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Abstract

The main thing that distinguishes �nancial time series analysis from other time series
analysis, is that the former behave in a very unique way. This is due to the existence
of unit roots. In this thesis we will present the fundamental theory behind unit root
tests, spurious regression and cointegration. In the application we implement di�erent
strategies and measure their performance. This is in order to showcase the concept of
statistical arbitrage and compare di�erent strategies, such as the long only strategy, the
ADL strategy and spread strategy (pairs trading).

5



6 CONTENTS



Introduction

Financial time series analysis is concerned with theory and practice of asset valuation
over time. A key feature that distinguishes �nancial time series analysis from other time
series analysis, is that the former behave in a very unique way. This, intrigued a majority
of researchers to focus their study on �nancial time series. This behaviour is a result
of the stochastic trend that emerges from �nancial time series, along with the returns'
stylized facts. That is why �nancial time series demand to be treated with special care
in order to achieve proper estimations. The existence of unit roots is a thorn in the �esh
for the majority of statistical approaches. This creates the need for speci�c techniques
and approaches in order to address these issues.

In �nancial time series, pairs trading is a strategy that involves matching a long
position with a short position in two assets with high correlation. The advantage of
pairs trading, when it performs as expected, apart from the pro�t investors make, is the
reduction of potential losses which result in an improved risk pro�le. In addition, in order
for the pairs trading outcome to be valid, it requires a high statistical correlation between
the assets. The pair can also involve assets from di�erent industries as long as they are
correlated.

When a strategy involves opening both a long and a short position simultaneously,
one can take advantage of the, potential, price di�erence between these correlated assets
and achieve statistical arbitrage. Statistical arbitrage is not strictly limited to two assets,
since investors can perform it to a group of correlated assets. The risk behind statistical
arbitrage strategy is that no one can know in advance how long the mispricing will last
and how wide the spread will be.

Both concepts have been studied and analysed extensively in literature, both in �-
nancial and in statistical perspective. The most signi�cant ones are the works by Bent
E. Sorensen, Ruey S. Tsay, Soren Johansen, Peter J. Brockwell, Richard A. Davis.

This work consists of the theoretical presentation of the above terms as well as their
practical application. In the theoretic part we present the fundamental de�nitions and
properties one should know before the application. In the practical application part we
used the statistical package R and performed di�erent strategies to achieve statistical
arbitrage.

The outline of this thesis is as follows. Chapter 1 begins with an introduction to time
series. We present the de�nitions of the statistical measures of time series. The chapter
continues with the de�nition of stationarity and when a time series is called integrated.
At the end we present the four types of convergence, which are the convergence surely,
convergence in probability, convergence in distribution and convergence in mean and also
the term of ergodicity.

In chapter 2 we present fundamental measures of �nancial time series. The chapter
begins with the de�nition of returns and the di�erent types of them. The main focus of
this chapter is the presentation of the stylized facts of �nancial returns. These stylized
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facts are volatility clusters, fat tails and nonlinear dependence.
Chapter 3 focuses on the violations of assumptions that lead to the phenomenon of

spurious regression. At the �rst half of the chapter, we present the behaviour that one
should expect from regression models applied on time series, from autoregressive models
and the Autoregressive Distributed Lag (ADL) model. In addition, we discuss about
how one can pick the right lag length and the Durbin- Watson test used for checking
for correlation. At the second half of the chapter, we present the two cases of the very
important spurious regression giving an example for each of them. The chapter ends with
a reference of the spurious regression from the multivariate perspective and some ideas
on how spurious regression can be cured.

Chapter 4 contains the concept of cointegration, and it mostly focuses on the unit
root tests. Unit root test are very important for �nancial time series and here we present
the Dickey- Fuller test, the Phillips- Perron test, the Zivot- Andrews test and the KPSS
test.

Finally in chapter 5 we have a pair trading application. We used the statistical package
R to demonstrate it.



Chapter 1

Time Series

De�nition 1. Time Series [7]
A time series is a set of observations xt, each one being recorded at a speci�ed time t.

A discrete time series is one in which the set T0 of times at which observations are
made is a discrete set, as is the case for example when observations are made at �xed
time intervals.

Continuous time series are obtained when observations are recorded continuously over
some time interval, e.g. when T0 = [0, 1]. We shall use the notation x(t) rather than xt
if we wish to indicate speci�cally that observations are recorded continuously.

1.0.1 Di�erences

De�nition 2. Di�erences [7]
We de�ne the �rst di�erence operator ∇ by

∇Xt = Xt −Xt−1 = (1−B)Xt

where B is the backward shift operator,

BXt = Xt−1, t ∈ N− {1}

Powers of the operators B and ∇ are de�ned in the obvious way, i.e. Bj(Xt) = Xt−j
and ∇j(Xt) = ∇(∇j−1(Xt)), j ∈ N with ∇0(Xt) = Xt. Polynomials in B and ∇ are
manipulated in precisely the same way as polynomial functions of real variables. For
example,

∇2Xt = ∇(∇Xt) = (1−B)(1−B)Xt = (1− 2B + B2)Xt = Xt − 2Xt−1 +Xt−2

Equivalent to the backward shift operator is the lag operator

L(Xt) = Xt−1, t ∈ N− {1}

Remark 1. It may be convenient to work with the �rst di�erence in logarithms of a
series. We denote this by ∇log(Xt) = log(Xt)− log(Xt−1).
There are some reasons why we prefer to use the natural logarithm over the actual value.

9



10 CHAPTER 1. TIME SERIES

It is common to use log di�erences in �nance and one of the main reasons is the in-
dependence of the direction of change, an example of which will be given in log returns
section. There are some economic measures, like GDP and Industrial production, that
appear to have an exponential growth over time and log transformation takes that under
consideration.

1.0.2 Statistical Measures

De�nition 3. Mean [84]
The `th moment of a continuous random variable X is de�ned as

E(X`) =

∫ +∞

−∞
x`f(x)dx

where E stands for expectation and f(x) is the probability density function of X. The
�rst moment is called the mean or expectation of X. It measures the central location of
the distribution. For time series we denote the mean function µt = E(Xt).

De�nition 4. Central Moment [84]
The `th central moment of X is de�ned as

E((X − µX)`) =

∫ +∞

−∞
(x− µX)`f(x)dx

where µX = E(X)

De�nition 5. Second Central Moment [84]
The second central moment, denoted by σ2

x , measures the variability of X and is called
the variance of X. The positive square root, σx, of variance is the standard deviation of
X. For asset returns, variance (or standard deviation) is a measure of uncertainty and,
hence, is often used as a risk measure.

V ar(X) = σ2
X = E((X − µX)2) =

∫ +∞

−∞
(x− µX)2f(x)dx

De�nition 6. Third Moment [84]
The third moment measures the symmetry of X with respect to its mean. The skewness

is de�ned as

S(X) = E

(
(X − µX)3

σ3
X

)
De�nition 7. Forth Moment [84]

The fourth moment measures the degree of peakedness of the distribution of X and it
is called the kurtosis. The kurtosis of X is de�ned as

K(X) = E

(
(X − µX)4

σ4
X

)
Remark 2. The quantity K(X)− 3 is called the excess kurtosis because K(X) = 3 for a
normal distribution. Thus, the excess kurtosis of a normal random variable is zero.
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Remark 3. In statistics, skewness and kurtosis, are often used to summarize the extent
of asymmetry and tail thickness. Usually in �nance, the �rst fourth central moments of a
random variable are used to describe the behaviour of asset returns, not that higher order
moments are not important but they are much harder to study.

De�nition 8. Covariance function [84]
The covariance function of X and Y is

γ(X, Y ) = Cov(X, Y ) = E[(X − µX)(Y − µY )]

De�nition 9. Correlation Function [7]
The correlation function of X, Y is

ρ ≡ Cov(X, Y )√
V ar(X)V ar(Y )

= Cor(X, Y )

1.0.3 Time Series Measures

De�nition 10. Mean [15]
One way of describing a time series is to specify the joint probability distribution of

Xt1 , . . . , Xtn for any set of times t1, . . . , tn and any value of n. We will denote µt =
µ(t) = E(X(t)) as the mean function of the Xt time series at a given time t.

We denote σ2
X(t) = V ar(Xt) as the variance of the time series Xt at a given time t.

De�nition 11. AutoCovariance Function [7]
One can assume that autocovariance depends on the distance between the two time

instances and not their position. This means that we are interested in the lag h between
t and t+ h

γX(h) = γX(t, t+ h) = Cov(Xt, Xt+h)

= E ((Xt − µX(t))(Xt+h − µX(t+ h)))

For h = 0 we have

γX(0) = E ((Xt − µX(t))(Xt+0 − µX(t+ 0))) = Cov(Xt, Xt+0) = V ar(Xt)

De�nition 12. Autocorrelation Function [7]
The autocorrelation function (ACF) of Xt at lag h is

ρX(h) ≡ γX(h)

γX(0)
=
γX(t, t+ h)

γX(0)
=
Cov(Xt, Xt+h)

V ar(Xt)
= Cor(Xt+h, Xt)

1.0.4 Strictly stationarity

De�nition 13. Strictly Stationarity [8]
The time series {Xt}t∈Z is said to be strictly stationary if the joint distributions of

(Xt1 , . . . , Xtk)
′ and (Xt1+h, . . . , X

′
tk+h

) are the same for all positive integers k and for all
t1, . . . , tk, h ∈ Z.
De�nition 14. Weakly Stationarity [8]

The time series {Xt}t∈Z, is said to be stationary if

1. E(Xt)
2 <∞ for all t ∈ Z

2. E(Xt) = m independent of t for all t ∈ Z

3. γX(h) = γX(t, t+ h) independent of t for all h, t ∈ Z
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1.0.5 Integrated

As we have already discussed, the time series can be non- stationary in terms of mean
and variance. Crucial are the non- stationary processes that are integrated, which have
the basic property that by di�erentiating them we obtain stationary processes.

Economic time series are not usually stationary but their relative di�erences, or the
di�erences when we measure the variable in logarithms, are stationary.

The stationary processes are di�erentiated from the integrated, because the integrated
processes have the form in which dependency disappears over time.

When a time series Yt has a unit autoregressive root, Yt is integrated of order one.
The integrated order determines the number of di�erences needed to obtain a stationary
process. This is often denoted by Yt ∼ I(1). We simply say that Yt is I(1). If Yt is I(1),
its �rst di�erence Yt is stationary.

It is sometimes necessary to di�erentiate more than once to obtain a stationary pro-
cess. Yt is I(2) when Yt needs to be di�erentiated twice in order to obtain a stationary
series. Using the notation introduced here, Yt is I(2), its �rst di�erence ∇Yt is I(1) and
its second di�erence ∇2Yt is stationary. Integrated processes of order two can be seen as a
generalization of integrated processes of order one but where the slope of the growth line,
instead of being �xed, varies over time. Generalizing, we say that a process is integrated
of order d ≥ 0, and we denote it by I(d), when upon di�erentiating it d times a stationary
process is obtained. When Yt is stationary, it is integrated of order 0 so Yt is I(0).

The long-memory processes are stationary processes where the autocorrelations decay
much more slowly over time than in the case of the ARMA processes or in the integrated
processes.

1.0.6 Convergences

Theorem 1. Weak Law of Large Numbers [36]
If Xt ∈ R are i.i.d and E(X) <∞, then as n→∞,

X̄ =
1

n

n∑
t=1

Xt →
p
E[Y ]

Theorem 2. Central Limit Theory [36]
If Xt ∈ R are i.i.d and E(X)2 <∞, then as n→∞,

√
n(X̄ − µ)→

d
N(0, σ2)

where µ = E(X) and σ2 = E((X − µ)2).

Remark 4. A rate of convergence in 1√
n
in the sense of the Distribution Function (DF)

metric is established for sequences {Xt} of independent identically distributed random
variables such that E(X3

1 ) <∞.

De�nition 15. Convergence surely [36]
Let (Ω, F, P ) be a probability space. Let X1, X2, . . . be a sequence of random variables

on (Ω, F, P ). Let X be another random variable on (Ω, F, P ). We say that Xn converges
almost surely (or, with probability 1) to X if

lim
n→∞

P ({ω : Xn(ω) = X(ω)}) = 1

In this case, we denoted Xn
a.s.→ X.
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De�nition 16. Convergence in probability [36]
A sequence of random variables Xn ∈ R converges in probability to X as n → ∞,

denoted Xn →
p
X or alternatively p limn→∞Xn = X, if for all δ > 0,

lim
n→∞

P (|Xn −X| ≤ δ) = 1

Equivalent for all ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0

We call X the probability limit of Xn.

De�nition 17. Convergence in distribution [36]
Let Xn be a sequence of random variables with distributions Fn(u) = P (Xn ≤ u) .

We say that Xn converges in distribution to X as n → ∞, denoted Xn →
d
X, if for all

u at which F (u) = P (X ≤ u) is continuous, Fn(u) → F (u) as n → ∞. We refer to
X and its distribution F (u) as the asymptotic distribution, large sample distribution, or
limit distribution of Xn.

De�nition 18. Convergence in Mean [36]
Let p ≥ 1 be a �xed number. A sequence of random variables X1, X2, X3, . . . converges

in the pth mean or in the Lp norm to a random variable X, shown by Xn →
Lp
X, if

lim
n→∞

E(|Xn −X|p) = 0

If p = 2, it is called the mean-square convergence, and it is shown by Xn →
m.s.

X.

This is a really strong type of convergence for random variables in the sense that

Xn
a.s.→ X ⇒ Xn →

p
X ⇒ Xn →

d
X

⇑
Xn →

Lp
X

Xn →
p
X ⇒ Xn

a.s.→ X if exist a subsequence (Xn)n that converge.

Xn →
d
X ⇒ Xn →

p
X only if x = c where c is constant.

Xn →
p
X ⇒ Xn →

Lp
X only if X is bounded, X ≤ Y and E(Y ) <∞.

1.0.7 Ergodicity

Theorem 3. Ergodic [36]
A stationary series Xt ∈ R is ergodic if and only if for all events A and B

lim
n→∞

1

n

n∑
l=1

P (Al ∩Bl) = P (A)P (B)
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Theorem 4. Ergodic Theorem [36]
If Xt ∈ R is strictly stationary, ergodic, and E(X) <∞, then as n→∞,

E(X̄ − µ)→ 0

and
X̄ →

p
µ

where µ = E(X).



Chapter 2

Time Series in Financial Theory

2.0.1 Returns

In �nancial time series we study the returns of an asset instead of the prices. This happens
because returns are complete scale-free summary of opportunity. In addition, the returns
of an asset have more attractive statistical properties than prices. These reasons were
�rstly presented by Campbell et al. (1997) [10].

We denote Pt as the asset price at time t. It is common for t to be referred to a day,
but that is not necessary because it can be referred to any frequency (week, month etc.)

De�nition 19. One-Period Simple Return [84]
Holding the asset for one period from date t − 1 to date t would result in a simple

gross return

1 +Rt =
Pt
Pt−1

or
Pt = Pt−1(1 +Rt)

The corresponding one- period simple net return or simple return is

Rt =
Pt
Pt−1

− 1 =
Pt − Pt−1
Pt−1

De�nition 20. Multiperiod Simple Return [84]
Holding the asset for k periods between dates t− k and t gives a k-period simple gross

return

1 +Rt[k] =
Pt
Pt−k

=
Pt
Pt−1

× Pt−1
Pt−2

× · · · × Pt−k+1

Pt−k
= (1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1)

=
k−1∏
j=0

(1 +Rt−j)

The corresponding k-period simple return is Rt[k] = Pt−Pt−k
Pt−k

.

De�nition 21. Natural logarithm [84]
The natural logarithm of the simple gross return of an asset is called the continuously

compounded return or log return:

15



16 CHAPTER 2. TIME SERIES IN FINANCIAL THEORY

rt = ln(1 +Rt) = ln
Pt
Pt−1

= lnPt − lnPt−1

Next we will introduce the term of portfolio return.

De�nition 22. Portfolio [84]
The simple net return of a portfolio consisting of N assets is a weighted average of the

simple net returns of the assets involved, where the weight on each asset is the percentage
of the portfolio's value invested in that asset. Let p be a portfolio that places weight wi
on asset i. Then, the simple return of p at time t is

Rp,t =
N∑
i=1

wiRit,

where Rit is the simple return of asset i.

The relationships between simple return Rt and log return rt are

rt = ln(1 +Rt), Rt = ert − 1

If the returns Rt and rt are in percentages, then

rt = 100 ln

(
1 +

Rt

100

)
, Rt = 100

(
e
rt
100 − 1

)
Why we prefer log returns instead of simple ones

The continuously compounded multi-period return is simply the sum of continuously
compounded one-period returns involved. Second, statistical properties of log returns are
more tractable. Third, they are symmetric, while simple returns are not. For example,
an investment of 100$ that yields a simple return of 50% followed by a simple return of
-50% will result in 75$

Rt =
Pt − Pt−1
Pt−1

⇒ 0.5 =
Pt − 100

100
⇒ 50 = Pt − 100

⇒ Pt = 150

Rt+1 =
Pt+1 − Pt

Pt

⇒ −0.5 =
Pt+1 − 150

150
⇒ −75 = Pt+1 − 150

⇒ Pt+1 = 75

An investment of 100$ that yields a continuously compounded return of 50% followed
by a continuously compounded return of -50% will remain at 100$
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rt = ln
Pt
Pt−1

⇒ 0.5 = ln
Pt
100

⇒ 0.5 = lnPt − ln 100

⇒ lnPt = 0.5 + ln 100

⇒ Pt = e0.5+ln 100

rt+1 = ln
Pt+1

Pt
⇒ −0.5 = lnPt+1 − ln(e0.5+ln 100)

⇒ −0.5 + 0.5 + ln 100 = lnPt+1

⇒ ln 100 = lnPt+1

⇒ Pt+1 = 100

2.0.2 Stylized Facts

Stylized facts are, generally speaking, statistical properties that appear to be present in
many empirical asset returns. It is important to be aware of them because when building
models that are supposed to represent asset price dynamics, the models must be able to
capture/replicate these properties.

These stylized facts are

� Volatility clusters

� Fat tails

� Nonlinear dependence

and they will be further analysed.

Volatility Clusters

A way to measure the uncertainty of the market is volatility, which is de�ned as the
standard deviation of returns.

Volatility can be divided into two cases, the unconditional and the conditional volatil-
ity. In general unconditional volatility is de�ned as volatility over an entire time period
and denoted by σ. Conditional volatility is de�ned as volatility in a given time period,
based on the past and de�ned by σt.

The phenomenon where data appear to have di�erent variance in di�erent time periods
is called volatility clusters.

One can consider the squared logarithmic returns as good proxies for volatility.

Fat tails

In �nance it is very common to encounter with time series that exhibit fat tails.
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De�nition 23. Fat tails A random variable is said to have fat tails if it exhibits more
extreme outcomes than a normally distributed random variable with the same mean and
variance.

The concept of fat tails was �rst presented by Mandelbrot (1963) [52] and Fama (1963,
1965) [26] [27]. Fat tails indicate that there is larger probability for extreme values to
appear than the normal distribution. In other words, an asset is more likely to have
very high and very low returns. This event would have a huge impact in the predictive
capability of the model.

In the �eld of risk management the assumption of normal distribution may end up in
a catastrophic underestimation of the risk. On the other hand, techniques that do not
assume normal distribution, are complicated and one should be very cautious because if
they are used wrong may, we may end up to incorrect outcomes.

Nonlinear dependence

Most statistical models assume that the relationship between di�erent returns is linear.
We say that the returns on two assets X and Y are linearly dependent if the conditional
expectation E(Y |X) is a linear function of X. This linear dependency can be easily
measured and described by using Pearson's correlation coe�cient ρ.

Note that if E(Y |X) is not an expression of the linear function of X then ρ does not
completely capture the dependence between the two variables.

2.0.3 Example

For better understanding the above theoretical approach we will use the Nasdaq 100
stock market index to analyse. The Nasdaq 100 is an index consisting of the 100 largest
non-�nancial companies, consisting with industrial, technology, telecommunication etc.
The data are from 2007-04-26 till 2021-04-09.
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Figure 2.1: Nasdaq

As we can see from the graph of Nasdaq 100 shows an upturn through this speci�c
time period. This upturn indicates the existence of time trend in the data. We can clearly
observe a sudden drop around the time when Corona-virus outbreaks.

Figure 2.2: Returns
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We calculate and plot the returns of Nasdaq 100 using the statistical package R. The
�rst thing one can notice is the existence of multiple volatility clusters. The most notable
one can be spotted at the worldwide �nancial crisis on 2008. Another incident that
a�ected Nasdaq 100 is the American president elections on 2016. The most recent burst
of volatility occurred due to the Corona-virus in 2019.

Figure 2.3: Histogram

The histogram appears slightly skewed to the left. This is supported by the skewness
value, which acts as a measure of the asymmetry of the probability distribution.The
skewness of the returns computed by R is −0.35 when the actual value for the data to
be normal distributed should be 0. Also, the peak of the returns' distribution exceeds by
far the theoretical bell shaped normal. The kurtosis value computed by R and is 10.11.
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Figure 2.4: Normal QQ-plot

From the QQ-plot the data appear to �t well in the center but as we move outwards,
the tails drift further from the normal distribution. The QQ-plot comes to support the
evidence of peakedness and fat tails from the histogram. On the contrary the QQ-plot
provides no clear clue for skewness as both tails seem to drift apart from the normal
distribution line. Also we cannot see any change in variance as we did in the returns plot.

Maybe these fat tails indicate that the returns follow Student-t distribution.

Ruey S. Tsay (2014) [84] presented the distributional properties of returns indicating
that Student-t distribution should be used for testing.
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Figure 2.5: Student t(3)

After executing QQ-plot for Student-t for di�erent degrees of freedom we conclude
that the returns �t better at 3 degrees of freedom.

From the Student-t with 3 degrees of freedom �gure, the returns seem to be closer to
the line while the downside is still quite fat. There are also two leverage values.

Another thing one can notice is the two enumerated observations, which are identi�ed
as outliers. These are observed at the �nancial crisis period of 2008 and it is expected to
have outliers in that period.

Next we need a statistical test to ensure that the data do not follow normal distribu-
tion. Since we observe fat tails the appropriate test would be Jarque and Bera's test, as
it focuses on the tails of the distribution.

Jarque and Bera's test (1987) [39] is a goodness-of-�t test and compares the combi-
nation of skewness and kurtosis of the data with the corresponding values of the normal
distribution. The JB-statistic is asymptotically distributed as a chi-squared random vari-
able with 2 degrees of freedom.

Jarque and Bera Normality test

X-squared df p-value
15032 2 2.2 · 10−16

The p-value of the test is 2.2 · · · 10−16, thus we reject the null hypothesis of normality,
as it was expected from the normal QQ-plot.
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Figure 2.6: ACF plot

From the above graph of the autocorrelation function we can see the autocorrelations
for di�erent lags. The blue dot lines around zero implicate the con�dence interval. Thus,
every vertical line, which represents a lag, reaches outside the interval is statistically
signi�cant. In this case the preferable lag would be 16. The �rst value is equal to 1, as it
is expected, because it is the autocorrelation at the present time. From the ACF we can
see that the autocorrelation is negative and also there is no evidence for seasonality.

l ibrary ( quantmod ) # Load the package

l ibrary ( t s e r i e s )

getSymbols ( "NQ=F" , from="2007=04=26" , to="2021=04=09" , s r c = "yahoo" )
NQ100 <= `NQ=F ` [ , 6 ] #NASDAQ100

rm( `NQ=F` )

plot (NQ100)

NQ100 <= na . omit (NQ100)
summary(NQ100)
nq . return <= d i f f ( log (NQ100) )
summary( nq . return )
nq . return <= na . omit ( nq . return )

plot ( nq . return )

ja rque . bera . t e s t ( nq . return )

####fa t t a i l s

nq . vec <= as . vector ( nq . return )
qqnorm(as . vector ( nq . return ) )
qqline (as . vector ( nq . return ) )
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## t=d i s t r i b u t i o n

qqPlot (as . vector ( nq . return ) , d i s t r i b u t i o n=" t " , df=3, enve lope=F)

hist (as . vector ( nq . return ) , f r e q = F, breaks =600 , xlim=c ( =0 .07 ,0 .09) , main="Nasdaq Returns" )
curve (dnorm(x ,mean( nq . return ) , sd ( nq . return ) ) ,add=TRUE, col="red" )

l ibrary (MASS)
l ibrary ( s t a t s )
q = ac f ( nq . return , 2 0 )
plot ( q1 , main="ACF o f  squared  da i l y  r e tu rn s " )



Chapter 3

Linear Regression

3.1 Linear Regression Model

Consider the simple linear regression model for cross-sectional data y = β0 + β1x+ ε

Recall the assumptions that need to hold

1. The model is in the following format

Yi = β0 + β1Xi + εi

2. E(εi|X) = 0

3. σ2(x) = σ2

4. Cov(εi , εs) = 0, ∀i 6= s

5. εi ∼ N(0, σ2)

Equivalent to the cross-sectional data we can use the linear model in time series and
regress the Y time series on the X time series. Note that in this case the observations
are in chronological order and cannot be reordered.

Yt = β0 + β1Xt + εt

For the simple linear model we have

y1 = β1 + β2x1 + ε1

y2 = β1 + β2x2 + ε2

y3 = β1 + β2x3 + ε3
...

yT−1 = β1 + β2xT−1 + εT−1

yT = β1 + β2xT + εT

25
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y1
y2
...
yT


T×1

=


1
1
...
1


T×1

β1 +


x1
x2
...
xT


T×1

β2 +


ε1
ε2
...
εT


T×1

=


1 x1
1 x2
...

...
1 xT


T×2

·
(
β1
β2

)
2×1

+


ε1
ε2
...
εT


T×1

= XT×2β2×1 + εT×1

The last one is the linear model written in matrices.

3.1.1 Multi Linear regression

Consider the following independent variables

yt = β1 + β2x2t + β3x3t + · · ·+ βkxkt + εt

Equivalent to the simple regression we have

y1 = β1 + β2x12 + β3x13 + · · ·+ βkx1k + ε1

y2 = β1 + β2x22 + β3x23 + · · ·+ βkx2k + ε2

y3 = β1 + β2x32 + β3x33 + · · ·+ βkx3k + ε3
...

yT = β1 + β2xT2 + β3xT3 + · · ·+ βkxTk + εT

⇒


y1
y2
...
yT


T×1

=


1
1
...
1


T×1

β1 +


x12
x22
...
xT2


T×1

β2 +


x13
x23
...
xT3


T×1

β3 + · · ·+


x1k
x2k
...
xTk


T×1

βk +


ε1
ε2
...
εT


T×1

=


1 x12 x13 . . . x1k
1 x22 x23 . . . x2k
...

...
...

. . .
...

1 xT2 xT3 . . . xTk


T×k

·


β1
β2
...
βk


k×1

+


ε1
ε2
...
εT


T×1

= XT×kβk×1 + εT×1

The last one is the vectorized form of the multiple linear regression.
Assumption

� The variables (Y,X) satisfy the linear regression equation

Y = βX ′ + ε (3.1)

E[ε|X] = 0 (3.2)
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� The variables have �nite second moments

E[Y 2] <∞
E‖X‖2 <∞

� An invertible design matrix
E[XX ′] > 0

We will consider both the general case of heteroskedastic regression where the condi-
tional variance E[ε2|X] = σ2(X) is unrestricted, and the specialized case of homoskedas-
tic regression where the conditional variance is constant. In the latter case we add the
following assumption.

Homoskedastic Linear Regression Model In addition to Assumption 4.2

E[ε2|X] = σ2(X) = σ2 (3.3)

is independent of X.

3.1.2 AR(1)

In �nance and in time series in general, the past values of a variable may have an impact
on the present and on the future values. That is why it is very useful to regress time
series Yt, not on exogenous variables but on its lagged values.

Autoregressive model of order 1 or AR(1) is a simple linear regression model, where
Yt is the dependent variable and Yt−1 is the explanatory variable and has a statistically
signi�cant lag-1 autocorrelation which indicates that the lagged Yt−1 might be useful in
predicting Yt.

Formula:
Yt = φ0 + φ1Yt−1 + εt, εt ∼ N(0, σ2

ε )

E(Yt) = φ0 + φ1E(Yt−1) (1)

V ar(Yt) = γ0

Under stationarity

E(Yt) = E(Yt−1)
(1)⇒ E(Yt) = φ0 + φ1E(Yt)⇒ (1− φ1)E(Yt) = φ0 ⇒ E(Xt) =

φ0

1− φ1

φ1 6= 1

V ar(Yt) = φ2
1V ar(Yt−1) + σ2

ε

As we already know we can generalize an AR(1) model with an AR(p) and study the
in�uence of the past values on the present one.

3.1.3 ADL

A combination of the linear regression model and an autoregression model is the Autogres-
sive Distributed Lag (ADL) model. According to Hank et al. (2019) [34], an ADL(p,q)
model assumes that a time series Yt can be represented by a linear function of p of its
lagged values and q lags of another time series Xt:

Yt = β0 + β1Yt−1 + β2Yt−2 + · · ·+ βpYt−p + δ1Xt−1 + δ2Xt−2 + · · ·+ δqXt−q + ut

is an autoregressive distributed lag model with p lags of Yt and q lags of Xt where

E(ut|Yt−1, Yt−2, . . . , Xt−1, Xt−2, . . . ) = 0
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3.1.4 Lag Length

It may seem, and it's not completely wrong, that with many predictors comes great
predictive capability. The �rst thing that one should be cautious about is the over�tting.
The second one is that many predictors imply many estimations which consequently add
more errors to the model. These make no exception for the ADL and AR models. That
is why one should carefully choose the lag length. There are statistical methods that are
helpful to determine how many lags should be included as regressors.

1. The F-test
Estimate an AR(p) model and test the signi�cance of the largest lag(s). If the test
rejects, drop the respective lag(s) from the model. This approach has the tendency
to produce models where the order is too large: in a signi�cance test we always face
the risk of rejecting a true null hypothesis.

2. Use of AIC and BIC

To counter the issue of producing too large models, one could use an information
criterion to choose the lag length.

� The Bayes information criterion (BIC):

BIC(p) = log

(
SSR(p)

T

)
+ +(p+ 1)

log(T )

T

� The Akaike information criterion (AIC):

AIC(p) = log

(
SSR(p)

T

)
+ (p+ 1)

2

T

Both criteria are estimators of the optimal lag length p. The lag order p̂ that minimizes
the respective criterion is called the BIC estimate or the AIC estimate of the optimal
model order. The basic idea of both criteria is that the SSR decreases as additional lags
are added to the model such that the �rst term decreases whereas the second increases
as the lag order grows. One can show that the BIC is a consistent estimator of the true
lag order while the AIC is not which is due to the di�ering factors in the second addend.
Nevertheless, both estimators are used in practice where the AIC is sometimes used as
an alternative when the BIC yields a model with "too few" lags.

3.1.5 Durbin-Watson test

Consider the simple linear model

yt = β1 + β2xt + εt

where the residuals are in an AR(1) form

εt = ρεt−1 + et

Let ε̂t be the residuals resulting from the LS estimation, then the DW-test is based
on the following statistical criterion
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DW =

∑T
t=2 (ε̂t − ε̂t−1)2∑T

t=1 ε̂
2
t

=

∑T
t=2 ε̂t

2 +
∑T

t=2 ˆεt−1
2 − 2

∑T
t=2 ε̂t ˆεt−1∑T

t=1 ε̂t
2

≈ 1 +

∑T
t=2 ˆεt−1

2∑T
t=1 ε̂t

2
− 2

∑T
t=2 ε̂t ˆεt−1∑T
t=1 ε̂t

2

≈ 1 + 1− 2ρ̂ = 2(1− ρ̂) (3.4)

for
∑T
t=2 ε̂t

2∑T
t=1 ε̂t

2 ≈ 1,
∑T
t=2 ˆεt−1

2∑T
t=1 ε̂t

2 ≈ 1 and
∑T
t=2 ε̂t ˆεt−1∑T
t=1 ε̂t

2 which is an approach of the LS estimator

ρ̂ of the coe�cient ρ.

Based on the 3.4 equation we have the following facts for the relationship between the
value of DW and ρ

1. If ρ̂ = 0 there is no correlation and DW ≈ 2

2. If ρ̂ = 1 we have perfect positive correlation and DW ≈ 0. This value is called
lower-L and is denoted as DWL.

3. If ρ̂ = −1 there is negative correlation and DW ≈ 4. This value is called upper-U
and is denoted as DWU .

The null hypothesis is then

H0 : DW = 2

and there are 2 possible alternative hypothesis for this test with the �rst one being

Ha : DW < 2

which implies that there is positive correlation between the variables and the second one
being

Ha : DW > 2

which implies that there is negative correlation between the variables.

In speci�c

� If DW < DWL we reject the null hypothesis of no autocorrelation and accept that
there is positive autocorrelation.

� If DW > (4−DWL) we reject the null hypothesis of no autocorrelation and accept
that there is negative autocorrelation.

� If DWU < DW < (4−DWU) we accept the null hypothesis of no autocorrelation.

� If DWL < DW < (4 − DWU) or if (4 − DWU) < DW < (4 − DWL) the test is
inconclusive.
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3.2 Spurious Regression

3.2.1 Case 1 of Spurious regression

In time series analysis, sometimes, we would like to know whether changes in a variable
will have an impact on changes of other variables. Basically we would like to know if
changes on X causes changes on Y . This is the concept of causality. Testing causality
among variables is one of the most important and, yet, one of the most di�cult issues in
economics.

The two most di�cult challenges are when the correlation does not imply causality
and that there always exists the possibility of ignored common factors. The causal rela-
tionship among variables might disappear when the previously ignored common causes
are considered.

De�nition 24. The Granger causality test [34]
The Granger causality test (1969) [28] is an F -test of the null hypothesis that all lags

of a variable X included in a time series regression model do not have predictive power
for Yt. The Granger causality test does not test whether X actually causes Y but whether
the included lags are informative in terms of predicting Y .

This misconception of correlation and causality leads us to spurious regression.
Another reason for the arise of spurious regression is the nonstationarity of time

series. This means that two statistically independent series, if both unit root processes,
are likely to fool traditional statistical analysis by appearing to be statistically related by
both graphically and traditional statistical tests.

The phenomenon was observed and named by Granger and Newbold (1974) [30] and
explained using the theory of non-stationary time series by Phillips (1986) [62].

De�nition 25. Spurious [34]
When two stochastically trending time series are regressed onto each other, the esti-

mated relationship may appear highly signi�cant using conventional normal critical values
although the series are unrelated. This is what econometricians call a spurious relation-
ship.

These stochastically trending time series could be two independent random walks with
zero mean and variance equal to 1. Random walks have a weird ability to fool casual
analysis.

Consider the following random walk processes

Yt = Yt−1 + ε1t (3.5)

Xt = Xt−1 + ε2t (3.6)

where (ε1t , ε2t ) are i.i.d., mean zero, mutually uncorrelated, and normalized to have
unit variance. Let Y ∗t and X∗t denote demeaned versions of Yt = Yt−1 and Xt = Xt−1.
From the FCLT they satisfy(

1√
T
Y ∗bTrc ,

1√
T
X∗bTrc

)
d→ (W ∗

1 (r) , W ∗
2 (r))

where W ∗
1 (r) and W ∗

2 (r) are demeaned Brownian motions.
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Applying the CMT the sample correlation has the asymptotic distribution

ρ̂ =
1
n2

∑n
i=1 Y

∗
i X

∗
i√

1
n2

∑n
i=1 Y

∗2
i

√
1
n2

∑n
i=1X

∗2
i

→
d

∫ 1

0
W ∗

1W
∗
2√∫ 1

0
W ∗2

1

√∫ 1

0
W ∗2

2

The right-hand-side is a random variable. Furthermore it is also non-degenerate (in-
deed, it is non-zero with probability one). Thus the sample correlation ρ̂ remains random
in large samples.

Example

##### f i r s t form spurious=========

rm( l i s t=l s ( ) )
cat ( "\014" )

# by cons t ruc t i on y and x are two independent random walks

set . seed (2492)
n <= 5000
y <= c ( )
x <= c ( )
y [ 1 ] <= x [ 1 ] <= 0

for ( i in 2 : n) {
y [ i ] <= y [ i =1] + rnorm(1 )
x [ i ] <= x [ i =1] + rnorm(1 )

}

f i t 1 <= lm( y ~ x )
summary( f i t 1 )

l ibrary ( car )
durbinWatsonTest ( f i t 1 )
a c f ( f i t 1 $residuals )

f i t 2 <= lm( d i f f ( y ) ~ di f f ( x ) )
summary( f i t 2 )
durbinWatsonTest ( f i t 2 )
a c f ( f i t 2 $residuals )

First we consider a model

yt = βxt + εt,

where yt and xt are two independent random walks.
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Table 3.1:

Dependent variable:

y

x −0.787∗∗∗
(0.003)

Constant 25.282∗∗∗

(0.403)

Observations 5,000
R2 0.923
Adjusted R2 0.923
Residual Std. Error 14.211 (df = 4998)
F Statistic 6.0162 · 105 ∗∗∗ (df = 1; 4998)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We expect the coe�cient of X converge to zero, because the two random walks are
independent. In this case, it is quite signi�cant since we have a low p-value. One could
falsely assume, due to high R2, that this model has interpretive capability. On the
contrary Durbin-Watson test indicates that the residuals are serially correlated.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag Autocorrelation D-W Statistic p- value
1 0.9957 0.0079 0

Figure 3.1: ACF of the residuals

These are strong evidences that we have spurious regression. In order to be sure, we
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consider a model of the �rst di�erences

∆yt = β∆xt + εt

Table 3.2:

Dependent variable:

di�(y)

di�(x) −0.015
(0.014)

Constant 0.035∗∗

(0.014)

Observations 4,999
R2 0.0002
Adjusted R2 0.00003
Residual Std. Error 1.003 (df = 4997)
F Statistic 1.148 (df = 1; 4997)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The �rst thing one can easily notice is the drastically fall of the R2. This means that
the model can predict squat. Now the Durbin-Watson test implies that the residuals are
serially uncorrelated.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag Autocorrelation D-W Statistic p- value
1 0.0186 1.9624 0.182

Figure 3.2: ACF of the residuals
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The correlogram supports the evidence from the DW-test.

3.2.2 Case 2 of Spurious Regression

Sorensen (2019) [78] presented another case of spurious regression. Again, consider two
random walks xt and yt but in this case yt is simulated using xt. Even though there
actually is a relation between xt and yt, this is also a spurious regression.

Example

##########second form spurious=======

rm( l i s t=l s ( ) )
cat ( "\014" )

set . seed (601)
n <= 5000
y <= c ( )
x <= c ( )
y [ 1 ] <= x [ 1 ] <= 0

for ( i in 2 : n) {
y [ i ] <= y [ i =1] + rnorm(1 )
x [ i ] <= x [ i =1] + rnorm(1 )

}

y <= y + 0 .5 * x
f i t 3 <= lm( y ~ x )
summary( f i t 3 )

l ibrary ( car )
durbinWatsonTest ( f i t 3 )
a c f ( f i t 3 $residuals )

f i t 4 <= lm( d i f f ( y ) ~ di f f ( x ) )
summary( f i t 4 )
durbinWatsonTest ( f i t 4 )
a c f ( f i t 4 $residuals )

First we consider a model

yt = βxt + εt,

where yt and xt are two random walks. The relationship between the two random walks
emerge from the structure of yt, where yt = 0.5xt.
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Table 3.3:

Dependent variable:

y

x 1.054∗∗∗

(0.003)

Constant 6.619∗∗∗

(0.256)

Observations 5,000
R2 0.966
Adjusted R2 0.966
Residual Std. Error 9.935 (df = 4998)
F Statistic 1.4209 · 105 ∗∗∗ (df = 1; 4998)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

At �rst we observe that R2 is very big, this implies that the model has high interpretive
capability. On the contrary Durbin-Watson test indicates that the residuals are serially
correlated.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag Autocorrelation D-W Statistic p- value
1 0.9933 0.0132 0

Figure 3.3: ACF of the residuals

These are strong evidences that we have spurious regression. In order to be sure, we
consider a model of the �rst di�erences

∆yt = β∆xt + εt



36 CHAPTER 3. LINEAR REGRESSION

Table 3.4:

Dependent variable:

di�(y)

di�(x) 0.514∗∗∗

(0.014)

Constant −0.016
(0.014)

Observations 4,999
R2 0.203
Adjusted R2 0.202
Residual Std. Error 1.010 (df = 4997)
F Statistic 1.269 · 105 ∗∗∗ (df = 1; 4997)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The �rst thing one can easily notice is the drastically fall of the R2. This means that
the model can predict squat. Now the Durbin-Watson test implies that the residuals are
serially uncorrelated.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag Autocorrelation D-W Statistic p- value
1 −0.0120 2.0240 0.41

Figure 3.4: ACF of the residuals

The correlogram supports the evidence from the DW-test.
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3.2.3 Multivariate Spurious Regression

Spurious Regression

Of course the previous concept can be applied when there are more than one variables.
If some or all of the variables in the regression are I(1) then the usual statistical results
may or may not hold, like in the spurious regression case.

Although there is a sweet point where nonstationarity does not imply spurious regres-
sion, that is the case of cointegration.

Let Yt = (y1t, · · · , ynt)′ denote an (n × 1) vector of I(1) time series that are not
cointegrated. Using the partition Yt = (y1t,Y

′
2t)
′ , consider the least squares regression

of y1t on Y2t giving the �tted model

y1t = β̂′2Y2t + ε̂t (3.7)

Since y1t is not cointegrated with Y2t 3.7 is a spurious regression and the true value
of β2 is zero. The following results about the behaviour of β̂2 in the spurious regression
3.7 are due to Phillips (1986) [62]

� β̂2 does not converge in probability to zero but instead converges in distribution to
a non-normal random variable not necessarily centered at zero. This is the spurious
regression phenomenon.

� The usual OLS t-statistics for testing that the elements of β2 are zero diverge to
±∞ as T → ∞. Hence, with a large enough sample it will appear that Yt is
cointegrated when it is not if the usual asymptotic normal inference is used.

� The usual R2 from the regression converges to unity as T →∞ so that the model
will appear to �t well even though it is misspeci�ed.

� Regression with I(1) data only makes sense when the data are cointegrated.

3.3 Cures for Spurious Regressions

There are three ways in which the problems associated with spurious regressions can
be avoided. The �rst approach is to include lagged values of both the dependent and
independent variable in the regression. For example,consider an OLS regression of yt on
xt being the following model

yt = β0 + β1xt + εt (3.8)

Equivalent,

yt = β0 + β1yt−1 + β2xt + β3xt−1 + εt (3.9)

It can be shown that OLS estimation of 3.9 yields consistent estimates of all of the
parameters. The coe�cients β̂2T and β̂3t each individually converge at rate

√
T to a

Gaussian distribution, and the t test of the hypothesis that β2 = 0 is asymptotically
N(0, 1), as is the t test of the hypothesis that β3 = 0. However, an F test of the joint
null hypothesis where β2 and β3 are both zero has a non-standard limiting distribution.
Hence, including lagged values in the regression is su�cient to solve many of the problems
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associated with spurious regressions, although tests of some hypotheses will still involve
non-standard distributions.

A second approach is to di�erentiate the data before estimating the relation, as in

∆yt = β0 + β2∆xt + εt (3.10)

Clearly, since the regressors and error term εt are all I(0) for this regression under the
null hypothesis, β̂0T and β̂2T both converge at rate

√
T to Gaussian variables. Any t or

F test based on 3.10 has the usual limiting Gaussian or X 2 distribution.
Because the speci�cation 3.10 avoids the spurious regression problem as well as the

nonstandard distributions for certain hypotheses associated with the levels regression 3.8,
many researchers recommend routinely di�erentiating apparently nonstationary variables
before estimating regressions. While this could be the perfect solution for the spurious
problem, there are two di�erent situations in which it might be inappropriate. First,
if the data are really stationary, then the �rst di�erences method can result in a mis-
speci�ed regression. Second, even if both yt and xt are truly I(1) processes, there is an
interesting class of models for which the bivariate dynamic relation between y and x will
be misspeci�ed if the researcher simply di�erentiates both y and x. This class of models,
known as cointegrated processes.



Chapter 4

Statistical Arbitrage in Pairs Trading

4.1 Stochastic Processes

The vast majority of �nancial time series like, interest rates, foreign exchange rates, and
asset price series exhibit non-stationarity. The non-stationarity of a price series is mostly
attributable to the absence of a set price level, as well as the existence of in�ation. In
literature these series are encountered by the name of unit root non-stationary time series
and trend non-stationary. We prefer the second term as it is more representative. The
random-walk model is the most well-known example of trend non-stationary time series.

As we have already examined, random walk is a stochastic process and can be pro-
duced by adding a binary variable values (St = St−1 +Xt) for discrete time. The binary
random variable is not the only way to produce the random walk. We can instead add
the values of a Normally distributed random variable.

The recursive form is de�ned as

yt = yt−1 + ut

where ut ∼ N(0, σ2). This is nothing but a special case of an AR(1) model, with
φ1 = 1. As we already know AR(1) in order for it to be stationary it needs to have
|φ1| < 1.

Consider an AR(1) model with polynomial equation

yt = φ1yt−1 ⇒
yt − φ1yt−1 = 0⇒
(1− φ1B)yt = 0

so, in order for yt to be stationary the absolute value of the characteristic root 1−φ1z =
0, φ1 must be less than 1.

Now, let's consider an AR(2) model with polynomial equation

yt = φ0 + φ1yt−1 + φ2yt−2 + ut, ut ∼ (0, σ2)

E(yt) = φ0 + φ1E(yt−1) + φ2E(yt−2) + E(ut)⇒
µ = φ0 + φ1µ+ φ2µ+ 0⇒

µ =
φ0

1− φ1 − φ2

39



40 CHAPTER 4. STATISTICAL ARBITRAGE IN PAIRS TRADING

where the restriction φ1 + φ2 6= 1 must hold.
An AR(2) series in order to be stationary it needs to satisfy the second-order di�erence

polynomial equation

yt = φ1yt−1 + φ2yt−2 ⇒
yt − φ1yt−1 − φ2yt−2 = 0⇒
(1− φ1B − φ2B

2)yt = 0

1− φ1z − φ2z
2 = 0

The solutions of the polynomial equation are referred to as the characteristic roots of
the AR(2) model.

z1,2 =
φ1 ±

√
φ2
1 + 4 · 1 · φ2

−2φ2

If the characteristic roots z1, z2 are real valued, then the second-order di�erence equa-
tion of the model can be factored such as (1 − z1B)(1 − z2B) the AR(2) model can
be regarded as an AR(1) model that operates on top of another AR(1) model. If the
discriminant, φ2

1 + 4φ2, is negative, the characteristic roots are complex numbers (called
a complex conjugate pair).

The stationarity condition of an AR(2) time series is that the norm of the characteristic
roots are less than 1.

Since ARMA is a combination of AR and MA models we can generalize the previous
concept into an ARMA(p,q) model

yt − φ1yt−1 − · · · − φpyt−p = φ0 + at − θ1at−1 − · · · − θqat−q
(1− φ1B − · · · − φpBp)yt = φ0 + (1− θ1B − · · · − θqBq)at, at is a white noise series.

we obtain a characteristic equation similar to the one of an AR model. If the absolute
value of all the characteristic roots are less than 1, then the ARMA model is stationary.

When the autoregressive or moving average polynomial of an ARMA model has a root
on or around the unit circle1, the unit root problem in time series occurs. A unit root in
either of these polynomials has signi�cant modeling implications. A root near 1 in the
autoregressive polynomial, for example, indicates that the data should be di�erentiated
before �tting an ARMA model, but a root near 1 in the moving-average polynomial shows
that the data have been over-di�erentiated.

According to Lalley's notes [48] Brownian motion can be viewed as a limit of rescaled
simple random walks.

Consider a continuous-time stochastic process {Wn(t)}t≥0 for n ≥ 1

Wn(t) =
1√
n

∑
1≤j≤bntc

uj

1unit circle is the circle consisting all the complex numbers with norm equal to 1.
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where u1, u2, · · · is a sequence of i.i.d. random variables with mean zero 0 and variance
1.

This is a random walk with jumps of size uk/
√
n at times k/n, where k ∈ Z+. Since

the random variables uj are independent, the increments ofWn(t) are independent. From
the Central Limit Theorem, for large n the distribution of the increments converges to
a N(0, t). Hence, for n → ∞, one can embrace the idea that the distribution of Wn(t)
converges to the distribution of a standard Brownian motion.

4.1.1 Functional Central Limit Theorem

In previous chapter we presented the simple version of Central Limit Theorem (CLT): if
ut i.i.d. with mean zero and variance σ2, then the sample mean µuT = 1

T

∑T
t=1 ut satis�es

√
TµuT

L→ N(0, σ2)

Consider now an estimator based on the following principle: When given a sample of
size T , we calculate the mean of the �rst half of the sample and throw out the rest of the
observations:

µuT/2 =
1

bT/2c

bT/2c∑
t=1

ut

where bT/2c denotes the largest integer that is less than or equal to T/2.
This estimator would also satisfy the CLT and moreover would be independent of an

estimator that uses only the second half of the sample.
Consider a variable XT (r) from the sample mean of the �rst rth fraction of observa-

tions, de�ned by

XT (r) =
1

T

bTrc∑
t=1

ut

For any given realization, XT (r) is a step function in r, with

XT (r) =



0 for 0 ≤ r < 1/T
u1
T

for 1/T ≤ r < 2/T
u1+u2
T

for 2/T ≤ r < 3/T
...
u1+···+uT

T
for r = 1

Then

√
TXT (r) =

1√
T

bTrc∑
t=1

ut =

√
bTrc√
T

1√
bTrc

bTrc∑
t=1

ut (4.1)

But

1√
bTrc

bTrc∑
t=1

ut
L→ N(0, r)
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by the CLT while

√
bTrc
√
T
→
√
r. Hence, the asymptotic distribution is

√
TXT (r)

L→ N(0, rσ2)

and

√
T
XT (r)

σ

L→ N(0, r). (4.2)

If we were similarly to consider the behaviour of a sample mean based on observations
bTr1c through bTr2c for r2 > r1, we would conclude that this too is asymptotically
Normal,

√
T
XT (r2 −XT (r1)

σ

L→ N(0, r2 − r1)

and it is independent of the estimator in 4.2, provided that r < r1. It thus should not

be surprising that the sequence of stochastic functions
{√

T XT (·)
σ

}∞
T=1

has an asymptotic

probability law that is described by standard Brownian motion W (·):

√
T
XT (·)
σ

L→ W (·) (4.3)

The expression XT (·) denotes a random function while XT (r) denotes the value that
function assumes at date r. This means that XT (·) is a function, while XT (r) is a random
variable.

Result 4.3 is known as the Functional Central Limit Theorem (FCLT). The derivation
here assumed that ut was i.i.d.

Note that at r = 1, the function XT (r) in 4.1 is the sample mean. Thus, for r = 1
the function in 4.3 is the simple CLT.

√
T
XT (1)

σ
=

1

σ
√
T

T∑
t=1

ut
L→ W (1) ∼ N(0, 1)

Continuous Mapping Theorem

It is known that if {xT}∞T=1 is a sequence of random variables with xT
L→ x and if

g : R → R is a continuous function, then g(xT )
L→ g(x). A similar result holds for

sequences of random functions. Here, the analog to the function g(·) is a continuous
functional, which could associate a real random variable y with the stochastic function
S(·). For example, y =

∫ 1

0
S(r)dr and y =

∫ 1

0
[S(r)]2dr represent continuous functional.

The continuous mapping theorem (A.3 p.276) of Hall and Heyde (1980) [32] the states

that if ST (·) L→ S(·) and g(·) is a continuous functional, then g(ST (·)) L→ g(S(·)).
The continuous mapping theorem also applies to a continuous functional g(·) that

maps a continuous bounded function on [0, 1] into another continuous bounded function
on [0, 1]. For example, the function whose value at r is a positive constant σ times h(r)
represents the result of applying the continuous functional g[h(·)] = σh(·) to h(·). Thus,
it follows from 4.3 that
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√
TXT (·) L→ σW (·) (4.4)

Recalling that W (r) ∼ N(0, r), result 4.4 implies that
√
TXT (r) ≈ N(0, σ2r).

As an example, consider the function ST (·) whose values at r given by

ST (r) = [
√
TXT (r)]2 (4.5)

Since
√
TXT (·) L→ σW (·), it follows that

ST (·) L→ σ2[W (·)]2

In other words, if the value W (r) from a realization of standard Brownian motion at
every date r is squared and then multiplied by σ2, the resulting continuous-time process
would follow essentially the same probability law as does the continuous-time process
de�ned by ST (r) in 4.5 for T su�ciently large.

4.2 Asymptotic Properties

4.2.1 Asymptotic Properties of a First-order Autoregression when
the True Coe�cient is Unity

Hamilton (1994) [33] provides us, relying on the seminal work of Phillips (1987) [63], with
the calculations of the asymptotic distribution of some basic stochastic processes with
unit roots.

Proposition 1. Suppose that ξt, follows a random walk without drift,

ξt = ξt−1 + ut,

where ξ0 = 0 and {ut} is an i.i.d. sequence with mean zero and variance σ2. Then

1.

T−1/2
T∑
t=1

ut
L→ σW (1)

2.

T−1
T∑
t=1

ξt−1ut
L→ 1

2
σ[W (1)2 − 1]

3.

T−3/2
T∑
t=1

tut
L→ σW (1)− σ

∫ 1

0

W (r)dr

4.

T−3/2
T∑
t=1

ξt−1
L→ σ

∫ 1

0

W (r)dr
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5.

T−2
T∑
t=1

ξ2t−1
L→ σ

∫ 1

0

[W (r)]2dr

6.

T−5/2
T∑
t=1

tξt−1
L→ σ

∫ 1

0

rW (r)dr

7.

T−3
T∑
t=1

tξ2t−1
L→ σ

∫ 1

0

r[W (r)]2dr

8.

T−(ν+1)

T∑
t=1

tν
L→ 1

ν + 1
ν = 0, 1, . . .

As Phillips (1987) [63] mentions we attain the same results when the initial value ξ0,
is any �xed value or drawn from a speci�ed distribution and also when the ξ0 was equal
to zero.

All the results from the Proposition 1 are written in terms of the same functional
standard Brownian motion, denoted by W (r). In this way all the results are correlated.
The Proposition 1 can also be useful in calculating the asymptotic distributions of some
basic stochastic processes with unit roots.

Case 1. No Constant Term or Time Trend in the Regression

Consider the following AR(1) model,

yt = φ1yt−1 + ut

where ut, is i.i.d. with mean zero and variance σ2. We are interested in the properties
of the OLS estimate

φ̂1T =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

when the true value of φ1 is unity. From previous equation, the deviation of the OLS
estimate from the true value is characterized by

T (φ̂1T − 1) =
T−1

∑T
t=1 yt−1ut

T−2
∑T

t=1 y
2
t−1

(4.6)

if the true value of φ1 = 1, then

yt = y0 + u1 + u2 + · · ·+ ut

Since the initial value y0 does not a�ect the asymptotic distribution, we can rewrite
the result (2) of the Proposition 1 as
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T−1
T∑
t=1

yt−1ut
L→ 1

2
σ[[W (1)]2 − 1], (4.7)

while from result (5) we have

T−2
T∑
t=1

y2t−1
L→ σ

∫ 1

0

[W (r)]2dr (4.8)

Since 4.6 is a continuous function of 4.7 and 4.8, subsequently from result (3) of Propo-
sition 1 under the null hypothesis that φ1 = 1, the OLS estimator, φ̂1T , is characterized
by

T (φ̂1T − 1)
L→

1
2

([W (1)]2 − 1)∫ 1

0
[W (r)]2dr

(4.9)

Note that [W (1)]2 is a X 2
1 variable. The probability that a X 2

1 variable is less than
unity is 0.68, and since the denominator of 4.9 must be positive, the probability that
φ̂1T − 1 is negative approaches 0.68 as T becomes large. In other words, in two-thirds
of the samples generated by a random walk, the estimate φ̂1T will be less than the true
value of unity. Moreover, in those samples for which [W (1)]2 is large, the denominator
of 4.9 will be large as well. The result is that the limiting distribution of T (φ̂1T − 1) is
skewed to the left.
Recall that in the stationary case when |φ1| < 1, the estimate φ̂1T is downward biased in
small samples. Even so, in the stationary case the limiting distribution of

√
T (φ̂1T−φ1) is

symmetric around zero. By contrast, when the true value of φ1 is unity, even the limiting
distribution of T (φ̂1T − 1) is asymmetric, with negative values twice as likely as positive
values.

Case 2. Constant Term but No Time Trend Included in the Regression.

Hence, The True Process Is a Random Walk

Considering an AR(1) model involving a constant term of the following form

yt = φ0 + φ1yt−1 + ut (4.10)

with ut, i.i.d. with mean zero and variance σ2.
We will investigate the asymptotic properties of the OLS estimators[

φ̂0T

φ̂1T

]
=

[
T

∑T
t=1 yt−1∑T

t=1 yt−1
∑T

t=1 y
2
t−1

]−1 [ ∑T
t=1 yt∑T

t=1 yt−1yt

]
, (4.11)

under the null hypothesis that φ0 = 0 and φ1 = 1. Note that the deviation of an
estimated OLS coe�cient vector (bT ) from the true value (β) given by

bT − β =

[
T∑
t=1

xtx
′
t

]−1 [ T∑
t=1

xtut

]
(4.12)
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Equivalently, [
φ̂0T

φ̂1T − 1

]
=

[
T

∑T
t=1 yt−1∑T

t=1 yt−1
∑T

t=1 y
2
t−1

]−1 [ ∑T
t=1 ut∑T

t=1 yt−1ut

]
, (4.13)

Using the result (4) of the Proposition 1 we obtain the following:

T−3/2
T∑
t=1

yt−1
L→ σ

∫ 1

0

W (r)dr (4.14)

Case 3. Constant Term but No Time Trend Included in the Regression.

Considering an AR(1) model with the true process being a random walk with drift:

yt = φ0 + yt−1 + ut (4.15)

where the true value of φ0 is not zero.
This change in the assumption of the true process form, will have a huge impact on

the asymptotic distribution, note that

yt = φ0 + yt−1 + ut ⇒ (4.16)

yt = y0 + φ0t+
t∑
t=1

ut (4.17)

Denote that ξt =
∑t

t=1 ut with ξ0 = 0.
Consider the sum

T∑
t=1

yt−1 =
T∑
t=1

[y0 + φ0(t− 1) + ξt−1] (4.18)

where the term
∑T

t=1 yt−1 in 4.18 can be rewritten as Ty0, and if this is divided by T ,
the result will be a �xed value. The second term,

∑
φ0(t− 1), using the result (8) of the

Proposition 1 converges to

T−2
T∑
t=1

φ0(t− 1)→ φ0

2

The third term converges:

T−3/2
T∑
t=1

ξt−1
L→ σ

∫ 1

0

W (r)dr,

as a result of Proposition 1 (4).
Hamilton (1994) [33] in his book (p.495-497) calculates in detail the following result:

(
T 1/2(φ̂0T − φ0)

T 3/2(φ̂1T − φ1)

)
L→ N

((
0
0

)
,

(
1 a

2
a
2

a2

3

)−1
σ2

(
1 a

2
a
2

a2

3

)(
1 a

2
a
2

a2

3

)−1)
= N

((
0
0

)
, σ2

(
1 a

2
a
2

a2

3

)−1)
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Case 4. Constant Term and Time Trend Included in the Regression.

Considering an AR(1) model

yt = φ0 + φ1yt−1 + δt+ ut (4.19)

with φ0 being the constant term and δt being the time trend. Also, ut is i.i.d. with mean
zero and variance σ2.

If φ0 is nonzero, yt−1 would be asymptotically equivalent to a time trend. Since a
time trend is already included as a separate variable in the regression, this would make
the explanatory variables collinear in large samples.

Note that the regression model of 4.15 can equivalently be written as

yt = (1− φ1)φ0 + φ1(yt−1 − φ0(t− 1)) + (δ + φ1φ0)t+ ut

= φ′0 + φ′1ξt−1 + δt+ ut (4.20)

where φ′0 = (1− φ1)φ0, φ
′
1 = φ1, δ

′ = (δ + φ1φ0), and ξt = yt − φ0t. Moreover, under
the null hypothesis that φ1 = 1 and δ = 0,

ξt = y0 + u1 + u2 + · · ·+ ut

that is, ξt, is the random walk described in Proposition 1. Consider, a hypothetical
regression of yt, on a constant, ξt−1, and a time trend, producing the OLS estimatesφ̂0

′
T

φ̂1

′
T

δ̂′T

 =

 T
∑T

t=1 ξt−1
∑T

t=1 t∑T
t=1 ξt−1

∑T
t=1 ξ

2
t−1

∑T
t=1 ξt−1t∑T

t=1 t
∑T

t=1 tξt−1
∑T

t=1 t
2

−1  ∑T
t=1 yt∑T

t=1 ξt−1yt∑T
t=1 tyt

 (4.21)

The maintained hypothesis is that φ1 = 1, and δ = 0, which in the transformed system
would mean φ′0 = 0, φ′1 = 1, and δ′ = φ0. The deviations of the OLS estimates from these
true values are given by

 φ̂′0T
φ̂′1T − 1

δ̂′T − φ0

 =

 T
∑T

t=1 ξt−1
∑T

t=1 t∑T
t=1 ξt−1

∑T
t=1 ξ

2
t−1

∑T
t=1 ξt−1t∑T

t=1 t
∑T

t=1 tξt−1
∑T

t=1 t
2

−1  ∑T
t=1 ut∑T

t=1 ξt−1ut∑T
t=1 tut

 (4.22)

4.2.2 Asymptotic Results for Unit Root Processes with General
Serial Correlation

This section generalizes Proposition 1 to allow for serial correlation.

Proposition 2. Let

ut = ψ(L)εt =
∞∑
j=0

ψjεt − j (4.23)

where

E(εt) = 0

E(εtετ ) =

{
σ2 for t = τ

0 otherwise
∞∑
j=0

j|ψj| <∞ (4.24)
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Then

u1 + u2 + · · ·+ ut = ψ(1)(ε1 + ε2 + · · ·+ εt) + ηt − η0, (4.25)

where ψ(1) =
∑∞

j=0 ψ, ηt =
∑∞

j=0 ajεt−j, aj = −(ψj+1+ψj+2+. . . ) and
∑∞

j=0 |aj| <∞

Notice that if y0 is an I(1) process yt whose �rst di�erence is given by ut, or

∆yt = ut

then
yt = u1 + u2 + · · ·+ ut + y0 = ψ(1)(ε1 + ε2 + · · ·+ εt) + ηt + η0 + y0

Proposition 2 thus states that any I(1) process whose �rst di�erence satis�es 4.23
and 4.24 can be written as the sum of a random walk, ψ(1)(ε1 + ε2 + · · · + εt), initial
conditions (y0 − η0), and a stationary process (ηt). This observation was �rst made by
Beveridge and Nelson (1981) [5], and 4.25 is sometimes referred to as the Beveridge-Nelson
decomposition.

Notice that ηt, is a stationary process. An important implication of this is that if
4.25 is divided by

√
t, only the �rst term 1√

t
ψ(1)(ε1 + ε2 + · · ·+ εt) should matter for the

distribution of 1√
t
ψ(1)(u1 + u2 + · · ·+ ut) as t→∞.

Proposition 3. Let ut = ψ(L)εt =
∑∞

j=0 ψjεt−j where
∑∞

j=0 j|ψ| < ∞ and {εt} is an

i.i.d. sequence with mean zero, variance σ2 and �nite fourth moment. De�ne

γj = E(utut−j) = σ
∞∑
s=0

ψsψs+j for j = 0, 1, 2, · · · (4.26)

λ = σ
∞∑
j=0

ψj = σψ(1)

ξt = u1 + u2 + · · ·+ utfor t = 1, 2, · · · , T (4.27)

with ξ0 = 0 Then

1. T−1/2
∑T

t=1 ut
L→ λW (1)

2. T−1/2
∑T

t=1 ut−jεt
L→ N(0, σ2γ0) for j = 1, 2, · · ·

3. T−1
∑T

t=1 utut−j
p→ γj for j = 0, 1, 2, · · ·

4. T−1
∑T

t=1 ξt−1εt
L→ 1

2
σλ{[W (1)2 − 1]}

5.

T−1
T∑
t=1

ξt−1ut−j
L→

{
1
2
{λ2[W (1)]2 − γ0} for j = 0

1
2
{λ2[W (1)]2 − γ0}+ γ0 + γ1 + γ2 + · · ·+ γj−1 for j = 1, 2, · · ·

6. T−3/2
∑T

t=1 ξt−1
L→ λ

∫ 1

0
W (r)dr
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7. T−3/2
∑T

t=1 tut−j
L→ λ{W (1)−

∫ 1

0
W (r)dr} for j = 0, 1, 2, · · ·

8. T−2
∑T

t=1 ξ
2
t−1

L→ λ2
∫ 1

0
[W (r)]2dr

9. T−5/2
∑T

t=1 tξt−1
L→ λ

∫ 1

0
rW (r)dr

10. T−3
∑T

t=1 tξ
2
t−1

L→ λ2
∫ 1

0
r[W (r)]2dr

11. T−(ν+1)
∑T

t=1 t
ν → 1

ν+1
ν = 0, 1, · · ·

4.3 Cointegration

Assume a pair of time series, xt and yt that they tend to "move together". There may
be an economic theory involved that forces these pairs to move in a similar way. Of
course, there may be some reasons that drive them apart but the economic theory that
is involved is stronger. Thus, they will return to their original equilibrium.

Davidson et al. (1978) [20] presented models that in the long-run equilibrium should
not drift arbitarily far from each other.

The equilibrium will hold if yt ∼ I(0), and xt ∼ I(0) then yt − βxt = ut ∼ I(0). But
there are cases when the equilibrium relationship holds even if the time series are not
stationary.

These cases, where the time series are non-stationary, but their linear combination
provides stationary residuals are called cointegrated time series.

De�nition 26. Cointegration [78]
Let xt ∼ I(1) and yt ∼ I(1) be two time series. They are said to be cointegrated if

there exists a parameter β such that

ut = yt − βxt

is a stationary process.

The ut is referred as the equilibrium error and represents the deviation from the long-
run equilibrium. The co-movement of the time series causes their residuals to have a
mean-reverting behaviour and get closer to the equilibrium line.

The formal mathematical expression of the equilibrium concept, ends up to cointe-
gration model. In essence a pair of two I(1) times series with common trend, in a way
that they cancel each other's trend and their linear combination comes out as stationary
process.

First we will need a model. Consider the regression

yt = β0 + β1xt + ut (4.28)

In the case where the xt and yt are cointegrated the coe�cient of xt, β̂1, converges to
the true value of rate T . Then, the OLS method provides super-consistent estimator.

If xt is a random walk and the residuals are serially uncorrelated, we note that
T · (β̂1 − β1) is asymptotically distributed to a function of two independent Brownian

motions,
∫ 1
0 B2dB1∫ 1
0 B

2
2dt

with zero mean. It is worth mentioning that the standard t-test is

asymptotically normally distributed.
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If there is serial correlation on residuals or there is a correlation between the xt and
us for some s, T · (β̂1 − β1) asymptotically does not follow a symmetric distribution.
Therefore the t-statistic is no longer asymptotically normally distributed.

Up until this point, we dealt with the simple case where the cointegrated time series
are integrated of order 1. The attention now turns to a more generic case, where the two
cointegrated time series are integrated of order d > 1. Let, xt ∼ I(d) and yt ∼ I(d). This
implies that d-di�erences are needed in order for xt and yt to be stationary. The xt and
yt are said to be co-integrated of order CI(d, p) if both of them are integrated of order d
and the residuals are integrate of order d− p. This means that xt ∼ I(d), yt ∼ I(d) and
yt − βxt = ut ∼ I(d− p). Of course this requires p ≤ d. It is easy to see that the simple
case of I(1) can be presented as a CI(1, 1). The integration order of xt and yt is d = 1,
the integration order of the residuals is p = 1⇒ d− p = 0.

4.3.1 Normalization

The cointegration vector β in 3.3 is not sui generis since for any nonzero scalar c the
linear combination cβ′Yt = β∗

′
Yt ∼ I(0). Hence, some normalization assumption is

required to uniquely identify β. A typical normalization is

β = (1,−β2, · · · ,−βn)′

so that the cointegration relationship may be expressed as

β′Yt = y1t − β2y2t − · · · − βnynt ∼ I(0)

or

y1t = β2y2t + · · ·+ βnynt + ut (4.29)

where ut ∼ I(0). In 4.29, the error term ut is often referred to as the disequilibrium
error or the cointegrating residual. In long-run equilibrium, the disequilibrium error ut
is zero and the long-run equilibrium relationship is

y1t = β2y2t + · · ·+ βnynt

Note that one should be very careful when choosing the variable to label as y1t be-
cause β1 must not be zero. One approach that avoids this normalization problem is the
full-information maximum likelihood estimate proposed by Johansen (1988, 1991) [40]
[41].

4.4 Unit Root test

4.4.1 An Alternative Representation of an AR(p) Process

Consider the following AR(p) model,

(1− φ1L− φ2L
2 − · · · − φpLp)yt = εt, (4.30)
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where {εt} is an i.i.d. sequence with mean zero, variance σ2, we can rewrite the 4.30

[(1− φ∗L)− (ζ1L+ ζ2L
2 + · · ·+ ζp−1L

p−1)(1− L)]yt = εt (4.31)

or

yt = φ∗yt−1 + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + εt (4.32)

where φ∗ = φ1 +φ2 + · · ·+φp and ζj = −[φj+1 +φj+2 + . . . φp] for j = 1, 2, . . . , p−1.
From 4.32 one can see that yt−1 is I(1), while all of the other regressors (∆yt−1, . . . ,∆yt−p+1)

are I(0).
This canonical form proposed by Fuller (1976) [21] requires no speci�c sample size

and it is easier to estimate the parameters by direct OLS estimation.

4.4.2 Summary of Asymptotic Results for an Estimated Autore-
gression that Includes a Constant Term

The preceding analysis applies to OLS estimation of

yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + a+ φ∗yt−1 + εt

under the assumption that the true value of a is zero and the true value of p is 1.
Let εt be i.i.d. with mean zero, variance σ2, and the roots of

(1− ζ1u− ζ2u2 − · · · − ζp−1up−1) = 0

are outside the unit circle. It was seen that the estimates ζ̂1, ζ̂2, . . . , ζ̂p−1 converge
at rate

√
T to Gaussian variates, and standard t or F tests for hypotheses about these

coe�cients have the usual limiting Gaussian or X 2 distributions. The estimates â and p̂
converge at rates

√
T and T , respectively, to nonstandard distributions.

When the autoregression includes lagged changes as here, tests for a unit root based
on the value of p, t tests, or F tests are described as augmented Dickey-Fuller tests.

Case 1: Estimated regression: yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + a+ φ∗yt−1 + εt
True process: same speci�cation as estimated regression with φ∗ = 1
Any t or F test involving ζ1, ζ2, . . . , ζp−1, can be compared with the usual t or F
tables for an asymptotically valid test.
ZDF has the same asymptotic distribution as the variable described under the head-
ing Case 1 in Table B.
OLS t test of φ∗ = 1 has the same asymptotic distribution as the variable described
under Case 1 in Table B.

Case 2: Estimated regression: yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + a+ φ∗yt−1 + εt
True process: same speci�cation as estimated regression with a = 0 and φ∗ = 1
Any t or F test involving ζ1, ζ2, . . . , ζp−1, can be compared with the usual t or F
tables for an asymptotically valid test.
ZDF has the same asymptotic distribution as the variable described under Case 2
in Table B.
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OLS t test of φ∗ = 1 has the same asymptotic distribution as the variable described
under Case 2 in Table B.
OLS F test of joint hypothesis that a = 0 and φ∗ = 1 has the same asymptotic
distribution as the variable described under Case 2 in Table B.

Case 3: Estimated regression: yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + a+ φ∗yt−1 + εt
True process: same speci�cation as estimated regression with a 6= 0 and ρ = 1
φ̂∗T converges at rate T 3/2 to a Gaussian variable; all other estimated coe�cients
converge at rate T 1/2 to Gaussian variables.
Any t or F test involving any coe�cients from the regression can be compared with
the usual t or F tables for an asymptotically valid test.

Case 4: Estimated regression: yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + a+ φ∗yt−1 + εt
True process: same speci�cation as estimated regression with a any value, φ∗ =
1,and δ = 0
Any t or F test involving ζ1, ζ2, . . . , ζp−1, can be compared with the usual t or F
tables for an asymptotically valid test.
ZDF has the same asymptotic distribution as the variable described under Case 4
in Table B.
OLS t test of φ∗ = 1 has the same asymptotic distribution as the variable described
under Case 4 in Table B.
OLS F test of joint hypothesis that φ∗ = 1 and δ = 0 has the same asymptotic
distribution as the variable described under Case 4 in Table B.

4.4.3 Unit Root AR(p) Processes with p Unknown

Many proposals have been made for how to handle the cases where the p is unknown but
�nite, for example in an ARIMA(p, 1, 0) model.

Instinctively the �rst approach is to estimate yt = βx′t with p taken to be some
predetermine upper bound p̂. In order to determine the order of AR model we will use
a backward stepwise procedure starting with the hypothesis that only the zetap̂−1 = 0.
Obviously, we can use the OLS t-test. If the null hypothesis is not rejected we will
continue with F-test to examine if ζp̂−1 = 0 and ζp̂−2 = 0 simultaneously. We continue
this procedure until the null hypothesis ζp̂−1 = 0, ζp̂−2 = 0, . . . , ζp̂−` = 0 is rejected. The
recommended regression is then

yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−`∆yt−(p+`) + a+ φ∗yt−1 + δt

Of course across the literature there are other approaches to estimate p, like Hall
(1991) [31] and Said and Dickey (1984) [70]

4.4.4 Dickey - Fuller

A more systematic approach for testing the presence of a unit root of the autoregressive
polynomial in order to decide whether or not a time series should be di�erentiated is the
approach that was pioneered by Dickey and Fuller (1979) [21].

To illustrate the important statistical issues associated with autoregressive unit root
tests, consider the simple AR(1) model

yt = φyt−1 + εt where εt ∼ WN(0, σ2)
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The hypotheses of interest are

H0 : φ = 1(unit root in φ(z) = 0)→ yt ∼ I(1)

H1 : |φ| < 1→ yt ∼ I(0)

The test statistic is

tφ=1 =
φ̂− 1

SE(φ̂)

where φ̂ is the least square estimate and SE(φ̂) is the standard error estimate.

The limiting distribution of tφ=1 is called the Dickey-Fuller (DF) distribution and does
not have a closed form representation. Consequently, quantiles of the distribution must
be computed by numerical approximation or by simulation.

The unit root tests described above are valid if the time series yt is well characterized
by an AR(1) with white noise errors. Many �nancial time series, however, have a more
complicated dynamic structure than when captured by a simple AR(1) model. Said
and Dickey (1984) [70] augment the basic autoregressive unit root test to accommodate
general ARMA(p, q) models with unknown orders and their test is referred to as the
augmented Dickey Fuller (ADF) test. The ADF test tests the null hypothesis that a time
series yt is I(1) against the alternative that it is I(0), assuming that the dynamics in the
data have an ARMA structure. The ADF test is based on estimating the test regression

∇yt = γyt−1 +

p−1∑
j=1

ψj∇yt−j + wt

where γ =
∑p

j=1 φj − 1 and ψj = −
∑p

j=1 φi for j = 2, . . . p.

Remark 5. One will have to deal with the problem of choosing the optimal lag length p,
in order to implement the ADF test. If p is too small then the remaining serial correlation
in the errors will bias the test. If p is too large the degrees of freedom will be too small,
and so the test would not be powerful enough.

A useful rule of thumb for determining pmax, suggested by Schwert (1989) [71], is

pmax =

[
12 ·

(
T

100

)1/4
]

(4.33)

4.4.5 Summary of Dickey-Fuller Tests in the absence of Serial
Correlation

We have already examined the asymptotic properties of the OLS in various cases of the
presence or not of constant trend and time trend in Cases 1-4.

In order to construct the null hypothesis for unit root testing, one should choose the
appropriate Case. In case where the choice is not clear one should �nd a more generic
way to construct the null hypothesis. For example it is suggested to use Case 4 for a
series with trend, while Case 2 is more appropriate when there is no signi�cant trend.
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Case 1: Estimated regression: yt = φ1yt−1 + ut
True process: yt = yt−1 + ut ut ∼ iid N(0, σ2)
T (φ̂1T − 1) has the distribution described under the heading Case 1 in Table B.
(φ̂1T − 1)/σ̂φ̂1T has the distribution described under Case 1 in Table B.

Case 2: Estimated regression: yt = φ0 + φ1yt−1 + ut
True process: yt = yt−1 + ut ut ∼ iid N(0, σ2)
T (φ̂1T − 1) has the distribution described under the Case 2 in Table B.
(φ̂1T − 1)/σ̂φ̂1T has the distribution described under Case 2 in Table B.
OLS F test of joint hypothesis that φ0 = 0 and φ1 = 1 has the distribution described
under Case 2 in Table B.

Case 3: Estimated regression: yt = φ0 + φ1yt−1 + ut
True process: yt = φ0 + yt−1 + ut, φ0 6= 0 and ut ∼ iid N(0, σ2)

(φ̂1T − 1)/σ̂φ̂1T
L→ N(0, 1)

Case 4: Estimated regression: yt = φ0 + φ1yt−1 + δt+ ut
True process: yt = φ0 + yt−1 + ut ut ∼ iid N(0, σ2)
T (φ̂1T − 1) has the distribution described under the Case 4 in Table B.
(φ̂1T − 1)/σ̂φ̂1T has the distribution described under Case 4 in Table B.
OLS F test of joint hypothesis that φ1 = 1 and δ = 0 has the distribution described
under Case 4 in Table B.

4.4.6 Phillips-Perron

The augmented DF is motivated by the need to generate iid errors. An alternative
strategy for allowing errors that are not iid is that of Phillips and Perron (1988) [67],
known as the Phillips�Perron (PP) unit root test.

A great advantage of Philips-Perron test is that it is non-parametric. The Phillips-
Perron (PP) unit root tests di�er from the ADF tests mainly in how they deal with serial
correlation (does not require to select the level) and heteroskedasticity in the errors (HAC
type corrections).

In particular, where the ADF tests use a parametric autoregression to approximate
the ARMA structure of the errors in the test regression, the PP tests ignore any serial
correlation in the test regression. The test regression for the PP tests is

∆yt = z′Dt + βyt−1 + ut

where Dt is a vector of deterministic terms (constant, trend etc.), ut is I(0) and may
be heteroskedastic. The PP tests correct for any serial correlation and heteroskedasticity
in the errors ut of the test regression by directly modifying the test statistics tβ=0 and

T β̂. These modi�ed statistics, denoted Zt and Zβ, are given by

Zt =

(
σ̂2

λ̂2

)1/2

· tβ=0 −
1

2

(
λ̂2 − σ̂2

λ̂2

)
·

(
T · SE(β̂)

σ̂2

)

Zπ = T β̂ − 1

2

T 2 · SE(β̂)

σ̂2

(
λ̂2 − σ̂2

)
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Phillips-Perron test does not add lags, but uses Newey-West HAC robust standard
errors to calculate test statistic.

The terms σ̂2 and λ̂2 are consistent estimates of the variance parameters

σ2 = lim
T→∞

T−1
T∑
t=1

E[u2t ]

λ2 = lim
T→∞

T∑
t=1

E[T−1S2
T ]

where ST =
∑T

t=1 ut.

The main disadvantage of the PP test is that it is based on asymptotic theory. And
it also shares disadvantages of ADF tests: sensitivity to structural breaks, poor small
sample power too often resulting in unit root conclusions.

Remark 6. The consensus ordains that ADF test is more preferable in most cases because
PP-test needs large sample of data. However, in our times large data is not a problem.
It is, also, non- parametric i.e. it does not assume any distribution. In addition, it uses
the HAC estimators for the variance and so it is robust. Lastly, it does not assume any
model form such as the ARMA model.

4.4.7 Summary of Phillips-Perron Test for Unit Roots

Case 1: Estimated regression: yt = βyt−1 + ut
True process: yt = yt−1 + ut
Zβ has the same asymptotic distribution as the variable described under the heading
Case 1 in Table B.
Zt has the same asymptotic distribution as the variable described under Case 1 in
Table B.

Case 2: Estimated regression: yt = a+ βyt−1 + ut
True process: yt = yt−1 + ut
Zβ has the same asymptotic distribution as the variable described under the head-
ing Case 2 in Table B.
Zt has the same asymptotic distribution as the variable described under Case 2 in
Table B.

Case 4: Estimated regression: yt = a+ βyt−1 + δt+ ut
True process: yt = a+ yt−1 + ut for any a
Zβ has the same asymptotic distribution as the variable described under the head-
ing Case 4 in Table B.
Zt has the same asymptotic distribution as the variable described under Case 4 in
Table B.
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4.4.8 Zivot

Structural Break

The assumption of stationarity implies that the parameters of regression models i.e. the
mean and the variance are constant over time.

However, in econometrics, we de�ne the structural break as an unexpected change
over time in these parameters.

This, can lead to forecasting errors and unreliability of the model in general.
There are several types of structural breaks with some of them being when there is

a known number of breaks in mean with unknown break points. Another type is when
there is an unknown number of breaks in mean with unknown break points and also when
there are breaks in variance.

The Chow (1960) [16] test, was one of the �rst tests which set the foundation for
structural break testing. Its theory is hinged on that if parameters are constant then
out-of-sample forecasts should be unbiased.

H0 : β1 = β2 meaning there is no structural break

Ha : β1 6= β2 meaning there is a known structural break at timeTb

The advantages of the Chow test are that it is easy to implement and that the F-
statistic has a standard distribution.

A disadvantage of the Chow test is that the break point must be predetermined earlier
in order to implement the test.

We introduce a simple example for better understanding the structural breaks. We
simulate data from Normal distribution and divide them into two subsets.

The �rst subset was generated from N(0, 1) and the second was generated from
N(2, 2).

That way, we have a clear structural break for presentational purposes.
We calculate the F-test, which essentially is a Chow test, for all possible break points.

F (T1) =
(SSE − SSE(T1))/k

SSE(T1)(n−m)

where,
SSE is the Sum of Squares Error,
σ˜2 = 1

n−k (e˜′e˜),e˜= Y −Xβ˜k = number of regressors before SB (t ≤ T1)
and m = all parameters.

We practice the supF-test and extract the maximum F-score from all the possible
break points.

set . seed (300)
x1 <= rnorm(1000)
x2 <= rnorm(1000 , mean = 2 , sd = 2^0.5)
X <= c ( x1 , x2 )
ourt s1 <= ts (X)
l ibrary ( s t rucchange )
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t e s t 2 <= Fstat s ( ourt s1~1)
#Gets a sequence o f f s t a t i s t i c s f o r a l l p o s s i b l e break po in t s
ourt s1 . f s <= t e s t 2$Fstat s
#These are the f s t a t s
bp . ourt s1 <= breakpo int s ( ourt s1~1)
#Gets the b reakpo in t based on the F=s t a t s
plot ( ourt s1 )
#p l o t s the s e r i e s myts1
l ines (bp . ourt s1 )
#p l o t s the break date imp l i ed by the sup F t e s t
bd . ourt s1 <= breakdates (bp . ourt s1 )
s c t e s t ( t e s t 2 )
#Obtains a p=va lue f o r the imp l i ed b reakpo in t

Figure 4.1: Original data

The graph above presents the data from both subsets and we clearly see the relocation
of the mean and the variance that there is due to the way that the model was built.

Figure 4.2: F- score plot

In the above �gure, we have illustrated the F-test values and as it was expected the
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maximum F- score appears exactly where the structural break is and it is also the point
that the supF test indicates as the change point.

Figure 4.3: Structural break simulation

Zivot and Andrews (1992) [50] endogenous structural break test is a sequential ADF
test which utilizes the full sample and uses a di�erent dummy variable for each possible
break date. The break date is selected where the t-statistic from the ADF test of unit
root is at a minimum (most negative). Consequently a break date will be chosen where
the evidence is the least favourable for the unit root null. The critical values in Zivot
and Andrews (1992) [50] are di�erent to the critical values in Perron (1989) [59]. The
di�erence is due to the fact that the selecting of the time of the break is treated as the
outcome of an estimation procedure, rather than predetermined exogenously. Zivot and
Andrews' test provides more evidence for unit roots than Perron's test.

An extension of the Zivot and Andrews' test is the Lumsdaine and Papell's test, which
allows two structural breaks under the alternative hypothesis of the unit root test and
additionally allows for breaks in level and trend.

The derivation of critical values on ZA and Lumsdaine and Papell (1998) [50] assumes
no breaks under the null hypothesis. This assumption may lead to conclude incorrectly
(spuriously) reject H0 (unit root) when, in fact, the series is di�erence-stationary with
breaks.

4.4.9 Stationarity test KPSS

All the unit root tests we have encountered by now have a null hypothesis of non-
stationarity. Kwiatkowski et al. (1992) [47] proposed a unit root test which has a null
hypothesis of stationarity, this test is widely known as KPSS test. They consider the
following model

yt = z′Dt + y2t + ut (4.34)

y2t = y2,t−1 + εt, εt ∼ WN(0, σ2
ε ) (4.35)

where Dt contains deterministic components (constant or constant plus time trend),
ut is I(0) and may be heteroskedastic, y2t is a random walk. The null hypothesis of
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stationarity is constructed as H0 : σ2
ε = 0, that indicates that y2t is a constant. The

KPSS test statistic is given by

KPSS =
T−2

∑T
t=1 Ŝ

2
t

λ̂2
(4.36)

where Ŝ2
t =

∑t
j=1 ûj, ûj is the residual of a regression of yt on Dt and λ̂

2 is a consistent
estimate of the long-run variance of ut using ût.

The stationary test is a one-sided right-tailed test so that one rejects the null of
stationarity at the 100 · a% level if the KPSS test statistic 4.36 is greater than the
100 · (1− a)% quantile from the appropriate asymptotic distribution, which can be found
in Zivot (2007) [89].
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Chapter 5

Application

We tried to �nd asset in order to make our study. Our �rst approach was the stocks
where we check their correlation, unfortunately we could not �nd any strong correlation
relationship. Our second approach was to use futures, where we found some, but we
arbitrarily choose Nasdaq and Dow Jones Index to make our study.

5.1 Nasdaq and Dow Jones Index

5.1.1 Prices

For the application we are using the Nasdaq 100 and the Dow Jones Index from 01/01/2005
to 01/01/2022. We collected our data from yahoo �nance. The Nasdaq 100 is an index
which involves the 100 largest non-�nancial companies, consisting of industrial, tech-
nology, telecommunication etc. Dow Jones Index is an index containing 30 prominent
companies listed on stock exchanges in the United States.

In order to check whether our approach is consistent, and not just the result of over-
�tting, we will separate our data into two samples. The �rst sample, called in-sample
period, is used for constructing the model and is from 01/01/2005 to 31/12/2019. The
other one, called out-of-sample period, is used for testing the predictive capability of the
model and is from 01/01/2020 to 01/01/2022.

61
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Figure 5.1: NQ time series

Figure 5.2: DJI time series

The graphs for the NQ prices and the Dow Jones Index (DJI) prices move quite simi-
larly while both show an upward trend, especially after 2009. Also, there is a signi�cance
drop around 2008, which is expected since the worldwide �nancial crisis happened in that
period.

1pct 5pct 10pct
τ3 -3.96 -3.41 -3.12
φ2 6.09 4.68 4.03
φ3 8.27 6.25 5.34

τ3 φ2 φ3

statistic -1.6185 3.8915 2.9163

Table 5.1: ADF test for NQ prices

In order to check if the time series of the prices are stationary we chose the Augmented
Dickey-Fuller (ADF). The NQ τ3-statistic is −1.61 > −3.41 for the 5% signi�cance level.
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This indicates that there is unit root and so the time series of the prices is not stationary.
The φ2 = 3.89 < 4.68 and the φ3 = 2.91 < 6.25 indicate that there is no drift and no
trend.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−4.8799 9 0.8376

Table 5.2: PP test for NQ prices

Another test that we use is the Phillips-Perron test which has a null hypothesis of the
existence of unit root. The p-value of the test, for the prices of NQ, is 0.837, which is
greater than the 5% signi�cance level, and indicates the existence of unit root.

1pct 5pct 10pct
τ3 -3.96 -3.41 -3.12
φ2 6.09 4.68 4.03
φ3 8.27 6.25 5.34

τ3 φ2 φ3

statistic -1.6565 2.6612 2.3283

Table 5.3: ADF test for DJI prices

The DJI τ3-statistic is −1.65 > −3.41 for the 5% signi�cance level. This indicates
that there is unit root and so the time series of the prices is not stationary. The φ2 =
2.66 < 4.68 and the φ3 = 2.32 < 6.25 indicate that there is no drift and no trend.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−5.3214 9 0.8129

Table 5.4: PP test for DJI prices

From the Phillips-Perron test which has a null hypothesis of the existence of unit root,
we have the p-value of the test, for the prices of DJI, is 0.813, which is greater than the
5% signi�cance level, and indicates the existence of unit root.

Regression

We construct a simple linear regression model with the NQ being the dependent variable
and the DJI being the independent variable. For the regression we use the prices of the
two assets.

The regression has the following form:

NQt = β0 + β1DJIt + εt
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Estimate Std. Error t value Pr(>|t|)
(Intercept) −2.208 · 103 16.70 -132.2 2 · 10−16

DJI 0.3653 1.063 · 10−3 343.8 2 · 10−16

R2 0.9703 Adj R2 0.9702
F-statistic: 1.182 · 105 p-value 2.2 · 10−16

Table 5.5: Summary of the regression

The R2 indicates that the 97.03% can be explained from the regression. F-test's p-
value suggests that the coe�cients are not simultaneously zero, so they are all statistically
signi�cant.

Figure 5.3: ACF of the residuals

The above graph of ACF shows strong autocorrelation, in the residuals, between the
present time and the lagged values. Autocorrelation decays slowly to zero as the lag
increases. This is expected as there is a unit root in the time series of the prices.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag D-W Statistic p- value
1 0.010177 2.2 · 10−16

The Durbin Watson test suggests a strong positive autocorrelation between the resid-
uals. This supports the evidences from the ACF.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−17.267 9 0.1468

Table 5.6: PP test for model Residuals
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The Phillips-Perron test's p-value is higher than the usual signi�cance level and so
we fail to reject null hypothesis. In other words there is unit root in the residuals of the
regression.

Logarithmic Prices

We continue the analysis constructing a simple linear regression model with the NQ
being the dependent variable and the DJI being the independent variable. For the re-
gression we use the logarithmic prices of the two assets.

The regression has the following form:

log(NQt) = β0 + β1log(DJIt) + εt

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.876622 0.061257 -128.6 2 · 10−16

log(DJI) 1.654434 0.006402 258.4 2 · 10−16

R2 0.9486 Adj R2 0.9485
F-statistic: 6.678 · 104 p-value 2.2 · 10−16

Table 5.7: Summary of the regression

From the summary of the regression on the logarithmic prices, we can see that the
R2 = 94.86%. Also, the DJI is statistically signi�cant, since the p-value of the F-test is
less than 5%. In addition, the correlation between these assets is 0.9739.

Figure 5.4: ACF of the residuals

The above graph of ACF, on the residuals of the logarithmic prices, shows strong
autocorrelation between the present time and the lagged values. Autocorrelation decays
slowly to zero as the lag increases.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag D-W Statistic p- value
1 0.00057369 2.2 · 10−16
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Durbin-Watson test, for the prices' residuals, supports the above ACF results because
it shows autocorrelation.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−24.183 9 0.02975

Table 5.8: PP test for model Residuals

Lastly, using the Phillips-Perron test on the residuals we conclude that they are sta-
tionary since p = 0.02975 < 0.05 signi�cance level.
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Spread

In pairs trading we can use the spread of the time series of the logarithmic prices see if it
is mean reverting, i.e. if the two time series of the pair are oscillating around a long run
equilibrium. From the linear regression we obtained the 1.654434 coe�cient for the DJI.

spread = NQ− 0.3653 ∗DJI

Figure 5.5: Spreads of the prices between NQ and DJI

1pct 5pct 10pct
τ3 -3.96 -3.41 -3.12
φ2 6.09 4.68 4.03
φ3 8.27 6.25 5.34

τ3 φ2 φ3

statistic -3.059 3.1252 4.6796

Table 5.9: ADF test for the spread

The ADF test for the spread shows that τ3-statistic is −3.059 > −3.41 for the 5%
signi�cance level. This indicates that there is unit root. The φ2 = 3.1252 < 4.68 indicates
that there is drift.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−17.266 9 0.1469

Table 5.10: PP test for the spread

The p-value of the Phillips-Perron test, on spread, is 0.1469 which is less than the 5%
signi�cance level, and so, we reject the null hypothesis. Therefore, the spread of the time
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series is not stationary.

Spread for the Logarithmic Prices

spread = log(NQ)− 1.654434 ∗ log(DJI)

Figure 5.6: Spreads of the logarithmic prices between NQ and DJI

The plot of the spread shows a clear trend and a spike going downwards around 2008.

1pct 5pct 10pct
τ3 -3.96 -3.41 -3.12
φ2 6.09 4.68 4.03
φ3 8.27 6.25 5.34

τ3 φ2 φ3

statistic -3.7405 6.1484 7.1598

Table 5.11: ADF test for the spread

The ADF test for the spread shows that τ3-statistic is −3.7405 < −3.41 for the 5%
signi�cance level. This indicates that there is no unit root and so the trend is stationary.
The φ2 = 6.1484 > 4.68 indicates that there is drift.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−24.183 9 0.02975

Table 5.12: PP test for the spread

The p-value of the Phillips-Perron test, on spread, is 0.02975 which is less than the
5% signi�cance level, and so, we reject the null hypothesis. Therefore, the spread of the
time series is stationary.
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5.1.2 Daily Logarithmic Returns

As it was mentioned in a previous chapter, in �nancial time series it is preferable to work
with the daily logarithmic returns over the simple ones. For this reason, we calculated
the �rst di�erence of the daily logarithmic prices.

Figure 5.7: Prices vs Daily Logarithmic Returns of NQ

From the above graph we can see the di�erence between the prices and the daily
logarithmic returns of NQ. In the daily logarithmic returns plot it is easy to detect
the spikes that occur in various dates with the biggest one being around 2008. The
formation of volatility clusters is also quite observable. Apart from 2008, which is when
the worldwide �nancial crisis happened, there are also smaller clusters around 2011 and
2016, when the Japan earthquake and tsunami, and the American president elections,
happened respectively.

Figure 5.8: Daily Logarithmic Returns of NQ QQ plot for Normal Distribution
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From the QQ-plot, of the daily logarithmic returns of NQ, the data appear to �t well
in the center but as we move outwards, we have heavy tails that drift further from the
normal distribution.

It provides no clear clue for skewness as both tails seem to drift apart from the
normal distribution line. Also we cannot see any change in variance as we did in the
daily logarithmic returns plot.

Figure 5.9: Daily Logarithmic Returns of NQ QQ plot for Student's t-Distribution 3df

From the Student-t with 3 degrees of freedom �gure, the daily logarithmic returns of
NQ seem to be closer to the line while the downside tail is still quite fat. This indicates
that we over-estimate the right side and under-estimate the left side.

Another thing one can notice is the two enumerated observations, which are identi�ed
as outliers. Even though, R does not point out any outliers on the left side it does not
mean they are insigni�cant.

Figure 5.10: ACF of the Daily Logarithmic Returns of NQ
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The ACF �gure for the daily logarithmic returns of NQ shows that there is negative
autocorrelation between the present and the lagged values of NQ.

1pct 5pct 10pct
τ1 -2.58 -1.95 -1.62

τ1
statistic -46.5854

Table 5.13: ADF test on Daily Logarithmic Returns of NQ

Testing the daily logarithmic returns of NQ for stationarity we choose to use the
ADF test for 5% signi�cance level. The conclusion that derives from the table is that
τ1-statistic, which is equal to -46.5854, is less than the critical value and so the daily
logarithmic returns of NQ are stationary.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−3580.2 9 0.01

Table 5.14: PP test for Daily Logarithmic Returns of NQ

The Phillips-Perron test for NQ daily logarithmic returns comes to support that ev-
idence of stationarity as the p-value is less than the 5% signi�cance level. Thus, we
reject the null hypothesis, of existence of unit root, so the daily logarithmic returns are
stationary.

Figure 5.11: Prices vs Daily Logarithmic Returns of DJI

We continue the same analysis for the daily logarithmic returns of DJI.
From the above graph we can see the di�erence between the prices and the daily

logarithmic returns of DJI. In the daily logarithmic returns plot it is easy to detect the
spikes that occur in various dates with the biggest being around 2008. It is also quite
observable the formation of volatility clusters. Apart from the 2008, there are also clusters
around 2011 and 2016.
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Figure 5.12: Daily Logarithmic Returns of DJI QQ plot for Normal Distribution

From the QQ-plot, of the daily logarithmic returns of DJI, the data appear to �t well
in the center but as we move outwards, we have heavy tails that drift further from the
normal distribution.

It provides no clear clue for skewness as both tails seem to drift apart from the
normal distribution line. Also we cannot see any change in variance as we did in the
daily logarithmic returns plot.

Figure 5.13: Daily Logarithmic Returns of DJI QQ plot for Student's t-Distribution with
3 df

The Student's t-Distribution with 3 degrees of freedom �ts better than the Normal
Distribution for the daily logarithmic returns of DJI and also we have heavy tails.

Another thing one can notice is the enumerated observations, which are identi�ed as
outliers.
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Figure 5.14: ACF of the Daily Logarithmic Returns of DJI

The ACF �gure for the daily logarithmic returns of DJI shows that there is negative
autocorrelation between the present and the lagged values of DJI.

1pct 5pct 10pct
τ1 -2.58 -1.95 -1.62

τ1
statistic -47.2411

Table 5.15: ADF test on Daily Logarithmic Returns of DJI

Testing the daily logarithmic returns of DJI for stationarity we choose to use the
ADF test for 5% signi�cance level. The conclusion that derives from the table is that
τ1-statistic, which is equal to -47.2411, is less than the critical value and so the daily
logarithmic returns of DJI are stationary.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−3720.3 9 0.01

Table 5.16: PP test for Daily Logarithmic Returns of DJI

The Phillips-Perron test for DJI daily logarithmic returns comes to support the ev-
idence of stationarity as the p-value is less than the 5% signi�cance level. Thus, we
reject the null hypothesis, of existence of unit root, so the daily logarithmic returns are
stationary.

Regression

Once again we construct a simple linear regression model with the daily logarithmic
returns of NQ being the dependent variable and the daily logarithmic returns DJI being
the independent variable. The regression has the following form:
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NQt = β1DJIt + εt

Estimate Std. Error t value Pr(>|t|)
DJI.rtn 1.021474 0.009715 105.1 2 · 10−16

R2 0.7532 Adj R2 0.7531
F-statistic: 1.105 · 104 p-value 2.2 · 10−16

Table 5.17: Summary of the regression

From the summary of the regression on the daily logarithmic returns, we can see that
the R2 = 75%. Also, the coe�cient of the DJI is statistically signi�cant, since the p-value
of the F-test is less than 5%. In addition, the correlation between these assets is positive,
since it is 0.8677972.

Figure 5.15: ACF

The above graph of the residuals' ACF shows negative autocorrelation between the
present time and its lagged values.

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag D-W Statistic p- value
1 2.0798 0.9919

The Durbin-Watson test of the residuals shows slightly negative autocorrelation and
support of the evidence from ACF.

Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−3632.9 9 0.01

Table 5.18: PP test for the residuals
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The Phillips-Perron test indicates that there is no unit root.

5.1.3 ADL

Continuing the analysis, we construct the Autogressive Distributed Lag (ADL) model
with p = 0 and q = 1. In essence, we want to estimate the present value of the daily
logarithmic returns of NQ using the previous values of the daily logarithmic returns of
DJI. The model is in the following form:

NQt = β1DJIt−1 + εt

Estimate Std. Error t value Pr(>|t|)
lag(DJI.rtn) -0.08530 0.01951 -4.373 1.26 · 10−5

R2 0.005253 Adj R2 0.004978
F-statistic: 19.13 p-value 1.258 · 10−5

Table 5.19: Summary of the regression for the lagged Daily Logarithmic Returns

From the summary of the regression, we can see that the R2 = 0.5253%. Also, the
intercept and the coe�cient of the DJI are both statistically signi�cant, since the p-value
of the F-test is less than 5%.

Figure 5.16: ACF lagged model

Autocorrelation test Durbin-Watson

H0 : residuals are not autocorrelated Ha : residuals are autocorrelated of order 1
lag D-W Statistic p- value
1 1.9783 0.2569

Both the ACf and the Durbin-Watson test indicate that the residuals of the daily
logarithmic returns are slightly positively correlated, which is expected due to the mean
reverting.
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Phillips-Perron test

H0 : Existence of Unit Root Ha : Stationary
Dickey Fuller Za Truncation lag parameter p- value
−3375.6 9 0.01

Table 5.20: PP test for the residuals of the ADL model

The Phillips-Perron test indicates that there is no unit root.

5.1.4 Backtesting

A basic strategy for checking if the model has forecasting capability is the back-testing
process.

Back-testing is very useful in detecting the weaknesses of forecasting models but it
does not provide any information for what causes these weaknesses.

Because the data, we are working with, are daily the look-back period for the back-
testing procedure is 4 years while the burn in period will be the �rst 2 years. By throwing
away 2 years,through the burn-in period we help the procedure to run normally after-
wards.

While the look back period is 4 years because we start with a burn in period of 2
years, this translates to an expanding window that starts with a length of 2 years and
expands to its length to 4 years.

Those 2 and 4 years are basically 500 and 1000 long length observation, respectively,
because the "working days" of the market in a year are approximately 250.
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We will use 3 di�erent strategies and check their performance in the in sample period
and in the out of sample period.

Prices

Strategy 1: Statistical Arbitrage

For this strategy we used the linear regression of the prices of NQ and DJI, we produce
the spreads and we chose to use the ±2 standard deviation as a measure for when we will
be in long/short position. This time we let the model to choose when we open or close
the position.

Figure 5.17: Spread and position for Strategy 1

In this graph we can see the spread of NQ and DJI. The blue line represents the
position we took in this strategy. The dashed red lines stand for the two standard
deviations, where we took positions and the middle line is where we close our positions.
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Strategy 2

Using the linear regression of the prices of NQ and DJI, we produce the spreads and
we chose to use the ±2 standard deviation as a measure for when we will be in long/short
position, i.e. values in absolute less than 2 standard deviation will be ignored.

Figure 5.18: Spread and position for Strategy 2

Strategy 3

In this strategy we use the same method as before but this time we hold our position
until we swap from long to short or from short to long. For example, we take our position
if spread is greater than 2 standard deviation and keep that position until spread is less
than -2 standard deviation.

Figure 5.19: Spread and position for Strategy 3
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Log Prices

Strategy 1: Statistical Arbitrage

For this strategy we used the linear regression of the logarithmic prices of NQ and
DJI, we produce the spreads and we chose to use the ±2 standard deviation as a measure
for when we will be in long/short position. This time we let the model to choose when
we open or close the position.

Figure 5.20: Spread and position for Strategy 1

In this graph we can see the spread of logarithmic NQ and DJI. The blue line represents
the position we took in this strategy. The dotted red lines stand for the two standard
deviations, where we took positions and the middle line is where we close our positions.
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Strategy 2

Using the linear regression of the logarithmic prices of NQ and DJI, we produce the
spreads and we chose to use the ±2 standard deviation as a measure for when we will
be in long/short position, i.e. values in absolute less than 2 standard deviation will be
ignored.

Figure 5.21: Spread and position for Strategy 2

Strategy 3

In this strategy we use the same method as before but this time we hold our position
until we swap from long to short or from short to long. For example, we take our position
if spread is greater than 2 standard deviation and keep that position until spread is less
than -2 standard deviation.
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Figure 5.22: Spread and position for Strategy 3

5.1.5 Out of sample

Prices

Statistical Arbitrage for the Out of sample Period

Figure 5.23: Spread and position for Strategy 1

In this graph we can see the spread of NQ and DJI. The blue line represents the
position we took in this strategy. The dashed red lines stand for the two standard
deviations, where we took positions and the middle line is where we close our positions.
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Strategy 2 for the Out of sample Period

Figure 5.24: Spread and position for Strategy 2

Strategy 3 for the Out of sample Period

Figure 5.25: Spread and position for Strategy 1

Log Prices

Statistical Arbitrage for the Out of sample Period
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Figure 5.26: Spread and position for Strategy 1

In this graph we can see the spread of NQ and DJI. The blue line represents the
position we took in this strategy. The dashed red lines stand for the two standard
deviations, where we took positions and the middle line is where we close our positions.

Strategy 2 for the Out of sample Period

Figure 5.27: Spread and position for Strategy 2

Strategy 3 for the Out of sample Period
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Figure 5.28: Spread and position for Strategy 3

5.2 Investigation for possible pairs

Now lets consider the stocks of Dow Jones Index for the period 1/1/2014 until 1/1/2022.
We will test for possible pairs using the Augmented Dickey Fuller unit root test on the
residuals, which we consider as the spread, of a simple linear regression between these
pairs. The data were imported from yahoo �nance and have been divided into four
groups, where each group contains a two year period. Our goal is to see if there are any
pairs appropriate for statistical arbitrage and also if the relationship between them holds
for the next period. The code that have been used here is a modi�cation of the original
R-code.

As it turned out we could not found any appropriate pairs for the period 2014-2016.
In the period 2016-2018 we were able to �nd 15 pairs, which we can use in our strategies.

https://predictivehacks.com/example-of-pairs-trading/
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2016-2018

Stock 1 Stock 2 correlation beta p-value
1 MMM HON 0.98 0.10 0.01
2 UNH CAT 0.98 1.38 0.04
3 JPM AXP 0.97 -0.60 0.03
4 V BA 0.97 2.00 0.02
5 UNH AXP 0.97 0.30 0.01
6 MSFT CAT 0.97 1.11 0.01
7 UNH HON 0.97 -2.50 0.04
8 MMM JNJ 0.97 -1.05 0.03
9 MSFT BA 0.96 1.34 0.05
10 V HON 0.96 -0.99 0.03
11 UNH BA 0.96 1.70 0.04
12 UNH MSFT 0.96 0.27 0.03
13 HON HD 0.96 -0.19 0.02
14 MSFT AXP 0.95 0.26 0.03
15 CAT AXP 0.95 -1.08 0.04

For the next period, 2018-2020, we found two pairs completely di�erent from those in the
previous one.

2018-2020

Stock 1 Stock 2 correlation beta p-value
1 V MSFT 0.99 0.87 0.01
2 V AXP 0.95 -1.79 0.01

In the last period 6 pairs seem to ful�l the requirements to be used in our strategies.
Note that the two of them JP Morgan with American Express and United Health Group
with Microsoft appeared again in the period 2016-2018.

2020-2022

Stock 1 Stock 2 correlation beta p-value
1 JPM AXP 0.97 0.55 0.04
2 GS AXP 0.97 -0.33 0.02
3 TRV JPM 0.96 1.51 0.01
4 UNH MSFT 0.95 1.65 0.01
5 TRV HON 0.95 0.51 0.01
6 UNH HD 0.95 0.71 0.01
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Conclusion

In the previous chapters we presented the theory relevant to the pairs trading and the
statistical arbitrage. More speci�cally the concepts of cointegration, spurious regression
and the unit root tests. We then continued with more practical applications. These
applications are based on spread between two assets and how this spread can be utilized
for the pair trading. This strategy is based on the placement of opposite positions (one
long and one short), in order to achieve a hedged position, which is on averaged pro�table
due to the exploitation of a mispricing between two highly correlated assets. We managed
to present di�erent strategies used in pair trading, such as the long only strategy, the
spread strategy and the ADL strategy.

For the application we used the technological indexes, videlicet the Nasdaq (NQ),
and industrial indexes, videlicet the Dow Jones Index (DJI). We can see that there are
time periods when the technological companies are preferable or time periods when the
industrial indexes are preferable. The decision that investors are enquired to make, about
which one they will prefer, has to do with market conditions and is also the reason why
on speci�c time periods one will outperform the other.

Our aim, through this application, was to highlight what statistical arbitrage is, i.e.
the on average achievement of pro�t using statistical models and how one can construct
it.

Finally, we should mention that our results may not seem very appealing, because we
wanted to focus on the statistical aspect and outcome rather than create more complex
and complete trading algorithms. If one wishes, to do so, there are a number of trading
techniques that can be used for better results, like risk-adjustment, optimal execution
etc.

87
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Appendix A

R code

############# NASDAQ AND DJI ===========

rm( l i s t=l s ( ) )
cat ( "\014" )

l ibrary ( quantmod ) # Load the package

l ibrary ( t s e r i e s )
l ibrary ( r eadx l )
l ibrary ( car )
l ibrary ( dplyr )
l ibrary ( urca )
l ibrary ( lmtes t )

getSymbols ( "NQ=F" , from="2005=01=01" , to="2022=01=01" , s r c = "yahoo" )
NQ<= `NQ=F ` [ , 6 ] #NASDAQ100

rm( `NQ=F` )
NQ<= na . omit (NQ)
NQ. rtn <= d i f f ( log (NQ) )
NQ. rtn <= na . omit (NQ. rtn )

getSymbols ( "DJI" , from="2005=01=01" , to="2022=01=01" , s r c = "yahoo" )
DJI <= DJI$DJI . Adjusted #Dow Jones I n du s t r i a l Average

DJI <= na . omit (DJI )
DJI . r tn <= d i f f ( log (DJI ) )
DJI . r tn <= na . omit (DJI . r tn )

data . f u l l <= merge(NQ, DJI , j o i n = " inner " )
colnames (data . f u l l ) <= c ( 'NQ' , 'DJI ' )
IN . sample <= window(data . f u l l , start = "2005=01=03" , end = "2019=12=31" )
OUT. sample <= window(data . f u l l , start = "2020=01=01" , end = "2022=01=01" )
summary( IN . sample )

data . f u l l . r tn <= merge(NQ. rtn , DJI . rtn , j o i n = " inner " )
summary(data . f u l l . r tn )
colnames (data . f u l l . r tn ) <= c ( 'NQ. rtn ' , 'DJI . r tn ' )
IN . sample . r tn <= window(data . f u l l . rtn , start = "2005=01=04" , end = "2019=12=31" )
OUT. sample . r tn <= window(data . f u l l . rtn , start = "2020=01=01" , end = "2022=01=01" )

###### prices==========

plot ( IN . sample$NQ)
plot ( IN . sample$DJI )

summary( ur . df ( IN . sample$NQ, type=" trend " , s e l e c t l a g s="BIC" ) )
summary( ur . df ( IN . sample$DJI , type=" trend " , s e l e c t l a g s="BIC" ) )

pp . t e s t ( IN . sample$NQ)
pp . t e s t ( IN . sample$DJI )

89
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lm_log <= lm( log ( IN . sample$NQ) ~ log ( IN . sample$DJI ) )
summary(lm_log )

a c f (lm_log$residuals )

lm_t e s t 2 <= lm(as . vector ( log ( IN . sample$NQ)) ~ as . vector ( log ( IN . sample$DJI ) ) )
lmtes t : : dwtest (lm_t e s t 2 )
pp . t e s t (as . vector (lm_log$residuals ) )

cor ( log ( IN . sample$NQ) , log ( IN . sample$DJI ) )

##### spread fo r the p r i c e s

lm <= lm( IN . sample$NQ ~ IN . sample$DJI )
summary(lm)

spread <= IN . sample$NQ = 0 .3653 * IN . sample$DJI
plot ( spread )

###spread fo r the l o g p r i c e s

spread <= log ( IN . sample$NQ) =1.654434 * log ( IN . sample$DJI )
plot ( spread )
summary( ur . df ( spread , type=" trend " , s e l e c t l a g s="BIC" ) )
pp . t e s t (as . vector ( spread ) )

#####returns=======

par (mfrow=c ( 2 , 1 ) )
plot ( IN . sample$NQ)
plot ( IN . sample . r tn$NQ. rtn )
par (mfrow=c ( 1 , 1 ) )

par (mfrow=c ( 2 , 1 ) )
plot ( IN . sample$DJI )
plot ( IN . sample . r tn$DJI . r tn )
par (mfrow=c ( 1 , 1 ) )

qqnorm(as . vector ( IN . sample . r tn$NQ. rtn ) )
qqline (as . vector ( IN . sample . r tn$NQ. rtn ) )
qqPlot (as . vector ( IN . sample . r tn$NQ. rtn ) , d i s t r i b u t i o n=" t " , df=3, enve lope=F)

qqnorm(as . vector ( IN . sample . r tn$DJI . r tn ) )
qqline (as . vector ( IN . sample . r tn$DJI . r tn ) )
qqPlot (as . vector ( IN . sample . r tn$DJI . r tn ) , d i s t r i b u t i o n=" t " , df=3, enve lope=F)

ac f ( IN . sample . r tn$NQ. rtn )
a c f ( IN . sample . r tn$DJI . r tn )

summary( ur . df ( IN . sample . r tn$NQ. rtn , type="none" , s e l e c t l a g s="BIC" ) )
summary( ur . df ( IN . sample . r tn$DJI . rtn , type="none" , s e l e c t l a g s="BIC" ) )

pp . t e s t ( IN . sample . r tn$NQ. rtn )
pp . t e s t ( IN . sample . r tn$DJI . r tn )

cor ( IN . sample . r tn$NQ. rtn , IN . sample . r tn$DJI . r tn )

lm . r tn <= lm( IN . sample . r tn$NQ. rtn ~ =1 + IN . sample . r tn$DJI . r tn )
summary(lm . r tn )

a c f (lm . r tn$residuals )

lm . rtnd <= lm(as . vector ( IN . sample . r tn$NQ. rtn ) ~ as . vector ( IN . sample . r tn$DJI . r tn ) )
dwtest (lm . rtnd )

pp . t e s t (lm . r tn$residuals )

#####ADL=========

l_d j i_rtn <= s t a t s : : l ag ( IN . sample . r tn$DJI . r tn )
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e s t i <= lm( IN . sample . r tn$NQ. rtn [ 2 : length ( l_d j i_rtn ) , ] ~ =1 + l_d j i_rtn [ 2 : length ( l_d j i_rtn ) , ] )
summary( e s t i )
a c f ( e s t i $residuals )

e s t i d <= lm(as . vector ( IN . sample . r tn$NQ. rtn [ 2 : length ( l_d j i_rtn ) , ] ) ~ l_d j i_rtn [ 2 : length ( l_d j i_rtn ) , ] )
dwtest ( e s t i d )

pp . t e s t (as . vector ( e s t i $residuals ) )

####### Back te s t ing ==============

######### PRICES =============

####### STRATEGY 1 ==========

T <= length ( IN . sample$NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef<= matrix (nrow=T, ncol=1)
pred [ 1 : 5 0 0 , ] <= 0
wm<= 500 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= IN . sample$NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( IN . sample$NQ[ t1 : t2 ] ~ IN . sample$DJI [ t1 : t2 ] )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {
i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ){

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ) {

pred [ t , 1 ] <= =1
}
else i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= = 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] < =2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}
}
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sprd <= spread [=c ( 3 625 ) , 1 ]
sprd2 <= sprd [ 5 0 1 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 3 625 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 5 0 1 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 3 625 ) , 1 ]
vo l2 <= vo l [ 5 0 1 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

#### Stra t egy 2 ======

T <= length ( IN . sample$NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow=T, ncol=1)
wm<= 500 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= IN . sample$NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( IN . sample$NQ[ t1 : t2 ] ~ IN . sample$DJI [ t1 : t2 ] )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}

sprd <= spread [=c ( 3 625 ) , 1 ]
sprd2 <= sprd [ 5 0 1 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )
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po s i t i o n <= pred [=c ( 3 625 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 5 0 1 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 3 625 ) , 1 ]
vo l2 <= vo l [ 5 0 1 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

######### STRATEGY 3 ===========

T <= length ( IN . sample$NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow = T, ncol = 1)
wm<= 500 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= IN . sample$NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( IN . sample$NQ[ t1 : t2 ] ~ IN . sample$DJI [ t1 : t2 ] )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= NA
}

}

sprd <= spread [=c ( 3 625 ) , 1 ]
sprd2 <= sprd [ 5 0 1 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred2 [=c ( 3 625 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 5 0 1 : length ( p o s i t i o n ) ]
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vo l <= vo l a t [=c ( 3 625 ) , 1 ]
vo l2 <= vo l [ 5 0 1 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

########### LOG PRICES ==============

####### STRATEGY 1 ========

T <= length ( IN . sample$NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow = T, ncol = 1)
pred [ 1 : 5 0 0 , ] <= 0
wm<= 500 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= IN . sample$NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( log ( IN . sample$NQ[ t1 : t2 ] ) ~ log ( IN . sample$DJI [ t1 : t2 ] ) )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {
i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ){

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ) {

pred [ t , 1 ] <= =1
}
else i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= = 1
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}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] < =2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}
}

sprd <= spread [=c ( 3 625 ) , 1 ]
sprd2 <= sprd [ 5 0 1 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 3 625 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 5 0 1 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 3 625 ) , 1 ]
vo l2 <= vo l [ 5 0 1 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

#### Stra t egy 2 ======

T <= length ( IN . sample$NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow = T, ncol=1)
wm<= 500 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= IN . sample$NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( log ( IN . sample$NQ[ t1 : t2 ] ) ~ log ( IN . sample$DJI [ t1 : t2 ] ) )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {
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pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}

sprd <= spread [=c ( 3 625 ) , 1 ]
sprd2 <= sprd [ 5 0 1 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 3 625 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 5 0 1 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 3 625 ) , 1 ]
vo l2 <= vo l [ 5 0 1 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

######### STRATEGY 3 ===========

T <= length ( IN . sample$NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow = T, ncol = 1)
wm<= 500 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= IN . sample$NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( log ( IN . sample$NQ[ t1 : t2 ] ) ~ log ( IN . sample$DJI [ t1 : t2 ] ) )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <=lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= NA
}
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}

sprd <= spread [=c ( 3 625 ) , 1 ]
sprd2 <= sprd [ 5 0 1 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred2 [=c ( 3 625 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 5 0 1 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 3 625 ) , 1 ]
vo l2 <= vo l [ 5 0 1 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] )

plot ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index ( IN . sample . r tn ) [ 5 0 1 :dim( IN . sample . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

########### OUT OF SAMPLE =======

###### Prices

###### STRATEGY 1 ==========

T <= length (data . f u l l $NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow=T, ncol=1)
pred [ 1 : 3 6 25 , ] <= 0
wm<= 3625 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= data . f u l l $NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm(data . f u l l $NQ[ t1 : t2 ] ~ data . f u l l $DJI [ t1 : t2 ] )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {
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i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ){
pred [ t , 1 ] <= 0

}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ) {

pred [ t , 1 ] <= =1
}
else i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= = 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] < =2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}
}

sprd <= spread [=c ( 4 106 ) , 1 ]
sprd2 <= sprd [ 3 6 2 6 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 4 106 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 3 6 2 6 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 4 106 ) , 1 ]
vo l2 <= vo l [ 3 6 2 6 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index (data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

####Stra t egy 2 ======

T <= length (data . f u l l $NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow=T, ncol=1)
wm<= 3625 #burnin

we <= 1000 #look=back
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for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= data . f u l l $NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm(data . f u l l $NQ[ t1 : t2 ] ~ data . f u l l $DJI [ t1 : t2 ] )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}

sprd <= spread [=c ( 4 106 ) , 1 ]
sprd2 <= sprd [ 3 6 2 6 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 4 106 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 3 6 2 6 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 4 106 ) , 1 ]
vo l2 <= vo l [ 3 6 2 6 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index (data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

####### Stra t egy 3 ===========

T <= length (data . f u l l $NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow=T, ncol=1)
wm<= 3625 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
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t2 = t = 1 ; # end of the data window

window <= data . f u l l $NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm(data . f u l l $NQ[ t1 : t2 ] ~ data . f u l l $DJI [ t1 : t2 ] )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= NA
}

}

sprd <= spread [=c ( 4 106 ) , 1 ]
sprd2 <= sprd [ 3 6 2 6 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred2 [=c ( 4 106 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 3 6 2 6 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 4 106 ) , 1 ]
vo l2 <= vo l [ 3 6 2 6 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index (data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)

##### LOG PRICES ========

###### STRATEGY 1 =============

T <= length (data . f u l l $NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow =T, ncol=1)
pred [ 1 : 3 6 25 , ] <= 0
wm<= 3625 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
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t2 = t = 1 ; # end of the data window

window <= data . f u l l $NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( log (data . f u l l $NQ[ t1 : t2 ] ) ~ log (data . f u l l $DJI [ t1 : t2 ] ) )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {
i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ){

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 0
}
else i f ( ( pred [ t=1 ,1] == =1) & (lm_p$residuals [ length (lm_p$residuals ) ] > 0 ) ) {

pred [ t , 1 ] <= =1
}
else i f ( ( pred [ t=1 ,1] == 1) & (lm_p$residuals [ length (lm_p$residuals ) ] < 0 ) ) {

pred [ t , 1 ] <= 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= = 1
}
else i f ( ( pred [ t=1 ,1] == 0) & (lm_p$residuals [ length (lm_p$residuals ) ] < =2 * sd ( temp_r e s ) ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}
}

sprd <= spread [=c ( 4 106 ) , 1 ]
sprd2 <= sprd [ 3 6 2 6 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 4 106 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 3 6 2 6 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 4 106 ) , 1 ]
vo l2 <= vo l [ 3 6 2 6 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index (data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)
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####Stra t egy 2 ======

T <= length (data . f u l l $NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <=matrix (nrow=T, ncol=1)
wm<= 3625 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= data . f u l l $NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( log (data . f u l l $NQ[ t1 : t2 ] ) ~ log (data . f u l l $DJI [ t1 : t2 ] ) )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= 0
}

}

sprd <= spread [=c ( 4 106 ) , 1 ]
sprd2 <= sprd [ 3 6 2 6 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred [=c ( 4 106 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 3 6 2 6 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 4 106 ) , 1 ]
vo l2 <= vo l [ 3 6 2 6 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index (data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)
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####### Stra t egy 3 ===========

T <= length (data . f u l l $NQ) # number o f ob s e r va t i on s f o r re turn y

pred <= matrix (nrow=T, ncol=1)
spread <= matrix (nrow=T, ncol=1)
vo l a t <= matrix (nrow=T, ncol=1)
coef <= matrix (nrow=T, ncol=1)
wm<= 3625 #burnin

we <= 1000 #look=back

for ( t in (wm + 1) : T){
t1 = t = we ; # s t a r t o f the data window

i f ( t1 < 1){ t1 = 1}
t2 = t = 1 ; # end of the data window

window <= data . f u l l $NQ[ t1 : t2 ] # data fo r es t imat ion

lm_p <= lm( log (data . f u l l $NQ[ t1 : t2 ] ) ~ log (data . f u l l $DJI [ t1 : t2 ] ) )
temp_r e s <= lm_p$residuals
vo l a t [ t , 1 ] <= sd ( temp_r e s )
spread [ t , 1 ] <= lm_p$residuals [ length (lm_p$residuals ) ]
coef [ t , 1 ] <= lm_p$coef f ic ients [ 2 ]
i f (lm_p$residuals [ length (lm_p$residuals ) ] > 2 * sd ( temp_r e s ) ){

pred [ t , 1 ] <= (= 1)
}
else i f ( lm_p$residuals [ length (lm_p$residuals ) ] < (= 2) * sd ( temp_r e s ) ) {

pred [ t , 1 ] <= 1
}
else {

pred [ t , 1 ] <= NA
}

}

sprd <= spread [=c ( 4 106 ) , 1 ]
sprd2 <= sprd [ 3 6 2 6 : length ( sprd ) ]
sprd3 <= sprd2 / sd ( sprd2 )

po s i t i o n <= pred2 [=c ( 4 106 ) , 1 ]
p o s i t i on2 <= po s i t i o n [ 3 6 2 6 : length ( p o s i t i o n ) ]

vo l <= vo l a t [=c ( 4 106 ) , 1 ]
vo l2 <= vo l [ 3 6 2 6 : length ( vo l ) ]

ts_spread <= xts ( sprd3 , order .by = index (data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_pred <= xts ( pos i t i on2 , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )
ts_vo l a t <= xts ( ( vo l2 / sd ( sprd2 ) ) , order .by = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( ts_spread )
plot ( ts_pred , main= " Pos i t i on s " )

frame <= data . frame ( ts_spread , ts_pred , row .names = index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] )

plot ( index ( data . f u l l . r tn ) [ 3 6 2 6 :dim( data . f u l l . r tn ) [ 1 ] ] , frame [ , 1 ] , type=" l " , yl im= c (=3 ,3) ,
x lab= "Year" , ylab = " " , main = "Spread" )

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , frame [ , 2 ] , type=" l " ,
col = " corn f l owe rb lue " , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , 2 * ts_volat , type=" l " ,
col = "red" , l t y = 2 , lwd = 2)

l ines ( index (data . f u l l . r tn ) [ 3 6 2 6 :dim(data . f u l l . r tn ) [ 1 ] ] , (=2) * ts_volat , type=" l " ,
col = "red" , lwd = 2 , l t y = 2 )

abline (h=0, col=" b l u e v i o l e t " , lwd = 2)
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#####Inv e s t i g a t i o n fo r p o s s i b l e pairs=======

rm( l i s t=l s ( ) )
cat ( "\014" )

l ibrary ( quantmod ) # Load the package

l ibrary ( t s e r i e s )
l ibrary ( r eadx l )
l ibrary ( car )
l ibrary ( dplyr )
l ibrary ( urca )
l ibrary ( lmtes t )
l ibrary ( t i dyv e r s e )

mySymbols <= c ( 'AAPL' , 'AMGN' , 'AXP' , 'BA' , 'CAT' , 'CRM' , 'CSCO' , 'CVX' , 'DIS ' ,
'GS ' , 'HD' , 'HON' , 'IBM ' , 'INTC ' , 'JNJ ' , 'JPM' , 'KO' , 'MCD' , 'MMM' ,
'MRK' , 'MSFT' , 'NKE' , 'PG' , 'TRV' , 'UNH' , 'V ' , 'VZ ' , 'WBA' , 'WMT' )

myFut <=lapply (mySymbols , function ( x ) {getSymbols (x , from="2014=01=01" , to="2022=01=01" ,
p e r i o d i c i t y = " da i l y " , auto . a s s i gn=FALSE)} )

names(myFut) <= mySymbols
c l o s eP r i c e s <= lapply (myFut , Cl )
c l o s eP r i c e s <= do . ca l l (merge , c l o s eP r i c e s )
names( c l o s eP r i c e s )<=sub ( " \\ . Close " , "" , names( c l o s eP r i c e s ) )
head ( c l o s eP r i c e s )
c l o s eP r i c e s <= na . omit ( c l o s eP r i c e s )
l o gP r i c e s <= log ( c l o s eP r i c e s )
l o gP r i c e s <= na . omit ( l o gP r i c e s )

### 2014=2016 ==

t r a i n<=l o gP r i c e s [ 1 : 5 0 4 ]

# ge t the c o r r e l a t i on o f each pa i r

l e f t_s i d e<=NULL
r i gh t_s i d e<=NULL
c o r r e l a t i o n<=NULL
beta<=NULL
pvalue<=NULL
for ( i in 1 : length (mySymbols ) ) {
for ( j in 1 : length (mySymbols ) ) {
i f ( i>j ) {

l e f t_s i d e<=c ( l e f t_s ide , mySymbols [ i ] )
r i g h t_s i d e<=c ( r i g h t_s ide , mySymbols [ j ] )
c o r r e l a t i o n<=c ( c o r r e l a t i o n , cor ( t r a i n [ , i ] , t r a i n [ , j ] ) )
m<=lm( t r a i n [ , i ]~t r a i n [ , j ] )
beta<=c (beta , as .numeric ( coef (m) [ 1 ] ) )
# ge t the mispr i c ings o f the spread

sprd<=residuals (m)
# adf t e s t

pvalue<=c ( pvalue , adf . t e s t ( sprd , a l t e r n a t i v e=" s t a t i ona ry " , k=0)$p . va lue )
}

}
}

df<=data . frame ( l e f t_s ide , r i g h t_s ide , c o r r e l a t i o n , beta , pvalue )
mypairs1<=df%>%f i l t e r ( pvalue<= 0 .05 , c o r r e l a t i o n >0.95)%>%arrange(= c o r r e l a t i o n )
mypairs1

### 2016=2018 ==
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t r a i n<=l o gP r i c e s [ 5 0 5 : 1 0 0 7 ]

# ge t the c o r r e l a t i on o f each pa i r

l e f t_s i d e<=NULL
r i gh t_s i d e<=NULL
c o r r e l a t i o n<=NULL
beta<=NULL
pvalue<=NULL
for ( i in 1 : length (mySymbols ) ) {
for ( j in 1 : length (mySymbols ) ) {
i f ( i>j ) {

l e f t_s i d e<=c ( l e f t_s ide , mySymbols [ i ] )
r i g h t_s i d e<=c ( r i g h t_s ide , mySymbols [ j ] )
c o r r e l a t i o n<=c ( c o r r e l a t i o n , cor ( t r a i n [ , i ] , t r a i n [ , j ] ) )
m<=lm( t r a i n [ , i ]~t r a i n [ , j ] )
beta<=c (beta , as .numeric ( coef (m) [ 1 ] ) )
# ge t the mispr i c ings o f the spread

sprd<=residuals (m)
# adf t e s t

pvalue<=c ( pvalue , adf . t e s t ( sprd , a l t e r n a t i v e=" s t a t i ona ry " , k=0)$p . va lue )
}

}
}

df<=data . frame ( l e f t_s ide , r i g h t_s ide , c o r r e l a t i o n , beta , pvalue )
mypairs2<=df%>%f i l t e r ( pvalue<= 0 .05 , c o r r e l a t i o n >0.95)%>%arrange(= c o r r e l a t i o n )
mypairs2

### 2018=2020 ==

t r a i n<=l o gP r i c e s [ 1 0 0 8 : 1 5 10 ]

# ge t the c o r r e l a t i on o f each pa i r

l e f t_s i d e<=NULL
r i gh t_s i d e<=NULL
c o r r e l a t i o n<=NULL
beta<=NULL
pvalue<=NULL
for ( i in 1 : length (mySymbols ) ) {
for ( j in 1 : length (mySymbols ) ) {
i f ( i>j ) {

l e f t_s i d e<=c ( l e f t_s ide , mySymbols [ i ] )
r i g h t_s i d e<=c ( r i g h t_s ide , mySymbols [ j ] )
c o r r e l a t i o n<=c ( c o r r e l a t i o n , cor ( t r a i n [ , i ] , t r a i n [ , j ] ) )
m<=lm( t r a i n [ , i ]~t r a i n [ , j ] )
beta<=c (beta , as .numeric ( coef (m) [ 1 ] ) )
# ge t the mispr i c ings o f the spread

sprd<=residuals (m)
# adf t e s t

pvalue<=c ( pvalue , adf . t e s t ( sprd , a l t e r n a t i v e=" s t a t i ona ry " , k=0)$p . va lue )
}

}
}

df<=data . frame ( l e f t_s ide , r i g h t_s ide , c o r r e l a t i o n , beta , pvalue )
mypairs3<=df%>%f i l t e r ( pvalue<= 0 .05 , c o r r e l a t i o n >0.95)%>%arrange(= c o r r e l a t i o n )
mypairs3

### 2020=2022 ==
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t r a i n<=l o gP r i c e s [ 1 5 1 0 : 2 0 15 ]

# ge t the c o r r e l a t i on o f each pa i r

l e f t_s i d e<=NULL
r i gh t_s i d e<=NULL
c o r r e l a t i o n<=NULL
beta<=NULL
pvalue<=NULL
for ( i in 1 : length (mySymbols ) ) {
for ( j in 1 : length (mySymbols ) ) {
i f ( i>j ) {

l e f t_s i d e<=c ( l e f t_s ide , mySymbols [ i ] )
r i g h t_s i d e<=c ( r i g h t_s ide , mySymbols [ j ] )
c o r r e l a t i o n<=c ( c o r r e l a t i o n , cor ( t r a i n [ , i ] , t r a i n [ , j ] ) )
m<=lm( t r a i n [ , i ]~t r a i n [ , j ] )
beta<=c (beta , as .numeric ( coef (m) [ 1 ] ) )
# ge t the mispr i c ings o f the spread

sprd<=residuals (m)
# adf t e s t

pvalue<=c ( pvalue , adf . t e s t ( sprd , a l t e r n a t i v e=" s t a t i ona ry " , k=0)$p . va lue )
}

}
}

df<=data . frame ( l e f t_s ide , r i g h t_s ide , c o r r e l a t i o n , beta , pvalue )
mypairs4<=df%>%f i l t e r ( pvalue<= 0 .05 , c o r r e l a t i o n >0.95)%>%arrange(= c o r r e l a t i o n )
mypairs4
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Tables

CHI-SQUARED PERCENTAGE POINTS (continued)
ν 0.1% 0.5% 1.0% 2.5% 5.0% 10.0% 12.5% 20.0% 25.0% 33.3% 50.0%
1 0.000 0.000 0.000 0.001 0.004 0.016 0.025 0.064 0.102 0.186 0.455
2 0.002 0.010 0.020 0.051 0.103 0.211 0.267 0.446 0.575 0.811 1.386
3 0.024 0.072 0.115 0.216 0.352 0.584 0.692 1.005 1.213 1.568 2.366
4 0.091 0.207 0.297 0.484 0.711 1.064 1.219 1.649 1.923 2.378 3.357
5 0.210 0.412 0.554 0.831 1.145 1.610 1.808 2.343 2.675 3.216 4.351
6 0.381 0.676 0.872 1.237 1.635 2.204 2.441 3.070 3.455 4.074 5.348
7 0.598 0.989 1.239 1.690 2.167 2.833 3.106 3.822 4.255 4.945 6.346
8 0.857 1.344 1.646 2.180 2.733 3.490 3.797 4.594 5.071 5.826 7.344
9 1.152 1.735 2.088 2.700 3.325 4.168 4.507 5.380 5.899 6.716 8.343
10 1.479 2.156 2.558 3.247 3.940 4.865 5.234 6.179 6.737 7.612 9.342
11 1.834 2.603 3.053 3.816 4.575 5.578 5.975 6.989 7.584 8.514 10.341
12 2.214 3.074 3.571 4.404 5.226 6.304 6.729 7.807 8.438 9.420 11.340
13 2.617 3.565 4.107 5.009 5.892 7.042 7.493 8.634 9.299 10.331 12.340
14 3.041 4.075 4.660 5.629 6.571 7.790 8.266 9.467 10.165 11.245 13.339
15 3.483 4.601 5.229 6.262 7.261 8.547 9.048 10.307 11.037 12.163 14.339
16 3.942 5.142 5.812 6.908 7.962 9.312 9.837 11.152 11.912 13.083 15.338
17 4.416 5.697 6.408 7.564 8.672 10.085 10.633 12.002 12.792 14.006 16.338
18 4.905 6.265 7.015 8.231 9.390 10.865 11.435 12.857 13.675 14.931 17.338
19 5.407 6.844 7.633 8.907 10.117 11.651 12.242 13.716 14.562 15.859 18.338
20 5.921 7.434 8.260 9.591 10.851 12.443 13.055 14.578 15.452 16.788 19.337
21 6.447 8.034 8.897 10.283 11.591 13.240 13.873 15.445 16.344 17.720 20.337
22 6.983 8.643 9.542 10.982 12.338 14.041 14.695 16.314 17.240 18.653 21.337
23 7.529 9.260 10.196 11.689 13.091 14.848 15.521 17.187 18.137 19.587 22.337
24 8.085 9.886 10.856 12.401 13.848 15.659 16.351 18.062 19.037 20.523 23.337
25 8.649 10.520 11.524 13.120 14.611 16.473 17.184 18.940 19.939 21.461 24.337
26 9.222 11.160 12.198 13.844 15.379 17.292 18.021 19.820 20.843 22.399 25.336
27 9.803 11.808 12.879 14.573 16.151 18.114 18.861 20.703 21.749 23.339 26.336
28 10.391 12.461 13.565 15.308 16.928 18.939 19.704 21.588 22.657 24.280 27.336
29 10.986 13.121 14.256 16.047 17.708 19.768 20.550 22.475 23.567 25.222 28.336
30 11.588 13.787 14.953 16.791 18.493 20.599 21.399 23.364 24.478 26.165 29.336
35 14.688 17.192 18.509 20.569 22.465 24.797 25.678 27.836 29.054 30.894 34.336
40 17.916 20.707 22.164 24.433 26.509 29.051 30.008 32.345 33.660 35.643 39.335
45 21.251 24.311 25.901 28.366 30.612 33.350 34.379 36.884 38.291 40.407 44.335
50 24.674 27.991 29.707 32.357 34.764 37.689 38.785 41.449 42.942 45.184 49.335
55 28.173 31.735 33.570 36.398 38.958 42.060 43.220 46.036 47.610 49.972 54.335
60 31.738 35.534 37.485 40.482 43.188 46.459 47.680 50.641 52.294 54.770 59.335

Table B.1: X 2 distribution
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CHI-SQUARED PERCENTAGE POINTS (continued)
ν 60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%
1 0.708 0.936 1.323 1.642 2.354 2.706 3.841 5.024 6.635 7.879 10.828
2 1.833 2.197 2.773 3.219 4.159 4.605 5.991 7.378 9.210 10.597 13.816
3 2.946 3.405 4.108 4.642 5.739 6.251 7.815 9.348 11.345 12.838 16.266
4 4.045 4.579 5.385 5.989 7.214 7.779 9.488 11.143 13.277 14.860 18.467
5 5.132 5.730 6.626 7.289 8.625 9.236 11.070 12.833 15.086 16.750 20.515
6 6.211 6.867 7.841 8.558 9.992 10.645 12.592 14.449 16.812 18.548 22.458
7 7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322
8 8.351 9.107 10.219 11.030 12.636 13.362 15.507 17.535 20.090 21.955 26.125
9 9.414 10.215 11.389 12.242 13.926 14.684 16.919 19.023 21.666 23.589 27.877
10 10.473 11.317 12.549 13.442 15.198 15.987 18.307 20.483 23.209 25.188 29.588
11 11.530 12.414 13.701 14.631 16.457 17.275 19.675 21.920 24.725 26.757 31.264
12 12.584 13.506 14.845 15.812 17.703 18.549 21.026 23.337 26.217 28.300 32.910
13 13.636 14.595 15.984 16.985 18.939 19.812 22.362 24.736 27.688 29.819 34.528
14 14.685 15.680 17.117 18.151 20.166 21.064 23.685 26.119 29.141 31.319 36.123
15 15.733 16.761 18.245 19.311 21.384 22.307 24.996 27.488 30.578 32.801 37.697
16 16.780 17.840 19.369 20.465 22.595 23.542 26.296 28.845 32.000 34.267 39.252
17 17.824 18.917 20.489 21.615 23.799 24.769 27.587 30.191 33.409 35.718 40.790
18 18.868 19.991 21.605 22.760 24.997 25.989 28.869 31.526 34.805 37.156 42.312
19 19.910 21.063 22.718 23.900 26.189 27.204 30.144 32.852 36.191 38.582 43.820
20 20.951 22.133 23.828 25.038 27.376 28.412 31.410 34.170 37.566 39.997 45.315
21 21.991 23.201 24.935 26.171 28.559 29.615 32.671 35.479 38.932 41.401 46.797
22 23.031 24.268 26.039 27.301 29.737 30.813 33.924 36.781 40.289 42.796 48.268
23 24.069 25.333 27.141 28.429 30.911 32.007 35.172 38.076 41.638 44.181 49.728
24 25.106 26.397 28.241 29.553 32.081 33.196 36.415 39.364 42.980 45.559 51.179
25 26.143 27.459 29.339 30.675 33.247 34.382 37.652 40.646 44.314 46.928 52.620
26 27.179 28.520 30.435 31.795 34.410 35.563 38.885 41.923 45.642 48.290 54.052
27 28.214 29.580 31.528 32.912 35.570 36.741 40.113 43.195 46.963 49.645 55.476
28 29.249 30.639 32.620 34.027 36.727 37.916 41.337 44.461 48.278 50.993 56.892
29 30.283 31.697 33.711 35.139 37.881 39.087 42.557 45.722 49.588 52.336 58.301
30 31.316 32.754 34.800 36.250 39.033 40.256 43.773 46.979 50.892 53.672 59.703
35 36.475 38.024 40.223 41.778 44.753 46.059 49.802 53.203 57.342 60.275 66.619
40 41.622 43.275 45.616 47.269 50.424 51.805 55.758 59.342 63.691 66.766 73.402
45 46.761 48.510 50.985 52.729 56.052 57.505 61.656 65.410 69.957 73.166 80.077
50 51.892 53.733 56.334 58.164 61.647 63.167 67.505 71.420 76.154 79.490 86.661
55 57.016 58.945 61.665 63.577 67.211 68.796 73.311 77.380 82.292 85.749 93.168
60 62.135 64.147 66.981 68.972 72.751 74.397 79.082 83.298 88.379 91.952 99.607
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STUDENT'S t PERCENTAGE POINTS
ν 60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%
1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31
2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297
10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485
24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467
25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450
26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435
27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421
28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396
30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385
35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340
40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307
45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281
50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261
55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245
60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232
∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090

Table B.2: Student's t percentage points
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PERCENTAGE POINTS OF THE F DISTRIBUTION
ν2\νl 2 3 4 5 6 7 8 10 12 15 20 30 50 ∞
1 0.500 1.50 1.71 1.82 1.89 1.94 1.98 2.00 2.04 2.07 2.09 2.12 2.15 2.17 2.20

0.600 2.63 2.93 3.09 3.20 3.27 3.32 3.36 3.41 3.45 3.48 3.52 3.56 3.59 3.64
0.667 4.00 4.42 4.64 4.78 4.88 4.95 5.00 5.08 5.13 5.18 5.24 5.29 5.33 5.39
0.750 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.32 9.41 9.50 9.58 9.67 9.74 9.85
0.800 12.0 13.1 13.6 14.0 14.3 14.4 14.6 14.8 14.9 15.0 15.2 15.3 15.4 15.6

2 0.500 1.00 1.13 1.21 1.25 1.28 1.30 1.32 1.35 1.36 1.38 1.39 1.41 1.42 1.44
0.600 1.50 1.64 1.72 1.76 1.80 1.82 1.84 1.86 1.88 1.89 1.91 1.92 1.94 1.96
0.667 2.00 2.15 2.22 2.27 2.30 2.33 2.34 2.37 2.38 2.40 2.42 2.43 2.45 2.47
0.750 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.38 3.39 3.41 3.43 3.44 3.46 3.48
0.800 4.00 4.16 4.24 4.28 4.32 4.34 4.36 4.38 4.40 4.42 4.43 4.45 4.47 4.48

3 0.500 0.88 1.00 1.06 1.10 1.13 1.15 1.16 1.18 1.20 1.21 1.23 1.24 1.25 1.27
0.600 1.26 1.37 1.43 1.47 1.49 1.51 1.52 1.54 1.55 1.56 1.57 1.58 1.59 1.60
0.667 1.62 1.72 1.77 1.80 1.82 1.83 1.84 1.86 1.87 1.88 1.89 1.90 1.90 1.91
0.750 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.45 2.46 2.46 2.47 2.47 2.47
0.800 2.89 2.94 2.96 2.97 2.97 2.97 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98

4 0.500 0.83 0.94 1.00 1.04 1.06 1.08 1.09 1.11 1.13 1.14 1.15 1.16 1.18 1.19
0.600 1.16 1.26 1.31 1.34 1.36 1.37 1.38 1.40 1.41 1.42 1.43 1.43 1.44 1.45
0.667 1.46 1.55 1.58 1.61 1.62 1.63 1.64 1.65 1.65 1.66 1.67 1.67 1.68 1.68
0.750 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08
0.800 2.47 2.48 2.48 2.48 2.47 2.47 2.47 2.46 2.46 2.45 2.44 2.44 2.43 2.43

5 0.500 0.80 0.91 0.96 1.00 1.02 1.04 1.05 1.07 1.09 1.10 1.11 1.12 1.13 1.15
0.600 1.11 1.20 1.24 1.27 1.29 1.30 1.31 1.32 1.33 1.34 1.34 1.35 1.36 1.37
0.667 1.38 1.45 1.48 1.50 1.51 1.52 1.53 1.53 1.54 1.54 1.54 1.55 1.55 1.55
0.750 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.88 1.87
0.800 2.26 2.25 2.24 2.23 2.22 2.21 2.20 2.19 2.18 2.18 2.17 2.16 2.15 2.13

6 0.500 0.78 0.89 0.94 0.98 1.00 1.02 1.03 1.05 1.06 1.07 1.08 1.10 1.11 1.12
0.600 1.07 1.16 1.20 1.22 1.24 1.25 1.26 1.27 1.28 1.29 1.29 1.30 1.31 1.31
0.667 1.33 1.39 1.42 1.44 1.44 1.45 1.45 1.46 1.46 1.47 1.47 1.47 1.47 1.47
0.750 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.76 1.76 1.75 1.75 1.74
0.800 2.13 2.11 2.09 2.08 2.06 2.05 2.04 2.03 2.02 2.01 2.00 1.98 1.97 1.95

7 0.500 0.77 0.87 0.93 0.96 0.98 1.00 1.01 1.03 1.04 1.05 1.07 1.08 1.09 1.10
0.600 1.05 1.13 1.17 1.19 1.21 1.22 1.23 1.24 1.24 1.25 1.26 1.26 1.27 1.27
0.667 1.29 1.35 1.38 1.39 1.40 1.40 1.41 1.41 1.41 1.41 1.41 1.42 1.42 1.42
0.750 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.69 1.68 1.68 1.67 1.66 1.66 1.65
0.800 2.04 2.02 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.89 1.88 1.86 1.85 1.83

8 0.500 0.76 0.86 0.91 0.95 0.97 0.99 1.00 1.02 1.03 1.04 1.05 1.07 1.07 1.09
0.600 1.03 1.11 1.15 1.17 1.19 1.20 1.20 1.21 1.22 1.22 1.23 1.24 1.24 1.25
0.667 1.26 1.32 1.35 1.36 1.36 1.37 1.37 1.37 1.37 1.38 1.38 1.38 1.37 1.37
0.750 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.62 1.62 1.61 1.60 1.59 1.58
0.800 1.98 1.95 1.92 1.90 1.88 1.87 1.86 1.84 1.83 1.81 1.80 1.78 1.76 1.74

Table B.3: F Distribution percentage points
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PERCENTAGE POINTS OF THE F DISTRIBUTION (continued)
ν2\νl 2 3 4 5 6 7 8 10 12 15 20 30 50 ∞
9 0.500 0.75 0.85 0.91 0.94 0.96 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06 1.08

0.600 1.02 1.10 1.13 1.15 1.17 1.18 1.18 1.19 1.20 1.21 1.21 1.22 1.22 1.22
0.667 1.24 1.30 1.32 1.33 1.34 1.34 1.34 1.34 1.35 1.35 1.35 1.34 1.34 1.34
0.750 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.58 1.57 1.56 1.55 1.54 1.53
0.800 1.93 1.90 1.87 1.85 1.83 1.81 1.80 1.78 1.76 1.75 1.73 1.71 1.70 1.67

10 0.500 0.74 0.85 0.90 0.93 0.95 0.97 0.98 1.00 1.01 1.02 1.03 1.05 1.06 1.07
0.600 1.01 1.08 1.12 1.14 1.15 1.16 1.17 1.18 1.18 1.19 1.19 1.20 1.20 1.21
0.667 1.23 1.28 1.30 1.31 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.31
0.750 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.55 1.54 1.53 1.52 1.51 1.50 1.48
0.800 1.90 1.86 1.83 1.80 1.78 1.77 1.75 1.73 1.72 1.70 1.68 1.66 1.65 1.62

11 0.500 0.74 0.84 0.89 0.93 0.95 0.96 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06
0.600 1.00 1.07 1.11 1.13 1.14 1.15 1.16 1.17 1.17 1.18 1.18 1.18 1.19 1.19
0.667 1.22 1.27 1.29 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.29
0.750 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.45
0.800 1.87 1.83 1.80 1.77 1.75 1.73 1.72 1.69 1.68 1.66 1.64 1.62 1.60 1.57

12 0.500 0.73 0.84 0.89 0.92 0.94 0.96 0.97 0.99 1.00 1.01 1.02 1.03 1.04 1.06
0.600 0.99 1.07 1.10 1.12 1.13 1.14 1.15 1.16 1.16 1.17 1.17 1.17 1.18 1.18
0.667 1.21 1.26 1.27 1.28 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.28 1.28 1.27
0.750 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.45 1.44 1.42
0.800 1.85 1.80 1.77 1.74 1.72 1.70 1.69 1.66 1.65 1.63 1.61 1.59 1.57 1.54

13 0.500 0.73 0.83 0.88 0.92 0.94 0.96 0.97 0.98 1.00 1.01 1.02 1.03 1.04 1.05
0.600 0.98 1.06 1.09 1.11 1.13 1.13 1.14 1.15 1.15 1.16 1.16 1.16 1.17 1.17
0.667 1.20 1.25 1.26 1.27 1.28 1.28 1.28 1.28 1.28 1.28 1.27 1.27 1.27 1.26
0.750 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.43 1.42 1.40
0.800 1.83 1.78 1.75 1.72 1.69 1.68 1.66 1.64 1.62 1.60 1.58 1.56 1.54 1.51

14 0.500 0.73 0.83 0.88 0.91 0.94 0.95 0.96 0.98 0.99 1.00 1.01 1.03 1.04 1.05
0.600 0.98 1.05 1.09 1.11 1.12 1.13 1.13 1.14 1.14 1.15 1.15 1.16 1.16 1.16
0.667 1.19 1.24 1.26 1.26 1.27 1.27 1.27 1.27 1.27 1.26 1.26 1.26 1.25 1.24
0.750 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.41 1.40 1.38
0.800 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.62 1.60 1.58 1.56 1.53 1.51 1.48

15 0.500 0.73 0.83 0.88 0.91 0.93 0.95 0.96 0.98 0.99 1.00 1.01 1.02 1.03 1.05
0.600 0.97 1.05 1.08 1.10 1.11 1.12 1.13 1.13 1.14 1.14 1.15 1.15 1.15 1.15
0.667 1.18 1.23 1.25 1.25 1.26 1.26 1.26 1.26 1.26 1.25 1.25 1.25 1.24 1.23
0.750 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.41 1.40 1.38 1.36
0.800 1.80 1.75 1.71 1.68 1.66 1.64 1.62 1.60 1.58 1.56 1.54 1.51 1.49 1.46

16 0.500 0.72 0.82 0.88 0.91 0.93 0.95 0.96 0.97 0.99 1.00 1.01 1.02 1.03 1.04
0.600 0.97 1.04 1.08 1.10 1.11 1.12 1.12 1.13 1.13 1.14 1.14 1.14 1.14 1.14
0.667 1.18 1.22 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.24 1.24 1.23 1.22
0.750 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.43 1.41 1.40 1.38 1.37 1.34
0.800 1.78 1.74 1.70 1.67 1.64 1.62 1.61 1.58 1.56 1.54 1.52 1.49 1.47 1.43

17 0.500 0.72 0.82 0.87 0.91 0.93 0.94 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04
0.600 0.97 1.04 1.07 1.09 1.10 1.11 1.12 1.12 1.13 1.13 1.13 1.14 1.14 1.14
0.667 1.17 1.22 1.23 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.23 1.23 1.22 1.21
0.750 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.41 1.40 1.39 1.37 1.36 1.33
0.800 1.77 1.72 1.68 1.65 1.63 1.61 1.59 1.57 1.55 1.53 1.50 1.48 1.46 1.42
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PERCENTAGE POINTS OF THE F DISTRIBUTION (continued)
ν2\νl 2 3 4 5 6 7 8 10 12 15 20 30 50 ∞
18 0.500 0.72 0.82 0.87 0.90 0.93 0.94 0.95 0.97 0.98 0.99 1.00 1.02 1.02 1.04

0.600 0.96 1.04 1.07 1.09 1.10 1.11 1.11 1.12 1.12 1.13 1.13 1.13 1.13 1.13
0.667 1.17 1.21 1.23 1.24 1.24 1.24 1.24 1.24 1.23 1.23 1.23 1.22 1.22 1.21
0.750 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.40 1.39 1.38 1.36 1.34 1.32
0.800 1.76 1.71 1.67 1.64 1.62 1.60 1.58 1.55 1.53 1.51 1.49 1.46 1.44 1.40

19 0.500 0.72 0.82 0.87 0.90 0.92 0.94 0.95 0.97 0.98 0.99 1.00 1.01 1.02 1.04
0.600 0.96 1.03 1.07 1.09 1.10 1.10 1.11 1.12 1.12 1.12 1.13 1.13 1.13 1.13
0.667 1.16 1.21 1.22 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.22 1.22 1.21 1.20
0.750 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.40 1.38 1.37 1.35 1.33 1.30
0.800 1.75 1.70 1.66 1.63 1.61 1.58 1.57 1.54 1.52 1.50 1.48 1.45 1.43 1.39

20 0.500 0.72 0.82 0.87 0.90 0.92 0.94 0.95 0.97 0.98 0.99 1.00 1.01 1.02 1.03
0.600 0.96 1.03 1.06 1.08 1.09 1.10 1.11 1.11 1.12 1.12 1.12 1.12 1.12 1.12
0.667 1.16 1.21 1.22 1.23 1.23 1.23 1.23 1.23 1.22 1.22 1.22 1.21 1.20 1.19
0.750 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.40 1.39 1.37 1.36 1.34 1.32 1.29
0.800 1.75 1.70 1.65 1.62 1.60 1.58 1.56 1.53 1.51 1.49 1.47 1.44 1.41 1.37

21 0.500 0.72 0.81 0.87 0.90 0.92 0.94 0.95 0.96 0.98 0.99 1.00 1.01 1.02 1.03
0.600 0.96 1.03 1.06 1.08 1.09 1.10 1.10 1.11 1.11 1.12 1.12 1.12 1.12 1.12
0.667 1.16 1.20 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.21 1.20 1.20 1.19
0.750 1.48 1.48 1.46 1.44 1.43 1.42 1.41 1.39 1.38 1.37 1.35 1.33 1.32 1.28
0.800 1.74 1.69 1.65 1.61 1.59 1.57 1.55 1.52 1.50 1.48 1.46 1.43 1.40 1.36

22 0.500 0.72 0.81 0.87 0.90 0.92 0.93 0.95 0.96 0.97 0.99 1.00 1.01 1.02 1.03
0.600 0.96 1.03 1.06 1.08 1.09 1.10 1.10 1.11 1.11 1.11 1.12 1.12 1.12 1.12
0.667 1.16 1.20 1.21 1.22 1.22 1.22 1.22 1.22 1.21 1.21 1.21 1.20 1.19 1.18
0.750 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.37 1.36 1.34 1.32 1.31 1.28
0.800 1.73 1.68 1.64 1.61 1.58 1.56 1.54 1.51 1.49 1.47 1.45 1.42 1.39 1.35

23 0.500 0.71 0.81 0.86 0.90 0.92 0.93 0.95 0.96 0.97 0.98 1.00 1.01 1.02 1.03
0.600 0.95 1.02 1.06 1.07 1.09 1.09 1.10 1.10 1.11 1.11 1.11 1.11 1.11 1.11
0.667 1.15 1.20 1.21 1.22 1.22 1.22 1.22 1.21 1.21 1.21 1.20 1.19 1.19 1.17
0.750 1.47 1.47 1.45 1.43 1.42 1.41 1.40 1.38 1.37 1.35 1.34 1.32 1.30 1.27
0.800 1.73 1.68 1.63 1.60 1.57 1.55 1.53 1.51 1.49 1.46 1.44 1.41 1.38 1.34

24 0.500 0.71 0.81 0.86 0.90 0.92 0.93 0.94 0.96 0.97 0.98 0.99 1.01 1.01 1.03
0.600 0.95 1.02 1.06 1.07 1.08 1.09 1.10 1.10 1.10 1.11 1.11 1.11 1.11 1.11
0.667 1.15 1.19 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.20 1.20 1.19 1.18 1.17
0.750 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.36 1.35 1.33 1.31 1.29 1.26
0.800 1.72 1.67 1.63 1.59 1.57 1.55 1.53 1.50 1.48 1.46 1.43 1.40 1.38 1.33

25 0.500 0.71 0.81 0.86 0.89 0.92 0.93 0.94 0.96 0.97 0.98 0.99 1.00 1.01 1.03
0.600 0.95 1.02 1.05 1.07 1.08 1.09 1.09 1.10 1.10 1.11 1.11 1.11 1.11 1.11
0.667 1.15 1.19 1.21 1.21 1.21 1.21 1.21 1.21 1.20 1.20 1.19 1.19 1.18 1.16
0.750 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.37 1.36 1.34 1.33 1.31 1.29 1.25
0.800 1.72 1.66 1.62 1.59 1.56 1.54 1.52 1.49 1.47 1.45 1.42 1.39 1.37 1.32

26 0.500 0.71 0.81 0.86 0.89 0.91 0.93 0.94 0.96 0.97 0.98 0.99 1.00 1.01 1.03
0.600 0.95 1.02 1.05 1.07 1.08 1.09 1.09 1.10 1.10 1.10 1.10 1.11 1.11 1.10
0.667 1.15 1.19 1.20 1.21 1.21 1.21 1.21 1.20 1.20 1.20 1.19 1.18 1.18 1.16
0.750 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.35 1.34 1.32 1.30 1.28 1.25
0.800 1.71 1.66 1.62 1.58 1.56 1.53 1.52 1.49 1.47 1.44 1.42 1.39 1.36 1.31
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Critical Values for the Phillips-Perron Zρ, Test and for
the Dickey-Fuller Test Based on Estimated
OLS Autoregrassive Coe�cient
Sample
Size T

Probability that (ρ− 1), is less than entry
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

Case 1
25 -11.9 -9.3 -7.3 -5,3 1.01 1.40 1.79 2.28
50 -12.9 -9.9 -7.7 -5.5 0.97 1.35 1.70 2.16
100 -13.3 -10.2 -7.9 -5.6 0.95 1.31 1.65 2.09
250 -13.6 -10.3 -8.0 -5.7 0.93 1.28 1.62 2.04
500 -13.7 -10.4 -8.0 -5.7 0.93 1.28 1.61 2.04
∞ -13.8 -10.5 -8.1 -5.7 0.93 1.28 1.60 2.03

Case 2
25 -17.2 -14.6 -12.5 -10.2 -0.76 0.01 0.65 1.40
50 -18.9 -15.7 -13.3 -10.7 -0.81 -0.07 0.53 1.22
100 -19.8 -163 -13.7 -11.0 -0.83 -0.10 0.47 1.14
250 -20.3 -16.6 -14.0 -11.2 -0.84 -0.12 0.43 1.09
500 -20.5 -16.8 -140 -112 -0.84 -0.13 0.42 1.06
∞ -20.7 -16.9 -14.1 -11.3 -0.85 -0.13 0.41 1.04

Case 4
25 -22.5 -19.9 -17.9 -15.6 -3.66 -2.51 -1.53 -0.43
50 -25.7 -22.4 -19.8 -16.8 -3.71 -2.60 -1.66 -0.65
100 -27.4 -23.6 -20.7 -17.5 -3.74 -2.62 -1.73 -0.75
250 -28.4 -24.4 -21.3 -18.0 -3.75 -2.64 -1.78 -0.82
500 -28.9 -24.8 -21.5 -18.1 -3.76 -2.65 -1.78 -0.84
∞ -29.5 -25.1 -21.8 -18.3 -3.77 -2.66 -1.79 -0.87

Table B.4: Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New
York, 1976, p. 371.

Critical Values for the Phillips-Perron Zt, Test and for
the Dickey-Fuller Test Based on Estimated OLS t Statistic
Sample
Size T

Probability that (ρ− 1)/σ̂β, is less than entry
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

Case 1
25 - 2.66 -2.26 - 1.95 - 1.60 0.92 1.33 1.70 2.16
50 - 2.62 - 2.25 -1.95 - 1.61 0.91 1.31 1.66 2.08
100 -2.60- -2.24 -1.95 -1.61 0.90 1.29 1.64 2.03
250 - 2.58 - 2.23 -1.95 - 1.62 0.89 1.29 1.63 2.01
500 - 2.58 -2.23 -1,95 - 1.62 0.89 1.28 1.62 2.00
∞ -2.58 - 2.23 -1.95 - 1.62 0.89 1.28 1.62 2.00

Case 2
25 -3.75 -3.33 - 3.00 - 2.63 - 0.37 0.00 0.34 0.72
50 - 3.58 -3,22 -2.93 - 2.60 - 0.40 - 0.03 0.29 0.66
100 -3.51 -3.17 -2.89 -2.58 - 0.42 -0.05 0.26 0.63
250 - 3.46 - 3.14 - 2.88 - 2.57 -0.42 - 0.06 0.24 0.62
500 -3.44 - 3.13 - 2.87 -2.57 - 0.43 - 0.07 0.24 0.61
∞ - 3.43 - 3.12 -2.86 - 2.57 - 0.44 - 0.07 0.23 0.60

Case 4
25 - 4.38 -3.95 - 3.60 -3.24 -1.14 - 0.80 -0.50 -0.15
50 - 4.15 -3.80 -3.50 -3.18 -1.19 -0.87 -0.58 -0.24
100 - 4.04 3.73 -3.45 -3.15 - 1.22 -0.90 - 0.62 - 0.28
250 -3.99 -3.69 - 3.43 -3.13 - 1.23 -0.92 - 0.64 -0.31
500 -3.98 - 3.68 3.42 -3.13 - 1.24 -0.93 - 0.65 -0.32
∞ - 3.96 - 3.66 -3.41 -3.12 -1.25 - 0.94 - 0.66 - 0.33

Table B.5: Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New
York, 1976, p. 373.
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Critical Values for the Dickey-Fuller Test
Based on Estimated OLS F Statistic
Sample
Size T

Probability that F is less than entry
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.999

Case 2
25 0.29 0.38 0.49 0.65 4.12 5.18 6.30 7.88
50 0.29 0.39 0.50 0.66 3.94 4.86 5.80 7.06
100 0.29 0.39 0.50 0.67 3.86 4.71 5.57 6.70
250 0.30 0.39 0.51 0.67 3.81 4.63 5.45 6.52
500 0.30 0.39 0.51 0.67 3.79 4.61 5.41 6.47
∞ 0.30 0.40 0.51 0.67 3.78 4.59 5.38 6.43

Case 4
25 0.74 0.90 1.08 1.33 5.91 7.24 8.65 10.61
50 0.76 0.93 1.11 1.37 5.61 6.73 7.81 9.31
100 0.76 0.94 1.12 1.38 5.47 6.49 7.44 8.73
250 0.76 0.94 1.13 1.39 5.39 6.34 7.25 8.43
500 0.76 0.94 1.13 1.39 5.36 6.30 7.20 8.34
∞ 0.77 0.94 1.13 1.39 5.34 6.25 7.16 8.27

Table B.6: Source: David A. Dickey and Wayne A. Fuller, "Likelihood Ratio Statistics
for Autoregressive Time Series with a Unit Root," Econometrica 49 (1981), p. 1063.

Critical Values for the Phillips Zρ Statistic
When Applied to Residuals from Spurious Cointegrating Regression
Number of right-hand
variables in regression,
excluding trend or constant

Sample
Size
T

Probability that ρ− 1)/σ̂β, is less than entry
0.01 0.025 0.05 0.075 0.1 0.125 0.150
Case 1

1 500 -22.8 -18.9 -15.6 -13.8 12.5 -11.6 -10.7
2 500 -29.3 -25.2 -21.5 -19.6 -18.2 -17.0 -16.0
3 500 -36.2 -31.5 -27.9 -25.5 -23.9 -22.6 -21.5
4 500 -42.9 -37.5 -33.5 -30.9 -28.9 -27.4 -26.2
5 500 -48.5 -42.5 -38.1 -35.5 -33.8 -32.3 -30.9

Case 2
1 500 -28.3 -23.8 -20.5 -18.5 -17.0 -15.9 -14.9
2 500 -34.2 -29.7 -26.1 -23.9 -22.2 -21.0 -19.9
3 500 -41.1 -35.7 -32.1 -29.5 -27.6 -26.2 -25.1
4 500 -47.5 -41.6 -37.2 -34.7 -32.7 -31.2 -29.9
5 500 -52.2 -46.5 -41.9 -39.1 -37.0 -35.5 -34.2

Case 4
1 500 -28.9 -24.8 -21.5 - -18.1 - -
2 500 -35.4 -30.8 -27.1 -24.8 -23.2 -21.8 -20.8
3 500 -40.3 -36.1 -32.2 -29.7 -27.8 -26.5 -25.3
4 500 -47.4 -42.6 -37.7 -35.0 -33.2 -31.7 -30.3
5 500 -53.6 -47.1 -42.5 -39.7 -37.7 -36.0 -34.6

Table B.7: Source: P. C. B. Phillips and S. Ouliaris, "Asymptotic Properties of Residual
Based Tests for Cointegration", Econometrica 58 (1990), pp. 189-90. Also Wayne A.
Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976, p. 371.
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Critical Values for the Phillips Z, Statistic or the Dickey-Fuller t Statistic When
Applied to Residuals from Spurious Cointegrating Regression
Number of right-hand
variables in regression,
excluding trend or constant

Sample
Size T

Probability that (ρ̂− 1)/σ̂β, is less than entry
0.01 0.025 0.05 0.075 0.1 0.125 0.150
Case 1

1 500 -3.39 -3.05 -2.76 -2.58 -2.45 -2.35 -2.26
2 500 -3.84 3.55 -3.27 -3.11 -2.99 -2.88 -2.79
3 500 -4.30 -3.99 -3.74 -3.57 -3.44 -3.35 -3.26
4 500 -4.67 -4.38 -413 -3.95 -3.81 -3.71 -3.61
5 500 -4.99 -4.67 -440 -4.25 -4.14 -4.04 -3.94

Case 2
1 500 -3.96 -3.64 -3.37 -3.20 -3.07 -2.96 -2.86
2 500 -4.31 -4.02 -3.77 -3.58 -3.45 -3.35 -3.26
3 500 -4.73 -4.37. -4.11 -3.96 -3.83 -3.73 -3.65
4 500 -5.07 -4.71 -4.45 -429 -4.16 -4.05 -3.96
5 500 -5.28 -4.98 -4.71 -4.56 -4.43 -4.33 -4.24

Case 4
1 500 -3.98 -3.68 -3.42 - -3.13 - -
2 500 -4.36 -4.07 -3.80 -3.65 -3.52 3.42 3.33
3 500 -4.65 -4.39 -4.16 -3.98 -3.84 -3.74 -3.66
4 500 -5.04 -4.77 -4.49 -4.32 -4.20 -4.08 -4.00
5 500 -5.36 -5.02 -4.74 -4.58 -4.46 -4.36 -4.28

Table B.8: Source: C. B. Phillips and S. Ouliaris, "Asymptotic Properties of Residual
Based Tests for Cointegration", Econometrica 58 (1990), p. 190. Also Wayne A. Fuller,
Introduction to Statistical Time Series, Wiley, New York, 1976, p. 373.
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