Zvppatomra ko n Kawvotopio mailovv
emiong onpavtikd poro. Ta dtopa mov metevovy OTL M Ypnon g texvoroyiog BBCA Oa
taipale otov Tpdémo Long Tovg Kot Ba NOehav va TEWPARATIOTOOV LE VEEG TEYVOLOYiES £OVV
Oetikn mpdOeon vo vioBetnoovy v teyvoroyia BBCA. T tig véeg dopég mov mpootébnkay,

ta anoteAéopata vrootnpilovv v vdbeorn O6TL o1 Kivovvor Acpdireiog & Tlpootaciog
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[Tpocomkdv Asdopévav (Security & Privacy Risks - SPR) eivat évog dievkoAvvtig yia tnv
Avtihappavopevn Xpnowotnta (Perceived Usefulness - PU). Emiong, n PU evepysi og
dtevkoluvtig oty Xvumeprpopikr] IIpdbeon Yiwobémnong g Teyxvoroyiog (Bl). Koartd
GULVETELQ, TO ATOWO TTOV OEV MGOAVOVTOL ETOPKMG TPOGTATEVUEVO OO TIC KAUCIKES HEBOSOVG
avBeviikomoinone Ba eEetdcovy ™ ypnootnta g teyxvoroyiog BBCA vy v mpodchHetn
mpootacio. Tovg amd Kwovvovs. Emiong, pe 1ig douég Avnovyieg Idiwtikdtmroc tov
Buopetpikav (Biometrics Privacy Concerns - BPC) kot Avtilapfavopevog Kivévuvog Xprong
g Teyvoroyiag (Perceived Risk of Using the Technology - PROU) e&etaletan €dv ot
OVNOLYIES TOV ATOUMV GYETIKA LE TO PLOUETPIKO TOVG OTOPPNTO AEITOVPYOVV OC AVOCGTOAEIS
(Inhibitors) oto Bl. To cuumépaciio Tov TPOKVHTTEL £ivar Tt oL dtopa Oe®podv OTL TaL OPEAT
mov oyetilovtal Pe TNV acPAAED TV ayaddV Tovg (). ¥pHato 6€ TPATelIKO AOYUPLOGHO)
amd ™ xpnon g texvoroyiog BBCA gival mold mo onuovtikd amd Toug avTIAaUBovOorevoug
KIVOUVOLG Y10 TO AmOpPNTO T®V POUETPIKAOV TOVG. AVTO TPOKLTTEL 0 TO OTL 1 VITOOEST TG
0 wupog avactoréag tov Bl elvar m doun Avrihappavopevog Kivdvvog Xpnong g
Teyvoloyiag (PROU) dev vmootpiletor amd to povtéro. Ot véeg Sopég ypnotpomomonkay yio
Vv €néKtacn Tov povtélov TAM kot TV aVTIHETOTION TV TEPLOPIGUMY TOL OGOV OPOPA
OTNV OVTILETOTION avTIAapPovopeveoy nmmudtov acedictog kKot Wwtikomras. Qg €K
TOVTOV, TPOoTEivETAL TO VEO BepnTikd TAaictlo va cuvovaotel pe to TAM yuo v €pguva mov
apopd otnv vioBétnon teYvoroy®V  PlOMETPIKNG  oWOEVTIKOTOINGONG KOl  GUVEXOVG

avBeviikomroinong.

210 TpiTo 6TAS10 £pEVVaG TNG TaPOVGaAG HATPPNS TOPATNPNONKE OTL Lo CNUOVTIKT TPOKAN O™
Kot £va avorytd TpOPANUa, Yo TV €pgvuva oV aPopd otV avantuén cvotnuatov BBCA,
elval m ovAloyn Kot 1 TEAEWOTOINGN €VOC KATAAANAOL GLVOAOL PBLOUETPIKAOV OEOOUEVOV
ovuneppopds. To {fmmuo emdevaveTonr amd TO YEYOVOS OTL Ol MEPIGCOTEPOL YPNOTEG
OTTOPEVLYOLV VO GUUUETEYOVY GE YPOVOPOPES Kot EMImOVES O10OIKOGIEG TOV GUVETAYETOL 1|
oLALOYY| PlopeTpik®dV dedopévav épevvag. T To A0yo avtd, | avarnTvgn Kot 1 SOKIUY LG
pebodoroyiag Ko evog epyareiov GLAAOYNG PLOUETPIKAOV YOPOKTINPICTIKMOV, HE TPOTO GLAMKO
TPOG TOV YPNOTI, OMOTEAEL Lo GAAN PEYEAN TPOKANOT). 26 AmAVINGT G OVTEG TIG TPOKANGELS,

070 TPITO GTASIO TNG £PEVVAG, TOPOVCIALETAL EVa VEO TOPAOELY O, GLAAOYNG CLUUTEPIPOPIKDV
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Blopetpikmv dedopévmv, mov ovopaleton BioGames paradigm kot akolovBei pio kovotdpa
mpocéyyon. H mpocéyyion avty agopd oty malyviomoinon Tng oLAAOYNG OedOUEVMV.
Tavtdypova avamntoydnke kot €va epyoheio GLAAOYNG GLUTEPLPOPIKAOV PLOUETPIKDV
(Biogames App) mov Booiletar oto mapaderypo BioGames. H BioGames App ypnoytomotel
Toyvidlo, Ko TPOKANGEIS TOV cLVILALoVY duvapukh TAnktpoAdynong (Keystroke Dynamics)

Ko yelpovopisg agpng (Touch Gestures).

210 T€10pTO GTAS10, TOPOVCLALETOL IO EPEVVA GYETIKT LE TO GYESOGUO Kot TV a&loldynon
VE®V  TPOocEYYicE®Y otV ovvey]  OLOEVTIKOTOINGT  XPNOLUOTOIOVTINS  OLVOULKN
minktpordynong (Keystroke Dynamics) kot yepovopieg agpng (Touch Gestures). Zouemvo pe
™ Piproypagio, apketég PHEAETEG XPNOLOTOOVV LOVOTPOTIKES GUUTEPLPOPIKES HeBdOOVG
(single behavioral modality methods) yia tov éleyyo g TavtdTTOG TOV YPNOTOV. Q6TOGO, 0L
CLUTEPLPOPES TV YVNOLOV YpnoTdv (genuine users) umopei va aALAEOVY KOl TOL GLCTHUATOL
va amotuyydvouy tav cupfaivouy onuovtikég adlhayéc. Ta mapamdve £xouV MG OmMOTEAEGLOL
vo. dnpovpyovvtan gite {ntpoto ac@dielag eite gvypnortiag (Security or usability issues).
v Broypagia, n Zovmén (Fusion) Piopetpik®dv otoyeiov ypnolponoleital yoo v
EMIALOT VTOV TOL TPOPANUOTOG KO EMLTLYYAVEL BEATIOUEVO ATOTEAEGHATO. 2TV TOPOVGA
épevva e€etdletanl k0Be cLUTEPLPOPIKT PLOUETPIKT TEPITTMOT EEXWPLOTA Kol OLEPEVVATAL 1)
nepintoon Pektioong tov amotelecpdtov amddoong pe cLvTnEn YEPOVOLLOV OPNG Kot
duvoutkng TANKTpoAdYNoNG oe eminedo yopoxtnplotikov (Feature-level fusion). Znv
TOPOVGA TPOGEYYIoT Yivetal cVykpion petold PBabudv vevpovikov diktowv (Deep Neural
Networks) oyedtacpuévmv yior €30UEVE TOV GUVETAYOVTOL OTUOVTIKEG YPOVIKEG SUVOLIKES,
omwg to Multi-Layer Perceptron (MLP) kot Babidv vevnpovikdv SIKTO®V GYEOOGUEV®V YioL
aveEdptnta katavepnuéva dedopéva, 6mmg n Makpoyxpdvia Bpayvrpdbeopun Mvrun (Long
Short-Term Memory -LSTM). Zvykpivovtog tnv amddoon tmv 600 cuotnudtwv, 1o MLP givot
avatepo and 10 LSTM og avtd 1o mhaicro. To MLP wétuye Accuracy 98,3% (avénon 21,1%),
Equal Error Rate (EER) 1% (uneimwon opdipatog katd 23,7%), True Acceptance Rate (TAR)
99,4% (avénon 46%), True Reject Rate (TAR) 97,4% (avénon 10%), False Acceptance Rate
(FAR) 2,6% (uneioon xatd 10%), ko False Reject Rate (FRR) 0,6% (psiopévo kotd 46%).

AT 10 OMOTEAEGLOTO TG EPEVVOAG TPOKVTTEL OTL 1) GUVINEN XEPOVOULDV OPNG KoL SOUVOUIKNG
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TANKTPOAOYNONG GE EMIMEDO YOPAKTNPIOTIK®OV PEATUDVEL TNV OTOIOCT] TOV GLGTNUATOV KO

EMAVEL {NTNHOTA AGOAAELOG KOl ELYPTOTIOG.
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Abstract

Authentication systems based on PINs and passwords or physiological biometrics (e.g., iris,
fingerprint, etc.) establish the user identity only at the beginning of the session using the entry-
point authentication model. This model has been criticized heavily for being vulnerable to
attacks occurring after the authenticated session has been established. Some of these systems
defend against such attacks by performing an additional authentication step at critical points of

the session but are unpopular with users due to repetitive authentication.

Mobile devices and their applications use the entry-point authentication model to authenticate
users. Therefore, an important concern is to determine whether the mobile device is in the
hands of the genuine user, and accordingly, whether the genuine user is the one using the
sensitive services during a session. To solve this issue Continuous Authentication (CA)
systems using Behavioral Biometrics (BBs) have been proposed in the literature. CA systems
are an additional security measure that monitors users' biometric behavior by constantly re-
authenticating them during a login session. However, their practical application is limited due
to two fundamental shortcomings. The first shortcoming focuses on non-technical issues, for
example, perceptions related to the fears and expectations of future users and perceived
concerns about the privacy of their biometrics. The second shortcoming focuses on the problem

of false positive/false negative results, that is, on security and usability issues.

This doctoral thesis includes four research stages. These are the research stages of a single
research project. In the first research stage, an extensive literature review is presented that maps
the research area and concerns BBCA technology and the performance of machine learning
systems. Additionally, a literature review on potential attack vectors on BBCA systems is
presented, and promising countermeasures are highlighted. Also, behavioral biometrics
(Behavioral Biometrics - BBs) are classified into seven categories and an analysis of their
feature extraction and collection methodologies is carried out. Finally, challenges, open issues,

and future trends are identified.

In the second research stage of this thesis, the effect of various factors on Behavioral Intention

to Adopt the Technology (Behavioral Intention - Bl) is investigated through a new integration
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of the Technology Acceptance Model (TAM) and the Diffusion of Innovation Theory (DOI).
Also, a new theoretical framework is developed with constructs such as Security & Privacy
Risks (SPR), Biometrics Privacy Concerns (BPC), and Perceived Risk of Technology Use
(PROU). In addition, the constructs of Trust in Technology (TT) and Innovativeness (Innov)

were used.

It was found that the main Facilitators of the Behavioral Intention to Adopt the Technology
(B1) are Trust in Technology (TT), followed by Compatibility (COMP), Perceived Usefulness
(PU), and Innovativeness (INNOV). This research also shows that people care less about the
ease of use of technology and are willing to sacrifice it to achieve greater security.
Compatibility and Innovation also play an important role. People who believe that using BBCA
technology would fit their lifestyle and would like to experiment with new technologies have
a positive intention to adopt BBCA technology. For the new constructs added, the results
support the hypothesis that Security & Privacy Risks (SPR) is a facilitator of Perceived
Usefulness (PU). Also, PU acts as a facilitator of Behavioral Intention to adopt the technology
(Behavioral Intention — BI). Consequently, individuals who do not feel sufficiently protected
by classic authentication methods will consider the usefulness of BBCA technology for their
additional protection against risks. Also, the constructs Biometrics Privacy Concerns (BPC)
and Perceived Risk of Using the technology (PROU) examine whether individuals' concerns
about their biometric privacy act as inhibitors to BIl. The conclusion drawn is that individuals
consider the benefits related to the security of their assets (e.g., money in a bank account) from
using BBCA technology to be far more important than the perceived risks to the privacy of
their biometrics. This results from the fact that the hypothesis that the main inhibitor of Bl is
the construct Perceived Risk of Using the technology (PROU) is not supported by the model.
The new constructs were used to extend the TAM model and address its limitations in
addressing perceived security and privacy issues. Therefore, it is proposed that the new
theoretical framework be combined with TAM for research on the adoption of biometric

authentication and continuous authentication technologies.

25



In the third research stage of this thesis, it was observed that a major challenge and an open
problem for research related to the development of BBCA systems, is the collection and
refinement of an appropriate set of behavioral biometric data. The issue is compounded by the
fact that most users avoid engaging in time-consuming and laborious processes involved in
collecting biometric survey data. For this reason, developing and testing a user-friendly
biometric collection methodology and tool is another major challenge. In response to these
challenges, in the third stage of the research, a new behavioral biometric data collection
paradigm, called the BioGames paradigm, is presented and follows an innovative approach.
This approach is about gamification of data collection. At the same time, a behavioral biometric
collection tool (Biogames App) based on the BioGames example was developed. The
BioGames App uses games and challenges that combine Keystroke Dynamics and Touch
Gestures.

In the fourth stage, research related to the design and evaluation of new approaches to
continuous authentication using Keystroke Dynamics and Touch Gestures is presented.
According to the literature, several studies use single behavioral modality methods to
authenticate users. However, the behaviors of genuine users may change, and systems fail when
significant changes occur. The above result in either security or usability issues. In the
literature, Biometric Fusion is used to solve this problem and achieves improved results. In the
present research, each behavioral biometric case is examined separately and the case of
improving performance results by fusion of touch gestures and keystroke dynamics at the
feature level (Feature-level fusion) is investigated. In the present approach, a comparison is
made between deep neural networks designed for data that entail important temporal dynamics,
such as Multi-Layer Perceptron (MLP), and deep networks designed for independently
distributed data, such as Long Short-Term Memory (LSTM). By comparing the performance
of both systems, the MLP is superior to LSTM in this context. The MLP achieved greater
improvement and better performance compared to the LSTM. The MLP achieved an Accuracy
of 98.3% (an increase of 21.1%), an EER of 1% (the error was reduced by 23.7%), a TAR of
99.4% (an increase of 46%), a TRR of 97.4% (increased 10%), a FAR of 2.6% (reduced by

10.5%) and an FRR of 0.6% (reduced by 46%). The research results show that the feature-level
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fusion of touch gestures and keystroke dynamics improves the performance of the systems and

solves both security and usability issues.

27



Introduction

For several decades, user authentication was based on the “something the user knows”
paradigm referred to as the knowledge-based authentication method [139]. This method has
been the most popular for authenticating an individual, but research has shown that PINs and
passwords do not provide adequate protection [13, 140]. Especially when the method is used
on mobile devices it is known to suffer from low user-friendliness and insufficient security
[102]. Also, mobile devices are vulnerable to smudge attacks, and PINs and secret touch
patterns can be revealed [65]. Hence, the theft of a device may give rise to the risk of allowing
full access to critical applications and personal data. In addition, Stylios et al. [58], showed
that a high percentage (24%) of smartphone users ignore privacy and security risks and store,
on their mobile devices, large volumes of private information including PINs, credit card
numbers, etc. Also, a high percentage of users ignore protection practices for their PINs and
passwords [58, 247]. These vulnerabilities stress the need for the development and
implementation of novel authentication methods. These methods are based on the “something
that the user is” paradigm, which is something that characterizes the user and constitutes a
unique physiological biometric feature (e.g., fingerprint, iris, etc.). Under this paradigm,
authentication is performed by comparing a previously captured biometric template to a
biometric feature of the person (e.g., a fingerprint) [3, 12, 44, 97, 152]. The previously captured
biometric template must derive from the same person and be of the same type [141].

Whether based on PINs and passwords or physiological biometrics, these methods use the
entry-point authentication model, which authenticates the user only at the beginning of the
session [33]. This model has been heavily criticized since it becomes vulnerable to attacks that
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occur after the initial authentication [1, 2, 5, 33, 58, 210, 211 187]. For these reasons, a new
method of user authentication, also based on the “something that the user is” paradigm, has
been proposed. This method uses Behavioral Biometrics (BB) and Continuous Authentication
(CA) [1, 97,184, 187, 212, 213]. As mobile devices become more advanced technologically,
it is abundantly clear that the incorporated sensors can be used to efficiently capture the
behavior of most users, thus enabling behavioral biometric user authentication [54, 55, 84, 86,
114]. Mobile devices can enroll BB templates from their sensors [86,109,141]. BB can include
walking gait, touch gestures, keystroke dynamics, hand waving, user profile, and power
consumption. Continuous Authentication technology constitutes an additional security
measure alongside the initial login process by monitoring user behavior and continuously re-
authenticating user identity throughout a login session [1, 85, 94, 97, 116, 117, 184, 187]. The
idea of continuous authentication emerged in the early 2000s [213]. This technology has
gained more attention since then, both from academia and industry. The increase in attention
to biometric technology is encouraged by the expected reduction of technology costs, better
systems’ properties, and socio-political pressure for improved security controls [6, 191, 188].
Finally, research like the one presented in [5, 7, 8, 183] showed that users are eager to use

biometric authentication methods to protect their privacy.

The rapid development of biometric technologies in several areas, however, raises some
privacy concerns [187]. Personal data collected from biometric systems are of a particular
nature as they relate to either the physical characteristics of an individual (e.g., fingerprints,
iris, facial features, DNA, etc.) or its behavioral features (e.g., touch gestures, keystroke
dynamics, walking gait, hand waving, etc.) [187]. In the conscience of individuals, biometrics
are also often associated with the violation of privacy by state controls that use these new
technologies [214]. Individuals' perceptions and behavior are significant elements of systems’
design because users are concerned about their privacy, security, and online identity
management [207]. The identification of related non-technical issues, for example, future
users’ expectations and perceptions related to the fears, is probably required when preparing a
strategy to assist the adoption of a widespread innovation [147, 188, 187]. Consequently, for

the success of future investments in the implementation of CA systems, there is a need to
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explore the key factors that influence technology adoption. Assessing the key factors of BBCA
technology adoption is essential to solving the issue of low use and reduced exploitation of the

advantages of this technology.

One major challenge for behavioral biometrics research is the lack of real-world datasets for
research purposes [10, 187]. The compilation and refinement of a proper set of behavioral
biometrics data constitute a challenge and an open issue. The issue is aggravated by the fact
that most users avoid participating in time-consuming, painstaking procedures entailed in the
collection of research biometric data. For this reason, developing and testing a methodology
and a tool for extracting biometric features, in a user-friendly way, constitutes another great
challenge.

According to the literature [1, 9, 187, 193], most studies use single behavioral modality
methods to authenticate users. However, the behaviors of genuine users may change, and
systems fail when significant changes occur [187, 193]. The above result in either security or
usability issues. Most BBCA systems often operate with a high False Reject Rate (FRR) at
thresholds attempting to keep the False Acceptance Rate (FAR) under 0.1% [112, 113, 187,
193]. Of course, a false rejection that diminishes usability is less costly than a false acceptance
that diminishes security. A higher FAR will reduce the security level of the authentication
system, while a higher FRR will block a genuine user [9, 193]. However, this imbalance may
make the whole system unusable. To overcome these limitations, it is crucial to maximize the
performance of BBCA systems and examine how to find a balance between security and
usability [ 9, 112, 113, 187, 193].

1.1  Research Objective

This doctoral thesis includes four research stages. In the first stage, an extensive survey is
presented that maps the research area. The scope of the survey is wide, ranging from reviewing
BB and CA technologies to data collection methodologies and relevant machine learning
systems. The main goal of the survey is to offer a sufficient background on BBCA technology
for mobile devices, of interest to both researchers and practitioners. The purpose is to present

all the significant elements for enabling researchers to conduct their research. The first goal is
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to present a classification of seven categories of BB and CA on mobile devices and an analysis
of BB collection methodologies, and feature extraction. The second goal is to present a
literature review on machine learning systems performance in seven types of BB for CA.
Further, an additional review is conducted that showed the vulnerability of machine learning
systems against well-designed adversarial attack vectors, and the relevant countermeasures are
highlighted. Finally, a discussion extends to lessons learned, current challenges, and future

trends.

In the second stage, a new model is presented to investigate the effect of various factors on
behavioral intention to adopt the technology (Behavioral Intention — BI). Based on this model,
a Structural Equation Modeling (SEM) research was carried out. This research is among the
first in the field that examines the factors that influence individuals’ decision to adopt BBCA
technology. An extensive conceptual framework is provided for both existing models
(Technology Acceptance Model (TAM) and Diffusion of Innovation Theory (DOI)) and the
new constructs added to the model. In addition, the research explores external factors, such as
Trust in Technology (TT) and Innovativeness (Innov). It has been reported in the literature that
the TAM model needs additional prior factors, especially when used in the investigation of
biometrics technology acceptance [188, 242]. Also, the measurements of TAM using only a
few of its standard variables are clearly restrictive [188]. Therefore, the TAM was adapted to
the needs of the present research. New variables are added to the TAM, while some of the
original variables, which did not contribute to the present research, were extracted. In addition,
significant constructs were introduced, to overcome the limitations of the TAM and to adapt it
to the needs of the present research. The new theoretical framework introduced in the present
research concerns the constructs of Security & Privacy Risks (SPR), Biometrics Privacy
Concerns (BPC), and Perceived Risk of Using the Technology (PROU). The design of the
research is such as to meet the above-mentioned combination. That is the trade-off between

perceived users' concern for their biometrics privacy and their protection from risks [250].

In the third stage, a new behavioral biometric data collection paradigm is presented, called the
BioGames paradigm [246] and an innovative approach to the gamification of data collection
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follows. At the same time, a tool for collecting keystroke dynamics and touch gestures is
developed. The BioGames App is based on the Bio-Games paradigm, where users play games
without participating in an exhaustive experimental process, and for each modality, the
application creates all the datasets.

In the fourth stage, research related to the design and evaluation of new approaches to
continuous authentication using Keystroke Dynamics and Touch Gestures is presented. The
research aims to design and evaluate new approaches to CA by applying feature-level fusion
of touch gestures and keystroke dynamics to solve security and usability issues. In feature-level
fusion, the feature sets from multiple behavioral biometrics are unified into a single feature set
[14, 187]. Our goal is to accomplish a solution that achieves better performance compared to a
single modality method. First, an experimental data collection process of biometrics is applied
by using mobile smartphones. For this purpose, the BioGames paradigm and the BioGames
App [246] are used. In the experiment, users' keystroke dynamics and touch gestures were
recorded. Second, new appropriate feature sets, for continuous authentication, of touch
gestures, keystroke dynamics, and the fusion of both, were developed. Following, a comparison
is made on deep networks designed for data that entail important temporal dynamics, such as
Multi-Layer Perceptron (MLP), and deep networks designed for independently distributed
data, such as Long Short-Term Memory (LSTM). This choice is made because there is a great
corpus of research, on touch gestures and keystroke dynamics with MLP and LSTM, which
has given very good results [187] and it would be easier to be compared to the approaches of
this research. Each modality is examined separately and an investigation is made regarding the
improvement of performance by applying feature-level fusion to solve either security or

usability issues.

1.2 Research Questions

The present thesis aims to answer the following research questions:
1. Which are the challenges, the open issues, and the future trends of BBCA technology?
2. Which are the key factors of user acceptance (or reject) of BBCA technology?
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3. Is there a need for the development of a new paradigm for the collection of behavior

biometrics data for research purposes? Could this new paradigm be supported by an

effective behavioral biometrics collection tool?

4. Does feature-level fusion of touch gestures and keystroke dynamics improve the

performance of deep learning systems and address both security and usability issues?

1.3 Contribution of the Thesis

This research comprised four research stages that each addressed one of the above research

questions and resulted to a relevant publication. Here, the contribution of each stage of the

research is presented separately as well as the research question they address. Table 1 associates

the papers to each contribution point and the corresponding research question.

Table 1: List of publications.

Contribution of thesis

Research

Research questions

Publications

Stage 1

Which are the challenges, the open
issues, and the future trends of
BBCA technology?

loannis Stylios, Spyros Kokolakis, Olga Thanou, Sotirios
Chatzis, (2021). Behavioral biometrics & continuous user
authentication on mobile devices: A survey, Information
Fusion, Volume 66, 2021, Pages 76-99, ISSN 1566-2535,
https://doi.org/10.1016/j.inffus.2020.08.021.

Stage 2

Which are the key factors of user
acceptance (or reject) of BBCA
technology?

loannis Stylios, Spyros Kokolakis, Olga Thanou, Sotirios
Chatzis, (2022). Key factors driving the adoption of behavioral
biometrics and continuous authentication technology: an
empirical research”, Information and Computer Security, Vol.
30 No. 4, pp. 562-582. https://doi.org/10.1108/ICS-08-2021-
0124

Stage 3

Is there a need for the development
of a new paradigm for the
collection of behavior biometrics
data for research purposes? Could
this new paradigm be supported by
an effective behavioral biometrics
collection tool?

loannis Stylios, Spyros Kokolakis, Andreas Skalkos, Sotirios
Chatzis, (2022). BioGames: a new paradigm and a behavioral
biometrics collection tool for research purposes, Information
and Computer Security, Vol. 30 No. 2, pp. 243-254.
https://doi.org/10.1108/ICS-12-2020-0196

Stage 4

Does feature-level fusion of touch
gestures and keystroke dynamics
improve the performance of deep
learning systems and address both
security and usability issues?

loannis Stylios, Sotirios Chatzis, Olga Thanou, Spyros
Kokolakis (2023). Continuous Authentication with Feature-
Level Fusion of Touch Gestures and Keystroke Dynamics to
Solve Security and Usability Issues. Under review.
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Contribution of research stage 1

The first stage of the research concerns a survey on Behavioral Biometrics & Continuous User

Authentication on Mobile Devices.

Research contribution of this stage:

1.3.2

A classification of behavioral traits on seven categories and an analysis of behavioral
biometrics collection methodologies and feature extraction.

A wide range, state-of-the-art literature review on BBCA technology and the
performance of machine learning systems.

A literature review on possible attack vectors on BBCA technology and a highlight on
promising countermeasures.

Identification of challenges, open issues, and future trends.

Publication of stage 1: Behavioral Biometrics & Continuous User Authentication on

Mobile Devices: A Survey.

Contribution of research stage 2

The second stage of the research concerns an empirical research on key factors driving the

adoption of Behavioral Biometrics & Continuous Authentication Technology.

The research contribution of this stage is the following:

It proposes a new integration of a modified TAM model and DOI theory, which
examines the influence of various factors on BBCA's behavioral intent of adoption.

A new theoretical framework is created with constructs such as Security & Privacy
Risks (SPR), Biometrics Privacy Concerns (BPC) and Perceived Risk of Using the
Technology (PROU).

A research model focused on BBCA technology is developed that can be used by
researchers, practitioners, governments, decision-makers, and providers of BBCA
technology.

Publication of stage 2: Key factors driving the adoption of Behavioral Biometrics &

Continuous Authentication Technology: An Empirical Research.
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1.3.3

Contribution of research stage 3

The third stage of the research concerns the creation of a new paradigm and a behavioral

biometrics collection tool for research purposes.

The research contribution of this stage is the following:

1.34

Presentation of a new paradigm, named BioGames, that suggests a user-friendly and

entertaining way for the collection of behavioral biometrics for users of mobile devices.

Development of a novel behavioral biometrics collection tool, named BioGames App,

which is freely available for researchers and practitioners.

Development of new appropriate feature sets for continuous authentication of touch

gestures and keystroke dynamics.

Introduction of a convenient data collection methodology by which the behavioral

biometrics of the users can be collected via BioGames.

Publication of stage 3: BioGames: a new paradigm and a behavioral biometrics
collection tool for research purposes.

Contribution of research stage 4

The fourth stage of the research concerns continuous authentication with a feature-level fusion

of touch gestures and keystroke dynamics to solve security and usability issues.

The research contribution of this stage is the following:

e Development of a new appropriate feature set for continuous authentication that combines

touch gestures and keystroke dynamics.

e A comparative study between MLP and LSTM on the development of a BBCA system is

provided.

e Is shown that the feature-level fusion of touch gestures and keystroke dynamics improves

the performance of the systems.

e Isshown that the feature-level fusion of touch gestures and keystroke dynamics solves both

security and usability issues.

e Is shown that MLP is superior to LSTM in this context.
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» Publication of stage 4: Continuous Authentication with Feature-Level Fusion of Touch

Gestures and Keystroke Dynamics to Solve Security and Usability Issues.

1.4 Structure of the Thesis

This Thesis is structured as follows: The first section is the introduction section that includes a
brief description of the Behavioral Biometrics and Continuous Authentication technology for
user authentication and its challenges. Moreover, it includes the research objective, the research
questions and the contribution of the Thesis. The second section is the background section,
focusing on mobile devices, sensors, biometrics, performance metrics, and continuous
authentication technology. Also, a classification of Behavioral Biometrics and Continuous
Authentication into seven categories, is presented. In addition, an analysis of behavioral
biometrics collection methodologies, feature extraction and the existing publicly available
datasets is presented. The third section is the literature review section, where the performance
of machine learning systems is presented. The fourth section that follows is the method of work
section, where the four research stages that comprise this research and each address one of the
research questions are presented. In the fifth section a new model is presented to investigate
the effect of various factors on Behavioral Intention to Adopt the Technology. In the sixth
section that follows, a new paradigm is proposed, named BioGames, for the extraction of
behavioral biometrics conveniently and entertainingly. In the seventh section that follows,
research related to the design and evaluation of new approaches to continuous authentication
using keystroke dynamics and touch gestures is presented. Finally, a summary, conclusions

and future work section of this research is presented.
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Background

2.1 Introduction

In this section, an overview of mobile devices, sensors, biometrics, performance metrics, and
continuous authentication technology is presented. Also, a classification of BB and CA into
seven categories is presented. The first category is walking gait, the second category is touch
gestures, the third category is keystroke dynamics, the fourth category is behavioral profiling,
the fifth category is hand waving, the sixth category is power consumption, and the seventh
category is fusion. Also, an analysis of behavioral biometrics collection methodologies, feature

extraction and the existing publicly available datasets, is offered.

2.2 Mobile Devices and Sensors

As mobile devices become more technologically advanced, they incorporate sensors that can
capture accurately most aspects of users’ motional behavior, which enables behavioral
biometric user authentication [186, 54, 55]. Mobile devices have a rich selection of built-in
sensors. We can distinguish three types of sensors: motion, position, and environmental
sensors. Forces of acceleration and rotation along three axes are measured by motion sensors.
This type of sensors includes accelerometers, gravity sensors, gyroscopes, and rotational vector
sensors. The physical position of a mobile device is spotted by position sensors, which include
orientation sensors and magnetometers [114, 84]. Environmental parameters are measured by
environmental sensors, such as barometers, thermometers, and photometers [114]. Apart from
these sensors, smartphones also incorporate microphones, cameras, touchscreens, GPS,
compasses, etc. Through these sensors, we can collect data that correspond to a matching

behavioral modality [86].
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2.3 Biometrics

Biometric methods are techniques for identifying individuals by analyzing their unique
characteristics. Biometric methods can be categorized into two categories: techniques based on
the analysis of physical or genetic characteristics, and techniques based on the analysis of
behavior [187]. Indeed, each user interacts with his/her device uniquely and distinctively. Thus,
behavioral biometrics are based on behavioral characteristics of individuals captured by mobile
phone sensors, mainly through the gyroscope and accelerometer recordings, as well as touch
screen recordings that capture tap, swipe, typing, etc. [86]. Some devices also have more
advanced sensors, such as those that capture side squeeze. Sensors incorporated in mobile
devices track various behavioral modalities, including walking gait, touch gestures, keystroke
dynamics, hand waving, behavioral profile, and power consumption. Moreover, research like
that presented in [ 140, 36, 186, 187] showed that users are willing to adopt alternative methods

of authentication, such as biometrics, to protect their privacy [187].

2.4 Evaluation

In this section the performance metrics and the classifiers are presented.

2.4.1 Performance metrics

The basic metrics that are applied for evaluating an authentication system depend on the error
rates. Following, a discussion on some basicevaluation metrics is made [4, 94, 127, 170, 187,
245]:

e The Confusion matrix is used to describe the performance of a classifier. In table 2 an
example of a confusion matrix is presented where there are two possible predicted classes:

"Genuine™ and "Impostor".

Table 2: Confusion matrix.

Actual Class
Genuine Impostor
Predicted Genuine TA FA
Class Impostor FR TR
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Where:

e TA (True Acceptance) is the number of patterns belonging to the genuine user and ranked

correctly as “Genuine”.

e TR (True Reject) is the number of patterns not belonging to the genuine user and ranked

correctly as “Impostor”.

e FA (False Acceptance) is the number of patterns not belonging to the genuine user and

ranked mistakenly as “Genuine”.

e FR (False Reject) is the number of patterns belonging to the genuine user and ranked

mistakenly as “Impostor”.

Based on the above, the True Acceptance Rate (TAR), False Acceptance Rate (FAR), False
Reject Rate (FRR), Accuracy and Equal ErrorRate (EER) are estimated as follows [127]:

e True Acceptance Rate (TAR) is the conditional probability of a pattern to be classified in

the class “Genuine” given that it belongs to it. TAR is given by the formula:

TAR = —2—, (1)

TA+FR’

e True Reject Rate (TRR): is the conditional probability of a pattern to be classified in the
class “Impostor” given that it belongs to it. TRR is given by the formula:

TRR = —— (2)

 FA+TR

e False Acceptance Rate (FAR) is the conditional probability a pattern to be classified in the

class “Genuine” given that it does not belong to it. FAR is given by the formula:

FA
FAR = FA+TR’ (3)

e False Reject Rate (FRR) is the conditional probability a pattern not to be classified in the

class “Genuine” given that it belongs to it. FRR is given by the formula:
FR
TA+FR’ (4)

e Accuracy is defined as the probability of a correct classification of a pattern. Accuracy is

FRR =

given by the formula:
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TA+TR ( )

Accuracy = ———,
TA+TR+FA+FR

Equal Error Rate (EER) is the point at which the false acceptance rate (FAR) and false
rejection rate (FRR) are equal. [170].

In addition, the following metrics are often used:

Decision threshold: the claimed identity is considered genuine, thus accepted, when its
matching score exceeds a predefined threshold a € (0, 1). In case the matching score of the
claimed identity does not exceed the predefined threshold, it is perceived as an impostor,
thus rejected. The formula for calculating the decision rule is the following [11]:

Genuine, P(ui)=a (6)
Impostor, P(ui) <a'’

P(ui) = {

where a expresses a predefined threshold and p(ui) expresses the score for a user ui

authentication.

Receiver Operating Characteristic (ROC) Curve demonstrates the performance based on
TAR and FAR. The ideal point is represented by the top left corner where TAR equals one
and FAR equals zero [11, 94]. The Area Under Curve (AUC) is used as an alternative to

accuracy and the values range between 0 and 1 [11].

Mean Absolute Error (MAE): the average of all absolute errors, described in the following

formula [4]:
MAE = ! , V.|, (7
—i§=1|}’i AN,

Where: n = the number of errors, X = summation, |y; — 3,|= the absolute errors.

Mean Squared Error (MSE): measures the average squared error of model’ s predictions.

where y; is the expected output and y; is the prediction of model [4]:
1% e
MSE = ;Z(yj — y]) ,(8)
j=1

Root mean squared error (RMSE): is the square root of the average of squared differences

between prediction and observation [4]:
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RMSE = [>37 (- 5,)" (9)

Half Total Error Rate (HTER): is equal to the aggregation of FAR with FRR divided by 2.
Decreased HTER, signifies better system performance. The HTER is calculated with the

following formula [99]:
HTER = =222, (10)

Manhattan distance (Rectilinear distance L1): is the sum of the lengths of the projections
of the line segment between the points onto the axes of coordinates [107]:

d(a,b) = Z?leai - bi|1 (11)

Euclidean distance L2: is the length of the line segment connecting points a and b ( ab)
[107]:

d(a,b) = /3 ,(a—D)?, (12)
Dynamic Time Warping (DTW) distance metric: It can shortly be described as an algorithm
that can align temporal sequences and measure their similarities. More information can be
found in the work of Zhao et al. [171].

2.4.2 Classifiers and machine learning algorithms

The purpose of this thesis is not to analyze each classifier; they are solely reported with a
citation, in case someone is seeking for more information to easily find it. The algorithms
that encountered are: Random Forests [61], Support Vector Machines (SVM) [62], Bayesian
Networks [63], J48 tree [63], Multi-layer Perceptron (MLP) [63], Naive Bayes [63],
Instance-Based Learning Algorithms [48], Dynamic Time Wrapping (DTW) [66], k-Nearest
Neighbors (kNN) [135], Long Short-Term Memory (LSTM) [88], Logistic Regression used
as a classifier [136], Cycle detection [132], Manhattan method [107], isolation Forest [26],
Hidden Markov Model (HMM) [27], Convolutional Neural Networks (CNNs) [106], Feed
Forward Neural Network (FFNN) [28]], Generalized Regression Neural Networks (GRNNSs)
[40], Least Squares Anomaly Detection (LSAD) [42], Radial Basis Function networks
(RBF) [46], Modified Edit-Distance algorithm (M-ED) [119], Ordinary Least Squares
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regression (OLS) [130] and Strangeness-based Outlier Detection algorithm (strOUD) [86].

2.5 Classification and analysis

In this section, a classification of BB and CA on mobile devices into seven categories is
presented. The first category is walking gait, the second category is touch gestures, the third
category is keystroke dynamics, the fourth category is behavioral profiling, the fifth category
is hand waving, the sixth category is power consumption, and the seventh category is fusion.
Also, an analysis of behavioral biometrics collection methodologies and feature extraction and
the existing publicly available datasets is provided. All behavioral traits can be categorized in

these seven categories:

2.5.1 Walking Gait

This recognition technique is comparatively new and is based on the measurement and analysis
of an individual’ s manner of walking or running by using the acceleration signals produced
by his/her mobile device. The characteristic of gait is amenable to smartphones due to their
incorporated sensors, namely accelerometer, gyroscope, and magnetometer. The main
advantage of this technique is that it can be applied to CA of users without requiring their
intervention. However, factors such as the changing orientation of the device during walking
[132], uneven ground, possible injuries, footwear, fatigue, personal peculiarities, etc. can affect

its accuracy [86].

e Data Collection: The accelerometer is used to collect data when subjects are walking in
normal, slow, and fast speeds. For estimating the smartphone’s orientation in the
participants’ pocket, gyroscope data is used. Finally, the combination of accelerometer,
gyroscope and magnetometer data allows for calculating the motion patterns of the human
body [86].

e Feature extraction: The features used in the literature of walking gait analysis are speed,
orientation, and human body motion patterns. The sensors in use are the accelerometer, the

magnetometer and the gyroscope which respectively measure along the local X, Y, Z axes
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of the device the acceleration in m/s2, the ambient geomagnetic field in uTesla and the rate

of rotation in rad/s [86,94,103].

2.5.2 Touch Gestures

The touch gestures are shapes drawn by hand on the mobile devices touch screen that comprise

of a single, or multiple strokes. Each stroke is a series of successive numerical coordinates.

Features such as touch direction and the touch duration, the velocity and acceleration of

movement are analyzed and measured solely or in combination with each other.

Data Collection: The smartphone touch screen sensor is used for collecting touch data.
Actions of input associated with parameters such as speed, velocity, size, length, direction
or pressure, are converted into a gesture output template. These parameters are different
between users and indicate the behavior of each, thus consisting the basis of the touch

gesture authentication systems [86].

Feature extraction: The collected data from users are extracted and analyzed to identify
each user by his distinctive set of features. When the finger touches the mobile device
screen whether it strokes or swipes it produces a series of touch data as shown in the

following formula [84]:
Sy = (% yo topi, 4,0/ ,0P"),i = (1,2, ..., N}, (13)

where x;,y; are the location points, ¢; are the time stamps, p; is the finger pressure on
screen, 4; is the finger blocked area, o/ is the finger orientation and 0" is the device

orientation (portrait or landscape) and N represents the total number of swipes.

2.5.3 Keystroke dynamics

The procedure of recording the typing keyboard inputs of an individual on a mobile device and

the effort to identify him via an analysis based on his tapping habits is called keystroke
dynamics [11,16].

Data collection: Some researchers on keystroke dynamics collect data from predefined
texts, for example during the typing of a text message, or during the log-in session when
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entering passwords [40, 41,43,110,111]. Others conduct their research by collecting data
not restricted on predefined sentences or passwords [42,44]. In both cases the results are of

high accuracy.

e Extracted features: Duration, latency, pressure and location are the features used in the

literature of keystroke analysis as explained following [105,110]:

e Duration is also called hold time and corresponds to the period of time elapsed

between the action of pressing and the action of releasing a key.

e Latency is also called inter-key time and is expressed by the time period elapsed

between the action of releasing a pressed key until pressing the next key.
e Pressure is the pressure on a key.
e Location are the finger location points (x;,y;) or the finger area on screen.

Also, Kambourakis et al. [256], introduced touchstrokes adding the features of distance and
speed as input data. For data collection they used a predefined password and a predefined phrase.

The extracted features were:

e Distance, which is the distance in pixels between two successively pressed virtual

buttons.

e Speed, which is calculated as the quotient of the distance between two successively

pressed virtual buttons divided by the inter-time for this event to complete.

2.5.4 Behavioral profile

The usage data of a mobile device can be employed for the behav- ioral authentication of
individuals on the basis that they usually follow a specific pattern when using their phones
to interact with applications and digital services [2]. The behavioral profile of a user can be
built either based on his interaction with a network or with a host. In the first case the behavior
of users is monitored regarding their patterns of connecting to Wi-Fi networks, service

providers, etc., while in the sec- ond case the monitoring refers to the usage manner of
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applications at different locations and time [94].

Data Collection: Device usage data can be used in several combinations for the
profiling of users. For example, Anjomshoa et al. [115] have used a self-developed
behaviometric mobile application, namely TrackMaison to collect usage data resulting
from the inter- action with five social network services such as location and session
duration and usage frequency. Neil et al. [50] have used Wi-Fi, Bluetooth and application
usage data. Fridman et al. [118] used the device location, applications used, the text
entered, and the websites visited. Ashibani et al [156] used the interaction patterns of users
while connecting to their home network, via a hub, to access and control 10T devices from
their smartphones. Their model authenticated users based on the Android applications’
access logs. In another study of Ashibani and Qusay [169] they authenticated users based
on the events of mobile device application access in a smart home environment. Lee et al.
[157] used SmarterYou, a system that combined three devices, a smartphone, a
smartwatch, and an authentication server in the cloud. The smartwatch was used to
monitor the raw data from the accelerometer and the gyroscope sensors and send the
information to the smartphone via Bluetooth. The server in the cloud was used for
computations and protection of data. Acien et al. [158], used the combination of touch
gestures, keystrokes, applications usage data, WiFi, and GPS location while users
interacted naturally with their smart- phones. They examined two scenarios depending on
the number of sessions. The first scenario included one session (One-Time
Authentication), while the second scenario included multiple sessions (Active
Authentication).

Feature extraction: In the work of Anjomshoa et al. [115] the Track Maison application
collected spatiotemporal information regarding the usage of social network services. In
addition, when TrackMaison was recording a session, it utilized the incorporated GPS of
the device and recorded the location coordinates where the session initiated. Periodically
it updated users’ location. In the dataset used by Neil et al. [50] all data types included the

date and time of data capture and the identification number of users. For the application
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usage data, the available information additionally included the name of the accessed
application. For the Bluetooth usage data, the available information further included the
name of the sighted Bluetooth de- vice, the Received Signal Strength (RSSI - dBm) and
the MAC address. For the Wi-Fi usage data the available information addi- tionally
included the SSID (network name), the Received Signal Strength (RSSI — dBm) and the
Access Point’s MAC address. Regarding the four modalities studied by Fridman et al.
[118], they counted the action’s instances related to each modality of TEXT, APP, WEB
and Location. Ashibani et al. [156] concentrated on the usage patterns of Android
applications which consisted of the length and time of activity when users were accessing
the network. Ashibani and Qusay [169] used the smart home hubs to collect the
application access history including user id, timestamp, and name of the package. Lee et
al. [157] used the accelerometer and the gyroscope sensors of the smartphone and the
smartwatch to record the walking patterns and the manner of holding the smartphone.
Regarding the application usage data, WiFi, and GPS location, Acien et al. [158] used
timestamps and the frequency of the events, while for touch gestures they used the data of
X, ¥, and z coordinates of the gyroscope and the acceleration vector from the accelerometer
in each time stamp. For keystroke dynamics, they used hold time, press-press latency, and

press-release latency.
2,55 Hand waving

The waving pattern of the wrist of an individual, while interactingwith his mobile phone
or just holding it, for identifying users has recently gained attention. This method does not
require any additional action by the user besides holding the device. Several features can be
used such as wrist twisting, speed, waving range and frequency. Individuals can be
distinguished since the waving of their hand is different [97].

e Data Collection: Sitova et al. [38] captured Hand Movement, Orientation, and Grasp
(HMOG) by recording the readings from the accelerometer, gyroscope and magnetometer
sensors. They captured the device orientation and subtle movement deriving from the

manner an individual taps on the smartphone after grasping and while holding it. Yang et
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al. [100] selected the three-axis accelerometer sensor to measure the phone’s acceleration
during the waving action. Buriro et al. [98] collected the movement patterns of hand(s)
resulting from the accelerometer, gyroscope, magnetometer, orientation and gravity
sensors to profile users.

Feature extraction: The features of grasp resistance and grasp stability can be extracted
when users tap on the screen [38]. The resistance of a hand holding the device during a
tap is measured by the grasp resistance features while the amount of time elapsed for the
influence of movement caused by the tap to disappear is measured by the grasp stability
features. The grasp resistance and grasp stability features can be extracted from the
accelerometer, the gyroscope, and the magnetometer sensors (magnitude, X, y, and z axes).
Also, some common features in hand waving extracted from each sensor are median,
mean, standard deviation, mean absolute deviation, unbiased standard error of the mean,

unbiased skewness and kurtosis [98].

2.5.6 Power Consumption

The fact that patterns of user behavior are highly correlated to the patterns of power

consumption constitute the basis of this approach [129]. Power consumption is not used as a

single identifier on biometric systems but in combination with other biometrics [86].

Data Collection: Murmuria et al. [86] measured the power consumption resulting from the
activities performed by the user by using the incorporated sensors of the battery driver of
mobile devices namely the voltage and current sensors. In another work of Murmuria et al.
[130], they collected information regarding the power usage from the power suspend
driver. They recorded the power usage of the CPU, display, graphics, audio, microphone,
Wi-Fi, and GPS.

Feature extraction: The voltage is reported by the sensors to the kernel of the operating
system in units micro-volts (uV) and the current in micro-Ampere (UA). The battery charge
is reflected on the voltage readings while the quantity drawn by the Operating System is

reflected on the current readings and depends on the kind of activities performed [86]. The
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power-management module of the operating system reported the use of each subsystem’s
time shares. Based on these measurements, they calculated the power consumption of each

application [130].

2.5.7 Fusion

In this section an analysis of the fusion achieved by a single sensor using multiple instances
of a biometric and the fusion achieved by multiple sensors is made. The focus will be
made on multimodal behavioral biometrics fusion. The purpose of multimodal systems is
to access multiple sources of information from different modalities and improve the
authentication accuracy [23]. Several researchers have used multi-modal behavioral
biometrics traits, such as touch gestures, hand waving, behavioral profile, keystroke dynamics,
walking gait, etc., to authenticate users [1,24,25]. According to Sanderson and Paliwal [14]

fusion levels are divided into two categories:

a. Pre-classification or fusion before matching: Pre-classification refers to fusion at the

sensor level (or raw data) and the feature level.

0 Sensor-level fusion is the unification of raw data obtained using multiple sensors or

multiple instances of a biometric using a single sensor.

0 In feature-level fusion, the feature sets originating from multiple biometric algorithms

are unified into a single feature set.

b. Post-classification or fusion after matching: Post-classification refers to fusion at the

match score, rank and decision levels.

In match score-level fusion the combination of the match scores output resulting from multiple
biometric matchers generates a new match score, which is thereafter used by the authentication
system to achieve a decision. When a biometric system operates, the ranking of the enrolled
identities constitutes the system’s output. This output expressesthe sorting of all possible sets
of matching identities in decreasing order of confidence. In decision level fusion the majority

voting approach is mostly used where the input of a biometric sample is attributed to that
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identity on which the majority of the matchers agree [20]. There is alarge corpus of research
works referring to fusion. More information can be found in the following works: [17—
22,90,108].

2.6 Publicly available datasets

There are some publicly available datasets like the one in the work of Mahbub et al. [166] that
can be used for research purposes. This dataset was designed for biometric identification
and it contains smartphone sensor signals collected from 48 volunteers over a period of 2
months. The data collected include the front-facing camera, touchscreen, gyro- scope,
accelerometer, magnetometer, light sensor, GPS, Bluetooth, WiFi, proximity sensor,
temperature sensor, and pressure sensor. The authors also stored the timing of screen lock and
unlock events, start and end timestamps of calls, currently running foreground applications,
etc. Another publicly available dataset is the itekube — 7 touch gestures dataset which was
created from Debard et al [106] and it contains 6591 touch gestures of 7 different interaction

classes.

Other publicly available datasets can be found in the works of Reyes- Ortiz et al. [164] and
Casado et al. [165] which, although were not initially intended for biometric identification
they could be used for that purpose. The dataset of Reyes-Ortiz et al. [164] was originally
proposed for the recognition of human activity and it contains raw data from the inertial
sensors (accelerometer and gyroscope) of a smartphone when carried by 30 different users.
The dataset provided by Casado et al. [165] contains raw data from the accelerometer,

gyroscope, and magnetometer of a mobile device when carried by 77 different people.

2.7 Conclusion

One major challenge for BB research is the small number of real-world datasets and the
availability of a public behavioral biometrics database for research purposes [10]. There are
some available datasets as in the work of Mahbub et al. [166] and Debard et al [106] that can
be used for research purposes. Other publicly available datasets can be found in the works of
Reyes-Ortiz et al. [164] and Casado et al. [165] which, although were not initially intended
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for biometric identification, could all be used for that purpose. Also, many users avoid
participating in time consuming, painstaking procedures for the collection of biometric
features. This results in not fulfilling the data collection procedure. For this reason, the
testing of a methodology for extracting biometric features, in a user-friendly way,
constitutes an open problem. Also, BBCA technology is of limited extent due to some
fundamental deficiencies, as, the Biometrics Privacy Concerns (BPC) of users [1]. There are
two approaches to data collection and data processing. In the first approach, which is device-
centric, data is collected and processed in the device itself, while in the second approach, data
is sent to a central online server. Users may be concerned about their sensitive information
and thus, research should focus on ways to preserve user privacy. This can be achieved by
processing behavioral measurements on the user’s mobile and that sensitive information is
not sent to the online service. Also, in the work of Shila et al [102], it was shown thatthe
device-centric implementation of authentication outperformed the cloud-based authentication
in terms of classification accuracy and detection latency. In addition, particular attention
should be given to the anonymization of behavioral biometrics data when these are collected
for research purposes. If reliable and effective anonymization is not achievable, then specific

permission or consent should be obtained, in accordance with applicable law.

In systems developed to provide security services, we aim for a small FAR andwe can
sacrifice the FRR to achieve low FAR. In systems that we are interested in friendliness, we
want the opposite. TAR is actually the reverse of FAR. EER and Accuracy are more generic
metrics that show the overall performance of the algorithm. EER is the error rate that is
achieved by tuning the system’s detection threshold thus much that FAR and FRR are equal.
Accuracy is the percentage of samples that are classified accurately [170]. There are more
specialized indicators such as ROC, MAE, HTER, RMSE, etc. The ROC curve demonstrates
the de pendency between the FAR, FRR, and detection threshold of the system. It is used to
show how threshold values affect the overall accuracy of the algorithm. The Half Target Error
Rate (HTER) is the average between the FAR and FRR at a random threshold. MAE measures
the average magnitude of the errors in a set of predictions, without considering their direction.

It is used as a combined metric of FAR and FRR. RMSE is the square root of the average of
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squared differences between prediction and observation [4]. It is used to estimate how the
model fits the data and itis an alternative for MSE which is used for the same purpose.
Research works should include at least the FAR, TAR, FRR, EER, and Accuracy when
evaluating the performance of their approach. In this way, a comparison between the different
approaches will be feasible. Finally, when an authentication approach is evaluated,
researchers should also weight and report the amount of data from each user that is necessary
for each approach to be effective, the computational and communication cost, and the usage
of battery, memory, and CPU. Future research should also measure those aspects to enable

the comparison.
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Literature Review

3.1 Introduction

Behavioral biometrics authentication techniques are built based on an individual’s behavioral
characteristic such as walking gait, touch gestures, keystroke dynamics, behavior profiling,
hand waving, power consumption and fusion. A plethora of research works have been
published. A literature review focusing on the performance of machine learning systems is
presented. Each technique is evaluated separately, but a comparison based on performance
metrics cannot be made, as not all researchers use the same metrics. However, for each system,

there is at least one of the five basic metrics, namely FAR, TAR, FRR, EER, and Accuracy.

3.2 Relevant surveys

Recently published surveys, such as Crawford [87] and Yampolskiy & Govindaraju [89],
refer to a single behavioral biometric. More specifically Crawford refers to keystroke
dynamics and Yampolskiy & Govindaraju to behavioral profiling. Similarly, Ashbourn [91]
refers to keystroke dynamics. Ferrag et al. [154] present electrocardiographic signal (ECG),
keystroke and touch dynamics while Rui et al. [155] also consider voice recognition. Jain et
al. [92] name two modalities used in CA, that is walking gait and keystroke dynamics, while
Rogowski et al. [93] also consider the modality of touch gestures. Meng et al. [9] present four
CA behavioral biometrics and also refer to morphological bio- metrics or behavioral
biometrics not used for CA. Mahfouz et al. [11] present touch and keystroke dynamics,
behavioral profiling and gait recognition. Finally, Abdulaziz and Kalita [94] provide a more
extensive list of CA behavioral biometrics, including walking gait, touch gestures, keystroke

dynamics, hand waving, and behavioral profiling.

52



The existing aforementioned surveys are quite old; thus, they contain very few references to
recent literature. In addition, there is no reference to attack points on behavioral biometrics
and countermeasures exceptfor the work of Meng et al. [9]. Therefore, there is a striking lack
of an up-to-date, thorough, exhaustive, and focused survey on CA and BB that would include
the previously mentioned issues. The survey attacks exactly these topics focusing on BB and
CA approaches amenable to mobile devices. The goal is to cover all BB for CA categories,

attack vectors and defense techniques.

3.3 Walking Gait

Feng et al. [29] investigated the application of two different verification methods the
Trajectory Reconstruction and the Statistic Method. They extracted certain features and
identified users from the motion data. Users executed the movement of picking up their phone
while sitting/standing stationary or walking. They concluded that user movements (walking)
strongly affect the accelerometer data and the verification performance. They used an SVM
classifier and achieved 7.09% Equal Error Rate when sitting/standing stationary and 6.13%
while walking by the Trajectory Reconstruction and the Statistic Method respectively. They
concluded that user movements (walking) strongly affect the accelerometer data and the

verification performance.

Muaaz and Mayrhofer [132] used a self-developed android application to collect gait data
(from tri-axis accelerometer data) from a smartphone that was placed in the trouser pocket of
35 individuals while they walked with normal pace. To compensate the orientation error
produced by the movement of the device during walking, they modified the data processing
steps and employed magnitude data, in addition to wavelet-based de-noising modules.
Furthermore, they used a modified version of a cycle length estimation algorithm as it was one
of the fundamental prerequisites of automatic cycle detection employed in their work. Their

method achieved 7.05% EER for a walking session.

Al-Naffakh et al. [30] used the accelerometer and gyroscope of a smartwatch to collect data
from 10 individuals while walking during two five-minute sessions on a flat surface on two

different days with their natural walking speed. Users also chose on which arm they would
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wear the smartwatch. They observed that test subjects had different patterns of movement and,
thus, walking gait could be used to transparently and continuously authenticate individuals. In
an antecedent research using smartwatches, Al-Naffakh et al. [31], presented two experiments
on Same, Mixed, and Cross Day situations. Their results showed that the technology is
sufficient to discriminate individuals by their gait characteristics. With data from the Same day
they achieved 3.12% and 0.13% EER for gyroscope and accelerometer respectively, while in
the evaluation of the Cross Day situation they achieved 7.97% and 0.69% for the same sensors.
Simultaneously, Kork et al. [101] collected gait data from 50 individuals by using five
wearable sensors that were placed to different areas on the body in addition to a smart- phone
held in hand. Data were collected while users performed slow, normal and fast walking paces.
In these three different walking scenarios the Equal Error Rate ranged from 0.17% to 2.27%
for the wearable sensors, while for the smartphone the Equal Error Rate ranged from 1.23% to
4.07%.

Shila et al. [102] developed dCASTRA (deep CASTRA), a user verification service which
was device-centric and constituted an improved version of a previous service named CASTRA
built by the same authors. They extracted gait features for user classification by employing
Long Short-Term Memory (LSTM) Recurrent Neural Networks. They also extracted segments
of walking by using the Google Activity Recognition Service API. For their experiments, they
used data from 15 individuals while they walked from the accelerometer and gyroscope
sensors. Their system achieved the identification of users in less than 6 seconds with greater
than 99.95% accuracy. In addition, they reported that for learning an efficient model the
required amount of data was 60K samples using a 50Hz sampling rate and the minimum

duration was 20 minutes.

Baek et al. [159], developed a gait- based authentication framework, named LiSA-G which
successfully authenticated and identified 51 users by using the accelerometer and gyroscope
sensors of a smartwatch. They applied two scenarios, where, in the first scenario users walked
normally towards a smart home system and in the second scenario they walked normally

towards a smart car system. Their framework extracted the walking gait and movement of
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arms and achieved 8.2% EER by using the Random Forest classifier, while they needed
fewer features and less amount of sensor data, specifically they needed 37 features and 100

data samples respectively, in comparison to other works [95,160,161] for authentication.

Table 3: Walking gait modality research works.

Method Publications Platform Classification Performance (%)

Accuracy EER

[29] in 2013 smartphone SVM 6.13
[132] in 2014 smartphone Cycle detection 7.05
[31] in 2017 smartwatch MLP 0.13
Walking
gait [101] in 2017 wearable-smartphone Manhattan method 0.17
[102] in 2018 smartphone LSTM 99.95
[159] in 2019 Smartwatch Random Forest 8.2

3.4 Touch gestures

On the issue of user authentication based on touch gestures, Saevanee et al. [32] used finger
pressure and keystroke dynamics (hold-time and inter-key) to investigate the behavioral input
manner of users. They used a notebook touch pad to collect data and made analysis by the k-
NN classification method. The finger pressure achieved 1% EER, the hold-time 30% and the
inter-key 35%. Later, Frank et al. 33], used natural navigation gestures on the touchscreen of a
smartphone such as up-down and left-right scrolling, to investigate whether these gestures
could be used for continuous authentication. They extracted 30 touch features and used a
Gaussian RBF kernel support vector machine and ak-nearest neighbor classifier to train
user profiles. For inter-session authentication they achieved 2%-3% median equal error
rate, while for intra-session authentication they achieved 0%. In the case where they
carried out the authentication one week after the enrollment the equal error rate achieved
was below 4%. Their method could be implemented to extend screen-lock time or to

constitute a part of an authentication system based on multi-modal biometrics.
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Later, Li et al. [34] designed a system to continuously re-authenticate smartphones users based
on biometrics. They divided participants in 25 target users and in 47 non-target users and
selected 8 sliding and tap features. Finger and touch movements of the owner were compared
with the current user’s finger movement patterns for verification. For classification they used
a Support Vector Machine. The highest accuracy achieved was 95.78% for the sliding up
gesture. Also, they measured the computation time for their system to make the classification,
which was 17 milliseconds. Meanwhile, Zhao et al. [35], used shapes and intensity values of
movement and pressure respectively, that were represented by a feature of their own design
named Graphic Touch Gesture Feature (GTGF). They used six commonly used touch gestures
divided into three datasets. Their method was proven effective since it achieved 2.62% Equal
Error Rate when the six gestures were combined. At the same time Serwadda et al. [148],
compared 10 classification algorithms based on their performance for touch gestures. They
collected data by two self-developed Android applications while users scrolled/swiped back
and forth in landscape and portrait orientation of the screen and computed 28 features to
represent a stroke. The logistic regression classifier achieved the lowest mean EER of 10.5%,
whereas the J48 tree classifier achieved the highest mean EER of 42% across population.

Afterwards, Bo et al. [36] designed SilentSense which was a software-based decision
mechanism for smartphones. This mechanism obtained information regarding the usage of
applications and the interacting behavior with each application performed by the user from the
system API and measured the device’s reaction by using the motion sensors. The user was
identified as the owner, or a guest based on his actions and the corresponding reaction of the
device. The performance of SilentSense was evaluated in walking and static scenarios and
achieved over 99% identification accuracy. Both false rejection (FRR) and false
acceptance rates (FAR) were lower than 1% after collecting only 10 actions. In addition,
they achieved significantly low error rates for user identification when they combined
touch signatures with walking patterns. At the same time, Xu et al. [37] used the keystroke,
slide, handwriting and pinch operations on the touchscreen of a smartphone to authenticate
users. The best performance achieved by their system was lower than 1 % EER for the slide

operation, while for all operations it achieved an EER lower than 10%. Simultaneously,
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Feng et al. [66] presented an application named TIPS, for the authentication of users based
on the location of touch, and the length and curvature of swipe on the touchscreen of three
different brands of smartphones. For classification they combined Dynamic Time Warping
(DTW) with the One Nearest Neighbor (LNN) classifier and achieved approximately 90%
accuracy. Apart from the performance evaluation of their touch- based authentication
application they also calculated its power consumption which was 88 mW on average and

the battery usage was approximately 6.2%.

Following, Buriro et al. [39] built a system that profiled the user based on his/her finger
movements on the touchscreen while signing or writing and the movements of the device.
They tested their mechanism on a dataset of 30 volunteers and achieved a True Acceptance
Rate (TAR) of 95% with a False Acceptance Rate (FAR) of 3.1% by using a Multilayer
Perceptron (MLP). Also, they measured the power consumption and the required time for
authentication of their system which was approximately 1000mW and 0.215 0.250s,
respectively. Filippov et al. [96] built an authentication system using the data resulting from
the interaction of twenty-one users with the touch screen of a smart- phone. They gathered
2000 features from seven different gesture typesof swipe while users interacted with the
smartphone. Their system was evaluated with the use of the Isolation Forest method and
achieved values of FRR and FAR equal to 6.4% and 7.5%, respectively. Moreover, their
system was able to detect the illegitimate user in seven performed actions.

Shen et al. [104] collected touch data from 102 subjects during three different operation
scenarios. More specifically participants hold the smartphone and performed touch actions
while sitting, standing still or walking, or they used one hand for the touch operations while
the smartphone was placed on a desktop. The best performance among all three operation
scenarios was achieved when participants hold the smartphone and performed touch actions
while sitting or standing still. More specifically, the FAR was 3.98%, the FRR 5.03%, and the
EER 4.71%. They also evaluated the battery, memory, and computation cost of their
application and reported that it consumed less than 4.5% of battery per-day, 5.6 Mbytes of
memory and it took approximately 110 ms to authenticate a user. Debard et al. [106] proposed
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the Convolutional Neural Networks, which used 2D filters for the recognition of touch
gestures on a touch surface. They used a dataset of 6591 touch gestures from 27 individuals.
They compared the performance of their method to the performance of the methods provided
by Hochreiter et al [172] and Liu et al [173] who used the LSTM classifier. The Convolutional
Neural Networks classifier used by Debard et al. [106] achieved 89.96% accuracy while the
LSTM classifier achieved 73.10% and 87.72% in the works of Hochreiter et al [172] and Liu
et al [173], respectively.

Yang et al. [126] used behavioral biometrics of touch and based on anomaly detection they
developed a CA method for security-sensitive mobile applications named BehaveSense. Their
study was based on the fact that only a few applications contain sensitive data. They used touch
gestures of click and slide. They collected 250,000 touch operations in total while 45
participants used the application “WeChat”. For classification they used Isolation Forest and
One-class SVM Method. For thesequence of touch operation their method achieved an average
accuracy of 95.85% when considering 9 touch operations. They also calculated the energy
consumption of their method which was 6.82 mAh, while the average calculating time was
less than 0.01 seconds.

Algarni et al. [181] used the accelerometer and gyroscope sensors of a smartphone to collect
data resulting from keystroke dynamics, touch gestures, and hand waving. They divided
their data into two groups, namely short-term activities and gestures. Data from the short-
term activities included the data collected while participants were using a smartphone and
executed specific typing and hand waving tasks. Datafrom gestures included data that were
collected while participants were holding the smartphone in their hand and performed
predefined swiping, drawing, and hand waving gestures. They evaluated their method by
using 3 different classifiers, namely SVM, Random Forests, and Bayes Net. Regarding the
group of short-term activities, the best performance was achieved while participants typed a
predefined sentence. More specifically, they achieved 76.20% accuracy, and 0.133 RMSE,
by using the Random Forest classifier. Regarding the group of hand gestures, the best
performance was achieved while participants performed two different gestures. The first

58



gesture was the drawing of a circle with their right hand and the second was the drawing of
a triangle with their righthand. In the first gesture, they achieved 92.81% accuracy, and
0.1218 RMSE, while in the second gesture, they achieved 92.81% accuracy, and 0.1178
RMSE. In both gestures, they used Random Forest for classification.

Table 4: Touch gestures modality research works.

Method Publications Classification Performance (%)
FAR TAR Accuracy FRR EER RMSE
[32] in 2008 k-NN 99 1
[33] in 2012 k-NN & SVM <4
[34] in 2013 SVM >88.28
[35] in 2013 L1 distance 2.62
[148] in 2013 logistic regression 10.5
[36] in 2014 SVM <1 99 <1
[37] in 2014 SVM <1
Touch
gestures [66] |n 2014 Comb|nat|0n Of 90%
DTW with INN
[39] in 2016 MLP 31 95
[96] in 2018 Isolation Forest 7.5 6.4
[104] in 2018 HMM 3.98 5.03 4.71
[106] in 2018 CNNs 89.96
[126] in 2019 Isolation Forest 95.85
[181] in 2020 Random Forest 92.81 0.1178

3.5 Keystroke dynamics

Most techniques are based on a specific context with predefined text. Clark and Furnell [40]
authenticated users based on the user’s patterns of typing when entering text messages and
telephone numbers. By using Multi-Layer Perceptron (MLP), Radial Basis Functions (RBF)
and General Regression Neural Network (GRNN) classifiers, they achieved an average EER
of 12.8%. In another study, Feng et al. [41] asked participants to enter 4-digit passwords during
the log-in session and a predefined sentence of 20 characters during the post-login session. The
keystrokes were collected by an Android application. The authentication performance during
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the log-in session achieved an FRR approximately 11.0% using Bayes Net. In the post-login
stage, the Random Forest algorithm outperformed the other two (8.93% vs 19.78% and
14.26%FAR). Simultaneously, Draffin et al. [44] collected keystrokes from 13 participants
in a real-world study in a three weeks period. They did not intervene and collected 86000
keystrokes not restricted to passwords or predefined sentences. By using Feed Forward
Neural Network for classification they achieved 86% accuracy after 15 keypresses with 14%
FAR and 2.2% FRR.

Later, Buschek et al. [42] asked 28 participants to type 20 times 6 different passwords in non-
specific order and in three different hand postures. By using the Least Squares Anomaly
Detection, they achieved 17% EER when combining pressure with spatiotemporal features.
Following, Zhang et al. [110] collected time and pressure-related data from 10 students while
they typed the same password by using a self-prepared Android App. Their user authentication
model was based on an RBF network and achieved 10.3% false positive rate and 91.7% true

positive rate.

Kambourakis et al. [256], collected data from 12 individuals in two scenarios. In the first
scenario, participants typed a predefined password where no mistakes were allowed. In the
second scenario they typed a predefined phrase and mistakes were allowed. In both scenarios,
the input process was repeated for 12 times for each individual. For the first scenario, the best
results were achieved with Random Forest while for the second scenario, the best results were
achieved with KNN. More specifically, the average FAR%, FRR%, and EER% values for the
first and second scenarios were 12.5, 39.4, 26 and 23.7, 3.5, 13.6, respectively.

Darren and Inguanez [111] collected data from the input of 15 predefined sentences during
four different typing scenarios. Participants could choose one of the four scenarios: One
Handed Stationary, Two handed Stationary, One Handed Moving, Two handed Moving. All 4
activities had to be completed by the smartphone owner. All their results, using a Least Squares
SVM classifier with RBF kernel, achieved around 1% EER, with one-handed scenario being
the best at 0.44% EER, 100% accuracy, 0% FAR and 1 % FRR Krishnamoorthy [43] classified
users based on keystroke dynamics, by applying machine learning concepts. Participants typed
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a specific password to record their typing characteristics. She effectively identified each of 94
users who participated achieving an identification accuracy of 98.44% when using the random

forest classifier.

Table 5: Keystroke dynamics modality research works.

Method Publications Classification Performance (%)

FAR TAR Accuracy FRR EER

[40] in 2006 MLP, RBF, 12.8
GRNNs
[41] in 2013 RF 8.93
J48 19.78
Bayes 14.26 11.0
Keystroke [44] in 2013 FFNN 14 86.0 2.2
Dynamics [42] in 2015 LSAD 17.00
[110] in 2016 RBF 91.7 10.3
[256] in 2016 Random Forest 125 39.4 26
KNN 23.7 3.5 13.6
[111] in 2018 SVM 0 100 1 0.44
[43] in 2018 RF 98.44 2.2

3.6 Behavioral profiling

Neal et al. [50] developed a method to profile users based on Blue- tooth sightings, Wi-Fi
access points and application usage. To produce matching scores, they utilized a categorical
nearest-neighbor classifier. They achieved 80% identification rate when using Bluetooth, 93%
when using Wi-Fi, 77% when using applications and 85% when combining the features.
Following, Anjomshoa et al. [115] presented TrackMaison, a mobile application tool, which
kept track of the manner smartphone users made use of five social network services via the
usage of data, the usage frequency, the location and session duration. By using their tool, they
conducted a study on several user profiles in Instagram and showed that users which are highly
active can be identified with 3% FAR.

Fridman et al. [118] suggested an authentication method that regards the user’s application
and website logs, the keystroke dynamics and the location of the device as defined from the

Wi-Fi or the GPS. Their data collection involved behavioral biometrics from 200 participants
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who used their smartphone for 30 days. They used the support vector machines (SVMs) and
the equal error rate (ERR) achieved by their authentication system was 1% after 30 minutes of

interaction and 5% after 1 minute.

Later, Mahbub et al. [119] used unique application usage data and handling the unexpected
events in the data. They collected data for approximately six months, from 218
participants. These data included the device location, the installed, removed or updated
applications, the currently running foreground application, etc. They divided their dataset
into three categories, namely: “all observations” category, “all except the ones with
unknown applications” category and “all without un-foreseen observations” category.
The number of training samples that they used were 500. By using the M-ED algorithm their
method achieved an EER of 34.31% in the “all observations” category, 42.47% in the “all
except the ones with unknown applications” category and 43.29% in the “all without
unforeseen observations” category. Moreover, their method detected an intrusion in 2.5

minutes of application use.

Alotaibi et al. [162] employed the usage patterns of specific applications to identify and verify
users on mobile phones. More specifically, they collected data from 100 individuals while they
used their device as usual, and employed the applications of Phone Call, SMS, Download,
YouTube, WhatsApp, Browser, Google Play, Email, Viber, Google Photo, Camera, and Yahoo
mail. Each individual participated in the data collection procedure for one month. Their
approach succeeded in successfully identifying users by their behavioral profiling, with
26.98% average EER and the Gradient Boosting Classifier.

Pang et al [180] developed an application to collect data from seven modalities from a
smartphone, namely, LOCATION, ACTIVITY, APP, BLUETOOTH, WiFi, CALL, and SMS.
They evaluated the performance of their approach by using different classifiers. The best
results were achieved with the MineAuth method which was 98.5% accuracy. The authors also
measured the running time, the power consumption, the CPU, and memory usage of their
approach. They reported that the total running time was 90.601 ms. More specifically, the

running time for behavior construction was 87,759 ms, for habits mining and authenticator it
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was 2310 ms, while for the decisionmaker it was 532 ms. Thetotal power consumption was
0.37%. More specifically, the power consumption for behavior construction was 35% MB, for
habits mining and authenticator it was 0.01%, while for the decisionmaker it was 0.01%. The
total CPU usage was 46.85%. More specifically, the power consumption for behavior
construction was 15.30%, for habits mining and authenticator it was 16.10%, while for the
decisionmaker it was 15.45%. The total memory usage was 186,29MB. More specifically, the
memory usage for behavior construction was 75.10 MB, for habits mining and authenticator
it was 60.2 MB, while for the decisionmaker it was 50.99 MB.

Table 6: Behavioral profiling modality research works.

Method Publications Classification Performance (%)
FAR Accuracy EER
[50] in 2015 Categorical Nearest- 93
Neighbor
[115] in 2016 KNN 3
Behavioral [118] in 2017 SVMs 1
profiling [119] in 2018 M-ED algorithm 3431
[162] in 2019 Gradient Boosting 26.98
[180] in 2019 MineAuth method 98.5

3.7 Hand waving

Sitova et al. [38] used Hand Movement, Orientation, and Grasp (HMOG) to continuously
authenticate smartphone users. They used readings from the accelerometer, gyroscope, and
magnetometer sensors to capture orientation features and subtle micro-movement as the user
grasps, holds, and taps on the smartphone. They evaluated their mechanism by collecting data
under both walking and sitting circumstances. They achieved 7.16% EER when walking and
10.05% when sitting by combining HMOG, keystroke features and tap. Also, they measured
the energy consumed by their system to compute the 18 HMOG features from the

magnetometer, accelerometer and gyroscope sensor readings which was 0.08 joules.
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Yang et al. [100] employed the waving patternsto lock and unlock the smartphone in a system
named OpenSesame. They collected data from 200 subjects and used an SVM classifier.

The result from their experiment achieved 15% mean FAR while the FRR <8%.

Later, Buriro et al. [98] developed an authentication mechanism by using the micromovements
of the user’s hand(s) within a few seconds after unlocking his smartphone. They collected data
from the smart- phone sensors and more specifically from the gyroscope, the accelerometer,
the gravity, the orientation and the magnetometer. On a dataset of 31 volunteers their
mechanism achieved a 96% TAR at 4% EER using the Random Forest classifier.

Table 7: Hand waving modality research works.

Method Publications Classification Performance (%)

FAR TAR FRR EER

[38] in 2015 SVM 7.16
Hand
n [100] in 2015 SVM 15 8
waving
[98] in 2017 Random Forest 96 4

3.8 Power consumption

Zhang et al. [15] presented Power Tutor, a power consumption monitoring model on
electronic devices which utilized the battery sensors. The absolute average error rate
achieved by their model was lower than 10%. Murmuria et al. [130] showed that the
operation state of a smartphone’s device driver affects its power consumption. They succeeded
in attributing power consumption to applications with lower than 4% error rate by using the
Ordinary Least Squares regression analysis. More specifically for the applications Logger,
Music, Sound Recorder and GPSTracker the EERs were 3.69 %, 1.27 %, 0.74 % and 3.68%

respectively.

Shye et al. [129] presented a model to estimate power that was tested on 20 users for more
than a week. They used a self-developed logger application to record the activity of users and

showed that power consumption patterns are differentiating greatly among users. They found
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that this approach was not effective since they could not profile users on the basis of power

consumption patterns.

Murmuria et al. [86] used a machine learning based approach that involved three different
modalities: power consumption, physical movement and, touch gestures to continuously
monitor users. They collected data from 73 participants while they used facebook and chrome.
They applied the Strangeness-based Outlier Detection algorithm for each modality and
achieved an EER that ranged from 6.1% to 6.9% depending on training times that varied
between 20 and 60 minutes and sufficient data. They deployed their approach and created the
kryptowire system which is available on the market [51]. This application employs the
embedded sensors of mobile devices including power consumption, physical movement and,
touch gestures to identify users based on the way they interact with their device and within

the contextof each mobile application.

Table 8: Power Consumption modality research works.

Method Publications Classification Performance (%)
EER
[15] in 2010 PowerTutor model >10
Power Consumption [130] in 2012 OLs >4
[86] in 2015 StrouD 6.1

3.9 Fusion

Saevanee et al. [24] conducted a study where they first employed behavior profiling,
keystroke dynamics and linguistic profiling as single modalities to discriminate users and
achieved error rates of 20%, 20% and 22% respectively. Following, they combined behavior
and linguistic profiling with keystroke dynamics by applying matching-level fusion and
increased the reliability of continuous authentication systems with an overall EER of 8%
with MLP classifier.

Later, Zheng et al. [52] combined four features for a PIN typing action on a smartphone

touch screen (acceleration, pressure, size, and time). They collected tapping data from
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more than 80 users and they first evaluated the performance of the modalities as single
modalities and following they measured the results of fusing these modalities. The fusion
achieved better results in comparison to the single modalities results. More specifically,
the size modality, as a single modality achieved 27% EER, the pressure modality
achieved 16% EER, the time modality achieved 14% EER, and the acceleration modality
achieved 10% EER. When they combined the modalities of size, time and acceleration
they achieved 3.65% EER with k-NN classifier.

Buriro et al. [53] used features collected from 26 participants while they unlocked a
smartphone before answering a call. They collected features of slide swipe, the manner of
moving the arm while carrying the device towards the ear and recognition of voice. They first
evaluated the modalities as single modalities and achieved 22.28% FAR and 4.84%FRR for
the slide modality, 26.69% FAR and 6.19% FRR for the pickup modality and 63.92% FAR
and 12.69% FRR for the voice modality. Intheir multimodal system they incorporated the
features of slide and pickup and enhanced the unimodal result, with 11.01% FAR and 4.12%
FRR while the final HTER was 7.57% using the BayesNet classifier. The computation time
required for the same classifier was 64, 762 and 205 ms for the slide, pick up and voice

modalities respectively.

Kumar et al. [134] investigated if arm movements while walking can be used for user
authentication. In their experiments, they used the accelerometer and the gyroscope sensors
of a smartwatch to extract 32 acceleration and 44 rotation features respectively. They used the
rotation and acceleration of arms and their fusion at the feature level to build three different
continuous authentication designs. They implemented these designs by four classification
algorithms resulting in twelve authentication mechanisms and tested these mechanisms in
three different environments where participants wore the smartwatch on their wrist and
walked naturally. They first evaluated the performance of the modalities as single modalities
and achieved a mean dynamic FAR 0f2.6% and a dynamic FRR of 4.3% for the acceleration
modality and 4.2% dynamic FAR and 10.5% dynamic FRR for the rotation modality.
Following they deployed score level fusion at the feature level with the k-NN classifier and

66



the best results achieved were 2.2% dynamic FARand 4.2% dynamic FRR in the inter-
phase environment. The authors also reported the number of features vectors that were in the

training data setwhich was 156 for both the authentic and impostor users.

Shrestha et al. [64], applied a multi-modal walking biometrics approach, namely Walk
Unlock ZIA(WUZIA) on a Zero-Interaction Authentication (ZIA) system. ZIA is a paradigm
where a legitimate user caries a prover device and walks towards a verifier device which
unlocks automatically [49]. They used the accelerometer, gyroscope and magnetometer of a
smartphone and a smartwatch to collect data from 18 individuals. The smartphone was placed
in their pocket to record hip movement and the smartwatch was worn on their wrist to record
hand movement. Participants walked towards the verifier device which would unlock and
respond to the prover device only after it detected the legitimate user’ s walking patterns.
First, they evaluated the performance of the watch which achieved 0.46% FRR and 0.63%
FAR and the phone which achieved 0.18% FRR and 0.36% FAR. Following they combined
the watch with the watch and achieved the almost error free FRR of 0.2% and FAR of 0.3%
on average with the Random Forest classifier. Their results showed that their approach
detected with high accuracy a legitimate or a non-legitimate user when using both of the
aforementioned devices. ZIA systems are already deployed in several real-world applications
like BlueProximity [174], Keyless-Go [175], PhoneAuth [176], and access control
systems based on wearable devices like the iWatch [177]. BlueProximity [174] enables
the unlocking of a computer screen when the user approaches the computer and holds a
mobile device. Keyless-Go [175], allows users to start and lock their car just by having
the key with them. PhoneAuth [176], is deployed based on the scenario where users, for
example, walk towards an Internet kiosk to navigate to a web page and they type their
username and password to log in. Following, PhoneAuth stores the cryptographic
credentials on the user’s phone. If the phone is present when the user logs into a site, then
it will ascertain the user’s identity via Bluetooth with the computer’s browser. The iWatch
[177] when it is in close range to iPhones and Macs it allows the legitimate user to log in
without using a pin or a password. Hence, WUZIA can be implemented in a traditional

ZIA system such as BlueProximity [174], Keyless-Go [175], PhoneAuth [176], and the
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iWatch [177]. More specifically WUZIA can be implemented in BlueProximity [174]
simply by changing the app and without changing the terminal software. WUZIA can
also be implemented on systems like Keyless-Go [175] where the key has incorporated
RF capability and processor.

Haq et al. [121] applied micro-environment sensing to build a three-class smartphone user
classification scheme based on physical activity recognition. They employed time and
frequency domain features to recognize physical activities such as walking, running, etc. They
used a probabilistic scoring model to recognize the activity patterns and subsequently classify
users as authenticated, restricted access user or guest user (supplementary) and impostor.
Their scheme granted full access to authenticated users, restricted access to supplementary
users and zero access to impostors. For their experimentsthey used a dataset created by Shoaib
et al. [120,123]. To enhance their authentication scheme, they took into account the work
of Yang et al. [124] regarding the smartphone’s position sensitivity issue and incorporated
micro-environment sensing, meaning the awareness of the smartphone’s close surroundings.
For this purpose, they selected five different body positions to place the smartphone while
users performed physical activities. The body positions were the wrist, the upper arm, the
waist, the left and right thigh, and were considered as the smartphone’s close surroundings.
Their authentication model was trained not only to sense the smartphone’s position on the
human body but to also combine it with the performed physical activities of each user. First,
they evaluated the modalities as single modalities and reported that they achieved an average
accuracy of 97.55% when the smartphone was placed to the waist, 98.57% when the
smartphone was placed to left thigh, 98.01% when the smartphone was placed to right
thigh, 95.45% when the smartphone was placed to the upper arm, and 96.85% when the
smartphone was placed to the wrist. Following, they combined data from the accelerometer,
gyroscope and magnetometer sensors and achieved an average accuracy rate of 97.38% by
the Bayes Net classifier where the average error rate was 0.027 MAE and 0.086 RMSE. They
also reported that the best TAR achieved was 0.95 for the impostor with the smartphone
placed in his waist and the best FAR was 0.03 and achieved for the supplementary user when

the smartphone was place on his waist and his left thigh. They also measured the energy
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and storage cost oftheir application and reported that it consumed between 5% and 11.2% of
energy depending on how frequently the users were moving and maximum 1.8 MB of storage
per day. In addition, they measured the required time for the BayesNet classifier to perform
authentication and reported that it was 5.61 seconds.

Li and Bours [122] developed a mobile application authentication method in which they
collected and analyzed data from four resources: gyroscope and accelerometer sensors,
Bluetooth, and Wi-Fi. With the scores from the aforementioned resources they performed a
score-level fusion. The 321 participants who joined the experiment were free tochoose when
and where they would open the App while performing seven different activities and carrying
the smartphone at a different position. For the gyroscope features the EER achieved was
28.12% while for the accelerometer features the EER achieved was 36.11%. The best EER
achieved by their method was 9.67% for the score-level fusion with data from all four

resources and Random Forest classifier.

Later, Buriro et al. [125] built an authentication mechanism named AnswerAuth that was
based on the behavioral biometrics of smartphone users. More specifically, AnswerAuth
utilized the manner users slide the screen’s lock button to unlock the smartphone and bring it
close to their ear. Data were recorded by using the incorporated sensors of the smartphone,
i.e., touchscreen, accelerometer, gyroscope, gravity and magnetometer. Their dataset derived
from 85 individuals while they unlocked the smartphone in three different positions, namely
walking, standing, and sitting. They reported that the best results achieved were the fusion of
the slide operation with the bringing the device towards to the ear while users were standing.
Specifically, they achieved a TAR of 99.35% and 98.98% accuracy by using the Random
Forest (RF) classifier.

At the same time, Volaka et al. [178] used the touch-screen data(scroll), and data from
the accelerometer and the gyroscope sensors from the HMOG dataset, as provided in the
work of Sitova et al. [38]. First, they evaluated only the touch-screen data using the LSTM
classifier and achieved an average accuracy of 88%, an average TAR of 78-79%, and an EER
of 16%. Following, they evaluated the combination of touch-screen data and data from the
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accelerometer and achieved an average accuracy of 89%, an average TAR of 79%, and an
EER of 16%. Next, they evaluated the combination of touch-screen data and data from the
gyroscope and achieved an average accuracy of 89-90%, average TAR of 80-81%, and an
EER of 14%. Finally, they evaluated the combination of touch-screen data and data from the
gyroscope and the accelerometer and achieved an average accuracy of 88%, an average TAR
of 78%, and an EER of 15%.

Simultaneously, Lamiche et al. [179] used the gait patterns resulting from the accelerometer
and the keystroke dynamics while 20 users walked and typed a predefined sentence. They
evaluated their method under four different scenarios, by using different classifiers, and by
applying a feature level fusion method to profile users by using both modalities of walking
gait and keystroke dynamics. In the first scenario, users walked naturally while the
smartphone was placed in the pocket of their trouser and achieved 96.54% accuracy and 9%
EER with the Random Forest classifier. During the second scenario, users walked naturally
while they were holding the device on their hand and theyachieved 97.34% accuracy and 6%
EER by using the Random Forest classifier. In the third scenario, users answered a phone call
while they were walking and achieved 98.1% accuracy and 0.3% EER with the Random
Forest classifier. During the fourth scenario, users typed a predefined sentence while they
were walking and they achieved 99.11% accuracy, 0.684% average FAR, 7% FRR, and 1%
EER by using the Multilayer Perceptron (MLP) classifier.

Following, Abuhamad et al. [182] presented a continuous authentication method based on
deep learning, named AUToSen. The performance of their method was evaluated by using
LSTM on four differentsets of data. The data collected included touch screen data such as
sliding or tapping while participants interacted with their smartphones, and sensor data from
the accelerometer, the gyroscope, the magnetometer, and elevation, while the individuals
performed various physical activities. These data were divided into four groups. The first
group included data from the accelerometer, the gyroscope, the magnetometer, elevation, and
touch screen data. The second group included data from the accelerometer, the gyroscope, the
magnetometer, and elevation. The third group included data from the accelerometer, the
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gyroscope, and the magnetometer, while the fourth group included data from the

accelerometer and the gyroscope. The authors showed that their method achieved 0.41% EER,

0.95% FAR, and 6.67% FRR, by using sensory data of one second, from only three sensors,

namely the accelerometer, the gyroscope, and the magnetometer.

Table 9: Fusion research works.

Method Publications Classification Performance (%)
FAR TAR EER MAE RMSE  HTER

[24] in 2011 MLP 8
[52] in 2014 k-NN 3.65
[53] in 2015 BayesNet 11.01 757
[134] in k-NN DFAR 2.2
2016
[64] in 2016 Rand. Forest 0.3
[121] in Bayes Net 0.03 0.95 0.027 0.086

Fusion 2017
[122] in Random forest 9.67
2018
[125] in Random Forest 99.35
2019
[178] in LSTM 78 15
2019
[179] in MLP 0.684 1
2019
[182] in LSTM 0.95 0.41
2020

3.10 Discussion on behavioral biometrics

In this section, a discussion on the machine learning and deep learning models that were

previously presented is made. Of course, there are corresponding interesting research works

in the field of IoT Environments as well as for wearable devices, e.g. [252, 253, 254], but

which will not be presented in detail since they are outside the research area of this thesis.

Unfortunately, a comparison of the performance of machine learning algorithms cannot be
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made givenin the literature because researchers use different evaluation criteria and different

kinds of data to evaluate machine learning algorithms. However, the best results achieved

in each category are presented. Moreover, a summary of some advantages and

disadvantages of the Methods is made as shown in table10. A discussion on each modality

follows:

Gait: As shown above, the walking gait modality can be efficiently used to transparently
and continuously authenticate individuals as this modality sufficiently discriminates
different users by their gait characteristics [31]. An accuracy of 99.95% was achieved by
using the Long Short-Term Memory (LSTM) Recurrent Neural Networks classifier [102];
while an EER of 0.17% and 0.13% was achieved by applying the Manhattan method [101],
and the MLP classifier [31] respectively. In addition, the walking gait modality can work
without user intervention or additional hardware apart from the smartphone embedded
components. However, movements of users while walking, for example the MDP motion
(the movement of picking up their phone to the ear), strongly affects the accelerometer
data and the verification performance [29].This is due to Einstein’s principle of
equivalence [45] according to which the acceleration data incorporates the effect of motion
acceleration as well as the gravity acceleration. To solve this, Feng et al. [29] removed the
accelerometer data and emphasized on gyroscope and magnetometer data and increased
the performance result. An additional disadvantage is that the accuracy can be negatively
affected due to the uneven ground, possible injuries, footwear, fatigue, personal
peculiarities, etc. [86]. As highlighted in the work of Shila et al. [106] machine learning
techniques are used in the design of walking biometrics and current methods are either
based on feature extraction for model training or they cannot learn the time series data.
Thus, they constitute a major challenge, leading to an increased number of false positives
and false negatives. To extract temporal features and successfully classify users, they used
adeep learning architecture, namely LSTM (Long Short-Term Memory) Recurrent Neural
Net- works. In the same work, they also compared the performance of LSTMs to CNNs
and reported that while both achieved an excellent performance, the latter are more difficult

to train since they required four hours while the former only thirty minutes.
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Touch gestures: The touch gestures modality combines several touch operation patterns
and achieves very good results. The k-NN and the SVM classifier achieved 99% accuracy
in the works of [32] and [36] respectively, while SVM and Isolation forest classifiers
achieved an average accuracy of 95.85 [126]. Subsequently, touch biometrics hold much
promise as a method for the passive and continuous authentication of individuals [37].
Moreover, for the collection of data no additional equipment is required except for the
incorporated device sensors. When an individual performs touch gestures the dynamic
nature of this action results in a test sample that can in part noticeably vary from prior
training samples of the same individual. For this reason, an authentication system
might reject the testing sample, in case it expects an individual to perform the gestures in
the same manner [137]. A dataset that contains millions of samples is necessary to
realistically evaluate the performance of an authentication system based on touch gestures
[11]. So far, the biggest sample comprises of 250,000 touch operations [126]. Debard et al
[102] mentioned the issue of sequential data classification in touch gestures that present
different sums of data per time. They used Convolutional Neural Networks (CNN) and
improved the recognition rate in comparison with the commonly used Recurrent Networks.
More specifically, Debard et al. [106] achieved 89.96% accuracy while the LSTM
classifier achieved 73.10% and 87.72% as reported in the works of Hochreiter et al. [172]
and Liu et al [173], respectively.

Keystroke: The authentication of users with- the use of keystroke dynamics modality
requires no additional equipment apart from the built-in sensors of the device. In addition,
it is non-intrusive and efficient in capturing the users’ patterns without disturbing them.
Moreover, the results of the authentication of users with the use of keystroke dynamics
modality are of high accuracy. The SVM and the Random forest classifier achieved an
EER of 0.44% and 2.2% in the works of [111] and [43] respectively; while the RBF
classifier achieved 91.7% TAR [110]. A disadvantage of an authentication system based
on keystroke dynamics is the inconsistent performance if users perform inconsistently.
Behavioral profiling: The behavioral profiling approach is based onthe assumption
that the majority of users tend to perform similar tasks due to their habitual nature [77].
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Thus, in case users interact inconsistently with their mobile phones results in unreliable
performance which constitutes a major deficiency [11]. Nevertheless, the results of the
authentication of users with the use of behavioral profiling are of high accuracy. The
SVM classifiers achieved 1% EER in the work of [118], while in the work of [180] the
MineAuth method achieved 98.5% accuracy. The KNN achieved 3% FAR. The CNN
achieved 93% accuracy and the M-ED algorithm achieved an EER of 34.31%. Finally,
this method does not require any additional hardware apart from the embedded
smartphone components.

Hand-waving: Regarding the hand-waving modality very little research is conducted. The
random forest classifier has achieved 4% EER in [98]. This approach does not involve any
user interaction. For the collection of motion data, no additional equipment is necessary
except for the incorporated device sensors.

Power consumption: The power consumption modality cannot be used to efficiently
profile users as a single modality [129], but only in combination with other behavioral
biometric modalities [86]. The measurement of power consumption resulting from the
user’s activities does not require any additional equipment apart from the incorporated
sensors of the device’s battery driver [15]. An .EER smaller the 4% was achieved by using
the OLS classification [130].

Fusion: A plethora of combinations is used for the authentication of individuals with
the fusion of biometrics, which achieves improved results compared to single modality
methods [24,52,53,64,122, 134]. For example, in [24] the behavior profiling, the
keystroke dynamics and the linguistic profiling as single modalities achieved error
rates of 20%, 20% and 22% respectively. When combined by applying matching-level
fusion the reliability of the system increased with an overall EER of 8%, with MLP
classifier. In [52] the modalities of size, pressure, time and acceleration achieved EERs
of 27%, 16%, 14%, and 10% respectively as single modalities and when they were
combined, the EER was 3.65% with k-NN classifier. In the work of [53] when they
evaluated the modalities as single modalities, they achieved 22.28% FAR and 4.84% FRR
for the slide modality, 26.69% FAR and 6.19% FRR for the pickup modality and 63.92%

74



FAR and 12.69% FRR for the voice modality. When they incorporated the features of slide
and pickup into their multimodal system, they enhanced the unimodal result, with 11.01%
FAR and 4.12% FRR using the BayesNet classifier. In the work of [134] the performance
of the modalities as single modalities achieved a mean dynamic FAR of 2.6% and a
dynamic FRR of 4.3% for the acceleration modalityand 4.2% dynamic FAR and 10.5%
dynamic FRR for the rotation modality. When the authors deployed score level fusion at
the feature level with the k-NN classifier they achieved 2.2% dynamic FAR and 4.2%
dynamic FRR in the inter-phase environment. In the work of [179] they achieved 99.11%
accuracy, 0.684% average FAR, 7% FRR, and 1% EER by using the Multilayer Perceptron
(MLP) classifier, while users were walking and typed a predefined sentence. In the work
of [64] the evaluation of the performance of the watch achieved 0.46% FRR and 0.63%
FAR, while the phone achieved 0.18% FRR and 0.36 % FAR. When they combined the
watch with the watch, they achieved the almost error free FRR of 0.2% and FAR of 0.3%
on average with the Random Forest classifier. In the work of [122] the gyroscope and
the accelerometer features achieved EERs of 28.12% and 36.11%, respectively. When the
author applied score-level fusion with data from all four resources and Random Forest
classifier they achieved 9.67% EER. The only work where a single modality achieves
better results in comparison with fusion results is the work of Hag et al. [121]. Specifically,
when the authors evaluated the modalities as single modalitiesthey reported that average
accuracy achieved was 97.55% when the smartphone was placed to the waist, 98.57%
when the smartphone was placed to left thigh, 98.01% when the smartphone was placed to
right thigh, 95.45% when the smartphone was placed to the upper arm, and 96.85% when
the smartphone was placed to the wrist. When they combined data from the accelerometer,
gyroscope and magnetometer sensors they achieved an average accuracy rate of 97.38%
by the Bayes Net classifier. As it is shown, the single modalities of the smartphone being
to the upper arm or when it is placed to the wrist achieved better results. The random forest
achieved 99.35% TAR in [125]. The random forest classifier also achieved very good
results in the deployment of WUZIA [64] scoring 0.2% FRR and 0.3% FAR on average.
A drawback of the WUZIA approach is that it incorporated the use of a smartwatch as an
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additional token. The collection of data requires no additional equipment apart from the

built-in sensors of the device. Compared to unimodal biometric systems these systems are

evoking interest regarding their implementation in large scale authentication systems even

though they involve more computational cost, they take higher processing time and

require more storage [138, 139].

Table 10: Advantages and disadvantages of each method.

Methods Advantages Disadvantages
The verification performance is greatly affected by Mobile
Continuous Authentication. Ri\éllﬁgcplilgg %euﬁe( I\g:ijvpe)l m;#g&é); gzirib uneven ground
Walking Gait Can work without user intervention. y 9 y g '

Touch Gesture

Keystroke
dynamics

Behavioral
profiling

Hand waving

Power
consumption

Fusion

Doesn’t need additional hardware.

Continuous Authentication.
A promising method.
Doesn’t need additional hardware.

Continuous Authentication.
Doesn’t need additional hardware.
Doesn’t disturb users.

High accuracy of results.

Continuous Authentication.
Doesn’t need additional hardware.

Continuous Authentication.
Does not require any interaction.
Doesn’t need additional hardware.

Continuous Authentication.
Doesn’t need additional hardware.

Continuous Authentication.
Achieves improved results.
Doesn’t need additional hardware.

possible injuries, footwear, fatigue, personal peculiarities,
etc.

Noticeable variations in the testing sample Research is
conducted on small-scale samples.

Doesn’t work well if users perform inconsistently.

Doesn’t perform well if users perform inconsistently.

Very little research is conducted.

Cannot profile users solely on this basis.

Require more storage.
More processing time.
Higher computational and power cost.

As it is shown, most of the works presented in this chapter are using the zero-effort evaluation

approaches to test the performance of their authentication systems. The zero-effort attack is

based on the sufficient similarity of the templates between the attacker and the legitimate user

and relates to the uniqueness property of a biometric characteristic. It does not involve any

sophisticated action by the adversary. An adversary attack involves sophisticated action by
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the attacker to successfully impersonate a legitimate user. The level of sophistication strongly
depends on the available resources such as digital or physical means, time, and information
regarding the biometric system and the victim [95]. Therefore, there is a need to shift from
the zero-effort to high-effort evaluation approaches to see the actual performance of the
systems under the spectrum of today’s possible threats. Inaddition, user behaviors and habits
may change over time, thus authentication systems should be able to adapt to these changes.
A paradigm that could be employed towards this direction is Continual Learning [163, 167,
168]. This framework can train successfully deep discriminative models as well as deep
generative models in complex continual learning scenarios where new tasks appear, and
existing tasks change over time.

Also, most researchers employ commonly used machine learning techniques, and only a
few used deep machine learning. Debard et al. [106] employed CNNs in the category of
touch gestures and Shila et al. [102] used LSTMs and CNNs in the category of walking gait.
Therefore, it is impossible to make a comparison between them since they are only a few and
they belong to different categories of behavioral biometrics. In the work of Shila et al. [102]
they showed that LSTMs are faster to train that CNNs but they both performed excellently.
Finally, there are several additional aspects of machine learning on mobile devices that should
be taken into consideration when evaluating an authentication approach. These aspects
include the amount of data from each user that is necessary for each approach to be effective,
the computational and communication cost, and the usage of battery, memory, and CPU.
However, most researchers do not measure these aspects in their works. Still, a presentation
of all the research work that measure these aspects their results is made in table 11, that
follows. Future research should measure those aspects to enable a comparison of each method
based on these aspects. Moreover, researchers should at least weight and report the FAR,
TAR, FRR, EER, and Accuracy when evaluating the performance of their approach. Also,
they should measure and report additional aspects of machine learning such as the amount of
data from each user that is necessary for each approach to be effective, the computational and
communication cost, and the usage of battery, memory, and CPU. In this way, it will be
feasible to make a comparison between the approaches.
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Table 11: Research works that measured additional aspects of machine learning.

Method Publications Classification Performance
Computation Memory CPU Battery Necessary ~ Necessa Necessary Necessary
time for usage usage consumption ~ amount of ry amount of amount of
authentication data for duration features for data samples
training of authentication for
training authentication
Walking  [102]in 2018 LSTM 60K 20
gait ) samples minutes
[159] in 2019 Random forest 37 100
[34]in 2013 SVM 17 ms 88 mW on
average
Touch [66] in 2014 DTW with INN = 6.2%
gestures 391 in 2016 MLP 0.215-0.250s 1000mwW
[104] in 2018 HMM 110 ms 5.6 Mb 4.5%
[126] in 2019 Isolation Forest 0.01s 6.82 mAh
Behavioral [119] in 2018 M-ED 500
profiling algorithm samples
[180] in 2019 MineAuth 532 ms 186,29M  46.85% 0.4% 87,759
method b ms
Power [86] in 2015 StroubD 20-60
consumpti min
Fusion [134] in 2016 k-NN 156
[121] in 2017 BayesNet 561s

3.11

Possible attack vectors on BBCA systems

As mentioned previously, there is a need to shift from the zero-effort to high-effort evaluation
approaches to see the actual performance of machine learning and deep learning models under
the spectrum of today’s possible threats. In this section a review on possible attack vectors on

CA systems is made.
3.11.1 Practical attack techniques

A behavioral biometric system could face several threats such as malware and a form of
shoulder surfing attacks, mimic, impersonation, spoofing, replay, statistical, algorithmic,

robotics, etc. These attacks can be divided into two general categories zero-effort or passive
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attacks and adversary or active attacks. The zero-effort attack does not involve any
sophisticated action by the adversary. It is based on the sufficient similarity of the templates
between the attacker and the legitimate user and relates to the uniqueness property of a
biometric characteristic. An adversary attack involves sophisticated action by the attacker to
success- fully impersonate a legitimate user. The sophistication level of an adversary attack
strongly depends on the available resources such as digital or physical means, time, and

information regarding the biometric system and the victim [95].

Biometric researchers focus more on mimicry attacks since they do not involve any
modification of the authentication system or the device and can be launched easily and
unnoticeably on any biometric-based authentication system. Three kinds of mimicry attacks
can be launched in authentication systems that are based on behavioral biometrics namely,
the zero-effort, the minimal-effort, and the high-effort mimicry attacks. In a zero-effort
mimicry attack, imitators are randomly selected by the attackers either from or outside the
database since they do not possess any information regarding the legitimate user. In minimal-
effort mimicry attack, imitators are selected by the attackers according to specific criteria
since they possess information regarding the legitimate user. In high-effort mimicry attacks,
imitators are intensively trained to successfully mimic the legitimate user [134]. Following

practical attacks and threats on walking gait, keystrokes and touch gestures are shown.
3.11.2 Attacks on walking gait

A number of studies examine the vulnerability of authentication based on the gait patterns of
an individual. The studies presented here refer to passive zero effort impostor attacks, active
impostor mimic at- tacks including minimal effort impersonation attacks [142] and attacks
after training of the adversary [60,64,95]. The aforementioned attackscan be divided in two
general categories passive or zero-effort attacksand active or adversary attacks. In an active
attack the attackers try to be accepted by the authentication system. They use two ways either
by changing their biometric in order to match another targeted person or by selecting a victim
based on information, for example the closest in the database, to verify themselves against the
template of this targeted person. Apparently, the attackers can combine both ways.
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Gafurov et al. [142] set two different scenarios, namely a friendly and a hostile scenario and
evaluated the performance of a gait authentication system based on wearable sensors. In both
scenarios, they collected gait patterns by placing a wearable accelerometer sensor to the hip of
test subjects. This method has been suggested, from the authors, for the unobtrusive
authentication of users on mobile devices. During the friendly scenario, they experimented by
launching a passive (zero-effort) attack. This means that individuals submitted their biometric
characteristics as if they were trying to successfully verify themselves against their own
templates, but in fact, their biometric characteristics were compared with a nonself template.
Participants walked in their customary way and an EER of about 13% and a recognition rate
of 73.2% was obtained by employing the averaged cycle method. During the second part they
launched a minimal-effort impersonation attack where participants tried to imitate the walking
manner of another individual after observation. Based on FAR error analysis the probabilities
for impostors being successfully allowed access did not increase. Within the third part, they
launched an attack based on the hypothesis that attackers were aware of their closest individual
in the database. This means that attackers selected an individual whose gait was the most
similar to theirs, which resulted in them becoming a great threat to the system.

Mijalaand et al. [133] extended the work of Gafurov et al. [142] by performing three differently
structured scenarios, namely a friendly, a short-term and a long-term hostile that involved 50
individuals. The system’s baseline performance within the friendly scenario was 6.2% in terms
of EER. During the short-term hostile scenario, they selected seven individuals whose gait
templates had a small distance between them. One of the participants acted like a victim while
the other six tried to imitate him individually. The attackers’ training lasted two weeks
watching videos with the walking manners of the victim. The comparison between the gait
templates of the victim and the attacker was made by employing the distance metric Dynamic
Time Warping (DTW). Regarding the long-term hostile scenario, while the training was the
same as in the short-term hostile scenario it was addressed to only one attacker and lasted six
weeks. The conclusion on this part of the work was that the attacker’s ability to learn how to

walk like the victim does not improve even if he is long-term trained.
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Kumar et al. [60] incorporated a digital treadmill in an attack scenario over a “baseline gait-
based authentication system (GBAS)”. First, they collected accelerometer readings to capture
walking pattern from 18 individuals by using a smartphone. Then, they tested the performance
of the GBAS on their dataset by using five different machine learning algorithms. The use of
random forest achieved the best results, specifically the FAR was 6% and the FRR was 3%.
Afterwards, they investigated the performance of the GBAS after three attack attempts. They
trained impostors to imitate their victims by using a digital treadmill to control gait
characteristics. Their attacks degraded GBAS’ s performance significantly and achieved an
increase in mean FAR regarding all attacks on all users for all classification algorithms. More
specifically the increase in mean FARs were 544% for logistic regression, 549% for Bayes
network, 580% for multilayer perceptrons, 590% for SVM and 742% for random forest. The
random forest classifier had the most degraded performance where the FAR of 6% increased
to 44.5%.

Muaaz and Mayrhofer [95] evaluated gait recognition security under a realistic imitation attack
scenario. Five specialists in body movement mimicking acted as attackers and four smartphone
users acted as victims. Attackers and victims were paired according to physical similarities
such as age, weight, height, etc. The attack scenario was conducted in two different phases, the
reenact and the coincide phase. During the reenact phase victims walked in normal pace with
the smartphone placed inside their trousers pocket while attackers observed them. Following,
attackers walked along with their paired victims to observe them more closely, and finally, they
tried to mimic their victim’s walking manner. During the coincide phase, the authors made an
analysis on the attackers’ imitation skills improvement while they Table walked close to their
victims. In both phases the False Acceptance Rate achieved was 0% showing that attackers
could not achieve sufficient scores and be allowed access to the system. Moreover, when
attackers imitated the walking style of their target person, they lost their steps pace and

impersonation became much more difficult in 29% of the attempts.

Shrestha et al. [64] conducted a three-fold evaluation of the use of walking patterns for
addressing the vulnerability of a Zero Interaction Authentication (ZIA) system. First, they
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designed and implemented a ZIA authentication system that used the sensors of a smartphone
and a smartwatch to extract walking characteristics and authorize access. Then, they evaluated
their authentication system under an imposter and a treadmill attack scenario. In the imposter
attack scenario, the imposter possessed the legitimate user’s smartphone and smartwatch and
tried to mimic his walking pattern and fool the authentication system. In the treadmill attack
scenario, the attacker used a treadmill to control gait characteristics and match the extracted
features from the walking pattern of the legitimate user. Their results showed that when both
devices were used, both attacks became hard to execute, achieving on average 4.55% FAR,
even if the attacker’s capabilities were high. Kumar et al. [134] in the authentication
mechanism described previously evaluated the performance under the zero-effort or random
attack without launching active attacks. The training of four classifiers included both genuine
and impostor samples. In the intra-session environment, a 0% mean dynamic FAR and a 0%
dynamic FRR was achieved by all mechanisms of authentication. In the inter-session
environment, the best error rates achieved were 2.2% mean dynamic FAR and 4.2% dynamic
FRR by the design based on feature level fusion with the k-NN classifier. In the inter-phase
environment, the DFAR and DFRR were increased from 5.68% and 4.23% to 15.03% and
14.62% respectively by the deployment of the design based on fusion at feature level and k-

NN classifier.
3.11.3 Attacks on keystroke dynamics

Several studies examine the vulnerability of authentication systems based on keystrokes.
In this section a presentation of four types of attacks is made including the Frog-Boiling
attack [151], the Algorithmic attack [150], Mimic attacks [83,146], and the Snoop-forge-
replay attack [131]. Studies that use virtual screen keyboards are included [146,150,151]
as well as physical keyboards [83,131] because they are similar and exhibit very interesting

findings.

The Frog-Boiling attack systematically alters the templates of target uses by poisoning
them via the template update mechanism to effectively direct them to a template which is
selected by the attacker [47, 151]. The Frog-Boiling attack was used by Wang et al. [151]
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to exploit a template update mechanism and poison the keystroke dynamics system user
templates. The attack increased the verifiers’ EERs from between 9.9% and 18.9% to
between 19.1% and 63.6% as it transformed well-performing users into ill-performing
users. Attackers with weak destination templates caused higher EER increases compared

to attackers with strong templates.

Serwadda and Phoha [150] investigated how a keystroke-based authentication system
performed when exposed to synthetic attacks that were mimicking the legitimate user.
They statistically analyzed keystroke data collected from more than 3000 users over 2
years to mimic the target user. Based on the observed statistical traits they designed and
executed algorithmic attacks over three keystroke verification systems that used a
password. The attack synthetically generated the keystroke sequence that corresponded to
the target user’s profile. Their algorithmic attack increased the Z-score, Scaled Manhattan
and Naive Bayes verifiers mean EERs by between 28.6% and 84.4% in comparison with
the zero-effort attacks which are commonly used to evaluate the keystroke-based biometric

systems performance.

Negi et al. [146] executed a scenario where an attacker gained access to the leaked
authentication information of a website (username and password). Then the attacker tested
if this authentication information could be used on a banking website that incorporated a
keystroke dynamics-based security layer. They experimented with two adversarial agents
of their own design: Targeted K-means++, and Indiscriminate K-means++, on various
datasets, and multiple state of the art classification algorithms. For Targeted K-means++
timing information about a given password was obtained simply by asking users on a paid
crowdsourcing platform (Amazon Mechanical Turk) to type the specific password.
Indiscriminate K-means++ was designed based on the idea that given the username and
password timing vectors can be generated if general population timing data for each key
is available. Timing data can be obtained from unsuspecting users by botnets and
keyloggers. Their experiments demonstrated that their attack algorithms were effective
across different settings. With Targeted K-means++ they succeeded within ten attempts to
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compromise the security in 40-70% of users. The Indiscriminate K-means++
compromised the security in 30-50% of users. Moreover, they showed that the K-means++

generalized well to touch screen swiping data.

Meng et al. [83] used an interface named mimesis which provided feedback to train
impostors in imitating another individual’ s typing patterns through the adjustment of their
typing patterns. They conducted their experiment with 84 individuals acting as impostors.
They set a prerequisite that the impostors obtained the victim’s typing patterns by two
different ways, either by extracting them from a compromised database or by capturing
keystroke samples as the victim authenticated using a keylogger. They used 2 eight-digit
passwords of different difficulty, and the false acceptance rate (FAR) of the difficult and
easy password increased from 20% and 24% respectively (before training), to 42% and
63% (after training with partial information of the victim). With full information of the
victim, the FAR increased to 99% for both passwords for the 14 best attackers, showing

that when a victim’s typing pattern is known, imitation is possible.

Rahman et al. [131] presented an attack on continuous verification systems based on
keystroke, named snoop-forge-replay. The attack’s execution involves three steps: 1)
stealing timing information of keystroke from a target user using a keylogger, 2) using the
stolen keystroke timing information to forge a typing sample, and 3) replaying the forged
typing sample in the continuous verification system. They launched the snoop-forge-
replay attacks by replaying stolen samples into the authentication system. The average
EERs achieved by the attack were between 0.487 and 0.912 depending on the number of
stolen keystrokes. The attack increased EERs from between 69.33 to 2730.55% since the

baseline EERs of the zero-effort attacks were between 0.03 and 0.285.

3.11.4 Attacks on touch dynamics

A considerable amount of research [33,34,149,255] has argued that an authentication system
based on touch encounters two main threats, namely, shoulder surfing and malware.
Specifically, [255] elaborates on the potential dual use of touch loggers, i.e., either offensively

as a keylogging malware or benignly as a continuous authentication application. Regarding
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shoulder surfing attacks Frank et al. [33] argued that an individual cannot learn the touch
behavior of another individual simply by looking over his shoulder. Also, the aforementioned
research has shown evidence that touch-based authentication systems hold a lot of promise for
zero effort attacks [57] because the illegitimate user that gains access to the device is prevented
by the mismatch between touch patterns. However, these attacks do not represent the entire

field of threats the system could face for two reasons [59]:

a) Users’ behavioral biometrics show a wide variance and overlapping between users
[56,153]. In case we extract statistics from a database with large population records
they could be used to generate forgeries and increase error rates [82,150].

b) The gestures on which continuous authentication is based can be easily implemented

using commercially available robotic devices.

Serwadda et al. [59] demonstrated the efficient use of a "Lego™ robot in creating forgeries that
accomplish disturbingly high penetration rates over touch-based authentication systems when
guided by input deriving from swiping statistics of the general population. They investigated
the attack’s impact by utilizing the best touch-based authentication classification algorithms
and discovered that it augmented the classifiers’ EERs by between 339% and 1004%
depending on factors such as the failure-to-enroll threshold and the touch stroke type that the
robot created. Their work raises doubt about the performance evaluating approach employed
in touch-based authentication systems, namely the zero-effort impostor approach. In another
study by Serwadda et al. [144] they used a robotic attack based on both population statistics
and patterns of a specific user. For the attack driven by population statistics, they used patterns
extracted from a large users’ population, while for the attack towards a specific user they used
stolen samples of a specific individual. By using seven verification algorithms they
demonstrated that in both attacks the performance of a touch-based authentication system
degrades significantly. For the algorithm that was the least affected, the population attack

caused a greater than 70% increase in FAR.

In Table 12 a presentation of the type of attacks and system performance after the attack is

made. In some cases, the minimum and maximum of EER is presented while in others the
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minimum and maximum of FAR and FRR. There are cases where the highest system error or

the percentage of error increase after the attack are presented. Finally, in some cases

compromise of the security of users is also presented.

Table 12: Practical attack techniques on behavioral biometrics.

Performance (%)

FAR Increase of Compromise of EER FRR
Biometrics Works Attacks .
system security of users
errors
Gafurov [142] Imitation 13
Mjalaand [133] Imitation 6,2
Kumar [60] Imitation 445
Walki i
alking gait Muaaz [95] Mimic 0
Shrestha [64] Mimic 4.55
Kumar [134] Zero effort DFAR2.2 DFRRA4.2
Wang [151] Frog-Boiling 19.1,63.6
Serwadda & Phoha [150] Algorithmic 84.4%
MEER
Keystroke . .
y Negi [146] Mimic 40-70, 30-50
dynamics
Meng [83] Mimic 99
Rahman [131] Snoop-forge-replay 48.5-91.2
Serwadda [59] Robotic 1004%EER
Touch dynamics
Serwadda [144] Robotic 70% FAR

3.11.5 Discussion on practical attacks

A discussion on practical attacks follows:
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3.11.5.1 Walking Gait

As previously shown, the attacks on gait refer to mimic attacks including impersonation attacks
of minimal effort and attacks after the adversary training. Research results on accelerometer-
based authentication systems demonstrated that the impersonation attack of minimal effort on
gait biometric will not increase the impostor odds of being accepted [142]. Moreover, even
when attacks are launched after the long- term training of the adversaries, their ability to learn
the target user’ s walking manner does not improve [133]. Imitation is a difficult task and even
when professional actors who are specialists in body motions and body language mimicking
and are of the same gender and other physical characteristics with the victim are trained as
impostors, they fail in being accepted by the authentication system [95]. On the contrary, in
the research of Gafurov et al. [143], it was reported that it is higher likely an impostor to be
accepted when being of the same gender with the victim. In addition, attackers who knew who
their nearest person in the database is became a threat to the authentication system [142]. Also,
Kumar et al. [60] by launching a treadmill imitation attack increased the average FAR from
5.8% to 43.66% and characteristically report that: “The authentication systems based only on
accelerometer readings are vulnerable to imitation attacks”. Of course, works like for example
Shrestha et al. [64] and Kumar et al. [134], suggest a multi-modal gait biometrics solution using
the accelerometer and the gyroscope. These two works use sensors which are placed at several
parts of the body and authenticate users based on their walking patterns. They also showed that
the fusion of these modalities improves the overall performance of the system and adds an
additional layer of defence against mimicry attacks of high-effort. These two works provide

serious evidence that they are a solution to the previous issue, but further research is necessary.

3.11.5.2 Keystroke

On keystroke-based authentication systems the following types of attacks were shown: The
Frog-Boiling attack [151], the Algorithmic attack [150], Mimic attacks [83,146], and the
Snoop-forge-replay attack [131]. Although, the performance of a biometric system is enhanced
when the templates of users are often updated, little research has been conducted on attacks

towards such update mechanisms. The Frog-Boiling attack is a synthetic attack that secretly
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exploits the update mechanism of users’ templates to poison them. The attack not only is hard
to detect but also has a great impact because it transforms users from well performing into ill
performing and the error rates increase. In fact, it not only allows illegitimate access to the
account of the victim, but the adversary also weakens the victim’s template. This aspect makes
the specific attack important, as the biometric system becomes vulnerable to intrusion from

many impostors and for a long time [151].

The foundation for the employment of keystroke biometrics in authentication systems lays in
the uniqueness property of typing patterns. A large body of research suggests that such patterns
are unique and hard to imitate, thus the research effort in this area has focused on detection
techniques to differentiate legitimate users from impostors. However, the imitation of the
legitimate user’s keystroke patterns can be done successfully by an impostor [83,146]. More
specifically, impostors can be trained to imitate another individual through the adjustment of
their typing pattern by using a training interface, given that they possess information on the
victim’s typing pattern. This information can be obtained either by a leaked database or by

installing a keylogger [83].

In case an attacker wants to mimic a target user’s typing pattern he can gather information in
other ways, for example by collecting samples from other individuals rather than the target
individual. Indeed, based on the hypothesis that the unique typing style of an individual belongs
to a greater group of similar styles; the set of keystroke timing patterns can be clustered into a
small number of clusters. Practically, this means that users with similar typing styles can be
grouped to the same cluster. By gathering information from the general population using
keyloggers or a crowdsourcing platform all such clusters can be created and mimic the typing
patterns of the targeted individual [146]. The mimicking of a target user can also be done by
an algorithmic attack that statistically analyses the keystroke data to synthetically generate the
keystroke sequence that corresponds to the target user’s profile [150]. Finally, in the case of
snoop-forge-replay attack only a small amount of the victim’s stolen timing information using
keyloggers was necessary to create forgeries and make the attack effective [131]. From the
above stems the fact that attackers can easily obtain a lot of keystroke data and extract the

88



statistics of keystroke feature in many different ways. Indeed, they can use bots, crowdsourcing
platforms, unsuspecting users by fooling them or extracting statistics of feature directly from
keystroke datasets that are publicly accessible. As shown, these attacks are highly effective and
consequently, there is a need for research on technologies that can defend against the previously

mentioned attacks.

3.11.5.3 Touch gestures

Several studies [33,34,149] have shown evidence that touch-based authentication systems are
much promising regarding zero effort and shoulder surfing attacks. The installation of a
malware application on the user’s device could result in a more effective attack if the attacker
has information on how to compute the features, since the malware can obtain and reveal the
legitimate user’s touch patterns to the attacker [33]. The case of a malware attack is quite likely
to be addressed by using an anti-malware software. However, if the user does not have anti-
malware, this attack is quite dangerous for the authentication system. Also, an adversary
accessing population statistics could gain much information on the patterns of a particular user
without needing a malware for monitoring him. In addition, sophisticated adversaries that can
use advanced robots, may render the attack even more successful.

Due to the attacks, several privacy issues are emerging. Some of these issues relate to the
behavioral biometrics themselves, for example, the leakage of biometrics from a malware, a
statistical, a robotic, etc., attacks. Apart from that, additional privacy issues emerge when
attacks are successful and users’ personal data are exposed. For the above reasons, research on
technologies that can defend against attacks that are based on population statistics as well as

robotic attacks should continue.
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3.12 Possible countermeasures on practical attacks on BB

There are three keyways for the enhancement of security in behavioral biometrics

authentication:

3.12.1 Adding features

Various features from the user’s behavior are possible to be extracted and used for the
enhancement of security in behavioral biometrics authentication systems. Feng et al. [149]
extracted data of touch from smartphones equipped with a touchscreen from 40 users and
obtained approximately 7.5% FAR at approximately 8% FRR using the random forest verifier.
Afterwards, a digital glove was worn by users that provided additional information on their
hands” movement. With the use of the digital glove they reduced FAR at 4.66% and FRR at
0.13% and enhanced security. Several studies showed that pressure features are extremely hard
for an impostor to imitate. Zhao et al. [35] combined pressure features with six touch traces for
mobile devices authentication and achieved an EER of 2.62%. Wolf et al. [128] combined data
from the accelerometer, the touch screen and the keyboard and identified individuals at 83%
by using a simple normal distribution method. In a study of Tasia et al. [67] where they
combined several features, they concluded that the best results in user authentication were
achieved when combining pressure with time features. Kumar et al. [145] experimented on
fusing typing patterns, swiping gestures and the corresponding patterns of phone movement on
a 28 users dataset. An accuracy of 93.33% was achieved by fusing patterns of swipe and the
corresponding movement patterns of the phone at feature level. An 89.31 % accuracy was
achieved by fusing behaviors of typing and the corresponding movement patterns of the phone

at score-level.

3.12.2 Combination with other biometrics

Several combinations of behavioral biometrics with physiological biometrics are possible.
Bigun et al. [68] evaluated the combination of fingerprint and voice data and achieved 0.94%
EER. Morris et al. [69] applied the combination of voice, face and signature data and achieved
an EER of 1%. Kim et al. [70] used voices and teeth images and had 2.13% EER. In another
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experiment, Kim et al. [71] combined face, teeth and voice and they achieved an EER of 1.64%
confirming the improved performance of combining modalities in comparison to single

modalities authentication methods.

3.12.3 Combination with non-biometrics

Approaches that combine behavioral biometrics with password or token-based authentication
enhance the authentication accuracy and are thoroughly investigated in the literature. De Luca
et al. [72] examined the shape of the users input, and more specifically unlocking the screen
and password input, in combination with the way they performed the input. Their method
achieved 77% accuracy resulting in an increased security. Sae-Bae et al. [73] used multi-touch
gestures which included palm position, fingertip movement and fingertip dynamics. They
achieved a 90% accuracy rate by using single gestures and discovered that the accuracy
improved significantly when multiple gestures were performed in sequence. In a study of
Shahzad et al. [74] they combined the velocity of the finger, the device acceleration, and the
stroke time to examine how users perform the input, even when attackers saw what gesture a
user performed, through shoulder surfing or smudge attacks, they could not reproduce his
behavior. Their method achieved 0.5% average EER. Ohana et al. [75] built a key/lock system
for the mobile phone and its charger, thus making the phone useless when separated from its
power source. This system, in combination with biometrics would discourage the theft of the
mobile phone. Sun et al. [76] used curves as passwords inputs in combination with the way
that the inputs are performed by the legitimate user. Their system achieved an accuracy rate of
97.5%.

The above methods improve the performance of authentication systems but have not been
tested against trained imposters. All the data presented in Table 13 relate to the known system
performance indexes FAR, FRR etc., but they do not show the improvement of systems

resistance to real attacks.
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Table 13: Possible countermeasures.

Method Works Combination Performance (%0)
FAR | FRR | Accuracy | EER
Feng et al. [149] Touch data and hand movement. | 4.66 0.13
Zhao et al. [35] Six touch traces with pressure 2.6
features.
Adding features Wolf et al. [128] Accelerometer, touch screen, 83
keyboard.
Tasia et al. [67] Keystroke by adding the features
of pressure and size.
Kumar et al. [145] Swiping gestures, Typing 93.33
patterns & Phone movement. 89.31
. Bigun et al. [68 Fingerprint and voice. 0.94
Combination g [68] gerp
W_Ith oth-er Morris et al. [69] Voice, face and signature. 1
biometric Kim et al. [70] Teeth image and voices. 2.13
characteristics Kimetal. [71] Face, teeth and voice. 1.64
De Lucaetal. [72] Screen pattern and password. 77
Sae-Bae et al. [73] Palm position, fingertip 90
movement and dynamic.
Shahzad et al. [74] Finger velocity, device 0.5
Combination acceleration, and stroke time.
with non- Ohana et al. [75] Built a key/lock system for the
biometrics mobile phone and its charger.
Sun et al. [76] Passwords inputs in combination 97.5
with the way that the inputs are
performed by the legitimate user.

3.12.4 Discussion on countermeasures on practical attacks

As it is previously shown in Table 13 the performance of authentication can be improved by

incorporating additional biometrics in the authentication system, i.e. the use of multimodal

biometrics. Multimodal biometrics-based authentication produces more consistent and higher
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authentication accuracy in comparison with the single biometrics-based authentication and
achieves upgraded performance [24]. Many research works and practical implementations
widely adopted the multimodal-based framework since the reliable authentication of a high
level cannot be guaranteed by the single biometric [5,9]. A plethora of studies has emphasized
the superiority of multimodal biometric approaches to single biometric methods [77-81]. Since
multimodal biometrics is performing better a well-built authentication mechanism is necessary

to ensure the successful implementation of multimodal user authentication.

3.13 Lessons Learned

Behavioral biometrics and CA technology advantages: CA technology is a promising method
with many advantages. It can perform without user intervention, it doesn’t require additional

hardware, and it presents high accuracy for zero-effort evaluation approach.

Inconsistent behavior of the legitimate user: a major deficiency that results from the
inconsistent interaction of users with their mobile phones is the unreliable performance [11].
In addition, a physical injury or a panic situation may result in behavioral changes, which can
lead to inconsistent reactions by the legitimate user. Therefore, the appropriate management of
unexpected situations must be established [52].

Changes in user behavior and habits: User behaviors and habits may change over time; thus,
authentication systems should be able to adapt to these changes. The paradigm of Continual
Learning [163,167,168] can train successfully deep discriminative models as well as deep
generative models in complex continual learning scenarios where new tasks appear, and
existing tasks change over time. Therefore, this paradigm could be employed towards this

direction.

Research data collection procedure: Many users avoid participating in time consuming,
painstaking procedures for the collection of biometric features. This results in not fulfilling the

data collection procedure.

Security in behavioral biometrics authentication: The primary threat is that the legitimate
user’s behavior can be mimicked directly or indirectly by an impostor. Security in behavioral
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biometrics authentication can be improved if features are added or behavioral biometrics are

combined with other biometrics or with non-biometrics.
3.14 Challenges and open issues

3.14.1 Technology acceptance

Factors of users’ acceptance: Users' perception and behavior constitute important
considerations when designing systems since security, privacy and online identity management
issues often trouble users. A study aimed at identifying non-technical issues, for example
perceptions about the fears and expectations of future users, may be necessary for developing
a strategy to support the acceptance of an innovation [150]. For these reasons, the assessment
of technology acceptance determinants is crucial for addressing the problem of reduced use

and utilization of the BBCA technology benefits.

3.14.2 Behavioral Biometrics collection and feature extraction

Need for a user-friendly BB collection methodology: A major challenge is the design of a
methodology for collecting behavioral biometrics, in a way that makes it user-friendly. The
selection and optimization of a proper set of behavioral biometrics constitutes a challenge and
an open issue.

Lack of real-world datasets: Another great challenge is the small number of real-world
datasets. Thus, the provision of a public behavioral biometrics database for research purposes

is necessary [10].

3.14.3 Systems evaluation

Maximizing accuracy: As examined in the literature most studies implement approaches using
machine learning algorithms but very few use deep machine learning. The accuracy of an
authentication system based on behavioral biometrics must be tested with deep machine

learning algorithms to examine if the performancecan be increased.
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3.14.4 Security and usability

Balance between security and usability: Behavioral biometrics continuous authentication is
subject to limitations, such as risk of false positives/false negatives, i.e., balance between
security and usability, which result to its limited applicability. To overcome these limitations,
it is crucial to maximize accuracy and examine how to find a balance between security and
usability [112,113].

3.15 Conclusion

The review of a large corpus of research in the field of BBCA technology has shown that CA
technology can provide high authentication accuracy. Behavioral biometrics are promising but
also vulnerable to practical attack schemes. The incorporation of additional biometrics in the
authentication system, i.e., the use of fusion authentication, is shown to improve security and
guarantee reliable authentication. The superiority of fusion biometric approaches to single
biometric methods is emphasized in a plethora of studies. These approaches must be further
tested in real-world datasets. Also, the use of behavioral biometrics authentication is of limited
extent due to some major shortcomings such as the risk of false positives/false negatives, i.e.,
the balance between security and usability [1]. To overcome these shortcomings, it is critical
to maximize accuracy and investigate how to balance security with usability. Also, evaluating
users’ technology acceptance factors is vital to addressing the problem of reduced use of BBCA
technology. Finally, a major challenge is the testing of a methodology for extracting biometric
features, in a way that makes it user friendly, because many users avoid participating in time

consuming, painstaking procedures for the collection of biometric features.
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Method of Work

4.1 Introduction

This research comprised of four research stages that each addressed one of the research

questions. This chapter presents a general summary description for each stage of the research.

4.2 Research design and methodology

Following, a presentation of the methodologies of the four research stages is made.

4.2.1 Research Stage 1

The first stage of the research concerns a survey on Behavioral Biometrics & Continuous User
Authentication on Mobile Devices. The methodology is based on the collection of selected
published sources relevant to the subjects of Continuous Authentication using Behavioral
Biometrics. Moreover, annotation, critical analysis of content and opposition, in some cases,
of the main conclusions of each work is carried out. A prerequisite of systematic search for
suitable publications is the definition of indexing terms. In order to increase the efficiency of
search, combined indexing operators with the relevant terms were used, e.g., continuous
authentication, behavioral biometrics, mobile phones, etc., The results were grouped in 5 main
sections, examining: walking gait, touch gestures, keystroke dynamics, behavioral profile,

hand waving, power consumption, and fusion.
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4.2.2 Research Stage 2

The second stage of the research concerns an Empirical Research on key factors driving the
adoption of Behavioral Biometrics & Continuous Authentication Technology. In this regard,
an investigation on the effect of various factors of behavioral intention through the new
incorporation of a modified Technology Acceptance Model (TAM) and Diffusion of Innovation
Theory (DOI), is made. Also, a new theoretical framework with constructs such as Security &
Privacy Risks (SPR), Biometrics Privacy Concerns (BPC), and Perceived Risk of Using the
Technology (PROU), is created. A Structural equation modeling (SEM) empirical research is
conducted. The research is designed in such a way to respond to the trade-off between
perceived users' concern for their biometrics privacy and their protection from risks. To be able
to answer the questions asked, in the context of this research, there is a need to first develop a
sample of people with knowledge of the biometric methods that are under consideration. For
this reason, participants in this study first followed an online five-minute course (mini-seminar)
on behavioral biometric methods and CA systems. The sample of the research consists of 545
individuals and is composed of different groups of working people and university students of
the European Union (EU), United States of America (USA), and Canada. To collect the data,
the method of submitting questionnaires via the Amazon MTurk was used. A detailed

description of the methodology is detailed in chapter 5.

4.2.3 Research Stage 3

The purpose of this stage is to present a new paradigm, named BioGames, for the extraction of
behavioral biometrics (BB) conveniently and entertainingly. The BioGames paradigm suggests
a user-friendly methodology for the collection of behavioral biometrics. The users simply play
games without participating in an experimental painstaking process. To apply the BioGames
paradigm, a BB collection tool for mobile devices named BioGames App is developed. The
BioGames App is an Android application for collecting mobile devices sensor values and it
sends the biometrics data in a database. The database is designed to allow multiple users to
store their sensor data at any time. Thus, there is no concern about data separation and

synchronization. BioGames App is GDPR compliant, as it collects and processes only
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anonymous data. Moreover, the behavioral data collected are not publicly observable, they can
only be recorded when a person uses the application. The BioGames App collects keystroke

dynamics and touch gestures data and create datasets for research purposes.

4.2.4 Research Stage 4

In this stage, research related to the design and evaluation of new approaches to continuous
authentication using touch gestures and keystroke dynamics, is presented. In the data collection
process, the BioGames App is installed on the mobile devices of 39 participants. Users play
the games in their everyday environment, and the various hardware components collect the
biometrics. The BioGames App sends to the database all the data for each modality. The process
of touch gestures and keystroke dynamics data collection has 16 sessions, where each session
lasts approximately 2 minutes. Of the 39 participants in the sample, 38 are considered
impostors, and one person is considered genuine. Regarding fusion, the feature-level fusion of
keystroke dynamics and touch gestures is applied, and their unification into a single feature set
consists of 39 individuals and 1488 Instances. Of the 39 participants in the sample, 38 are
considered impostors, and one person is considered genuine. Lastly, a comparison of the
performance of Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM), is
made. Each modality is examined separately and an investigation is made regarding if there
can be an improvement of the performance by applying feature-level fusion of biometrics to
solve either security or usability issues. A detailed description of the methodology is presented

in chapter 7.

4.3 Conclusion

In this chapter, the summary of the methodology that was followed in this doctoral thesis is
presented. The methodology consisted of four research stages that each addressed one of the
research questions. These are the research stages of a designed single project. Firstly, an
extensive systematic literature review is presented that maps the research area and identifies
the challenges, open problems, and future trends. Then, a new theoretical framework is

presented to investigate the key factors that show us the user requirements that influence the
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adoption of BBCA technology. In the third stage, a new paradigm (BioGames paradigm) and
a new tool (BioGames App) for collecting behavioral biometric data, are presented. Finally, an
experimental data collection process of keystroke dynamics and touch gestures is applied by
using smartphones. For this purpose, the BioGames paradigm and the BioGames App are used.
Also, a comparison is made between Multi-Layer Perceptron (MLP) and Long Short-Term
Memory (LSTM). Each modality is examined separately and an investigation is made
regarding the improvement of performance by applying feature-level fusion of keystroke
dynamics and touch gestures to solve either security or usability issues.
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Key factors driving the adoption of
Behavioral Biometrics & Continuous
Authentication Technology: An Empirical

Research

5.1 Introduction

In this chapter, a new model is presented to investigate the effect of various factors on
Behavioral Intention to Adopt the Technology (Behavioral Intention — Bl). Based on this
model, a Structural Equation Modeling (SEM) research was carried out. In this regard, an
investigation on the effect of various factors of behavioral intention through the new
incorporation of a modified Technology Acceptance Model (TAM) and Diffusion of
Innovation Theory (DOI), is made. Also, a new theoretical framework with constructs such as
Security & Privacy Risks (SPR), Biometrics Privacy Concerns (BPC), and Perceived Risk of
Using the Technology (PROU), is created. In addition, the research explores external factors,
such as Trust in Technology (TT) and Innovativeness (Innov). The addition of exogenous
factors to the basic research model has allowed the study of their impact on the intention of
users to adopt BBCA technology. This research provides several useful insights and new

knowledge for researchers, practitioners, governments, and providers of BBCA technology.

5.2 Theoretical Background
In this section a presentation of the theoretical framework is made.
5.2.1 DOl and TAM models

In this research, the most acknowledged theoretical frameworks proposed in the literature for
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the behavioral intention to adopt new technology is used. Specifically, the TAM model [196]
and the DOI theory [215]. The DOI Theory investigates the reactions of individuals towards
new products or processes, and the reasons why some innovations diffuse while others do not.
According to the research conducted on the field of the DOI Theory, various factors affect the
formation of an individual's attitude and subjective norms towards his/her reactions to new
products [218]. The above Theoretical Technology Acceptance Framework demonstrates that
when innovative technology is displayed to users, several factors impact their choice on how

and when to utilize it.

The Technology Acceptance Model (TAM) has been constantly studied and developed. The
most significant improvements are the TAM 2 [200, 216] and the Unified Theory of
Acceptance and Use of Technology (UTAUT) [191]. TAM 2 proposes that users form
perceptions regarding the usefulness of the system based on its relevance between the
important goals at work and the consequences of performing job tasks using the system [244].
Also, a TAM 3 has been suggested on e-commerce which incorporates the impacts of trust and
perceived risk on system employment [217]. The TAM has been demonstrated to be especially
valuable in examining the intention to embrace new technologies in a wide range of cases [219,
220, 221, 222]. A product or an idea gains impetus and diffuses (or spreads) across a particular
population or social system. Regarding the editions of the TAM model, the original TAM fits
best with this research. TAM is a simple model comprising the fundamental constructs that
explain technology acceptance and, thus, it is expandable and can be adapted for use in specific
technology areas. TAM 2 adds several variables to the TAM model to increase the model’s
capacity to explain Intention to Use. Instead of the generic variables of TAM 2, variables are
added that are more specific to behavioral biometrics. Thus, TAM being a basic model formed
the basis for the development of a model more relevant to the specific technology under study.

5.2.2 Limitation of the TAM model

The cause driving the acceptance of biometrics adds important constructs like the variables that
are connected with privacy and security issues [188, 242]. These variables cannot be
individually clarified or sufficiently addressed with the present frameworks or adoption
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models. The TAM model appears to omit several factors that could affect individuals regarding
the acceptance of biometrics technology [188]. Therefore, new variables must be added in
addition to a unifying view of technology acceptance prior factors. The relevant constructs of
technology acceptance best practices and theories could be combined to create a new
framework that can be utilized to assess biometrics technology acceptance facilitators and
inhibitors [188, 242].

5.2.3 Theoretical framework

To address the limitation of TAM it is extended by adding three new constructs, namely,
Security & Privacy Risks (SPR), Biometrics Privacy Concerns (BPC) and Perceived Risk of
Using the Technology (PROU), resulting in a new theoretical framework. The modifications
of TAM were designed to overcome the limitations of the model and to adapt it to the needs of
the present research so that its impact could be measured more effectively. The construct SPR
concerns the security and privacy risks of individuals. The meaning of risks includes both the
probability of access control breach and the value of the protected data or assets (e.g., money
in a bank account). So, when there is a high SPR, then the chances of violations seem high
because the value of our assets is great. Consider that our mobile phones are used for important
tasks, such as mobile banking, e-payments, accessing email, and social media accounts. The
SPR is considered as a facilitator in the Perceived Usefulness (PU) of the TAM model and
following in the Behavioral Intention to adopt the Technology (BI). The BPC construct
concerns biometrics Privacy issues. Individuals may be concerned about their biometrics which
are sent to a central online server; therefore, this research should concentrate on this [187].
Since BBCA technology operates mainly with a central online server, individuals will consider
BBCA technology to be risky for their biometrics privacy. For this reason, BPC is expected to
act as a facilitator in the PROU and that PROU acts as an inhibitor in the Bl of TAM model.
The design of the research is such as to meet the above-mentioned combination. That is the
trade-off between perceived users' concern for their biometrics privacy and their protection

from risks.
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5.3 Model development

The research model examines the factors that influence the adoption of BBCA technology. It
consists of both pre-existing models (TAM, DOI) and new constructs added to explore the
perceived intent of adopting BBCA technology. The new constructs added are Security &
Privacy Risks (SPR), Biometrics Privacy Concerns (BPC) and Perceived Risk of Using the
Technology (PROU). Also, new variables to the TAM are added where its impact could be
measured more effectively. Moreover, the constructs Trust in Technology (TT) [202],
Innovativeness (Innov) [189], Compatibility (COMP) [225] are used, and the Perceived Risk
of using the technology (PROU) is adapted to the need of this research which was based on the
works [188], [240].

5.3.1 A Modified Technology Acceptance Model (TAM)

New variables to the TAM model are added, where its impact could be measured more
effectively. Also, some original variables were extracted from TAM. The constructs variables
are presented in table 14. In the literature, it is suggested that PU [193, 194, 195] and PEOU
determine the intent of adopting a technology [196, 197]. Also, it was shown by empirical
evidence that the ease of use has an impact on the user’s intention to use [198, 199, 200]. From
this point of view, the same to be valid in the case of BBCA technology is expected.
H1. The greater the perceived usefulness (PU), the greater the intention of adopt the
technology (BI).
H2. The greater the perceived ease of use (PEOU), the greater the intention of adopting the
BBCA technology (BI).

5.3.2 The impact of DOI variables

In studies like Koenig-Lewis et al. [227] and Miltgen et al. [188], compatibility was recognized
as a significant precedent for perceived ease of use and perceived usefulness. For this reason,
based on the aforementioned literature, it is considered that this construct is a contributing
addition to the TAM model. For this reason, only this construct is selected from the DOI theory

to be included in this research model.
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5.3.2.1  The impact of Compatibility (COMP) variables
Compatibility (COMP) [225] is an important variable defining technology adoption [208, 204,

209, 189] and has also been reported to contribute remarkably to accurately predicting the
adoption intent [203]. In the present research, it is considered that individuals who believe that
the usage of the BBCA technology would fit well with the way they want to secure their
personal data and accounts (e.g., bank accounts, e-mail, etc.) have a higher intent to adopt this
technology. Moreover, individuals who believe that BBCA would fit into their lifestyle have a
higher appraisal of ease-to-use and perceived usefulness. From the above reports the following
hypotheses arise:
H3. The higher the perceived Compatibility (COMP), the greater the intent of adopting the
BBCA technology (BI).
H4. The higher the perceived Compatibility (COMP), the more likely it is that an individual
will perceive a BBCA technology as easy to use (PEOU).
HS. The higher the perceived Compatibility (COMP), the more likely it is that an individual
will perceive a BBCA technology as useful (PU).

5.3.3 Perceived Risk of Using the technology (PROU)
Miltgen et al. [188] investigated the hypothesis that Perceived Risk (PR) [240], will be higher

for biometrics technology and will decrease consumer intention to use this technology. Of
course, a highlight must be made on Miltgen et al. [188] who investigated their hypothesis in
an entry point authentication technology, which was directly comparable to similar traditional
knowledge-based authentication systems [223]. In this research, the perceived risk in
association with BBCA technology is examined to see if and how it will affect the behavioral
intention to adopt this technology. The perceived risk (PR) is modified to the needs of the
present research, and the construct Perceived Risk of Using Technology (PROU) is created as
the main inhibitor to BI. The hypothesis is as follows.

He6. The greater the Perceived Risk of Using the technology (PROU), the lower the

Behavioral Intention of Adopting the BBCA technology (BI).
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5.3.4 Prior Factors

5.34.1  The impact of Innovativeness (Innov) variables

Yietal. [189] and Miltgen et al. [188] confirm that the mood for innovation directly determines
three characteristics: perceived usefulness, ease of use and compatibility. Also, it associates
with the behavioral intention to adopt a technology. The higher the personal innovation, the
more likely there would be a positive perception of the technological characteristics, such as:
(@) Compatibility (COMP), (b) Behavioral Intention to Adopt the Technology (BI), (c)
Perceived Usefulness (PU) and (d) Perceived Ease of Use (PEOU).

H7. Individuals with higher personal innovativeness will positively recognize the
technological features of (a) Compatibility (COMP), (b) Behavioral Intention to Adopt
the Technology (BI), (c) Perceived Usefulness (PU) and (d) Perceived Ease of Use
(PEOU).

5.34.2  Theimpact of Trust in Technology variables

Trust in technology has the effect of reducing uncertainty and creating a sense of security [201],
[202]. Carter and Bélanger [203], and Kim et al. [206] have also assumed that trust is important
in shaping the intent of consumer regarding the use of a specific technology. Wu and Chen
[207] report that trust has a direct impact on the behavioral intent of adoption. Finally, Kim et
al. [205] have shown that as confidence grows, it is likely that consumers perceive less risk
(likewise [203], [204]). Based on the above the following hypotheses are formed:

HB8. Individuals’ trust in technology has a positive impact on the: (a) Perceived Ease of Use
(PEOU), (b) Behavioral Intention to Adopt BBCA Technology (BI), (c) Perceived
Usefulness (PU) and (d) a negative impact on Perceived Risk of Using the Technology
(PROV).

5.3.5 Theoretical background of the new constructs

In this section, the theoretical background, and the hypotheses from the new constructs (SPR
and BPC) added to the model are presented.
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5.3.5.1  The impact of Security and Privacy Risks (SPR) variables

Laux et al. [232], in their study, showed that a banking organization would adopt biometric
technology because it considers it a competitive advantage, in the sense that the bank advertises
to its clients that they secure their money from theft due to biometric technology. There will
be look back on this issue from the user side. That is, in view of the fact that due to the biometric
technology the user enhances his/her security and privacy from potential dangers. The
technologies used by users so far offer entry-point authentication, which is exposed to attacks
that take place past the initial authentication. Therefore, individuals will realize the necessity
of a BBCA system and, thus Security and Privacy Risks (SPR) is positively correlated to the
construct of Perceived Usefulness (PU) of the TAM model. The concept of risk includes both
the possibility of a violation of the access control mechanism (e.g., by stealing the PIN) and
the value of the protected data or assets (e.g., personal data, money in a bank account). This
includes the perceived risk of exposure or loss of personal data and concerns about the security
of their assets considering a possible breach of the security mechanism. So, when we have a
high SPR, then the chances of violations seem high because the value of our assets is great.
Thus, the following hypothesis arises:

H9. The greater the Perceived Security and Privacy Risks (SPR), the greater the Perceived

Usefulness (PU) of BBCA technology.

5.3.5.2 The impact of Biometrics Privacy Concerns (BPC) variables

Given that BBCA technology inherently requires personal biometric data, users may have
concerns that the technology may entail risks to their biometrics privacy. Data can be collected
and processed in the device, or it can be sent to a central online server [187]. Since BBCA
technology mainly operates with a central online server, it is expected that individuals will be
concerned about specific issues. These issues are if users' biometrics may be sent to third parties
and if mobile phone companies and other providers that require biometric authentication,
possess, may collect and process their biometric information. As a result, it is expected that
their biometrics privacy concerns (BPC) positively correlate with their perceived risk of using
BBCA technology.
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H10. Individuals with higher Biometric Privacy Concerns (BPC) will perceive the use of

BBCA technology as riskier (PROU).

5.3.6 The research model

By considering other relevant instruments [188, 189, 190, 196, 202, 223, 224], a pool of

variables has been created. New variables to the adoption of technology models are added.

Finally, the new factors added are included in the constructs Security & Privacy Risks (SPR),

Biometrics Privacy Concerns (BPC) and Perceived Risk of Using the Technology (PROU). In

figure 1 the research model is presented.
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Figure 1: The research model.
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5.3.7 The variables of constructs (Questionnaire)

The constructs variables of the model are presented in table 14.

Table 14: The variables of constructs.
Contructs Authors Item Questions
Innovativeness (Innov) Yi, et al. [189] 1 I am among the first to try out new technologies.
-|I- 2 When | hear about a new technology, | look for ways to adopt
-I- 13 it.
I like to experiment with new technologies.
Trust in Technology (TT) Pavlou [202] TT1 I would trust the BBCA technology.

-|I- TT2 I think the BBCA technology would be reliable.

Security & Privacy Risks Self-developed SPR1 It is likely that someone may get access to my bank account by
(SPR) stealing my phone and/or violating its access control

-|I- SPR2 mechanism.

It is likely that someone may break into my social media and

-|I- SPR3 e-mail accounts.

Bélanger [240] SPR4 It is likely that someone may use my mobile for e-payments.
Self-developed SPR5 I may get unauthorized charges on my bank account.
It is likely that someone may steal my device and gain access
to my personal data, photos and videos stored in it.
Biometrics Privacy Concerns Self-developed BPC1 I am concerned about my biometrics.
(BPC) -|I- BPC2 My biometrics may be sent to third parties.

-II- BPC3 Mobile phone companies and other providers that require
biometric authentication possess may collect and process my
biometric information.

Compatibility (COMP) Vijayasarathy [225] COMP1  Using this BBCA technology would fit into my lifestyle.

-|I- COMP2 | think using this BBCA technology would fit well with the
way that | want to secure my personal data and accounts (e.g.,
bank accounts, e-mail, etc.).

Perceived Ease of Use Davis [196] PEOU1  BBCA technology will require little effort.
(PEOUV) -II- PEOU2  Learning to use BBCA technology would be easy for me.
-|I- PEOU3 I would find this BBCA technology easy to use
Perceived Usefulness (PU) Davis [196] PU1 This BBCA technology would enable access control (e.g.,
bank account) more securely.

-|I- PU2 This BBCA technology would make it easier to control my
access to online services.

-|I- PU3 This BBCA technology would provide a valuable service.

Self-developed PU4 This BBCA technology would protect my bank accounts of
access control breach.

-|I- PU5 This BBCA technology would protect my social media, e-mail,
etc., accounts.

-|I- PU6 No one could gain access to my personal data in case my
device is stolen.

Perceived Risk of Using the Self-developed PROU BBCA technology maybe be risky for my biometrics privacy.
BBCA Technology (PROU)

Behavioral intention to use Davis [196] BI1 I should apply this BBCA technology as soon as possible.
the BBCA technology (BI) -|I- BI2 I should use this BBCA technology soon after it is launched.

-|I- BI3 I should get detailed information before subscribing.
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5.4 Methodology
To be able to answer the questions asked, in the context of this research, there is a need to first
develop a sample of people with knowledge of the biometric methods that are under
consideration. For this reason, participants in this study first followed an online five-minute
course (mini seminar) on behavioral biometric methods and CA systems. At the mini seminar,
individuals could see authentication systems in slides and examine a specific online banking
scenario. During the seminar a short, on-line lecture was made where the following were
presented:
e The issues of entry-point authentication model.
e The vulnerabilities of PINs and passwords.
e Vulnerabilities due to smudge attacks.
e Issues of entry-point authentication that remain even when morphological biometrics
are used.
e BBCA technology, BBCA advantages, BB privacy issues, new “privacy-by-design”
technologies.
e A sshort video on how continuous authentication works using behavioral biometrics.

e A scenario for access to mobile banking with BBCA technology.

In technological studies, and particularly in studies on technology adoption, the use of
hypothetical scenarios is quite common [188]. In the seminar, individuals were also informed

about privacy and BBCA usability issues.

For designing the questionnaire, the following methodology was followed. A preliminary
questionnaire was given for review, to neutralize the subjectivity factor, to faculty members of
the Aegean University’s ICSE Department with extensive field research experience. Thus, each
item was included in both the model and the questionnaire when it was adopted by the absolute
majority. Based on the received suggestions, a modified version was designed and evaluated

through a small-scale pre-test field involving 30 subjects. A 7-point Likert scale was employed
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ranging from “Strongly disagree” (1) to “Strongly agree” (7) and the results were used to revise,
remove, and rewrite certain questions. The questions were formulated in a fully understandable
way so that they can be completed correctly. The logical continuity and clear distinction of the
questionnaire’s sections were established by using titles and explanations to indicate each

group of questions (constructs).

The research sample consists of 545 individuals and is composed of different groups of
working people and university students of the European Union (EU), United States of America
(USA), and Canada. According to Hair et al. [243] the sample size should be ten times the
largest number of structural paths directed at a particular latent construct in the structural
model. In the research, the requirement of sample size was exceeded. The sample represents
the general public from the western developed countries. A stratified random sampling
approach was followed, where the population was divided into categories based on certain
features, i.e., smart phone-mobile device users, geographic area, occupation, and then random
sampling was applied. In this way, all categories are represented by the selected attributes. To
collect the data, the method of submitting questionnaires via the Amazon MTurk was used.
This method was chosen among others due to its accuracy and the high level of participation it

achieves. Written instructions were also provided when completing the questionnaires.

5.5 Results

In this section the descriptive analysis and the results of this research are presented.

5.5.1 Descriptive analysis

The research sample consists of 545 individuals. The respondents were from 18 to 65 years
old, 58% were male, while 42% were female. Moreover, 57.72% of respondents hold a
Bachelor's degree, 21.32% a Master's degree, while 5.51% hold a Ph.D. 8.46% have completed
Secondary Education, and 6.99% holds a Higher National Diploma. Of the sample, 24.26%
were employers or entrepreneurs with salaried employees, 22.61% were employed, 19.3%
were self-employed, 3.13% were employers or entrepreneurs without employees, 19.49% were

university students, 4.23% were unemployed, and 0.92 were retired. On average, it took 15
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minutes to complete the survey.

5.5.2 Measurement model

There is no normal distribution in all items of the model (Kolmogorov—-Smirnov's test (p
<0.01)). Therefore, the most-adequate method is the Partial Least Squares (PLS) [188, 206,
241]. To test the research hypotheses the bootstrapping method was applied [236]. SmartPLS
version 3.0 [236] was used for the analysis, and as suggested by Hair et al. [233] and Nikou
[237], there was a reliance on the path coefficients and their significance. Table 15 presents the

correlations between the constructs.

Table 15: Correlation matrix.

BI BPC COMP Innov PROU PEOU SPR PU TT
Bl - 0.148 0.799 0.590 0.026 0.593 0.346 0.750 0.807
BPC - 0.196 0.183 0.617 0.327 0.364 0.202 0.101
COMP - 0.554 0.031 0.640 0.320 0.783 0.796
Innov - 0.133 0.484 0.237 0.512 0.528
PROU - 0.163 0.299 0.041 -0.021
PEOU - 0.273 0.576 0.559
SPR - 0.328 0.309

PU - 0731
T -

To examine the internal consistency Cronbach’s alpha, composite reliability, and the average
variance extracted (AVE) were employed. In table 16, below, the following measurements are
presented: Mean, Std. Dev., PLS factor loadings, average variance extracted (AVE), composite
reliability (CR), and Cronbach's alpha. All items have loadings greater than 0.7, apart from BI3
which is near to these cutoff criteria (0.502). All constructs have alphas and CRs above the
recommended value of 0.7 [235] which indicates good reliability. To estimate the discriminant
validity, the Fornell-Larcker criterion was used [234]. The Fornell-Larcker criterion assumes
that the AVE’s square root must be greater than the correlations between the construct [234].
The square roots of the AVEs (diagonal elements) are greater than the correlation between each

pair of constructs, as shown in Table 17.

111



Table 16: Measurement and internal validity.

Contructs Item Mean Std. Dev. Loadings AVE CR Alpha
Innovativeness (Innov) 11 5.200 1.533 0.904 0.817 0.930 0.888
12 5.053 1.514 0.923
K] 5.428 1.438 0.884
Trust in Technology (TT) TT1 5.189 1.457 0.935 0.881 0.937 0.865
TT2 5.296 1.384 0.942
Security & Privacy Risks (SPR) SPR1 4.989 1.718 0.871 0.725 0.929  0.905
SPR2 5.244 1.596 0.856
SPR3 4.822 1.843 0.861
SPR4 4.719 1.845 0.836
SPR5 5.336 1.640 0.832
Biometrics Privacy Concerns (BPC) BPC1 5.314 1.492 0.823 0.738 0.894 0.822
BPC2 5.039 1.648 0.885
BPC3 5.259 1.564 0.868
Perceived Ease of Use (PEOU) PEOU1  5.222 1.385 0.833 0.733 0.892 0.818
PEOU2  5.553 1.256 0.851
PEOU3  5.493 1.279 0.885
Compatibility (COMP) C1 5.469 1.313 0.909 0.826 0.905 0.789
C2 5.282 1.468 0.908
Perceived Usefulness (PU) PU1 5.504 1.259 0.829 0.671 0.924 0.902
PU2 5.621 1.157 0.833
PU3 5.388 1.403 0.797
PU4 5.586 1.180 0.849
PU5 5.513 1.272 0.840
PU6 5.301 1.502 0.764
Perceived Risk of using the Technology (PROU) PR1 4.890 1.553 1 1 1 1
Behavioral intention to use the technology (BI) BI1 5.042 1.587 0.939 0.655 0.843 0.709
BI2 4.934 1.641 0.912
BI3 5.851 1.254 0.502
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Table 17: Discriminant validity (diagonal values show AVE square root).

Bl BPC Comp Innov.  PROU PEOU SPR PU TT
Bl 0.809
BPC 0.148 0.859
Comp 0.799 0.196 0.909
Innov 0.590 0.183 0.554 0.904
PROU 0.026 0.617 0.031 0.133 na
PEOU 0.593 0.327 0.640 0.484 0.163 0.856
SPR 0.346 0.364 0.320 0.237 0.299 0.273 0.851
PU 0.750 0.202 0.783 0.512 0.041 0.576 0.328 0.819
TT 0.807 0.101 0.796 0.528 -0.021  0.559 0.309 0.731 0.938

Note: na— AVE are not applicable to the single-item constructs.

Also, the value of standardized root mean square residual (SRMR) to show the assessment of
model fit as well as the Normed Fit Index (NFI) were used [226]. SRMR values vary between
0 and 1, and those which are lower than 0.08 are considered a good fit [238, 239]. In the
analysis, the SRMR value is 0.057. The NFI value in the analysis is 0.817. The closer the NFI
is to 1, the better the fit [236].

5.5.3 Structural model and hypotheses testing

Respondents answered to Likert-scale questions on which one-sample t-tests were applied. The
results are presented in Table 18 showing the t-values for each correlation between the
variables. The t-value indicates whether there is a difference between the hypothesis HO (i.e.,
there is no correlation) and the hypothesis H1 (the two variables correlate). For each
correlation, there is an interest primarily in three values: Direct effects f3, t-value, and p-value.
The tis interested in being greater than 0, and p <= 0.05. In the case where there is an indirect
effect in BI, then for each correlation, there is an interest primarily in three values: specific

indirect effects B, t-value, and p-value.

Table 18 summarizes the results of the Bootstrapping estimation with 500 resamples and figure
2 the structural model result. The model explains 74.9% of behavioral intention to adopt the
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technology's (BI) and H1, H3, H7b, H8b cases are supported, while H2 and H6 cases are
rejected. The model explains 65.3% of perceived usefulness (PU) as all assumptions: H5c,
H7d, H78c, and H9 are supported. The model explains 43.7% of perceived ease of use (PEOU),
like all H4, H7c cases are supported while H8a is rejected. The model explains 38.8% of the
Perceived Risk of Using the BBCA Technology (PROU) and supported by H8d: Trust in
technology (TT) and H10: Biometrics privacy concerns (BPC). The model explains 30.7% of
Compatibility (Comp) as H6a: Innovativeness (Innov) is supported. In total, out of the 10
assumptions made, 16 if the sub-assumptions are counted, 13 are supported by the model.

The purpose of the research is to understand the key factors that drive individuals towards the
adoption of BBCA technology. Therefore, the analysis will be now focused on the main factors
of adoption. The main facilitators of Bl are Trust in Technology (TT) (=0.371, t=6.274, p=0),
followed by Compatibility (COMP) (f=0.251, t=4.660, p=0), Perceived Usefulness (PU)
(B=0.181, t=4.292, p=0) and Innovativeness (f=0.136, t=3.789, p=0). Moreover, the results
show that Trust in Technology (TT) also has a specific indirect effect, via PU (=0.048, t=
3,172, p=0.002), on the BI, because it has a positive effect on Perceived Usefulness (PU), thus
HS8c (p=0.268, t=5.699, p=0), is supported by the model. Also, TT has a negative direct effect
on PROU (B=-0.085, t=2.277, p=0.023) thus H8d is supported by the model.

Innovativeness (Innov) not only has a significant direct effect on Bl but it also has a significant
direct effect on COMP ($=0.554, t=16.502, p=0), PEOU (=0.175, t=2.754, p=0.006) and PU
(B=0.073, t=2.014, p=0.045), therefore H7a, H7c, and H7d are supported by the model.
Innovativeness (Innov) has also specific indirect effects on the Bl, but the effects go only via
the COMP (B=0.139, t=4.499, p=0) and via Compatibility (COMP) and PU ($=0,051, t=4.190,
p=0). COMP has also a specific indirect effect on BI via PU ($=0.092, t=4.196, p=0). The
construct Security & Privacy Risks (SPR) has a positive direct effect on PU (=0.066, t=2.010,
p=0.045), thus H9 is supported by the model. Finally, the construct Biometrics Privacy
Concerns (BPC) ($=0.629, t=17.648, p=0) positively correlated with Perceived Risk of Using
a BBCA System (PROU) but the hypothesis that the major inhibitor of Bl is PROU is not
supported by the data.
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Table 18: Direct effects, total indirect, and total effects f of determinants of intention to use BBCA technology.

Path Direct Total Total t-Value R? Hypothesis
effects B Indirect  effects B confirmations
effects B
Behavioral Intention (Bl) 0.749
H1: Perceived Usefulness (PU) 0.181 0.181 4.292 Supported
H2: Perceived Ease of Use (PEOU) 0.056 0.056 1.502 Rejected
H3: Compatibility (Comp) 0.251 0.118 0.369 4.660 Supported
H6: Perceived Risk of Using the Technology (PROU) -0.008 -0.008 0.372 Rejected
H7b: Innovativeness (Innov) 0.136 0.228 0.364 3.789 Supported
H8b: Trust in Technology (TT) 0.371 0.054 0.425 6.274 Supported
Perceived Usefulness (PU) 0.653
H5: Compatibility (Comp) 0.508 0.508 11.542 Supported
H7d: Innovativeness (Innov) 0.073 0.282 0.355 2.014 Supported
H8c: Trust in Technology (TT) 0.268 0.268 5.699 Supported
H9: Security & Privacy Risks (SPR) 0.066 0.066 2.010 Supported
Perceived Ease of Use (PEOU) 0.437
H4: Compatibility (Comp) 0.467 0.467 7.219 Supported
H7c: Innovativeness (Innov) 0.175 0.259 0.434 2.754 Supported
H8a: Trust in Technology (TT) 0.095 0.095 1.312 Rejected
Perceived Risk of Using the Technology (PROU) 0.388
H8d: Trust in Technology (TT) -0.085 -0.085 2.277 Supported
H10: Biometrics Privacy Concerns (BPC) 0.629 0.629 17.648 Supported
Compatibility (Comp) 0.307
H7a: Innovativeness (Innov) 0.554 0.554 16.502 Supported

Note: All effects are significant at p < 0.001 except for H9 and H7d: at p<0.05, H7c: p<0.01 and H8d: p=0.023
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Figure 2: Structural model result.

5.6 Discussion

The research examined the factors that affect the adoption of BBCA technology by using a
modified TAM and DOI model by adding three new constructs. Thus, the model consists of
both pre-existing models (TAM, DOI) and three new constructs that were added. The new
constructs are Security & Privacy Risks (SPR), Biometrics Privacy Concerns (BPC) and
Perceived Risk of Using the technology (PROU). Moreover, the constructs Trust in
Technology (TT) [202] and Innovativeness (Innov) [189] were used.

The main facilitators of Bl are Trust in Technology (TT), followed by Compatibility (COMP),
Perceived Usefulness (PU), and Innovativeness (Innov). These results reveal that the most
significant driver for explaining Bl of BBCA technology adoption comes from the construct
TT, which is positively correlated with BI. TT also has an indirect effect on Bl via PU.
Therefore, it seems that trust in technology has the effect of reducing uncertainty and creating

a sense of security that ultimately leads to the intention to adopt BBCA technology. These
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results are consistent with the literature [188], [201], [202], [203], [206], [207], that have also
confirmed that trust is important in shaping the intention of individuals to use a specific
technology. Finally, research such as [203], [204] [205] has shown that as trust in technology
increases, consumers are less likely to perceive risk. The findings are consistent with this claim
as TT is negatively related to the PROU. In addition, despite the development of new “privacy-
by-design” technologies, users are still seriously concerned about their biometrics privacy. In
any case, the model measures users’ Biometrics Privacy Concerns (BPC). Even if the
perception of risk is not justifiable, it still affects the Perceived Risk of Using the Technology
(PROU). However, although BPC positively correlated with PROU it does not seem to
significantly affect individuals’ intention to use these technologies. The hypothesis that the
major inhibitor of Bl is PROU is not supported by the findings. This probably happened
because individuals consider that the benefits of using BBCA technology (e.g., the protection
of their privacy and the security of their assets) are more important than the perceived risks for

their biometrics privacy.

The benefits of using BBCA technology, on the part of the user, stem from the fact that users
realize that authentication only at the beginning of the session, i.e., with entry-point
authentication technology, is exposed to attacks that take place past the initial authentication.
This leads to concerns about the security of their assets (e.g., personal data, money in a bank
account) from a possible breach of the security mechanism. This may explain why Security
and Privacy Risks (SPR) have a positive correlation with the PU of the TAM model.

In the literature, it is suggested that PU determines the intent to use a technology [188, 193,
194, 195, 196, 197]. This hypothesis is also confirmed by the model, since, as mentioned above,
individuals are aware of the need for a BBCA system, so they understand its usefulness. On
the other hand, research has also shown that PEOU has an impact on the BI [188, 198, 199,
200]. This hypothesis is not confirmed by the model probably because individuals are willing

to sacrifice their ease for more security.

In studies like [188, 189, 204, 203, 208, 209, 227] compatibility was recognized as a significant

precedent for perceived ease of use and perceived usefulness and has also been reported to

117



contribute remarkably to accurately predicting the adoption intent. The research is in line with
the literature as the constructs Compatibility (COMP) are positively related to PU, PEOU, and
Bl. COMP has also an indirect effect on BI, via PU. So, compatibility is another factor that

must be taken seriously for the success of future investments.

Finally, Yi et al. [189] and Miltgen et al. [188] confirm that the mood for innovation directly
determines PU, PEOU, COMP and BI. The research, is in line with the aforementioned
research since Innovativeness (Innov), not only has a significant direct effect on Bl, but also
has a significant direct effect on COMP, PEOU, and PU. Innovativeness (Innov) also has
indirect effects on the BI, via COMP and PU. Finally, the constructs Innov and COMP, that
were included in the model to explain Bl, appear to be more significant than the PEOU used in
the TAM model.

5.6.1 Limitations

The research has some limitations that should encourage further research in this field from
other researchers as well. First, the research focused only on behavioral biometrics and
continuous authentication on mobile devices. Future research could be carried out by extending
to desktops or even to the Internet of Things (I0T) devices. In addition, many external factors
need to be explored in future research such as consumer traits [228], situational factors [229],
product characteristics [230], and previous experiences [231]. Finally, even though the sample
represents the general public of the western developed countries there is the limitation that the
research was conducted via the Amazon MTurk. Further research could be conducted in a wider

sample.

5.7 Conclusion

This research is one of the first that examines the factors that influence the decision to adopt
BBCA technology (BI). It is found that the main facilitators of Bl are Trust in Technology
(TT), followed by Compatibility (COMP), Perceived Usefulness (PU), and Innovativeness.
The research also shows that individuals are less interested in the ease of use of the technology

and are willing to sacrifice it to achieve greater security. Compatibility and Innovativeness also
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play a significant role. Individuals who believe that the usage of the BBCA technology would
fit into their lifestyle and would like to experiment with new technologies have a positive

intention to adopt the BBCA technology.

The new constructs added are Security & Privacy Risks (SPR), Biometrics Privacy Concerns
(BPC) and Perceived Risk of using the technology (PROU). The results support the hypotheses
that SPR is a facilitator to PU and PU acts as a facilitator to BI. Consequently, the hypothesis
that individuals do not feel adequately protected by classical methods will consider the
usefulness of the BBCA as a technology for their extra protection against risks is confirmed by
the model. Also, with the constructs BPC and PROU an examination is made regarding if
individuals’ concerns regarding their biometrics privacy act as inhibitors in the BI. The
conclusion is that individuals consider that the benefits of using BBCA technology are much
more important than the risks for their privacy since the hypothesis that the major inhibitor of
Bl is PROU is not supported by the model. The new constructs were used to extend the TAM
model and address its limitations with regard to addressing security and privacy issues.
Therefore, it is suggested that this new theoretical framework should be combined with the
TAM on biometrics and authentication research.

119



BioGames: A new Paradigm and a
Behavioral Biometrics Collection Tool for

Research Purposes

6.1 Introduction

One major challenge for Behavioral Biometrics (BB) and Continuous Authentication (CA)
research is the lack of actual behavioral biometrics datasets for research purposes. The
compilation and refinement of an appropriate set of behavioral biometrics data constitute a
challenge and an open problem. The issue is aggravated by the fact that most users are reluctant
to participate in long, demanding procedures entailed in the collection of research biometric
data. As a result, they do not complete the data collection procedure, or they do not complete

it correctly.

In response to these challenges, a new paradigm is proposed, named BioGames, for the
extraction of behavioral biometrics conveniently and entertainingly. To apply the BioGames
paradigm a behavioral biometrics collection tool for mobile devices, named BioGames App
was developed. All it takes is simply to play a few games and the application creates all the
datasets for each behavioral modality. BioGames App sends the behavioral biometrics data to
an API interface, which then undertakes their storage in an online MySql database. This chapter
contains and defines the requirements, specifications, and how BioGames App has been
developed. BioGames code and the API interface code (MySql database connection) are
available on Github® and contain relevant documentation and instructions. The BioGames is

released as an open-source App, with an MIT License, under the following terms: Distribution,

! BioGames App code is available on Github (link: https:/bit.ly/3vhK9zT).
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Modification, Private use, Commercial use, License, and copyright notice. Finally, instructions
are provided on how; researchers and practitioners can collect behavioral biometrics by using

the BioGames App in their research and connect it with their database.

6.2 Current Behavioral Biometrics Collection Technologies

Meng et al. [54] built an application to collect and process keystroke data using a modified
version of the Android OS based on CyanogenMod. They recorded input data from the
touchscreen including the pressure of touch, the coordinates, the timing, and the type of the

input (e.g., press down, press up).

Murmuria et al. [130] built a system to authenticate users based on the modalities of power
consumption, touch gestures, and physical movement. Their Data Collection Tool had 4
services running to collect the power consumption data, touchscreen events, gyroscope and
accelerometer sensor data, and user activity on the device. Their data collection tool, as well

as their dataset, have not been released.

Bo et al. [36] obtained the user’s application usage and interacting behavior with each
application from the system API and made use of the motion sensors to measure the device’s

reaction. Their SilentSense tool has not been released.

Papamichail et al., [185] built an application named BrainRun which incorporates a tool for
capturing and recording tapping and swiping gestures of users. They released their application
on Google Play Store and Apple App Store and created a dataset that contains gestures and
sensors data for more than 2000 different users and devices. This dataset is distributed under
the Creative Commons license and can be found at the EU Zenodo repository. Even though the
application is released on Google Play Store and Apple App Store, its source code is not

publicly for researchers and practitioners.

In Table 19 a comparison of behavioral biometrics tools is made to show the gaps in this area.
The comparison is made to show which modalities are used by each tool, which tool integrates

most of the modalities, and which tool is freely available.
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Table 19: Comparison with other tools.

. Behavioral Biometrics with Continuous Authentication Released
BB Collection
Tools Gait Touch Keystroke Behavioral Power Freely
Gestures profile consumption available

Meng et al. [54] \% \%
Murmuria et al \% \% \% \%
Bo et al. [36] \%
Papamichail et al., \%

It is noticed that there are no tools that combine keystroke and touch gestures modalities. Also,
although some tools can collect data for several behavioral biometrics they are not freely
available. As a result, researchers are unable to adapt them to their research needs. Therefore,
there is a need for an application that collects various behavioral modalities, such as keystroke
dynamics and touch gestures in an enjoyable manner. Moreover, it should be publicly available
for researchers and practitioners to use and create their datasets for research purposes.
BioGames App addresses these gaps, as it combines keystroke dynamics and touch gestures
and it is publicly available. Also, it is based on the BioGames paradigm which suggests a user-
friendly way of behavioral biometrics data collection. Finally, even though the application has
many similarities with the BrainRun application, it should be noted that BrainRun only collects

swiping gestures and its source code is not available for researchers and practitioners.

6.3 BioGames

In this section, the BioGames application, a behavioral biometrics collection tool, and the
BioGames paradigm are presented. The BioGames paradigm suggests a user-friendly way for
the collection of behavioral biometrics. All it takes is simply to play a few games and the
BioGames App creates all the datasets for each behavioral modality. The BioGames App is an
Android application for collecting mobile devices sensor values and it Sends the biometrics
data in a database. The database is designed to allow multiple users to store their sensor data
at any time. Thus, there is no concern about data separation and synchronization. BioGames
App is GDPR compliant, as it collects and processes only anonymous data. Moreover, the

behavioral data collected are not publicly observable, they can only be recorded when a person
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uses his/her smartphone. The games and challenges are presented in detail in the following

section.

6.3.1 BioGames Description

In fig. 3a the BioGames App home page is shown. The user can click on any of the 2 buttons
(1 for each modality) leading to the corresponding next page. Each category has 4 sessions and
each session 4 games where the levels are becoming more difficult to complete. In fig. 3b, the

BioGames page for the touch gestures modality is shown.

BioGames - Aegean Collection...

Touch Game-1

=000
& |

Level -1 Level -2 Level -3 Level -4

QUIZ Touch Game-2

Play

Level -1 Level -2 Level-3 Level-4
Touch Game-3

Play

Level-1 Level -2 Level-3 Level-4
Touch Game-4

Play

Level -1 Level -2 Level-3 Level-4

Figure 3, a, b: The BioGames App.

6.3.2 User Interface

In the beginning, the user has access only to Game 1 of Session 1. Following, the user must
complete all 4 games of session 1 to unlock the first game of the next session. If the user
successfully completes game 1 and within the given timeframe, then the next game unlocks
until the user successfully completes all 4 games in each session. The games for each modality

are as follows:
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e Touch Gestures

Here, there is a list of interactive games. Each game has a timer that shows how much time

remains for the user to successfully complete the game (countdown).
» Games categories:

e Session 1 —In this session the challenge is to answer to simple mathematical statements
by swiping left for correct and swiping right for wrong.

e Session 2 — In this session the challenge is to memorize a set of displayed images and
then answer by swiping up or down whether a currently shown image was included in
the displayed set of images or not.

e Session 3 — In this session the challenge is to pop the displayed balloons. The user must
touch the screen to pop the balloons by a single or by multiple fingers touches
simultaneously.

e Session 4 — In this session the challenge is to turn on the switches. The user must swipe

up or down to turn on the switches.

These types of games are used because gestures such as swipe left/swipe right, swipe up/ swipe
down which are widely used are collected. Also, some special gestures are collected such as
single or multiple fingers touches and swipe up or down in a specific area, because they can be

used for continuous authentication.
o Keystroke Dynamics Games

Within the framework of these games, it is possible to record behavioral data in multiple
sessions and within multiple records. Here, for example, a list of simple questions will be given

which must be answered, with a slight increase in difficulty per level.
» Types of questions:

e Session / — Write the numbers. In this game a number is displayed on the screen. The
user needs to write that number in text and submit his/her answer. The same is repeated

for as long as the game lasts.
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o Question: 8 (is displayed on the screen for a few seconds).

o Answer: Eight

e Session 2 - Write in text the numbers you have just seen. Here, for a few seconds, a list

of numbers is displayed that the user must memorize and write in order to win.

o Question: 1, 13, 37, 54 (they are displayed for a few seconds).

o Answer: one, thirteen, thirty-seven, nine.

e Session 3 - Write the words you have just seen. Here, for a few seconds, a list of words

is displayed that the user must memorize and write in order to win.

o Question: carrot, blouse, watermelon (displayed for a few seconds).

o Answer: carrot, blouse, watermelon.

e Session 4 — Write in text the word you see. In this game a string is displayed on the
screen for a few seconds. Users need to memorize it, write it and submit their answers.
The same is repeated for as long as the game lasts.

o Question: hello! (displayed for a few seconds).

o Answer: hello! (non-sensitive in lower case letters).

These types of games are used because all the data suggested in the literature are collected
[187]. Also, in each game played the time limit decreases to collect typing data at different
typing speeds. Finally, the typing games that are used are based on something that the user
must recall from his/her memory, like a password, and games that are based on something that

the user sees and types, like a captcha.

6.4 Data Collection and Features Extraction

BioGames collects data and creates features in the ways described below.

6.4.1 Keystroke dynamics

When a user types on the keyboard of a smartphone the keyboard inputs are recorded and
analyzed in order to identify him based on his tapping habits [187]. The BioGames application
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extracts the duration and latency of the pressure on keys and the location points of the finger as
described following [187, 108, 113]:

e Duration: is the time period between pressing and releasing a key.
e Latency: is the time period between releasing a pressed key until pressing the next key.

e Pressure: is the pressure on a key.

e Location: are the finger’s location points (x;, y;) on the screen.

6.4.2 Touch Gestures modality

The gesture of touch is a single or multiple strokes or a swipe on the touch screen of the mobile
device made by the finger. The BioGames application extracts the direction and duration of
touch, the velocity, and acceleration of movement, which are analyzed and measured solely or
in combination with each other [84, 87, 89]. A stroke or a swipe on the touch screen is a series
of touch data when the finger is in contact with the mobile device screen [84]. Each of them

can be encoded as a series of vectors [187, 87]:

Si = (xi,yi,ti, pi)'i = {1' 2' "'!N}' (5)

where x;, y; are the location points, and t;, p;are the time stamps and the pressure on screen,

respectively. Here, N is the total number of swipes.

6.5 Discussion

In this research, a new paradigm and a new behavioral biometric data collection tool, called
BioGames paradigm and BioGames App, respectively, are proposed. The BioGames App uses
games and challenges that combine keystroke dynamics and touch gestures. In touch gestures,
the types of games that are used collect gestures that are widely used. Also, some special
gestures are collected such as single or multiple finger touches and swipe up or down in a
specific area, because they could be used for continuous authentication. As for keystroke
dynamics, in each game, the time limit decreases to collect typing data at different typing

speeds. Finally, the typing games that are used are based on something that the user must recall
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from his/her memory, like a password, and games that are based on something that the user

sees and types, like a captcha.

As shown in the current behavioral biometrics collection technologies section there are no tools
available that combine the keystroke and touch gesture modalities. In addition, BioGames App
uses a methodology where users simply play games without participating in an experimental
painstaking process. None of the tools presented in the literature suggests an enjoyable user-
friendly biometric collection methodology except for the BrainRun application. However,

BrainRun only collects tapping and swiping gestures and is not publicly available.

6.5.1 Limitations

One limitation of the research is that it does not include behavioral modalities such as
behavioral profile, power consumption, and hand waving. Researchers and practitioners who
may be interested could participate on GitHub as contributors to extend BioGames and cover

more behavioral modalities.

6.6 Conclusion

In this section, a new paradigm and a new behavioral biometrics collection tool, named
BioGames paradigm and BioGames App, respectively, are proposed. The BioGames paradigm
suggests a user-friendly methodology for the collection of behavioral biometrics by simply
playing mobile device games. BioGames App employs games and challenges that combine
keystroke dynamics and touch gestures modalities. It also collects some special gestures such
as single or multiple fingers touches and swipe up or down in a specific area, because they can

be used for continuous authentication.
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Continuous Authentication with Feature-
Level Fusion of Touch Gestures and
Keystroke Dynamics to Solve Security and

Usability Issues

7.1 Introduction

Behavioral Biometrics (BB) Continuous Authentication (CA) systems monitor user behavior
and continuously re-authenticate user identity alongside the initial login process. Most studies
use single behavioral modality methods to authenticate users. However, the behaviors of
genuine users may change, and systems fail when significant changes occur. This results in
either usability or security issues. In the literature, the fusion of biometrics is used to solve this
problem and achieves improved results. This chapter presents research on the design and
evaluation of new approaches to CA using touch gestures and keystroke dynamics. Each
modality is examined separately, and an investigation is made on improving the performance
results with a feature-level fusion. For this reason, a new appropriate feature set is developed
that combines touch gestures and keystroke dynamics. The Multi-Layer Perceptron (MLP) and
Long Short-Term Memory (LSTM) are used, and a comparison of their performance is made.
The results showed that feature-level fusion of touch gestures and keystroke dynamics

improves the performance of systems and solves security and usability issues.

7.2 Current behavioral biometrics continuous authentication systems

Following the current behavioral biometrics continuous authentication systems on touch

gestures, keystroke dynamics, and fusion are presented.
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7.2.1 Touch gestures

Buriro et al. [39] employed the movements of users' fingers during signing or writing and the
device's movements to profile them. With Multi-Layer Perceptron (MLP) achieved 95% TAR
and 3.1% FAR. Filippov et al. [96] employed seven types of gestures. With the Isolation Forest
method, their system achieved 6.4% FRR and 7.5% FAR. Shen et al. [104] used touch data
collected during three different operation scenarios. The best performance was when users held
the smartphone while sitting or standing still and performed touch actions. More specifically,
with the HMM they achieved 3.98% FAR, 5.03% FRR, and 4.71% EER. Debard et al. [106]
suggested CNN to recognize touch gestures. Their method achieved 89.96% Accuracy. Yang
et al. [126] employed touch gestures with One-class SVM and Isolation Forest. They achieved
95.85% average Accuracy. Stylios et al. [251] present a research on the development and
validation of a BBCA system (named BioPrivacy), that is based on the user’s keystroke
dynamics and touch gestures, using a Multi-Layer Perceptron (MLP). For touch gestures their
system achieved Accuracy 91.32 and EER 1.2. The performance of the systems on touch

gestures is presented in Table 20.

Table 20: Research works on touch gestures.
Performance (%)

Method Publicatio Classification
ublications assiticatl FAR TAR Accuracy FRR  EER
[39] in 2016 MLP 31 95
[96] in 2018 Isolation Forest 7.5 6.4
[104] in 2018 HMM 3.9 5.03 471
Touch
Gestures .
[106] in 2018 CNNs 89.96
[126] in 2019 Isolation Forest 95.85
[251] in 2022 MLP 91.36 1.2

7.2.2 Keystroke dynamics

Clark and Furnell [40] authenticated users based on their typing patterns while entering
telephone numbers and text messages. The MLP achieved a 12.8% average EER. Draffin et al.
[44] collected keystrokes not limited to passwords or prearranged text. By using FFNN they
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achieved an Accuracy of 86% and an FRR of 2.2% and a FAR of 14%. Darren and Inguanez
[111] used the typing data during four different activities. They used a Least Squares SVM
with an RBF kernel, and all their results achieved an EER of approximately 1%, while the best
results were an EER of 0.44%, an Accuracy of 100%, a FAR of 0%, and an FRR of 1%.
Krishnamoorthy [43] classified users by applying machine learning concepts to keystroke
dynamics. The typing characteristics of participants were recorded while typing a particular
password. By using the Random Forest classifier, they achieved 98.44% identification
Accuracy. Stylios et al. [249] collected keystrokes with the BioPrivacy collection tool. The
best results were an Accuracy of 97.18%, an EER of 0.02%, a TAR of 97.2%, and a FAR of
0.02% with MLP. In Table 21, the keystroke dynamics systems are presented.

Table 21: Research works on keystroke dynamics.

Performance (%)

Method Works Classification

FAR TAR Accuracy FRR EER
[40] in 2006 MLP 12.8
[44] in 2013 FFNN 14 86.0 2.2
Keystroke [111] in 2013 SVM 0 100 1 0.44
Dynamics
[43] in 2018 Random 98.44 2.2
Forest
[249] in 2022 MLP 002 972 97.18 0.02
7.2.3 Fusion

Saevanee et al. [24] applied matching-level fusion on keystroke dynamics with behavior and
linguistic profiling and increased the MLP reliability with an 8% overall EER. Zheng et al. [52]
combined the features of acceleration, pressure, size, and time for typing a PIN on a smartphone
touch screen. They evaluated the performance of fusing these modalities and achieved higher
performance when compared to the results of single modalities. They achieved an EER of
3.65% with the k-NN. In [53] they collected slide swipe features, features of the arm movement
while users carried the device towards their ear, and voice recognition features. Their
multimodal system achieved a FAR of 11.01% and an FRR of 4.12% using the BayesNet. Li
and Bours [122] collected data from the gyroscope, accelerometer, Bluetooth, and Wi-Fi and

performed a score-level fusion. Their method achieved 9.67% EER with the Random Forest
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for the score-level fusion. Volaka et al. [178] combined touchscreen scroll with accelerometer
and gyroscope data from the Hand Movement, Orientation, and Grasp (HMOG) dataset, as
provided by Sitova et al. [38]. By using the LSTM, they achieved 88% average Accuracy, 78%
average TAR, and 15% EER. Lamiche et al. [179] employed gait patterns and keystroke
dynamics and achieved an Accuracy of 99.11%, an average FAR of 0.684%, an FRR of 7%,
and an EER of 1% with the MLP. Table 22 presents the fusion systems’ performance.

Table 22: Research works on fusion.
Method Publications Classification Performance (%)

FAR TAR Accuracy FRR EER

[24] in 2011 MLP 8
[52] in 2014 k-NN 3.65
[53] in 2015 BayesNet 11.01 4.12

Fusion [122]in 2018 Random forest 9.67
[178] in 2019 LSTM 78 88 15
[179] in 2019 MLP 0.684 99.11 7 1

7.2.4 Discussion on related work

A plethora of combinations is used to authenticate individuals by fusing biometrics, which
achieves improved results [24, 52, 53, 122, 178, 179]. In table 22, the best performance for
each model separately is shown. The research aims to design and evaluate new approaches to
CA using touch gestures and keystroke dynamics. The MLP and LSTM will be used since they
have given good results, and it will be easier to compare them to the approaches of this research.
Each modality will be evaluated separately under the zero-effort evaluation and a comparison
of the results with those of the literature will be made (Table 20, Table 21). Then, an
investigation will be made regarding if there can be an improvement of the performance with
the feature-level fusion of biometrics and a comparison of the results with those of the literature
will be made (Table 22).
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7.3 Experimental setup

Following, the problem analysis, the data collection architecture, the features extraction

process and the methodology are presented.

7.3.1 Problem Analysis

In BBCA systems there are some fundamental weaknesses such as achieving a balance between
false positives / false negatives, that is, between security and usability [9, 193]. Most BBCA
systems often operate with a high FRR at thresholds attempting to keep the FAR under 0.1%
[9, 116, 193]. Of course, a false rejection (usability) is less costly than a false acceptance
(security). A higher false acceptance rate will reduce the security level of the authentication
system while a higher false rejection rate will block a legitimate user. However, this imbalance
may make the whole system unusable. Thus, it is a critical topic to explore how to achieve a

balance between security and usability.

7.3.2 Data collection architecture

We developed the BioGames paradigm [246] to collect behavioral biometrics from mobile
device users and follows an innovative approach. This approach is about gamification of data
collection. At the same time, a behavioral biometric collection tool (Biogames App) based on
the BioGames example was developed. The Bio-Games App uses games and challenges that
combine Keystroke Dynamics and Touch Gestures. Each category has 4 sessions and each
session 4 games where the levels are becoming more difficult to complete. In the beginning,
the user has access only to Game 1 of Session 1. Following, the user must complete all 4 games
of session 1 to unlock the first game of the next session. If the user successfully completes
game 1 and within the given timeframe, then the next game unlocks until the user success-fully
completes all 4 games in each session. Also, in each game played the time limit decreases to
collect typing data at different typing speeds. Finally, the typing games that are used are based
on something that the user must recall from his/her memory, like a password, and games that
are based on something that the user sees and types, like a captcha. BioGames App sends the

data to an API that stores the data in the Aegean-DataBase. The Aegean-DataBase is designed
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to allow multiple users to store their sensor data at any time. Thus, there is no concern about

data separation and synchronization.

7.3.3 Features extraction

In this section, we describe the touch gestures, keystroke dynamics and fusion features
extraction that we use in our experiments.
7.3.3.1  Touch gestures

Touch gestures are the strokes or swipes made on the screen of mobile devices. The BioGames
app extracts the location points, timestamps, and touch pressure. Each of them can be encoded

as a series of vectors [249]:
Si = (xil yi: til pi): L = {1I 21 ey N}I (6)

where x;, y; are location points, t;, p;are timestamps and screen touch pressure, respectively.

Here, the total number of swipes is N.

Table 23 presents the touch gestures features of the BioGames app.

Table 23: Features of touch gestures.

Sensor X_value Y _value Time Pressure
20 0.1
646.8269 1248.5352
Touch Screen 10 0.5
(Gestrures) 652.2571 1227.4142
30 0.5
790.6092 1199.5518

7.3.3.2  Keystroke dynamics

Users are identified based on their tapping habits by recording and analysing their typing inputs
collected from the BioGames’s App keyboard [16, 187]. Duration, latency, key pressure and
location points of the fingers are extracted by BioGames App as described in [105, 110, 179,
187, 246]:
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e Duration: the time between pressing and releasing a key.
e Latency: the time between releasing a pressed key until pressing the next key.
e Pressure: key pressure.

e Location: location points (xi, yi) on the screen.

Table 24 shows the database entries of keystroke dynamics that were sent by the BioGames

app.
Table 24: Features of keystroke dynamics.
Sensor Duration Latency Pressure X _value Y _value
134 189 1.0 943.0 404.0
Touch Screen 96 176 1.0 637.0 417.0
(Keyboard)
57 358 0.50 339.0 243.0

7.3.3.3 Fusion

In feature-level fusion, the feature sets from multiple behavioral biometrics are unified into a
single feature set [14, 187]. A new feature set that combines touch gestures and keystroke

dynamics was developed. Table 25 presents the fusion features set.

Table 25: Fusion feature set

Modality X_value Y_value Pressure Pressure X_value Y_value
(touch) (touch) Time (touch) (keystroke) Duration latency (kestroke) (keystroke)
Eusion of 0.410958 0.514873 606 0.05 0.08 0.605809 21516 5433 302196
touch
gestures and 0.410958 0.514873 804 0.80 0.70 0.456432 64547 220472 178188
keystrokes
0.506854 0.513326 952 0.50 0.07 0.46473 62796 49291 349696

7.3.4 Methodology

In the data collection process, the BioGames App [246] was installed on the mobile devices of
39 participants. Users play the games developed in their everyday environment, and the various

hardware components collect the biometrics, as mentioned above. The BioGames App sends
to the database all the data for each modality.
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The process of touch gestures data collection has 16 sessions, where each session lasts
approximately 2 minutes. The gestures of swipe down/ swipe up and swipe right/ swipe left
which are commonly employed are collected. One or many finger touches, swiping down or
up in a particular area are also collected, since they can be employed for continuous
authentication [246]. Of the 39 participants in the sample, 38 are considered impostors, and

one person is considered genuine.

The process of keystroke dynamics collection has 16 sessions, where each session lasts
approximately 2 minutes. In the course of the sessions, there was a display of specific text or
numbers and users had to type them directly after the display or memorize them and then type
them. This resulted in two groups of inputs, one that participants must read and write
immediately and another that participants read, memorize, and then write. Of the 39
participants in the sample, 38 are considered impostors, and one person is considered genuine.

Regarding fusion, the feature-level fusion of keystroke dynamics and touch gestures is applied
and their unification into a single feature set consisting of 39 individuals and 1488 Instances.
Of the 39 participants in the sample, 38 are considered impostors, and one person is considered

genuine.

Lastly, a comparison of the performance of Multi-Layer Perceptron (MLP) and Long Short-
Term Memory (LSTM) is made. Each modality is examined separately and an investigation is
made regarding if there can be an improvement of the performance by applying feature-level
fusion of keystroke dynamics and touch gestures.

7.4 Results
In this section, the performance of the MLP and the LSTM is evaluated. The TAR, FAR, TRR,

FRR, Accuracy, and Equal Error Rate are calculated. The results achieved by the systems are

presented below.
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7.4.1 Touch gestures results

By using the collected data from the BioGames App a feature set with 4749 instances is created

and normalized with scale 1.0. The LSTM was applied with the following configurations (table
26):

Table 26: Network configuration (W: Weights, RW: Recurrent weights, b: Biases).

VertexName nin, Total Params Vertex

(VertexType) nOut Params Shape Inputs
LSTM layer 5,2 64 W: {5,8}, RwW:{2,8}, b:{1,8} [input]
Output layer 2,2 6 W: {2,2}, b:{1,2} [LSTM layer]

Also, the following configurations were applied on MLP:

e Learning rate (L): 0.3.
e Momentum: 0.2.
e Training time (N): 500.
e Hidden layers (H): 3.
With test mode 10-fold cross-validation the systems achieved:
e LSTM achieved: 77.5%Accuracy, 22% Equal Error Rate, 47.3% TAR, 89.8% TRR,
10.2% FAR and 52,7% FRR.

e MLP achieved: 77.2% Accuracy and 24.7% Equal Error Rate, 53.4% TAR, 86.9% TRR,
13.1% FAR and 46.6% FRR.

Table 27 summarizes the performance achieved for touch gestures.

Table 27: The results for touch gestures.

System Accuracy EER TAR TRR FAR FRR
LSTM 77.5% 22% 47.3% 89.8% 10.2% 52,7%
MLP 77.2% 24.7% 53.4% 86.9% 13.1% 46.6%
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Table 28 presents the results by class.

LSTM has given the following results.

e Class Impostor: 89.8% TAR, 52.7% FAR.

e Class Genuine: 47.3% TAR, 10.2% FAR.

e Weighted Average: 77.5% TAR, 40.5% FAR.

MLP has given the following results.

e Class Impostor: 86.9% TAR, 46.6% FAR.

e Class Genuine: 53.4% TAR, 13.1% FAR.

e Weighted Average: 77.2% TAR, 36.6% FAR.

Table 28: Touch gestures results by class.

System Modality TAR FAR Class

LSTM Touch Gestures 89.8% 52,7% Impostor
47.3% 10.2% Genuine

Weighted Avg. 77.5% 40.5%

0, 0,

MLP Touch Gestures 86.9% 46.6% Impostor
53.4% 13.1% Genuine

Weighted Avg. 77.2% 36.6%

7.4.2 Keystroke dynamics results

By using the collected data from the BioGames App a feature set from 1488 instances was
created and normalized with scale 1.0. The LSTM was applied with the following

configurations (table 29):

Table 29: Network configuration (W: Weights, RW: Recurrent weights, b: Biases).

VertexName nin, Total Params Vertex

(VertexType) nOut Params Shape Inputs

LSTM layer 5,2 64 W: {5,8}, RW:{2,8}, [input]
b:{1,8}

Output layer 2,2 6 W: {2,2}, b:{1,2} [LSTM layer]

Also, the following configurations were applied on MLP:

e Learning rate (L): 0.3.

¢ Momentum: 0.2.
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e Training time (N): 500.
e Hidden layers (H): 3.
With test mode 10-fold cross-validation the systems achieved:

e LSTM achieved: 96.1% Accuracy, 3% Equal Error Rate, 100% TAR, 92.4% TRR, 7.6%
FAR and 0% FRR.

e MLP achieved: 97.17% Accuracy and 2% Equal Error Rate, 100% TAR, 94.5% TRR,
5.5% FAR and 0% FRR.

Table 30 summarizes the performance for keystroke dynamics.

Table 30: The results for keystroke dynamics.

System Accuracy EER TAR TRR FAR FRR
LSTM 96.1% 3% 100% 92.4% 7.6% 0%
MLP 97.17% 2% 100% 94.5% 5.5% 0%

Table 31 presents the results by class.

LSTM has given the following results.
e Class Impostor: 92.4% TAR, 0% FAR.
o Class Genuine: 100% TAR, 7.6% FAR.
e Weighted Average: 96.1% TAR, 3.7% FAR.

MLP has given the following results.
e Class Impostor: 94.5% TAR, 0% FAR.
e Class Genuine: 100% TAR, 5.5% FAR.
e Weighted Average: 97.2% TAR, 2.7% FAR.

Table 31: The keystroke dynamics results by class.

System Modality TAR FAR Class
92.4% 0%
LSTM Keystroke Impostor
100% 7.6% Genuine
Weighted 96.1% 3.7%
Avg.
Keystroke 94.5% 0% Impostor
MLP Dynamics
Y 100% 5.5% Genuine
Weighted 97.2% 2.7%
Avg.
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7.4.3 Fusion of touch gestures and keystrokes results

From the data collected with the BioGames App, both from keystroke dynamics and touch
gestures, a feature set was created in which feature-level fusion was applied and it was unified

into a single feature set that consists of 1488 Instances. Also, it was normalized with scale 1.0.
The following configurations were applied on LSTM (table 32):

Table 32: Network configuration (W: Weights, RW: Recurrent weights, b: Biases).

VertexName nin, Total Params Vertex

(VertexType) nOut Params Shape Inputs
LSTM layer 9,2 96 W: {9,8}, RW:{2,8}, b:{1,8} [input]
Output layer 2,2 6 W: {2,2}, b:{1,2} [LSTM layer]

Also, the following configurations were applied on MLP:
e Learning rate (L): 0.3.
e Momentum: 0.2.
e Training time (N): 500.
e Hidden layers (H): 3.
With the test mode 10-fold cross-validation the systems achieved:
e LSTM achieved: 95.09% Accuracy, 4% Equal Error Rate, 99.6% TAR, 90.8% TRR,
9.2% FAR and 0.4% FRR.

e MLP achieved: 98.3% Accuracy and 1% Equal Error Rate, 99.4% TAR, 97.4% TRR,
2.6% FAR and 0.6% FRR.

Table 33 summarizes the performance for fusion.

Table 33: The results for fusion.

System Accuracy EER TAR TRR FAR FRR
LSTM 95.09% 4% 99.6% 90.8% 9.2% 0.4%
MLP 98.3% 1% 99.4% 97.4% 2.6% 0.6%
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Table 34 presents the results by class.

LSTM has given the following results.

e Class Impostor: 90.8% TAR, 0.4% FAR.

e Class Genuine: 99.6% TAR, 9.2% FAR.

e Weighted Average: 95.1% TAR, 4.7% FAR.

MLP has given the following results.

e Class Impostor: 97.4% TAR, 0.6% FAR.

o Class Genuine: 99.4% TAR, 2.6% FAR.

e Weighted Average: 98.4% TAR, 1.6% FAR.

Table 34: Fusion results by class.

System Modality TAR FAR Class
F“ggg&ggm 90.8% 0.4% Impostor
LSTM 2
Keystroke 99.6% 9.2% Genuine
Weighted Avg. 95.1% 4.7%
Fusion Touch 97.4 0.6 Impostor
MLP Gesétgljres : :
Keystroke 99.4 2.6 Genuine
Weighted Avg. 98.4 1.6

7.5 Discussion

In this chapter a comparative study between MLP and LSTM on the development of a

keystroke dynamics and touch gestures CA system was presented. Each modality was

examined separately and then an investigation was made regarding if there can be an

improvement of the performance by using the feature-level fusion to solve security and

usability issues that occurred. A discussion of the results follows.

7.5.1 Touch gestures

By applying the touch gestures feature set both systems achieved a not-so-high performance.
The LSTM achieved: 77.5% Accuracy, 22% Equal Error Rate, 47.3% TAR, 89.8% TRR,
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10.2% FAR and 52,7% FRR. The MLP achieved: 77.2% Accuracy and 24.7% Equal Error
Rate, 53.4% TAR, 86.9% TRR, 13.1% FAR and 46.6% FRR.

In relation to the literature, both the MLP and the LSTM have had lower performance. The not-
so-good performance in touch gestures is due to the user playing games with the BioGames
App and for this reason, do not make the same movements and the systems fail to understand
these changes in the users. This is an indication that the BioGames paradigm gives us data that
are very close to the actual use of the devices, as opposed to a controlled behavioral biometrics
collection methodology where users would make specific, researcher-led moves.

Comparing the performance of the two systems it is noticed that both have a not-so-high
performance in all metrics. LSTM has a slightly better performance as it has higher Accuracy,
TAR, and TRR, while it has a lower Equal Error Rate and FAR, compared to MLP. In
conclusion, in this context, both systems did not perform so well in terms of security and

usability.

7.5.2 Keystroke dynamics

By applying the keystroke dynamics feature set both systems achieved high performance. The
LSTM achieved: 96.1% Accuracy, 3% Equal Error Rate, 100% TAR, 92.4% TRR, 7.6% FAR
and 0% FRR. The MLP achieved: 97.17% Accuracy and 2% Equal Error Rate, 100% TAR,
94.5% TRR, 5.5% FAR and 0% FRR.

In relation to the literature, both LSTM and MLP achieved better performance. In [44] the
FFNN performed relatively low achieving a FAR of 14%, an Accuracy of 86%, and an FRR
of 2.2%. In [40] average EERs of 12.8% were achieved with the MLP. Finally, almost the same

results with MLP as in [249] were achieved.

Comparing the performance of the two systems it is firstly noticed that both have a high
performance in all metrics. The MLP, however, clearly has better performance as it has higher
Accuracy, TAR, and TRR while respectively lower Equal Error Rate and FAR. In the Genuine
class, both systems performance is 100%. In conclusion, in this context, both systems
performed perfect, but MLP is superior to LSTM.
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7.5.3 Fusion

Taking all this into account, an investigation was made regarding if there could be an
improvement in the performance for touch gesture modality by applying fusion with keystroke
dynamics to solve these security and usability issues of touch gestures. By applying the feature-
level fusion feature set both systems achieved high performance. The LSTM achieved: 95.09%
Accuracy, 4% Equal Error Rate, 99.6% TAR, 90.8% TRR, 9.2% FAR and 0.4% FRR. The
MLP achieved: 98.3% Accuracy and 1% Equal Error Rate, 99.4% TAR, 97.4% TRR, 2.6%
FAR and 0.6% FRR.

In relation to the literature both LSTM and MLP achieved a better performance except for
Accuracy and FAR in [179]. In [179] the MLP achieved 7% FRR, and 1% EER. The MLP of
the present thesis also achieved EER of 1% but a better usability with an FRR of 0.6%. Also,
the LSTM achieved better FRR 0.4%. In [24] the MLP achieved EER 8%. In [52] the k-NN
achieved 3.65% EER. In [53], the BayesNet achieved 11.01% FAR and 4.12% FRR. In [122]
the Random Forest achieved 9.67% EER. Finally, in [178] the LSTM achieved an average
accuracy of 88%, an EER of 15% and an average TAR of 78%.

By comparing the performance of both systems, it is observed that they both achieve a high
performance in all metrics. The performance of LSTM in improved to a great extent. The model
achieved Accuracy 95.09% (increased 17.59%), EER 4% (The error was reduced by 19%), the
TAR 99.6% (increased 17,6%), the TRR 90.8% (increased 1%), the FAR 9.2% (reduced by
1%) and the FRR 0.4% (reduced by 52.3%). The performance of MLP is also greatly improved.
The model achieved Accuracy 98.3% (increased 21.1%), EER 1% (The error was reduced by
23.7%), the TAR 99.4% (increased 46%), the TRR 97.4% (increased 10%), the FAR 2.6%
(reduced by 10.5%) and the FRR 0.6% (reduced by 46%).

In conclusion, the MLP is superior to LSTM in this context. It is shown that the feature-level
fusion of touch gestures and keystroke dynamics improves the performance of the systems and

solves both security and usability issues.
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7.5.4 Limitations
High effort approaches should be used to evaluate the systems [83, 131, 146, 150, 151]. A

sample of 39 individuals was used to test the systems and there are plans to evaluate them in a
larger sample of users. Large amounts of training data are normally required for deep learning

models.

7.6 Conclusions

In this chapter, a comparative study between MLP and LSTM on the development of a CA
system that is based on the user’s touch gestures and keystroke dynamics was presented. Each
modality was examined separately and an investigation was made regarding if there could be
an improvement of the performance results of touch gestures, by applying feature-level fusion
with keystroke dynamics. It is shown that the feature-level fusion of touch gestures and
keystroke dynamics improves the performance of the systems and solves security and usability
issues. The MLP achieved greater improvement and better performance compared to the
LSTM. The MLP achieved Accuracy 98.3% (increased 21.1%), EER 1% (the error was
reduced by 23.7%), the TAR 99.4% (increased 46%), the TRR 97.4% (increased 10%), the
FAR 2.6% (reduced by 10.5%) and the FRR 0.6% (reduced by 46%).
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Summary and Conclusions

8.1 Introduction

This doctoral thesis includes four research stages that each address one of the research
questions. These are the research stages of a designed single project. First, an extensive
systematic literature review is presented that maps the research area and identifies challenges
and open problems. Then, a new theoretical framework is presented, to investigate the key
factors that show us the user requirements that influence the adoption of BBCA technology. In
the third stage, a new paradigm (BioGames paradigm) and a new tool (BioGames App) for
collecting behavioral biometric data that follows an innovative approach, are presented. This
approach is about the gamification of data collection. In the fourth stage, an experimental data
collection process of keystroke dynamics and touch gestures is applied by using smartphones,
and a comparison is made between Multi-Layer Perceptron (MLP) and Long Short-Term
Memory (LSTM). Each modality is examined separately and an investigation is made
regarding the improvement of performance by applying feature-level fusion of keystroke

dynamics and touch gestures to solve either security or usability issues.

8.2 Research stage 1

In the first stage, an extensive survey is presented that maps the research area. The main
objective of the research was to answer the research question: What are the challenges, the
open issues, and the future trends of BBCA technology? To answer the question an extensive
literature review on BBCA technology and the performance of machine learning systems was
conducted. Additionally, another literature review on potential attack vectors on BBCA
systems was conducted and promising countermeasures were highlighted. Also, a classification

of behavioral biometrics (Behavioral Biometrics - BB) into seven categories and the analysis
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of their collection and feature extraction methodologies were carried out. Finally, challenges,

open issues, and future trends are identified.

The research showed that CA technology is a promising method with many advantages. It can
operate without user intervention, requires no additional hardware, and exhibits high accuracy.
A large corpus of research has shown evidence regarding the superiority of the fusion of
multimodal biometric approaches. A variety of combinations is used with the fusion of
biometrics that achieves improved results compared to the single modality methods. Thus, the
fusion of multimodal biometrics authentication emerges as a definite future trend. There is also
evidence that the fusion of multimodal biometrics in combination with the Zero Interaction

Authentication (ZIA) paradigm may also be a trend.

Of course, several challenges and open issues were identified, which were resolved in this
doctoral thesis, such as the investigation of the factors of technology acceptance by users. Also,
in the bibliography was found the need for a user-friendly BB collection methodology. A major
challenge is the design of a methodology for collecting behavioral biometrics, in a way that
makes it user-friendly. The selection and optimization of a proper set of behavioral biometrics
constitutes a challenge and an open issue. Also, behavioral biometrics continuous
authentication is subject to limitations, such as risk of false positives/false negatives, i.e.,
balance between security and usability resulting in its limited applicability. To overcome these
limitations, it is crucial to maximize accuracy and examine how to find a balance between

security and usability.

Research contribution of this stage:

e A classification of behavioral traits on seven categories and an analysis of behavioral
biometrics collection methodologies and feature extraction.

e A wide range, state-of-the-art literature review on BBCA technology and the
performance of machine learning systems.

e A literature review on possible attack vectors on BBCA technology and a highlight on
promising countermeasures.

e ldentification of challenges, open issues, and future trends.
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8.3 Research stage 2

The main goal of the second research stage of this thesis was to answer the research question:
Which are the key factors of user acceptance (or rejection) of BBCA technology? The
challenges and limitations in the application of biometric technology are not understood
sufficiently. As a result, many organizations are investing less or not at all in such technologies
[188, 192]. This research constitutes an exploration of the key factors of behavioral intent to
adopt BBCA technology. It provides detailed information and several useful insights and new
knowledge for researchers, practitioners, governments, and the providers of BBCA technology.
To answer the research question, the effect of various factors on Behavioral Intention to adopt
technology (Behavioral Intention - BIl) was investigated through a new integration of the
Technology Acceptance Model (TAM) and the Diffusion of Innovation Theory (DOI). Also, a
new theoretical framework was developed with constructs such as Security & Privacy Risks
(SPR), Biometrics Privacy Concerns (BPC) and Perceived Risk of Technology Use (PROU).
In addition, the constructs Trust in Technology (TT) and Innovativeness (Innov) were used. It
was found that the main Facilitators of Behavioral Intention are Trust in Technology (TT),
followed by Compatibility (COM), Perceived Usefulness (PU) and Innovativeness (INNOV).
Trust in technology is a factor that must be considered for the success of future investments. A
factor that may decrease trust in technology is biometrics privacy concerns. Users are
concerned about their biometrics and believe that they may be sent to third parties. Therefore,
a suggestion is made that research should concentrate towards the preservation of their
biometrics privacy. To achieve this, behavioral measurements should be processed on the
mobile device of users, and biometrics are not sent to the online service. A device-centric
approach is likely to increase the trust in technology and consequently lead to BI. Also, Shila
etal. [242] reported that the cloud-based authentication was outperformed by the device-centric
implementation in terms of detection latency and classification accuracy. Moreover, there are
specific and appropriate security measures that should be established in BBCA systems, as, the
encryption of biometric data both in the database and the device. Finally, it is necessary
providers of BBCA technology adopt different approaches in building users' initial trust in

technology. There are two types of users e.g., young people who trust such technologies and
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people unfamiliar with biometric technologies. In the first case, the providers must introduce
added-value services to them and in the latter case, service providers must emphasize
usefulness.

Similarly, the compatibility is one of the factors that can lead to the adoption of technology. In
this research, it is shown that individuals who believe that the usage of the BBCA technology
would fit well with the way they want to secure their personal data and accounts (e.g., bank
accounts, e-mail, etc.), have a higher intent to adopt this technology. Moreover, individuals
who believe that BBCA would fit into their lifestyle have a higher appraisal of ease-to-use and
perceived usefulness. So, providers can run a more cost-effective advertising campaign by
comparing the BBCA to entry-point authentication technology as well as traditional methods
(e.g., eliminating the necessity to remember PINs or passwords).

Another factor that must be considered is usefulness. Individuals are concerned about their
security and privacy from a possible breach of the security mechanism. This leads them to
recognize the usefulness of BBCA technology as it will protect their assets and personal data.
Thus, it is essential that accuracy is maximized and to investigate how to find a balance between
usability and security. Innovation is also one of the factors that can help BBCA Technology
Suppliers to promote technology to a relevant audience first. For instance, they can reach their
target group through magazines focusing on new technologies, discussion groups or seminars.
In this way, their promotional advertising campaign can be more effective with a greater chance
of gaining the targeted market share.

For the new constructs added, the results support the hypothesis that Security & Privacy Risks
(SPR) is a facilitator of Perceived Usefulness (PU). Also, PU acts as a facilitator of Behavioral
Intention to adopt technology (BI). Consequently, individuals who do not feel sufficiently
protected by classic authentication methods will consider the usefulness of BBCA technology
for their additional protection against risks. Also, with the constructs Biometrics Privacy
Concerns (BPC) and Perceived Risk of Using the technology (PROU) it was examined whether
individuals' concerns about their biometric privacy act as inhibitors to BI. It was concluded
that individuals consider the benefits related to the security of their assets (e.g., money in a
bank account) from using BBCA technology to be far more important than the perceived risks
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to the privacy of their biometrics. This results from the fact that the hypothesis that the main
inhibitor of Bl is the construct Perceived Risk of Using the technology (PROU) is not supported
by the model. The new constructs were used to extend the TAM model and address its
limitations in addressing security and privacy issues. Therefore, it is proposed that this new
theoretical framework is combined with TAM for research on the adoption of biometric and
continuous authentication technologies. Finally, this model may also be used to design policies
for increasing the adoption of the BBCA technology.

Research contribution of this stage:

e |t proposes a new integration of a modified TAM model and DOI theory, which
examines the influence of various factors on BBCA's behavioral intent of adoption.

e A new theoretical framework is created with constructs such as Security & Privacy
Risks (SPR), Biometrics Privacy Concerns (BPC) and Perceived Risk of Using the
Technology (PROU).

e A research model focused on BBCA technology is developed that can be used by
researchers, practitioners, governments, decision-makers, and providers of BBCA

technology.

8.4 Research stage 3

The main objective in the third research stage of the present thesis was to answer the research
questions: Is there a need for the development of a new paradigm for the collection of behavior
biometrics data for research purposes? Could this new paradigm be supported by an effective
behavioral biometrics collection tool? It has been observed in the literature that a major
challenge and open problem, for research related to the development of BBCA systems, is the
collection and refinement of an appropriate set of behavioral biometric data. The issue is
compounded by the fact that most users avoid engaging in the time-consuming, laborious
processes involved in collecting research biometric data. For this reason, developing and
testing a user-friendly biometric collection methodology and tool is another major challenge.
Also, as shown in the current behavioral biometrics collection technologies, there are no tools
available that combine the keystroke and touch gesture modalities.
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In response to these challenges, in the third stage of the research, a new behavioral biometric
data collection paradigm, called the BioGames paradigm, is presented and follows an
innovative approach. This approach is about the gamification of data collection. At the same
time, a behavioral biometric collection tool (Biogames App) based on the BioGames example
was developed. The BioGames App uses games and challenges that combine Keystroke
Dynamics and Touch Gestures. In touch gestures, the types of games that are used collect
gestures that are widely used. Also, some special gestures are collected such as single or
multiple finger touches and swipe up or down in a specific area, because they could be used
for continuous authentication. As for keystroke dynamics, in each game, the time limit
decreases to collect typing data at different typing speeds. Finally, the typing games that are
used are based on something that the user must recall from his/her memory, like a password,
and games that are based on something that the user sees and types, like a captcha.

Research contribution of this stage:
e Presentation of a new paradigm, named BioGames, that suggests a user-friendly and

entertaining way for the collection of behavioral biometrics for users of mobile devices.

e Development of a novel behavioral biometrics collection tool, named BioGames App,

which is freely available for researchers and practitioners.

e Development of new appropriate feature sets for continuous authentication of touch

gestures and keystroke dynamics.

e Introduction of a convenient data collection methodology by which the behavioral

biometrics of the users can be collected via BioGames.

8.5 Research stage 4

The fourth stage of the research was related to the design and evaluation of new approaches to
continuous authentication using Keystroke Dynamics and Touch Gestures. The main objective
of the fourth research stage was to answer the research question: Does feature-level fusion of
touch gestures and keystroke dynamics improve the performance of deep learning systems and
address both security and usability issues? According to the literature [1, 9, 187, 193], most
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studies use single behavioral modality methods to authenticate users. However, the behaviors
of genuine users may change, and systems fail when significant changes occur [187, 193]. The
above, result in either security or usability issues. For example, a false rejection that diminishes
usability is less costly than a false acceptance that diminishes security. A higher false
acceptance rate will reduce the security level of the authentication system, while a higher false
rejection rate will block a genuine user [9, 193]. In the literature, the fusion of biometrics is
used to solve this problem and achieves improved results. In this research, each behavioral
biometric case was examined separately and the case of improving performance results with a
feature-level fusion of touch gestures and dynamic typing was investigated. In the present
approach a comparison is made between deep neural networks designed for data that entail
important temporal dynamics, such as Multi-Layer Perceptron (MLP), and deep networks
designed for independently distributed data, such as Long Short-Term Memory (LSTM).

By applying the touch gestures feature set both systems achieved a not-so-high performance.
The not-so-good performance in touch gestures is due to the user playing games with the
BioGames App and for this reason, do not make the same movements and the systems fail to
understand these changes. This is an indication that the BioGames paradigm gives us data that
are very close to the actual use of the devices, as opposed to a controlled behavioral biometrics
collection methodology where users would make specific, researcher-led moves. In conclusion,
in this context, both systems did not perform so well in terms of security and usability. By
applying the keystroke dynamics feature set both systems achieved high performance. In
relation to the literature, both LSTM and MLP achieved better performance. In the Genuine
class, both systems performance is 100%. In conclusion, in this context, both systems

performed perfect, but MLP is superior to LSTM.

Taking all this into account, an investigation was made regarding if there could be an
improvement in the performance for touch gesture modality by applying fusion with keystroke
dynamics to solve these security and usability issues of touch gestures. By applying the feature-
level fusion dataset both systems achieved high performance. In relation to the literature both

LSTM and MLP achieved a better performance. By comparing the performance of both
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systems, the MLP is superior to LSTM in this context. The MLP achieved greater improvement
and better performance compared to the LSTM. The MLP achieved Accuracy 98.3% (increased
21.1%), EER 1% (the error was reduced by 23.7%), the TAR 99.4% (increased 46%), the TRR
97.4% (increased 10%), the FAR 2.6% (reduced by 10.5%) and the FRR 0.6% (reduced by
46%). In relation to the literature, both LSTM and MLP achieved a better performance. From
the results of the research it is shown that the feature-level fusion of touch gestures and
keystroke dynamics improves the performance of the systems and solves both security and
usability issues.

Research contribution of this stage:

e Development of a new appropriate feature set for continuous authentication that combines
touch gestures and keystroke dynamics.

e A comparative study between MLP and LSTM on the development of a BBCA system is
provided.

e Is shown that the feature-level fusion of touch gestures and keystroke dynamics improves
the performance of the systems.

e Isshown that the feature-level fusion of touch gestures and keystroke dynamics solves both
security and usability issues.

e Is shown that MLP is superior to LSTM in this context.

8.6 Future research

Future research could be conducted by extending the BBCA technology behavioral intention
adoption model to desktop computers or even Internet of Things (IoT) devices. In addition,
many external factors need to be explored such as consumer traits [228], situational factors

[229], product characteristics [230], and previous experiences [231].

Future research could also focus on the extension of the BioGames App to include more
behavioral modalities. Also, the creation of database with data collected from a larger

population that will be publicly available.
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Finally, future research could be focused on the evaluation of the deep learning systems under
the high effort approaches to see the performance under the spectrum of today's possible threats

and highlight relevant countermeasures.
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