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Abstract

Risk measures are inarguably the Economic Regulator Authorities’ favorite tool

for preventing crises and controlling the risk existing in Financial institutions and markets.

Take for instance the Basel Committee of Banking Supervision’s consultive documents (see

for instance [26] and [27]) and it is clear that risk measures and their proper use are perceived

as their most important instrument. Also academics are taking that into account and so

they try to evolve their research on risk measures depending on the occasion and also they

try to meet the ever changing needs. Last but no least we have the practitioners (for instance

investors) who are always in pursuit for profit by utilizing the most advanced methods and

tools and perhaps if we consider Adam Smith’s invisible hand they indirectly contribute to

the financial markets prosperity.

In addition we observe that we are leaving in a world of continuous economic crises,

most of them interconnected in a global scale. The starting point of this era is the global

crisis emerging from late 2007 as a subprime mortgage crisis in U.S.A.. Taking into account

the most recent energy crisis and Food supply crisis, both because of the war in Ukraine, is

evident that we are far from an efficient use of the tools that a regulator or a practitioner

can utilize. One of the main reasons is the uncertainty and dependence between the markets

that cause the so called Systemic Risk (from now abbreviated SR). We Recall that SR

refers to the instability of a financial system that can lead to its entire collapse [75]. Taking

all the above into account, we give our effort at first on the robust theoretical basis for

ix



x ABSTRACT

the utilization of risk measures. Second we consider how Risk Measures should be properly

utilized in the presence of SR. Our effort is taking the form of four propositions of Risk

Meaures’ utilization for regulation and investment purposes.

The first utilization we propose is devoted to the investment strategies that combine

asset pricing models and coherent risk measures. In particular, we utilize the theoretical

framework of [17] , which suggests that simply by managing a portfolio of assets, an investor

can achieve risk that converges to −∞ and returns that converge to +∞. We contribute

on that framework by providing evidence that arise from the CAPM model, in regard to

the efficient market hypothesis. In addition, our results suggest that an investor can exhibit

returns that outperform the market index by managing a portfolio less volatile than the

market.

The second utilization is devoted to the estimation of the insolvency probability. In

addition we utilize dependence models that evaluate Systemic Risk (SR), as we contribute by

proposing Euler contributions of risk in an environment that is regulated by a risk measure.

Moreover the framework we are utilizing assumes that a component of the environment is

in distress. Finally, we calculate the Insolvency Probability due to Systemic Risk and we

suggest certain distribution classes under which our results are valid.

The third utilization is devoted to SR and its potential depiction in the risk spec-

trum of Spectral Risk Measures. At first, we propose a fundamental way to quantify the

existence of SR. Second we argue with common practice which suggests that risk spectrum

should solely portray the utility function of the investor-regulator and thus be constructed

only according to it. In addition we present and justify two conditions that the risk spectrum

should satisfy in regard of the existence of SR and to our knowledge such conditions have
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not been suggested by another academic or a practitioner. Moreover, we call the Spectral

Risk Measures that have a risk spectrum that satisfy those conditions systemic risk aware

and we discuss their practicality and applicability.

The fourth utilization is devoted to the Convergence of the so called Euler Risk

Contributions when the underlying Risk Measures differ. To that end, our discussion is in

regard of Euler contributions in a Risk Measure environment. In addition, we proceed by

defining some conditions where the rate of convergence of Euler Risk Contributions in a

Value at Risk regulation environment and Distortion Risk Measure regulation environment

coincide. Finally, we generalize our findings in regard of the Expected Shortfall case.

Keywords: Market Efficiency; Predictive Ability; Coherent Risk Measures; Spec-

tral Risk Measures; Risk Premium; Dependence Models; Systemic Risk; Euler Contributions;

Distortion Risk Measures; Complete Measures; Adapted Measures; Rate of Convergence; In-

solvency Probability; Ruin Probability;

AMS (2010) Classification Numbers: 49K27; 62P05; 62H20; 60E05; 91G70

JEL Classification Numbers: G11; G12; G14; C02; C54; C58;



CHAPTER 1

Introduction

Risk Measures are inarguably the Economic Regulator Authorities’ favorite tool for

preventing crises and controlling the risk existing in Financial institutions and markets. One

can take as an example the Basel Committee of Banking Supervision’s consultive documents

(see for instance [26] and [27]) and it should be clear that risk measures and their proper use

are perceived as their most important instrument. Their popularity relies heavily at some

of the advantages they exhibit. For instance most of them are easy to compute, easy to

interpret and they are intuitively friendly. For all that their multi-purposely use is apparent

mostly for regulation and investment purposes. For instance risk measures can determine

the cash or cash equivalent a Bank should hold in order to be safe from liquidity risk. For

investing purposes a mutual fund manager can determine the levels of risk her/his clients

are expose and determine their preferable portfolio according to their risk tolerance.

Also academics are taking into account the need of proper use of risk measures and

so they try to evolve their research towards that direction and depending on the occasion.

For instance they are interested on the properties that risk measures should preserve in order

to be suitable (see for instance the seminal work of [9] on coherency and [67] on convexity).

Recently the scholars focused their research interest also on the dependence existed among

risks that are evaluated by risk measures (see [58] or [14]). Last but no least we have the

practitioners (for instance investors) who are always in pursuit for profit by utilizing the

1



2 1. INTRODUCTION

most advanced methods and tools and perhaps if we consider Adam Smith’s invisible hand

they indirectly contribute to the financial markets prosperity.

In addition we observe that we are leaving in a world of continuous economic crises,

most of them interconnected in a global scale. The starting point of this era is the global

crisis emerging from late 2007 as a subprime mortgage crisis in U.S.A.. Taking into account

the most recent energy crisis and Food supply crisis, both because of the war in Ukraine, is

evident that we are far from an efficient use of the tools that a regulator or a practitioner

can utilize. One of the main reasons is the uncertainty and dependence between the markets

that cause the so called Systemic Risk (abbreviated SR). We Recall that SR refers to the

instability of a financial system that can lead to its entire collapse [75]. Taking all the above

into account, we give our effort at first on the robust theoretical basis for the utilization

of risk measures. Second we consider how Risk Measures should be properly utilized in

the presence of SR. Our effort is taking the form of three propositions of Risk Meaures’

utilization for regulation and investment purposes.

The first utilization we propose is devoted to the investment strategies that combine

asset pricing models and coherent risk measures. In particular, we utilize the theoretical

framework of [17] , which suggests that simply by managing a portfolio of assets, an investor

can achieve risk that converges to −∞ and returns that converge to +∞. We contribute

on that framework by providing evidence that arise from the CAPM model, in regard to

the efficient market hypothesis. In addition, our results suggest that an investor can exhibit

returns that outperform the market index by managing a portfolio less volatile than the

market.
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By this methodology we provide a way to examine the efficiency market hypothesis

not solely with an empirical validation that depends on an equilibrium model, but we provide

a mathematically solid framework. On top of that we find sufficient evidence of market

inefficiency that is also apparent just by observing recent aforementioned crises.

In regard of the second utilization initially we consider that Systemic Risk (SR) is

considered of high interest in academia. Recall that Systemic Risk refers to the instability of a

financial system component that can lead to its entire collapse [75]. From the aforementioned

statement one can intuitively understand that (SR) is closely related to the concept of

Dependence. [14] state that the main purpose concerning systemic risk is to evaluate the

financial distress of an economy as a consequence of the failure of one of its components.

They also point out the importance of the Extreme Value Theory (EVT) in the analysis of

systemic risk. similar to the aforementioned work we also mention [10], [11] and [12]. In

addition [32] introduce SRISK to measure the capital shortfall of a firm conditional on a

severe market decline.

Having the above in mind the second utilization is concerned of the estimation of

the insolvency probability. In addition we utilize dependence models that evaluate Systemic

Risk (SR), as we contribute by proposing Euler contributions of risk in an environment

that is regulated by a risk measure. Moreover the framework we are utilizing assumes that a

component of the environment is in distress. Finally, we calculate the Insolvency Probability

due to Systemic Risk and we suggest certain distribution classes under which our results are

valid.

The third utilization is devoted to SR and its potential depiction in the risk spec-

trum of Spectral Risk Measures. We are mostly motivated by the fact that utility function
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of the investor, a concept related to the asset pricing theory (see [40], [85]) and portfolio

diversification (see [90]) is the single factor that determines the risk spectrum of the mea-

sure. We argue with this practice and we propose that also systemic risk should be included

in the depiction.

At first, we propose a fundamental way to quantify the existence of SR. Second

we argue with common practice which suggests that risk spectrum should solely portray

the utility function of the investor-regulator and thus be constructed only according to it.

In addition we present and justify two conditions that the risk spectrum should satisfy in

regard of the existence of SR and to our knowledge such conditions have not been suggested

by another academic or a practitioner. Moreover, we call the Spectral Risk Measures that

have a risk spectrum that satisfy those conditions systemic risk aware and we discuss their

practicality and applicability.

Finally, the fourth utilization is devoted to the Convergence of the so called Eu-

ler Risk Contributions when the underlying Risk Measures differ. With that in mind, our

discussion is in regard of Euler contributions in a Risk Measure environment. Moreover, we

proceed by defining some conditions where the rate of convergence of Euler Risk Contri-

butions in a Value at Risk regulation environment and Distortion Risk Measure regulation

environment coincide. Finally, we generalize our findings in regard of the Expected Shortfall

case.



CHAPTER 2

Basic Concepts

1. Risk Measures

Let consider Ω be a sample space. In addition, consider an investment over a single

period of time, from 0 to T , where X : Ω → R is the money outcome of the investment.

Moreover, consider a probability space (Ω,F ,P) and G is the set of real valued functions on

Ω.

Definition 1.1. A risk measure is a function from the set G of risks X to the real

numbers ρ : X → R.

Furthermore we take into account the future net worths that are accepted by an

investor, namely the acceptance set A. According to [9, Definition.2.3] an acceptance set A

associated to a risk measure ρ is denoted by Aρ and is defined by

Aρ = {X ∈ G|ρ(X) ≤ 0}.

Moreover in [9, Definition 2.2] we find that given the total rate of return r of a

reference instrument (for instance we can consider r as the total return of an investment),

the risk measure that is associated to an acceptance set is the mapping from G to the real

numbers, is denoted by ρA,r and is defined by

5



6 2. BASIC CONCEPTS

ρA,r(X) = inf{m ∈ R|m · r +X ∈ A}.

For the past twenty years up to now risk measure concept (based on measure theory)

is used widely for regulatory purposes (see for instance [26, p.20]). also, efforts like [101]

depict Risk Measures analytically. Such a measure can determine the amount of currency

(or other assets) a financial institution should keep in reserve depending on the financial

risks it is exposed.

2. Properties of Risk Measures

Let introduce properties of risk measures that are associated with our work:

(1) Sub-additivity: ρ(Z) + ρ(Y ) ≥ ρ(Z + Y ) for any Z, Y ∈ G.

(2) Homogeneity: ρ(λY ) = λρ(Y ) for any λ ≥ 0.

(3) Monotonicity: for any Z, Y ∈ G let consider Z ≥ Y at all scenarios, then ρ(Z) ≤

ρ(Y ).

(4) Cash or translation invariance: for any Z ∈ G and let consider M , an investment

with guaranteed risk free returns m, then ρ(Z +M) = ρ(Z)−m.

(5) Convexity: ρ[λY + (1 − λ)Z] ≤ λρ(Y ) + (1 − λ)ρ(Z) for anyY, Z ∈ G and anyλ ∈

[0, 1].

(6) Law Invariance: If Z, Y have the same distribution under P, then ρ(Z) = ρ(Y ).

(7) Comonotonic Additivity: If Z, Y are comonotonic, then ρ(Z) + ρ(Y ) = ρ(Z + Y ).

Analysis of properties (1)-(6) can be found in [9], [68], [80], [109] and [69], while

analysis of (7) can be found in [53].
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Definition 2.1. A monetary risk measure is a risk measure satisfying monotonicity

and translation invariance.

Definition 2.2. A coherent risk measure is a risk measure satisfying monotonicity,

translation invariance, homogeneity and sub-additivity.

The importance of coherency relies in the fact that when a risk measure exhibits

them, then the acceptance set associated with this risk measure is closed and satisfies the

4 axioms suggested by [9, from Axiom 2.1 up to 2.4]. An in depth analysis concerning the

relation between the axioms of Acceptance Sets and the properties of coherent risk measures

can be found in [9, Proposition 2.1] [9, Proposition 2.2] [9, Proposition 2.3] and their proofs.

Recently, was suggested that there are certain risk scenarios where this set up need

some relaxation. For instance [52] took into account property of sub-additivity and suggested

that from the viewpoint of regulator a merger with adding the capitals should be preferred

because the risk measure decreases. Furthermore, the concept, that leverage of a position

rises the levels of the risk proportionally, cannot hold, since in reality the leverage can lead

to disproportion risk changes. As a consequence, the weaker property of convexity, proposed

by [67], come into consideration.

Definition 2.3. A convex risk measure is a risk measure satisfying monotonicity,

translation invariance and convexity.

As [67] explains convexity suggest that diversification does not increase risk or

rephrasing, a diversified position is less or equal to the weighted average of the individual

risks. We observe that a convex risk measure that is homogenous and sub-additive is also
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coherent, as it already exhibits the properties of monotonicity and translation invariance

(see above definition).

Also we define the expectation bounded risk measure(see [97]):

Definition 2.4. A risk measure that satisfies the inequality ρ(Y ) ≥ E[−Y ] for any

risk Y ∈ G is an expectation bounded risk measure.

3. Important Risk Measures

Let us introduce the Value at Risk (V aRα).

Definition 3.1. V aRα(X) = sup{x ∈ R | P(X ≥ x) > 1− α}.

We can describe the V aRα as a threshold loss value of the investment, that has

probability 1 − α to exceed this threshold in a given time horizon (assuming no additional

trading). Important advantages of V aRα is its straight computation while an important

drawback is that is not coherent as its sub-additivity is questionable and depends on the

suggested setting. Briefly we mention that sub-additivity holds when the investment re-

turns are normally distributed so difficulties on that property may arise in cases of fat tails.

Again, we consider [47, proposition 1], where we get that when two investments’ returns are

regularly decay (see Extreme Value Theory subsection for subtitles), then V aRα preserves

sub-additivity in the tail region. On the other hand sub-additivity is problematic in the case

where returns exponentially decay (again on Extreme Value Theory subsection for details

on exponentially decay).

Definition 3.2. Let introduce the expected shortfall as the risk measure given by

ESα = 1
α

∫ α
0
V aRp(Y ) dp for any random variable Y and any real number 0 < α < 1.
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For practical terms one can perceive it as the expected value of an investment,

conditional that the value is less than the quantile p of the worst outcomes. From [81]

we have that ES can be expressed in terms of the distribution of the investment’s returns

FX = P(X ≤ x):

ESα = − 1

α

∫ α

0

F←X (p) dp .(3.1)

It is a coherent risk measure as it exhibits the four coherency properties (see [3]).

Also, it is conservative in comparison to VaR, in the sense that ESα(Y ) ≥ V aRα(Y ) for any

given risk Y . In addition a coherent risk is also bounded in the sense of ρ(Y ) ≥ E[−Y ] for

any risk Y ∈ G (see [9] p.219). In regard of Expected Shortfall we also mention the work of

[106].

Let us introduce the class of distortion risk measures. If H is a set of increasing

functions h on [0, 1], where h(0) = h(0+) = 0 and h(1−) = h(1) = 1, then a distortion risk

measure ρh with distortion risk function h ∈ H is defined as

ρh(Z) = −
∫
R
xdh

(
FX(x)

)
,(3.2)

provided that the above integral exists for all X ∈ G. Recall that FX is the

distribution of the investment’s returns. While we have followed the Distortion Risk Measure

depiction of [13], nevertheless according to [35] when h is continuous it can also be presented
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as

D(X) =

∫ 1

0

V aRq(X)dh(q).(3.3)

In addition a distortion risk measure is monotone, cash invariant, positively ho-

mogeneous, comonotonic additive and law-invariant [35]. Recall that [106] states that a

rough interpretation of law invariance might be that estimations can occur out of statistical

observations only (empirical data). In addition if h is concave then ρh is sub-additive and

thus is coherent. As [7] state this is a whole class of risk measures, also known as the set of

Concave Distortion Risk Measures. This subset of distortion risk measures exhibits resem-

blance with the Spectral Risk Measures (see below) as they have the same properties, yet

with an importance difference: For quantifying risk, concave distortion risk measures modify

the probability distribution (in accordance with the rest of the Distortion Risk Measures)

while Spectral Risk Measures modify returns as in the expected utility framework. The

scholar interest of Distortion Risk Measures can be found in many efforts like [43].

Let us introduce Spectral Risk Measures for which we rely on the theoretical frame-

work of [1]. Consider that ρi are coherent risk measures and i = 1, 2, 3, ..., n. If αi ∈ R+ and

Σiαi = 1, then any convex combination ρ = Σiαiρi is also a coherent risk measure. Also, if

we take that ρα represents an one-parameter family of coherent risk measures, then for any

measure dm(α), where
∫
dm(α) = 1, the statistic ρ =

∫
ραdm(α) is a coherent risk measure.

Taking (3.1) and suggesting a measure dm(α), where α ∈ [0, 1], then

Mm(X) =

∫ 1

0

αESα(X)dm(α) = −
∫ 1

0

∫ α

0

F←X (p) dp dm(α),(3.4)
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is a coherent risk measure, provided
∫ 1

0
αdm(α) = 1 which stands as the normal-

ization condition, holds. By interchanging the integrals (Fubini - Tonelli theorem) one gets

that Mm(X) ≡MF0(X) ([1] equation 8 p.1508).

Also dm(α) can be expressed by a decreasing and positive F0(p), namely a risk

spectrum, which equals
∫ 1

p
dm(α) and is normalized, thus

∫ 1

0
F0(p)dp = 1 ([1, equation 9

p.1508]).

Definition 3.3. Risk spectrum F0(p) is a function that equals
∫ 1

p
dm(α), or F0(p) =∫ 1

p
dm(α). In addition

∫ 1

p
dm(α) can be expressed by F0(p).

Let us define the property of positivity for F0(p):

Definition 3.4. F0(p) exhibits the property of positivity if for every A ⊆ [0, 1],∫
A
F0(p)dp ≥ 0.

Remark 3.5. The property of positivity ensures that the risk spectrum will not give

negative weights at some quantiles of the cumulative distribution function of the returns.

Moreover, it is necessary to define the condition risk spectrum needs to be endowed

with, in order to be decreasing:

Definition 3.6. Condition for F0(p) to be decreasing is that for every a ∈ (0, 1)

and for every b > 0, such that [a− b, a+ b] ⊂ [0, 1],
∫ a
a−b F0(p)dp ≥

∫ a+b

a
F0(p)dp.

Remark 3.7. Aforementioned definition ensures that the risk spectrum will give

more weights as the losses in the cumulative distribution function are greater. In other

words, a decreasing function depicts the risk aversion of the investor.
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Remark 3.8. A risk spectrum F0(p) : [0, 1]→ R+ that is decreasing and satisfy the

properties of normalization and positivity gives a coherent risk measure that can be expressed

by (3.4), where dm(a) = −dF0(a). Such a risk spectrum is admissible (see [1]).

Proposition 3.9. A Spectral Risk Measure is coherent if and only if it has an

admissible risk spectrum.

Proof. See Appendix A �

Also, [1] states that the risk spectrum should be presented as an element F0 of

L1([0, 1]) normed space, where its element is depicted by a class of functions. Different

depictions (functions) of the same element F0 will define the same measure.

In addition, we consider the real-worlds’ risk management applications where ([1]

equation 13 p.1509) is well defined and finite. There if F0(p) is positive, decreasing and

normalized, then it is an admissible risk spectrum. Moreover a Spectral Risk Measure

endowed with an admissible risk spectrum is a coherent risk measure and thus exhibits the

properties of (1)-(4).

Some spectral risk measures developed in recent literature where their risk spectrum

is admissible under certain conditions, are the following:

(1) Power: It came to prominence from [56], where they considered to utilize the prop-

erties existed in the power utility function. Its depiction is:

F0(p, d) = dpd−1(3.5)

where d ∈ (0, 1].
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(2) Exponential: Initially it was suggested by [2, p.178] and later was represented by

[44] and [55] in the following form:

F0(p) =
Ae−Ap

1− e−A

where A ≥ 0 stands as the Arrow - Pratt coefficient of absolute risk aversion.

(3) Wang transform: It is suggested by [111] and despite the fact that Wang transform

was developed before the concept of admissible risk spectrum, nevertheless it fulfills

its requirements. Wang transform also fulfills the requirements of [21] in order to

be a well defined risk measure.

4. Euler Allocation Principle

For this subsection we consider the framework of [107] and [105], where he discusses

how Euler risk contributions can be estimated for risk measures and in order to decompose

portfolio-wide capital into a sum of risk contributions by sub-portfolios of solitary exposures

(for a thorough read on Euler allocation principle see [91, Section 6.3]).

Let consider an economic entity (for instance a portfolio) with n ∈ N assets. In

addition those assets’ profits/losses are the real r.v. X1, X2, ..., Xn and X is the economic

entity’s profit/loss, where

X =
n∑
i=1

Xi.(4.1)

In addition the capital that is required by this economic entity is determined with a risk

measure ρ(X) (see relevant subsection).
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By introducing variables u = (u1, u2, ..., un) it occurs a useful representation of

(4.1):

X(u) = X(u1, u2, ..., un) =
n∑
i=1

uiXi.(4.2)

Clearly ui stands for the amount of capital that is invested in the asset which has Xi

profit/loss. Also in [107] are considered some variations of the u and therefore they in-

troduce the following function

fρ,X(u) = ρ
(
X(u)

)
.(4.3)

By dropping X, then the left side of (4.3) can equivalently be written fρ(u).

Before proceeding with the properties of risk contributions we have to present two

fundamental definitions, the homogeneous of degree t risk measure and the total portfolio

Return on Risk Adjusted Capital (RORAC)

Definition 4.1. A risk measure is homogeneous of degree t if for any h > 0 the

following equation obtains:

ρ(hX) = htρ(X).(4.4)

In addition we set that µi = E[Xi] and we give the following definition:

Definition 4.2. (1) The total portfolio (RORAC) is defined by the following:

RORAC(X) =
E[X]

ρ(X)
=

∑n
i=1 µi
ρ(X)

.
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(2) The ith asset’s portfolio based (RORAC) is defined by the following:

RORAC(Xi|X) =
E[Xi]

ρ(Xi|X)
=

µi
ρ(Xi|X)

.

Furthermore we consider the economic entity’s profit/loss as depicted in (4.1) and

we state the following definition:

Definition 4.3. (1) If

n∑
i=1

ρ(Xi|X) = ρ(x),

then risk contributions ρ(X1|X), ..., ρ(Xn|X) to portofolio wide risk ρ(X) satisfy the

full allocation property.

(2) If there are some e > 0, such that

RORAC(Xi|X) > RORAC(X)⇒ RORAC(X + hXi) > RORAC(X)

for all 0 < hi < ei, then ρ(Xi|X) are RORAC compatible.

Moreover in [107, Proposition 2.1] we find that if fρ is continuously differentiable

and there are risk contributions ρ(X1|X), ..., ρ(Xn|X) that are RORAC compatible according

to above definition for arbitrary expected values µ1, ..., µn of X1, ..., Xn, then ρ(Xi|X) is

uniquely determined according to the following:

ρEuler(Xi|X) =
dρ

dh
(X + hXi)|h=0 =

∂fρ
∂ui

(1, ..., 1).(4.5)

Furthermore we consider [107, Remark 2.1] where is stated that for homogeneous ρ

the risk contributions, as defined in (4.5) are Euler contributions, they satisfy full allocation

property and they satisfy RORAC compatibility property. It should be clear that from
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an economic perspective the properties of full allocation and RORAC compatibility are

desirable. Finally assigning capital to sub-portfolios by calculating Euler contributions is

named Euler allocation.

Before concluding with this subsection it worth mentioning that in [107] is high-

lighted the relation between Euler allocation principle and sub-additivity property of a risk

measure (see relevant subsection), where we have that the latter property can be written in

terms of Euler contribution, or

ρEuler(Xi|X) ≤ ρ(Xi).

5. Extreme Value Theory

For the best possible understanding of the contribution section we need to present

the concept of Extreme Value Theory (EVT). For doing that we consider the work of [41]

where it is considered that there is a sequence of X1, ..., Xn independent r.v. with common

distribution function V. The interest is focused on Mn = max{X1, ..., Xn} where n → ∞.

Also a linear normalization of Mn is needed and so M∗
n = Mn−bn

αn
for sequences of constants

{αn > 0} and {bn ∈ (−∞,∞)}. With this approach we are interested in the correct selections

of {αn} and {bn} rather than M∗
n, that will allow us to seek limit distributions for M∗

n.

Under that concept we consider the [41, theoem 3.1] where it presents the well

documented Fisher-Tippett theorem (see [66]) and suggests that for {αn > 0} and {bn ∈

(−∞,∞)} sequences where

lim
n→∞

P
[
Mn − bn
αn

≤ y

]
→ G(y),(5.1)
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and G in (5.1) is a non-degenerate distribution function, then G belongs either the Gumbel

family, the Fréchet family or the Weibull family (their presentations will follow).

Also these three distribution families can be grouped into the Generalized Extreme

Value (GEV) distribution. A presentation of (GEV) is achievable if we consider that it has

three parameters µ, σ, ξ. Then we have that x = y−µ
σ

, we set that ξ is the shape parameter

and we get that

G(x) = exp
(

exp[−x]
)

(5.2)

is the Gumbel family where we have for (5.2) that ξ = 0. Moreover we get that

G(x) = exp
(
− 1[1 +

x

α
]
−α)

(5.3)

is the Fréchet family where we have for (5.3) that ξ = 1
α
> 0. Finally we get that

G(x) = exp
(
− 1[1− x

α
]
α)

(5.4)

is the Weibull family where we have for (5.4) that ξ = − 1
α
< 0.

In addition V is in the domain of attraction of Gumbell if and only if

lim
x→∞

1− V
(
x+ tb(x)

)
1− V (x)

= e−t,(5.5)

for all t > 0 in (5.5) and exponentially decay in the tail of V which is symbolized as V ∈ R−∞

in [14]. Moreover V is in the domain of attraction of Fréchet if and only if

lim
x→∞

1− V (tx)

1− V (x)
= t−

1
ξ ,(5.6)

for all t > 0 in (5.6) and regularly decay in the tail of V which is symbolized as V ∈ R−t in

[14]. It is beyond the scope of this work to present when V is in the domain of attraction of

Weibull and consequently we omit it. In regard of the importance of Extreme Value theory we
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mention the report of [31], where they discussed securitized insurance product like insurance

linked securities(for instance Catastrophe Bonds and Industry Loss Warranties) or even [77].

To that end they proposed - utilized Extreme Value Theory to characterize the catastrophe

risks. We refer the reader in regard of this theory to [102].

6. Copula Concept-Diversification Index

One of the most common tools in probability theory to describe the dependence

among r.v. are the copulas. Scholar interest can be found in many works like [24]. As a pre-

liminary description, copula is a multivariate probability distribution for which the marginal

probability distribution of each variable is uniform. For introducing a solid mathematical

frame, we rely initially on [94, Definition 2.2.1] of a 2-dimensional subcopula, who suggested

that a 2-dimension subcopula is a function C that exhibits the following properties:

(1) Domain of C is the S1 × S2, where S1 and S2 are subsets of [0, 1].

(2) C is grounded and 2-increasing (see [94] for an in-depth analysis of those properties).

(3) for every u ∈ S1 and every v ∈ S2, we have that C(u, 1) = u and C(1, v) = v.

Furthermore, [94, Definition 2.2.2] denotes that in order to get 2-dimensional copula we need

to get from the first aforementioned property that C ∈ [0, 1]× [0, 1].

We also need to present the so-called Sklar’s theorem as depicted in [94, Definition

2.3.3]. There is stated that if we have a joint distribution function H with F and G margins,

then exists a copula such that

H(x, y) = C
(
F (x), G(y)

)
,(6.1)

for all x, y ∈ R. Furthermore if F and G are continuous then C of (6.1) is unique.
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Also for every C we have that

W (u, v) ≤ C(u, v) ≤M(u, v),(6.2)

where in (6.2) we have that M(u, v) = min(u, v) and W (u, v) = max(u + v − 1, 0). M is

called the Fréchet-Hoeffding upper bound andW is named the Fréchet-Hoeffding lower bound

while (6.2) is the Copula setting of Fréchet-Hoeffding bounds inequality. Since Copulas are

considered mostly as a tool for measuring dependence of r.v. it is important to discuss the

notion of Concordance-Discordance. As a rule of thumb one can keep in mind that two

r.v. are concordant if big values of one variable are associated with big values of the other

and also the same thing occurs with small values. Fréchet-Hoeffding bounds can prove very

useful in situations where we need to have concordance ordering as the Fréchet-Hoeffding

lower bound copula W is smaller than every copula, and the Fréchet-Hoeffding upper bound

copula M is larger than every copula.

The classical theory of Copulas also suggets Kendall’s tau and Spearman’s rho as

two main tools for evaluating the Concordance-Discordance between r.v.. While the reader

can find thorough analysis in [94] yet it is beyond the scope of this chapter to further

elaborate on the topic. On the contrary we are dealing with a similar measurement of

dependence which is the diversification index, suggested by [107]. There is suggested that

for (4.1) if ρ is a risk measure such that ρ(X1), ..., ρ(Xn) are defined, then

DIρ(X) =
ρ(X)∑n
i−1 ρ(Xi)

(6.3)

is the Diversification Index (DI) of X with respect to ρ. Also

DIρ(Xi|X) =
ρEuler(Xi|X)

ρ(Xi)
.(6.4)

stands as the marginal diversification index of Xi with respect to ρ.
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7. Jensen’s Alpha

Recall the classical Capital Asset Prising model (Abbreviated CAPM) formula, or

r = rf + β(rm − rf ) + α,(7.1)

where rf is the risk free rate, r is an one-period investment returns and rm is the

market portfolio returns. According to [73], market portfolio consists of an investment in

each asset in the market in proportion to its fraction of the total value of all assets in the

market. Next, (r − rf ) is the risk premium or the excess return of the investment and

(rm − rf ) is the market risk premium. The beta (β) coefficient given by the formula β =

Covariance(r, rm)/V ariance(rm) represents the sensitivity of the asset returns compared to

market returns. Moreover, the α stands as the intercept of security characteristic line which

is extracted from the CAPM theory (see for instance [90]).

CAPM was initially developed by Bill Sharpe and Jack Treynor (1963). They

developed their models each one independently and for different reasons, but both were

trying to find solution on how to quantify risk in an investment and afterwards investigate

relationship between risk and return in marketplace, Treynor from real economy and Sharpe

from capital markets perspective. The crucial determinant in both cases concerning asset

valuation was covariance with common factor. Moreover the two models have similarities in

terms of assumptions in order to function in equilibrium. These assumptions are included

in theory of CAPM model and concern investors and markets. Particularly investors aim to

maximize economic utility. Furthermore they are rational and risk averse. Moreover they

cannot influence stock prices and manipulate markets. In addition investors can borrow
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unlimited and under the risk free rate. Besides the above, markets don’t have transaction

costs, the securities in markets are divisible and finally all information is available at the

same time. Model’s purpose is to locate the rate of return of a single asset that is added in

an already diversified portfolio, if asset’s systematic (non-diversifiable risk) is given.

For explaining the importance of β, which is actually the slope in the regression,

we recall the two components of risk according to CAPM’s theoretical background, thus

systematic and unsystematic (idiosyncratic) risk (see [100]). Also, β denotes how volatile

and thus risky is an investment compare to the market risk. Moreover, β demonstrates

to which extend an investment is exposed to systematic risk. An investment with β = 1

suggests same risk with market portfolio, β < 1 denotes an investment less volatile and

thus risky compare to market portfolio and finally a β > 1, suggest a more volatile and

thus risky investment compare to the market. In addition, an investment with β < 1 is

the choice of a loss-risk averse investor while an investment with β > 1 is more suitable for

someone more tolerate to risk. We also mention that β’s price is not fluctuating considerably.

Actually is not taking prices less than zero (consider that a negative price is not having a

adequate meaning financially) and exceeds a price of 2 quite seldom. To give a fundamental

example, a beta of 0.5 suggests a very risk-less investment while a price of 1.5 suggests that

the investment is very volatile and thus risky.

Also, in the papers [62] and [99] we find usage of the α factor, where the abnormal

returns are evinced when α > 0. Further, it is used as a measure of fund performance, which

gives evidence whether a market is efficient of any form, saying weak - semi or strong form

efficient. We recall that those forms where proposed by [64] according to sets of available

information.
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Also in [73] we find that:

(1) if α is positive and statistically significant then the investment performs better

relative to benchmark index and worth selling, as it is overpriced.

(2) If α is positive and statistically insignificant then any good performance occurs due

to mere random chance.

(3) Negative α means that the investment performs worst relative to market, is under-

valued and worth buying.

(4) If α equals 0 the investment is correctly priced and no portfolio adjustment is nec-

essary.

8. Sharpe Ratio

Let us introduce the classical Sharpe ratio, suggested by [98],

SharpeRatio =
r − rf
σ

.(8.1)

As we observe the numerator is the risk premium or the investments excess return

over the return of the risk free rate, and the denominator is the standard deviation of the

excess return. We observe that Sharpe ratio can be utilized mostly in a comparative manner

as the higher the Sharpe ratio, so better for the investor. Rephrasing, if an investor has to

select among two investments with same σ, she/he will end up with the one that has higher

risk premium in order to get a higher Sharpe ratio. In addition, between two investments

with the same risk premium, an investor should choose the one with the lower σ in order to

get the best possible Sharpe ratio.



9. EFFICIENT MARKET HYPOTHESIS 23

A good alternative of Sharpe ratio is the Treynor ratio. It also evaluates fund

performance and compare to Sharpe ratio, as denominator it uses the beta of the fund instead

of its standard deviation. Taking as an advantage the simplicity those ratios provide, on the

other hand they have caveats of their own. For instance Sharpe ratio takes into account

the whole risk and does not separates it into components the portfolio theory suggests, thus

systematic and non systematic.

9. Efficient Market Hypothesis

Inarguably one of the most fundamental concepts in modern portfolio theory is the

Efficient Market Hypothesis. Suggesting that efficient is a market where a security price is

an unbiased estimate of its true value, it is one of the most prolific and valid issues academic

society scrutinizes. When EMH holds then prices reflect all available information and any

deviations from the true values of investments are random leaving little abnormal returns

for speculators. Moreover [64] proposed three forms of market efficiency according to sets

of available information:

(1) The weak -form where investment prices reflect all available information included

in the history of security prices.

(2) The semi-strong where current investment prices instantly reflect all publicly avail-

able information about securities.

(3) The strong-form where investment prices reflect all publicly and privately available

information concerning securities.

As [85] explains researchers are putting to the test the financial markets for about half a

century and found evidence that in a plethora of occasions weak-form tends to hold while
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there are very few occasions where semi-strong holds and finally strong-form efficiency does

not tend to hold.



CHAPTER 3

Exhibiting Abnormal Returns Under a Risk Averse Strategy

1. Preliminaries

In this chapter we are concerned on portfolio optimization by examining the ex-

istence of investment strategies that appear to have returns that converge to +∞ and risk

that converges to −∞. Such concept suggests that there is an unbounded risk premium that

challenges the existence of market efficiency.

Portfolio optimization with risk control is an important topic for academia. At first

we consider [96] who suggest that Expected Shortfall can be combined with analytical and

scenario based methods in order to optimize portfolios. Also in [8] the economic implications

of mean - VaR framework are examined. They point out that in two mean - variance efficient

portfolios, the one with higher variance might get a less VaR and as consequence, a global

portfolio that minimizes VaR might be the empty set. They also denote that a mean-VaR

efficient set is a subset of mean variance efficient set, as mean-VaR resulted in a smaller

efficient frontier compare to mean variance efficient frontier. Also mean-VaR efficient set can

also be empty. The paper [25] demonstrated that the mean-expected shortfall optimization

problem, can be solved as a convex optimization problem. In addition, the sample mean-

shortfall portfolio optimization problem can be solved as a linear optimization problem.

Moreover [23] approach to the topic is to minimize the risk of the fund issuer under constraint

that is dictated by a buyer who is willing to enter the transaction only if the risk level remains

below a given threshold. Their optimization problem concerns on the investor’s attempt to

25
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maximize the expected utility of her/his global terminal wealth. In addition,[70] suggest a

method of calculating a portfolio which gives the smallest Value at Risk (VaR) among those

portfolios that yield at least some desired expected return. This approach, enables them to

calculate the complete mean - VaR efficient frontier.

Also, one of the most fundamental concepts in modern portfolio theory is the Effi-

cient Market Hypothesis (EMH) which suggests that efficient is a market where a security

price is an unbiased estimate of its true value. When EMH holds, then prices reflect all

available information and any deviations from the true values of securities are random, leav-

ing little space for abnormal returns. Concerning market efficiency there is a vast number

of papers that examine the topic, mostly by evaluating the performance of fund managers.

For instance [45], or [76] suggest that fund managers are able to beat markets indexes, but

there is also equally large number, if not more, of papers who deny that conclusion. For

example in [62] and [46] was suggested that there are very few funds with sufficient returns

to cover their costs. All the aforementioned works are based mostly on empirical validation

that might exhibit biases like incubation bias suggested by [61], or the survivor bias (see for

instance [57]).

In doing so, our findings are in agreement with those of [76] and [45] but instead

of empirical validation, we rely on the theoretical framework of [17] which suggest that

sequences of investment strategies that are characterized as good deals, according to asset

pricing theory, occur. In addition, we focus on implementation potential that requires a

strategy that follows both an asset pricing model that is unbounded and a bounded, coherent

risk measure.
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Also, we consider the [100] and [86] CAPM model and we contribute to the findings,

by suggesting that there is evidence of abnormal profits when an investor follows a risk averse

strategy. We are also motivated by the fact that CAPM is still a very popular model despite

its longevity and its evolution through the years, see for instance [63] three factor model, or

the [37] four factor model.

If we need an intuitive interpretation of the findings, we can assume that it is

possible to follow a risk averse strategy and at the same time achieve abnormal returns.

More interestingly, most of the studies that examine the performance of investments, like

[62], tend to focus on the performance of active management, where β ≥ 1 quite often, and

they assume that passive investments will have a zero α. Our findings, on the contrary,

denote that a less risky investment is a prerequisite for abnormal returns. Moreover, our

result is in full compliance with the notion that an investor can achieve strategies whose risk

turns to −∞ and returns converges to +∞ (more on the theoretical framework).

We suggest that an investor is able to manage a portfolio of investment that is less

risky than the market and at the same time achieve abnormal returns, which is by all means

an odd conclusion according to portfolio theory who requires extra risk for extra returns.

Such interpretation gives adequate theoretical framework that a market may not be efficient,

not even weak form.

The structure of the chapter is the following: next section includes is devoted to

the theoretical framework suggested by [17]. Section 3 includes our contribution to the

theoretical framework and in section 4 are the concluding remarks.
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2. Theoretical Framework

Let consider the probability space (Ω,F ,P), where Ω is the set of the states of the

world, F is the σ-algebra of events and P is the probability measure. We also consider a

time interval [0, T ] and we are concerned on every payoff y ∈ L2 Hilbert space (the set of

square integrable L2 functions on space (Ω,F ,P)) at time T . Also we consider that every

payoff y can occur via portfolios that are self financed.

In addition [17] denotes the existence of a pricing rule P : L2 → R which gives

the price of every payoff y at time 0. Broadly speaking, a pricing rule can perform pricing

adjustments to an investment. In addition those prices are applicable if certain conditions

are satisfied. Also, the equality

P (k) = ke−rfT(2.1)

holds for k ∈ R and rf denotes the risk free rate. Taking into account the Riesz representation

theorem, for every y there is a unique zπ ∈ L2. In addition for the unique zπ we have that

P (y) = e−rfTE[yzπ] ,(2.2)

where zπ can be perceived as the Stochastic Discount Factor (SDF) and E stands for the

expected value. Also, no arbitrage opportunities are assumed and thus zπ > 0 holds almost

surely. Moreover, (2.2) and (2.1) draw the conclusion that E[zπ] = 1, as they imply that

ke−rfT = e−rfTkE[zπ] , which can only occur if E[zπ] = 1.

For controlling the levels of risk, let us consider that the investor uses coherent and

expectation bounded risk measure ρ : L2 → R, of the form
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ρ(y) = max{−E(yz) ; z ∈ ∆ρ},(2.3)

and we have that for ∆ρ of (2.3) that

∆ρ ⊂ {z ∈ L2 ; P(z ≥ 0) = 1, E(z) = 1}.(2.4)

Moreover, ∆ρ ⊂ L2 is the subgradient of ρ (see [95, page 272] for a definition of subgradient).

Also, we consider that C represents the investment that have to be made in order

to control the risk ρ(yf ), which is the risk of the investor’s final wealth (yf is investor’s final

wealth). In addition we take as given that C > 0. Furthermore we are interested in the

present value C and thus for the Ce−rfT > 0. When this investment is risk free we can take

into account the property of coherent risk measures (translation invariance) and thus the

risk would be ρ(yf + C) = ρ(yf ) − C. Now let us assume that the best possible reduction

of risk may not be necessarily achieved by a risk free investment. Then the optimization

problem is

min{ρ(y + yf − E(y zπ)) ; E(y zπ) ≤ C, y ≥ 0}.(2.5)

(2.5) is a universal risk level that an investor has to consider in order to include value

E(yzπ) of the new investment in the portfolio. Rephrasing, the investor’s wealth reduction

is the value E(yzπ), for achieving a risk level of ρ(y + yf −E(y zπ), or the investor binds the

least possible capital E(yzπ) in order to accomplish ρ(y + yf − E(y zπ) level of risk.

[19, Lemma 4] and [19, Theorem 5]) can be employed and lead to the dual opti-

mization problem, a methodology described in [88], that gives

max{−Cλ− E(yfz) ; z ≤ (1 + λ)zπ, λ ∈ R, λ ≥ 0, z ∈ ∆ρ}(2.6)
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where λ and z are the decision variables.

We also consider that the investor can choose negative payoffs. If this is the case,

the optimization problem would be the following:

min{ρ(y + yf − E(y zπ)) ; E(y zπ) ≤ C}(2.7)

and its dual (depicted in (2.6)) would be

max{−E(yfz) ; z = zπ, z ∈ ∆ρ}.(2.8)

By Theorem 2.1 in [17] there is no duality gap between the primal optimization problems

and their dual ones. This occurs due to the fact that the Slater’s sufficient condition for

strong duality holds (see [19, Proof of Lemma 3]). Recall that duality gap is the difference

between the primal and dual solutions. Consequently when there is no duality gap then this

difference equals 0 and strong duality holds. Additionally, a solution requires that (2.5), or

in case of negative payoffs (2.7), are bounded.

Let consider that there exist a y∗ ∈ L2 and (λ∗, z∗) ∈ (R × L2) that solves the

aforementioned optimization problem. According to Theorem 2.1 in [17], this could only
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occur if the following Karush - Kuhn - Tucker conditions are satisfied



λ∗[C − E(y∗zπ)] = 0

C − E(y∗zπ) ≥ 0

E[(y∗ + yf )z] ≥ E[(y∗ + yf )z
∗], for all z ∈ ∆ρ

E[((1 + λ∗)zπ − z∗)y∗] = 0

(1 + λ∗)zπ − z∗ ≥ 0

y∗ ∈ Lp, y∗ ≥ 0, λ ∈ R, λ ≥ 0, z∗ ∈ ∆ρ

(2.9)

Under conditions of (2.9) and suppose that λ∗ and z∗ solve the optimization problem (2.6),

then if λ∗ = 0 we have that z∗ = zπ. Also if y∗ solves (2.5) and P(y∗ ≥ 0) = 1, then λ∗ = 0

and z∗ = zπ (see [17, Corollary 2.2]).

Now suppose that for risk control the investor is utilizing a risk measure where all

the elements z ∈ ∆ρ are bounded. As an example of such measure, we give the Expected

Shortfall: if ρ = ESα for α ∈ (0, 1) then

∆ESα =
{
z ∈ L2 ; E(z) = 1, 0 ≤ z ≤ 1

1− α

}
.

With that hypothesis in mind, [17, Remark 2.3] denotes that solution y∗ for (2.5) is

often a risky asset, because a risk free asset would lead to zπ ∈ ∆ρ. On the other hand, there

is no restriction that an investor should choose a pricing model that requires a bounded zπ.

For instance, as [17, p.33] mentions, she/he could choose a stochastic volatility model where

zπ might exhibit a heavy tailed distribution.
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The above frame suggests that zπ does not necessarily belong to ∆ρ. Consequently

if zπ /∈ ∆ρ, (2.8) is not feasible. In addition (2.7) is unbounded, suggesting that an investor

has the opportunity to construct sequences of payoffs (yn)∞n=1, n ∈ N, where


ρ(yn + yf − E(ynzπ)) 7→ −∞ ,

E(ynzπ) ≤ C.

(2.10)

Lemma 2.1. E(yn + yf − E(ynzπ)) 7→ ∞ (extends Remark 2.4 of [17] ).

Proof. Recall that ρ is expectation bounded, hence ρ(Y ) ≥ −E[Y ] according to Defi-

nition 3.4, that means ρ(yn + yf − E(ynzπ)) ≥ −E(yn + yf − E(ynzπ)) and this is equivalent

to E(yn + yf − E(ynzπ)) ≥ −ρ(yn + yf − E(ynzπ)) which finally gives the result. �

Taking into consideration the previous statements, an investor is able to construct

sequences of payoffs (yn)∞n=1, n ∈ N where

E(yn + yf − E(ynzπ)) 7→ ∞

ρ(yn + yf − E(ynzπ)) 7→ −∞

E(ynzπ) ≤ C for n ∈ N

hold, as long as she/he prefers a pricing model with unbounded SDF, and a coherent and

expectation bounded risk measure. The term for those sequences will be good deals [40].

In terms of ρ in (2.10), an investor can choose not only the Expected Shortfall, but also a

Spectral Risk Measure which is coherent.

Also, by [17, Lemma 2.8] we obtain that if y∗ ∈ L2 and z∗ ∈ ∆ESα , then they

satisfy the third Karush - Kuhn - Tucker condition of (2.9), if there exists γ ∈ R, γ1, γ2 ∈ L2
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and a measurable partition Ω = Ω0 ∪ Ω1 ∪ Ω2 such that the following conditions hold



y∗ + yf = γ − γ1 + γ2

γi ≥ 0, i = 1, 2

γ1 = γ2 = 0, on Ω0

z∗ =
1

1− α
, γ2 = 0 on Ω1

z∗ = 0, γ1 = 0 on Ω2.

(2.11)

Clearly, this Lemma has a profound practical application as it suggests that the third con-

dition in (2.9) can be replaced in order to solve (2.6) and (2.5).

3. Main Contribution

The theoretical framework proves that there is a solution y∗, outperforming risk

free investments, and when it does so there are sequences of payoffs (yn)∞n=1, n ∈ N satisfying

(2.10), that is known as ”good deals”, according to [40] terminology. In practical terms, for

calculating the good deals, we need to extract y∗, and we also need to use a risk measure

with bounded z. To that end we pick ρ = ES. Then according to [17, Theorem 2.9], there

exist γ and δ ∈ R , such that

y∗ =


γ − yf if δ < yf ≤ γ

0 if yf ≤ δ or yf > γ.

(3.1)

As investors final wealth is a random variable one can take that
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yf (ω) = F←(ω)

where ω is an element of set Ω, that follows the uniform distribution taking values on (0, 1),

and by F← we denote the inverse cumulative distribution of the random variable yf and yf

is continuous and strictly increasing. Also zπ can be perceived as a function with domain

(0, 1), where ω
′
−−→ zπ(ω) ∈ (0,+∞). Moreover, we assume that zπ is not the risk free asset.

In addition [17] denote that if

ess sup (zπ) >
1

1− α

holds, then if either zπ is continuous and strictly decreasing, or yf maximizes the

Sharpe Ratio, then there is γ, δ as proposed in (3.1). In addition δ ≤ γ and (3.1) holds.

Having in mind aforementioned framework we contribute with the Theorem 3.1

stated below, in a twofold manner:

(1) We find that an investor can achieve good deals by utilizing both Sharpe ratio and

ESa for her/his investing strategy.

(2) We examine market efficiency. For that we utilize the CAPM model to find that

once achieving those good deals, then the portfolio should be less risky compare to

the market risk, or for achieving a Jensen’s α > 0 one should have that β ≤ 1.

The second part of the contribution questions the efficiency of the market where

the investment is taking place, which oppose to certain empirical modern portfolio analysis
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that tends to consider that markets are efficient (see [62]). The remark below describes our

motivation for this chapter.

Remark 3.1. There are many studies that question the existence of abnormal re-

turns (that means α > 0), see for instance [62], and conclude that markets are efficient. On

the contrary, we observe that by utilizing the framework of [17] (see theorem below and its

proof), abnormal returns may occur under a less risky strategy, compare to the market. Such

conclusion questions the aforementioned market efficiency.

Theorem 3.2. Let consider that ρ = ESa, there is y∗ that solves (2.5) and there

is zπ that satisfies

ess sup (zπ) >
1

1− α

Assume that yf maximizes Sharpe Ratio. Then:

(1) if an investment strategy is less risky compare to the market, then it performs better

relative to the market and the market is not efficient.

(2) if an investment strategy performs better relative to benchmark index, then it is less

risky compare to the market and the market is not efficient,

and exist γ, δ ∈ R for which γ > δ and (3.1) holds.

Proof. Let us prove the existence of γ and δ and that (3.1) holds. For that, we initially

prove that if yf maximizes Sharpe Ratio, then zπ is continuous and strictly decreasing.

Following the proof of theorem 6 of [17] in appendix I section, we consider the l{1, zπ} ⊂ L2,
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which is the linear subspace composed of the risk free asset and the zπ. The orthogonal

projection of yf in l{1, zπ}, which is qa + qbzπ satisfies

yf = qa + qbzπ + ε.(3.2)

In addition, E(ε) = 0 and E(zπε) = 0, implying that mathematical expectation

and price of qa + qbzπ equals the mathematical expectation and price of yf . In addition,

V arianceyf is not higher than V arianceqa+qbzπ , (3.2) implies that ε = 0 and thus,

yf = qa + qbzπ.(3.3)

(3.3) suggests that in order to prove that zπ is continuous and strictly decreasing,

we only have to prove qb < 0, since yf is continuous and strictly increasing. We proceed by

proving that the assumption qb ≥ 0 does not hold:

qb = 0 does not hold as yf is not a risk free investment

qb > 0, (2.2) and E[zπ] = 1 suggest that P (yf ) = e−rfT [(qa + qbE(z2
π)], which

coincides with risk free investment whose price is qa + qbE(z2
π). In addition, the expected

payoff of the risk free asset is higher because E[zπ] = 1, which draws the following conclusions:

first, E(qa+qbzπ) = qa+qb and second E(z2
π) = V ariance(zπ)+1 > 1. A contradiction in the

assumption is apparent, since V ariance of the risk free asset is lower than V arianceqa+qbzπ .

Let us prove the existence of γ and δ. Again, we rely on [17] and the proof

demonstrated in the Appendix I. We consider the dual solution (λ∗, z∗) ∈ (R × L2). In
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addition, ∆ES is bounded, while zπ is not. As stated (2.8) is possible only if λ = 0 so since

it is not, then λ∗ > 0. Since zπ is continuous and strictly decreasing, also (1 + λ∗)zπ is

continuous and strictly decreasing and as a conclusion, there is a γa such that



(1 + λ∗)zπ(γa) =
1

1− α

(1 + λ∗)zπ(ω) >
1

1− α
for ω ∈ (0, γa)

(1 + λ∗)zπ(ω) <
1

1− α
for ω ∈ (γa, 1)

hold. Consider the fourth and fifth condition of (2.9). Since (1+λ∗)zπ(ω) > z∗(ω) in (0, γa),

this implies that y∗(ω) = 0 in (0, γa). Consider that yf is continuous and strictly increasing

and take δ = yf (γa). Moreover, δ ≥ yf if and only if (0, γa] 3 ω. The existence of δ is proved.

Let us prove that there exist γ̃a ≤ γa such that Ω1 = (0, γa]. Recall the partition

in (2.11), which is Ω = Ω0 ∪ Ω1 ∪ Ω2. Also consider

z∗ =
1

1− α
,

γ2 = 0 on Ω1 in (2.11), and (1 + λ∗)zπ − z∗ ≥ 0 in (2.9). Those two equations lead to

Ω1 ⊂ (0, γa]. Consider y∗ + yf = γ − γ1 + γ2, which is the first equation in (2.11). Notice

that yf = γ − γ1 in Ω1, since γ2 = 0 in Ω1 and also y∗ vanishes in (0, γa]. Also, yf = γ + γ2

in (0, γa]\Ω1, since γ1 vanishes outside Ω1. We take into account that γi ≥ 0, i = 1, 2 from

second equation in (2.11), and that yf is continuous and strictly increasing, so we conclude

that yf increases from Ω1 to (0, γa]\Ω1 and that exist γ̃a ≤ γa such that Ω1 = (0, γa].

We also prove that (γ̃a, γa] ⊂ Ω2. Consider a non-null subset of (γ̃a, γa] and that

γ2 vanishes outside Ω2 and we get that yf = γ + γ2 ⇒ yf = γ which does not hold as yf is

continuous and strictly increasing. Finally (γ̃a, γa] ⊂ Ω2 hold.
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Moreover, we prove that Ω0 6= ∅. Consider for a moment that Ω0 = ∅, and bear

in mind that Ω2 = (γ̃a, 1) and z∗ = 0 in (γ̃a, 1), according to fifth condition in (2.11). In

addition, since (1 +λ∗)zπ > 0, then condition E[((1 +λ∗)zπ− z∗)y∗] = 0 of (2.9) implies that

y∗ = 0 in (0, 1). Since C > 0 and λ∗ > 0 then λ∗[C − E(y∗zπ)] = 0 in (2.9) does not hold

and consequently Ω0 6= ∅.

Now, let us prove that γ̃a = γa. We are aware that Ω0 ⊂ (γa, 1). We fix λ∗ and

according to (2.8) and (1 + λ∗)zπ − z∗ ≥ 0, which is the fifth constraint in (2.9), then z∗

should solve

min{E(yfz); z ≤ (1 + λ∗)zπ, z ∈ ∆ρ}(3.4)

If γ̃a < γa then

z̃ =



z∗, ω ∈ Ω1 = (0, γ̃a]

z∗(ω + inf(Ω0)− γ̃a), γ̃a < ω < γ̃a + sup(Ω0)− inf(Ω0)

0, otherwise

z̃ trivially satisfies constraints of (3.4), z∗ vanishes on Ω2 and zπ is strictly decreasing. On

the other hand, E(yf z̃) < E(yfz
∗) trivially holds as yf is continuous and strictly increasing,

z∗ is cannot solve (3.4), γ̃a < γa does not hold and thus γ̃a = γa.

Similarly, we can prove the existence of γb ≥ γa where Ω0 = (γa+γb). Additionally,

y∗ = γ − yf in (γa, γb), which implies that yf (ω) ≤ γ, when ω ∈ (γa, γb), as y∗ ≥ 0. Recall

that yf is continuous and strictly increasing so 0 < δ = yf (γa) < yf (γb) ≤ γ ⇒ 0 < δ < γ.
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Moreover, when yf > γ then ω > γb, ω ∈ Ω2 and according to fifth constraint in 2.11, z∗ = 0.

Also (1+λ∗)zπ−z∗) > 0, which is the fifth condition of (2.9), yet with strict inequality. Also

the fourth constraint in (2.9), which is E[((1 + λ∗)zπ − z∗)y∗] = 0 suggests that y∗ vanishes.

The existence of γ, δ ∈ R for which:

(1) γ > δ

(2) (3.1) holds,

is proved.

In addition, we contribute by proving that a positive Jensen’s α denotes a CAPM

coefficient β ≤ 1 and vice versa. Recall the formula of the intercept of the security charac-

teristic line (as extracted from (6.4)), where

α = r − rf − β(rm − rf ).

On the theorem we assume that yf maximizes the Sharpe Ratio (see (8.1)),which

is

SharpeRatio =
r − rf
σ

.

Next, σ > 0, as it denotes as the standard deviation of the investment r. So,

SharpeRatio can take either positive value, negative value or even zero in case r = rf . In

fact we have SharpeRatio ∈ R. As SharpeRatio is maximized, we observe that r − rf >

0⇒ r > rf .
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Also, yf represents the investors final wealth and its existence suggest that the

returns of investment beat those of the market or a benchmark which leads to r > rm.

Subtracting rf in both sides we get r − rf > rm − rf .

Let assume that α > 0. Then the assumption implies that r−rf−β(rm−rf ) > 0⇒

r−rf > β(rm−rf )⇒ (r−rf )/β > rm−rf . The above inequality holds if: 1/β ≥ 1⇒ β ≤ 1.

Additionally, let consider that β ≤ 1

Then rm−rf ≥ β(rm−rf ), but r−rf > rm−rf which leads to r−rf > β(rm−rf )⇒

r − rf − β(rm − rf ) > 0⇒ α > 0

The assumption that yf maximizes Sharpe Ratio denotes a positive α provided

there is a CAPM β ≤ 1 and β ≤ 1, suggests an investment strategy less risky compare to

the risk incorporated in the market portfolio as explained in basic concept section.

Finally, the maximization of yf denotes that CAPM’s β ≤ 1, provided α > 0.

Recall that an investment has α > 0 when it performs better relative to benchmark index

and worth selling, as it is overpriced.

�

Bear in mind that while we are using a different approach compare to [62], as they

examine if the aggregate of mutual funds’ performance in a market achieve abnormal returns,

yet our work has the same interest for examining the market efficiency. In addition, we

contribute by observing that those abnormal returns are achievable if an investor chooses the

right tools for his strategy. Consequently such conclusion is evidence of market inefficiency.
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Remark 3.3. If yf maximizes Sharpe Ratio, then according to proof of Theorem

3.1 zπ is continuous and strictly decreasing, hence the first condition in 2.15 theorem of [17],

is sufficient but not necessary.

3.1. Practical Implementation of Theoretical Findings. There is a significant

amount of papers that examine the portfolio performance and they verify their findings

empirically with real data. While for this chapter we are interested in the theoretical justi-

fication of our finding, yet we consider that a work with empirical data in the near future

is also required to investigate if the initial finding is true and to which extent. For that,

we will have to utilize the Theorem 3.1 in practice. Apart from its somewhat confusing

presentation, in fact a practical validation can be implemented in a two stage procedure. At

first an investor can attempt to get an optimal good deal by picking a portfolio of options

from an option market according to a combination of two parameters: First parameter is

the maximization of classical Sharpe ratio:

SharpeRatio =
r − rf
σ

.

In order to do that the Sharpe Ratio should get a value of at least equal or better,

compare to a Sharpe ratio value of a market portfolio index the investor attempts to beat.

In portfolio analysis beating an index implies better performance (returns) compare to that

index. As index, one can select future indexes like the Standard & Poor’s 500 in case she/he

invests in U.S.’s international index or the DAX 30 index in case she/he is interested in

Frankfurt’s stock exchange.



42 3. EXHIBITING ABNORMAL RETURNS UNDER A RISK AVERSE STRATEGY

In [18] and [20] is demonstrated that this maximization can be achieved if one com-

bines a stochastic volatility model with a coherent and expectation bounded risk measure.

In terms of stochastic volatility model we could utilize a Generalized Autoregressive Condi-

tional heteroscedasticity (GARCH) model with CAPM, for instance the CAPM-EGARCH

(1.1). It is beyond the scope of this chapter to analyze the model, yet we mention that it is

a conditional volatility model.

Second parameter is the risk measure which would be ESa as proposed by the

Theorem 3.1

∆ESα = {z ∈ L2 ; E(z) = 1, 0 ≤ z ≤ 1

1− α
} .

More details on the exact methodology of first stage can also be found in [17]

p.43. The difference compare to our methodology is that we will utilize a Generalized

Autoregressive Conditional heteroscedasticity (GARCH) model with CAPM instead of the

Black-Scholes model.

In the second stage we can derive the portfolio’s beta and alpha out of the CAPM-

EGARCH (1.1) model. In case our theoretical findings are proven in practical terms, we

expect to get a β ≤ 1 when α > 0. in addition we expect to get an α > 0 when β ≤ 1.

Finally, in order to evaluate our findings the best possible way, we believe that we should

select a case with data from a mature market with solid indexes and less fluctuations (e.g.

Frankfurt’s DAX 30) and also one with data from an emerging one (e.g. Vienna’s ATX

index).
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4. Concluding Remarks

This chapter is concerned on the unbounded risk premium that might occur if there

is combination of asset pricing model which has an unbounded stochastic discount factor, and

a coherent and bounded risk measure. Suggesting an intuitive explanation of the findings,

one can assume that is possible to follow a risk averse strategy, as β ≤ 1 and at the same

time achieve abnormal returns, as α > 0. Rephrasing, it appears to be that this framework is

suitable for an investor who is loss averse. On top of that, it seems that a loss averse investor

is the ideal candidate to earn a risk premium compare to someone who is more tolerate to

risk. Summing up, our findings are not favoring the opinion that market efficiency tends to

hold.





CHAPTER 4

Estimation of Insolvency Probability Under Systemic Risk

1. Preliminaries

Systemic Risk (SR) is considered of high interest in academia. Recall that Systemic

Risk refers to the instability of a financial system component that can lead to its entire

collapse [75]. From the aforementioned statement one can intuitively understand that SR is

closely related to the concept of Dependence. Most importantly there is not yet a consensus

among academics on a common way to evaluate the SR and so there is a prolific scholar

discussion towards that direction. [54] proposed some sufficient conditions for two random

vectors to be ordered by the so-called Conditional distortion risk measures and demonstrated

how these risk measures are quantifying SR. [28] specifies a framework for SR measures via

multidimensional acceptance sets and aggregation functions. In addition, while usually SR

measures are mostly interpreted as the minimal amount of cash needed before aggregating

individual risks, their approach suggests that SR measures are minimal amount of cash

needed before aggregating individual risks. While our effort exhibits similarities with all

the aforementioned yet there are some fundamental differences. We consider that under

the assumption that one component (entity) of an economic environment is in distress it

is evaluated the Expected Capital Shortfall of this financial market (more on the relevant

subsection).

[14] states that the main purpose concerning systemic risk is to evaluate the finan-

cial distress of an economy as a consequence of the failure of one of its components. They

45
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also point out the importance of Extreme Value Theory (EVT) in the analysis of systemic

risk, which we also will make extensive use. In addition [32] introduces SRISK to measure

the capital shortfall of a firm conditional on a severe market decline. This approach is quite

similar with the one we also utilize. Also, in regard of Insolvency probability, which may also

be addressed as Ruin Probability under the Insurance theory perspective, we are primarily

motivated and we follow methodologically up to an extent the paper of [50]. Similar to the

aforementioned effort we also mention [82]. . In addition, similar to our research interest,

we also mention the work of [16], [34] and [74].

Having all the above in mind we contribute by calculating the Insolvency Probabil-

ity due to Systemic Risk, when variation variable is less than one. The structure of chapter is

the following: next section is devoted to the theoretical framework that concern the SR and

Risk Contributions. The next one includes our contribution to the theoretical framework

and finally section 4 concludes.

2. Theoretical Framework

2.1. Systemic Risk. For our analysis we choose the SR definition, as proposed by [5]

and can also be found in [32]. There, under the assumption that one component (entity)

of an economic environment is in distress it is evaluated the Expected Capital Shortfall of

this financial market. For instance, the term component (or the term entity) may refer

to a company of a particular business sector, or a bank that is regulated by a regulatory

organization. It can even be an investment that is consisted in a portfolio. Consequently

an economic environment can be perceived as a business sector or a financial market where

its banking system is regulated by a regulatory organization. It can as well be a portfolio

that its risk is controlled by a portfolio manager who is utilizing a risk measure. Similar
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to this effort is the one proposed by [6]. There is presented an economic model of systemic

risk where the whole business sector is under-capitalized and consequently it harms the real

economy. In terms of similarity we also mention [33]. In this paper is developed a framework

for measuring, allocating and managing systemic risk.

For the best possible understanding of the distress of a component one can consider

a situation where a risk measure is utilized for controlling risk of that component. Then

distress in the component occurs when its price, dictated by the risk measure is exceeded.

In other words, the risk measure gives the level of loss that should not exceed and if this

happens, then financial distress emerges. In a formal mathematical framework we consider

the probability space (Ω,F ,P), and the set of positive r.v. with infinite upper points L+(P).

In addition let X,Z ∈ L+(P) and the equation [14, equation 1.1], or ρX,Z(q) := E
[(
X −

t1(q)

)
+

|Z > t2(q)

]
, where t1(q) and t2(q) are two positive functions with q ∈ (0, 1) and

lim
q→1

t2(q) = ∞. Clearly, t1(q) and t2(q) can be perceived as risk measures that a regulator

(or an investor) is utilizing for controlling the levels of risk. The economical interpretation

of the components of this conditional probability is quite straightforward as
(
X − t1(q)

)
+

represents the total liabilities of the financial market (or investment or bank sector) minus

total capital allocated to the market and can be determined by risk measure. Also Z > t2(q)

represents the fact that there is crisis in a component of the market as it should be clear that

t2(q) represents the capital, via a risk measure that is allocated to the entity that bears the

liability Z. In regard how we utilize all the above, we refer the reader to Euler contribution

for distortion risk measures subsection.
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3. Contribution

3.1. Euler Contributions for Risk Measures. Initially we establish that Euler Al-

location is applicable in an economic environment that is regulated by a Distortion Risk

Measure. Moreover we consider that SR has a significant impact on that economic environ-

ment. Let consider that there are k economic entities with X1, X2, ...Xk random variables,

F1, F2, ...Fk marginal distribution functions and k ∈ N. In addition consider that the reg-

ulator allocates for every Xi entity Ci capital. Recall that in Euler Allocation Principle

subsection is stated that Ci is the capital that is required by the economic entity Xi and is

determined with a risk measure (see relevant sub-section). Moreover the total capital that is

allocated to all the economic entities would be
∑k

i=1Ci and we also set that Sk :=
∑k

i=1Xi

with I distribution function. By assuming that the first economic entity exhibits financial

distress, then without loss of generality SR is defined to have the following value

SR := E
[(
Sk −

k∑
i=1

Ci
)

+
|X1 > C1

]
(3.1)

in terms of aggregate risk and is depicted in [14] and [5]. Moreover SR contribution to the

nth economic entity is defined to have the following value SRn := E
[(
Xn − Cn

)
+
|X1 > C1

]
,

where n ∈ {1, 2, ...., k} and is also depicted in [14].

3.2. A Calculation of Systemic Risk’s Insolvency Probability, when Variation

Variable is less then 1. Another important topic that should be addressed is insolvency

due to Systemic Risk. By recalling the definition of SR as depicted in (3.1), it is only natural

to consider that the probability of insolvency or Ψ can be defined as the following:

Ψ(k,n) := P
[ n∨
i=1

Sk >
k∑
i=1

Ci

]
as

k∑
i=1

Ci →∞,(3.2)
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where in accordance with [104, eq.1.2] and our Euler Allocation Principle subsection, we have

that Sk is the randomly weighted sum that can be decomposed into primary n real-valued

independent random variables X1, ..., Xk and u1, u2, ..., uk nonnegative random variables,

independent of the primary. By setting
∑k

i=1 Ci = x, then (3.2) is depicted in the following

form:

Ψ(k,n) := P
[ n∨
i=1

Sk > x

]
as x→∞.(3.3)

Regardless of the indicators that may appear due the mathematical structure we consider

that Ψ stands in this paper for the Insolvency Probability. In addition, by introducing

positive real numbers u = (u1, u2, ..., uk) as presented in (4.2), and by considering [104,

eq.1.1 and eq.1.2] it occurs a useful representation of X and specifically:

k∑
i=1

uiXi = Sk(u).

In accordance with [104], u1, u2, ..., uk can be perceived as positive real numbers that capture

dependence. Although such interpretation is not per se useful in the sense that dependence

is not our scope for this subsection, nevertheless u1, u2, ..., uk will prove very useful for our

mathematical framework. Having the above in mind, we consider [104, eq.1.3] and [103]

where we get that if X1, ..., Xk iid by a Sub-exponential distribution (see [49, Definition 2]

for the definition of Sub-exponential distribution, denoted as S) and u1, u2, ..., uk are in (0, b]

for some constant b and 0 < b ≤ ∞, then

P
[ n∨
i=1

Sk(u) > x

]
∼ P

[
Sk(u) > x

]
∼ P

[ n∨
i=1

uiXi > x

]
∼

k∑
i=1

P
[
uiXi > x

]
.(3.4)

Remark 3.1. (3.4) suggests that the heavy tails of the X1, ..., Xk random variables

vanishes the dependence presented from u1, u2, ..., uk. Such notion is in tandem with the

principle of a single big jump in the presence of random weights (one may consult [49] for

subtleties).
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In tandem with the rest of our contribution subsection, we have that there are k

economic entities with X1, X2, ...Xk continuous non negative random variables, F1, F2, ...Fk

marginal distribution functions that vary regularly unless we state otherwise and k ∈ N.

Also, in accordance with [60] we define the positive truncated mean function, or

m+(x) :=

∫ x

0

[
1− F (y)

]
dy.

In addition, we define the integrand J−, or

J− := J−(X) =

∫ 0−

−∞

| x |
m+(| x |)

dF (x).

A key assumption is that
∨n
i=1 Sk(u) is finite almost surely, which occurs iff Sk(u)→∞ as k

→ ∞ with probability 1 [65, Chapter XII, Section 2, Theorem 1]. Also, we have from [60,

Corollary 1 (a)], [60, Theorem 2 (c)] and the remark that follows in the same context that:

if E|Xi| =∞, then Sk(u)→∞ a.s. as k →∞ iff J− <∞,(3.5)

which is the [60, Corollary 1 (a)], as it will be utilized in this paper.

Remark 3.2. Initially (3.5) assures that
∨n
i=1 Sk is finite and thus a proper r.v..Furthermore,

by attempting to give an intuitive explanation of the (3.5) condition, it suggests that the right

tail of Fi is heavier than the left one.

Definition 3.3. A distribution function F on R is dominatedly-varying tailed, or

F ∈ D when its right tail satisfies F (xz) = O
(
F (x)

)
for all 0 < z < 1.

In addition, we consider [49, Definition 1] for the definition of Long-tailed distri-

bution, denoted as L. Also,we state from [22] the following:
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Definition 3.4. A distribution function F on R has an extended rapidly varying

tail or belongs to class ER, when its right tail satisfies lim sup
x→∞

F (xz)

F (x)
< 1 for some z > 1.

ER is also met in other works like [78, eq.4], where is addressed under the notation

PD (positively decreasing-tailed). Also, we set that F∗(z) = lim inf F (xz)/F (x), F ∗(z) =

lim supF (xz)/F (x), and for a distribution function F with an ultimate right tail we have

that the upper Matuszewska index, or αF is defined as

αF = inf{−(logF∗(z)/ log z) : z > 1} ∈ [0,∞],

and the lower Matuszewska index, or βF is defined as

βF = sup{−(logF ∗(z)/ log z) : z > 1} ∈ [0,∞].

For the remaining of the paper we assume that z is positive. Now, let us proceed with the

following Lemma, which is based on [50, Corollary 1]:

Lemma 3.5. Let consider that E|Xi| = ∞, [60, Corollary 1 (a)] holds, F (z) is

regularly varying with varying variable β and m(z) is regularly varying with varying variable

1− α, where 0 < α ≤ 1. If α < β and β ∈ R+, then

Ψ(x) ∼ Γ(β − α)

Γ(β)Γ(2− α)

xF (x)

m(x)
, as x→∞

where Γ is the Gamma function.

Remark 3.6. Since [60, Corollary 1 (a)] holds, we have that due to the fact that

J− <∞ that Ψ(x) ∼ Γ(β−α)
Γ(β)Γ(2−α)

xF (x)
m(x)

, as x→∞ is not meaningless.

Proof. Initially we consider [50, Theorem 2]. There is addressed the case where m(z)

is regularly varying and F is long tailed and index 1 − α ∈ [0, 1]. Specifically in [50, eq.6]
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we have that

Ψ(x) ∼ Ga(x)

Γ(1 + α)Γ(2− α)
,(3.6)

where α is the varying variable of m. Moreover, we consider [50, (7)] which is a special case

of Ga(x) once we have that 0 < α ≤ 1 and is

Ga(x) = min

(
1,

∫ ∞
1

F (x+ z)

m(z)
dz

)
.(3.7)

By considering (3.6) and (3.7), we get that

Ψ(x) ∼ G(x)

Γ(α)Γ(2− α)
,(3.8)

By taking a closer look at (3.7) and (3.8) we realize that we primarily need to

calculate
∫∞

1
F (x+z)
m(z)

dz. For doing so, we initially consider the case where both m(x) and F

are varying regularly. Now, let us fix e > 0, E > 0 where E > e. Moreover, we consider the

partition of [1,∞] into [1, e],[e, E] and [E,∞]. Accordingly we get from [50, eq.21] that∫ ex

1

F (x+ z)

m(z)
dz ≤ F (x)

∫ ex

1

1

m(z)
dz ∼ F (x)

α

ex

m(ex)
, as x→∞,(3.9)

while (3.9) stems from the fact that

d

dx

z

m(z)
=
α + o(1)

m(z)
as z →∞,

(see [50, p.24]), and thus

d

(
z

m(z)

)
∼ α + o(1)

m(z)
dz,

∫ ex

1

d

(
z

m(z)

)
∼
∫ ex

1

α + o(1)

m(z)
dz,

z

m(z)

∣∣∣∣ex
1

∼
∫ ex

1

α + o(1)

m(z)
dz,
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ex

m(ex)

1

α
∼
∫ ex

1

1

m(z)
dz,

and

ex

m(ex)

F (x)

α
∼ F (x)

∫ ex

1

1

m(z)
dz.

By considering [60, Corollary 1 (a)] we get that
∫ ex

1
F (x+z)
m(z)

dz is bounded by a finite quantity.

Remark 3.7. While (3.9) is initially met in [50, eq.21], yet we further elaborate

on the proof of the statement this equation stands for.

We also have that

∫ ∞
Ex

F (x+ z)

m(z)
dz ≤

∫ ∞
Ex

F (z)

m(z)
dz ∼ 1

β − α
ExF (Ex)

m(Ex)
, as x→∞,(3.10)

where (3.10) stems from the fact that we know that asymptotically F (z) = z−β and m(z) =

z1−α. Moreover:

∫ ∞
Ex

F (z)

m(z)
dz

∼
∫ ∞
Ex

z−β

z1−αdz,

∼
∫ ∞
Ex

t−β+α−1dz,

∼ z−β+α

−β + α

∣∣∣∣∞
Ex

,

and consequently

∫ ∞
Ex

F (z)

m(z)
dz ∼ 1

Exβ−α
1

β − α
.(3.11)
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Again, we consider (3.10) and we have the following:

1

β − α
ExF (Ex)

m(Ex)

∼ 1

β − α
Ex(Ex)−β

Ex1−α ,

∼ 1

β − α
(Ex)−β+1

(Ex)1−α ,

∼ 1

β − α
1

(Ex)1−α(Ex)−1+β
,

and consequently

1

β − α
ExF (Ex)

m(Ex)
∼ 1

β − α
1

(Ex)β−α
.(3.12)

It is clear that by considering (3.11) and (3.12) we get (3.10) and in tandem with Condition

[60, Corollary 1 (a)] we get that
∫∞
Ex

F (x+z)
m(z)

dz is bounded by a finite quantity.

Remark 3.8. (3.10) is again stated in [50, eq.22], and we illustrate on the necessary

proof that contributes to its validity.

Now, in regard of [e, E] recall that we initially examine the case of Regular Varia-

tion. Moreover, we set that there is an interval n ∈ [e, E] and we have that
∫ Ex
ex

F (x+z)
m(z)

dz =

F (x)
m(x)

∫ Ex
ex

F (x+z)

F (x)

m(x)
m(z)

dz,
∫ Ex
ex

F (x+z)
m(z)

dz = xF (x)
m(x)

∫ E
e

F (x(1+n))

F (x)

m(x)
m(xn)

dn,

and, by considering Uniform Convergence Theorem for r.v. functions (see [30,

Theorem 1.5.2]) we have that

F (x(1 + n))

F (x)

m(x)

m(xn)
→ (1 + n)−β

n1−α ,(3.13)
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as x→∞ uniformly in n ∈ [e, E] and finally

∫ Ex

ex

F (x+ z)

m(z)
dz ∼ xF (x)

m(x)

∫ E

e

(1 + n)−β

n1−α dn as x→∞.(3.14)

once we let [1, e] become negligible in the sense that e→ 0, let [E,∞] also become negligible

in the sense that E → ∞, then from (3.8),(3.9) and (3.14) we get that Ψ(x) ∼ G(x)
Γ(α)Γ(2−α)

,

G(x)
Γ(α)Γ(2−α)

= 1
Γ(α)Γ(2−α)

× xF (x)
m(x)

∫∞
0

(1+n)−β

n1−α dn and finally

Ψ(x) ∼ 1

Γ(α)Γ(2− α)
× xF (x)

m(x)

∫ ∞
0

(1 + n)−βnα−1dn.(3.15)

In addition, we consider that
∫∞

0
(1 + n)−βnα−1dn is the representation of the Beta function

B(α, β − α) =
∫ 1

0
tα−1(1− t)β−α−1dt, once we put t = n

1+n
, and so

Ψ(x) ∼ B(α, β − α)

Γ(α)Γ(2− α)
× xF (x)

m(x)
.(3.16)

Now we consider the relation of B function and Γ function where

B(α, β − α) =
Γ(β − α)Γ(α)

Γ(β)
.(3.17)

Finally, we plug (3.17) into (3.16) and so,

Ψ(x) ∼ Γ(β − α)Γ(α)

Γ(α)Γ(β)Γ(2− α)
× xF (x)

m(x)

and thus,

Ψ(x) ∼ Γ(β − α)

Γ(β)Γ(2− α)
× xF (x)

m(x)
as x→∞,

and proof is complete. �

Now, let us expand our work when F (z) ∈ D∩ER and m(z) ∈ D∩ER, and proceed

with the following Theorem
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Theorem 3.9. Let consider that E|Xi| = ∞, [60, Corollary 1 (a)] holds, F (z) ∈

D∩ER and m(z) ∈ D∩ER, where 0 < αl ≤ 1 and 0 < αu ≤ 1. If αu < βu and αl < βl, then

there exist constants C and D such that

Γ(βl − αl)
Γ(βl)Γ(2− αl)

DxF (x)

m(x)
. Ψ(x) .

Γ(βu − αu)
Γ(βu)Γ(2− αu)

CxF (x)

m(x)

as x→∞, where Γ is the Gamma function.

Proof. Initially, we consider for D [36, eq.3.2] and [48, Theorem 3, A, a1 and a2

of unpublished Appendix titled Positive increase and bounded increase for non-decreasing

functions]. It is not difficult to realize that in regard of D we get an upper bound for F (xz)

F (x)

which is depicted in (3.18) and also an upper bound for m(xz)
m(x)

, depicted in(3.19).

Also for ER we consult [48, Theorem 3, B, b1 and b2 of unpublished Appendix titled

Positive increase and bounded increase for non-decreasing functions]. The aforementioned

we can get a lower bound for F (xz)

F (x)
which is depicted in (3.18) and also a lower bound for

m(xz)
m(x)

, depicted in(3.19). In addition, by considering [22, p.124] we have for F (z) that there

exist a CF for each Z > 1 and for some DF > 0 and all Z > 1 as so that:

DF z
−βl .

F (xz)

F (x)
. CF z

−βu uniformly in z ∈ [1, Z],(3.18)

as x→∞. Similarly, for m we have that:

Cmz
1−αl .

m(xz)

m(x)
. Cmz

1−αu uniformly in z ∈ [1, Z],(3.19)

as x→∞. By considering (3.13), we get that the upper bound is

F (x(1 + n))

F (x)
× m(x)

m(xn)
.

(1 + n)−βuCF
n1−αuCm

,(3.20)
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as x → ∞. Notice that m’s asymptotic behavior is depicted in the denominator of (3.13).

Furthermore, we set that CF/Cm = C, and by plugging (3.20) into (3.15) we get

Ψ(x) .
1

Γ(αm)Γ(2− αm)
× CxF (x)

m(x)

∫ ∞
0

(1 + n)−βunαu−1dn,

as x → ∞. Working as in the previous Lemma, we get that
∫∞

0
(1 + n)−βunαu−1dn, is the

representation of the Beta function B(αu, βu − αu), once we put t = n
1+n

, and in tandem

with (3.16) we get

Ψ(x) .
B(αu, βu − αu)
Γ(αu)Γ(2− αu)

× CxF (x)

m(x)
,(3.21)

as x → ∞. Now we consider the relation of B function and Γ function, similarly with that

depicted in (3.17), and by plugging it to (3.21) we get that

Ψ(x) .
Γ(βu − αu)

Γ(βu)Γ(2− αu)
× CxF (x)

m(x)
,(3.22)

as x→∞, which is the upper bound of Ψ(x).

Similarly we have to work for the lower bound. Specifically, we consider (3.18),

(3.19) and (3.13) and we have that

(1 + n)−βlDF

n1−αlDm

.
F (x(1 + n))

F (x)
× m(x)

m(xn)
,(3.23)

as x→∞. Notice once again that m’s asymptotic behavior is depicted in the denominator.

Furthermore, we set that DF/Dm = D, and by plugging (3.23) into (3.15) we get

1

Γ(αl)Γ(2− αl)
× DxF (x)

m(x)

∫ ∞
0

(1 + n)−βlnαl−1dn . Ψ(x),

as x → ∞ which is the lower bound of Ψ(x). Working as in the previous Lemma, we get

that
∫∞

0
(1 + n)−βlnαl−1dn, is the representation of the Beta function B(αl, βl−αl), once we
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put t = n
1+n

, and in tandem with (3.16) we get

B(αl, βl − αl)
Γ(αl)Γ(2− αl)

× DxF (x)

m(x)
. Ψ(x)(3.24)

as x → ∞. Now we consider the relation of B function and Γ function, similarly with that

depicted in (3.17), and by plugging it to (3.24) we get that

Γ(βl − αl)
Γ(βl)Γ(2− αl)

× DxF (x)

m(x)
. Ψ(x),(3.25)

as x→∞, which is the lower bound of Ψ(x). By combining (3.22) and (3.25) we get that

Γ(βl − αl)
Γ(βl)Γ(2− αl)

DxF (x)

m(x)
. Ψ(x) .

Γ(βu − αu)
Γ(βu)Γ(2− αu)

CxF (x)

m(x)
,

as x→∞, and the proof is complete. �

Let us state also the following Lemma, which is heavily influence by [104, Theorem

3.1].

Lemma 3.10. If u1, u2, ..., uk are bounded from above, i = 1, 2, ..., k and F ∈ L∩D,

then

P
[ n∨
i=1

Sk(u) > x

]
∼ P

[
Sk(u) > x

]
∼ P

[ n∨
i=1

uiXi > x

]
∼

k∑
i=1

P
[
uiXi > x

]
, as x→∞.

Proof. we already know from (3.4) that u1, u2, ..., uk are in (0, b] for some constant b

and 0 < b ≤ ∞. By having that u1, u2, ..., uk are bounded from above, we consider that

there are [103, Type II bound of r.v.]. Now, one can consult [103, Corollary 3.1] and it is

easy to understand that relation of [103, Theorem 3.1] also holds for the setting, suggested

in the Lemma in the sense that in both case F ∈ L ∩ D. For proving the above we initially

observe that we have the following basic ordering:

P
[ k∨
i=1

Sk(u) > x

]
≤ P

[
Sk(u) > x

]
,
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P
[
Sk(u) > x

]
≤ P

[ k∨
i=1

uiXi > x

]
,

and

P
[ k∨
i=1

uiXi > x

]
≤

k∑
i=1

P
[
uiXi > x

]
is also true due to Bonferroni’s inequality where P

[⋃k
i=1 uiXi > x

]
≤
∑k

i=1 P
[
uiXi > x

]
and also because P

[∨k
i=1 uiXi > x

]
≤ P

[⋃k
i=1 uiXi > x

]
. Now for achieving that (3.4) is

true as x→∞ we have to prove that

P
[
Sk > x

]
≥

k∑
i=1

P
[
uiXi > x

]
,(3.26)

and

P
[ k∑
i=1

uiXi > x

]
≤

k∑
i=1

P
[
uiXi > x

]
,(3.27)

as x → ∞ are true. We already have that u1, u2, ..., un are bounded from above so without

loss of generality we assume that they are bounded from above by 1. Under that setting we

can verify that

∑
1≤j 6=k≤m

P(ujXj > x, umXm > x) = o(1)
k∑
i=1

P(uiXi > x).(3.28)

Also, (3.28) stems from the fact that from the left side we have independence suggests that

we are dealing with a product of r.v., that are bounded. To that end the left side becomes

negligible compare to the quantity on the right hand side, as x→∞.

For proving (3.26) we recall initially that Xi ∈ L1
+. Now, we only have to consider

that Sk(u) ≥
∨k
i=1 uiXi, the fact that (3.28) holds and thus we get that also (3.26) holds.

Now, let us prove that (3.27) holds. For that, we first consider the case where

u1, u2, ..., un are positive. Initially we consider an arbitrary subset I ⊂ {1, ..., k}, we have
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Ic = {1, ..., k}\I and also Ωε
I(u) = {ω : ui > ε for i ∈ I and uj ≤ ε for j ∈ Ic} for 0 < ε < 1.

To that end we consider that
∑k

i=1 uiXi = Sk(u) and obtain the following inequality

P
( k∑

i=1

uiXi > x

)
≤

∑
I⊂{1,...,k}

P
(∑

i∈I

uiXi +
∑
j∈Ic

εXj > x,Ωε
I(u)

)
.(3.29)

By considering [104, Lemma 5.1] we have that the right side of (3.29) equals

∑
i∈I

P(uiXi > x,Ωε
I(u)) +

∑
j∈Ic

P(εXj > x)P(Ωε
I(u))

=
∑
i∈I

P(uiXi > x,Ωε
I(u)) +

∑
j∈Ic

P(εXj > x, uj > ε)
P(Ωε

I(u))

P(uj > ε)
.

By plugging the above to(3.29) and interchanging summation order we get

P
( k∑

i=1

uiXi > x

)

≤
k∑
i=1

∑
I:i∈I⊂{1,...,k}

P(uiXi > x,Ωε
I(u)) +

k∑
j=1

∑
I:j /∈I⊂{1,...,k}

P(ujXj > x)
P(Ωε

I(u))

P(uj > ε)
,

=
k∑
i=1

P(uiXi > x, ui > ε) +
k∑
j=1

P(ujXj > x)
P(uj ≤ ε)

P(uj > ε)
,

≤
(

1 + max
1≤j≤k

P(uj ≤ ε)

P(uj > ε)

)
+

k∑
j=1

P(ujXj > x).

Recall that we have that uj is positive, and as ε→ 0 we obtain (3.27). Now when u1, ..., uk

may take value 0 with positive probability, we recall I,Ic and also Ω0
I(u) = {ω : ui > 0 for i ∈

I and uj = 0 for j ∈ Ic}, and consequently we obtain

P
( k∑

i=1

uiXi > x

)
=

∑
φ 6=I⊂{1,...,k}

P(
∑
i∈I

uiXi > x,Ω0
I(u))

P
( k∑

i=1

uiXi > x

)
≤

∑
φ 6=I⊂{1,...,k}

∑
i∈I

P(uiXi > x,Ω0
I(u))
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P
( k∑

i=1

uiXi > x

)
≤

k∑
i∈I

P(uiXi > x),

(3.27) is true and the proof is complete. �

We also need to state the following Definition

Definition 3.11. A distribution function F on R belongs to class A when it belongs

to S and its right tail satisfies lim sup
x→∞

F (xz)

F (x)
< 1 for some z > 1.

Now, we can state the following Theorem.

Theorem 3.12. Let consider that E|Xi| =∞, u1, u2, ..., uk are bounded from above,

i = 1, 2, ..., k, [60, Corollary 1 (a)] holds, F (z) ∈ D∩A and m(z) ∈ D∩A, where 0 < αF ≤ 1

and 0 < αm ≤ 1. If αF < αm and βF < βm, then there exist constants C and D such that

Ψ(x) ∼ P
[ n∨
i=1

Sk(u) > x

]
∼ P

[
Sk(u) > x

]
∼ P

[ n∨
i=1

uiXi > x

]
, as x→∞,

where Ψ(x) is bounded by the quantities determined in Theorem 3.9.

Proof. Initially, we consider that S ⊂ L. With that in mind, straightforwardly from

Lemma 3.10 we have that If u1, u2, ..., uk are bounded from above, i = 1, 2, ..., k and F ∈

S ∩ D, then

P
[ n∨
i=1

Sk(u) > x

]
∼ P

[
Sk(u) > x

]
∼ P

[ n∨
i=1

uiXi > x

]
∼

k∑
i=1

P
[
uiXi > x

]
, as x→∞.

We also have from Definition 3.3 that A belongs to S, from which we get that A ⊂ S ⊂ L

which implies that If u1, u2, ..., uk are bounded from above, i = 1, 2, ..., k and F ∈ A ∩ D,

then

P
[ n∨
i=1

Sk(u) > x

]
∼ P

[
Sk(u) > x

]
∼ P

[ n∨
i=1

uiXi > x

]
∼

k∑
i=1

P
[
uiXi > x

]
, as x→∞.
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Finally we have from Definition 3.3 and Definition 3.4 that A ⊂ E , which allows us to utilize

Theorem 3.9 in order to conclude that

Γ(βl − αl)
Γ(βl)Γ(2− αl)

× DxF (x)

m(x)
. Ψ(x) ∼ P

[ k∨
i=1

Sk(u) > x

]
∼ P

[
Sk(u) > x

]
∼

P
[ k∨
i=1

uiXi > x

]
.

Γ(βu − αu)
Γ(βu)Γ(2− αu)

× CxF (x)

m(x)

holds as x→∞ and the proof is complete. �

Remark 3.13. Aforementioned Theorem has a profound importance since we are

interested in calculating the Insolvency probability as x→∞.

Remark 3.14. In the model we suggest Insolvency Probability can be calculated

without any restriction in terms of the Risk Measure that is responsible for regulating/mitigating

risk.

Remark 3.15. Our research could be utilized in many cases, like for instance when

we deal with Pareto type distributions and the mean is undefined.

Remark 3.16. Also, findings of Theorem 3.9 complies with the principle of a single

big jump as presented in [49].

4. Conclusion

The main interest of this chapter is the estimation of Insolvency Probability, under

the fact that Systemic Risk is present. To that end, we proceed be setting risk contributions

in an economic environment that is regulated by a Distortion Risk Measure. By considering

that many important classes of Risk Measures, like the class of Spectral Risk Measures under

some conditions, can be expressed in terms of Distortion Risk Measures we can also conclude
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that some important generalizations can be extracted out of our initial findings. Moreover,

we mostly contribute be concluding the so called Insolvency Probability (Ruin Probability

in Insurance Theory) due to the fact that systemic Risk is present and the variation variable

is less than one.

Apparently, it is of great convenience the fact that in the model we suggest Insol-

vency Probability can be calculated without any restriction in terms of the Risk Measure

that is responsible for regulating/mitigating risk. Finally we point out that our findings,

which are consistent with the principle of a single big jump could be utilized in many cases,

like for instance when we deal with Pareto type distributions and the mean is undefined.





CHAPTER 5

A note on Spectral Risk Measures when Systemic Risk is present

1. Preliminaries

Spectral risk measures are considered of high interest in academia. It is widely

accepted that the so called risk spectrum can depict the level of risk aversion of the investor

and notable efforts are taken place on the portrayal of that factor. For instance [56] and

[81] mention some very important classes of risk measures, like the exponential or the power

spectral risk measures. There is also the work of [110] and [111] which suggest the so called

Wang transform and although it emerges from insurance theory, yet it falls in the category

of spectral risk measures. Apart form the academic interest there is also the practical aspect

which is as important. As [26] suggests Spectral risk measures are a hopeful generalization

of Expected shortfall, implying that it may be utilized in the near future.

In addition, there is criticism on the theoretical ground of Spectral Risk Measures,

see for instance [21] work on the properties of completeness (necessary condition), exhaustion

and finally, adaptability (necessary and sufficient condition). Apparently, exponential and

power spectral risk measure does not exhibit all of those properties. Also [58] denoted the

robust backtesting problems of Spectral Risk Measures as they are not elicitable. On the

other hand, those classes are very easy to be constructed and the theoretical background

leaves room for limitless options, as long as the risk preferences of an investor can be exposed

somehow.

65
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We on the other hand are motivated by the fact that utility function of the investor,

a concept related to the asset pricing theory (see [40], [85]) and portfolio diversification (see

[90]) is the single factor that determines the risk spectrum of the measure. We argue with

this practice and we propose that also systemic risk should be included in the depiction.

Recall that systemic risk refers to the instability of a financial system that can lead to its

entire collapse [75]. In addition, there is academic interest for the implications of systematic

risk. For instance [14] state that the main purpose concerning systemic risk is to evaluate

the financial distress of an economy as a consequence of the failure of one of its components.

They also point out the importance of the Extreme Value Theory (EVT) in the analysis of

systemic risk. Moreover [87] discuss that the Financial institutions can generate systemic

risk. Also [4] addressed the same topic. In addition [32] introduce SRISK to measure the

capital shortfall of a firm conditional on a severe market decline. An interesting comparison

would be between our approach and the one of [39]. He utilizes the income distribution

in order to capture how the stochastic process of the income share is taking place among

certain groups. We on the other hand use the returns’ distribution of a certain investment

in order to highlight how cautious an investor needs to be due to the risk of the economic

environment.

Having the practitioners in mind, we attempt to give a different perspective on

how risk spectrum should be comprehended. Rephrasing, instead of attempting to picture

an investor or a managers’ aversion profile, which by definition is rather subjective, we

suggest the degree of aversion she/he should have depending on the markets’ underlying

risk. Moreover, we attempt to suggest, not only a theoretically robust, but also an applicable

method.
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Furthermore, we are motivated by the fact that situations like the global crisis

emerging from late 2007 as a subprime mortgage crisis in U.S. and LIBOR scandal, triggered

the need to reassess the tools a professional or a regulator should employ (see for instance

[83] and [84] work on liquidity risk, [89] work on worst case scenario and [14] work on

systemic risk). This reassessment is taking place up to now and a milestone example is

the decision of [27], as it suggests the Expected Shortfall instead of the Value at Risk as a

standard risk measure.

Unfortunately, there is criticism on the regulatory logic of using a unique risk

assessment tool in order to have a homogeneous benchmark, see for instance [58], as it lucks

the notion that every market exhibits certain characteristics that influence its underlying

investment risk that cannot be diversified away. As [1] suggests different portfolios’ risk can

be better detected by different risk measures and also, a unique risk measure can be a risk

generator itself. A notable attempt to personalize the risk measure is the specific risk, a

component added to Value at Risk, due to issuer’s specific price movement [91] . Our point

of view is in compliance with this criticism. Moreover, by this chapter we denote a way to

categorize each market according to the systemic risk it bears. Also, we propose a way to

quantify systemic risk via macroeconomic factors as indicators. Consequently, each market

will utilize a risk measure that corresponds to its systemic risk.

We mention that this work is in tandem with our previous work in risk (see for

instance [79]). The structure of chapter is the following: next section includes an example

that gives further insight to the motivation. The next section is devoted to our contribution,

the next section provides an application that can be empirically validated and final section

provides concluding remarks.
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2. Motivation

We give a theoretical example in order to polish our motivation the best possible

way. Consider two markets M1,M2, and three elements that are responsible for the sys-

temic risk {r1, r2, r3}. Also, consider that those elements are associated with fundamental

macroeconomic factors, for instance r1 with the Real Gross Domestic Product YoY change

in %, r2 with the unemployment rate and r3 with the inflation rate (according to [92], GDP

measures everyone’s income in an economy, inflation rate is associated with the fraction of

labour capacity that is out of work and inflation measures how fast prices are rising).

We consider that there is a threshold corresponding to each element that the

economies acknowledge. Exceeding a threshold for an economy signifies an increase in sys-

temic risk. For the shake of argument we set that the thresholds are r1 = −10%, r2 = 20%

and r3 = 5%. Moreover, the macroeconomic factors for M1,M2 and for a three year period

are the following:

M1

Year r1 r2 r3

2015 +5% 1% 3%

2016 +1% 5% 6%

2017 −3% 4% 4%.
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M2

Year r1 r2 r3

2015 +1% 15% 6%

2016 −11% 22% 4%

2017 −12% 21% 3%.

Bear in mind that the elements we have chosen are not at all restrictive. On the

contrary one can chose of any element that is associated with the robustness of a market. For

instance the income (see [38, p.54]) for details) which is also of academic interest (see [39])

can prove quite useful. We follow the analytical approach of [112] where we can present for

each year the three elements as an ordered triplet of real numbers, in a three dimensional

cartesian coordinate system. So, [r1, r2, r3] is a vector for each year and for each market

with r1, r2, r3 as the components of the vector. Under that framework we can represent

the macroeconomic factors for each market M1 and M2 for years 2015 up to 2017 in 3X3

matrices. Specifically:

M1 =


5 1 3

1 5 6

−3 4 4



M2 =


1 15 6

−11 22 4

−12 21 3





70 5. A NOTE ON SPECTRAL RISK MEASURES WHEN SYSTEMIC RISK IS PRESENT

where the rows correspond to each year and the columns correspond to each macroeconomic

factor. Obviously there are indications that M2 bears more systemic risk for all three years

compare to M1 (M2 has one element that exceeds the threshold in 2015, two in 2016 and two

in 2017 while M1 has one element that exceeds a benchmark only in 2016). A mathematical

approach would be to calculate the magnitude of each years vector (see [112, Definition 2

p.5]), then we get:

Vectors’ Magnitudes

Year |M1 | |M2 |

2015 5.92 29.61

2016 7.87 24.92

2017 6.40 24.37

The magnitudes of the vectors representing M2 are in all occasions much higher

than M1, which denotes a basic ordering in terms of systemic risk (rephrasing M2 is more

exposed to systemic risk). Since we are having in our example square matrices we may also

utilize the determinants, where detM1 = 15 and detM2 = 135. Consider a geometrical

approach for the vectors r1, r2, r3, assume that they are linearly independent and consider

the (see [93, theorem p.216]). Then the absolute value of determinants are the volume of

the parallelepiped determined by vectors r1, r2, r3. Clearly the value of M2 parallelepiped is

much greater than the value of M1, which also denotes in terms of a basic ordering that M2

is exposed to more systemic risk.

Now consider a risk averse investor who is investing to both M1 and M2. Moreover,

this investor utilizes a spectral risk measure to dictate his investing attitude. Consequently
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the risk spectrum of that measure portrays his aversion towards risk. Under that framework,

we propose that apart from the risk aversion of the investor the risk spectrum should also

depict the systemic risk that the market is exposed. It is obvious that the investor’s attitude

towards risk needs to be more conservative in case he chooses to invest in M2 (compare

to M1). For instance if the investor is planning to invest in 2018 then he should take into

account the macroeconomic factors of 2017, which suggest that M2 bears more systemic risk

compare to M1 (two macroeconomic factors exceed the benchmark in M2 and none in M1).

With the use of this setting, we observe that the depiction of systemic risk is of

major importance. In addition, this depiction makes the risk spectrum aware of the systemic

risk underlined in a market. Equally important is the fact that an investor or a regulator is

able to quantify the systemic risk, as for each macroeconomic factor that exceeds a threshold,

the more risk averse the investor will be (more on contribution section).With this simple

example we provide an insight of our proposition but in order to mathematically formalize

our work we need to demonstrate the theoretical foundation we utilize.

3. Contribution

Considering the example of motivation section, it is apparent that whether a

macroeconomic factor exceeds the threshold that signifies more systemic risk or not can

be perceived as random experiment. We take that N1, N2, ..., Nk are k economic factors

that are responsible for depicting the robustness of an economy (how much systemic risk

it bears). In addition k ∈ N and k is of course deterministic. Moreover we consider that

each trial corresponds to each year’s figures of those economic factors. Also a1, a2, ..., ak are

k thresholds as described in motivation section, where each ai for every i ∈ {1, 2, 3, ...., k}

corresponds to the Ni economic factor. For regulation purposes every ai could be a threshold
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that concern macroeconomic indexes while for investing purposes it could be a limit of the

capitalization of an index.

Under that perspective we set that for every i random experiment there is an Xi

random variable that follow the discrete binomial distribution, or

Xi ∼ B(ni, pi).

Each experiment for every year is a Bernoulli trial where ni is the number of trials and

pi is the probability for success (the probability that the ai threshold will be exceeded).

Also, the probability for failure qi = 1− pi is the complement of the probability for success.

Also, its experiment for every year is statistically independent. A similar assumption is

met in [39], where the model’s assumption suggest that the distribution will tend towards a

unique equilibrium distribution dependent upon the stochastic matrix but not on the initial

distribution. Recall that a stochastic matrix used to describe the transitions of a Markov

chain which describes a sequence of events according only to their current state (the events

are memoryless).

The distribution function of each random variable Xi is:

PXi(xi) =

(
ni
xi

)
pxii (1− qi)ni−xi ,

where xi are the number of successes for ni trials (n years). The sample space Ω = {(Ni >

ai|
∏k

i=1Ni ∈ R}, and also P(Ω) = 1, since each factor can either exceed or fail to exceed

the threshold that corresponds to it. In addition Xi’s range is {0, 1, 2, ..., ni}. Following the

above setting of our experiment we also set its probability space (Ω,F ,P) where F is the set

of events which includes the subset X of all xi succeeded experiments. Also, the indicator
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function of a subset X of a set F is a function 1X : F → R+ defined as

1X (xi) =:


> 0 if xi ∈ X

= 0 if xi /∈ X .

Consider the following random variable:

Y = 1 +
k∑
i=1

1X (xi),(3.1)

where
∑k

i=1 1X (xi) is the sum of aforementioned indicator functions and it is trivial to see

that (3.1) is non-negative.

Clearly in each experiment ideally we would get that Ni ≤ ai or, that each Ni should

have an upper bound ai, in order to be free of systemic risk. Attempting a further discussion

on the thresholds, it is obvious that there are many ways to be determined, yet they have

to be acknowledged by all the markets they wish to utilize them. For regulation purposes

the limits (macroeconomic factors) that European economies need to reach in order to be

inducted in European monetary union can be serve as thresholds. For investing purposes a

numeraire can prove quite useful. In any case, this thresholds will present the ideal and free

of systemic risk economy. In order to further illustrate this matter we suggest an application

at the relevant section. Moreover (3.1) is not determining if all components are equally

weighted. While we do that for simplicity, this may not be always the case and it is a topic

that can be further addressed.

Consider the Power Spectral risk measure as depicted in (3.5). Now assume that

for the r.v. of X in (3.1) it holds that E[X+] < ∞, E[X−] < ∞, supp[0,1] F0(p) < ∞ and

the observations of the returns of the investment that is represented in (3.1) → ∞. then
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according to [1, Theorem 5.4] a Spectral Risk Spectrum with (3.5) converges to (3.4) with

probability 1.

In addition when the F0(p) is a known function, then according to [56] the equiv-

alent properties for a risk spectrum to be admissible would be:

(1) F0(p) ≥ 0,

(2) F
′
0(p) ≤ 0,

(3)
∫ 1

0
F0(p)dp = 1.

To be precise, [56] states the increasing property but this occurs when the distributions

in which loss outcomes are given positive values. On the contrary [1] is implying negative

values. Now consider the following function:

ψ(Y, p, d) = Y
[
dpd−1

]
− (Y − 1), where d ∈

[
Y − 1

Y
, 1

]
and p ∈ (0, 1].(3.2)

Proposition 3.1. (3.2) is an admissible risk spectrum.

Proof. We consider that for ψ(Y, p, d) ≥ 0 we should get that Y
[
dpd−1

]
− (Y − 1) ≥ 0

which leads to dpd−1 ≥ Y−1
Y

. Moreover we consider that


0 < p ≤ 1

d− 1 ≤ 0

which leads to pd−1 ≥ 1 ⇒ dpd−1 ≥ d,∀p ∈ (0, 1]. From the aforementioned we get that

dpd−1 ≥ d ≥ Y−1
Y

or, if we need ψ(Y, p, d) to be positive then we should have that d ∈[
Y−1
Y
, 1

]
.
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Now let us prove that ψ
′
(Y, p, d) < 0 (differentiating with respect to p). For that

we get

[
Y dpd−1 − (Y − 1)

]′
= Y d(d − 1)pd−2 which is negative because Y ,d and pd−2 are

positive while d− 1 is negative.

Finally for normalization we should get that
∫ 1

0
ψ(Y, p, d)dp = 1 which is true

because
∫ 1

0
Y dpd−1 − (Y − 1)dp =

∫ 1

0
Y dpd−1dp −

∫ 1

0
Y − 1dp = Y

[
pd
]1

0

− (Y − 1)

[
p

]1

0

=

Y − Y + 1 = 1. �

We refer the reader to the Appendix, where we present a specific example and its

proof of the risk spectrum we propose.

Now we assume that there are always two markets Ma and Mb where market Ma

includes more systemic risk, in terms that it has more xi number of successes. Let consider

that Ya and Yb are the (3.1) functions of Ma and Mb respectively.

Proposition 3.2. For every two markets Ma and Mb where market Ma includes

more systemic risk compare to Mb, Ya > Yb is true.

Proof. We have to prove that Ya > Yb ⇒
[
1 +

∑k
i=1 1X (xi)

]
a

>

[
1 +

∑k
i=1 1X (xi)

]
b

⇒[∑k
i=1 1X (xi)

]
a

>

[∑k
i=1 1X (xi)

]
b

. We have from the setting that (xi)a > (xi)b which leads

to

[∑k
i=1 1X (xi)

]
a

>

[∑k
i=1 1X (xi)

]
b

and thus Ya > Yb is true. �

Also let consider that ψa(Ya, p, d) and ψb(Yb, p, d) are the (3.2) functions of Ma and

Mb respectively. In addition we set that ψ(Y, p, d)− φ(p, d) = ε. Moreover one can consider

the p as an increasing function where p(x) = x and x ∈ [0, 1]. Let us consider the real

numbers γ, δ ∈ [0, 1] such that γ > δ, then pγ > pδ. Now we are ready to give the following

definition:
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Definition 3.3. A Spectral Risk Measure is Systemic risk aware when it satisfies

the following conditions:

(1) For every Ya > Yb ⇒ ψa(p, d) > ψb(p, d).

(2) For Y > 1, ψ(pγ, d)− F0(pγ, d) = εγ and ψ(pδ, d)− F0(pδ, d) = εδ, εγ < εδ is true.

Remark 3.4. The first conditions assures that between two markets that both utilize

the same Risk Measure and both exhibit SR, the market that has more SR (according to the

quantification we propose) will have a greater risk spectrum and will lead the utilizer to be

more conservative.

The second condition assures that the magnitude of the difference between a risk

spectrum that is not endowed with r.v. Y and the one that is endowed with it, is greater

when we are considering a worst outcome in the returns’ distribution function.

We present a numerical example in the Appendix for the possible understanding of

the above Remark.

Theorem 3.5. For (3.2) the conditions of Definition 3.3 hold, and (3.2) is a sys-

temic risk aware and admissible risk spectrum.

Proof. We have from proof of Proposition 3.1 that ψ(p) is an admissible risk spectrum.

Consequently we take as proven that both ψ(Y, p, d) and φ(p, d) are positive, convex and

decreasing functions.

For first condition we should get that ψa(Y, p, d) > ψb(Y, p, d)⇒ Yaφ(p, d)−Ya+1 >

Ybφ(p, d)− Yb + 1⇒ Yaφ(p, d)− Ya > Ybφ(p, d)− Yb ⇒ Ya
(
φ(p, d)− 1

)
> Yb

(
φ(p, d)− 1

)
⇒

Ya > Yb which is true and thus second condition is met for (3.2).
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For second condition, one should get that εγ < εδ. So εγ < εδ ⇒ ψ(Y, pγ, d) −

φ(pγ, d) < ψ(Y, pδ, d)−φ(pδ, d)⇒ ψ(Y, pγ, d)+φ(pδ, d) < ψ(Y, pδ, d)+φ(pγ, d)⇒ Y φ(pγ, d)−

Y +1+φ(pδ, d) < Y φ(pδ, d)−Y +1+φ(pγ, d)⇒ Y φ(pγ, d)+φ(pδ, d) < Y φ(pδ, d)+φ(pγ, d)⇒

Y φ(pγ, d)−φ(pγ, d) < Y φ(pδ), d−φ(pδ, d)⇒ φ(pγ, d)
(
Y −1

)
< φ(pδ, d)

(
Y −1

)
⇒ φ(pγ, d) <

φ(pδ, d) which is true as φ(p) is decreasing and thus third condition is met. �

Corollary 3.6. Any admissible spectral risk spectrum that also exhibits the con-

ditions of Definition 3.3 is an admissible and systemic risk aware Spectral Risk Spectrum.

Proof. Assume that there is an admissible risk spectrum other than (3.2) and a variable

other than (3.1). In addition assume that this variable preserves for the risk spectrum

the properties of Definition 3.3. With those assumptions and setting we observe that the

admissible risk spectrum is systematic risk aware. �

So far we have proposed three desirable conditions that the risk spectrum needs

to satisfy once there is Systemic Risk. We also have found a way to quantify the systemic

risk and embody it to the risk spectrum with the utilization of a variable. In tandem we

preserved the properties the risk spectrum needed in order to be admissible. In terms of

practicality preliminaries, we use basics of set theory (see for instance [71]) to ensure that

the set of coherent and systemic risk aware measures is not the null set. Consider that C

stands as the set of all coherent risk measures, then:

Lemma 3.7. A spectral risk measure MF0(X) that has an admissible risk spectrum

F0, is a subset of coherent risk measures, or MF0(X) ⊂ C.

Proof. Consider an MF0(X) that is a spectral risk measure and has an admissible risk

spectrum F0(p). We know that MF0(X) 6= ∅, as we already mentioned Power Spectral Risk
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Measures, Exponential Spectral Risk Measures and Wang transform which are spectral risk

measures that have an admissible risk spectrum. Consequently, since MF0(X) is a coherent

risk measure, MF0(X) ⊆ C.

In addition, we are also aware of ESa, which is a risk measure that is coherent, yet

its risk spectrum is not admissible. This suggests that MF0(X) 6= C and so MF0(X) ⊂ C. �

Lemma 3.8. A spectral risk measure MF0(X) that has an admissible risk spectrum

F0(p) that satisfies condition of Definition 3.3, is a coherent risk measure and so MF0(X) ⊂

C. In addition MF0(X) 6= ∅.

Proof. Lemma 3.7 suggests that a MF0(X) is coherent and so MF0(X) ⊆ C. Also,

ESa ⊂ C and does not have an admissible risk spectrum. Consequently MF0(X) 6= C and

thus MF0(X) ⊂ C.

For proving MF0(X) 6= ∅ we need to suggest at least one coherent spectral risk

measure that has a risk spectrum that satisfies conditions of Definition 3.3. For that we

consider (3.2), where the property of admissibility hold, the risk measure is coherent and

MF0(X) 6= ∅. �

4. A Suggested Application

As aforementioned, the limits (macroeconomic factors) that European economies

need to reach in order to be inducted in European monetary union can serve as thresholds.

To that end if a regulator needs to quantify the systemic risk that exists in a country, she/he

can utilize the five convergence criteria ([42], [72]) that needs to be met in order to join the

eurozone:
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(1) First criterion is interested in the stability of an economy. An economy meets that

criterion if its inflation is not more than 1.5 percentage points above the rate of the

three best performing member states.

(2) Second critrion examines the robustness of the public finance of the economy. The

criterion is met if the government deficit is not more than 3% of the GDP.

(3) Third criterion is about the sustainability of public finances. If an economy needs

to meet the criteria, the debt of the government should not exceed the 60% of the

GDP.

(4) Fourth criterion is interested in the durability of convergence. To that end the

criterion is that the long term interest rate is not more than 2% above the rate of

the three best performing Member States.

(5) Fifth and final criterion is the stability of the exchange rate. The criterion for that

is that the inductee economy is participating in ERM II for at least 2 years without

severe tensions.

Of course those criteria can serve directly as N factors for an investor who wishes

to invest in economies either in the eurozone or planning to adopt the euro. Its elementary

to see that k = 5 and there are five a correspond to each criterion. Now one can directly

proceed by utilizing (3.1) of the economy she/he is interested to invest. Afterwards she/he

can calculate the systemic risk aware risk spectrum that is proposed from (3.2) and utilize it

accordingly for her/his investing strategy. The apparent benefit is a Spectral Risk Measures

that is dictated not only by the risk aversion of the investor but also by the quantified

systemic risk underlined in its economy. Moreover if someone chooses to invest in a country

outside the European union then she/he simply has to exclude the fifth criterion and set

k = 4.
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5. Conclusion

By this chapter we tackle the issue that risk spectrum of a Spectral risk measure

is portraying solely the preferences of an investor/regulator on her/his risk tolerance. We

argue by suggesting that also the systemic risk of market should be embodied in the risk

spectrum. In line with the above suggestion, we attempt to solve that issue by suggesting

two conditions that a risk spectrum should satisfy. We gave an example where we demon-

strated how systemic risk can be quantified from one market to another. In the same example

fundamental macroeconomic indexes prove quite useful as they can expose in a sense ”how

much” systemic risk a market bears. In addition, we proposed a risk spectrum class that

satisfy those conditions. Summing up, we mention that there are limitations concerning

the Spectral Risk Measures we propose. For instance we need to reconsider if those factors

should be equally weighted. We need to rethink that depending on the extend of the poor

performance of a factor, maybe it should be weighted more than the others. Also we con-

sider that one could use the determinants that we mentioned in the motivation section for

calculating the r.v. Y of each market. That way the random experiment could be avoided

but some other conditions should be utilized. Although it is beyond the scope of this work

to address such matters nevertheless we believe that there should be a study with respect to

those topics in the near future. We also believe that an empirical validation of the proposed

application should take place with investments within economies that are either members of

the eurozone or scheduling to join.



CHAPTER 6

A Note on the Convergence of Euler Contributions

1. Preliminaries

This chapter is devoted to the Convergence of Euler contributions that use different

Risk Measures. Initially, our discussion is in regard of Euler contributions in a Risk Measure

environment. The utilization of Euler contributions for our case, primarily relies to the fact

that they decompose portfolio-wide capital into a sum of risk contributions (sub-portfolios

of of solitary exposures). Our work is in tandem with that of [15]. Also, we contribute in

the aforementioned effort by generalizing their findings in regard of the Expected Shortfall.

Having all the above in mind we contribute by defining some conditions where the rates of

convergence of Value at Risk and Distortion Risk Measure coincide.

The structure of chapter is the following: Section 2 is devoted to the theoretical

framework that concerns the Rate of Convergence. Section 3 includes our contribution to

the theoretical framework and finally section 4 concludes.

2. Theoretical Framework

2.1. Rate of Convergence. A practitioner is usually interested in allocating capital

non-parametrically. In other words ρEuler(Xi|Sk) is determined via non-parametric estima-

tors (see for instance [15], or [108]). In such cases we have that depending on the selected

risk measure the rate of convergence of ρEuler(Xi|Sk) may differ. Nevertheless, under certain

81
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condition those rates may converge. Since the same phenomenon may occur also when Dis-

tortion Risk Measures are utilized, we are interested in the conditions where we could get that

the rate of convergence is the same for V aRq, and Distortion Risk Measures. Rephrasing,

we are interested to get when

V aRq(Xi|Sk)
Dq,h(Xi|Sk)

→ 1,(2.1)

as q → 1 and Xi and Sk are unbounded. We omit the h distortion function for simplicity of

the notation and thus

Dq(Xi|Sk)

stands for the asymptotic approximation of ρEuler(Xi|Sk) when Distortion Risk Measure is

used. Also by considering (3.3) where we get the Distortion Risk Measure, the definition

of V aRq and the unique determination of ρEuler(Xi|Sk) we have the following for Dq(Xi|Sk)

(one can also consult [15] and [91] for subtleties):

Dq(Xi|Sk) := E
[
Xi|Sk ≥ sup{x ∈ R | P(Sk ≥ x) > 1− q}

]
.(2.2)

Bear in mind that (2.2) refers to the class of Distortion Risk Measures. Moreover,

V aRq(Xi|Sk)

is ρEuler(Xi|Sk) for the asymptotic approximation when V aRq is utilized. In tandem with

(2.2), we can get the following

V aRq(Xi|Sk) := E
[
Xi|Sk = sup{x ∈ R | P(Sk ≥ x) > 1− q}

]
.(2.3)
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3. Contribution

3.1. Rates of Convergence for Different Risk Measures. Throughout the whole

contribution section we will dealing with non-negative risks. Also, in this subsection we are

interested in some conditions where we could get that the rate of convergence of the Xi

profit/loss is the same for V aRq and Distortion Risk Measures environment. Naturally, we

need to focus on the worst case measurement where we have that q → 1, for instance where

we are measuring risk in an insurance company that is wealthy in the sense that initial

capital → ∞. Moreover Xi and Sk ∈ L1
+ are bounded from below and unbounded from

above or V aRq(Xi)→∞, V aRq(Sk)→∞ as q → 1.

For our analysis we consider that both V aRq and Distortion Risk Measure (because

of their homogeneity) are satisfying the full allocation property. Consequently

k∑
i=1

V aRq(Xi|Sk) = V aRq(Sk)

and

k∑
i=1

Dq(Xi|Sk) = Dq(Sk).(3.1)

Also, let us define q∗ as the following

q∗ := inf{t ∈ [0, 1] : Dt(Sk) ≥ V aRq(Sk)},

Sk ∈ L1, both q and q∗ ∈ (0, 1) and q∗ is dependent on both Sk and q, while (3.1) holds for

all q. Moreover, we define x as the following x := V aRq∗(Sk). Under that framework, the

following theorem demonstrates some assumptions where (2.1) holds.

Theorem 3.1. Let Xi, Sk ∈ L1
+, be bounded from below, unbounded from above,

integrable on probability space (Ω,F ,P), Sk is continuously distributed, absolutely continuous
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with respect to P and assume that E(Sk) ≤ V aRq(Sk). If lim
q→1

V aRq(Xi|Sk)

x
> 0, exists and is

finite, then

V aRq(Xi|Sk)
Dq∗(Xi|Sk)

→ 1 as q → 1,(3.2)

holds.

Remark 3.2. Since the [15, Theorem 5.1 (i)] is interested in the assumptions under

which ESq∗(Xi|Sk) and V aRq(Xi|Sk) converge for a larger q, we generalize those findings

(with the use of [15, Proposition 2.1]) and suggest that with the same assumptions also

Dq∗(Xi|Sk) and V aRq(Xi|Sk) converge for a larger q.

Proof. Let us define y(x) := E
[
Sk|Sk > x

]
. Now, for the denominator of (3.2) we

get from (2.2) that Dq∗(Xi|Sk) = E
[
Xi|Sk > sup{x ∈ R | P(Sk ≥ x) > 1 − q∗}

]
, or

Dq∗(Xi|Sk) = E
[
Xi|Sk > V aRq∗(Sk)

]
, and finally

Dq∗(Xi|Sk) = E
[
Xi|Sk > x

]
.(3.3)

For the nominator of (3.2) we get from (2.3) that V aRq(Xi|Sk) = E
[
Xi|Sk = sup{x ∈

R | P(Sk ≥ x) > 1 − q}
]

or V aRq(Xi|Sk) = E
[
Xi|Sk = V aRq(Sk)

]
. By considering [15,

proposition 2.1] and the setting of the theorem it should be clear that y(x) = Dq∗(Sk) holds,

y(x) = V aRq(Sk) holds and thus,

V aRq(Xi|Sk) = E
[
Xi|Sk = y(x)

]
(3.4)
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is true. Having in mind (3.3) and (3.4), it should be clear that (3.2) is equivalent to the

following:

E
[
Xi|Sk = y(x)

]
E
[
Xi|Sk > x

] → 1 as x→∞.(3.5)

Also, by assumption lim
q→1

V aRq(Xi|Sk)

x
> 0, exists and it is finite and can also be rephrased

as lim
x→∞

V aRq(Xi|Sk)

x
> 0. By considering (3.4) the aforementioned assumption implies that

E
[
Xi|Sk=y(x)

]
x

> 0. There are certain occasions where this condition is satisfied, like when

asymptotic dependence occurs with similar individual tail risks. By recalling [15, proposition

2.1] we have that y(x) = V aRq(Sk). We also recall that x := V aRq∗(Sk) which draw the

conclusion that as x → ∞, then y(x) → ∞ and so
E
[
Xi|Sk=x

]
x

> 0 exists and it is finite,

as x → ∞. Moreover, without loss of generality we further assume that E(Xi|Sk=x)
x

→ m as

x → ∞, where m ∈ (0,∞). Consequently
E
[
Xi|Sk=x

]
xm

→ 1, as x → ∞. Moreover, it is not

difficult to verify from the assumptions of the Theorem that E
[
Xi|Sk = x

]
> 0 and xm > 0.

Now for any δ > 0 exists a sufficiently large x0(δ), such that (1 − δ)m <
E
[
Xi|Sk=x

]
x

<

(1 + δ)m, for all x > x0(δ).

Also recall that X is integrable on probability space (Ω,F ,P), is continuously

distributed and absolutely continuous with respect to P. Moreover, we have that {Sk >

x} ∈ F . In addition with x1(δ) > x0(δ), by integrating with respect to Sk on the interval

(x1(δ),∞) we have that

E
[
Xi|Sk > x1(δ)

]
E
[
Sk|Sk > x1(δ)

] =

∫∞
x1(δ)

E[Xi|Sk = x]P(Sk ∈ dx)∫∞
x1(δ)

xP(Sk ∈ dx)
∈
(
(1− δ)m, (1 + δ)m

)
.(3.6)

Observing the denominators of (3.6), it should be clear that they stem from the fact that

by integrating E
[
Sk|Sk > x1(δ)

]
with respect to X on the interval (x1(δ),∞) we have that∫∞

x1(δ)
E
[
Sk|Sk = x

]
P(Sk ∈ dx) =

∫∞
x1(δ)

xP(Sk ∈ dx).
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Also, one can consult [29, property ii, p.445] and its relevant Definition in order to

assure the existence of the integrals depicted in (3.6).

Since we have that δ is arbitrary, we can get that when δ → 0 then x1(δ)→∞ and

E
[
Sk|Sk>x1

]
E
[
Xi|Sk>x1

] → m−1 as x → ∞. Now we can get from (3.5) that V aRq(Xi|Sk)

Dq∗ (Xi|Sk)
→ 1 as q → 1,

since

V aRq(Xi)|Sk)
Dq∗(Xi|Sk)

→ 1 as q → 1 is equal to
E
[
Xi|X = y(x)

]
E
[
Xi|Sk > x

] → 1 as x→∞.

Moreover, by multiplying in both nominator and denominator y(x) := E
[
Sk|Sk > x

]
we get

E
[
Xi|Sk = y(x)

]
y(x)

×
E
[
Sk|Sk > x

]
E
[
Xi|Sk > x

] .(3.7)

Since we already concluded that as x → ∞, then y(x) → ∞ we get that
E
[
Xi|Sk=y(x)

]
y(x)

→

m as y(x)→∞. Finally we have for (3.7) that

E
[
Xi|Sk = y(x)

]
y(x)

×
E
[
Sk|Sk > x

]
E
[
Xi|Sk > x

] =

m×m−1 = 1 as x→∞.

The proof is now complete. �

Corollary 3.3. Let Xi, Sk ∈ L1
+, be bounded from below, unbounded from above,

integrable on probability space (Ω,F ,P), Sk is continuously distributed, absolutely continuous

with respect to P and assume that E(Sk) ≤ V aRq(Sk). If lim
x→∞

V aRq(Xi|Sk)

x
> 0, exists and is

finite, then

ESq∗(Xi|Sk)
Dq∗(Xi|Sk)

→ 1 as q → 1,(3.8)

holds.
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Proof. From the above theorem and with the same setting we proved that

V aRq(Xi|Sk)
Dq∗(Xi|Sk)

→ 1 as q → 1(3.9)

holds. Also, we have from [15, Theorem 5.1 (i)] that with the same setting

V aRq(Xi|Sk)
ESq∗(Xi|Sk)

→ 1 as q → 1(3.10)

holds. It should be clear that by combining (3.9) and (3.10), one concludes that (3.8)

holds. �

4. Conclusion

This chapter is devoted in defining some conditions where the rates of convergence of

Euler contributions of a Value at Risk environment and Distortion Risk Measure environment

coincide. At first, our discussion is in regard of Euler contributions in a Risk Measure

environment. Moreover, our work is in tandem with that of [15]. Also, we contribute in the

aforementioned effort by generalizing our findings in regard of the Expected Shortfall.

Finally, we consider that there is a heated discussion in terms of practice, for the

most suitable risk measure for mitigating risk (see for instance [26]). Apparently, our findings

suggest that once we employ Euler allocation principle the differences between risk measures

appear to be less important under certain conditions.





CHAPTER 7

Conclusion

This thesis’ primarily is concerned on the Risk Measures and how those can be

utilized properly from both regulation authorities and investors. In addition we are giving

emphasis on the SR that is present in the economic environment and is responsible for crises

and their interrelation. Also, our research is particularly interested on the Spectral Risk

Measures, an important class of Distortion Risk Measures, due to the desired properties

they exhibit. To that end our effort is in the form of four propositions of Risk Meaures’

utilization for regulation and investment purposes:

The first proposition is concerned on the unbounded risk premium that might occur

if there is combination of asset pricing model which has an unbounded stochastic discount

factor, and a coherent and bounded risk measure. An intuitive explanation of the findings,

suggests that is possible to follow a risk averse strategy, as β ≤ 1 and at the same time

achieve abnormal returns, as α > 0. In other words, it appears to be that this framework is

suitable for an investor who is loss averse. On top of that, it seems that a loss averse investor

is the ideal candidate to earn a risk premium compare to someone who is more tolerate to

risk. Summing up, our findings are not favoring the opinion that market efficiency tends to

hold.

Next proposition is concerned of the estimation of the insolvency probability. In

addition we utilize dependence models that evaluate Systemic Risk (SR), as we contribute by

proposing Euler contributions of risk in an environment that is regulated by a risk measure.
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Moreover the framework we are utilizing assumes that a component of the environment is

in distress. Finally, we calculate the Insolvency Probability due to Systemic Risk and we

suggest certain distribution classes under which our results are valid.

In the third proposition we examine the issue that risk spectrum of a Spectral risk

measure is portraying only the preferences of an investor/regulator on her/his risk tolerance.

We contribute by suggesting that also the systemic risk of market should be embodied into the

risk spectrum. In line with the above suggestion, we attempt to solve that issue by suggesting

two desired conditions. We gave an example where we demonstrated a mathematical way to

quantify SR. In addition, we proposed a risk spectrum class that satisfy those conditions.

The final proposition is devoted to the Convergence of the so called Euler Risk

Contributions when the underlying Risk Measures differ. With that in mind, our discussion

is in regard of Euler contributions in a Risk Measure environment. Moreover, we proceed

by defining some conditions where the rate of convergence of Euler Risk Contributions in a

Value at Risk regulation environment and Distortion Risk Measure regulation environment

coincide. Finally, we generalize our findings in regard of the Expected Shortfall case.

1. Future research

In regard of the first proposition, we propose the following for future research:

(1) Practical Implementation of Theoretical Findings. For the best possible results we

need to evaluate our theoretical findings with data from a mature capital market

and an emerging one.
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(2) We should also consider that our theoretical setting implies market completeness.

To that end it would be very interesting to examine what the results would be in

case of incomplete Markets.

Second proposition is in regard of the Estimation of Insolvency Probability Under

Systemic Risk. To that end the interest should be focused in regard of the how this estimation

deviates if we alter the conditions we propose. Also it would be interested to examine how

the estimation behaves in case of different distribution classes.

For the third proposition we propose the following future research:

(1) We observe that there are limitations concerning the Spectral Risk Measures we

propose. For instance we need to reconsider if those factors should be equally

weighted. We need to rethink that depending on the extend of the poor performance

of a factor, maybe it should be weighted more than the other. Rephrasing, depending

on the extend of the poor performance of a factor, maybe it should be weighted more

than the others.

(2) Also we consider the utilization of the determinants that we mentioned in the mo-

tivation section for quantifying how much systemic risk a market bears.

Finally, fourth proposition deals with the Convergence of Euler Contributions, De-

pending on the Underlying Risk Measure. Clearly the future research should be in regard of

different underlying Risk Measures, and to which extend Convergence is still applicable.





APPENDIX A

Proof of Proposition 3.9.

Proof. Let consider that F0(p) is not positive and according to Definition 3.4,
∫
A
F0(p)dp <

0. Also, consider a probability space (Ω,F ,P), where the events on Ω would be ω1, ω2, ω3,

two random variables on the probability space Y , E and Y > E. The probability P is:

ω P(ω) E(ω) Y (ω)

ω1 a1 E1 Y1 = E1

ω2 a2 − a1 E2 Y2 = E2 − b

ω3 1− a2 E3 Y3 = E3.

We set that b > 0, Y1 < Y2 < Y3 and E1 < E2 < E3. Then:

p F←E (p) F←Y (p)

p ∈ (0, a1] E1 Y1

p ∈ (a1, a2] E2 Y2

p ∈ (a2, 1] E3 Y3.

Calculating MF0(Y )−MF0(E) we get:
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MF0(Y )−MF0(E) = −b
∫ 1

0

F0(p)
(
F←E (p)− F←E (p)

)
dp = −b

∫ 1

0

F0(p)dp

As b > 0 and
∫
A
F0(p)dp < 0 we get that MF0(Y ) −MF0(E) > 0 ⇒ MF0(Y ) >

MF0(E). This violates the property of monotonicity (see relevant subsection), which proves

that
∫
A
F0(p)dp > 0 and thus the necessity for positivity is proven.

For the necessity of monotonicity we recall from Definition 3.6 that for F0(p) ∈ [c, d],

F0(p) is decreasing, if for every a ∈ [c, d] and for every b ≥ 0, such that [a− b, a+ b] ⊂ [c, d],∫ a
a−b F0(p)dp ≥

∫ a+b

a
F0(p)dp. Let consider that

∫ a
a−b F0(p)dp <

∫ a+b

a
F0(p)dp, a probability

space (Ω,F ,P) where the events on Ω would be ω1, ω2, ω3, ω4 and three random variable on

the probability space where Y + E = Z . The probability P would be:

ω P(ω) Y (ω) E(ω) Z(ω)

ω1 a− b Y1 E1 Z1 = Y1 + E1

ω2 b Y2 E3 Z2 = Y2 + E3

ω3 b Y3 E2 Z3 = Y3 + E2

ω4 1− a− b Y4 E4 Z4 = Y4 + E4.

subscripts denote the ordering of every outcome, for instance Z3 > Z2. in terms of

distribution functions, there is the following tabular:
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p F←Y (p) F←E (p) F←Z (p)

p ∈ (0, a− b] ≡ A1 Y1 E1 Z1

p ∈ (a− b, a] ≡ A2 Y2 E2 Z2

p ∈ (a, a+ b] ≡ A3 Y3 E3 Z3

p ∈ (a+ b, 1] ≡ A4 Y4 E4 Z4.

By assuming coherency, the property of sub-additivity holds and thus , Z = Y +

E ⇒ MF0(Z) ≤ MF0(Y ) + MF0(E) ⇒ MF0(Z) −MF0(Y ) −MF0(E) ≤ 0. Moreover, the

setting suggests that:

MF0(Z)−MF0(Y )−MF0(E) =

−
∫ 1

0

(
F←Z (p)− F←Y (p)− F←E (p)

)
F0(p)dp =

−
4∑
i=1

∫
Ai

(Zi − Yi − Ei)F0(p)dp.

then, for i = 1

∫
A1

(Z1 − Y1 − E1)F0(p)dp =

∫
A1

(Y1 + E1 − Y1 − E1)F0(p)dp = 0.

for i = 4

∫
A4

(Z4 − Y4 − E4)F0(p)dp =

∫
A4

(Y4 + E4 − Y4 − E4)F0(p)dp = 0.
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for i = 2∫
A2

(Z2 − Y2 − E2)F0(p)dp =

∫
A2

(Y2 + E3 − Y2 − E2)F0(p)dp =

∫
A2

(E3 − E2)F0(p)dp.

for i = 3∫
A3

(Z3 − Y3 − E3)F0(p)dp =

∫
A3

(Y3 + E2 − Y3 − E3)F0(p)dp = −
∫
A3

(E3 − E2)F0(p)dp.

So:

MF0(Z)−MF0(Y )−MF0(E) =

eguals:

−
( ∫

A2

(E3 − E2)F0(p)dp−
∫
A3

(E3 − E2)F0(p)dp
)

=

−
( ∫

A2

(E3 − E2)F0(p)dp−
∫
A3

(E3 − E2)F0(p)dp
)

=

−(E3 − E2)
( ∫

A2

F0(p)dp−
∫
A3

F0(p)dp
)

This equation suggests that

MF0(Z)−MF0(Y )−MF0(E) > 0.

There is a contradiction and thus, necessity of monotonicity (decreasing) is proven.

Finally, for the necessity of normalization, one can consider the property of trans-

lation invariance, as suggested in relevant subsection: if M is an investment with guaranteed
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risk free returns m, then for any Z ∈ X, ρ(Z+M) = ρ(Z)−m. Also In terms of distribution

function we note that F←Z+M(p) = F←Z +m.

MF0(Z +M) = −
∫ 1

0

F0(p)F←Z+M(p)dp = MF0(Z)−m
∫ 1

0

F0(p)dp

.

Finally, the risk measure can be coherent if and only if
∫ 1

0
F0(p)dp = 1 and thus

the necessity of final property is proven.

�





APPENDIX B

Specific example and its proof of the risk spectrum we propose.

Example 0.1. Let us take (3.2) and set that d = 0.9 and k ≤ 89 or ψ(Y, p) =

Y
[
0.9p−0.1

]
− (Y − 1). Now we can prove that it is admissible:

Proof.

ψ(Y, p) = (
(
dY
)
pd−1 − (Y − 1))⇒ (

(
0.9Y

)
p−0.1 − (Y − 1))⇒ 9Y

10 10
√
p
− Y + 1

Calculating for first derivative with respect to p we get:

ψ(Y, p)
′
=

d

dp

[
9Y

10 10
√
p
− Y + 1

]
=

9Y

10

d

dp

[
1
10
√
p

]
+

d

dp
[−Y ] +

d

dp
[1] =

9
(
− 1

10

)
p−

1
10
−1f(pi)

10
= − 9Y

100p
11
10

,

where 100p
11
10 > 0 as p ∈ (0, 1] and 9Y > 0 as (3.1) is non-negative. Also, k ≤ 89⇒ 1 ≤ Y ≤

9.9. Recall that from the setting we observe that Y has range [1, 9.9] and so d ∈
[
Y−1
Y
, 1

]
is

satisfied. Summing up, ψ(Y, p)
′
< 0⇒ ψ(Y, p) is decreasing in (0, 1] and second condition is

met for ψ(Y, p) to be admissible. Calculating for second derivative we get:

ψ(p)
′′

=
d

dp

[
− 9Y )

100p
11
10

]
= − 9Y

100

d

dp

[
1

p
11
10

]
= −

9
(
− 11

10

)
p−

11
10
−1Y

100
=

99Y

1000p
21
10

,

where 1000p
21
10 > 0 as p ∈ (0, 1], 99Y > 0 as ψ(Y, p) is non negative. Concluding ψ(Y, p)

′′
> 0

and thus ψ(p) is convex. Moreover, for proving the positivity, we consider the decreasing
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property and we take ψ(0+):

ψ(0+) =
(
Y 0.9

)
0+(−0.1) − Y + 1,

and we consider that ψ(0+) > 0⇒
(
Y 0.9

)
0+(−0.1)−Y +1 > 0⇒

(
Y 0.9

)
0+(−0.1) > Y−1 which

is true since
(
Y 0.9

)
0+(−0.1) = ∞ and Y ≤ 9.9. For the latter recall that we set k < 89 or,

there is a limit of macroeconomic factors that are responsible for generating systemic risk. In

case that all experiments are succeed then Y = 9.9. Moreover, ψ(1) =
(
Y 0.9

)
1−0.1−Y +1⇒

0.9Y − Y + 1 > 0 ⇒ 0.9Y − Y > −1 ⇒ −0.1Y > −1 ⇒ 0.1Y < 1 ⇒ Y
10
< 1 ⇒ Y < 10,

which is true. Since ψ(0+) > 0 and ψ(1) > 0, the positivity condition is proven. Concerning

Normalization condition one should have that
∫ 1

0
ψ(Y, p)dp = 1 and so:∫ 1

0

ψ(Y, p)dp =

∫ 1

0

[
9Y

10 10
√
p
− Y + 1

]
dp =

9Y

10

∫ 1

0

1
10
√
p

+ 1− Y dp =

[(
1− Y

)
p+ Y p

9
10 + C

]1

0

=

[
p− Y p+ Y p

9
10 + C

]1

0

=

[
1− Y + Y

]
−
[
0 + 0 + 0

]
= 1

normalization condition holds and thus is an admissible risk spectrum. �



APPENDIX C

Numerical example for the understanding of the Remark 3.4

Example 0.1. Consider the equation in the above example. If we set p = 0.001,

where the greater losses are then φ0.001 = 2.01640 while ψ0.001 = 2.21968. On the other side

of the distribution where p = 0.999 we get that φ0.999 = 1.01069 while ψ0.999 = 1.01282. We

take into account the properties of φ(p) and ψ(p) and we observe that when systemic risk

emerges then ψ(p) > φ(p) for almost the whole p interval and first condition is met. Also

the second condition is met as 2.21968− 2.01640 > 1.01282− 1.01069 is true.

Moreover, compare to φ(p) the ψ(p) guides a practitioner to be more conservative in

the presence of systemic risk as losses become greater. On the contrary when losses diminish

ψ(p) grants similar weight like φ(p). Trivially we observe that Y forces ψ(p) to give different

weight to F←X (p) depending on the existing systemic risk of each market and thus it quantifies

systemic risk. Also from the above setting we observe that ψ(p) grants more weight to the

increasing losses of F←X (p) as more systemic risk occurs.
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