
Ανάπτυξη εργαλείου

εύρεσης ευπαθειών στο

πρωτόκολλο OAuth 2.0

Η Μεταπτυχιακή Διατριβή κατατέθηκε στο Τμήμα Μηχανικών Πληροφοριακών

και Επικοινωνιακών Συστημάτων της Πολυτεχνικής Σχολής του Πανεπιστημίου

Αιγαίου σε μερική εκπλήρωση των απαιτήσεων για το Μεταπτυχιακό Δίπλωμα

ειδίκευσης στην Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων

Καράμπαλης Ευάγγελος

Επιτροπή

Επιβλέπων: Καθηγητής Γεώργιος Καμπουράκης

Αναπληρωτής Καθηγητής Αλέξιος Καπόρης

Επίκουρος Καθηγητής Δημήτριος Σκούτας

Τμήμα Μηχανικών Πληροφοριακών & Επικοινωνιακών Συστημάτων

Πανεπιστήμιο Αιγαίου

Οκτώβριος 2022

Development of a

vulnerability scanning tool

for OAuth 2.0

A dissertation submitted to the Department of Information & Communication

Systems Engineering, School of Engineering of the University of The Aegean

in partial fulfilment of the requirements for the degree of Master of Science in

Information and Communication Systems Security

Karabalis Evangelos

Committee

Supervisor: Professor Georgios Kambourakis

Associate Professor Alexios Kaporis

Assistant Professor Dimitrios Skoutas

Department of Information and Communications System

Engineering University of Aegean

October 2022

Δήλωση Αυθεντικότητας

Βεβαιώνω ότι είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε

βο- ήθεια την οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη

και ανα- φέρεται στην εργασία. Επίσης έχω αναφέρει τις πηγές από τις οποίες

έκανα χρήση δε- δομένων, ιδεών ή λέξεων είτε αυτές αναφέρονται ακριβώς είτε πα-

ραφρασμένες. Τέλος, βεβαιώνω ότι αυτή η διπλωματική εργασία προετοιμάστηκε

από εμένα προσωπικά ειδικά για τις απαιτήσεις του μεταπτυχιακού προγράμματος

σπουδών του Τμήματος Μηχανι- κών Πληροφοριακών και Επικοινωνιακών Συστη-

μάτων του Πανεπιστημίου Αιγαίου στη Σάμο.

Καρλόβασι, 5 Οκτωβρίου 2022

΄Ονομα Επώνυμο

(Υπογραφή)

1

Statement of Authenticity

I declare that this Master’s thesis is my own work and was written without

literature other than the sources indicated in the bibliography. Information

used from the published or unpublished work of others has been acknowledged

in the text and has been explicitly referred to in the given list of references.

This Master’s thesis has not been submitted in any form for another degree or

diploma at any university or other institute of tertiary education.

Karlovasi, 5th October 2022

Student’s name

(Signature)

2

Περίληψη

Στις μέρες μας, οι σύγχρονες εφαρμογές στο διαδίκτυο είναι συνδεδεμένες με

διαφορετικές διεπαφές προγραμματισμού εφαρμογών προκειμένου να χρησιμοποι-

ήσουν διάφορους πόρους που ανήκουν σε ένα χρήστη. Το γεγονός αυτό εγείρει

ζητήματα εξουσιοδότησης σχετικά με τον τρόπο τον οποίο οι προγραμματιστικές

διεπαφές μπορούν να αλληλεπιδράσουν έχοντας κατάλληλη εξουσιοδότηση. Στο

πρόσφατο παρελθόν, ο τρόπος με τον οποίο γινόταν αυτή η ανταλλαγή της ε-

ξουσιοδότησης ήταν μέσω ορισμένων – αμφίβολης αποτελεσματικότητας τρόπων

– διαμοιρασμού κωδικών που εξέθεταν τα διαπιστευτήρια ενός χρήστη στην ε-

κάστοτε εφαρμογή που ήταν υλοποιημένη με τέτοιες συνδέσεις. Καθώς το ζήτημα

αναγνωρίστηκε ως ένα σημαντικό ρίσκο για την ασφάλεια, ξεκίνησε να εισάγεται

η θεμελίωση ενός προτύπου εξουσιοδότησης προκειμένου να εμποδιστούν τέτοιου

είδους ρίσκα και να αποφευχθούν μια πληθώρα προσαρμοσμένων λύσεων που ε-

ίχαν και ζητήματα ασφαλείας και παρουσίαζαν ασυνέπειες στις υλοποιήσεις τους.

Η θεμελίωση αυτή εκφράστηκε με το πρότυπο OAuth 2.0 το οποίο υλοποιεί

ένα πρωτόκολο εξουσιοδότησης που είναι σχεδιασμένο να παρέχει εξουσιοδότηση

μεταξύ των εμπλεκομένων συστημάτων.

Με τα παραπάνω ως κίνητρο, η συγκεκριμένη διπλωματική μεταπτυχιακή ερ-

γασία επικεντρώνεται στη μελέτη της των διάφορων επιθέσεων που θα μπορούσαν

να ανακύψουν στο OAuth Code Flow καθώς και στη σχεδίαση και ανάπτυξη ενός

εργαλείου λογισμικού που είναι ικανό να ανιχνεύσει εσφαλμένενες διαμορφώσεις

σε διακομιστές OAuth 2.0. Τέτοιες διαμορφώσεις θα μπορούσαν να οδηγήσουν σε

πληθώρα ευπαθειών, επομένως το προτεινόμενο πλαίσιο μπορεί να χρησιμοποιηθεί

για την ενίσχυση της ασφάλειας των διακομιστών OAuth.

©
2022

Καράμπαλης Ευάγγελος

Τμήμα Μηχανικών Πληροφοριακών Επικοινωνιακών Συστημάτων

Πανεπιστήμιο Αιγαίου

Abstract

Nowadays, modern web applications are connected to different APIs in order

to use different resources that the user has in their possession. This raises

authorization issues about how the APIs are able to interact with proper au-

thorization. A few years ago, the only way to do that was through different

password-sharing anti-patterns that inevitably exposed user credentials to any

client application that was implementing such connections. When the issue

was recognized as a serious security risk, the establishment of such a delegation

framework started in order to prevent such security risks and also to avoid a

huge variety of custom solutions that also were facing both security issues and

inconsistencies in their implementations. This establishment was the OAuth

2.0 protocol which stands as a delegation protocol that is designed to provide

authorization across systems.

Motivated by this fact, this Master thesis focuses on the study of the diver-

sity of the attacks that could be faced in OAuth Code Flow and also on the

design and development of a framework which would be able to detect miscon-

figurations in OAuth servers. Such misconfigurations could potentially lead to

a plethora of vulnerabilities, therefore such a framework can be used towards

enhancing the security of OAuth servers.

© 2022

Karabalis Evangelos

Department of Information and Communication Systems Engineering

University of the Aegean

Contents

1 Introduction 12

1.1 Background and Context . 12

1.2 Scope and Objectives . 14

1.3 Thesis Structure . 14

2 OAuth Essentials 16

2.1 OAuth 2.0 Roles . 16

2.2 Other useful parameters in OAuth 17

2.3 Application Types . 19

2.4 PKCE operation . 20

2.5 OAuth Grant Types . 21

2.5.1 Access Code Grant . 21

2.5.2 Anatomy of Handshake in Access Code Grant Type . . . 21

2.5.3 Implicit Flow . 23

2.5.4 Anatomy of Handshake in Implicit Flow 24

3 OAuth Exploitation 26

3.1 OAuth Potential Flaws or Weaknesses 27

3.2 Summarizing selected attacks in OAuth 28

4 Real Cases of OAuth Exploitation 32

4.1 Slack’s Case . 32

4.2 NPM Credentials OAuth Breach 32

4.3 Twitter’s cases . 33

5 The Research Methodology 34

6 Implementation 36

6.1 Architectural Structure . 36

6.2 Framework implementation details 37

6.3 Implemented Features . 38

6.3.1 Passive Scanning . 38

6.3.2 Active Scanning . 41

6.3.3 Capabilities and the modes of operation 42

6.3.4 Known Limitations . 44

6.3.5 Environment Setup . 44

5

6.3.6 Visualization of attacks and potential updates for future

development . 45

7 Results 47

7.1 Keycloak . 47

7.1.1 Server Setup and Configuration of the Tool 47

7.1.2 Passive Scanning . 49

7.1.3 Active Scanning . 51

7.2 Casdoor . 55

7.2.1 Server Setup and Configuration of the Tool 55

7.2.2 Passive Scanning . 56

7.2.3 Active Scanning . 56

7.3 OKTA . 61

7.3.1 Server Setup and Configuration of the Tool 61

7.3.2 Passive Scanning . 63

7.3.3 Active Scanning . 65

7.4 The rest of the Servers . 68

8 Conclusions and Future Work 71

6

List of Figures

1 OAuth Roles Overview . 16

2 Authorization Code Flow . 22

3 Implicit Flow . 24

4 Handshake analysis of Authorization Code Flow. 26

5 OAuthVulnerabilityScanner - the involved parties 36

6 Entity Diagram . 37

7 Implemented features . 40

8 Implemented and future attacks 46

9 Server’s setup . 47

10 Server’s setup - credentials . 48

11 Configuration of the tool for Keycloak 48

12 Passive Scanning Results . 49

13 Active Scanning Results . 51

14 Open Redirect Results . 52

15 Casdoor configuration . 55

16 Configuration of the Tool for Casdoor 55

17 Casdoor Passive Scanning results 56

18 Casdoor Active Scanning results 57

19 Casdoor’s endpoint which exposes the clients 58

20 Casdoor’s active scanning rest results 58

21 The tool uses the Selenium driver to get authentication 59

22 Casdoor replay scan results . 59

23 Casdoor PKCE scan results . 59

24 OKTA’s setup client config - client 61

25 OKTA’s setup client config - redirect uri 61

26 Tools configuration for OKTA . 62

27 OKTA passive scanning results in CLI 63

28 OKTA passive scanning results in config.json 64

29 OKTA’s PKCE scanning results 66

30 OKTA’s code replay and nonce scanning results 66

31 OKTA’s client fuzzing, scope scanning and open redirect results . 67

32 Omejdn - Config of the Tool . 68

33 Omejdn - Results from passive scan 69

34 A12 - Results from CLI . 69

35 A12 - Results from passive scan 70

7

36 Glewlyd - Failed to get results from passive scan 70

8

List of Tables

1 Popularity of OAuth Servers which were used as testbed 34

2 Keycloak’s active scanning . 52

3 Keycloak’s open redirect results 54

4 Active scanning for Casdoor . 60

5 Active scanning for OKTA . 67

9

LIST OF ACRONYMS

API Application Programming Interface

HTML HyperText Markup Language

CIA Confidentiality Integrity Availability

OAuth Open Authorization

RFC Request For Comments

SSO Single Sign On

PKCE Proof Key for Code Exchange

URL Uniform Resource Locator

URI Uniform Resource Identifier

CSRF Cross Site Request Forgery

C Client

A/AS Authorization Server

SHA Secure Hashing Algorithm

HTTP Hypertext Transfer Protocol

TLD Top Level Domain

NPM Node Package Manager

AWS Amazon Web Services

JSON JavaScript Object Notation

JWKS JSON Web Key Set

DoS Denial of Service

JWT JSON Web Token

RSA Rivest, Shamir, Adleman - the creators of the RSA algorithm

CLI command-line interface

10

XHR XMLHttpRequest

XML Extensible Markup Language

OIDC OpenID Connect

11

1 Introduction

1.1 Background and Context

In recent years, the use of dynamic pages that are related to application pro-

gramming interface (API) is increasing. For instance, from 2014 to 2018 the

API-related traffic increased from 47 to 83 percent and HTML related traffic

(meaning from static resources) decreased from 53 to 17 percent [3].

In this context, the main factors that should be taken into account in the

risk assessment and composition of the API attack surface are the following:

1. Exploitability – The available tools, the user interaction, the repeatability

and the privileges that are required to exploit the target; for example there

may be a need to elevate rights to compromise a target.

2. Dominance – The lack of awareness of the implementer, the complicated

concepts, the immaturity of tools, and the lack of time.

3. Detectability – The existing tools and the number of the false positive

alarms

4. Impact – This is broken down to the confidentiality, integrity and avail-

ability (CIA) triad.

Among other security issues that could be spotted in APIs, one of the most

crucial is the lack of or the improper authorization. Such issues enforced the

use of password-sharing anti-patterns that expose user credentials and caused

several other disabilities in a proper authorization process.

The main reason that OAuth exists is the fact that in the classic authenti-

cation model, the user’s account credentials are generally shared with the third

party website, which results in several problems; these are well documented in

the OAuth 2.0 RFC 6749.

1. The third party can save the credentials in plaintext.

2. The third party acquires a large amount of access to users’ data, typically

full account access.

3. There is no proper method to revoke access given to a third party without

revoking all other third parties because the credentials are common to all

third parties.

12

4. If any third party is compromised, it will result in compromise of the

credentials of the end user.

For dealing with such issues, it has been decided to adopt a common strategy

and the solution came with the introduction of OAuth 2.0. As it is well-known,

this protocol is an authorization framework for web applications. It permits

selective access to a user’s resources without disclosing the password to the

website which asks for the resource. Nowadays, it is one of the most common

and widely used authorization frameworks in the industry and has already be-

come a standard. The OAuth 2.0 Authorization Framework has been adopted

by Google, Microsoft, Facebook, Instagram, GitHub, Meetup and many other

popular technology platforms. The OAuth framework supports scope-restricted

access to client data, without requiring the client to share its credentials with

the third party applications. For example, LinkedIn may require access to the

contact list of a user account registered with Facebook to suggest people to con-

nect with. In this case, the Facebook application, holding users’ data, wishes

to delegate the access of limited user data to a third party application.

As it has already been mentioned, and in order to explain it thoroughly,

OAuth provides a way in which user credentials are not shared with any of

the third party applications, but only one-time tokens are shared, which are

good enough for temporary access and for a well-defined scope. The OAuth

specification allows a person to control the access to protected resources available

on one application from another application. Therefore, the users control exactly

what to share with another application. OAuth 2.0 is primarily an authorization

protocol and does not deal with how the resource owner authentication can be

done with any of the existing ways such as password or more sophisticated ways

like single sign-on (SSO).

Since OAuth is an evolutionary technology, it consists of a great variety of

specifications related to enhanced countermeasures to prevent more sophisti-

cated attacks (e.g., PKCE) from happening, to support authentication mecha-

nism that could stand on top of the protocol itself (e.g., OpenID) or to address

the way for all of the implemented solutions to become more flexible in interop-

erability related issues (e.g., servers’ metadata). A thorough list of the related

RFCs contains more than 35 of them.

13

1.2 Scope and Objectives

The scope of the thesis research was focused on creating a software scanner

that could detect misconfigurations in the OAuth Code Grant protocol for web

applications that can keep secrets (three tier web applications). The scanner

was designed to follow a grey box methodology, meaning that the tester should

have knowledge of client credentials or server credentials in order to proceed

with the scan. Additionally, the scanner is capable of conducting passive and

active scans.

The objectives of the thesis research were to study and identify potential

misconfigurations in the OAuth Code Grant protocol, as reported in RFC doc-

umentations [8], [7] and best security practices [18] guidelines, and to select a set

of misconfigurations to be implemented in the scanner. The goal of the imple-

mented tool was to help improve the overall security posture of OAuth servers

and provide indications of potential exposure to misconfigurations for security

engineers who are responsible for configuring these servers. The research also

aimed to contribute to the understanding of misconfigurations in the OAuth

Code Grant protocol and the risks they pose to web applications that can keep

secrets.

1.3 Thesis Structure

The rest of this Master thesis is structured as follows. Section 2 defines all the

elements involved in OAuth that are useful for understanding the subsequent

analysis, including an overview of OAuth and descriptions of different types of

applications and grant types. Section 3 focuses on potential flaws and factors

of exploitation in OAuth systems, as well as a summary of selected attacks

and an explanation of how they are implemented. Section 4 describes real-case

scenarios that demonstrate the need for improved security in OAuth systems

and argues for the need to develop security tools to ensure the security of OAuth

systems, given that many of these cases are due to poor configuration of OAuth

servers. In Section 5, the methodology followed in the research and development

of a security tool for OAuth systems is described. Section 6 provides a detailed

description of the implementation of the security tool, including the structure

and features of the implemented framework. Section 7 presents the results

of the tool’s analysis of OAuth servers with a defined configuration, as well as

servers that are not known cases, and discusses the implications of these results.

The last chapter summarizes the main conclusions of the research and discusses

14

potential future implementations of the security tool.

15

2 OAuth Essentials

One of the most essential parts of the OAuth is that it separates the roles of

the involved parties for handling them as separate entities.

2.1 OAuth 2.0 Roles

1. Resource owner – The user whose data the client application wants to

access.

2. Resource server – The server that stores restricted resources.

3. Client application – The website or web application that wants to access

the user’s data.

4. User Agent – The browser.

5. Authorization Server – The server that is in charge of creating and ap-

proving the authorization and the authentication data for the Resource

Server

The protocol works by defining a series of interactions among three distinct

parties, namely a client application, a resource owner, and the OAuth service

provider. These parties are visualized in figure 1

Figure 1: OAuth Roles Overview

16

Resource Owner

In the OAuth 2.0 flow, the resource owner is simply the user that is interested in

granting a registered OAuth application to access their account. Again, there is

no disclosure of passwords here or full access to the user’s account. The extent

to which the user data can be accessed is defined by means of scope. A different

scope results in diverse kinds of OAuth 2.0 permission dialogues. Generally,

scopes allow permissions such as read or write access to the account data, but

it is up to the provider to declare scopes as per their usage.

Resource Server

Resource server contains protected information or user data which can be ac-

cessed by the means of access tokens. Simply put, a resource server allows/denies

access of a specific resource to an application.

Authorization Server

It is the server that is capable of granting or denying a client an access to-

ken. The authorization server authenticates the resource and, generally through

various interactions, issues an access token to the client if everything goes as

expected.

User Agent

The user agent application is used by the client applications in the user’s device,

which acts as the scripting language instance such as JavaScript running in a

browser. One can store the user agent application on a web server.

2.2 Other useful parameters in OAuth

Redirect URI

Redirect URL are a crucial part of the OAuth flow. After a user successfully

authorizes an application, the authorization server will redirect the user back

to the application. Due to the sensitive information that the redirect URL

contains, it is crucial that the service does not redirect the user to arbitrary

locations.

The best way to ensure that the user will only be redirected to appropriate

locations, is to require the developer to register one or more redirect URL when

17

they create the application.

Client id

The client ID is a unique identifier that is returned when the application is

registered successfully. It is not secret information and it is crucial in the working

of OAuth applications. The Client ID is used to identify the application that is

used into an OAuth flow.

Client secret

It is a unique token generated during the registration process and is tied to

the client ID. As the name suggests, a client secret is private information and

should not be exposed. Instead, it is used internally while generating access

tokens. During registration, a client secret should be issued only for confidential

applications, that could keep secrets.

OAuth Code

An authorization code is an intermediate token used in the server-side applica-

tion flow. It is returned to the client after the authorization step, and then the

client exchanges it for an access token.

State

State parameter is a unique, randomly generated, opaque, and non-guessable

string that is sent when starting an authentication request and validated when

processing the response. It can be considered as a unique generated value that

is used to protect the session from cross site request forgery (CSRF) attacks.

Scope

Scope is a way to limit an application’s access to a user’s data. Rather than

granting complete access to a user’s account, it is often useful to give applications

a way to request a more limited scope of what they are allowed to do on behalf

of a user. Scope is a way to limit what the client can do.

Access Token

The access token represents the authorization of a specific application to access

specific parts of a user’s data.

18

2.3 Application Types

Applications could be categorized in two types according to their capability to

store secrets.

Confidential are the clients (or applications) that can be deployed with a

client which is not visible from someone that uses the application. For example,

applications that are running into an application server. API keys that are

stored into the application server are not visible out of the application. So, the

application could be considered confidential.

Public is the opposite since these clients are unable to store secrets in them.

In this case, users that have access to the application could read these values,

hence they would not be kept as secrets. Such examples are native applications,

SPAs, or mobile apps.

The OAuth server should be able to recognize whether the application is able

to store secrets or not in order to be properly configured. In case that a real ap-

plication is unable to store secrets, the OAuth Server should prevent the issuing

of such secrets. Moreover, the OAuth Server should support different policies

and be able to act according to the client type that requests authorization.

19

2.4 PKCE operation

Proof Key for Code Exchange (PKCE) is a protective mechanism that is de-

scribed in RFC 7636 and tries mostly to protect the handshake from authoriza-

tion code injection attacks.

The OAuth aims at authorizing applications to access users’ resources with-

out the users having to provide their credentials to those applications. Within

the grant authorization flow, a code is generated which is a token that the client

can exchange (together with its credentials) for an access token.

The PKCE uses a challenge-response protocol to prevent attackers from us-

ing intercepted authorization codes. The client generates a code verifier (cryp-

tographically random 43-128 chars in length), calculates a challenge, which is

either the same value as verifier or a SHA256 hash of it) and sends the challenge

to the Authorization Server in the auth request. The Authorization Server gen-

erates an authorization code and associates it with the received challenge. The

server then returns the authorization code to the client. This application sub-

sequently exchanges the code verifier together with the authorization code for

an access token by contacting Auth Server. The latter entity verifies the chal-

lenge using the receiving code verifier. If the verification is successful (challenge

matches the code verifier for the plain code challenge method, or the challenge

matches a SHA256 hash of the code verifier for the SHA356 code challenge

method) the authorization server returns a new access token. If verification

fails, it rejects the request.

Schematically:

1. C: generates (code verifier).

2. C-A: sends hashed (code verifier) as (code challenge).

3. A-C: sends authorization Code.

4. C-A: sends token request with (code verifier).

5. A: hashes the (code verifier) and compares to (code challenge) were sent

in (b)

6. A-C: if (e) is correct responds with access token.

C: Client – native app mobile or desktop

A: Authorization server

20

2.5 OAuth Grant Types

There are different ways that the actual OAuth process can be implemented.

These are known as OAuth“flows” or “grant types”. These types are differen-

tiated based on the type of application they are supporting and the purpose of

this application. Main flows that are most commonly used for web applications

are Access Code Grant and Implicit and also other existing flows that are used

for other purposes like IoT devices or service to service communications are

Client Credentials and Resource Owner Password Credentials grant types.

2.5.1 Access Code Grant

The client application and the OAuth service initially use redirects to ex-

change a series of browser-based HTTP requests that initiate the flow. The

user is asked whether they consent to the requested access. If they accept, the

client application is granted an “authorization code”. The client application

then exchanges this code with the OAuth service to receive an “access token”,

which they can use to make API calls to fetch the relevant user data.

All communication that takes place from the code/token exchange onward is

sent server-to-server over a secure, preconfigured back-channel and is, therefore,

invisible to the end user. This secure channel is established when the client

application first registers with the OAuth service. At this time, a client-secret

is also generated, which the client application must use to authenticate itself

when sending these server-to-server requests.

As the most sensitive data (the access token and user data) is not sent via the

browser, access code grant is arguably the most secure. Server-side applications

should ideally always use this grant type if possible. Figure 2 illustrates the

anatomy of the handshake for Access Code Grant.

2.5.2 Anatomy of Handshake in Access Code Grant Type

1. Authorization Request (GET from client to AS - /auth).

(a) response type = code (indicates the implemented flow).

(b) client id = s6BRkt (constitutes a public identifier of client).

(c) redirect uri = http://client.example.com/callback (indicates the caller

application’s endpoint to the AS).

21

Figure 2: Authorization Code Flow

(d) state = xyz (csrf token - should be treated as all common CSRF

tokens - unpredictable, not missing from request, being verified on

AS).

(e) scope = api1 api2.read (contain the scope of authority, if does not

exist should be assumed that is default - this logic should be imple-

mented on AS).

*(Here let’s assume that user gave the authorization from their browser)

2. Authorization Response (it is a redirect on redirect uri that is sent on the

previous request).

(a) code = Sase1AE2Df (authorization code generated uniquely by the

authorization server).

22

(b) state = xyz (same value as in request above).

3. Token Request (POST from client to /token endpoint).

(a) (Header variable) Authorization: Basic czZCa3ersgasdfadsf (the ap-

plication’s client Id and secret combined in base64).

(b) grant type: authorization code ().

(c) code = Sase1AE2Df (authorization code generated uniquely by the

authorization server).

(d) redirect uri = http://client.example.com/callback (indicates the caller

application’s endpoint).

(e) client id=a32rasdf (application’s client id - same as above).

(f) client secret=gX12dsf (application’s client secret).

*(The request should contain either header authorization basic or the post

body parameters client id and client secret)

Basic Authentication is calculated by RFC 6749 standard:

Base64(urlformencode(client id)+“:”+ urlformencode(client secret)).

4. Token Response (application JSON).

(a) access token : 2Yoas23aasdfa33aw (token to access the API).

(b) token type : Bearer.

(c) expires in : 3600.

(d) scope: api2.read (as above).

2.5.3 Implicit Flow

The implicit grant type is simpler. Rather than first obtaining an authorization

code and then exchanging it for an access token, the client application receives

the access token immediately after the user gives their consent.

One may be wondering why client applications don’t always use the implicit

grant type. The answer is relatively simple – it is far less secure. When using

the implicit grant type, all communication takes place via browser redirects;

there is no secure back-channel like in the authorization code flow. This means

that the sensitive access token and the user’s data are more exposed to potential

attacks.

23

As it is depicted in figure 3, the implicit grant type is more suited to single-

page applications and native desktop applications, which cannot easily store the

client-secret on the back-end, and therefore, do not benefit as much from using

the authorization code grant type.

Figure 3: Implicit Flow

2.5.4 Anatomy of Handshake in Implicit Flow

1. Authorization Request (GET from client to AS - /auth).

(a) response type = token (indicates the implemented flow).

(b) client id = s6BRkt (constitutes a public identifier of client).

24

(c) redirect uri = http://client.example.com/callback (indicates the caller

application’s endpoint to the AS).

(d) state = xyz (CSRF token - should be treated as all common CSRF

tokens – unpredictable, not missing from request, being verified on

AS).

(e) scope = api1 api2.read (contain the scope of authority, if does not

exist it should be assumed that is the default - this logic should be

implemented on AS).

*(Here let’s assume that the user gave the authorization from his browser)

2. Authorization Response (it is a redirect on redirect uri sent on the previous

request that contains the access token as hashtag).

This response URL usually contains the access token’s value as a hash:

#access token = 2Yoaa3af3sdfe

(a) token type = example.

(b) expires in = 3600.

(c) state = xyz (same value as in request above).

As it has already been mentioned, there are several other OAuth Grant

Types that are used for diverse purposes. In the scope of this master thesis

we will focus on the OAuth Code Grant, which is the most common flow to

authorize confidential clients.

25

3 OAuth Exploitation

Regarding how the authorization would be applied there are several potential

threats that could lead to authorization exploitation. The landscape of those

threats is well-defined according to RFC 6819, titled “OAuth 2.0 Threat Model

and Security Considerations”, and could be translated into specific attacks that

could be performed against OAuth flows. In this chapter, we will avoid repeating

the RFC, therefore our effort is focused on explaining a part of the potential

attacks utilized for creating the OAuth Vulnerability Scanner project that it is

introduced by this thesis. However, the aforementioned RFC has been studied

thoroughly to decide which of the attacks decided to be selected; The next

chapter will cover the attacks that are most relevant to the methodology. For

the convenience of the reader, we present a simplistic handshake for OAuth

Grant Flow, in figure 4 to use it as a reference point.

Figure 4: Handshake analysis of Authorization Code Flow.
This resource was taken from https://levelup.gitconnected.com/

oauth-2-0-in-go-846b257d32b4

26

https://levelup.gitconnected.com/oauth-2-0-in-go-846b257d32b4
https://levelup.gitconnected.com/oauth-2-0-in-go-846b257d32b4

3.1 OAuth Potential Flaws or Weaknesses

1. Flawed CSRF protection (State parameter).

Even if many components of the OAuth flows are optional, some of them

are strongly recommended unless there is an important reason not to use

them. Such an example is the state parameter. The latter is a value that

should ensure the protection of the messages from CSRF attacks that

could lead to access someone else resources. Therefore, it is up to the

Authorization Server to ensure that the parameter is cryptographically

strong enough and also non-repeatable.

2. Flawed redirect uri validation

Redirect URI is a crucial parameter as already mentioned in subsection

2.2. Its security is ensured in Authorization Server, so when a new client

is registered, the relevant redirect URI has to be defined in the registra-

tion process. So, if the Authorization Server does not validate properly

the redirect URI or it permits the presence of known anti-patterns (e.g.,

wildcards), that could lead to another vulnerability. The attacker could

be able to use an open redirect attack for obtaining the authorization

code from the 4th step of the handshake because it would potentially be

redirected to the attacker’s client.

3. Flawed scope validation

Scope is a parameter that ensures the exact resources and the privileges

on them that the client could potentially access. However it is up to

the Authorization Server to check this value between the steps of the

handshake. If this value is not validated properly, a malicious actor could

utilize a request to access resources with escalated privileges.

4. Flawed Authorization Code’s validation

Auth code is a sensitive parameter which is used as the primary token

to issue a new access token. However it is up to Authorization Server

to ensure that this parameter is cryptographically non-repeatable and is

implemented by the security standards that the RFC proposes. Such

tokens should be one time tokens and to expire in a short time as the

relevant RFC about best practices suggests.

5. Flawed PKCE validation

27

As already mentioned, PKCE is a protective strategy to bind the session

in which a specific client requests an authorization code to the action

which the same client tries to redeem to an access token. Nevertheless,

this validation is partially implemented on the Authorization Server’s side,

so if the Authorization Server either accepts requests that do not contain

PKCE related parameters or improperly validates them, a potential risk

would be raised.

6. Flawed Nonce (OpenID) validation

Based on OpenID specs, nonce parameter is used to associate a client

session with an Id token and to mitigate replay attacks. If there are no

measures to prevent replay, an attacker may be able to retrieve a valid

authorization request and potentially access/modify the user’s resources.

Authorization server accepts a request containing a nonce value and issues

a new auth code in response.

3.2 Summarizing selected attacks in OAuth

Nonce and Scope related attacks

Implementation of nonce and scope related attacks would be avoided because it

is obvious that the attacker could utilize them by an arbitrary value to exploit

the flaws already described in paragraphs 3 and 6 in subsection 3.1. The only

issue in scope’s validation is to detect a valid scope, which would be accepted

from the server, in order to try and exploit the privileges. This is part of the

results’ observation of the passive scan of the implemented framework that will

be discussed in next chapter. Nonce attacks stand to the repeatable attempts

to use the same value and the inability of the server side to associate the same

repeated nonce value with different requests.

URL Redirect Attacks

Such attacks try to target the redirect URI parameter that was defined during

the registration of a new client. Each client requires a redirect URI for the

Authorization Server to respond to it with an authorization code after a valid

user’s response in authentication process. These attacks could follow known

patterns for exploiting a potential flaw in the definition of such URI.

1. Domain Whitelisting

28

If the OAuth provider allows clients to be configured without a specific

redirect uri, and the only check is the domain part of the URL, as well as

ensuring that the scheme is either https or http and whitelisted, then all

of the subdomains of the configured domain could be an issue.

2. Prefix matching

A valid registered URI could include https://domain.com/a, and

https://domain.com/abc could also be accepted.

3. Arbitrary scheme

If the implementation supports custom schemes it could potentially be

another defective case which for the sake of the flexibility could be fol-

lowed by the native applications. In such a case, URL in the form of

x://domain.com/a are allowed.

4. TLD Confusion

An attacker can bypass certain checks if a suitable top-level domain (TLD)

is specified. Someone can bypass the redirect uri with a .com TLD by

replacing it with a suffix such as .com.mx .com.br.

5. Encoding/Decoding attacks

An attacker could try to use a crafted Unicode in order to exploit the

question mark’s resolution against the server. For example, %ff or %bf

could be used to represent the ? symbol in a URL in order to exploit the

query parameter’s sign.

6. Backslash separator’s trick

Another trick that could be used is the so-called slash separator trick

that can take advantage of the inconsistency between URL validator’s

and browser’s understanding of the / and \. The problem is the potential

that the parser has to resolve differently forward slash as path separator

in relation to the browser.

Authorization Code Attacks

We have already mentioned the PKCE’s importance in paragraph 5 in sub-

section 3.1. The lack of this value could lead either to CSRF attacks, if the

state parameter is improperly implemented, or in Authorization Code Injection

attacks.

29

1. Obtain access token with known client ID and client secret.

If an attacker have in their possession a valid authorization code plus a

client secret and client ID and either an improper or entirely lack of PKCE

protection in the OAuth server, they would be able to craft a request using

these parameters to redeem an access token.

2. Obtain access without known client ID and client secret (Authorization

Code Injection)

However, if the attacker is unable to obtain client ID and client secret

they would have another opportunity to obtain valid access. According to

RFC about Best Security Practices [18], in an authorization code injection

attack, the attacker attempts to inject a stolen authorization code into the

attacker’s own session with the client. Specifically, the aim is to associate

the attacker’s session at the client with the victim’s resources or identity.

This attack is useful if the attacker cannot exchange the authorization

code for an access token themselves. Hence, in case that the attacker

has already obtained an auth code that has been leaked from a past at-

tack then they can try to inject it in an session initiated by themselves.

In particular, they perform a regular OAuth authorization process with

the legitimate client on their device. After that, the attacker injects the

stolen authorization code in the response of the authorization server to

the legitimate client. Since this response is passing through the attacker’s

device, the attacker can use any tool that can intercept and manipulate

the authorization response to this end. Interestingly, the attacker does

not need to control the network. Then, the legitimate client sends the

code to the authorization server’s token endpoint along with the client’s

ID and secret and actual “redirect uri”. The authorization server checks

the client’s secret regarding whether the code was issued to the particu-

lar client, and whether the actual redirect URI matches the “redirect uri”

parameter. Finally, if all checks succeed the authorization server issues

access and other tokens to the client. If so, the attacker has associated

their session with the legitimate client with the victim’s resources and/or

identity.

3. Authorization Replay Attacks

Apart from PKCE, which if properly implemented can protect the session,

it is also the authorization code that should be implemented properly.

30

Replay attacks could occur if this parameter is not invalidated properly

after the first use or if it has a long term lifespan.

31

4 Real Cases of OAuth Exploitation

Many cases of real-world vulnerable scenarios have taken place in the past. This

indicates an increased probability for these to happen again and therefore the

implementations must be very restricted to the RFC best practices [18]. Several

of such attacks are detailed in the following.

4.1 Slack’s Case

A common OAuth vulnerability occurs when a developer improperly configures

or validates the redirect uri parameter, allowing an attacker to steal the OAuth

tokens[28]. In 2013 the slack redirect URI restrictions were found that could

be bypassed by appending anything to a whitelisted redirect uri parameter. In

other words, Slack was only validating the beginning of the redirect uri pa-

rameter. If a developer registered a new application with Slack and whitelisted

https://www.test domain.com an attacker could append a value to the URL and

cause the redirect to go somewhere unintended. Therefore, if the attacker modi-

fying the URL to pass redirect uri= https://attacker.com would be rejected but

passing redirect uri= https://www.attacker.com.mx would be accepted.

To exploit it, the attacker only has to create a matching subdomain on their

malicious site. If a targeted user visits the malicious modified URL, Slack sends

the OAuth token to the attacker’s site. An attacker could invoke the request on

behalf of the targeted victim by attempting a CSRF attack.

Conclusion: Vulnerabilities in which the redirect uri has not been strictly

checked are a common OAuth misconfiguration. Sometimes the vulnerability is

the result of an application registering a domain such as *.test domain.com as an

acceptable redirect uri. Other times [1], it is the result of a resource server not

performing a strict check on the beginning and end of the redirect uri parameter.

In this example it was the latter.

4.2 NPM Credentials OAuth Breach

As this case indicates, OAuth related attacks can be very powerful since they

can abuse other parties as part of supply chain attacks. Such a case [16] was the

steal of user credentials for 100.000 NPM (Node Package Manager) users when

a prior attack leaked OAuth access tokens for Heroku and Travis CI. The attack

chain involved the attacker abusing the OAuth tokens to exfiltrate private NPM

32

repositories containing AWS access keys, and subsequently leveraging them to

gain unauthorized access to the registry’s infrastructure.

Heroku has since acknowledged that the theft of GitHub integration OAuth

tokens further involved unauthorized access to an internal customer database,

prompting the company to reset all user passwords.

Conclusion: Since OAuth credentials are used for service authorization, they

are critical and must be kept secret. Any potential compromise could lead to

immediate actions like the instant revocation of such credentials. The afore-

mentioned attack is not exactly a case of misconfiguration in OAuth, but can

present different angles of security in a supply chain attack that involves OAuth

credential stealing as modern attacks try to do.

4.3 Twitter’s cases

Two cases reported for OAuth’s redirect uri improper validation in Twitter

Periscope mobile application which would potentially lead to account takeover

and another one that could lead to unauthorized access to Microsoft Outlook

victim’s emails. The first [2] Periscope’s case disclosed the victim’s access token

which leads to an account take over because of the existence of a path traversal

vulnerability and an open redirect one.

Regarding the second case[17] of Microsoft integration with Twitter, the is-

sue was that Microsoft accepts all the twitter’s subdomains as potential clients

which is wrong. Under these circumstances, the attacker could handle one of

Twitter’s subdomain, in this case cards.twitter.com, which is used for adver-

tisement purposes and can redirect to a specific landing page of the advertiser

(e.g., https://test.com). Therefore, if the attacker tries to perform a CSRF

attack by using a redirect uri of https://cards.twitter.com/advertisment_

related_path%2523 and a JavaScript script that uses the ”location.hash” API

in ”test.com”, the attacker could potentially obtain an access token and use it to

access the victim’s resources, even if the victim’s email address is also included

in the scope parameter of the CSRFed URL.

Conclusion: Both vulnerabilities existed due to improper redirect uri valida-

tion but they became exploitable due to the existence of other vulnerabilities,

that is open redirects, which was the same in both cases. Redirect URI should

be ensured to follow the best practices, do not accept wildcards or other anti-

patterns in any of the parts of the URL, because exploitation could take place

in different places.

33

https://cards.twitter.com/advertisment_related_path%2523
https://cards.twitter.com/advertisment_related_path%2523

5 The Research Methodology

Taking all this information (relevant RFC, upcoming attacks, etc) under con-

sideration it is reasonable to think that having a tool that can detect such mis-

configurations would be valuable for developers and administrators of OAuth

servers in avoiding relevant vulnerabilities. The relevant work about best prac-

tices regarding the protocol was also taken into account along with other RFCs

that would help the development of such a tool. That is, it is considered rea-

sonable for an up-to-date OAuth Server to follow the best practices and also be

consistent with the RFC 8414, which describes a feature for OAuth in which

servers advertise their Metadata.

The followed methodology can be divided in two parts.

Observation: The different implementations of the RFCs were collected and

tested to make patterns of them that were used in the implementation given

in [26]. From what we managed to patternize, we made the decision about the

attacks that could potentially be easier to automate.

Experimental: We tried to perform the applied knowledge of the described

attacks as they are mentioned in the RFC threat model document, in an attempt

to patternize and to automate some of the most important attacks.

The systems that were used as testbed were six popular OAuth Servers.

These servers are summarized in table 1

Server Stars Git URL Type

Keycloak 13.8k Keycloak Open Source
Casdoor 4.3k Casdoor Open Source
Glewlwyd 398 Glewlwyd Open Source
a12n-server 345 a12n-server Open Source
Omejdnr 7 Omejdn Open Source
Okta N/A Okta Enterprise

Table 1: Popularity of OAuth Servers which were used as testbed

When experimenting with the aforementioned servers, we tried to identify

at first if they are compliant to the RFCs that we rely on in order to form

the attacks. Moreover, differences in implementations and discrepancies which

exist may cause interoperability issues which it is very common phenomenon in

OAuth since it is still a prototype and it is up to anyone to follow it . Because

of that, we managed to automate the processes only for three of the servers

34

https://github.com/keycloak/keycloak
https://github.com/casdoor/casdoor
https://github.com/babelouest/glewlwyd
https://github.com/curveball/a12n-server
https://github.com/Fraunhofer-AISEC/omejdn-server
https://www.okta.com/

(Keycloak, Casdoor, OKTA), which also are the most popular ones.

The attacks were selected by the ease of their implementation and their

explanation have already been analyzed in a previous subsection 3.2. For the

sake of the experiments, we used a demo environment of a dummy malicious

client application and each of several OAuth implementations, as the system

under test. Moreover, the decision about the Authorization Code Flow has

been taken because it is the most common case of the flow especially on three

tier web applications’ implementation.

35

6 Implementation

The actual objective of this thesis was to create a new framework that can

detect several security issues regarding OAuth misconfigurations in order to aid

the developers in configuring properly and securely such servers.

There were several implementation related decisions that we have to address,

including the language, the underlying technologies, and more. In this chapter

we detail all such decisions that we have to deal with for finalizing a basic

implementation. The project is publicly accessible to a Github repository [25]

and the contribution to it is more than welcome.

6.1 Architectural Structure

OAuth Vulnerability Scanner is a framework that is implemented in Python

language because of its simplicity, highly compatibility, and ease of its use. The

framework is organized in a modular base in order to be extendable, maintain-

able, and easily understandable. The implementation can be represented in a

high level as in figure 5.

Figure 5: OAuthVulnerabilityScanner - the involved parties

The framework (OAuthVulnerabilityScanner) acts as the main point which

starts the passive and active scans against the tested OAuth Server. The scans

require the involvement of another party (Malicious Client) which acts as helper

36

of OAuthVulnerability scanner in order to trick the OAuthServer to trust them.

6.2 Framework implementation details

OAuthVulnerabilityScanner can be explained better by looking at the entities

that is composed as depicted in figure 6

Figure 6: Entity Diagram

Specifically, the framework comprises two main modules: the Identification

Manager and the Plugin Handler which are the abstract classes which are con-

taining the whole functionality for passive and active scanning features. Iden-

tification Manager uses internally the passive scanner’s module and the Plugin

handler uses the active scanner’s one. Both of them are consuming the Re-

porter’s module which is responsible to report the results of the scans that were

selected by the user. The other involved party, namely the Malicious Client,

runs a python Flask server and uses an instance of the reporter to collect the

results from its side.

37

6.3 Implemented Features

The framework’s features are modular and function as outlined in subsection

6.2

6.3.1 Passive Scanning

Passive scanning features run during the enumeration phase to retrieve useful

information about the targeted OAuth Server. These features are depicted in

figure 7

1. Discover well-known endpoint

Supported OAuth Servers are those that are RFC 8414 compliant. Accord-

ing to this RFC, OAuth Servers should advertise their details to clients so

that the clients can use this information appropriately. Thus, well-known

endpoint is the place that this information can be retrieved if the OAuth

Server implements it. The framework uses a dictionary, which was created

during the development of the tool observing different implementations

that are compliant to it, to detect the correct well-known endpoint. The

information that is described there contains the authorization endpoint,

the token endpoint, the supported grant types, the types of scopes, the

introspection endpoint if OpenID is supported, and many more. The list

of the extracted attributes is defined in the attr.lst under the resources

directory.

2. Discover JWKS

The JSONWeb Key Set (JWKS) is a set of keys containing the public keys

used to verify any JSON Web Token (JWT) issued by the authorization

server and signed using SHA256 with RSA (RS256) signing algorithm.

JWKS is described thoroughly in the RFC 7517, the enumeration in this

feature is to detect other potential endpoints that this information could

be presented if it is not in the .well-know retrieved information. An actual

case of this enumeration is the OKTA’s case that JWKS endpoint is not

contained in the well-known results. This info can be utilized to perform

attacks in JWTs which potentially could be a part of a future feature.

3. Discover OpenID support

It is very common for OAuth Servers also to be OpenID Connect providers.

OpenID Connect is an authentication layer built on OAuth 2.0. The au-

38

thorization server (or “OpenID provider” in this case) contains informa-

tion about a person. OAuth is used to protect this information, allowing

the client to access it on behalf of a person. To authorize the dissemina-

tion of information, the person is authenticated and the OpenID Provider

provides the client application with details including the identity of the

person and the time of authentication. If OAuth Server supports OpenID

connect, the attack surface is expanding and other attacks that target the

OpenID implementation can be performed.

4. Discover other interesting endpoints

As already mentioned in paragraph 5 in section 5, it is up to implementer

what would be implemented from the protocol. Some OAuth Servers

would implement more endpoints, and therefore expose useful informa-

tion that an attacker can use in an attempt to attack the system. Such

endpoints could be used for a normal process of the OAuth Server as well

but its presence could also be helpful for a threat actor. For this purpose,

this part of enumeration tries to identify such endpoints using a dictio-

nary that could easily extend with future discoveries. For example, we

are able to access the swagger documentation of a server and to have full

knowledge about the implemented endpoints or to have easier access to a

considered public piece of information (e.g., client ids) which would not

be so easy to find otherwise.

39

Figure 7: Implemented features

40

6.3.2 Active Scanning

The background of the flaws and the relevant attacks have already been covered

in subsections 3.1 and 3.2, so in this subsection we will explain how the scanner

tries to identify these flaws. The absence or the presence of specified parameters,

the tolerance of an implementation to the absence of a specific parameter, the

system’s response in specific crafted requests are some of the applied patterns

to address the corresponding issues.

1. Open Redirect Scan

For this scan, we used an existing Github open source project [22] which

was modified to fit in our case. The changes that we applied were mostly

to reduce the manual input of session cookies, which is a requirement for

the tool to run. To this end, we provide the already captured cookie from

the session to the scanner to proceed without any other user involvement.

This scan tries to fuzz the redirect URL to detect potential open redirects.

2. PKCE Scan

It is a suite of 3 test scenarios and it targets to find how the system

responds in a PKCE which uses plain text as a challenge method. This

is feasible performing two requests per test scenario and comparing the

responses. The first request is a normal and expected request and the

second one is as it is described in each of the test scenarios. By comparing

the responses of those requests we are able to detect if the system is

actually protected by PKCE or if this protection could be bypassed by

sending the same values for code verifier and code challenge, which means

that either the system does not mandate the PKCE presence or it is not

evaluated properly. Such a case could be that plain-text is an accepted

hashing method which cannot protect the confidentiality of the sending

value of the code verifier on the handshake’s first step.

3. Scope Scan

This scan tries to identify if a predefined and improper scope could be

used into a request in order to check if the server validates the scope value

in general.

4. Code Replay Scan

This scan attempts to obtain a valid auth code providing the actual cre-

dentials, which are required for this test in settings.json and to replay

41

it to redeem a new access token from it. If doing so, it is a serious risk

since such primary tokens are one time and have to be invalidated after

their first use to prevent such kind of actions that could be used to create

many access tokens.

5. Nonce Scan

As already mentioned in paragraph 6 in subsection 3.1, nonce scan is a

parameter to protect the client side mostly. Even if it is up to the client

to implement its part properly in an OpenID handshake, it could also

be partially protected - even if it is not a responsibility of the server to

protect it. Therefore, the OAuth server, which in this case also should

act as an OpenID Connect provider, could prevent the usage of the same

nonce value continuously. The implemented scan tries to use the same

predefined nonce value in two different initialization requests to detect if

the server allows the nonce replay. Another test that also is implemented

tries nonce=’’ value to see if the server evaluates the nonce value or not.

6. ClientID Fuzzing

This feature uses the known fuzzer https://wfuzz.readthedocs.io/,

and tries to enumerate the OAuth Server to find some actual client ids.

Even if this information is not considered as private, it requires enumera-

tion to be found and so it is a difficult task to find all client ids. However,

if such ids where to be found, the system’s security wouldn’t be directly

compromised but it would be helpful for the attacker to proceed further.

6.3.3 Capabilities and the modes of operation

The scanner provides several capabilities in order to be easier for anyone who

works in tool’s further development, or on its debugging or for a tester who

attempts to provide a specific configuration which does not apply in an already

known case.

The scanner uses as input the settings.json file which describes the min-

imum required information for the scanner to work. It contains the base url

which is the OAuth server’s domain, and also could contain client credentials

or/and user credentials in order for the relevant active scans which are required

to proceed. In case of navigation mode, it can contain the firefox profile

field which is used to resemble an actual user and to avoid the SSO blocking as

fraud because of the automated way that Selenium bot works. The selection of

42

https://wfuzz.readthedocs.io/

the user’s profile is a feature of Selenium that the scanner supports and therefore

provides the argument to the selenium driver accordingly. If the target is one of

the known cases (keycloak,casdoor, okta) it is suggested to use oauth vendor

field as well for possibly having better scanning results.

Regarding the supported modes of operations, the scanner covers two main

types as it has already been mentioned in subsections 6.3.1 and 6.3.2. Passive

scanning, using type p argument, runs the whole suite of passive scans to pro-

duce the intermediate file config.json, which retains the information for the

following scans. After the first successful passive scan, the required information

has been recorded into the config.json file and passive re-scan of the target

can be omitted.

After this required step of passive scan, the scanner has the ability to start

scanning with the active scan mode type a with different values, either to run

all the scans providing mode=ALL or a single scan choice which can be found

providing --help argument in CLI.

The scanner also supports the navigation=selenium mode which is used

to proceed on authentication constraints, so someone could use it to proceed

in case that authentication applies differently from user credentials (e.g SSO)

or the server is not in the supported ones. As mentioned, Selenium tries to

resemble an actual user action to authorize the user to the OAuth server and

to become able to proceed to the next steps of the handshake.

A couple features more are the log argument, which gives the capability

to the tool to create graceful logs and the proxy, which enables the scanner

to proxy the requests through an intermediate system and it can be used for

debugging and development purposes.

Furthermore, some other options are available to the users. Setting the

avoid replays argument, enforces the issuing of a new authorization token for

every request and the pkce which calculates and applies PKCE in the handshake

properly if it is a strong requirement from the server’s side.

43

6.3.4 Known Limitations

Open Redirect Scan feature is only supported without the use of navigation

mode. This is a known limitation because the implemented scanner lacks the

capability to capture the cookie session when runs in navigation mode and this

is a limitation of Selenium driver which does not provide this functionality.

Casdoor in navigation=selenium mode returns false positive results. It

can be used without navigation to get the actual results.

Fuzzing Client returns false positives in casdoor’s case because it always

returns the same JS response which performs further XMLHttpRequest (XHR)

calls. Since the status is coming as a result of these XHR calls the actual status

cannot be detected correctly.

OAuth Vendor field in settings.json config can currently have “Keycloak”

or “Casdoor” as values or to be omitted, since only the two servers have already

been implemented in the tool.

6.3.5 Environment Setup

If someone needs to run the test scenarios, at first they should deploy and con-

figure the OAuth Servers. For this reason, the repository includes six different

OAuth Servers which can run either through docker-compose or with init.sh

which is placed under the OAuth Server’s directory. For our convenience, we

used init.sh during the development process in order to avoid continuously con-

figuring the environment on docker interruption.

Activating the virtual environment:

python -m venv /<projects dir>/OAuthVulnerabilityScanner/OAuthScanner/venv

source venv/bin/activate

Moreover, the tester has to start the malicious client which is configured

to run in port 4200 by default, by starting the malicious client.py which is

under the scanner’s directory. The malicious client can be configured changing

the port number at the end of the relevant file.

Finally, the user can run the desirable tests by installing the framework’s

dependencies and running it. It is suggested to use a virtual environment for

avoiding polluting the system. To do so, one can follow the next steps accord-

ingly:

pip3 install -r requirements

44

Following, access the local or remote servers’ environments to configure them

properly and use the relevant configuration as input in settings.json

6.3.6 Visualization of attacks and potential updates for future de-

velopment

Figure 8 depicts the results of our research about the selected risk categories

(gray) the relevant attacks that could potentially happen (green/red) and po-

tential future upgrades of the framework (blue).

45

Figure 8: Implemented and future attacks

46

7 Results

Finalizing the research and the implementation of OAuthVulnerabilityScanner,

we ran it against the servers included in table 1.

7.1 Keycloak

7.1.1 Server Setup and Configuration of the Tool

The server setup that is followed was intentionally misconfigured for the scanner

to present some results. We configured a Redirect URI which uses a wild card,

which as already have been mentioned in paragraph 2 in subsection 3.1, is a

known anti-pattern. This situation is depicted in figure 9.

Figure 9: Server’s setup

47

Figure 10: Server’s setup - credentials

We are using the client Id and credentials in order to properly configure the

scanner to be able to replicate a malicious client. Moreover, in the config given

in figure 11, we provide all the required information, as they are depicted in the

figures 9 and 10, for the framework to be able to create requests that require

authentication by applying the admin credentials in the file.

Figure 11: Configuration of the tool for Keycloak

48

7.1.2 Passive Scanning

Results from Keycloak’s passive scanning:

Figure 12: Passive Scanning Results

As it is presented in the figure 12, the scanner detected all the relevant

information trying the “well-known” endpoint. As observed from figure 12, the

scanner also found that the server supports OpenID and managed to use non-

navigation mode producing the relevant cookies which were used to authenticate

the user’s session. Moreover, from the results we infer other useful information

that could be used for further testing beyond the features of the scanner. Our

current scanner implementation does not fully utilize all available information

49

to identify all potential vulnerabilities. Further considerations regarding these

vulnerabilities are discussed in section 8.

For example, figure 12 presents the JWKs endpoint. Knowing the JWKS

endpoint of an OAuth server can potentially allow an attacker to learn about

the keys that are used by server to sign and verify JWTs. This information can

be used in a number of ways to attack the OAuth server or its clients.

One potential threat is that an attacker could use this information to im-

personate a client and obtain access to protected resources. For example, if an

attacker can obtain a JWT signed by the OAuth server, they can use it to access

resources on behalf of a legitimate client. This could allow the attacker to gain

unauthorized access to sensitive data or perform actions on behalf of the client.

Another potential threat is that an attacker could use the JWKS endpoint

to learn about vulnerabilities in the server’s cryptographic keys. For example,

if the keys are weak or have been compromised, an attacker could potentially

use this information to launch an attack on the server or its clients.

Information exposure about registration endpoint would potentially be-

come an issue. Knowing the registration endpoint can potentially allow to an

attacker to register new client applications with the server. This can be a serious

threat, as it could allow to the attacker to gain access to protected resources or

perform actions on behalf of the server. An attacker could use this information

to register a malicious client application that is designed to capture sensitive

data or perform unauthorized actions (it can be an app which appears legiti-

mate, but actually captures user credentials or access tokens and sends them

to the attacker). In another scenario, the attacker could use the registration

endpoint to register multiple client apps, potentially overwhelming the server

with requests and causing a Denial of Service (DoS) attack.

Also the presence of the introspection endpoint can potentially allow

an attacker to obtain information about JWTs that are used by the server.

Additionally the userinfo endpoint of an OAuth server can potentially al-

low an attacker to obtain information about users who are registered with the

server.This can be a serious threat, as it could allow the attacker to gain ac-

cess to sensitive personal information or perform actions on behalf of the user.

Utilizing information for a particular user like name, email address etc could be

used to launch targeted phising attacks or to impersonate the user.

50

7.1.3 Active Scanning

Figure 13 depicts the CLI in action. It runs both passive and active types of scan

and uses all the tests from the active scan suite. The earlier part of the results

states that the scanner started passive scanning and the results already have

been presented in subsection 7.1.2. Next, the scanner indicates the beginning

of active scanning, which contains all the results from the running test of the

test suite.

Figure 13: Active Scanning Results

51

Figure 14: Open Redirect Results

Table 2 illustrates the results of active scanning as they depicted in figure

13.

Scan Suite Results

PKCE Scan Potentially Vulnerable or Not Required
Auth Replay Scan Not Vulnerable

Nonce Scan Vulnerable
Scope Scan Not Vulnerable

Client Fuzzing Detected 3 Client Ids

Table 2: Keycloak’s active scanning

The results depicted in figure 13 demonstrate that PKCE scan successfully

run and the reported that either the PKCE protection is not enabled and so

the system is vulnerable to PKCE downgrade attacks in subsection 3.2 or the

PKCE is not supported at all. Replay attacks in ”code” were not applicable

which means that the server is not vulnerable to Authorization Replay Attacks

as they have been presented in paragraph 3 in subsection 3.2. Additionally the

Nonce values are both allowed to be reused and actually are not evaluated at all

52

from the server. A nonce replay attack is a type of security threat in which an

attacker intercepts a request that includes a nonce (a randomly generated value

that is used to prevent replay attacks) and re-sends the request with the same

nonce. This can allow the attacker to gain unauthorized access to a system or

perform actions on behalf of the victim.

To prevent nonce replay attacks, OAuth servers can use techniques such as

server-side nonce tracking and nonce expiration to ensure that nonces are only

used once and are not valid for an extended period of time. It is also important

for OAuth clients to verify the nonce value received in a response to ensure that

it matches the nonce value sent in the request.

Moreover, the rest of the findings presented in figure 13 show that scope

scan are not applicable in random scopes (far from the supported ones) to

escalate privileges to a scope beyond of the server’s supported ones. Finally,

scanner managed to enumerate three clients by using the method which has

been described in paragraph 6 in subsection 6.3.2. Client Id has been described

in subsection 2.2, an attacker with knowledge of the client id can use it to

impersonate the legitimate client and request access to protected resources on

behalf of the user. If the OAuth server does not properly verify the client’s

identity, the attacker may be able to gain access to the user’s resources without

their knowledge or consent.

To prevent this type of attack, it is important for OAuth servers to imple-

ment proper authentication and authorization measures to verify the identity of

the client before granting access to protected resources. This may include using

secure communication channels and requiring the client to provide additional

authentication credentials, such as a client secret or an access token.

The redirect URI was detected as a vulnerable one as we expected since it

was intentionally configured beyond the best practices and it detected. The

results that are presented in figure 14 and summarized in table 3 are relevant to

the final part of the report, which presents partial results of open redirect scan.

If an OAuth system is vulnerable to open redirects, an attacker can potentially

intercept a request and redirect the user to a malicious website after they have

granted access to their resources. This can allow the attacker to gain access to

the user’s resources or steal sensitive information.

To prevent open redirect attacks, it is important for OAuth servers to prop-

erly validate redirect URLs and ensure that they are only redirecting to trusted

and authorized locations. This may include implementing measures such as

URL whitelisting and using secure communication channels. It is also impor-

53

tant for OAuth clients to properly validate redirect URLs and ensure that they

are not being redirected to malicious websites.

OpenRedirect Scan

http://malserver.com:4200/
http://malserver.com:4200/callback

http://malserver.com:4200/callbackp1337
http://malserver.com:4200/callback../
http://malserver.com:4200/callback..;/
http://malserver.com:4200/callback./

http://malserver.com:4200/callback%2e%2e

Table 3: Keycloak’s open redirect results

54

7.2 Casdoor

7.2.1 Server Setup and Configuration of the Tool

Following, as depicted in figure 15, we present an intentionally misconfigured

Casdoor server which was used in the tests.

Figure 15: Casdoor configuration

Figure 16 illustrates the relevant configuration that was used at tool’s side

to run tests for the Casdoor’s case:

Figure 16: Configuration of the Tool for Casdoor

55

7.2.2 Passive Scanning

The results of passive scanning present the OAuth Server’s domain and the

important endpoints, grant types which are supported and the relevant scopes

accordingly. As we notice in figure 17, the server also supports OpenID Connect

and does not support PKCE without providing further configuration. Addition-

ally, there are potential attacks in paragraph 7.1.2 in subsection 7.1, that are

outside the scope of the current implementation but could be carried out using

the information in figure 17.

Figure 17: Casdoor Passive Scanning results

7.2.3 Active Scanning

Regarding the results presented in this subsection, we used the same approach

as previously by scanning Casdoor server both with passive and active scanning

using all suites for the active one. As depicted in figure 18, on the upper part

of it we can see the passive scan which identifies all the information that was

reported in the previous section. Furthermore, we notice that the code challenge

method and registration endpoint have not been discovered, which means that

most probably PKCE is not a default feature for this server and the server

56

potentially has not an automatic registration endpoint for clients.

Figure 18: Casdoor Active Scanning results

As we notice from the figure above we see that PKCE validations don’t pass

the test so the suite is failing for all the provided tests (we will retry later with

navigation mode), also Code Replay scan suggests to run it again in navigation

mode. Also the results which are from Nonce Scan and Scope Scan indicate

that the Server is vulnerable or misconfigured for both of these cases.

From the results of upper part of figure 18 it is also discovered that the server

has an endpoint that potentially is an interesting one (figure 19). We inspected

the endpoint and we found that it contains information about the registered

clients, therefore an attacker who is able to access this endpoint could be able

to enumerate further the OAuth Server’s clients.

57

Figure 19: Casdoor’s endpoint which exposes the clients

As shown in figure 20, and as it has already been spotted in the known issues

section, Casdoor returns false positives in the client’s fuzzing tests. Moreover,

open redirect scan did not provided the expected results because the cookie

cannot be captured correctly after the first attempt.

Figure 20: Casdoor’s active scanning rest results

Following, as it is represented in figure 21 we tried to use the navigator’s

mode to get actual results from the auth code’s replay scan. For this reason,

we use --navigation=selenium argument in the CLI and selenium spawned

up a new window which requests authentication in order to proceed with the

process. As we provided the correct credentials, we received the results which

58

show that Code replay is not feasible (figure 22).

Figure 21: The tool uses the Selenium driver to get authentication

Figure 22: Casdoor replay scan results

Figure 23: Casdoor PKCE scan results

Figure 23 shows the results from Casdoor PKCE scanning which indicate

that the server is either vulnerable on PKCE related attacks or the value is not

evaluated from the server by default.

We can spot that even if we are unable to enumerate because of the known

issue in Casdoor, we got the results from the api-clients API which was discov-

ered through passive scanning (figure 19).

Table 4 provides a summary of the results for Casdoor Server.

59

Scan Suite Results

PKCE Scan Potentially Vulnerable or Not Required
Auth Replay Scan Not Vulnerable

Nonce Scan Vulnerable
Scope Scan Vulnerable

Client Fuzzing False Positives
Open Redirect Partial Results

Table 4: Active scanning for Casdoor

60

7.3 OKTA

As illustrated in figures 24 and 25, we configured a client which will be used

in OAuth’s Code Flow. In this case, the OAuth Code Flow is intentionally

configured to allow wildcards as redirect URIs in order to detect this redirect

vulnerability through our scanner.

7.3.1 Server Setup and Configuration of the Tool

Figure 24: OKTA’s setup client config - client

Figure 25: OKTA’s setup client config - redirect uri

61

As depicted in figure 25, the same configuration was used to properly config-

ure the tool in order to be aware of the client’s credentials. As shown in figure

26, the configuration also uses the extra args attribute which allows for the

explicit definition of values that are needed to be taken into account from the

tool during the tests. To this end, we explicitly request the desired scope that

we need to use and to configure the redirect uri as a different value from the

default one.

Figure 26: Tools configuration for OKTA

62

7.3.2 Passive Scanning

Proceeding to the passive scanning we obtained the results as the figures 27 and

28 indicate. We tried to enumerate, and managed to find all the information

about the supported types, grants, and scopes. Even if the well-known endpoint

did not contain the jwks uri, we managed to search thoroughly and to detect it

by trying potential endpoints that would contain this info which are related to

this type of passive scan, using a dictionary into resources directory. Addition-

ally, there are potential attacks in paragraph 7.1.2 in subsection 7.1, that are

outside the scope of the current implementation but could be carried out using

the information in figure 28.

Figure 27: OKTA passive scanning results in CLI

63

Figure 28: OKTA passive scanning results in config.json

64

7.3.3 Active Scanning

During active scanning, we used all active scanning test suites as they are being

presented in the figures 29, 30 and 31. Precisely, the mode that we used to do

so was --navigation=selenium and therefore we managed to run all the tests.

This was mandatory in the case of OKTA as it has already been mentioned

in paragraph 6.3.3 in subsection 6.3.3 since the account that was used for the

tests to run was an account that had signed up with SSO. Therefore, in order

to proceed with the proper authentication the Selenium agent was employed.

The results of the PKCE scan 29 show that the parameter is not supported

on the server by the specific configuration that we applied for. It means that

the server always applies this technique to secure the authorization code flow

and to prevent the attacker from being able to exchange an authorization code

for an access token if they somehow manage to intercept the authorization code.

Regarding the rest of the results, as expected, OKTA is not vulnerable to

authorization code replay attacks as it depicted in figure 30. Nonce parameter

is not properly evaluated in an OpenID Flow, which means that it allows the

re-usability of this parameter. Nonce replay refers to the scenario where an

attacker intercepts an access token and attempts to use it to gain access to

protected resources. Nonce replay can be prevented by using techniques such

as nonce validation, in which the authorization server checks to ensure that the

nonce (a random value that is included in the authorization request) has not

been used before.

Finally, the results about scope scanning, figure 31, are indicating that the

server is not vulnerable to random scope attacks. Successfully, the scanner iden-

tified a client id which was discovered by using a dictionary which contains the

client id that is presented in figure 31. Also, as expected we have not obtained

any result about open redirect scan since it requires the usage of cookies, which

was unachievable to be obtained from Selenium’s session.

The results presented in subsection 7.3.3 about Active Scanning are summa-

rized in table 5

65

Figure 29: OKTA’s PKCE scanning results

Figure 30: OKTA’s code replay and nonce scanning results

66

Figure 31: OKTA’s client fuzzing, scope scanning and open redirect results

Scan Suite Results

PKCE Scan Not Vulnerable
Auth Replay Scan Not Vulnerable

Nonce Scan Vulnerable
Scope Scan Not Vulnerable

Client Fuzzing Detected 1 client
Open Redirect Not Supported

Table 5: Active scanning for OKTA

67

7.4 The rest of the Servers

Regarding the rest of the servers that we take into consideration to build our

framework we notice different cases. Despite the fact that the servers helped

our research, because of the common configurations that are used also in these

cases, we were unable to create patterns or to fully cover these cases.

Both Omejdn and A12n support “.well-known” endpoint which is part of best

practices as it is described in the relevant RFC for the OAuth servers. However,

it is a feature that as we noticed exists only in the servers that support OpenID

Connect as well as the ones that thoroughly discussed in subsections 7.1, 7.2 and

7.3. The other one, namely Glewlwyd, does not support it because it also does

not support OIDC. Therefore, it is impossible for our tool to proceed further

with the enumeration in this case and we have to proceed manually to the tests

that we have to conduct. Below, we present indicatively the configuration for

Omejdn in figure 32 and the results of the scanner for the passive scans for all

these servers in figures 33, 34 and 35.

Figure 32: Omejdn - Config of the Tool

68

Figure 33: Omejdn - Results from passive scan

Figure 34: A12 - Results from CLI

69

Figure 35: A12 - Results from passive scan

As we notice from figure 36, Glewlyd did not return the expected results and

the reason as explained above is that it does not support OIDC. As a result,

our tool was unable to enumerate its case.

Figure 36: Glewlyd - Failed to get results from passive scan

70

8 Conclusions and Future Work

The research on potential vulnerabilities in OAuth servers revealed that all of

the tested servers had misconfigurations that could potentially lead to threats.

In the tests, the three most popular OAuth servers were scanned with a defined

configuration for each of them, and vulnerabilities were found in all of them.

These vulnerabilities included a lack of evaluation of the nonce parameter and

a lack of PKCE implementation, which made the two open source implementa-

tions of OAuth potentially vulnerable to code replay attacks. All of the servers

were also potentially vulnerable to enumeration of clients or exposing endpoints

directly.

Overall, the research done in the context of this Master thesis highlights the

importance of following best practices for OAuth to avoid potential vulnerabili-

ties. It is recommended that anyone implementing or configuring OAuth servers

use a vulnerability scanner to detect potential vulnerabilities in their systems

and take steps to address them.

As a suggestion for future work:

1. A simple and effective technique could be to change the response type from

“code” to “token”, and test if the implicit flow is supported. By doing

this impersonation attack, the opponent can directly get access token and

bypass any code injection mitigation.

2. For implicit grant case, another technique could be to inject the state vari-

able. There are misunderstandings among devs and security researchers

that the session-bound state variable can prevent code injection attacks.

In many cases, the attacker can reuse any state or create a valid session-

state pair by intercepting the OAuth authorization request.

3. In cases of auto consent mechanism that grants permission for autho-

rization automatically after the first time, giving attackers the ability to

perform CSRF style stealthy attack. A stealthiest technique should be

creating images pointing to the constructed OAuth authorization URL.

4. Relevant to the current implemented scans would be the extension of scope

testing. Its implementation relies on trying the supported scopes only that

have been retrieved from the passive scans to identify the case that the

server blocks completely irrelevant values that could be used as input, but

not doing the same about supported values.

71

5. In our implementation, we check if the auth code is actually one time

token or not. Future work could also cover other requirements for these

tokens. According to the best practices, a token has to be invalidated

after a certain and short period of time since they are intended to be used

as tokens from an endpoint and not from a user. In this respect, their

lifespan should be short, otherwise it could broaden the attack window of

someone that potentially could find such tokens leaked.

6. A potential feature for a scanner to detect misconfigurations on acr or amr

values might be the ability to validate the authenticity and integrity of the

authentication methods and business rules specified in these parameters.

This could involve checking for incorrect or unexpected values, such as

attempting to bypass two-factor authentication as mentioned in [14].

The scanner could also potentially check for other misconfigurations or

vulnerabilities related to acr and amr values, such as checking for incor-

rect or inconsistent values between the two parameters, or checking for

missing or incomplete values that may result in incomplete or insufficient

authentication.

Overall, the goal of this feature would be to help ensure that the authenti-

cation process is properly configured and secure, and to identify and alert

on any potential misconfigurations or vulnerabilities that could compro-

mise the authenticity and integrity of the authentication process.

In conclusion, the research done in the context of this thesis is an important

contribution to the field, and we hope it will be extended and reviewed by other

contributors to further improve our understanding of OAuth vulnerabilities.

72

References

[1] Slack disclosed on hackerone: Slack oauth2 redirect uri bypass. https:

//hackerone.com/reports/2575/.

[2] Twitter disclosed on hackerone: Insufficient oauth callback. https://

hackerone.com/reports/110293.

[3] Akamai. The latest state of the internet

around apis. https://www.akamai.com/content/

dam/site/en/documents/state-of-the-internet/

soti-security-api-the-attack-surface-that-connects-us-all.

pdf.

[4] Bleepingcomputer. Microsoft: Exchange servers hacked via oauth apps for

phishing.

[5] K Buyens. Oauth 2.0 security cheat sheet. https://github.com/

koenbuyens/oauth-2.0-security-cheat-sheet, 2022.

[6] M. Rupp Dr. N. Kobeissi BSc. C. Kean MSc. S. Moritz B. Walny BSc. T.-

C. Hong Cure53, Dr.-Ing. M. Heiderich. Pentest-report keycloak 8.0 audit

pentest. Technical report, cure53, 2019.

[7] datatracker.ietf.org. Rfc 6819 - oauth 2.0 threat model and security con-

siderations. https://datatracker.ietf.org/doc/html/rfc6819.

[8] datatracker.ietf.org. rfc6749 - the oauth 2.0 authorization framework.

https://datatracker.ietf.org/doc/html/rfc6749.

[9] datatracker.ietf.org. rfc7636 - proof key for code exchange by oauth public

clients. https://datatracker.ietf.org/doc/html/rfc7636.

[10] Okta Developer. What is the oauth 2.0 authorization code grant type.

[11] Okta Developer. What is the oauth 2.0 im-

plicit grant type. https://developer.okta.com/blog/

2018/05/24/what-is-the-oauth2-implicit-grant-type#

get-the-users-permission.

[12] OpenID Connect OAuth Server dédié. Why an authentication server?

73

https://hackerone.com/reports/2575/
https://hackerone.com/reports/2575/
https://hackerone.com/reports/110293
https://hackerone.com/reports/110293
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://github.com/koenbuyens/oauth-2.0-security-cheat-sheet
https://github.com/koenbuyens/oauth-2.0-security-cheat-sheet
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7636
https://developer.okta.com/blog/2018/05/24/what-is-the-oauth2-implicit-grant-type#get-the-users-permission
https://developer.okta.com/blog/2018/05/24/what-is-the-oauth2-implicit-grant-type#get-the-users-permission
https://developer.okta.com/blog/2018/05/24/what-is-the-oauth2-implicit-grant-type#get-the-users-permission

[13] Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehensive formal

security analysis of oauth 2.0. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 10 2016.

[14] Gitbook. Acr and amr misconfigurations. https://0xn3va.gitbook.

io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#

misconfiguration-acr-or-amr, 2021.

[15] Gitbook. Oauth 2.0 vulnerabilities - cheat-

sheets. https://0xn3va.gitbook.io/cheat-sheets/

web-application/oauth-2.0-vulnerabilities#

security-issues-in-the-authorization-server, 2021.

[16] HackerNews. Nearly 100,000 npm users’ credentials stolen in github oauth

breach.

[17] Hackerone. Twitter disclosed on hackerone. https://hackerone.com/

reports/131202.

[18] Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett.

OAuth 2.0 Security Best Current Practice. Internet-Draft draft-ietf-oauth-

security-topics-21, Internet Engineering Task Force, September 2022. Work

in Progress.

[19] mastercard developers. Mastercard developers.

[20] OAuth.net. Specs - oauth. https://oauth.net/specs/.

[21] A Parecki. Oauth 2.0 Simplified. Lulu.com, 2018.

[22] SaneBow. redirect-fuzzer. https://github.com/SaneBow/

redirect-fuzzer, 2019.

[23] Security Hubs. Threat model pentesting checklist. https:

//web.archive.org/web/20220919040023/https://securityhubs.

io/oauth2_threat_model.

[24] Six2dez.com. Oauth - pentest book. https://pentestbook.six2dez.com/

enumeration/webservices/oauth, 2014.

[25] vagelkara. Oauthvulnerabilityscanner. https://github.com/vagelkara/

OAuthVulnerabilityScanner, 2022.

74

https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#misconfiguration-acr-or-amr
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#misconfiguration-acr-or-amr
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#misconfiguration-acr-or-amr
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#security-issues-in-the-authorization-server
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#security-issues-in-the-authorization-server
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#security-issues-in-the-authorization-server
https://hackerone.com/reports/131202
https://hackerone.com/reports/131202
https://oauth.net/specs/
https://github.com/SaneBow/redirect-fuzzer
https://github.com/SaneBow/redirect-fuzzer
https://web.archive.org/web/20220919040023/https://securityhubs.io/oauth2_threat_model
https://web.archive.org/web/20220919040023/https://securityhubs.io/oauth2_threat_model
https://web.archive.org/web/20220919040023/https://securityhubs.io/oauth2_threat_model
https://pentestbook.six2dez.com/enumeration/webservices/oauth
https://pentestbook.six2dez.com/enumeration/webservices/oauth
https://github.com/vagelkara/OAuthVulnerabilityScanner
https://github.com/vagelkara/OAuthVulnerabilityScanner

[26] vagelkara. Oauthvulnerabilityscanner - resources, 2022.

[27] X Wang, W Lau, R Yang, and S Shi. Make redirec-

tion evil. https://i.blackhat.com/asia-19/Fri-March-29/

bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf.

[28] P Yaworski. Real-world bug hunting : a field guide to web hacking. No

Starch Press, San Francisco, 2019.

75

https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf
https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf

	Introduction
	Background and Context
	Scope and Objectives
	Thesis Structure

	 OAuth Essentials
	OAuth 2.0 Roles
	Other useful parameters in OAuth
	Application Types
	PKCE operation
	OAuth Grant Types
	Access Code Grant
	Anatomy of Handshake in Access Code Grant Type
	Implicit Flow
	Anatomy of Handshake in Implicit Flow

	OAuth Exploitation
	OAuth Potential Flaws or Weaknesses
	Summarizing selected attacks in OAuth

	Real Cases of OAuth Exploitation
	 Slack's Case
	NPM Credentials OAuth Breach
	 Twitter's cases

	The Research Methodology
	Implementation
	Architectural Structure
	Framework implementation details
	Implemented Features
	Passive Scanning
	Active Scanning
	Capabilities and the modes of operation
	Known Limitations
	Environment Setup
	Visualization of attacks and potential updates for future development

	Results
	Keycloak
	Server Setup and Configuration of the Tool
	Passive Scanning
	Active Scanning

	Casdoor
	Server Setup and Configuration of the Tool
	Passive Scanning
	Active Scanning

	OKTA
	Server Setup and Configuration of the Tool
	Passive Scanning
	Active Scanning

	The rest of the Servers

	Conclusions and Future Work

