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Introduction 

 

       The flow around spherical and cylindrical particles comprises fundamental fluid mechanics problems. 

There are three different types of problems which are considered as main. These are “shear flow”, 

“elongational flow” and “steady translation”. In the first chapter presented an “elongational flow” problem, 

while in the second chapter a “steady translation” problem. Regarding “shear flow” problems, an interested 

reader could study the paper [K. D. Housiadas and R. I. Tanner, “Viscoelastic shear flow past an infinitely 

long and freely rotating cylinder,” Phys. Fluids, 30, 073101 (2018)]. 

       The motion of rigid particles in neutrally buoyant, non-Brownian suspensions is a very active and 

difficult subject, important for theoretical purposes, for the development of new computational methods, as 

well as for the progress in industrial and real-world applications. A fundamental task in the theory of 

suspensions is the study of the flow surrounding (matrix) fluid around a single particle ignoring the presence 

of all other particles and under the simplest possible conditions.  

        However, when the matrix fluid has viscoelastic properties and even in absence of inertia, the situation 

is much more complex because the relevant governing equations, i.e. the mass and momentum balances 

and the constitutive model which describes the response of the matrix fluid under flow deformation, are 

strongly non-linear. As such, they cannot be solved analytically. In the case of a spherical rigid particle 

there are available in the literature a big variety of approximate analytical solutions as well as numerical 

solutions. Nowadays, this problem is considered as a benchmark for the development of new numerical 

methods. 

           The purpose of the present work is to investigate how viscoelasticity affects the flow around 

cylindrical and spherical particles. To accomplish this goal, we should provide a solution to these problems. 

Finding analytically the exact solution of the non-linear governing equations that describe these problems 

has been an unfeasible task so far. In order to find an approximate solution, we follow the methodology 

described by Housiadas & Tanner [36] adopting a regular perturbation scheme [34]. In the chapters one and 

two, there are analytically the methodology and the results for every single problem. 

        The first part of the work presented in this dissertation has been done together with my classmate 

Spyros D. Gkormpatsis and in collaboration with Professor Roger Ian Tanner at the University of Sydney, 

Sydney. The second part has also been done together with my classmate Spyros, as well as in collaboration 

with Professor Antony N. Beris, at the University of Delaware, USA. Two full length research papers in 

well-known international peer-reviewed journals in the fields of fluids mechanics and rheology, have been 

published from the current work and Spyros’ work.  The first paper has been published in Physics of Fluids 
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(see Ref. [39]) and the second paper in Journal of Non-Newtonian fluid Mechanics (see Ref. [44]). I would 

like to emphasize that although Spyros and myself have worked on the same research problems (which are 

presented in detail in chapters 1 and 2, in this thesis) we have used a variety of constitutive mathematical 

models which are suitable for different viscoelastic fluids. This is where the difference between my work 

and Spyro’s work lie. Thus, each thesis is different and represents a significant contribution in the literature. 

         In conclusion, whilst the analytical results reported in this thesis are lengthy and valid for small 

Weissenberg number, they provide a guide for the understanding of the effects of viscoelasticity, and can 

be also used as a reference to the accuracy of numerical simulations, as well as for the development of new 

computational methods for viscoelastic flows. 
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1 Viscoelastic planar elongational flow past an infinitely long cylinder 

 
 

 

 

1.1 Problem definition  

The motion of rigid particles in neutrally buoyant, non-Brownian suspensions is a very active and 

difficult subject, important for theoretical purposes, the development of new computational methods, as 

well as for the progress in industrial and real-world applications. Of great interest is the case under which 

the suspension is subjected to a macroscopic velocity profile such as simple steady shear, uniaxial 

elongation, and planar elongation. Although these situations represent oversimplification of the true flows 

that occurs during the processing of suspensions, the study of these flows represents the first step towards 

the deeper understanding of the rheological behavior of suspensions. The literature on the subject is vast; 

thus, the interested reader is referred to a recent review and references therein [1].   

A fundamental task in the theory of suspensions is the study of the flow of the surrounding (matrix) 

fluid around a single particle ignoring the presence of all the other particles and under the simplest possible 

conditions. For a Newtonian matrix fluid and a rigid particle (usually a sphere or a circular cylinder), there 

are analytical Stokes-flow solutions available in the literature for both simple shear and uniaxial elongation 

Ref.[2].  

However, when the matrix fluid has viscoelastic properties and even in absence of inertia, the situation 

is much more complex because the relevant governing equations, i.e. the mass and momentum balances 

and the constitutive model which describes the response of the matrix fluid under flow deformation, are 

strongly non-linear [3],[11]. As such, they cannot be solved analytically. In the case of a spherical rigid 

particle there are available in the literature a big variety of approximate analytical solutions as well as 

numerical solutions. This problem is considered nowadays as a benchmark for the development of new 

numerical methods [12]. In the case of a cylindrical rigid particle, the only available analytical solution is 

for steady shearing [36], but for elongation flow there are no solutions, either exact or approximate. 

Numerical solutions are also very scarce; the work by Hwang & Hulsen [4] for planar elongation of many 

circular particles, but in a Newtonian matrix fluid, is worth mentioning here.  

The goal of the present work is to investigate how viscoelasticity affects the flow around a cylindrical 

particle. The latter is considered very long in order to avoid finite length effects which would lead to a 

three-dimensional flow field. The flow is assumed creeping, steady, and isothermal. Far from the particle, 

planar elongation with constant rate of elongation is imposed. No external forces and torques are applied 

on the particle, which in conjunction with the symmetries of the planar elongation, means that the particle 
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does not rotate. Under these conditions, the hydrodynamic force acting on the particle is such that the 

resultant force and torque are zero.  

Finding analytically the exact solution of the non-linear governing equations that describe this problem 

has been an unfeasible task so far1. In order to accomplish this goal, we follow the methodology described 

previously by Housiadas & Tanner [36] adopting a regular perturbation scheme [34] valid for small values 

of the dimensionless Weissenberg number, Wi; the latter is defined as the product of the single relaxation 

time of the fluid times the constant rate of elongation. Thus, we are limited to small departures from the 

Newtonian response; however, we expect that the results will also serve as a guide for further numerical 

exploration of the problem. We solve the resulting sequence of equations analytically up to fourth order in 

Wi and we find the first five terms in the perturbation expansions. Our previous experience for the same 

problem under pure steady shearing showed that the high-order terms do not increase the accuracy of the 

solution [36].    

The rest of the paper is organized as follows. In Sec. 1.2, we present the governing equations, along 

with the accompanying boundary conditions, in dimensionless form. In Sec. 1.3, we present briefly our 

method of solution, and we also give the analytical solution for all the dependent primary flow variables up 

to second-order in the Weissenberg number. Last, in Sec. 1.4, we present the main features of the solution, 

we comment on the accuracy and validity of the solution, and we discuss the most interesting results along 

with some conclusions.  

1.2 Governing equations 

We consider the isothermal, steady, and planar elongational flow of an incompressible viscoelastic fluid 

with constant mass density  , past an infinitely long circular cylinder with constant radius R . The domain 

of the ambient fluid is unbounded in order to avoid the effect of walls. Cylindrical coordinates, rθz, are 

used to describe the flow as well as Cartesian coordinates, xyz, for the far flow-field where the z-axis is the 

same in both coordinate systems; see Figure 1.1  

 
1 We mention that since the cylinder is not translating with respect to the fluid, the Stokes “paradox” is not encountered 



8 

 

 

 

The Cartesian coordinates are expressed in terms of the cylindrical coordinates as 

cos( ), sin( ),x r y r z z = = = . Far from the body a planar elongational velocity field is assumed, i.e. 

, , 0x y zv x v y v   = = − =  where   is the constant elongational rate; throughout the paper the superscript 

  denotes the far flow-field (or value at infinity). The pressure at infinity is constant and can be taken to 

be zero, 0p = . The fluid is viscoelastic, consisting of a pure solvent and a polymer contribution with zero 

shear-rate viscosities s  and p , respectively. The single relaxation time of the polymer is denoted by 

. Note that the axis of symmetry of the cylinder is aligned with the direction of vorticity which remains 

always perpendicular to the plane of flow, i.e. to the plane xy. The velocity vector and the total pressure are 

denoted by , pv , respectively, and the viscoelastic extra-stress tensor by τ . We use R  to dimensionalize 

all lengths, R  for the velocity components, ( )s p  +  for the pressure, and p   for the viscoelastic 

extra-stress components. In absence of external forces and torques and neglecting inertia, the dimensionless 

governing equations are the mass and momentum balances. In a Eulerian frame of reference and at steady 

state, these equations are: 

                         
0 =v                   (1.1) 

                     
2(1 )p  − + −  +  =v τ 0          (1.2) 

The extra-stress tensor τ  due to viscoelasticity is determined utilizing the following constitutive models:  
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                       Wi aWi
t




+ = − 

τ
τ γ τ τ          (1.3) 

                            ( ) 2ln( )
, 1 tr( ), 1

D f
f Wi Wi f Wi L

t Dt


 


+ − + = = + 

τ
τ τ Ι γ τ       (1.4) 

 

In Eqs.(1.3)-(1.4), ( )T= + γ v v is the rate-of-strain tensor, tr( ) denotes the trace operator, I  is the unit 

tensor, and / t τ  represents the Upper Convected derivative of τ :  

                            : ( ) ( )T

t t






= +  −  −  


τ τ
v τ τ v v τ         (1.5) 

Eq.(1.3) is the Giesekus model and a  is the rheological parameter, and Eq.(1.4) is the Finite Extensibility 

Nonlinear Elastic model with the Peterlin approximation model (FENE-P), where L is the maximum 

extensibility parameter of the polymer molecules. For more details on the constitutive models the interesting 

reader is referred to [6].  

In Eq.(1.2)   is the dimensionless polymer viscosity ratio / ( )p s p    + , and in Eqs (1.3)-(1.4) 

Wi    is the Weissenberg number. For 𝑎 = 𝜁 = 0 the above constitutive models reduce: 

(i) to the Upper Convected Maxwell (UCM) model for 1 = ,  

(ii) to the Newtonian model for 0 = , and 

(iii)  to the Oldroyd-B model for 0 1  .  

As we have done in our previous papers, instead of τ  it is easier to work with another second order and 

symmetric tensor σ  which is expressed with the aid of  τ  and γ :  

                              Wi= −τ γ σ             (1.6) 

Substituting τ  in Eqs (1.2)-(1.4), a new form of the equations is easily derived [1]. The domain of definition 

of the equations is  1 ,0 2r        and the problem is two-dimensional. Thus, in principle, the final 

equations are seven scalar partial differential equations in two spatial dimensions ( r and  ). 

 

The required boundary conditions are specified at 1r =  and at r → , while periodicity is imposed in 

the azimuthal angle  . In particular, no-slip and no-penetration conditions in conjunction with the 

symmetry of the far flow-field lead to zero velocity on the surface of the cylinder:   

                                    =v 0  at  1r =                                (1.7) 

Far from the body, at r → , the velocity approaches the velocity of the ambient fluid and the pressure 

becomes equal to a constant (datum) pressure which can be taken to be zero 
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                                           , 0x yx y p = − =v e e           (1.8) 

In cylindrical polar coordinates, the far flow-field is expressed as cos( s (2 )2 n) irr r  = −e ev . Eq.(1.8) 

leads to a constant rate-of-strain tensor 2 2 = −x x y yγ e e e e , and a constant extra-stress tensor 


σ  which 

depends on the constitutive model, i.e. 


σ  depends only on Wi , 𝑎 and  , while no variations with respect 

to the space coordinates are predicted. Note however, that with the method of solution used here boundary 

conditions for σ  are not required (and cannot be imposed).  They are only used a-posteriori, after the 

analytical solution has been calculated, as an independent check of the correctness and accuracy of the 

solution.  

 

 

1.3 Method of solution and solution 

The method of solution and the solution procedure has been described in [36].  For completeness, we 

briefly mention that we use a regular perturbation scheme in terms of the Weissenberg number, i.e. the 

solution for all the dependent variables is given as a power series expansion in terms of  Wi:  

                        
0

, , ,j

j

j

X Wi X X p
=

 = v σ          (1.9a) 

where the zero-order term, 0X , corresponds to the Newtonian fluid. Since the UCM derivative depends 

linearly on v  and v , it is also expanded as follows:  

               
0

( ) ( )( )
, : ( ) ( ) ( ) ( )

j jj T

j j j

j

Wi
t t t

 

  =

= =  −  −   v v v        (1.9b) 

where / 0t  = has been taken into account. Expressions (1.9a) and (1.9b) are substituted in the governing 

equations and a sequence of equations at ( ), 0,1,2,...jO Wi j =  results. By introducing 1− =σ 0  for 

completeness, these equations are:  

2 2

1 10, , ( ) 0j j j j j jp p − − = − + =   +   =v v σ σ           (1.10a,b,c) 

where the boundary conditions at any order 0j   are homogenous, i.e. ( 1) ,j jr = = =v v 0   

, 1
/ 0.r j jr

v r p

=
  = =  Eq.(1.10c) is derived by taking the divergence of Eq.(1.10b) in conjunction with the 

continuity equation Eq.(1.10a). It is not an independent equation but is used only because it facilitates the 

solution procedure. Notice that Eqs (1.10a,b,c) contain only two unknowns, jv  and jp , since the auxiliary 

extra-stress tensor 1j−σ  is found from the constitutive models, Eq.(1.3)-(1.4), in terms of the solution at the 
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previous orders in Wi. For j=0 Eqs (1.10) correspond to the simple Newtonian fluid, the solution of which 

in cylindrical coordinates and components is: 

                 0 ,0 ,02 3 3

4 1 2 1
cos(2 ) cos(2 ) si 2 ), , n(rp v r r

r
v

r r r
  

   
− + −   

   
= − = =       (1.11) 

It can be trivially confirmed that Eq.(1.11) satisfies the far flow-field conditions, the zero velocity on the 

surface of the cylinder, as well as 
,0 / 0rv r  =  at 1r = . The latter is a consequence of the no-slip and no-

penetration of the fluid on the cylinder along with the continuity equation evaluated at 1r = . 

    By solving sequentially Eqs (1.10) for j=1, 2, 3 and 4 we derive the solution analytically up to 
4( )O Wi . 

At orders higher than two, this task is achieved by developing a symbolic code with the “Mathematica” 

software [27] with the aid of which the solution is also checked for its correctness. We also mention that 

the solution is found up to 4th-order because as verified for simple shearing in [36], the higher order terms 

seem to diverge. 

The first-order solution is given as:  

                 4 8 6

1 ,1

41

,

2

8(1 ) 9(2 1) 8(3 2) 6 1
2

0

4
2 cos(4 )

r

a a a a a

r r r r r
p

v v

 
− − − −  

− + + −  

=

 
=

=

      (1.12) 

where a  is non-zero only for the Giesekus model. Eq. (1.12) shows that the first-order correction to the 

velocity field due to viscoelasticity is zero while for the pressure is not, a feature which has also been 

predicted for the simple shearing case [36]. It is also interesting that the rheological parameter  ζ  for the      

FENE-P model, do not enter in the solution, i.e. only the Giesekus model gives a solution which is different 

than the UCM/Olrdroyd-B models [2]; recall that for 𝑎 = 𝜁 = 0 the Giesekus and FENE-P models reduce 

to the UCM/Oldroyd-B models.   

At second-order, the solution for the UCM ( 1 = ) and Oldroyd-B (0 1  ) models is:                    

12 10 8 6 4 2 4 6

11 9 7 5 3

2

,2

,2

3 7 5 3

864 540 4224 564 144 736 48 4
cos(2 ) cos(6 )

7 5 35 5

3 26 106 50 1087 88 48ln( ) 9 18 9
cos(2 ) cos(6 )

7 5 5 35 35 5 5 5

1

r

r r r r r r r r

r

r r r r r r r r

p

v

r
v

r



  

  



    
− + − + − + − +    

    

   
− + − +

=

 
=  

 
− − + + − +   

 

=

 

−
11 9 7 5 3 3 7 5 3

5 104 318 100 1927 48ln( ) 9 12 3
sin(2 ) sin(6 )

7 5 5 35 5 5 5

r

r r r r r r r r r
 

    
+ − + − + + − +    

    

  (1.13) 

The 2nd-order solutions for FENE-P and Giesekus models are provided in the Appendix with the help of 

Eq.(1.13), while the higher order solutions are too long to be given here.  
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Based on the perturbation scheme, one finds that 
1, 0,1,2,3,...j j j j−= − =τ γ σ  where, as mentioned 

before, 1− =σ 0 , and the non-trivial components of the rate-of-strain tensor are given, at any order in the 

Weissenberg number, as , ,2( / )rr j r jv r =   , 
1

, , , ,( / ) ( / ) /r j r j j jr v v r v r   −=   +   −  and 

( )1

, , ,2 /j j r jr v v  −=   + . 

 

1.3.1 Non-primary flow variables  

Due to the fact that the flow is two-dimensional, a stream function ( , )r  =  can be defined such as 

1( / )rv r −=    and ( / )v r = −   . Integrating the later and using (1, ) 0 =  gives 

1

( , ) ( , )

r

r v s ds  = − . Using the analytical solution for v , we find 0 , 1  and 2  as follows:  

       

2

2

2 4 6

0

1

2 28 10 2 2 4

1
1

2 2

44 1087 25 53 13 3 24ln( ) 3
sin(2 ) sin(6 )

35 70 5 5 14 5 2

sin(2 )

0

1 1

2

1

r

r

r

r r r r r r r r r



 

 
− + 

 

    
− − + − + − + + − +

 =

 =

 =     
    

 (1.14) 

The stream function   is also closely related to the non-trivial component of the vorticity vector 

ω v , which for this type of flow is 2

z = −  . We find:  

12 10

,0

8 6 4 2 4 6

2

,1

,2

144 156 1696 300 96 176 48 12
sin(2 ) sin(6 )

7 5 35

4
si

5

n(2 )

0

z

z

z
r r r r r r r r

r

 

 



 
   

− + − + −

= −

=

 
= + −   

  



    (1.15) 

Last, we report the conformation tensor c , which represents the average of all possible configurations 

that the polymer molecules can have in space due to the flow deformation. In dimensionless form c  and 

τ  are connected as ( ) /Wi= −τ c I  for the UCM, Oldroyd-B and Giesekus models, and as 

( ( ) ) /pf Wi= −τ c c I  for the FENE-P model where ( ) : (1 tr( )) / (1 3 )pf  = − −c c . The expressions between 

τ  and c  combined with Wi= −τ γ σ , tr( ) 0=γ  and tr( ) 3=I , give:   

    2 2, tr( ) 3 tr( )Wi Wi Wi= + − = −c I γ σ c σ              (1.16a,b) 

for the UCM, Oldroyd-B and Giesekus models, and  

 
2 2

2 2

3 tr( )
, tr( )

1 ( ) 1 tr( )

Wi Wi Wi

Wi tr Wi 

+ − −
= =

− −

I γ σ σ
c c

σ σ
             (1.17a,b) 
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for the FENE-P model. An important feature of the (real and symmetric second-order) conformation tensor 

is that it is positive definite. This implies that all its eigenvalues, and consequently its trace which equals 

the sum of the eigenvalues, are strictly positive, a property which is necessary for the results to have physical 

meaning [38]. Thus, it can be used to check the validity of an approximate solution (for more comments 

see [1]). For a two-dimensional and axisymmetric flow field expressed in cylindrical coordinates we have 

0, 1z rz zzc c c = = = , while necessary conditions for positive definiteness are 0, 0rrc c   and 

2 0rr rc c c −  [36]. We focus however on the trace of the conformation tensor and use it as a guidance of 

the validity of the velocity/pressure field. Following Eqs (1.16b) and (1.17b) and using the perturbation 

scheme, gives a general series expansion valid for all models:  

    ( ) 2 2

0 1 0

2

2tr( ) tr tr tr t3 ( 1 3 ) ( ) ( ) ( ) ( ) .r . .Wi Wi Wi + − + + + + +σ σ σ σc           (1.18) 

It is worth-mentioning that at any order in Weissenberg number, the conformation tensor and its trace can 

be calculated up to two orders of magnitude higher than the velocity and pressure fields. For instance, when 

only the solution 0v  for the Newtonian fluid is known, the trace of conformation tensor can be calculated 

up to second-order, namely 2

0( 1 3 )tr( ) 3 tr( )Wi − ++c σ  since 0 0 0( )=σ σ v . Thus, in Eq.(1.18) the 

2( )O Wi  term results exclusively from the Newtonian solution, and the 3( )O Wi  term from both 0 0 0( )=σ σ v  

and 1 1 0 1( , ).=σ σ v v  For 0tr( )σ  and 1tr( )σ  we find:                     

0 8 6 4 4 2

1 2 4 6 8 10 12

72 96 32 48 32
( ) ( 1) 8 cos(4 )                                                                         (1.19a)

48 96 816 2496 2592 864 11

tr

tr
52

( ) cos(2 )

a
r r r r r

r r r r r r r





    
= − + − + + − +    

    

= − + − + − +

σ

σ
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6 4 2 6 4 2

3456 3328 1088 128 64
  (1.19b)

240 384 144 320 512 192
cos(6 )

a
r r r r r

a
r r r r r r



  
− + − + − +  

  

  
+ − + − + − +  

  

Note that the rheological parameter a  enters for the first time in 0tr( )σ ,   in 1tr( )σ  and   in 2tr( )σ . 

Thus, and based on Eq.(1.18), a  and   affect the solution for tr( )c  at 2( )O Wi , 2( )O Wi  and 4( )O Wi , 

respectively. For the UCM and Oldroyd-B models one must set 0a = =  in Eqs (1.18) and (1.19a,b), for 

the Giesekus model 0, 0 1a =   , and for the FENE-P model 0, 0a =  .          
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1.4 Results, discussion and conclusions 

Before presenting the results, we mention briefly the following features of the asymptotic solution, all 

of which had also been observed for the simple shear flow [36].  First, the ( )O Wi  correction term to the 

velocity field is zero, while the corresponding correction to the pressure is non-zero (see Eq.(1.12)). Thus, 

viscoelasticity affects the solution for the velocity vector, rate-of-strain tensor, stream function, and 

vorticity at second-order in the Weissenberg number.  

Second, at second- and higher-orders, terms of the form [ln( )] /m kr r , where  k  and m  are non-

negative integers, appear in the solution. These terms become maximum at a distance 

exp( / ) 1 ( / )cr m k m k=  + ; the latter is a very approximation of the exponential term because m  is small 

and k  is large. For m=0 the maximum is located on the surface of the cylinder (i.e. 1cr = ) but for 0m   

the maximum is observed farther from the body. Thus, complicated flow structures are developed near the 

cylinder.  

Third, the analytical solution shows that only even Fourier modes contribute to the solution at any order 

in Weissenberg number. When only cosine modes are present the corresponding flow variable (for instance, 

, , tr( )rp v σ ) is fully symmetric with respect to both the x- and the y-axis and up-and-down and fore-and-aft 

symmetries are observed, respectively (recall that 
2 2cos( ) /x x y = +  and 

2 2sin( ) /y x y = + ).  

However, when sine modes appear in the solution (for instance, in , ,z v ) both symmetries break. Thus, 

it appears that the effect of viscoelasticity destroys the symmetries observed for a Newtonian fluid.    

The correctness of our analytical solution is checked with the aid of the “Mathematica” software [27] 

by performing two tests. The first test is based on the governing equations Eq.(1.10a,b,c) which, at any 

order in Weissenberg number ( )jO Wi , consist of four scalar partial differential equations with three 

unknowns, , ,,r j jv v  and jp . According to the solution procedure, jp  is determined solving Eq.(1.10c), 

, jv  is found in terms of ,r jv solving Eq.(1.10a), and ,r jv  is found solving the radial component of 

Eq.(1.10b). Thus, substituting the solution for all variables in the azimuthal component of the momentum 

balance, Eq.(1.10b), provides an independent test of its correctness.  

The second test, which is also used as a guidance of the accuracy of the asymptotic solution, is based 

on the far flow-field viscoelastic extra-stress tensor 
σ  which is calculated simply by substituting 

v  in 

the constitutive model(s) and solving the resulting equations. Then, 
σ  can be expanded and found in series 

form as 
0

j

j

j

Wi 

=

=σ σ . However, due to the method of solution used here, j


σ  cannot be imposed because 
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at any order in Wi 
jσ  is fully determined using all the lower-order solutions (i.e. 0 1 1, ,..., j−v v v ) and the 

constitutive model(s) without the need to solve any differential equations (see [1] for more details). 

Comparing ( )j r →σ  with 
j


σ  gives another undeniable test of the correctness of the analytical solution 

at any order in the Weissenberg number. Furthermore, the difference between the analytical solution at 

infinity, 
4

0

(( ))
j

j

j Wr r i
=

→→ σ σ , and the exact solution, i.e. the quantity ( )r − →σ σ  where   

is either the Euclidian or the Frobenius norm, gives an estimate of the error of the results.        

The validity of the high-order series solution which is composed by adding all the available correction 

terms in the Newtonian solution is another, much more difficult, issue that must be examined. Here this 

issue is determined mainly based on the sign of the trace of the conformation tensor. In Figure 1.2, we fix 

the Weissenberg number ( 1.0Wi = ) and the polymer viscosity ratio ( 1 = ) and look for regions with 

tr( ) 0.c  We calculate the solution up to ( )jO Wi  where 2j = , 3, 4, 5 and 6. For j=2 and 3 no regions 

with negative trace were found; recall that j=2 corresponds to the Newtonian solution for v  and p , while 

j=3 corresponds to both the Newtonian and the first-order solutions for v  and p . However, when the 

higher-order solutions are taken into account in the solution, regions with negative terms appear around the 

cylinder. These regions increase in number and become larger as j increases. If the Weissenberg number is 

decreased the regions of negative trace shrink, while the opposite trend holds when the Weissenberg number 

increases. All these observations are consistent with the fact that as the small parameter of the perturbation 

scheme increases, the solution gradually loses its accuracy and validity. Note that in the following we 

present results for Wi number and rheological parameters such as the conformation tensor is everywhere 

(or almost everywhere) positive definite. 
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1.4.1 Results 

Because the velocity field far from the cylinder increases linearly with the distance from the cylinder, as 

Eq.(1.8) shows, and the first correction term to the velocity field is 2( )O Wi and varies proportionally to the 

powers of 1 / r , the effect of viscoelasticity on the results cannot be easily seen. In order to make the 

differences clear, contour plots of the stream function and vorticity are presented first for the Newtonian 

case, i.e. for 
0  and ,0z , and then for the normalized quantities: 

     

( )

20
2 3 42

,0 2

,2 ,3 ,4

2

0 1

2

2 0 2

2tr( ) 3
tr ( ) ( ) ( ) ( ) ...

( 1
( ) tr tr

3 )
tr tr

n

z z

n z z z

n

Wi Wi
Wi

Wi Wi

W
Wi Wi

Wi

i


 
  





 −
    +

+ + +

 + 

−
   + +

−
  +

− +
 σ σ σ σ

c
c

  (1.20) 

  Note that similar expressions for the pressure and the velocity, 
0( )np p p / Wi  −  and 

2

0( ) /n Wi  −v v v , respectively, can also be derived. It should be emphasized here that for 0Wi → , 

Eq.(1.20) shows that 
n , 

n  and tr( )n c  are finite and equal to 2 ,2, z  and 
0tr( )σ , respectively, 

revealing the effect of weak viscoelasticity, while the higher-order terms in Eq.(1.20) provide suitable 

corrections for small but finite values of Wi. Therefore, 2 ,2, z  and 
0σ represent the first departure from 
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the Newtonian fluid and they should be considered very accurate in the case of a vanishing Weissenberg 

number.  

It is known that for planar elongational flow, the streamlines for a Newtonian matrix fluid ( 0Wi = ) 

around a circular cylinder are open. This is seen in Figure 1.3a, in which contours for 
0  are plotted; the 

contours values are from -4 to 4 in increments 1 (on the surface of the cylinder the stream function is zero). 

The up-and-down symmetry (i.e. symmetry with respect to the x-axis) as well as the fore-and-aft symmetry 

(symmetry with respect to the y-axis) are clearly demonstrated. For the viscoelastic case, the contours 

remain open too. The normalized stream function difference for 0Wi→ , i.e.  
2( 0)n Wi = =   is shown 

in Figure 1.3b. It is interesting that only negative values are observed which means that weak viscoelasticity 

reduces the flow rate compared to the Newtonian fluid. However, a different situation arises for finite 

Weissenberg number, as shown in Figure 1.3c for a UCM fluid (η=1, Wi=0.5). On the first ( , 0x y  ) 

2( )O Wi and third ( , 0x y  ) quarters 
n  increases substantially in magnitude, while on the second                      

( 0, 0x y  ) and the fourth ( 0, 0x y  ) quarters it becomes positive. In addition to that, zero contours 

clearly appear marking the transition from positive to negative values.  

 

 

 

In Figure 1.4, we present contours related to the vorticity 
z . The contours for a Newtonian fluid are 

shown in Figure 1.4a from -3 to 3 in increments 1; the symmetries seen previously before for the stream 
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function are seen here too. Moreover, contours for 
n  are given in Figures 1.4b and 1.4c, for 0Wi →  and 

0.5Wi = , respectively. In both figures, the contour values vary from -0.075 to 0.075 in increments 0.025. 

When 0Wi →  the vortex structures are clear (due to the second and sixth sine Fourier in the solution).  

However, when the higher-order corrections are included in the solution, as in Figure 1.4c, a different 

situation arises for finite Weissenberg number, as shown in Figure 1.4c for a UCM fluid (η=1, Wi=0.2). On 

the first ( , 0x y  ) 2( )O Wi  and third ( , 0x y  ) quarters n  increases substantially, while on second                   

( 0, 0x y  ) and the fourth ( 0, 0x y  ) it becomes positive. In addition to that, zero contours clearly 

appear marking the transition from positive to negative values.  

 

 

In Figure 1.5, we present the contours for tr( )n c  which corresponds to the extension of the polymer 

molecules from equilibrium. tr( )n c  is also proportional to the elastic energy stored in the polymeric 

molecules. The results for the Newtonian case are trivial because in this case =c I . As  0Wi →  the 

normalized trace of the conformation tensor forms the fore-and-aft and up-and-down symmetric structures 

shown in Figure 1.5a, while the effect of a small but finite Weissenberg number (Wi=0.2) for a UCM model 

is illustrated in Figure 1.5b. The substantial extension of the polymer molecules due to the strong nature of 

the elongational flow is seen; large contour values for tr( )n c are observed in both cases, with even larger 

polymer extensions that are predicted for Wi=0.2.    



19 

 

 

 

 

We also present results for the dimensionless planar elongational viscosity of the fluid, 
,el p xx yyT T  −  

where xxT  and yyT  are components of the total stress tensor (1 )p  = − + − +T I γ τ . Substituting τ  

with the aid of Eq.(1.6) gives p Wi= − + −T I γ σ . Thus, the final expression for ,el p  is:   

, ( ) ( )el p xx yy xx yyWi     = − − −        (1.21) 

Far from the cylinder Eq.(1.21) becomes 
, ( ) ( ) 4 ( )el p xx yy xx yy xx yyWi Wi              = − − − = − − . The 

latter, for a Newtonian fluid, gives the well-known result 
, 4el p = . In general, however, the planar 

elongational viscosity depends on 
xx   and 

yy  , i.e. on the constitutive model that is used. For instance, 

for the UCM and Oldroyd-B models one finds:    

              
2

, 2

(2 )
4 1

1 (2 )
el p

Wi

Wi
   

= + 
− 

              (1.22) 

Eq.(1.22) shows the increase of 
,el p  with the increase of Wi . Notice that for 1 / 2Wi =  the elongational 

viscosity diverges to infinity, a problem which is rectified with the use of other non-linear constitutive 

equations such as the Giesekus and FENE-P models. Similar expressions as Eq.(1.22) have been calculated 

for the Giesekus and FENE-P constitutive models. The perturbation series expansion of Eq.(1.22) up to 

4( )O Wi  is:  
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   ( )2 4

, 4 1 4 16el p Wi Wi    + +         (1.23) 

Eq.(1.23) is a very good approximation of Eq.(1.22) up to 0.3Wi  , approximately,  for which a 50% 

increase of the elongational viscosity is predicted.  

Finally, using the perturbation solution, Eq.(1.21) gives for the UCM/Oldroyd-B models: 

       
2 4 2 6 8 2 4 6

, 2

, 2

12 12 6 20 16
1 cos( ) cos( ) cos

2 3 2
4 2 6

4
( )

el p

el p
r r r r r r r

W i
r

i W


     
     

+ − − + − − +     


 
 + + + 

    
  (1.24a)  

where the 2nd-order correction term is given as:  

 
12 10 8 6 4 12 10 8 6 4 2 4

8 6 4 2

, 2

450 756 378 26 12 135 378 252 156 5382 368 144ln(r)
4 cos( )

7 5 5 35 35

423 174 114 24
cos(8 )

5

4el p
r r r r r r r r r r r r

r r r r

 



   
− + − − + + − + − − + + − +   

   

 
+ − + − + 
 

=

(1.24b) 

Taking the limit of Eq.(1.24a) and (1.24b) as r  goes to infinity gives the first two terms of Eq.(1.23) (as it 

should). We also observe, by  comparing Eqs (1.23) and (1.24a), that although only the even powers of the 

Weissenberg number contribute to the far flow-field planar elongational viscosity ,el p
, this is not the case 

for the local viscosity ,el p  for which all the powers of Weissenberg are non-zero. This feature holds for all 

the constitutive models used in this work.  

In Figure 1.6, we show contours for ,el p . The results for the Newtonian case are presented in Fig. 1.6a, 

and those for a UCM fluid with Wi=0.2 in Fig. 1.6b. The fore-and-aft and up-and-down symmetries are 

seen in both cases; this is a consequence of the appearance only of even cosine Fourier modes in the solution 

(i.e. cos(2 )k  where k  goes up to 6 for the 
4( )O Wi  term). Note that the cos(4 ) term in the zero-order 

solution for ,el p already generates complex structures close to the surface of the cylinder, as one can see in 

Fig.1.6a. For the viscoelastic case, this situation is intensified not only because of the appearance of high 

Fourier modes in the high-order terms ( cos(12 )  in the 
4( )O Wi term) but also because of their combination 

with terms like [ln( )] /m kr r which become maximum (for 0m  ) at a very short distance from the surface 

of the cylinder. It is more than questionable if such structures can be captured accurately with numerical 

methods. Indeed, it has often been reported in the literature that very fine meshes are required close to the 

cylinder for the calculation of the solution with acceptable accuracy [12]; the same holds for the case of a 

spherical particle too. It is also worth mentioning that, for both fluids, regions with , 4el p   are observed. 

These regions shrink in the viscoelastic case and they are located closer to the cylinder compared to the 

Newtonian fluid. They disappear when the Weissenberg number is increased. We also mention that at fixed 
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Weissenberg number, the Giesekus and FENE-P models produce smaller values for ,el p  compared to the 

UCM/Oldroyd-B models.  

 

 

Finally, we mention that the rheological parameters α and ζ of the Giesekus and FENE-P models, 

respectively, appear for the first time in the solution at 
2( )O Wi ; the only exception is the Giesekus parameter 

α which appears in 1p  (see Eq.(1.12)). As it is already known, the rheological parameters control the 

extensional thickening and shear thinning behavior of the polymeric fluids. These models are also able to 

predict reasonably well the viscoelastic response of the polymeric fluids even for 1/ 2Wi   (recall that at 

1/ 2Wi = the UCM/Olroyd-B models diverge to infinity). Because the effects of the rheological parameters 

are major only for strongly viscoelastic fluids (i.e. for relatively high values of Wi  for which however the 

perturbation solution is not very accurate), the analytical solutions for these models are valid only for small 

departures from the UCM/Oldroyd-B models.     

In conclusion, whilst the analytical results reported here are lengthy, they are simple and provide a 

guide for the effects of the viscoelastic properties of the matrix fluid on the flow past a long cylindrical 

particle. The analytical results, with emphasis on the solution up to 2nd-order in Wi, can be also used as a 

reference to the accuracy of possible numerical simulations, as well as for the development of new 

computational methods for viscoelastic flows.  
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2 Steady sphere translation in a viscoelastic fluid with slip on the 

surface of the sphere 

 

 
 

 

 

 

2.1 Introduction and problem definition 

The steady translation or sedimentation of a spherical particle in a continuous medium is a classical and 

fundamental fluid mechanics problem important for theoretical, computational, and modelling purposes, as 

well as for the study of many physical, industrial and real-world applications. The first study of this 

problem, known as the “falling-ball problem”, was presented by Stokes in 1850 [5] under creeping and 

isothermal flow conditions for a Newtonian fluid. Stokes derived the analytical solution for the pressure 

and velocity fields around the spherical particle and then by applying a simple force balance on the particle 

calculated its terminal velocity.   

When the surrounding fluid has viscoelastic properties and even in the absence of inertia, the situation 

is much more complex because the relevant governing equations, i.e. the mass and momentum balances 

and the constitutive model which describes the mechanical response of the matrix fluid under flow 

deformation, are strongly non-linear [6]. As such, they cannot be solved analytically unless approximately 

through a perturbation approach [7-10], or numerically [11]. In the case of a spherical rigid particle 

translating with a uniform velocity in a tube there are available in the literature many numerical solutions-

--see, for example, [12] (Section 9.2) and references therein. This problem has been considered for long 

time as a benchmark for the evaluation of new numerical methods [12].  

However, the usual no slip condition, i.e. the assumption that no slippage arises, at a solid-fluid 

interface, which is that used in the above works to represent the flow boundary conditions on the solid 

particle surface, is not always valid. Indeed, the most general condition at a solid-fluid interface should 

allow for slip, i.e. the possibility that the adjacent fluid can slip frictionally over a solid surface.  Slip is 

known to occur in several cases, such as the low-density gas flow surrounding an aerosol particle [13], the 

aqueous liquid flow near a hydrophobic surface [14], and especially the flow of polymer solutions over 

non-absorbing surfaces [15,16,17], polymer melts in tubes and channels [18, 19, 20], and many others, as 
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they have been experimentally confirmed; see the review by Hatzikiriakos [19] and by Malkin and 

Patlazhan [20] and references therein. The first model of the slipping of a fluid was presented by Navier 

[21] who assumed that the slip velocity is proportional to the velocity gradient next to the solid surface 

(known as “Navier law”). The constant of proportionality between the slip velocity and the wall shear stress 

is called the “slip coefficient.”  For dilute polymer solutions there are theoretical expressions that provide 

the slip coefficient as a function of the polymer concentration and polymer properties [16]. 

The goal of the present work is to investigate how viscoelasticity affects the flow around a spherical 

particle with slip at the surface of the particle. The flow is assumed creeping, steady, and isothermal. Far 

from the particle, a uniform velocity stream is applied. No external forces (except from gravity which can 

be incorporated to the pressure) and torques are applied on the particle, which in conjunction with the 

symmetries of the flow field implies that the particle does not rotate. Although for a Newtonian fluid the 

effect of slip has been evaluated in an exact solution that first became available by Basset in 1888 [22], for 

a viscoelastic fluid this problem has not been studied before in the literature. Note that even for the classical 

no-slip case, an exact analytical solution of the non-linear governing equations resulting from 

viscoelasticity is not available. We use here asymptotic methods in order to solve the relevant equations, 

and in particular we follow the methodology described previously by Housiadas & Tanner [10] adopting a 

regular perturbation scheme valid for small values of the dimensionless Weissenberg number, Wi (see 

below for its definition). Thus, we are limited to small departures, up to O(1) in Wi, from the Newtonian 

response; nonetheless, we expect that the results will also serve as a guide for further numerical exploration 

of the problem. We solve the resulting sequence of equations analytically up to fourth order in Wi and find 

the first five terms in the perturbation expansions.  Moreover, techniques which accelerate the convergence 

of series have been utilized in order to increase the range of validity of the asymptotic solutions.  

The rest of the paper is organized as follows. In Section 2.2, we present in dimensionless form the 

governing equations and the accompanying boundary conditions. In Section 2.3, we present briefly the 

solution methodology, and the analytical solution for all the dependent primary flow variables up to second 

order in the Weissenberg number. In Section 2.4, we present the main features of the solution, we comment 

on the accuracy and validity of the solution, and we discuss the most interesting results. Finally, in Section 

2.5 we state the conclusions.   

 

2.2 Governing Equations  

We consider the translation with a constant speed U  of a spherical particle with radius R  in an infinite 

incompressible fluid, with constant mass density  . The ambient fluid’s rheological behavior is 

viscoelastic, represented here as the linear combination of a pure Newtonian viscous solvent contribution 
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and that of a polymer solute with zero shear-rate viscosities 
s  and p , respectively. A single relaxation 

time is considered for the polymer denoted by  . 

To describe the flow we use spherical coordinates, rθφ, as well as Cartesian coordinates, xyz; the origin 

for both coordinate systems is located at the center of the spherical particle as shown in Figure 2.1. The unit 

vectors of the spherical coordinate system are { , , }r  e e e  and those for the Cartesian system are { , , }x y ze e e ;  

r  is the distance from the center of the sphere,   is the polar angle ( 0    ) and   is the azimuthal 

angle ( 0 2   ). The velocity vector and the total pressure are denoted by , pv , respectively, and the 

viscoelastic extra-stress tensor by τ .  Far from the spherical body a constant and uniform stream is applied, 

, 0z x yv U v v  = = = , where throughout the paper the superscript   denotes the far flow-field.  The flow is 

along the z-axis, i.e. the axis of translation of the particle is aligned with the direction of the constant far 

flow field. The pressure is also constant and taken to be zero, 0p = . We use R  for non-dimensionalizing 

all lengths, U for the velocity, v , components, ( ) /s p U R +  for the pressure, p, and /pU R  for the 

viscoelastic extra-stress, τ , components.  

 

In a Eulerian frame of reference, at steady state, in the absence of external forces and torques, and 

neglecting inertia, the dimensionless governing equations are: 

                        
0  =v ,                        (2.1) 

                   

2(1 )p  − + −  +  =v τ 0 ,                                    (2.2) 
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where  is the dimensionless polymer viscosity ratio / ( )p s p    + . The extra-stress tensor τ  due to 

viscoelasticity is determined utilizing the Giesekus [24] model: 

                       Wi aWi
t




+ = − 

τ
τ γ τ τ , Giesekus,        (2.3) 

where /Wi U R  is the Weissenberg number, ( )T= + γ v v is the rate-of-strain tensor, the superscript 

T denotes the transpose, and / t τ  represents the upper convected derivative of τ  which at steady state is 

defined as:  

                            : ( ) ( )T

t




=  −  −  

τ
v τ τ v v τ .            

In Eqs. (2.3) a is additional rheological parameter. For 0a = the constitutive model reduce to the Upper 

Convected Maxwell (UCM) model for 1 = , to the Newtonian model for 0 = , and to the Oldroyd-B 

model for 0 1  ; see [6,17] for more details on the models.  

We emphasize here that even for simple flow geometries the UCM and Oldroyd-B models can become 

singular at a finite Weissenberg number [6]. For instance, for steady uniaxial elongational flow a finite 

solution exits up to Wi=1/2. This behavior can be easily rectified with the use of more realistic constitutive 

equations, such as the Giesekus model. The disadvantage of this model is that it is more non-linear than the 

UCM and Oldroyd-B models (see the quadratic term on the right-hand-side of Eq.(2.3)) and it contains 

more parameters that need to be determined from experimental data. We also mention that the effect of the 

rheological parameter becomes more apparent for high values of the Weissenberg number, i.e. for strongly 

viscoelastic fluids.   

As we have done in our previous papers, and in order to facilitate the solution procedure, instead of τ  

we work with another second order and symmetric tensor σ  which is expressed with the aid of τ  and γ :  

                              Wi= −τ γ σ .            (2.4) 

Of course, the introduction of σ  does not alter the results. Substituting τ  in Eqs (2.2), and (2.3), we get, 

respectively:  

                         

2p Wi− + −  =v σ 0 ,                (2.5) 

                  2( ( ) )Wi a Wi Wi
t t

 

 
+ = +  −  +  + 

σ γ
σ γ γ σ γ γ σ σ σ .                        (2.6) 

The above equations are accompanied with the no-penetration condition on the surface of the rigid particle, 

and the uniform and constant far flow-field. In the spherical coordinate system these conditions are 

expressed as follows: 

          
( 1, ) ( , ) 0, ( , ) cos( ), ( , ) sin( )r rv r p r v r v r     = = → = → = − → =  .      (2.7a) 
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As far as the tangential velocity component is concerned, this is imposed implicitly through a Navier-type 

linear slip condition which in dimensionless form and in terms of the auxiliary stress tensor σ  is given as: 

             
( ) at  1r rk Wi v r    − = =                 (2.7b) 

In the above equation ( ) /s pk K R  +  is the dimensionless slip coefficient with K the dimensional slip 

coefficient with dimensions of length2  x time / mass and SI units m/(Pa s). For 0k =  the usual no-slip 

condition is recovered while for k →  perfect slip is enforced; the latter implies zero shear forces on the 

particle. Typical values for the dimensional slip coefficient K are reported by Hatzikiriakos [20], Denn [25], 

Panaseti [26], and others, in the range 5 310 10  m/(Pa s)K − −= − . Considering a typical viscoelastic polymer 

solution (whose total viscosity is usually larger than 1 Pas ) and spherical particles with a few millimeters 

diameter, the dimensionless slip coefficient varies in the range 0.001 1k  . Here, we conduct a parametric 

investigation of the effect of k on the flow field and the drag force on the particle.   

The domain of definition of the governing equations is 1 , 0 , 0 2r           ; however as the 

flow is axisymmetric there is no-dependence of the primary flow variables p , v  and τ  (or σ ) on the 

azimuthal angle  . Thus, the final equations are seven scalar partial differential equations in two spatial 

dimensions ( r  and  ). Finally, we mention that the constant far flow-field leads to zero rate-of-strain 

tensor  =γ 0  and zero constant extra-stress tensor  =σ 0 . Note that with the method of solution used here 

boundary conditions for σ  are not required (and cannot be imposed). They are only used a-posteriori, after 

the analytical solution has been calculated, as an independent check of the correctness of the solution.  

 

2.3 Solution Methodology 

The method of solution, and the solution procedure, has been described in [10].  For completeness, we 

briefly mention here the main features. We use a regular perturbation scheme in terms of the Weissenberg 

number, i.e. the solution for all the dependent variables is given as a power series expansion in terms of 

:Wi  

                            2

0 1 2 ..., , ,X X Wi X Wi X X p + + + = v σ          (2.8a) 

where the zero-order term, 0X , corresponds to the solution for the simple Newtonian fluid. Note that for 

weakly viscoelastic fluids, only regular perturbation schemes should be employed, as it has explained and 

discussed in detail by Bird et al. [6] and Hassager et al. [7]. The upper convected derivative depends linearly 

on v  and v , and it is expanded as follows:  

                 
0

( ) ( )( )
, ( ) ( ) ( ) ( )

j jj T

j j j

j

Wi
t t t

 

  =

= =  −  −   v v v       (2.8b) 
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Expressions (2.8a) and (2.8b) are substituted in the governing equations and a sequence of equations at 

( ), 0,1,2,...jO Wi j =  results. Introducing 
1− =σ 0  for completeness, the mass balance, momentum balance 

and the Poission-type equation for the pressure are:  

2 2

1 10, , ( ) 0j j j j j jp p − − = − + =   +   =v v σ σ                (2.9a,b,c) 

Eq.(2.9c) is derived by taking the divergence of Eq.(2.9b) in conjunction with the continuity equation 

Eq.(2.9a). It is not an independent equation but is used only because it facilitates the solution procedure. 

Notice that Eqs. (2.9a,b,c) contain only two unknowns, jv  and jp , since the auxiliary extra-stress tensor 

1j−σ  is found from the constitutive model, Eq(2.6), in terms of the solution at the previous orders in Wi. For 

j=0 Eqs (9a,b,c) reflect the equations for a simple Newtonian fluid and can be easily solved analytically 

recovering the Basset solution [22].  In spherical coordinates and components, the solution is: 

         
0 0 0 0 0

,0 ,0 03 3 2

1 1
1 cos( ), 1 sin( ), cos( )

2 2
r

c c c c c
v v p

r r r r r
  

− −   
= − + + = − + =   
   

,            (2.10) 

where  

                 0

3(1 2 )

2(1 3 )

k
c

k

+
=

+
.        (2.11) 

For 0k → , 0 3 / 2c →  and Eq.(2.10) reduces to the well-known Stokes solution [5].  It can be trivially 

confirmed that Eq.(2.10) satisfies the far flow-field conditions and the zero radial velocity component on 

the surface of the particle ( ,0( 1, ) 0rv r = = ). Note that ,0 01
/ (2 3)cos( ) 0r r

v r c 
=

  = −   unless when 

0.k →   

When the zero-order term is in the form shown by Eq.(2.10), the higher-order in Wi sequence of 

equations reduces to a set of ordinary differential equations that can be solved analytically using standard 

methods. We also mention here that the solution procedure is equivalent to the method of separation of 

variables. Eqs (2.9) are solved sequentially for j=1, 2, 3 and 4, namely the solution is derived analytically 

for all the field variables up to 
4( )O Wi . At orders higher than one, this task is achieved by developing a 

symbolic code with the “Mathematica” software [27] with the aid of which the solution is also checked for 

its correctness. The first-order solution for the UCM ( 1 = ) and Oldroyd-B (0 1  ) models is given as:  
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2 2 2 2

0 0 0 0 1 0 0 0 0 1

8 6 4 3 8 6 4 3

2 2 2 2

0 0 0 0 1 0 1 0 0 0 0 1 0 1

5 3 4 2 5 3 4 2

1

,1

9(1 ) 23(1 ) 3 9(1 ) 21(1 ) 5
cos(2 ) ,

4 2 6 2 4 2 2

(1 ) 6 3 3(1 ) 3 6 3
cos

4 4 12 12 4 4 4 4
r

c c c c c c c c c c

r r r r r r r r

c c c c c c c c c c c c c c

r r r
v

r r r r r

p 



  − − − −
+ + + + + + + =

=

 
  

 − + + − + +
+ − + + + − + 

 

2 2

0 0 0 0 1
, 5 31 4

(2 ) ,

3(1 ) / 6
sin(2 ) ,

4 4

c c c c c

r r r
v






 
 

− +
+ − 



 

=


 (2.12a) 

where 

( )
( ) ( )

2 3

1 2

27 1 10 26 32

4 1 3 1 5

k k k
c

k k

+ + +
= −

+ +
.    (2.12b) 

Regarding the Giesekus model, we mention that a nonzero value for the rheological parameter a  modifies 

the solution Eq.(2.12a) and (2.12b) (albeit the solution is too lengthy to be given here). 

At second order in Wi, the solution for the UCM and Oldroyd-B models can be compactly expressed 

as: 

        

( )

( )

1 3

1 3

3 3
1

2

,2

3
3,2 1

cos( ) cos(3 ) ,

cos( ) cos(3 ) ,

1
sin( ) sin(3 ) .

2 2 222

r

G G

F F

F

p

v

F
v F

r F
F F r

 













+

+

    
− + − − +    



=

=



 


=  

  

               (2.13) 

The 1 3 1 3G ,G ,F ,F  are functions of the radial distance r, given as follows:  

       

( )

( )

3 39
1,0 02

1 5 11
3

3 39
3,0 0

3 5 11
3

310
1,3 02

1 2 4 12
5

310
3,3 0

3 4 12
5

9 1 81( 1)ln( )
( ) ,

35 572

3 1 3( 1)ln( )
( ) ,

7 52

3 5643(1 )
( ) ,

20 104

81(1 )
( ) ,

4 8

k

k
k

k

k
k

k

k
k

k

k
k

fc ccr
F r

r r r r

fc cr
F r

r r r

gc cc
G r

r r r r

gc c
G r

r r r





=

=

=

=

+ −
= + + +

+ −
= + +

−
= + + +

−
= + +









               (2.14) 

and 1, 3, 1, 3,, , ,k k k kf f g g , 3,4,...,10k =  are constants which are provided in the Appendix. Worth mentioning 

is the appearance in Eq.(2.14) of the term 5ln( ) /r r  in the velocity profile. The solution becomes even 

more complicated at higher orders in Wi.  
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2.3.1   Secondary flow variables  

Based on the perturbation scheme, and at any order 0,1,2,3,j =  in the Weissenberg number, the rate-

of-strain tensor is given simply by ( )T

j j j= + γ v v , while the extra-stress tensor due to the 

viscoelasticity of the fluid becomes 1j j j−= −τ γ σ  where 1j−σ  is found using any of the constitutive models; 

recall that 1− =σ 0 . Also, a stream function ( , )r  =   can be defined as follows:  

                             
2

1 1
,

sin( ) sin( )
rv v

r r r


  

 
= − =

 
  .               (2.15a,b) 

Integrating Eq.(2.15b) gives 
1

( , ) (1, ) sin( ) ( , )

r

r r v r dr    − =  . From Eq.(2.15a) and the boundary 

condition, Eq. (2.7a), we conclude that (1, )  is a constant, i.e. there is no dependence on  . Since only 

the stream function differences are of interest, we arbitrarily set (1, ) 0 = . Using the analytical solution 

for , jv , we can find , 0,1,2,3,4j j = , but since the higher order expressions are lengthy, we report only 

the zero- and first-order terms:   

             
2

2 0
0 0

1sin ( )

2

c
r c r

r

 − 
 = − + 

 
 ,                  (2.16a) 

                
( )2 2 2

0 0 0 0 1 1
03 21

1cos( )sin ( ) 6

8 3 3

c c c c c c
c

r r r

 


− +
− + − −= 


 


.   (2.16b) 

As far as the vorticity vector  ω v  is concerned, one finds  =ω e . The zero- and first-order 

terms are:   

       
( )0

2,0

sinc

r



= ,                (2.17a) 

        

2

0
,1 3 3 2

1
0

1
1 sin(

3 1 1
2

2
)

3 3

c c
c

r rr r





    
+ + − +    

  
=

 
.          (2.17b) 

Lastly, we report the conformation tensor c , which represents the second moment of the end-to-end 

position vector of all possible internal configurations that the polymer molecules can take due to the flow 

deformation [17]. For the constitutive models used here c  and τ  are connected as ( ) /Wi= −τ c I . The 

latter combined with Wi= −τ γ σ , tr( ) 0=γ  and tr( ) 3=I  gives:   

    
2 2, tr( ) 3 tr( )Wi Wi Wi= + − = −c I γ σ c σ .  (2.18a,b) 

Using the perturbation scheme, Eq.(2.18b) gives 2

03 )( ) t (tr rWi− σc  where 
0 0 0( )=σ σ v . It is worth 

mentioning that at any order in the Weissenberg number, the conformation tensor and its trace can be 
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calculated up to two orders in the Weissenberg higher than the velocity and pressure fields; see also [9]. 

For 
0tr( )σ , the solution for the UCM and Oldroyd-B models is:  

    
( ) ( ) ( ) ( )

( )
2 22 2

0 0 0 0 0 00 0
0 8 6 4 8 6 4

2 1 1 1 1
( ) 18 cos

6
r 2

6
t

c c c c c cc c

r r r r r r


  − − − − 
= − − + + − +   

   

σ  .     

(2.19) 

Regarding the Giesekus model, a  affects the solution at first order.        

 

2.3.2   Drag on the sphere 

A major quantity of interest for this type of flow is the total force D  that the fluid exerts on the particle. It 

can be found by integrating the traction vector  rT e  on the surface of the particle. Due to the uniform far-

flow field and the symmetries of the spherical particle, one can easily show that D= − zD e  with 

0
6 ( )s p

D
D

RU  
 

+
 where D  is the total dimensional drag force, i.e. there is only a non-zero 

component of the force acting on the particle which is along the z-axis. The final formula is: 

p V ED D D D= + + ,        (2.20a) 

where 

         
0

1
sin(2 )

6
pD p d



 =  ,            (2.20b) 

          
0

1
sin( ) 2 cos( ) sin( )

3

r
V

v v
D v d

r r




    

   
= − −  

   
 ,             (2.20c) 

          ( )
0

cos( ) sin( ) sin( )
3

E rr rD Wi d






     = − .       (2.20d) 

All quantities in Eqs (2.20b)-(2.20d) are evaluated at r=1. Notice the three distinct contributions, namely 

the form drag, PD , due to the isotropic pressure, the friction drag, VD , due to the viscous stresses, and 

the elastic drag, ED , due to the viscoelasticity of the polymer. Note that the elastic drag contribution ED  

is an O(Wi) quantity. Substituting 
0v  (see Eq.(2.10)) and 

0 0 0( )=σ σ v  in Eq.(2.20b)-(2.20d) gives the 

lowest-order terms for PD , VD  and ED , respectively: 

                           
0 ,0 ,0 ,0

1 2 1 2 2(1 2 )
, , , 0

1 3 3(1 3 ) 3(1 3 )
p V E

k k k
D D D D

k k k

+ + +
= = = =

+ + +
 .         (2.21) 
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These correspond to the Newtonian fluid Basset solution [22]. Note that, as commented by Premlata & Wei 

[28], the Basset solution is identical to the Hadamard [29] and Rybczynski [30] formula for the steady drag 

on a spherical drop when the dimensionless slip coefficient k is taken as the one third of the viscosity ratio 

of the bulk fluid to the drop, Crowe & Michaelides [31]. This correspondence between the slip coefficient 

k and the effective viscosity ratio, of the bulk fluid to the drop, also holds when the effective viscosity of a 

dilute suspension is considered. However, there the proportionality constant turns out to be different, one 

fifth [32]. 

For 0k →  the Stokes results, i.e. 0 ,01, 1 / 3pD D= =  and ,0 2 / 3VD = , are recovered. Eq.(2.21) shows 

that as the dimensionless drag coefficient k  increases the total drag, and its individual contributions, drop 

monotonically. Since 0k  , the dimensionless drag force varies in the window 2 / 3 1D  , namely the 

slippage of the fluid on the surface of the particle reduces the applied force on the particle. It is also 

interesting the fact that the ( )O Wi  term of the elastic drag is zero, i.e. the integral in Eq.(2.20d) based on 

,0( 1, )rr r =  and ,0( 1, )r r =  is zero.  

The first correction to the Newtonian solution is of second-order in Wi, i.e. 2 ,2 ,2 ,2p V ED D D D= + + , and 

is given for the UCM and Oldroyd-B fluids as: 

               

( )

2 3 4 5

2 3 4

2

5

,1 2,2

2 4

2,1

2,2

0.0103 0.1855 1.4072 0.4971 22.4228 32.4

0.0057 0.1028

,
(

0.78 1.5314

1 3 ) (1 5 )

,

.1.8514 7.2

d d
D

k k

d

d

k k k k k

k k k k k

 +
=

+ +

= − − − − + +

− − − + + −=

          (2.22) 

The corresponding formulae for the full Giesekus model is provided in the Appendix. The next term is of 

fourth order, 4 ,4 ,4 ,4p V ED D D D= + + , and can be written as:  

  

2 3 4

4,1 4,2 4,3 4,4

4 6 7 7 2 7 3(1 3 ) (1 3 ) (1 5 )(1 7 ) (1 3 ) (1 5 ) (1 7 ) (1 3 ) (1 5 ) (1 7 )

d d d d
D

k k k k k k k k k k

   
= + + +

+ + + + + + + + + +
  (2.23) 

where the constants 4,1 4,2 4,3, ,d d d  and 4,4d  are provided in the Appendix. Thus, the total drag force on the 

particle based on the perturbation scheme is: 

                   
2 4

0 2 4D D D Wi D Wi + +                          (2.24) 

As expected, and previously found for similar flow problems past spheres [10], only the even orders in Wi 

contribute. Furthermore, and provided that 2D  is not much smaller than 4D , an expression with 

increased accuracy can be found by applying Shanks’ non-linear transformation [33, 34, 35] which yields:  
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2 2

2
,4 0 2

2 4

S

Wi D
D D

D Wi D
 +

−
                         (2.25) 

where the subscript S denotes the Shanks transformation, and the numerical index 4, denotes that the 

solution up to 4( )O Wi has been taken into account to construct the transformation. Hereafter, we will refer 

to Shanks transformation as the “convergence acceleration technique” used in order to increase the accuracy 

and extend the domain of convergence of the original perturbation results.  Eq.(2.25) shows that when both 

2D  and 
4D  have the same sign, Shanks transformation is valid up to 

2 4/cWi D D= . One cannot easily 

determine whether 
cWi  is a spurious pole of the solution, a real singular point, or an approximation of a 

real singular point. The improved accuracy and efficiency of Shanks transformation for viscoelastic flow 

problems past spheres and cylinders, especially when only the first three terms are used, as in Eq.(2.25), 

has been confirmed in Refs [35], [36] and [37] by comparing the accelerated asymptotic results with the 

corresponding analytical solutions [35] or with numerical results from the literature  [36, 37]. We also 

mention here that the minimum number of terms needed in order to implement an acceleration technique 

on a series is three. When more terms in the original series are available other transformation methods can 

be also applied such as Euler transformation (see also below in subsection 2.4.3), or the multiple-level 

Shanks transform and the Padé-type approximants as it has been extensively studied and discussed in Ref. 

[35].   

 

2.4 Correctness, validity and accuracy of the solution  

2.4.1   Consistency checks 

The correctness of our analytical perturbation solution is checked with the aid of the “Mathematica” 

software [27] by performing the following consistency tests, all of which were successfully passed, valid at 

any order in the Weissenberg number, j: 

(a) The first test is based on the continuity equation which can be integrated to give:  

               ,

0

( , )sin( ) 0, 1r jv r d r



   =     .       (2.26) 

(b) The second test is based on the momentum balance, Eq.(2.11b), which  has two non-trivial 

components; in the radial and polar angle of the spherical coordinate system ( ,r  , respectively). 

However, the  − component of the momentum balance is not really used. Indeed, according to the 

solution procedure, jp  is determined solving Eq.(2.9c), , jv  is found in terms of ,r jv  solving 

Eq.(2.9a), and finally ,r jv  is found solving the radial component of Eq.(2.9b). Thus, substituting the 
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solution for all variables in the  − component of the momentum balance provides an independent 

test of its correctness. 

(c) The third test is based on the far flow-field viscoelastic extra-stress tensor 
σ  which is calculated 

simply by substituting 
v  in the constitutive model(s) and solving the resulting equations. Then, 

σ  

can be expanded and found in series form as 
0

j

j

j

Wi 

=

=σ σ . However, due to the method of solution 

used here, j


σ  cannot be imposed because at any order in Wi jσ  is fully determined using all the 

lower-order solutions (i.e. 0 1 1, ,..., j−v v v ) and the constitutive model(s) without the need to solve 

differential equations [10]. Comparing ( )j r →σ  with j


σ  gives another undeniable test of the 

correctness of the analytical solution at any order in the Weissenberg number.  

(d) The fourth and final test is based again on the momentum balance. Since the dimensionless total 

stress tensor is given by the expression (1 )p  = − + − +T I γ τ , the introduction of the new tensor 

σ  results to p Wi= − + −T I γ σ .  Thus, at any order in the Weissenberg number, T  is given as 

1j j j jp  −= − + −T I γ σ . Also, the momentum balance, Eq.(2.2), or Eq.(2.5), simply becomes:  

               j  =T 0 .                   (2.27) 

Choosing a fluid volume V which is enclosed between the surface of the sphere and an imaginary 

sphere with radius 1r  , integrating Eq.(2.27) over V , i.e. j

V

dV = T 0 , applying the divergence 

theorem to convert the volume integral to a surface integral, and using spherical coordinates, gives 

        

2 2

2 2

1

0 0 0 0

( sin( )) ( sin( )) , 1s s rs d d s d d r

   

   

     = =

= = = =

 =       r re T e T  .        (2.28) 

The constant quantity on the left-hand-side of Eq.(2.28) is merely the dimensionless total force −D  that 

the fluid exerts on the spherical particle. Thus, the right-hand-side of Eq.(2.28) should be independent of 

the radial distance r. Indeed, this has been confirmed based on the analytical solution up to 
4( )O Wi  .  

 

2.4.2  Validity of the solution 

An important feature of the real, symmetric and second-order conformation tensor, c , is its positive definite 

character [17,38]. This implies that all its eigenvalues, and consequently its trace which equals the sum of 

the eigenvalues, are strictly positive, a property which is necessary for the results to have physical meaning. 

This can be used to check the validity of an approximate solution. This issue has also been discussed 
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extensively for the flow past an infinitely long cylinder by Housiadas & Tanner [36] for simple shear, and 

by Gryparis et al. [39] for planar elongation. For a two-dimensional and axisymmetric flow field expressed 

in spherical coordinates we have 0, 1rc c c  = = = , while necessary conditions for positive definiteness 

are 0, 0rrc c   and 2 0rr rc c c −  . We focus however on the trace of the conformation tensor and use 

it as a guidance of the validity and accuracy of the velocity/pressure fields. Note that in the following, the 

available perturbation solutions for the trace of the conformation tensor and the velocity up to 5( )O Wi  and 

4( )O Wi , respectively, are used.  

For the limiting case as the slip coefficient k goes to zero, namely for the classic no-slip boundary 

condition on the particle, Housiadas & Tanner [10] identified that for the UCM/Oldroyd-B models, and 

under creeping flow, a negative trace of the conformation tensor close to the surface of the sphere results 

in artificial negative wakes, i.e. in flow regions with sign of the axial velocity component which was the 

opposite than its far-flow field sign. This situation is presented in Figure 2.2 for the Giesekus model based 

on results obtained in this work. 

  

The Weissenberg number is rather large, Wi=1.5, the polymer viscosity ratio is η=0.4, the rheological 

parameter is α=0.3, and the classical no-slip condition is applied (k=0).  In Figure 2.2a, the colored (green) 

region, which is located around the sphere away from the poles (θ=0, π) and near the equator (θ=π/2) 

indicates a negative trace of the conformation tensor. In this region, approximately, the contours for the 

axial velocity component 
zv = ze v  which are presented in Figure 2.2b clearly show that 0zv  , i.e. a 
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negative wake is identified. In conjunction with the fact that when tr( ) 0c everywhere in the flow, no 

negative wakes are predicted, we conclude that for creeping flow the negative wake is an artificial result 

accompanying that of the loss of positive definiteness of the conformation tensor, indicative of a loss of 

validity for the perturbation approximation at that high value of Wi.  

       We also investigated the prediction of negative wakes under perfect slip conditions ( k → ) in     

Figure 2.3. We have chosen to present there the Oldroyd-B model with η=0.4 and 1.5Wi = . For this model 

and for the same parameters, the no-slip case does not reveal neither any flow regions with tr( ) 0c , nor 

negative wakes. However, the situation for perfect slip on the sphere is quite different, as Figure 2.3 clearly 

shows. Indeed, extensive regions with tr( ) 0c  are predicted around the sphere. Decreasing the 

Weissenberg number, the regions with negative trace, and those with negative wakes, gradually shrink and 

for 0.9Wi   are eliminated.  Obviously, the negative wakes are closely related to the loss of positive 

definiteness of the conformation tensor.   

 

All these observations are consistent with the fact that as the small parameter of the perturbation scheme 

increases, the original perturbation solution gradually loses its accuracy and validity. We have not 

implemented an acceleration convergence scheme in field quantities since no such scheme is available in 

contrast to integral quantities like the drag force. Note that in the following we present results for Wi number 

and rheological parameters such that the conformation tensor is everywhere (or almost everywhere) positive 

definite. In any case, it is important to note that at least for the UCM and Oldroyd-B cases, the steady state 

solution is not expected to exist for all Wi numbers due to the previously mentioned singularity present in 
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those models. In fact, all numerical methods encounter problems of convergence for high enough Wi 

numbers; how high someone can go depends on the flow geometry (numerical calculations are typically 

carried out for a sphere moving within a cylinder) and the viscosity ratio.  For example, for UCM fluid and 

a ratio of sphere/cylinder radius of 0.5 it appears that convergence is lost at some point after Wi = 1.5; see 

Table 9.2 in Ref. [12].   

 

2.4.3  Accuracy of the solution 

We have used the total drag on the particle for the no-slip case (k=0) and the UCM model (η=1) which has 

been found by Housiadas & Tanner [10] up to O(Wi8) in order to test the accuracy of our fourth order 

solution. For additional accuracy, we have also calculated the O(Wi10) term, a task which pushed the 

software and the computer to their limits. Truncating the results in 5 significant digits we find:  

      2 6 8

0

2

1

4 21 ( 1.6024 1.2155 0.63995 0.47452 0. 3612 )5 10Wi Wi Wi i iD W W −

  + − += − + −   

(29a) 

where hereafter the notation 
0

:
k

n

k n

n

D D Wi 

=

=  is used. Since the series is alternating, first we use Euler’s 

linear transformation as a method to accelerate its convergence as previously has been implemented 

successfully for a variety of simple viscoelastic flow problems by Housiadas [35]. Using the 5 and 6 first 

terms in Eq.(2.29a), we find, respectively:  

2 4 6 2 2

,8 1 ( 1.5022 0.83563 0.19998 0.029658 10)E Wi Wi Wi WiD −= + + − + −   (2.29b) 

            
2 2

,10

24 6 8)1 ( 1.5523 0.98757 0.31998 0.088973 0.016754 10E Wi Wi Wi Wi WiD −+ − + − + −=    (2.29c) 

where the subscript E denotes Euler’s linear transformation and the numerical index the order of the original 

series used. Note that the magnitude of the coefficients of the transformed series decreases much faster than 

those of the original series which is an indication for faster convergence too.  

Shanks’ non-linear transformation, Eq.(2.25), is employed extensively in our work as the method for 

convergence acceleration given the limited order (4th) of the available perturbation solution. Using only the 

first 3 terms in Eq.(2.29a) gives:  

                  

2

,4 2

0.0256768

1.6024 .
1

1 21547
S

Wi
D

Wi
= −

+
                     (2.29d) 

The results are shown as a function of the Weissenberg number in Figure 2.4. First, focusing on the original 

series, Eq.(2.29a), one notices that as more terms are included in the series, convergence at a higher 

Weissenberg number is observed; note however that the convergence is slow. For 
2D 

 convergence has 

been achieved up to Wi~0.3, for 
4D 

increases up to Wi~0.6, but one has to go up to 
10D 

 to observe 
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convergence up to Wi~0.8. In contrast, the convergence of the accelerated series, Eq.(2.29b) and (2.29c), is 

much faster. For 
,4SD  we get as good results, or even better, than for 

10D 
, whereas for 

,8ED  and 
,10ED  one 

observes convergence up to Wi~1.4. Comparing 
,4SD  with  

,8ED  and 
,10ED , convergence up to Wi~0.8-0.9 

can be confirmed; this is substantially higher than what is observed with the original 
4D 

. This justifies 

the use of the acceleration method in presenting the predictions for the drag in the “Results and discussion” 

section.   

 

We also compare our perturbative analytical results with the available numerical results from the 

literature. For the models used in the present work and even for the no-slip case, numerical results are only 

available for the confined sphere problem in a cylinder. Bodart & Crochet [40] performed finite element 

calculations for the Oldroyd-B model with 8 / 9 =  and demonstrated numerical convergence with three 

different mesh sizes up to Wi=2. We use their normalized drag results for the smallest ratio of sphere to 

cylinder radii (0.02) which appear to have converged as far as the effect of the confinement ratio is 

concerned. In fact, for that ratio the simulations correspond to an unbounded flow domain. 
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 In Figure 2.5, we compare their drag predictions, normalized by the corresponding to the same 

confinement Newtonian value, against our own results. In particular, we show the original series solution 

up to fourth order in Wi, i.e. the quantity 
4D 

 (following Eq.(2.30) below), and its transformed expression 

according to Eq.(2.25),   
,4SD   , as well as the Euler transformations 

,8ED  and 
,10ED . It is seen that all 

transformations are converged up to Wi~1.0 while the original series, 
4D 

, agrees well with the numerical 

results only up to Wi~0.6. Worth mentioning is that 
,8ED  actually overlaps with the numerical results up to 

Wi~1.8. However, the next approximation 
,10ED  begins to fail at Wi~1.4. These observations fully justify 

the methods and the order of approximation used as the best compromise between the increased workload 

and increased accuracy.  

 

 

2.5 Results and Discussion 

For comparison, we start the discussion with the no-slip case despite the fact that most of the results have 

been known from earlier work [10]. However, there are still some new results obtained with the Giesekus 

model.   
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2.5.1   Drag on the sphere: no-slip ( 0k → ) 

When the slip coefficient goes to zero, namely for the standard no-slip condition on the particle, the 

following expression is derived for the UCM/Oldroyd-B models:  

  
2 3

2 4

4

258 2524971 117018471 447910935363 2426923127

25025 175 181060880 681360680000 181241940880000 4769524760000
1D Wi Wi

   
   =

  
+ + + − +  

   
−   

(2.30) 

Eq.(2.32) fully agrees with that derived in Ref.[10] up to fourth order in Wi. One can easily see that the 

2( )O Wi  term is negative while the 4( )O Wi term is positive; the numerical values in the last parentheses are 

0.01395 , 0.0001717 , 20.002471−  and 30.0005088 . Results for the drag force as a function of the 

Weissenberg number are presented in Figures 2.6a and 2.6b for the Oldroyd-B and Giesekus models, 

respectively. The rheological parameter is α=0.1, while for all models the polymer viscosity ratio is η=0.9. 

Both Eq.(2.30) (solid lines) and the corresponding expression derived from Eq.(2.25) (dots) are shown. The 

original series solution, Eq.(2.30), shows a decrease of the drag up to Wi ~ 0.8-1.3 (depending on the 

constitutive model) and then the drag starts to increase. It is interesting that this behavior has been confirmed 

experimentally [12] and numerically in Ref. [40] for the Oldroyd-model (see the previous section and 

Figure 2.5).  

 

However, when Eq.(2.30) is transformed according to Eq.(2.25) a monotonic variation of the drag force 

with Wi is predicted, i.e. viscoelasticity decreases the drag monotonically (or, equivalently, the translational 

velocity monotonically increases when the force on the particle is kept fixed). Also note, that this decrease 
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of the drag force is more substantial in the Giesekus model. It is assumed that it is caused by the shear 

thinning and lower extensional thickening associated with this model and the parameter used here. Our 

assertion is corroborated by the numerical simulations of Chilcott & Rallison [11], Yang & Khomami [41] 

and Castillo et al. [42] who also showed a decrease of the drag at small Weissenberg number. Therefore, it 

appears that our transformed fourth-order perturbation results agree with the available numerical results 

(see the previous discussion and Figure 2.5). We emphasize though that the drag force may increase at 

Weissenberg number larger than one, as well as that the experimental data show an increase much larger 

than that predicted by the numerical simulations [10,42]. It is obvious that the disagreement between 

theory/simulations and experiments should be attributed to the inability of the utilized constitutive models 

to predict the correct response of highly viscoelastic fluids under flow deformation; the interested reader is 

also referred to the corresponding discussion in Ref. [42]. Perhaps other constitutive models should be used, 

such as that presented by Garduno et al. [43], although there are still issues that need careful consideration. 

For instance, more complicated constitutive models than those used in this work usually contain additional 

rheological parameters, the experimental determination of which may be difficult (if possible at all). 

Moreover, the model should always work well for a variety of simple viscoelastic flow problems (steady 

shearing, uniaxial elongation, etc.) and not for a specific viscoelastic flow.   

 

2.5.2  Drag on the sphere: perfect slip ( )k →  

When the slip coefficient goes to infinity, perfect slip is imposed on the particle, and the following 

expression is derived for the UCM/Oldroyd-B models: 

  

2 3
2 4

4

2 9 738877 12667304 2812
1

25 9 49 5788125 445685625 1782

2 2

43 7 25
D Wi Wi

    
 

  
− + − + +  =

 
+

 
    (2.31) 

Note that the perfect slip case should be considered as an idealized state which cannot be encountered in 

real systems; it is useful only as a lower bound for the drag force on the particle. Eq.(2.31) shows that in 

contrast to the zero-slip case, both the 2( )O Wi  and 4( )O Wi  terms are strictly positive for 0 1   and 

therefore the effect of viscoelasticity increases the drag force compared to its Newtonian value, i.e. the first 

term in Eq.(2.31). Notice also that the coefficients decrease in magnitude; for instance the numerical values 

in the 4( )O Wi  term are 0.1837 , 0.1277 , 20.02842  and 30.0001577 . Based on these coefficients one 

can expect good convergence for any value of   ( 0 1  ). It is also expected that 
4D 

is accurate up to 

O(1) values of the Weissenberg number. Indeed, In Figure 2.7a, comparison against the convergence 

acceleration results, 
,4SD , shows convergence up to Wi~0.4 with a monotonic drag increase being even 

more pronounced in 
,4SD  than 

4D 
. In fact, for the 

,4SD  a singular point of the solution is predicted at 
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0.834cWi  . Given the relatively low values of the Weissenberg number (Wi<1) and the discussion in     

Sec. 2.4.3 there is a high confidence for the validity and accuracy of these results. The increase on the drag 

is caused by the fact that in the perfect-slip case the shear character of the flow on the surface of the sphere 

is eliminated allowing for the extensional thickening characteristics of the Oldroyd-B model to prevail; one 

is remined here that the Oldroyd-B model becomes singular at Wi=1/2 for pure uniaxial extension. In 

contrast to the Oldroyd-B model, no singularity is predicted for the Giesekus model which is shown in 

Figure 7b. This is consistent to the absence of singularity in pure extensional flow in this model. It is also 

another indication that the UCM/Oldroyd-B models may not be suitable for the problem under 

consideration. Moreover, an almost constant drag is predicted using the Shanks transformation, i.e. 

Eq.(2.25), for the Giesekus model. Finally, it is worth noting that there is a good agreement between the 

original perturbation results and their transformed values up to Wi~1. For larger Wi the discrepancy 

becomes bigger, and the original series results eventually become nonphysical. 

 

 

2.5.3  Drag on the sphere: finite slip ( 0.5)k =  

As mentioned above for the Newtonian fluid, the drag force D  reduces from unity at k=0, to 2/3 as k goes 

to infinity; see Eq.(2.21). Between these two limiting cases, we chose k=0.5 in order to show the effect of 

a finite dimensionless slip coefficient since for this value we already get an appreciable decrease of the 

drag, i.e. 0.8.D =  For the UCM/Oldroyd-B models, and setting k=0.5 in Eqs (2.22-2.24) we find:  
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    (2.32) 

The coefficients of the fourth-order term are 0.0418647, -0.00502698η, -0.014083η2, and 0.00561149 η3. 

One can verify that both coefficients of 2Wi and 4Wi  are strictly positive for any value of the polymer 

viscosity ratio, clearly showing an increase of the total drag on the particle. The results from Eq.(2.32) and 

the transformed expression based on Eq.(2.25) are presented in Figure 2.8a. The corresponding results for 

the Giesekus model are shown in Figure 2.8b. The rheological parameters η and α are the same as in Figures 

2.6 and 2.7. The results are qualitatively similar to those predicted for the perfect slip case albeit quantitively 

the relative drag with respect to the Newtonian value is smaller in partial slip than in perfect slip. This can 

be clearly seen with the Giesekus model (compare Figure 2.8b with Figure 2.7b). Notice that with the 

Oldroyd-B model, shown in Figure 2.8a, a singularity is predicted at a smaller Weissenberg number 

0.6518cWi   compared to the perfect slip case.  

 

  

2.5.4  Velocity results 

In Figure 2.9, we present the slip velocity ( 1, )v r =  as a function of the polar angle  , where 0 =

corresponds to the north pole of the sphere and  =  to the south pole. As expected, due to the spherical 

coordinate system, the slip velocity at the poles is zero. It increases as we move away from the north pole, 
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reaches a maximum and then decreases to zero at the south pole. Notice however, that the maximum is not 

always observed at the equator, i.e. at / 2 = , but mostly before or even after that, which shows that the 

symmetry with respect to the y-axis breaks. This is caused exclusively due to viscoelasticity, since the slip 

velocity for the Newtonian fluid is 
,0 0( 1, ) (3 / 2 )sin( )v r c  = = −  (see Eq.(2.10)). Figure 2.9 also shows 

clearly that the increase of the slip coefficient k enhances the magnitude of the fluid velocity on the surface 

of the particle. For a Newtonian fluid and perfect slip 
0 1c →  and therefore 

,0( 1, ) (1/ 2)sin( )v r  = → . As 

far as the effect of the Wi number is concerned, for small k is hardy observable. For a higher value of k, i.e. 

for k=0.5, a slight increase of the slip velocity is seen at the upper part of the sphere, while at the lower part 

the slip velocity remains practically the same. For perfect slip, the effect of viscoelasticity is larger 

compared to the finite slip case, although the differences are located at the lower part of the sphere instead 

of the upper part.   

 

The streamlines for a Newtonian ambient fluid ( 0Wi = ) with no-slip on the surface of the sphere are 

well-known and can be found elsewhere (see for instance in Ref. [9]). In order to focus on the effect of slip 

we present results for the normalized stream function 
0: ( ) /n Wi =  − . i.e. for the deviation from the 

Newtonian fluid scaled by the Weissenberg number. The 
n contours are shown in Figures 2.10a, b and 

c in increments of 0.02 for the no-slip, finite slip, and perfect slip cases, respectively. The symmetry with 

respect to the z-axis is clearly demonstrated. However, the symmetry with respect to the y-axis, observed 

for the Newtonian fluid, has been broken. It is interesting that for the no-slip case both positive and negative 
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values of 
n are observed; the zero contour which marks the transition from positive to negative values 

is also seen. Note that as we move from the no-slip to the finite and perfect slip cases, the regions with 

positive values gradually shrink and disappear.     

 

In Figure 2.11, we present the contours for the axial velocity component 
zv = ze v  which far from the 

particle becomes constant, i.e. at r → , 1z zv v→ = − . The parameters are the same parameters as in 

Figures 2.9 and 2.10. For a Newtonian fluid, a fully symmetric scenario with respect to both y and z axes is 

predicted because the axial velocity can be written in the form 
2

,0 ,0 ,0 ,0
ˆ ˆ ˆ( )cos ( )z rv v v v = + −  where ,0

ˆ
rv  

and ,0v̂  are the radial parts of the zero-order velocity components (see Eq.(2.10)). However, when 

viscoelasticity is taken into account, the appearance of the higher cosine Fourier modes in the solution 

breaks the symmetry with respect to the y-axis. The no-slip case, shown in Figure 2.11a, produces closed 

contours which do not intersect with the surface of the sphere on which the axial velocity is zero. When 

slip is allowed, either finite (Figure 2.11b) or perfect slip (Figure 2.11c), the non-zero contours near the 

sphere cease to be closed but instead they start/end on the sphere. It also appears that the magnitude of the 

contours is larger compared to the no-slip case which, again, is because slippage is allowed on the surface 

of the particle.  
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2.5.5  Conformation results 

Finally, in Figure 2.12, we present the contours for tr( )c ; the latter corresponds to the extension of the 

polymer molecules due to flow. Recall also that for a Newtonian fluid, or for no-flow, =c I  and thus 

tr( ) 3=c . The parameter values are the same as in Figure 2.8. Symmetry with respect to vertical axis is 

observed in all cases, while the symmetry with respect to the horizontal axis breaks due to viscoelasticity. 

For the no-slip condition the largest extension of the polymer molecules is observed close to the equator     

( / 2 =  ) as well as below the sphere. As expected, the extension is enhanced as the dimensionless slip 

coefficient k increases. We also see that as k increases more complicated structures become apparent close 

to the surface of the sphere; obviously the full resolution of the flow field near the particle is more 

demanding that the no-slip case.     
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2.6 Conclusions 

We have investigated analytically, by deriving fourth-order perturbation solutions, the steady translation of 

a spherical particle in a viscoelastic fluid assuming Navier-type linear slip on the surface of the particle. 

The solutions for the drag force have also been processed with techniques that accelerate the convergence 

of series in order to increase the accuracy and extend the domain of convergence of the original perturbation 

solutions.  

In the limit of Newtonian matrix fluids, we have confirmed the known analytical results that reveal the 

decrease of the drag force on the particle with increasing slip. However, for the viscoelastic cases the results 

are more complicated and depend on the choice of the constitutive model. The analytical results have been 

carefully checked for their correctness and have been validated for accuracy in the limit of no-slip against 

numerical results from the literature. The analysis has shown consistently that the techniques that accelerate 

the convergence of series extend reliably the accuracy of the total drag force on the particle up to Wi~1.  

For the Oldroyd-B model, and under perfect slip conditions on the particle, both the original 

perturbation series and the convergence acceleration solutions have shown a dramatic increase of the drag 

force as the Weissenberg number increases. Furthermore, the convergence acceleration results for this 

model indicate a singular point of the solution at a finite, order one, Weissenberg number; however, it is 

not possible to be definitive on this point using only relatively low (fourth order here) perturbation 
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approximations and one should only use this feature simply as indicative of the presence of a significant 

drag enhancement with this model.  In contrast to the Oldroyd-B model, a singularity is not predicted for 

the Giesekus model.  For all models, we have shown that viscoelasticity increases the dimensionless drag, 

normalized with respect to the corresponding Newtonian result, monotonically with increasing the slip 

coefficient. This is attributed to the dominating role of the extensional thickening properties of the models 

as the intensity of shearing close to the particle diminishes. 

The slip velocity on the surface of the sphere increases as the slip coefficient increases, whereas the 

effect of viscoelasticity appears to be minor. Finally, we have shown that viscoelasticity destroys some of 

the symmetries of the flow field around the sphere which are observed for a Newtonian fluid, as well as 

that complicated flow structures close to the particle and especially in the wake, are developed. Those 

structures require special numerical techniques in order to be resolved accurately.    
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Appendix 

Appendix for the chapter one  

We give here the analytical solutions which are not given in the main text, namely 
2 2, pv , for the Giesekus, 

and FENE-P models. We also provide the non-trivial components of the viscoelastic extra-stress tensor τ , 

up to 2nd-order, which according to the perturbation scheme are ( ) 2

,0,0 , 12 ,ij ijij ij ijWi Wi  − − + where  

,i r =  and ,j r = .  

UCM/Oldroyd-B model 
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Giesekus model 

The Giesekus solution is given with the aid of the Oldroyd-B/UCM solution (see Eq.(14)) in the form 

more termsGX X= +  where , , , , ,r rr rX p v v    = , at any order in the Weissenberg number, and the 

superscript “G” stands for the Giesekus model.  
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FENE-P model 

Last, the solution for the FENE-P model is given with the aid of Eq.(14) and using the superscript “F”: 
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Appendix for the chapter two 

Constants for the 2nd-order velocity profile 

The coefficients which appear in Eq.(2.14a) are: 
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The coefficients which appear in Eq.(2.14b) are: 
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The coefficients which appear in Eq.(2.14c) are: 
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The coefficients which appear in Eq.(2.14d) are:  
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Total drag force: Giesekus model 

For the 2nd-order correction, we find:  
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