Avantuén spyalelou
eVEECTNC ELVTAVELDY GTO
ntewtoxoAho OAuth 2.0

H Metantuytaxy) Aworp3r xotatédnxe oto Turua Mnyavixdv IIknpogoptaxdv
xon Emixcovevioxddv Buotnudtev e IloAuteyvinnic Lyoirc tou Iavemiotnulou
Avyofou oe yepnt| exmhipwon twv anuthoewy yio To Metamtuytoxd Almiwya

ewixevong oty Acgdhreio IIingogoplonyv xou Emixovwviondy Yuetnudte:y

Kopaunaine Evdyyeiog

Enwtponi
Emupiénwv: Kodnyntic I'ecdpyioc Koymoupdng
Avaminpotic Kadnyntic Aré€ioc Koandpne
Enixovpoc Kadnyntic Anurtploc Xxobtoag

Tudua Mryovixay IIAnpogoplaxcyv & Emxowvevioxey Yuotnudtemy
HoavemotAuo Avyaiou
OxtoPerog 2022

Development of a

vulnerability scanning tool
for OAuth 2.0

A dissertation submitted to the Department of Information & Communication
Systems Engineering, School of Engineering of the University of The Aegean
in partial fulfilment of the requirements for the degree of Master of Science in

Information and Communication Systems Security

Karabalis Evangelos

Committee
Supervisor: Professor Georgios Kambourakis
Associate Professor Alexios Kaporis

Assistant Professor Dimitrios Skoutas

Department of Information and Communications System
Engineering University of Aegean

October 2022

ANAworn Avdeviixotnrag

Befoudver 6T elpon cuyypagéac autic g dmAnuatixAc epyaoiog xan 6tL xdlde
Bo- fideo Ty omola elya yiow TNV mpoetoyacia e, ebvar TARPWC Avary VRELOUEVT,
xon ava- @épetan oty gpyooia. Emlong éyw avagéeel tic mnyég and Tic omoleg
éxova yprior de- Souévay, ey Y Aé€ewy elte autéc avagpépovtol axpBog elte na-
pagpacuéves. Télog, Befoucivey OTL aUTH 1 BDIMAWUATIXY EQYACIO TEOETOWAC THXE
and euéva TPOCLTIXE EWBIXE YL TIC ATOLTACELS TOU PETATTUYLAXOV TEOYPAUUAUTOS
omoudwyv tou Turuatoc Mnyovi- v IIinpogoplaxdy xan Emxowvwviaxody Xuotn-

pdtwyv tou Havemotnuiouv Avyolou otn Xdyo.
Koaphépaat, 5 OxtePelov 2022

‘Ovopo Enddvupo

(Yroypagt)

Statement of Authenticity

I declare that this Master’s thesis is my own work and was written without
literature other than the sources indicated in the bibliography. Information
used from the published or unpublished work of others has been acknowledged
in the text and has been explicitly referred to in the given list of references.
This Master’s thesis has not been submitted in any form for another degree or

diploma at any university or other institute of tertiary education.
Karlovasi, 5th October 2022

Student’s name

(Signature)

[epiindm

YTg Uépeg pag, oL CUYYPOVES EQUPUOYES OTO OLodixTUO elvor GUVBEBEUEVES YE
BLAPOPETIXEC DIETAPES TPOYPUUHUATIONOU EPUPUOYOY TEOXEWEVOU VO YETOULOTOL-
fioouv Bldopouc Tdpoug Tou avrxouy ot éva yenotrn. To yeyovde autd eyelpel
{ntiuarta €€0uUclodOTNONE OYETIXG UE TOV TPOTO TOV OTO(O Ol TEOYEUUUOTIO TIXES
dlemapéc unopolv vo ahANAETBPAcoUY €xovTag XatdAANAn e€ouctodotnor. Xto
Te6oQato TopeNIOV, 0 TEOTOC PE TOV omolo YOTAY aUTH 1 avTolhayr) NG e-
EouolodoTnong ftay Uéow oplopévmy — aupiBoANe anoTeEAECUATIXOTNTAS TEOTWY
— OLUoLpaool XeddY Tou e&édetay Ta BlamoTELTAPL EVOS YPHOTN OTNV €-
XAOTOTE EPUPUOYY| oL Yoy LAoTomuéV pe tétotec ouvdéaels. Koadhe to {htnua
VALY VWRIoTNXE OC €Vl ONUAVTIXG ploXo Yol TNV aoPIAela, EEXVOE VAl ELGEYETOL
1 Yeueilnon evég mpotimou e€0UcloBOTNONG TEOXEWEVOL Vo EUTodle ToUV TETOLOU
eldoug ploxa xan vo amogeuyVoly por TANIdEa TEOCUPUOCUEVKY AOCEWY TOU €-
fyay xou {nrAuorto aoakeiog xou mapoucialay AoUVETELES OTIC UAOTOLAGELS TOUG.
H deyehionon auth expedotnxe ye to mpotuno OAuth 2.0 1o onolo vhomolel
EVal TPWTOXOAO €£0VGLOBOTNONG TOL elvor oY EBLICHEVO Vo TopEXEL EE0UGLOBOTNON
HETOED TV EUTAEXOUEVLY CUGTNUATOV.

Me to nopoamdve ¢ xVNTEo, N CUYXEXPWEVY BITAWUATIXY UETATTUYLOXY Ep-
yoolo EMXEVTPMVETIL 0T HEAETH TNS TwV Sldpopny emtiéocnmy tou Yo unopolooy
vo avacOpouy oto OAuth Code Flow xardcde xan ot oyedioon xow avdmtugn evog
gpyoheiou hoylopxol Tou efvor Lxavd var aviy VEUOEL EGPUAUEVEVES DLOPHOPPOCELS
oe dwooptotéc OAuth 2.0. Téroleg dlapopphoeic Yo uropovoay va 0dnyHoouvy oe
A ddpa eunoteldy, ETOPEVHEC TO TROTEWVOUEVO TAdloLo Unopel va ypnotdonotniel

yioL TV evioyuon tne acpdielog tov Slaxouotdv OAuth.

© 2022
Kopdunaine Evdyyehoc
Tuhuo Mnyavixav IIAnpogoploxdy Emxovenvioxdy SuoTnudTteny

IMovemotiulo Avyoiou

Abstract

Nowadays, modern web applications are connected to different APIs in order
to use different resources that the user has in their possession. This raises
authorization issues about how the APIs are able to interact with proper au-
thorization. A few years ago, the only way to do that was through different
password-sharing anti-patterns that inevitably exposed user credentials to any
client application that was implementing such connections. When the issue
was recognized as a serious security risk, the establishment of such a delegation
framework started in order to prevent such security risks and also to avoid a
huge variety of custom solutions that also were facing both security issues and
inconsistencies in their implementations. This establishment was the OAuth
2.0 protocol which stands as a delegation protocol that is designed to provide
authorization across systems.

Motivated by this fact, this Master thesis focuses on the study of the diver-
sity of the attacks that could be faced in OAuth Code Flow and also on the
design and development of a framework which would be able to detect miscon-
figurations in OAuth servers. Such misconfigurations could potentially lead to
a plethora of vulnerabilities, therefore such a framework can be used towards

enhancing the security of OAuth servers.

© 2022
Karabalis Evangelos
Department of Information and Communication Systems Engineering

University of the Aegean

Contents

[L__Introduction|

1.1 Background and Context|
1.2 Scope and Objectives|.

2.2 Other useful parameters in OAuth|
2.3 Application Types|o
2.4 PKCE operation|
2.5 OAuth Grant Types|

2.5.2 Anatomy of Handshake in Access Code Grant Type| . . .
2.5.3 Tmplicit Flow| o000
2.5.4 Anatomy ot Handshake in Implicit Flow|

OAuth Exploitation|

3.2 Summarizing selected attacks in OAuth|

Real Cases of OAuth Exploitation |

4.1 Slack’s Casel

]

The Research Methodology|

6

Implementation|

6.2 Framework implementation details|

6.3 Implemented Features|,

6.3.1 Passive Scanning| 0oL

6.3.2 Active Scanning|o

16.3.3 Capabilities and the modes of operation|

6.3.5 Environment Setup|. oo

12
12
14
14

16
16
17
19
20
21
21

23
24

26
27
28

32
32
32
33

34

16.3.6 Visualization of attacks and potential updates for future |

| development | oL 45
7 _Results 47
7.1 Keycloakl 47
[7.1.1 Server Setup and Configuration of the Tooll 47

[7.1.2 Passive Scanning| 49

[7.1.3 Active Scanning| oo 51

M2 Casdootl o v oo 55
[7.2.1 Server Setup and Configuration of the Tooll 55

[7.2.2 Passive Scanning|, 56

[7.2.3 Active Scanning| oo 56
C3TOKTAl . . . oo 61
[7.3.1 Server Setup and Configuration of the Tooll 61

[71.3.2 Passive Scanning| 63

[7.3.3 Active Scanning| 65

[(.4 _The rest of the Serversl 68

I8 _Conclusions and Future Workl 71

List of Figures

[OAuth Roles Overviewl. 16
2 Authorization Code Flowl 22
13 Implicit Flow| oo 24
|4 Handshake analysis of Authorization Code Flow. 26
5] OAuthVulnerabilityScanner - the involved parties|. 36
16 Entity Diagram|o 37
7 Implemented features] L 40
18 Implemented and future attacks|. 46
19 Derver’'s setup| Lo oo 47
110 Server’s setup - credentials|. L. 48
|11 Configuration of the tool for Keycloak] 48
[12 Passive Scanning Results|. 49
113 Active Scanning Results| 00, 51
114 Open Redirect Results| 52
[15 Casdoor configuration| 55
116 Configuration of the Tool for Casdoor| 55
117 Casdoor Passive Scanning results| 56
118 Casdoor Active Scanning results| 57
119 Casdoor’s endpoint which exposes the clients| 58
20 Casdoor’s active scanning rest results|. 58
21 The tool uses the Selenium driver to get authentication| 59
22 Casdoor replay scan results| 59
23 Casdoor PKCE scanresultsl 59
24 OKTA’s setup client config - client| 61
25 OKTA'’s setup client config - redirect_uri 61
26 Tools configuration for OKTA|. 62
27 OKTA passive scanning results in CLI} 63
28 OKTA passive scanning results in config.json| 64
29 OKTA’s PKCE scanning results|. 66
30 OK'TA’s code replay and nonce scanning results| 66
BL OK'TA’s client fuzzing, scope scanning and open redirect results|. 67
82 Omejdn - Config of the Tooll. 68
133 Omejdn - Results from passive scan| 69
B4 _A12-Results from CLIl 69
135 Al12 - Results from passivescan|. 70

[36

Glewlyd - Failed to get results from passive scan

List of Tables

Il Popularity of OAuth Servers which were used as testbed| 34
12 Keycloak’s active scanning|.00 52
13 Keycloak’s open redirect results| 54
|4 Active scanning for Casdoor| 60
5] Active scanning for OKTA|. 67

LIST OF ACRONYMS

API Application Programming Interface
HTML HyperText Markup Language
CTA Confidentiality Integrity Availability
OAuth Open Authorization

RFC Request For Comments

SSO Single Sign On

PKCE Proof Key for Code Exchange
URL Uniform Resource Locator

URI Uniform Resource Identifier
CSRF Cross Site Request Forgery

C Client

A/AS Authorization Server

SHA Secure Hashing Algorithm

HTTP Hypertext Transfer Protocol
TLD Top Level Domain

NPM Node Package Manager

AWS Amazon Web Services

JSON JavaScript Object Notation
JWKS JSON Web Key Set

DoS Denial of Service

JWT JSON Web Token

RSA Rivest, Shamir, Adleman - the creators of the RSA algorithm

CLI command-line interface

10

XHR XMLHttpRequest
XML Extensible Markup Language

OIDC OpenlD Connect

11

1 Introduction

1.1 Background and Context

In recent years, the use of dynamic pages that are related to application pro-
gramming interface (API) is increasing. For instance, from 2014 to 2018 the
API-related traffic increased from 47 to 83 percent and HTML related traffic
(meaning from static resources) decreased from 53 to 17 percent [3].

In this context, the main factors that should be taken into account in the

risk assessment and composition of the API attack surface are the following;:

1. Exploitability — The available tools, the user interaction, the repeatability
and the privileges that are required to exploit the target; for example there

may be a need to elevate rights to compromise a target.

2. Dominance — The lack of awareness of the implementer, the complicated

concepts, the immaturity of tools, and the lack of time.

3. Detectability — The existing tools and the number of the false positive

alarms

4. Impact — This is broken down to the confidentiality, integrity and avail-
ability (CIA) triad.

Among other security issues that could be spotted in APIs, one of the most
crucial is the lack of or the improper authorization. Such issues enforced the
use of password-sharing anti-patterns that expose user credentials and caused
several other disabilities in a proper authorization process.

The main reason that OAuth exists is the fact that in the classic authenti-
cation model, the user’s account credentials are generally shared with the third
party website, which results in several problems; these are well documented in
the OAuth 2.0 RFC 6749.

1. The third party can save the credentials in plaintext.

2. The third party acquires a large amount of access to users’ data, typically

full account access.

3. There is no proper method to revoke access given to a third party without
revoking all other third parties because the credentials are common to all

third parties.

12

4. If any third party is compromised, it will result in compromise of the

credentials of the end user.

For dealing with such issues, it has been decided to adopt a common strategy
and the solution came with the introduction of OAuth 2.0. As it is well-known,
this protocol is an authorization framework for web applications. It permits
selective access to a user’s resources without disclosing the password to the
website which asks for the resource. Nowadays, it is one of the most common
and widely used authorization frameworks in the industry and has already be-
come a standard. The OAuth 2.0 Authorization Framework has been adopted
by Google, Microsoft, Facebook, Instagram, GitHub, Meetup and many other
popular technology platforms. The OAuth framework supports scope-restricted
access to client data, without requiring the client to share its credentials with
the third party applications. For example, LinkedIn may require access to the
contact list of a user account registered with Facebook to suggest people to con-
nect with. In this case, the Facebook application, holding users’ data, wishes
to delegate the access of limited user data to a third party application.

As it has already been mentioned, and in order to explain it thoroughly,
OAuth provides a way in which user credentials are not shared with any of
the third party applications, but only one-time tokens are shared, which are
good enough for temporary access and for a well-defined scope. The OAuth
specification allows a person to control the access to protected resources available
on one application from another application. Therefore, the users control exactly
what to share with another application. OAuth 2.0 is primarily an authorization
protocol and does not deal with how the resource owner authentication can be
done with any of the existing ways such as password or more sophisticated ways
like single sign-on (SSO).

Since OAuth is an evolutionary technology, it consists of a great variety of
specifications related to enhanced countermeasures to prevent more sophisti-
cated attacks (e.g., PKCE) from happening, to support authentication mecha-
nism that could stand on top of the protocol itself (e.g., OpenlD) or to address
the way for all of the implemented solutions to become more flexible in interop-
erability related issues (e.g., servers’ metadata). A thorough list of the related

RFCs contains more than 35 of them.

13

1.2 Scope and Objectives

The scope of the thesis research was focused on creating a software scanner
that could detect misconfigurations in the OAuth Code Grant protocol for web
applications that can keep secrets (three tier web applications). The scanner
was designed to follow a grey box methodology, meaning that the tester should
have knowledge of client credentials or server credentials in order to proceed
with the scan. Additionally, the scanner is capable of conducting passive and
active scans.

The objectives of the thesis research were to study and identify potential
misconfigurations in the OAuth Code Grant protocol, as reported in RFC doc-
umentations [§], [7] and best security practices [I8] guidelines, and to select a set
of misconfigurations to be implemented in the scanner. The goal of the imple-
mented tool was to help improve the overall security posture of OAuth servers
and provide indications of potential exposure to misconfigurations for security
engineers who are responsible for configuring these servers. The research also
aimed to contribute to the understanding of misconfigurations in the OAuth
Code Grant protocol and the risks they pose to web applications that can keep

secrets.

1.3 Thesis Structure

The rest of this Master thesis is structured as follows. Section [2] defines all the
elements involved in OAuth that are useful for understanding the subsequent
analysis, including an overview of OAuth and descriptions of different types of
applications and grant types. Section [3| focuses on potential flaws and factors
of exploitation in OAuth systems, as well as a summary of selected attacks
and an explanation of how they are implemented. Section [d] describes real-case
scenarios that demonstrate the need for improved security in OAuth systems
and argues for the need to develop security tools to ensure the security of OAuth
systems, given that many of these cases are due to poor configuration of OAuth
servers. In Section[5] the methodology followed in the research and development
of a security tool for OAuth systems is described. Section [§] provides a detailed
description of the implementation of the security tool, including the structure
and features of the implemented framework. Section [7| presents the results
of the tool’s analysis of OAuth servers with a defined configuration, as well as
servers that are not known cases, and discusses the implications of these results.

The last chapter summarizes the main conclusions of the research and discusses

14

potential future implementations of the security tool.

15

2

OAuth Essentials

One of the most essential parts of the OAuth is that it separates the roles of

the involved parties for handling them as separate entities.

2.1

1.

OAuth 2.0 Roles

Resource owner — The user whose data the client application wants to

access.
Resource server — The server that stores restricted resources.

Client application — The website or web application that wants to access

the user’s data.

. User Agent — The browser.

Authorization Server — The server that is in charge of creating and ap-

proving the authorization and the authentication data for the Resource

Server

The protocol works by defining a series of interactions among three distinct

parties, namely a client application, a resource owner, and the OAuth service

provider. These parties are visualized in figure

User Agent
Tt ST T T T T T e i) .
i i Authorization
! ! Server
i i
i i Y
]
] !
¥
Resource Owner
Resource
Server

Figure 1: OAuth Roles Overview

16

Resource Owner

In the OAuth 2.0 flow, the resource owner is simply the user that is interested in
granting a registered OAuth application to access their account. Again, there is
no disclosure of passwords here or full access to the user’s account. The extent
to which the user data can be accessed is defined by means of scope. A different
scope results in diverse kinds of OAuth 2.0 permission dialogues. Generally,
scopes allow permissions such as read or write access to the account data, but

it is up to the provider to declare scopes as per their usage.

Resource Server

Resource server contains protected information or user data which can be ac-
cessed by the means of access tokens. Simply put, a resource server allows/denies

access of a specific resource to an application.

Authorization Server

It is the server that is capable of granting or denying a client an access to-
ken. The authorization server authenticates the resource and, generally through
various interactions, issues an access token to the client if everything goes as

expected.

User Agent

The user agent application is used by the client applications in the user’s device,
which acts as the scripting language instance such as JavaScript running in a

browser. One can store the user agent application on a web server.

2.2 Other useful parameters in OAuth
Redirect URI

Redirect URL are a crucial part of the OAuth flow. After a user successfully
authorizes an application, the authorization server will redirect the user back
to the application. Due to the sensitive information that the redirect URL
contains, it is crucial that the service does not redirect the user to arbitrary
locations.

The best way to ensure that the user will only be redirected to appropriate

locations, is to require the developer to register one or more redirect URL when

17

they create the application.

Client id

The client ID is a unique identifier that is returned when the application is
registered successfully. It is not secret information and it is crucial in the working
of OAuth applications. The Client ID is used to identify the application that is
used into an OAuth flow.

Client secret

It is a unique token generated during the registration process and is tied to
the client ID. As the name suggests, a client secret is private information and
should not be exposed. Instead, it is used internally while generating access
tokens. During registration, a client secret should be issued only for confidential

applications, that could keep secrets.

OAuth Code

An authorization code is an intermediate token used in the server-side applica-
tion flow. It is returned to the client after the authorization step, and then the

client exchanges it for an access token.

State

State parameter is a unique, randomly generated, opaque, and non-guessable
string that is sent when starting an authentication request and validated when
processing the response. It can be considered as a unique generated value that

is used to protect the session from cross site request forgery (CSRF) attacks.

Scope

Scope is a way to limit an application’s access to a user’s data. Rather than
granting complete access to a user’s account, it is often useful to give applications
a way to request a more limited scope of what they are allowed to do on behalf

of a user. Scope is a way to limit what the client can do.

Access Token

The access token represents the authorization of a specific application to access

specific parts of a user’s data.

18

2.3 Application Types

Applications could be categorized in two types according to their capability to
store secrets.

Confidential are the clients (or applications) that can be deployed with a
client which is not visible from someone that uses the application. For example,
applications that are running into an application server. API keys that are
stored into the application server are not visible out of the application. So, the
application could be considered confidential.

Public is the opposite since these clients are unable to store secrets in them.
In this case, users that have access to the application could read these values,
hence they would not be kept as secrets. Such examples are native applications,
SPAs, or mobile apps.

The OAuth server should be able to recognize whether the application is able
to store secrets or not in order to be properly configured. In case that a real ap-
plication is unable to store secrets, the OAuth Server should prevent the issuing
of such secrets. Moreover, the OAuth Server should support different policies

and be able to act according to the client type that requests authorization.

19

2.4 PKCE operation

Proof Key for Code Exchange (PKCE) is a protective mechanism that is de-
scribed in RFC 7636 and tries mostly to protect the handshake from authoriza-
tion code injection attacks.

The OAuth aims at authorizing applications to access users’ resources with-
out the users having to provide their credentials to those applications. Within
the grant authorization flow, a code is generated which is a token that the client
can exchange (together with its credentials) for an access token.

The PKCE uses a challenge-response protocol to prevent attackers from us-
ing intercepted authorization codes. The client generates a code verifier (cryp-
tographically random 43-128 chars in length), calculates a challenge, which is
either the same value as verifier or a SHA256 hash of it) and sends the challenge
to the Authorization Server in the auth request. The Authorization Server gen-
erates an authorization code and associates it with the received challenge. The
server then returns the authorization code to the client. This application sub-
sequently exchanges the code verifier together with the authorization code for
an access token by contacting Auth Server. The latter entity verifies the chal-
lenge using the receiving code verifier. If the verification is successful (challenge
matches the code verifier for the plain code challenge method, or the challenge
matches a SHA256 hash of the code verifier for the SHA356 code challenge
method) the authorization server returns a new access token. If verification
fails, it rejects the request.

Schematically:

1. C: generates (code verifier).

2. C-A: sends hashed (code verifier) as (code challenge).
3. A-C: sends authorization Code.

4. C-A: sends token request with (code verifier).

5. A: hashes the (code verifier) and compares to (code challenge) were sent

in (b)
6. A-C: if (e) is correct responds with access token.

C: Client — native app mobile or desktop

A: Authorization server

20

2.5 OAuth Grant Types

There are different ways that the actual OAuth process can be implemented.
These are known as OAuth“flows” or “grant types”. These types are differen-
tiated based on the type of application they are supporting and the purpose of
this application. Main flows that are most commonly used for web applications

are Access Code Grant and Implicit and also other existing flows that are used

for other purposes like IoT devices or service to service communications are

Client Credentials and Resource Owner Password Credentials grant types.

2.5.1 Access Code Grant

The client application and the OAuth service initially use redirects to ex-
change a series of browser-based HTTP requests that initiate the flow. The
user is asked whether they consent to the requested access. If they accept, the
client application is granted an “authorization code”. The client application
then exchanges this code with the OAuth service to receive an “access token”,
which they can use to make API calls to fetch the relevant user data.

All communication that takes place from the code/token exchange onward is
sent server-to-server over a secure, preconfigured back-channel and is, therefore,
invisible to the end user. This secure channel is established when the client
application first registers with the OAuth service. At this time, a client-secret
is also generated, which the client application must use to authenticate itself
when sending these server-to-server requests.

As the most sensitive data (the access token and user data) is not sent via the
browser, access code grant is arguably the most secure. Server-side applications
should ideally always use this grant type if possible. Figure [2] illustrates the
anatomy of the handshake for Access Code Grant.

2.5.2 Anatomy of Handshake in Access Code Grant Type

1. Authorization Request (GET from client to AS - /auth).

(a) response_type = code (indicates the implemented flow).
(b) client_id = s6BRkt (constitutes a public identifier of client).

(c) redirect_uri = http://client.example.com/callback (indicates the caller

application’s endpoint to the AS).

21

Resource Owner

(OAuth Service Provider \
(client Appication Service API
1. Authorization Browser) [authorization
Request L
2. User Authorizes
Icallback _ Application »
ol
™ 3. Authorization \ J
Code Grant
ltoken
4. Access Token -
Request Ca
.‘—E.Ac:&sslahﬂn_ﬁtant
g
6. Api Call
. fapi
»

_} 7. Api Response

. J

Figure 2: Authorization Code Flow

(d) state = xyz (csrf token - should be treated as all common CSRF

tokens - unpredictable, not missing from request, being verified on

AS).

(e) scope = apil api2.read (contain the scope of authority, if does not
exist should be assumed that is default - this logic should be imple-
mented on AS).

*(Here let’s assume that user gave the authorization from their browser)

2. Authorization Response (it is a redirect on redirect_uri that is sent on the

previous request).

(a) code = Sasel AE2Df (authorization code generated uniquely by the

authorization server).

22

(b) state = xyz (same value as in request above).

3. Token Request (POST from client to /token endpoint).

(a) (Header variable) Authorization: Basic czZCa3ersgasdfadsf (the ap-

plication’s client Id and secret combined in base64).
(b) grant_type: authorization_code ().

(c) code = Sasel AE2Df (authorization code generated uniquely by the

authorization server).

(d) redirect_uri = http://client.example.com/callback (indicates the caller

application’s endpoint).
(e) client_id=a32rasdf (application’s client id - same as above).
(f) client_secret=gX12dsf (application’s client secret).
*(The request should contain either header authorization basic or the post
body parameters client_id and client_secret)
Basic Authentication is calculated by RFC 6749 standard:

Base64(urlformencode(client_id)+ “:” + urlformencode(client_secret)).
4. Token Response (application JSON).

(a) access_token : 2Yoas23aasdfa33aw (token to access the API).
(b

)

) token_type : Bearer.
(c) expires_in : 3600.

)

(d) scope: api2.read (as above).

2.5.3 Implicit Flow

The implicit grant type is simpler. Rather than first obtaining an authorization
code and then exchanging it for an access token, the client application receives
the access token immediately after the user gives their consent.

One may be wondering why client applications don’t always use the implicit
grant type. The answer is relatively simple — it is far less secure. When using
the implicit grant type, all communication takes place via browser redirects;
there is no secure back-channel like in the authorization code flow. This means
that the sensitive access token and the user’s data are more exposed to potential

attacks.

23

As it is depicted in figure [3] the implicit grant type is more suited to single-
page applications and native desktop applications, which cannot easily store the
client-secret on the back-end, and therefore, do not benefit as much from using

the authorization code grant type.

Resource Owner

/' QAuth Service Provider \
fclient Appication)

Service API

1.Authorization » (* lauthorization

Request

2. User Authorizes
Icallback \ Application >

<

3. Access Tokdn Granhrowser _}

4. Api Call » [api

5. Api Response

;} —/

Figure 3: Implicit Flow

2.5.4 Anatomy of Handshake in Implicit Flow

1. Authorization Request (GET from client to AS - /auth).

(a) response_type = token (indicates the implemented flow).

(b) client_id = s6BRkt (constitutes a public identifier of client).

24

(c) redirect_uri = http://client.example.com/callback (indicates the caller

application’s endpoint to the AS).
(d) state = xyz (CSRF token - should be treated as all common CSRF

tokens — unpredictable, not missing from request, being verified on
AS).

(e) scope = apil api2.read (contain the scope of authority, if does not
exist it should be assumed that is the default - this logic should be
implemented on AS).

*(Here let’s assume that the user gave the authorization from his browser)
2. Authorization Response (it is a redirect on redirect_uri sent on the previous
request that contains the access token as hashtag).

This response URL usually contains the access token’s value as a hash:

#access_token = 2Yoaa3af3sdfe

(a) token_type = example.
(b) expires_in = 3600.
(c) state = xyz (same value as in request above).
As it has already been mentioned, there are several other OAuth Grant

Types that are used for diverse purposes. In the scope of this master thesis

we will focus on the OAuth Code Grant, which is the most common flow to

authorize confidential clients.

25

3 OAuth Exploitation

Regarding how the authorization would be applied there are several potential
threats that could lead to authorization exploitation. The landscape of those
threats is well-defined according to RFC 6819, titled “OAuth 2.0 Threat Model
and Security Considerations”, and could be translated into specific attacks that
could be performed against OAuth flows. In this chapter, we will avoid repeating
the RFC, therefore our effort is focused on explaining a part of the potential
attacks utilized for creating the OAuth Vulnerability Scanner project that it is
introduced by this thesis. However, the aforementioned RFC has been studied
thoroughly to decide which of the attacks decided to be selected; The next
chapter will cover the attacks that are most relevant to the methodology. For
the convenience of the reader, we present a simplistic handshake for OAuth

Grant Flow, in figure [4] to use it as a reference point.

Resource A Authorization Resource
Client
Owner Server Server

Click Authorize Link _|

Client Id, Redirect URI, Scope, State Authorization

Endpoint

v

Show Login/Authorization Prompts

User Authenticates

A\ 4

Redirection | . Authorization Code, Scope, State
Endpoint

Client Id, Client Secret, Redirect URI, Authorization Code | Token

“| Endpoint

o
=
I
e

(V)
)

°
[e]

o
S

2

=]
©

4
=
o

=

=]
S
<

Access Token, Expiration, Refresh Token

API| Request, Access Token as Bearer

\ 4

API| Response

Client Id, Client Secret, Refresh Token

Token Expired?

Access Token, Expiration, Redirect URI, Refresh Token Token
Endpoint

API Request, Access Token as Bearer

Extension Grants
\ 4

API Response

Figure 4: Handshake analysis of Authorization Code Flow.
This resource was taken from https://levelup.gitconnected.com/
oauth-2-0-in-go-846b257d32b4

26

https://levelup.gitconnected.com/oauth-2-0-in-go-846b257d32b4
https://levelup.gitconnected.com/oauth-2-0-in-go-846b257d32b4

3.1

1.

OAuth Potential Flaws or Weaknesses

Flawed CSRF protection (State parameter).

Even if many components of the OAuth flows are optional, some of them
are strongly recommended unless there is an important reason not to use
them. Such an example is the state parameter. The latter is a value that
should ensure the protection of the messages from CSRF attacks that
could lead to access someone else resources. Therefore, it is up to the
Authorization Server to ensure that the parameter is cryptographically

strong enough and also non-repeatable.

. Flawed redirect_uri validation

Redirect URI is a crucial parameter as already mentioned in subsection
Its security is ensured in Authorization Server, so when a new client
is registered, the relevant redirect URI has to be defined in the registra-
tion process. So, if the Authorization Server does not validate properly
the redirect URI or it permits the presence of known anti-patterns (e.g.,
wildcards), that could lead to another vulnerability. The attacker could
be able to use an open redirect attack for obtaining the authorization
code from the 4th step of the handshake because it would potentially be

redirected to the attacker’s client.

Flawed scope validation

Scope is a parameter that ensures the exact resources and the privileges
on them that the client could potentially access. However it is up to
the Authorization Server to check this value between the steps of the
handshake. If this value is not validated properly, a malicious actor could

utilize a request to access resources with escalated privileges.

. Flawed Authorization Code’s validation

Auth code is a sensitive parameter which is used as the primary token
to issue a new access token. However it is up to Authorization Server
to ensure that this parameter is cryptographically non-repeatable and is
implemented by the security standards that the RFC proposes. Such
tokens should be one time tokens and to expire in a short time as the

relevant RFC about best practices suggests.

Flawed PKCE validation

27

As already mentioned, PKCE is a protective strategy to bind the session
in which a specific client requests an authorization code to the action
which the same client tries to redeem to an access token. Nevertheless,
this validation is partially implemented on the Authorization Server’s side,
so if the Authorization Server either accepts requests that do not contain
PKCE related parameters or improperly validates them, a potential risk

would be raised.

6. Flawed Nonce (OpenID) validation

Based on OpenID specs, nonce parameter is used to associate a client
session with an Id_token and to mitigate replay attacks. If there are no
measures to prevent replay, an attacker may be able to retrieve a valid
authorization request and potentially access/modify the user’s resources.
Authorization server accepts a request containing a nonce value and issues

a new auth code in response.

3.2 Summarizing selected attacks in OAuth
Nonce and Scope related attacks

Implementation of nonce and scope related attacks would be avoided because it
is obvious that the attacker could utilize them by an arbitrary value to exploit
the flaws already described in paragraphs [3] and [6] in subsection The only
issue in scope’s validation is to detect a valid scope, which would be accepted
from the server, in order to try and exploit the privileges. This is part of the
results’ observation of the passive scan of the implemented framework that will
be discussed in next chapter. Nonce attacks stand to the repeatable attempts
to use the same value and the inability of the server side to associate the same

repeated nonce value with different requests.

URL Redirect Attacks

Such attacks try to target the redirect URI parameter that was defined during
the registration of a new client. Each client requires a redirect URI for the
Authorization Server to respond to it with an authorization code after a valid
user’s response in authentication process. These attacks could follow known
patterns for exploiting a potential flaw in the definition of such URI.

1. Domain Whitelisting

28

If the OAuth provider allows clients to be configured without a specific
redirect_uri, and the only check is the domain part of the URL, as well as
ensuring that the scheme is either https or http and whitelisted, then all

of the subdomains of the configured domain could be an issue.

. Prefix matching

A wvalid registered URI could include https://domain.com/a, and
https://domain.com/abc could also be accepted.

. Arbitrary scheme

If the implementation supports custom schemes it could potentially be
another defective case which for the sake of the flexibility could be fol-
lowed by the native applications. In such a case, URL in the form of

x://domain.com/a are allowed.

. TLD Confusion

An attacker can bypass certain checks if a suitable top-level domain (TLD)
is specified. Someone can bypass the redirect_uri with a .com TLD by

replacing it with a suffix such as .com.mx .com.br.

. Encoding/Decoding attacks

An attacker could try to use a crafted Unicode in order to exploit the
question mark’s resolution against the server. For example, %ff or %bf
could be used to represent the ? symbol in a URL in order to exploit the

query parameter’s sign.

. Backslash separator’s trick

Another trick that could be used is the so-called slash separator trick
that can take advantage of the inconsistency between URL validator’s
and browser’s understanding of the / and \. The problem is the potential
that the parser has to resolve differently forward slash as path separator

in relation to the browser.

Authorization Code Attacks

We have already mentioned the PKCE’s importance in paragraph [5| in sub-
section [3.1] The lack of this value could lead either to CSRF attacks, if the

state parameter is improperly implemented, or in Authorization Code Injection

attacks.

29

1. Obtain access token with known client ID and client secret.

If an attacker have in their possession a valid authorization code plus a
client secret and client ID and either an improper or entirely lack of PKCE
protection in the OAuth server, they would be able to craft a request using

these parameters to redeem an access token.

2. Obtain access without known client ID and client secret (Authorization

Code Injection)

However, if the attacker is unable to obtain client ID and client secret
they would have another opportunity to obtain valid access. According to
RFC about Best Security Practices [18], in an authorization code injection
attack, the attacker attempts to inject a stolen authorization code into the
attacker’s own session with the client. Specifically, the aim is to associate

the attacker’s session at the client with the victim’s resources or identity.

This attack is useful if the attacker cannot exchange the authorization
code for an access token themselves. Hence, in case that the attacker
has already obtained an auth code that has been leaked from a past at-
tack then they can try to inject it in an session initiated by themselves.
In particular, they perform a regular OAuth authorization process with
the legitimate client on their device. After that, the attacker injects the
stolen authorization code in the response of the authorization server to
the legitimate client. Since this response is passing through the attacker’s
device, the attacker can use any tool that can intercept and manipulate
the authorization response to this end. Interestingly, the attacker does
not need to control the network. Then, the legitimate client sends the
code to the authorization server’s token endpoint along with the client’s
ID and secret and actual “redirect_uri”. The authorization server checks
the client’s secret regarding whether the code was issued to the particu-
lar client, and whether the actual redirect URI matches the “redirect_uri”
parameter. Finally, if all checks succeed the authorization server issues
access and other tokens to the client. If so, the attacker has associated
their session with the legitimate client with the victim’s resources and/or

identity.

3. Authorization Replay Attacks

Apart from PKCE, which if properly implemented can protect the session,
it is also the authorization code that should be implemented properly.

30

Replay attacks could occur if this parameter is not invalidated properly

after the first use or if it has a long term lifespan.

31

4 Real Cases of OAuth Exploitation

Many cases of real-world vulnerable scenarios have taken place in the past. This
indicates an increased probability for these to happen again and therefore the
implementations must be very restricted to the RFC best practices [18]. Several

of such attacks are detailed in the following.

4.1 Slack’s Case

A common OAuth vulnerability occurs when a developer improperly configures
or validates the redirect_uri parameter, allowing an attacker to steal the OAuth
tokens[28]. In 2013 the slack redirect URI restrictions were found that could
be bypassed by appending anything to a whitelisted redirect_uri parameter. In
other words, Slack was only validating the beginning of the redirect_uri pa-
rameter. If a developer registered a new application with Slack and whitelisted
https://www.test_domain.com an attacker could append a value to the URL and
cause the redirect to go somewhere unintended. Therefore, if the attacker modi-
fying the URL to pass redirect_uri= https://attacker.com would be rejected but
passing redirect_uri= https://www.attacker.com.mx would be accepted.

To exploit it, the attacker only has to create a matching subdomain on their
malicious site. If a targeted user visits the malicious modified URL, Slack sends
the OAuth token to the attacker’s site. An attacker could invoke the request on
behalf of the targeted victim by attempting a CSRF attack.

Conclusion: Vulnerabilities in which the redirect_uri has not been strictly
checked are a common OAuth misconfiguration. Sometimes the vulnerability is
the result of an application registering a domain such as *.test_domain.com as an
acceptable redirect_uri. Other times [I], it is the result of a resource server not
performing a strict check on the beginning and end of the redirect_uri parameter.

In this example it was the latter.

4.2 NPM Credentials OAuth Breach

As this case indicates, OAuth related attacks can be very powerful since they
can abuse other parties as part of supply chain attacks. Such a case [16] was the
steal of user credentials for 100.000 NPM (Node Package Manager) users when
a prior attack leaked OAuth access tokens for Heroku and Travis CI. The attack
chain involved the attacker abusing the OAuth tokens to exfiltrate private NPM

32

repositories containing AWS access keys, and subsequently leveraging them to
gain unauthorized access to the registry’s infrastructure.

Heroku has since acknowledged that the theft of GitHub integration OAuth
tokens further involved unauthorized access to an internal customer database,
prompting the company to reset all user passwords.

Conclusion: Since OAuth credentials are used for service authorization, they
are critical and must be kept secret. Any potential compromise could lead to
immediate actions like the instant revocation of such credentials. The afore-
mentioned attack is not exactly a case of misconfiguration in OAuth, but can
present different angles of security in a supply chain attack that involves OAuth

credential stealing as modern attacks try to do.

4.3 Twitter’s cases

Two cases reported for OAuth’s redirect_uri improper validation in Twitter
Periscope mobile application which would potentially lead to account takeover
and another one that could lead to unauthorized access to Microsoft Outlook
victim’s emails. The first [2] Periscope’s case disclosed the victim’s access token
which leads to an account take over because of the existence of a path traversal
vulnerability and an open redirect one.

Regarding the second case[I7] of Microsoft integration with Twitter, the is-
sue was that Microsoft accepts all the twitter’s subdomains as potential clients
which is wrong. Under these circumstances, the attacker could handle one of
Twitter’s subdomain, in this case cards.twitter.com, which is used for adver-
tisement purposes and can redirect to a specific landing page of the advertiser
(e.g., https://test.com). Therefore, if the attacker tries to perform a CSRF
attack by using a redirect_uri of https://cards.twitter.com/advertisment_
related_path%2523 and a JavaScript script that uses the ”location.hash” API
in ”test.com”, the attacker could potentially obtain an access token and use it to
access the victim’s resources, even if the victim’s email address is also included
in the scope parameter of the CSRFed URL.

Conclusion: Both vulnerabilities existed due to improper redirect_uri valida-
tion but they became exploitable due to the existence of other vulnerabilities,
that is open redirects, which was the same in both cases. Redirect URI should
be ensured to follow the best practices, do not accept wildcards or other anti-
patterns in any of the parts of the URL, because exploitation could take place

in different places.

33

https://cards.twitter.com/advertisment_related_path%2523
https://cards.twitter.com/advertisment_related_path%2523

5 The Research Methodology

Taking all this information (relevant RFC, upcoming attacks, etc) under con-
sideration it is reasonable to think that having a tool that can detect such mis-
configurations would be valuable for developers and administrators of OAuth
servers in avoiding relevant vulnerabilities. The relevant work about best prac-
tices regarding the protocol was also taken into account along with other RFCs
that would help the development of such a tool. That is, it is considered rea-
sonable for an up-to-date OAuth Server to follow the best practices and also be
consistent with the RFC 8414, which describes a feature for OAuth in which
servers advertise their Metadata.

The followed methodology can be divided in two parts.

Observation: The different implementations of the RFCs were collected and
tested to make patterns of them that were used in the implementation given
in [26]. From what we managed to patternize, we made the decision about the
attacks that could potentially be easier to automate.

Experimental: We tried to perform the applied knowledge of the described
attacks as they are mentioned in the RFC threat model document, in an attempt
to patternize and to automate some of the most important attacks.

The systems that were used as testbed were six popular OAuth Servers.

These servers are summarized in table [I]

H Server Stars Git URL Type H
Keycloak 13.8k Keycloak Open Source
Casdoor 4.3k |Casdoor Open Source

Glewlwyd 398 Glewlwyd Open Source
al2n-server 345 al2n-server Open Source
Omejdnr 7 Omejdn Open Source
Okta N/A |Okta Enterprise

Table 1: Popularity of OAuth Servers which were used as testbed

When experimenting with the aforementioned servers, we tried to identify
at first if they are compliant to the RFCs that we rely on in order to form
the attacks. Moreover, differences in implementations and discrepancies which
exist may cause interoperability issues which it is very common phenomenon in
OAuth since it is still a prototype and it is up to anyone to follow it . Because

of that, we managed to automate the processes only for three of the servers

34

https://github.com/keycloak/keycloak
https://github.com/casdoor/casdoor
https://github.com/babelouest/glewlwyd
https://github.com/curveball/a12n-server
https://github.com/Fraunhofer-AISEC/omejdn-server
https://www.okta.com/

(Keycloak, Casdoor, OKTA), which also are the most popular ones.

The attacks were selected by the ease of their implementation and their
explanation have already been analyzed in a previous subsection [3.2] For the
sake of the experiments, we used a demo environment of a dummy malicious
client application and each of several OAuth implementations, as the system
under test. Moreover, the decision about the Authorization Code Flow has
been taken because it is the most common case of the flow especially on three

tier web applications’ implementation.

35

6 Implementation

The actual objective of this thesis was to create a new framework that can
detect several security issues regarding OAuth misconfigurations in order to aid
the developers in configuring properly and securely such servers.

There were several implementation related decisions that we have to address,
including the language, the underlying technologies, and more. In this chapter
we detail all such decisions that we have to deal with for finalizing a basic
implementation. The project is publicly accessible to a Github repository [25]

and the contribution to it is more than welcome.

6.1 Architectural Structure

OAuth Vulnerability Scanner is a framework that is implemented in Python
language because of its simplicity, highly compatibility, and ease of its use. The
framework is organized in a modular base in order to be extendable, maintain-
able, and easily understandable. The implementation can be represented in a
high level as in figure

OAuthVulnerability
scanner

QAuth Server
(Under Test)

Actor

Malicious Client l
(Helper) J'

Figure 5: OAuthVulnerabilityScanner - the involved parties

The framework (OAuthVulnerabilityScanner) acts as the main point which
starts the passive and active scans against the tested OAuth Server. The scans

require the involvement of another party (Malicious Client) which acts as helper

36

of OAuthVulnerability scanner in order to trick the OAuthServer to trust them.

6.2 Framework implementation details

OAuthVulnerabilityScanner can be explained better by looking at the entities
that is composed as depicted in figure [6]

OAuth Vulnerability Scanner Malicious Client

\dentficaton —Extends >{ Passive Scanner |----
Manager

Call Back Handler

i

i

|

I

i

|

, , i
Plugin Handler ——F_xtends> Active Scanner |
i

I

I

i

i

i

|

I

i — Usg---=--=-=-=+

Figure 6: Entity Diagram

Specifically, the framework comprises two main modules: the Identification
Manager and the Plugin Handler which are the abstract classes which are con-
taining the whole functionality for passive and active scanning features. Iden-
tification Manager uses internally the passive scanner’s module and the Plugin
handler uses the active scanner’s one. Both of them are consuming the Re-
porter’s module which is responsible to report the results of the scans that were
selected by the user. The other involved party, namely the Malicious Client,
runs a python Flask server and uses an instance of the reporter to collect the

results from its side.

37

6.3 Implemented Features

The framework’s features are modular and function as outlined in subsection
0.2l

6.3.1 Passive Scanning

Passive scanning features run during the enumeration phase to retrieve useful

information about the targeted OAuth Server. These features are depicted in

figure
1. Discover well-known endpoint

Supported OAuth Servers are those that are RFC 8414 compliant. Accord-
ing to this RFC, OAuth Servers should advertise their details to clients so
that the clients can use this information appropriately. Thus, well-known
endpoint is the place that this information can be retrieved if the OAuth
Server implements it. The framework uses a dictionary, which was created
during the development of the tool observing different implementations
that are compliant to it, to detect the correct well-known endpoint. The
information that is described there contains the authorization endpoint,
the token endpoint, the supported grant types, the types of scopes, the
introspection endpoint if OpenlID is supported, and many more. The list
of the extracted attributes is defined in the attr.1lst under the resources

directory.

2. Discover JWKS

The JSON Web Key Set (JWKS) is a set of keys containing the public keys
used to verify any JSON Web Token (JWT) issued by the authorization
server and signed using SHA256 with RSA (RS256) signing algorithm.
JWKS is described thoroughly in the RFC 7517, the enumeration in this
feature is to detect other potential endpoints that this information could
be presented if it is not in the .well-know retrieved information. An actual
case of this enumeration is the OKTA’s case that JWKS endpoint is not
contained in the well-known results. This info can be utilized to perform

attacks in JWTs which potentially could be a part of a future feature.

3. Discover OpenlID support

It is very common for OAuth Servers also to be OpenID Connect providers.

OpenID Connect is an authentication layer built on OAuth 2.0. The au-

38

thorization server (or “OpenlD provider” in this case) contains informa-
tion about a person. OAuth is used to protect this information, allowing
the client to access it on behalf of a person. To authorize the dissemina-
tion of information, the person is authenticated and the OpenID Provider
provides the client application with details including the identity of the
person and the time of authentication. If OAuth Server supports OpenlID
connect, the attack surface is expanding and other attacks that target the

OpenID implementation can be performed.

. Discover other interesting endpoints

As already mentioned in paragraph [5|in section [5] it is up to implementer
what would be implemented from the protocol. Some OAuth Servers
would implement more endpoints, and therefore expose useful informa-
tion that an attacker can use in an attempt to attack the system. Such
endpoints could be used for a normal process of the OAuth Server as well
but its presence could also be helpful for a threat actor. For this purpose,
this part of enumeration tries to identify such endpoints using a dictio-
nary that could easily extend with future discoveries. For example, we
are able to access the swagger documentation of a server and to have full
knowledge about the implemented endpoints or to have easier access to a
considered public piece of information (e.g., client ids) which would not

be so easy to find otherwise.

39

discover well-known

discover jwks

Passive Scanning

Ust

enumerate interesting

-----{> discover OpenlD support === =====-===-=------4Jse-----

endpoints

Reporter

Use

Uge

Us

Open Redirect Scan

O A =
=
=

B ity |-

Use

Active Scanning

Use

Code Replay Scan

Client!D Fuzzing

Nonce Scan

Figure 7: Implemented features

40

6.3.2 Active Scanning

The background of the flaws and the relevant attacks have already been covered
in subsections and so in this subsection we will explain how the scanner
tries to identify these flaws. The absence or the presence of specified parameters,
the tolerance of an implementation to the absence of a specific parameter, the
system’s response in specific crafted requests are some of the applied patterns

to address the corresponding issues.

1. Open Redirect Scan

For this scan, we used an existing Github open source project [22] which
was modified to fit in our case. The changes that we applied were mostly
to reduce the manual input of session cookies, which is a requirement for
the tool to run. To this end, we provide the already captured cookie from
the session to the scanner to proceed without any other user involvement.

This scan tries to fuzz the redirect URL to detect potential open redirects.

2. PKCE Scan

It is a suite of 3 test scenarios and it targets to find how the system
responds in a PKCE which uses plain text as a challenge method. This
is feasible performing two requests per test scenario and comparing the
responses. The first request is a normal and expected request and the
second one is as it is described in each of the test scenarios. By comparing
the responses of those requests we are able to detect if the system is
actually protected by PKCE or if this protection could be bypassed by
sending the same values for code verifier and code challenge, which means
that either the system does not mandate the PKCE presence or it is not
evaluated properly. Such a case could be that plain-text is an accepted
hashing method which cannot protect the confidentiality of the sending

value of the code verifier on the handshake’s first step.

3. Scope Scan

This scan tries to identify if a predefined and improper scope could be
used into a request in order to check if the server validates the scope value

in general.

4. Code Replay Scan

This scan attempts to obtain a valid auth code providing the actual cre-

dentials, which are required for this test in settings.json and to replay

41

it to redeem a new access token from it. If doing so, it is a serious risk
since such primary tokens are one time and have to be invalidated after
their first use to prevent such kind of actions that could be used to create

many access tokens.

5. Nonce Scan

As already mentioned in paragraph [6] in subsection [3.I] nonce scan is a
parameter to protect the client side mostly. Even if it is up to the client
to implement its part properly in an OpenlD handshake, it could also
be partially protected - even if it is not a responsibility of the server to
protect it. Therefore, the OAuth server, which in this case also should
act as an OpenID Connect provider, could prevent the usage of the same
nonce value continuously. The implemented scan tries to use the same
predefined nonce value in two different initialization requests to detect if
the server allows the nonce replay. Another test that also is implemented

tries nonce=’"’ value to see if the server evaluates the nonce value or not.

6. ClientID Fuzzing

This feature uses the known fuzzer https://wfuzz.readthedocs.io/|
and tries to enumerate the OAuth Server to find some actual client_ids.
Even if this information is not considered as private, it requires enumera-
tion to be found and so it is a difficult task to find all client ids. However,
if such ids where to be found, the system’s security wouldn’t be directly

compromised but it would be helpful for the attacker to proceed further.

6.3.3 Capabilities and the modes of operation

The scanner provides several capabilities in order to be easier for anyone who
works in tool’s further development, or on its debugging or for a tester who
attempts to provide a specific configuration which does not apply in an already
known case.

The scanner uses as input the settings. json file which describes the min-
imum required information for the scanner to work. It contains the base_url
which is the OAuth server’s domain, and also could contain client credentials
or/and user credentials in order for the relevant active scans which are required
to proceed. In case of navigation mode, it can contain the firefox _profile
field which is used to resemble an actual user and to avoid the SSO blocking as

fraud because of the automated way that Selenium bot works. The selection of

42

https://wfuzz.readthedocs.io/

the user’s profile is a feature of Selenium that the scanner supports and therefore
provides the argument to the selenium driver accordingly. If the target is one of
the known cases (keycloak,casdoor, okta) it is suggested to use oauth_vendor
field as well for possibly having better scanning results.

Regarding the supported modes of operations, the scanner covers two main
types as it has already been mentioned in subsections and Passive
scanning, using type p argument, runs the whole suite of passive scans to pro-
duce the intermediate file config. json, which retains the information for the
following scans. After the first successful passive scan, the required information
has been recorded into the config. json file and passive re-scan of the target
can be omitted.

After this required step of passive scan, the scanner has the ability to start
scanning with the active scan mode type a with different values, either to run
all the scans providing mode=ALL or a single scan choice which can be found
providing --help argument in CLI.

The scanner also supports the navigation=selenium mode which is used
to proceed on authentication constraints, so someone could use it to proceed
in case that authentication applies differently from user credentials (e.g SSO)
or the server is not in the supported ones. As mentioned, Selenium tries to
resemble an actual user action to authorize the user to the OAuth server and
to become able to proceed to the next steps of the handshake.

A couple features more are the log argument, which gives the capability
to the tool to create graceful logs and the proxy, which enables the scanner
to proxy the requests through an intermediate system and it can be used for
debugging and development purposes.

Furthermore, some other options are available to the users. Setting the
avoid_replays argument, enforces the issuing of a new authorization token for
every request and the pkce which calculates and applies PKCE in the handshake

properly if it is a strong requirement from the server’s side.

43

6.3.4 Known Limitations

Open Redirect Scan feature is only supported without the use of navigation
mode. This is a known limitation because the implemented scanner lacks the
capability to capture the cookie session when runs in navigation mode and this
is a limitation of Selenium driver which does not provide this functionality.

Casdoor in navigation=selenium mode returns false positive results. It
can be used without navigation to get the actual results.

Fuzzing Client returns false positives in casdoor’s case because it always
returns the same JS response which performs further XMLHttpRequest (XHR)
calls. Since the status is coming as a result of these XHR calls the actual status
cannot be detected correctly.

OAuth Vendor field in settings. json config can currently have “Keycloak”
or “Casdoor” as values or to be omitted, since only the two servers have already

been implemented in the tool.

6.3.5 Environment Setup

If someone needs to run the test scenarios, at first they should deploy and con-
figure the OAuth Servers. For this reason, the repository includes six different
OAuth Servers which can run either through docker-compose or with init.sh
which is placed under the OAuth Server’s directory. For our convenience, we
used init.sh during the development process in order to avoid continuously con-
figuring the environment on docker interruption.

Activating the virtual environment:
python -m venv /<projects_dir>/0AuthVulnerabilityScanner/0OAuthScanner/venv

source venv/bin/activate

Moreover, the tester has to start the malicious client which is configured
to run in port 4200 by default, by starting the malicious_client.py which is
under the scanner’s directory. The malicious client can be configured changing
the port number at the end of the relevant file.

Finally, the user can run the desirable tests by installing the framework’s
dependencies and running it. It is suggested to use a virtual environment for

avoiding polluting the system. To do so, one can follow the next steps accord-

ingly:

pip3 install -r requirements

44

Following, access the local or remote servers’ environments to configure them

properly and use the relevant configuration as input in settings. json
6.3.6 Visualization of attacks and potential updates for future de-
velopment

Figure [§] depicts the results of our research about the selected risk categories
(gray) the relevant attacks that could potentially happen (green/red) and po-

tential future upgrades of the framework (blue).

45

(ueds anissed wody 106 Apeadie 3oyl 1ANTSHM[

Wwouy - S 32143 03 uayo3 3y} abueyd o3 Ai3 pue

Aax 21qnd 3y} puly) 32338 UOISNHU0D 9STSH
(Buinss| uayoy

Ay $53208 U PasN 3 31) SH2e33y Pa3elay LM

351) paulyapaid e Aq Burydayd pIoAe pue Jusn2
40 1ndul au3 Auo s1oadsal Jaasas Ajeluaioed)

auou=Hje
(14n) suaxoi ssadoe Joj siajaweled (312ndwi/apoa - usko] 03 apod wouy abueyd)
ﬁm:wxo« SRR B I pajuawbel) A pauawa)dull 31o11dw) seH ¢pabuey aq adf3"asuodsal aui PINod

Ae3ie n_awu;_«%b:m BuoI}S J¥SD SeH
@uaﬁu 26D _l._ £351%3 3DMd s20Q

ssedAg uolzesljuayine Apeiualod pazepljea Aluadodw SanjeA"lwe

_ s¥2e33y Aeiday 03 pea pined .m:w_“_._._w“_.cn_ulaag 22uou U] uoizepijea Jadoid

$)2e3}E JaY10 03 Pasn ag PINOD
palidxaun aJe Yalym sapo3 pasea) Ajjelualod

@mv_c# SS3228 MBU 3NSS| PINOD A)RIUa104 i3)1qeherday

953 Alld 0}
spea) A))e13ua304 (ueds aaissed woly pauleqo
uaaq aAey Yolym sadoas pajioddns jsuiebe)

weJed 338315

323uu0d guado

LAWI33H) 3ious e se

& @nea adods ul uoizepiea Jadodd

uolje)jess3 abajinlig 03 pea)
p1nod Apeizualod (anjea pauljepaid jsuiebe)

Luolzepnea
@uwuuu 32341p2a4 uado 03 a)gesauInA A)el3ualod THN 32241p24 JUIDI4INSU SeyY Jo/pue
spaeap)im Buisn AQ dn 3as 42A43S Y3INYO Y31 S|

14N 32241p2y

ﬁ s}2e33e uoi3dalul 3P0 UOIFRZIIOYINY

(& 30d ploAe uoieandde p)nod)
Aioyebligo 33%d st

_ 21 %2e33y 3buz|leyD UssoyD IONd

Implemented and future attacks

Figure 8

46

7 Results

Finalizing the research and the implementation of OAuthVulnerabilityScanner,

we ran it against the servers included in table

7.1 Keycloak
7.1.1 Server Setup and Configuration of the Tool

The server setup that is followed was intentionally misconfigured for the scanner
to present some results. We configured a Redirect URI which uses a wild card,
which as already have been mentioned in paragraph [] in subsection is a

known anti-pattern. This situation is depicted in figure [9

Clients > myclient

Myclient &

settings Keys Roles Client Scopes @ Mappers & Scope @ Revocation Sessions @ Offline Access @ Installation @

ClientID @ myclient |

Name @ myclient

Description @

Enabled & m

Always Display in Console © OFF
Consent Required & OFF
Login Theme @ ~
Client Protocol @ openid-connect >
Access Type @ confidential | ~
Standard Flow Enabled @ m
Implicit Flow Enabled @ OFF
Direct Access Grants Enabled © m
Service Accounts Enabled & OFF
OAuth 2.0 Device Autherization OFF

Grant Enabled ©

0IDC CIBA Grant Enabled © OFF
Authorization Enabled © OFF
Front Channel Logout @ OFF
Root URL@ http://malserver.com:4200/*
Valid Redirect URIs © http://malserver.com:4200/ +

Figure 9: Server’s setup

47

Clients » myclient

Myclient

Settings Credentials Keys Roles Client Scopes Mappers Scope

Client Authenticator Client Id and Secret hd

Secret X Ff415H2MIiAAdx A IKPE

Registration access token

Figure 10: Server’s setup - credentials

We are using the client Id and credentials in order to properly configure the
scanner to be able to replicate a malicious client. Moreover, in the config given
in figure [I1], we provide all the required information, as they are depicted in the
figures 9] and for the framework to be able to create requests that require
authentication by applying the admin credentials in the file.

"client id": L L

"client secret LFf415 Adxp IgeQkPE",
"base_u
"username
"password":
"oauth_vendor
"firefox profile

Figure 11: Configuration of the tool for Keycloak

48

7.1.2 Passive Scanning

Results from Keycloak’s passive scanning:

Figure 12: Passive Scanning Results

As it is presented in the figure the scanner detected all the relevant
information trying the “well-known” endpoint. As observed from figure the
scanner also found that the server supports OpenlD and managed to use non-
navigation mode producing the relevant cookies which were used to authenticate
the user’s session. Moreover, from the results we infer other useful information
that could be used for further testing beyond the features of the scanner. Our

current scanner implementation does not fully utilize all available information

49

to identify all potential vulnerabilities. Further considerations regarding these
vulnerabilities are discussed in section

For example, figure [I2] presents the JWKSs endpoint. Knowing the JWKS
endpoint of an OAuth server can potentially allow an attacker to learn about
the keys that are used by server to sign and verify JWTs. This information can
be used in a number of ways to attack the OAuth server or its clients.

One potential threat is that an attacker could use this information to im-
personate a client and obtain access to protected resources. For example, if an
attacker can obtain a JWT signed by the OAuth server, they can use it to access
resources on behalf of a legitimate client. This could allow the attacker to gain
unauthorized access to sensitive data or perform actions on behalf of the client.

Another potential threat is that an attacker could use the JWKS endpoint
to learn about vulnerabilities in the server’s cryptographic keys. For example,
if the keys are weak or have been compromised, an attacker could potentially
use this information to launch an attack on the server or its clients.

Information exposure about registration endpoint would potentially be-
come an issue. Knowing the registration endpoint can potentially allow to an
attacker to register new client applications with the server. This can be a serious
threat, as it could allow to the attacker to gain access to protected resources or
perform actions on behalf of the server. An attacker could use this information
to register a malicious client application that is designed to capture sensitive
data or perform unauthorized actions (it can be an app which appears legiti-
mate, but actually captures user credentials or access tokens and sends them
to the attacker). In another scenario, the attacker could use the registration
endpoint to register multiple client apps, potentially overwhelming the server
with requests and causing a Denial of Service (DoS) attack.

Also the presence of the introspection endpoint can potentially allow
an attacker to obtain information about JWTs that are used by the server.
Additionally the userinfo endpoint of an OAuth server can potentially al-
low an attacker to obtain information about users who are registered with the
server.This can be a serious threat, as it could allow the attacker to gain ac-
cess to sensitive personal information or perform actions on behalf of the user.
Utilizing information for a particular user like name, email address etc could be

used to launch targeted phising attacks or to impersonate the user.

a0

7.1.3 Active Scanning

Figure[13]depicts the CLI in action. It runs both passive and active types of scan
and uses all the tests from the active scan suite. The earlier part of the results
states that the scanner started passive scanning and the results already have
been presented in subsection Next, the scanner indicates the beginning

of active scanning, which contains all the results from the running test of the

test suite.

Figure 13: Active Scanning Results

o1

Figure 14: Open Redirect Results

Table [2] illustrates the results of active scanning as they depicted in figure

1B}

H Scan Suite

Results

PKCE Scan

Potentially Vulnerable or Not Required

Auth Replay Scan

Not Vulnerable

Nonce Scan

Vulnerable

Scope Scan

Not Vulnerable

Client Fuzzing

Detected 3 Client Ids

Table 2: Keycloak’s active scanning

The results depicted in figure [13| demonstrate that PKCE scan successfully
run and the reported that either the PKCE protection is not enabled and so
the system is vulnerable to PKCE downgrade attacks in subsection or the
PKCE is not supported at all. Replay attacks in ”code” were not applicable
which means that the server is not vulnerable to Authorization Replay Attacks
as they have been presented in paragraph [3|in subsection Additionally the

Nonce values are both allowed to be reused and actually are not evaluated at all

92

from the server. A nonce replay attack is a type of security threat in which an
attacker intercepts a request that includes a nonce (a randomly generated value
that is used to prevent replay attacks) and re-sends the request with the same
nonce. This can allow the attacker to gain unauthorized access to a system or
perform actions on behalf of the victim.

To prevent nonce replay attacks, OAuth servers can use techniques such as
server-side nonce tracking and nonce expiration to ensure that nonces are only
used once and are not valid for an extended period of time. It is also important
for OAuth clients to verify the nonce value received in a response to ensure that
it matches the nonce value sent in the request.

Moreover, the rest of the findings presented in figure show that scope
scan are not applicable in random scopes (far from the supported ones) to
escalate privileges to a scope beyond of the server’s supported ones. Finally,
scanner managed to enumerate three clients by using the method which has
been described in paragraph [] in subsection [6.3.2] Client Id has been described
in subsection an attacker with knowledge of the client id can use it to
impersonate the legitimate client and request access to protected resources on
behalf of the user. If the OAuth server does not properly verify the client’s
identity, the attacker may be able to gain access to the user’s resources without
their knowledge or consent.

To prevent this type of attack, it is important for OAuth servers to imple-
ment proper authentication and authorization measures to verify the identity of
the client before granting access to protected resources. This may include using
secure communication channels and requiring the client to provide additional
authentication credentials, such as a client secret or an access token.

The redirect URI was detected as a vulnerable one as we expected since it
was intentionally configured beyond the best practices and it detected. The
results that are presented in figure [14] and summarized in table 3| are relevant to
the final part of the report, which presents partial results of open redirect scan.
If an OAuth system is vulnerable to open redirects, an attacker can potentially
intercept a request and redirect the user to a malicious website after they have
granted access to their resources. This can allow the attacker to gain access to
the user’s resources or steal sensitive information.

To prevent open redirect attacks, it is important for OAuth servers to prop-
erly validate redirect URLs and ensure that they are only redirecting to trusted
and authorized locations. This may include implementing measures such as

URL whitelisting and using secure communication channels. It is also impor-

93

tant for OAuth clients to properly validate redirect URLs and ensure that they

are not being redirected to malicious websites.

H OpenRedirect Scan H

http://malserver.com:4200/
http://malserver.com:4200/callback
http://malserver.com:4200/callbackp1337
http://malserver.com:4200/callback../
http://malserver.com:4200/callback..;/
http://malserver.com:4200/callback. /
http://malserver.com:4200/callback%2e%2e

Table 3: Keycloak’s open redirect results

o4

7.2 Casdoor
7.2.1 Server Setup and Configuration of the Tool

Following, as depicted in figure we present an intentionally misconfigured

Casdoor server which was used in the tests.

Name @ myclient
Display name (3 : myclient
Logo 3 :
URL ®: ¢ httpsi/ledn.casdoor.com/logo/casdoor-logo_1185x256.png
Preview: ' *
§ Casdoor
Home @ @
Description (@ :
Qrganization (2 : built-in
Client ID &) myclient
Client secret &) myclient
cent® cert-built-in

Redirect URLs @ :
Redirect URLs iG]

Redirect URL

@ hitp:/llocalhost:9000/callback

@ hitp:/imalserver.com:4200/*

Figure 15: Casdoor configuration

Figure [16] illustrates the relevant configuration that was used at tool’s side

to run tests for the Casdoor’s case:

Figure 16: Configuration of the Tool for Casdoor

99

7.2.2 Passive Scanning

The results of passive scanning present the OAuth Server’s domain and the
important endpoints, grant types which are supported and the relevant scopes
accordingly. As we notice in figure the server also supports OpenlID Connect
and does not support PKCE without providing further configuration. Addition-
ally, there are potential attacks in paragraph in subsection that are
outside the scope of the current implementation but could be carried out using
the information in figure

Figure 17: Casdoor Passive Scanning results

7.2.3 Active Scanning

Regarding the results presented in this subsection, we used the same approach
as previously by scanning Casdoor server both with passive and active scanning
using all suites for the active one. As depicted in figure [18 on the upper part
of it we can see the passive scan which identifies all the information that was
reported in the previous section. Furthermore, we notice that the code challenge
method and registration endpoint have not been discovered, which means that

most probably PKCE is not a default feature for this server and the server

96

potentially has not an automatic registration endpoint for clients.

Figure 18: Casdoor Active Scanning results

As we notice from the figure above we see that PKCE validations don’t pass
the test so the suite is failing for all the provided tests (we will retry later with
navigation mode), also Code Replay scan suggests to run it again in navigation
mode. Also the results which are from Nonce Scan and Scope Scan indicate
that the Server is vulnerable or misconfigured for both of these cases.

From the results of upper part of figure[I§]it is also discovered that the server
has an endpoint that potentially is an interesting one (figure . We inspected
the endpoint and we found that it contains information about the registered
clients, therefore an attacker who is able to access this endpoint could be able

to enumerate further the OAuth Server’s clients.

o7

C ® localhost:8000/api/get-applications

~24721:11:05+03:00",

yclient”,
cdn. casdoor . con/Logo/casdoor -ogo_1185x256.png" ,

“organization”: "built-in",
cert’: "cert-built-in",
enablePassword” : true,
enableSignUp”: true,
"enablesigninsession”: false,
“enableCodesignin": false,

“prompted”: false,
“rule": "Randon”

“name": "Username",
“visible": true
“required"
“prompted”: false,
“rule": "None"

“name”: "Display name",
“visible': true,
“required”: true,
“prompted”: false,
“rule": "None"

“name”: "Confirm password",
“visible": true,
“reauired”: true.

Figure 19: Casdoor’s endpoint which exposes the clients

As shown in figure and as it has already been spotted in the known issues
section, Casdoor returns false positives in the client’s fuzzing tests. Moreover,
open redirect scan did not provided the expected results because the cookie
cannot be captured correctly after the first attempt.

Figure 20: Casdoor’s active scanning rest results

Following, as it is represented in figure we tried to use the navigator’s
mode to get actual results from the auth code’s replay scan. For this reason,
we use --navigation=selenium argument in the CLI and selenium spawned
up a new window which requests authentication in order to proceed with the

process. As we provided the correct credentials, we received the results which

98

show that Code replay is not feasible (figure .

x % O D localhsts0os auth/authorize?client id=myclientascopesprofilesemail openidaresponse_type - ¥ ©® =

Figure 22: Casdoor replay scan results

Figure 23: Casdoor PKCE scan results

Figure shows the results from Casdoor PKCE scanning which indicate
that the server is either vulnerable on PKCE related attacks or the value is not
evaluated from the server by default.

We can spot that even if we are unable to enumerate because of the known
issue in Casdoor, we got the results from the api-clients API which was discov-
ered through passive scanning (figure .

Table (4] provides a summary of the results for Casdoor Server.

99

Scan Suite

Results

|

PKCE Scan

Potentially Vulnerable or Not Required

Auth Replay Scan

Not Vulnerable

Nonce Scan

Vulnerable

Scope Scan

Vulnerable

Client Fuzzing

False Positives

Open Redirect

Partial Results

Table 4: Active scanning for Casdoor

60

7.3 OKTA

As illustrated in figures and we configured a client which will be used
in OAuth’s Code Flow. In this case, the OAuth Code Flow is intentionally
configured to allow wildcards as redirect URIs in order to detect this redirect

vulnerability through our scanner.

7.3.1 Server Setup and Configuration of the Tool

Client 1D 00admIcazteTFLoWx5AT
Public identifier for the client that is required for
flows
Client authentication Client secret
Public key / Private key
Proof Key for Code Exchange (PKCE) Require PKCE as additional verification
CLIENT SECRETS
Creationdate Secret Status
Apro, 2022 Nz CCaGRHRAMT-m rl & B
General Settings Edit

APPLICATION

App integration name My Web App
Application type Web
Grant type Client acting on behalf of itself

Clies entials

Client acting on behalf of a user

Figure 24: OKTA’s setup client config - client

LOGIN

Sign-in redirect URIs @ Allow wildcard * in login URI redirect.
https://fexample-app.com/redirect
nttp:/fmalserver.com:4200/myapp

Sign-out redirect URIs @ nttp:/flocalhost:8080

Login initiated by App Only

Initiate login URI @

Figure 25: OKTA’s setup client config - redirect_uri

61

As depicted in figure the same configuration was used to properly config-
ure the tool in order to be aware of the client’s credentials. As shown in figure
[26] the configuration also uses the extra_args attribute which allows for the
explicit definition of values that are needed to be taken into account from the
tool during the tests. To this end, we explicitly request the desired scope that
we need to use and to configure the redirect_uri as a different value from the

default one.

Figure 26: Tools configuration for OKTA

62

7.3.2 Passive Scanning

Proceeding to the passive scanning we obtained the results as the figures [27] and
indicate. We tried to enumerate, and managed to find all the information
about the supported types, grants, and scopes. Even if the well-known endpoint
did not contain the jwks_uri, we managed to search thoroughly and to detect it
by trying potential endpoints that would contain this info which are related to
this type of passive scan, using a dictionary into resources directory. Addition-
ally, there are potential attacks in paragraph in subsection that are
outside the scope of the current implementation but could be carried out using

the information in figure

Figure 27: OKTA passive scanning results in CLI

63

Figure 28: OKTA passive scanning results in config.json

64

7.3.3 Active Scanning

During active scanning, we used all active scanning test suites as they are being
presented in the figures and Precisely, the mode that we used to do
so was ——navigation=selenium and therefore we managed to run all the tests.
This was mandatory in the case of OKTA as it has already been mentioned
in paragraph in subsection [6.3.3] since the account that was used for the
tests to run was an account that had signed up with SSO. Therefore, in order
to proceed with the proper authentication the Selenium agent was employed.

The results of the PKCE scan [29 show that the parameter is not supported
on the server by the specific configuration that we applied for. It means that
the server always applies this technique to secure the authorization code flow
and to prevent the attacker from being able to exchange an authorization code
for an access token if they somehow manage to intercept the authorization code.

Regarding the rest of the results, as expected, OKTA is not vulnerable to
authorization_code replay attacks as it depicted in figure [30] Nonce parameter
is not properly evaluated in an OpenlD Flow, which means that it allows the
re-usability of this parameter. Nonce replay refers to the scenario where an
attacker intercepts an access token and attempts to use it to gain access to
protected resources. Nonce replay can be prevented by using techniques such
as nonce validation, in which the authorization server checks to ensure that the
nonce (a random value that is included in the authorization request) has not
been used before.

Finally, the results about scope scanning, figure are indicating that the
server is not vulnerable to random scope attacks. Successfully, the scanner iden-
tified a client id which was discovered by using a dictionary which contains the
client id that is presented in figure [31] Also, as expected we have not obtained
any result about open redirect scan since it requires the usage of cookies, which
was unachievable to be obtained from Selenium’s session.

The results presented in subsection about Active Scanning are summa-
rized in table

65

Figure 30: OKTA’s code replay and nonce scanning results

66

Figure 31: OKTA’s client fuzzing, scope scanning and open redirect results

H Scan Suite Results H
PKCE Scan Not Vulnerable
Auth Replay Scan | Not Vulnerable
Nonce Scan Vulnerable
Scope Scan Not Vulnerable
Client Fuzzing Detected 1 client
Open Redirect Not Supported

Table 5: Active scanning for OKTA

67

7.4 The rest of the Servers

Regarding the rest of the servers that we take into consideration to build our
framework we notice different cases. Despite the fact that the servers helped
our research, because of the common configurations that are used also in these
cases, we were unable to create patterns or to fully cover these cases.

Both Omejdn and A12n support “.well-known” endpoint which is part of best
practices as it is described in the relevant RFC for the OAuth servers. However,
it is a feature that as we noticed exists only in the servers that support OpenlD
Connect as well as the ones that thoroughly discussed in subsections [7-2]and
7.3l The other one, namely Glewlwyd, does not support it because it also does
not support OIDC. Therefore, it is impossible for our tool to proceed further
with the enumeration in this case and we have to proceed manually to the tests
that we have to conduct. Below, we present indicatively the configuration for

Omejdn in figure [32] and the results of the scanner for the passive scans for all
these servers in figures [33] [34] and

Figure 32: Omejdn - Config of the Tool

68

Figure 33: Omejdn - Results from passive scan

Figure 34: A12 - Results from CLI

69

Figure 35: A12 - Results from passive scan

As we notice from figure Glewlyd did not return the expected results and
the reason as explained above is that it does not support OIDC. As a result,

our tool was unable to enumerate its case.

Figure 36: Glewlyd - Failed to get results from passive scan

70

8 Conclusions and Future Work

The research on potential vulnerabilities in OAuth servers revealed that all of
the tested servers had misconfigurations that could potentially lead to threats.
In the tests, the three most popular OAuth servers were scanned with a defined
configuration for each of them, and vulnerabilities were found in all of them.
These vulnerabilities included a lack of evaluation of the nonce parameter and
a lack of PKCE implementation, which made the two open source implementa-
tions of OAuth potentially vulnerable to code replay attacks. All of the servers
were also potentially vulnerable to enumeration of clients or exposing endpoints
directly.

Overall, the research done in the context of this Master thesis highlights the
importance of following best practices for OAuth to avoid potential vulnerabili-
ties. It is recommended that anyone implementing or configuring OAuth servers
use a vulnerability scanner to detect potential vulnerabilities in their systems
and take steps to address them.

As a suggestion for future work:

1. A simple and effective technique could be to change the response_type from
“code” to “token”, and test if the implicit flow is supported. By doing
this impersonation attack, the opponent can directly get access_token and

bypass any code injection mitigation.

2. For implicit grant case, another technique could be to inject the state vari-
able. There are misunderstandings among devs and security researchers
that the session-bound state variable can prevent code injection attacks.
In many cases, the attacker can reuse any state or create a valid session-

state pair by intercepting the OAuth authorization request.

3. In cases of auto consent mechanism that grants permission for autho-
rization automatically after the first time, giving attackers the ability to
perform CSRF style stealthy attack. A stealthiest technique should be

creating images pointing to the constructed OAuth authorization URL.

4. Relevant to the current implemented scans would be the extension of scope
testing. Its implementation relies on trying the supported scopes only that
have been retrieved from the passive scans to identify the case that the
server blocks completely irrelevant values that could be used as input, but

not doing the same about supported values.

71

5. In our implementation, we check if the auth code is actually one time
token or not. Future work could also cover other requirements for these
tokens. According to the best practices, a token has to be invalidated
after a certain and short period of time since they are intended to be used
as tokens from an endpoint and not from a user. In this respect, their
lifespan should be short, otherwise it could broaden the attack window of

someone that potentially could find such tokens leaked.

6. A potential feature for a scanner to detect misconfigurations on acr or amr
values might be the ability to validate the authenticity and integrity of the
authentication methods and business rules specified in these parameters.
This could involve checking for incorrect or unexpected values, such as

attempting to bypass two-factor authentication as mentioned in [14].

The scanner could also potentially check for other misconfigurations or
vulnerabilities related to acr and amr values, such as checking for incor-
rect or inconsistent values between the two parameters, or checking for
missing or incomplete values that may result in incomplete or insufficient

authentication.

Overall, the goal of this feature would be to help ensure that the authenti-
cation process is properly configured and secure, and to identify and alert
on any potential misconfigurations or vulnerabilities that could compro-

mise the authenticity and integrity of the authentication process.

In conclusion, the research done in the context of this thesis is an important
contribution to the field, and we hope it will be extended and reviewed by other

contributors to further improve our understanding of OAuth vulnerabilities.

72

References

1]

[12]

Slack disclosed on hackerone: Slack oauth2 redirect_uri bypass. https:
//hackerone. com/reports/2575/.

Twitter disclosed on hackerone: Insufficient oauth callback. https://
hackerone.com/reports/110293.

Akamai. The latest state of the internet
around apis. https://www.akamai.com/content/
dam/site/en/documents/state-of-the-internet/
soti-security-api-the-attack-surface-that-connects-us-all.
pdf.

Bleepingcomputer. Microsoft: Exchange servers hacked via oauth apps for
phishing.
K Buyens. OQOauth 2.0 security cheat sheet. https://github.com/

koenbuyens/oauth-2.0-security-cheat-sheet| 2022.

M. Rupp Dr. N. Kobeissi BSc. C. Kean MSc. S. Moritz B. Walny BSc. T.-
C. Hong Cureb3, Dr.-Ing. M. Heiderich. Pentest-report keycloak 8.0 audit
pentest. Technical report, cureb3, 2019.

datatracker.ietf.org. Rfc 6819 - oauth 2.0 threat model and security con-
siderations. https://datatracker.ietf.org/doc/html/rfc6819.

datatracker.ietf.org. rfc6749 - the oauth 2.0 authorization framework.
https://datatracker.ietf.org/doc/html/rfc6749.

datatracker.ietf.org. rfc7636 - proof key for code exchange by oauth public
clients. https://datatracker.ietf.org/doc/html/rfc7636.

Okta Developer. What is the oauth 2.0 authorization code grant type.
Okta Developer. What is the oauth 2.0 im-
plicit grant type. https://developer.okta.com/blog/

2018/05/24/what-is-the-oauth2-implicit-grant-type#

get-the-users—permission!

OpenlD Connect OAuth Server dédié. Why an authentication server?

73

https://hackerone.com/reports/2575/
https://hackerone.com/reports/2575/
https://hackerone.com/reports/110293
https://hackerone.com/reports/110293
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://www.akamai.com/content/dam/site/en/documents/state-of-the-internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf
https://github.com/koenbuyens/oauth-2.0-security-cheat-sheet
https://github.com/koenbuyens/oauth-2.0-security-cheat-sheet
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7636
https://developer.okta.com/blog/2018/05/24/what-is-the-oauth2-implicit-grant-type#get-the-users-permission
https://developer.okta.com/blog/2018/05/24/what-is-the-oauth2-implicit-grant-type#get-the-users-permission
https://developer.okta.com/blog/2018/05/24/what-is-the-oauth2-implicit-grant-type#get-the-users-permission

[13]

[14]

[24]

[25]

Daniel Fett, Ralf Kiisters, and Guido Schmitz. A comprehensive formal
security analysis of oauth 2.0. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 10 2016.

Gitbook. Acr and amr misconfigurations. https://0xn3va.gitbook.
io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#

misconfiguration-acr-or-amr), 2021.

Gitbook. Oauth 2.0 vulnerabilities - cheat-
sheets. https://0xn3va.gitbook.io/cheat-sheets/
web-application/oauth-2.0-vulnerabilities#

security-issues-in-the-authorization-server, 2021.

HackerNews. Nearly 100,000 npm users’ credentials stolen in github oauth
breach.

Hackerone. Twitter disclosed on hackerone. https://hackerone.com/
reports/131202.

Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett.
OAuth 2.0 Security Best Current Practice. Internet-Draft draft-ietf-oauth-
security-topics-21, Internet Engineering Task Force, September 2022. Work

in Progress.

mastercard developers. Mastercard developers.
OAuth.net. Specs - oauth. https://oauth.net/specs/.
A Parecki. Oauth 2.0 Simplified. Lulu.com, 2018.

SaneBow. redirect-fuzzer. https://github.com/SaneBow/

redirect-fuzzer, 2019.

Security_Hubs. Threat model pentesting checklist. https:
//web.archive.org/web/20220919040023/https://securityhubs.
io/oauth2_threat_model.

Six2dez.com. Oauth - pentest book. https://pentestbook.six2dez.com/

enumeration/webservices/oauth, 2014.

vagelkara. Oauthvulnerabilityscanner. https://github.com/vagelkara/
OAuthVulnerabilityScanner, 2022.

74

https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#misconfiguration-acr-or-amr
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#misconfiguration-acr-or-amr
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#misconfiguration-acr-or-amr
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#security-issues-in-the-authorization-server
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#security-issues-in-the-authorization-server
https://0xn3va.gitbook.io/cheat-sheets/web-application/oauth-2.0-vulnerabilities#security-issues-in-the-authorization-server
https://hackerone.com/reports/131202
https://hackerone.com/reports/131202
https://oauth.net/specs/
https://github.com/SaneBow/redirect-fuzzer
https://github.com/SaneBow/redirect-fuzzer
https://web.archive.org/web/20220919040023/https://securityhubs.io/oauth2_threat_model
https://web.archive.org/web/20220919040023/https://securityhubs.io/oauth2_threat_model
https://web.archive.org/web/20220919040023/https://securityhubs.io/oauth2_threat_model
https://pentestbook.six2dez.com/enumeration/webservices/oauth
https://pentestbook.six2dez.com/enumeration/webservices/oauth
https://github.com/vagelkara/OAuthVulnerabilityScanner
https://github.com/vagelkara/OAuthVulnerabilityScanner

[26] vagelkara. Oauthvulnerabilityscanner - resources, 2022.

[27] X Wang, W Lau, R Yang, and S Shi. Make redirec-
tion evil. https://i.blackhat.com/asia-19/Fri-March-29/
bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf.

[28] P Yaworski. Real-world bug hunting : a field guide to web hacking. No
Starch Press, San Francisco, 2019.

7

https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf
https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf

	Introduction
	Background and Context
	Scope and Objectives
	Thesis Structure

	 OAuth Essentials
	OAuth 2.0 Roles
	Other useful parameters in OAuth
	Application Types
	PKCE operation
	OAuth Grant Types
	Access Code Grant
	Anatomy of Handshake in Access Code Grant Type
	Implicit Flow
	Anatomy of Handshake in Implicit Flow

	OAuth Exploitation
	OAuth Potential Flaws or Weaknesses
	Summarizing selected attacks in OAuth

	Real Cases of OAuth Exploitation
	 Slack's Case
	NPM Credentials OAuth Breach
	 Twitter's cases

	The Research Methodology
	Implementation
	Architectural Structure
	Framework implementation details
	Implemented Features
	Passive Scanning
	Active Scanning
	Capabilities and the modes of operation
	Known Limitations
	Environment Setup
	Visualization of attacks and potential updates for future development

	Results
	Keycloak
	Server Setup and Configuration of the Tool
	Passive Scanning
	Active Scanning

	Casdoor
	Server Setup and Configuration of the Tool
	Passive Scanning
	Active Scanning

	OKTA
	Server Setup and Configuration of the Tool
	Passive Scanning
	Active Scanning

	The rest of the Servers

	Conclusions and Future Work

