
1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Ζητήματα προστασίας της ανωνυμίας

τελικού χρήστη σε υπηρεσίες VoIP

Συγγραφέας

Φακής Αλέξανδρος

Επιβλέπων

Καθ. Γεώργιος Καμπουράκης

ΔΙΑΤΡΙΒΗ

για την απόκτηση Διδακτορικού Διπλώματος

στο

Εργαστήριο Ασφάλειας Πληροφοριακών και Επικοινωνιακών Συστημάτων

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Σάμος, Μάιος 2023

http://www.aegean.gr
http://www.icsd.aegean.gr/tzisis
http://www.icsd.aegean.gr/gkamb
http://www.icsd.aegean.gr/group/index.php?group=L1
http://www.icsd.aegean.gr/
http://www.icsd.aegean.gr/
https://eng.aegean.gr/el
http://www.icsd.aegean.gr/
https://www.aegean.gr/

University of the Aegean

Doctoral Thesis

Protecting user anonymity in VoIP services

Author

Alexandros Fakis

Supervisor

Professor Georgios Kambourakis

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

at the

Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering

School of Engineering

University of the Aegean

Samos, May 2023

http://www.aegean.gr
http://www.icsd.aegean.gr/tzisis
http://www.icsd.aegean.gr/gkamb
http://www.icsd.aegean.gr/group/index.php?group=L1
http://www.icsd.aegean.gr/
https://eng.aegean.gr/en
https://www.aegean.gr/

Υπεύθυνη Δήλωση

Εγώ ο Αλέξανδρος Φακής, δηλώνω ότι είμαι ο αποκλειστικός συγγραφέας της υποβληθείσας

Διδακτορικής Διατριβής με τίτλο «Ζητήματα προστασίας της ανωνυμίας τελικού χρήστη σε

υπηρεσίες VoIP». Η συγκεκριμένη Διδακτορική Διατριβή είναι πρωτότυπη και εκπονήθηκε

αποκλειστικά για την απόκτηση του Διδακτορικού διπλώματος του Τμήματος Μηχανικών

Πληροφοριακών και Επικοινωνιακών Συστημάτων. Κάθε βοήθεια, την οποία είχα για την

προετοιμασία της, αναγνωρίζεται πλήρως και αναφέρεται επακριβώς στην εργασία.

Επίσης, επακριβώς αναφέρω στην εργασία τις πηγές, τις οποίες χρησιμοποίησα, και μνημονε-

ύω επώνυμα τα δεδομένα ή τις ιδέες που αποτελούν προϊόν πνευματικής ιδιοκτησίας άλλων,

ακόμη κι εάν η συμπερίληψη τους στην παρούσα εργασία υπήρξε έμμεση ή παραφρασμένη.

Γενικότερα, βεβαιώνω ότι κατά την εκπόνηση της Διδακτορικής Διατριβής έχω τηρήσει α-

παρέγκλιτα όσα ο νόμος ορίζει περί διανοητικής ιδιοκτησίας, και έχω συμμορφωθεί πλήρως

με τα προβλεπόμενα στο νόμο περί προστασίας προσωπικών δεδομένων και τις αρχές της

Ακαδημαϊκής Δεοντολογίας.

Υπογραφή:

Ημερομηνία: Μάιος , 2023

i

Declaration of Authorship

I, Alexandros Fakis, declare that this thesis entitled, “Security and privacy in SIP pro-

tocol” and the work presented in it are my own. I confirm that:

� This work was done wholly while in candidature for a research degree at this

University.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this PhD thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the PhD thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date: May, 2023

ii

Advising Committee of this Doctoral Thesis:

Professor Georgios Kambourakis, Supervisor

Department of Information and Communication Systems Engineering

University of the Aegean

Professor Stefanos Gritzalis, Advisor

Department of Digital Systems

University of Piraeus

Associate Professor Panagiotis Rizomiliotis, Advisor

Department of Informatics and Telematics

Harokopio University of Athens

University of the Aegean, Greece

2023

iii

Approved by the Examining Committee:

Professor Stefanos Gritzalis

University of Piraeus, Greece

Professor Georgios Kambourakis

University of the Aegean, Greece

Professor Christos Kalloniatis

University of the Aegean, Greece

Associate Professor Panagiotis Rizomiliotis

Harokopio University of Athens, Greece

Associate Professor Elisavet Konstantinou

University of the Aegean, Greece

Assistant Professor Georgios Stergiopoulos

University of the Aegean, Greece

Assistant Professor Marios Anagnostopoulos

Aalborg University, Denmark

University of the Aegean, Greece

2023

iv

Copyright c© 2023

Alexandros Fakis

Department of Information and Communication Systems Engineering
School of Engineering

University of the Aegean

All rights reserved. No parts of this PhD thesis may be reproduced or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the author.

Abstract

Department of Information and Communication Systems Engineering
School of Engineering

University of the Aegean

Doctor of Philosophy
by Alexandros Fakis

With the proliferation of high-speed Internet and the latest generations of cellular mo-

bile communications, Session Initiation Protocol (SIP) has become a key component to

realizing high-quality multimedia services. Nevertheless, SIP’s inherent lack of security

measures renders users vulnerable to a range of passive and active attacks. For instance,

SIP message headers are transmitted in the clear, allowing eavesdroppers to observe

the communications, possibly recording sensitive information such as the identity of the

caller and the called parties. On the other hand, relying on protocols like Transport Layer

Security (TLS) to encrypt SIP signaling or a Virtual Private Network (VPN) to achieve

anonymity may result in significant delays, reducing the Quality of Service (QoS).

SIP is typically used as a signaling protocol for Web Real-Time Communication

(WebRTC)-based communication systems. WebRTC also presents certain weaknesses

when it comes to the protection of end-user’s privacy. For instance, the users’ IP address

can be exposed if a website exploits hidden Interactive Connectivity Establishment (ICE)

requests. Specifically, in this case, a website can use WebRTC to make requests to the

Session Traversal Utilities for NAT (STUN) and Traversal Using Relays around NAT

(TURN) servers, which can eventually reveal the end-users’ IP addresses. Attackers can

then capitalize on this information to mount various attacks, including Denial of Service

(DoS) or more targeted ones against specific users.

The primary contribution of the present Phd thesis concentrates on enhancing the pri-

vacy capacity of SIP and WebRTC protocols, offering and evaluating novel solutions

towards improving the end-user’s anonymity level. On the one hand, this is done by

utilizing the Onion Router (Tor) and I2P anonymity networks as a robust solution to-

wards achieving SIP message obfuscation. This ensures both anonymity and, at a certain

degree, confidentiality as the signalling traffic is routed through multiple nodes, enjoy-

ing multiple layers of encryption. On the other hand, the thesis explores alternative

user anonymity-preserving solutions, including the creation of a custom-tailored, obfus-

cated, cryptographically-protected application layer scheme to safeguard the privacy and

anonymity of the end-users. No less important, we address the privacy shortcomings of

WebRTC, i.e., the potential leak of sensitive information to malicious websites. This is

done through the implementation of two distinct schemes for inspecting such sites prior

to their loading into the end-user’s browser.

Greek Abstract

(Εκτεταμένη Περίληψη)

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Διδακτορική διατριβή

του Αλέξανδρου Φακή

Με την εξάπλωση του Διαδικτύου υψηλών ταχυτήτων σε συνδυασμό με τις σύγχρονες γε-

νιές κυψελωτών δικτύων επικοινωνιών, το πρωτόκολλο SIP αποτελεί βασική συνιστώσα

για την παροχή προηγμένων πολυμεσικών υπηρεσιών. Ωστόσο, η εγγενής έλλειψη μέτρων

ασφαλείας του SIP καθιστά τους τελικούς χρήστες ευάλωτους σε μια πλειάδα παθητικών

και ενεργητικών επιθέσεων. Παραδείγματος χάριν, οι επικεφαλίδες των μηνυμάτων SIP με-

ταδίδονται σε μορφή αρχικού κειμένου (cleartext), επιτρέποντας στους ωτακουστές να πα-

ρακολουθούν την επικοινωνία, καταγράφοντας ενδεχομένως ευαίσθητες πληροφορίες, όπως

η ταυτότητα των επικοινωνούντων μερών. Από την άλλη πλευρά, η χρήση παραδοσιακών

λύσεων όπως το πρωτόκολλο TLS για την κρυπτογραφική εξασφάλιση των μηνυμάτων ση-

ματοδοσίας SIP στο επίπεδο μεταφοράς ή η αξιοποίηση εικονικών ιδιωτικών δικτύων (VPN)

για την επίτευξη ανωνυμίας μπορεί να οδηγήσει σε σημαντικές καθυστερήσεις, με αποτέλε-

σμα τη μείωση του επιπέδου ποιότητας της υπηρεσίας.

Επιπλέον, το SIP χρησιμοποιείται συνήθως ως πρωτόκολλο σηματοδοσίας για συστήματα

επικοινωνίας που βασίζονται στην τεχνολογία WebRTC. Το WebRTC παρουσιάζει κι αυ-

τό συγκεκριμένες αδυναμίες όσον αφορά στην προστασία της ιδιωτικότητας των τελικών

χρηστών. Παραδείγματος χάριν, η διεύθυνση IP των χρηστών μπορεί να εκτεθεί εάν ένας

ιστότοπος επιχειρεί να εκτελέσει αιτήματα Interactive Connectivity Establishment (ICE).

Συγκεκριμένα, σε αυτήν την περίπτωση, ένας ιστότοπος μπορεί να χρησιμοποιήσει το We-

bRTC ώστε να υποβάλει αιτήματα προς κάποιον STUN ή TURN εξυπηρετητή, με αποτέλε-

σμα να αποκαλύπτονται οι διευθύνσεις IP των τελικών χρηστών. Οι επιτιθέμενοι μπορούν

στη συνέχεια να αξιοποιήσουν αυτές τις πληροφορίες για να πραγματοποιήσουν διάφορες

επιθέσεις, συμπεριλαμβανομένης της άρνησης υπηρεσίας ή άλλων περισσότερο στοχευμένων

επιθέσεων εναντίον συγκεκριμένων χρηστών.

Η βασική συνεισφορά της παρούσας διδακτορικής διατριβής επικεντρώνεται στην ενίσχυση

της ιδιωτικότητας των πρωτοκόλλων SIP και WebRTC, εξετάζοντας, προτείνοντας, και α-

ξιολογώντας καινοτόμες λύσεις για τη βελτίωση του επιπέδου ανωνυμίας του τελικού χρήστη.

Αρχικά, αυτό πραγματοποιείται αξιοποιώντας τα δίκτυα ανωνυμίας Tor και I2P ως ισχυ-

ρές λύσεις για την επίτευξη ανωνυμίας στα δεδομένα της σηματοδοσίας SIP. Η χρήση των

παραπάνω δικτύων εξασφαλίζει τόσο την ανωνυμία όσο και, σε κάποιο βαθμό, την εμπιστευ-

τικότητα της πληροφορίας, καθώς η μετάδοση των σχετικών μηνυμάτων δρομολογείται μέσω

πολλαπλών κόμβων παρέχοντας ταυτόχρονα πολλαπλά επίπεδα κρυπτογράφησης. Επιπλέον,

η παρούσα διατριβή προτείνει και αξιολογεί πειραματικά εναλλακτικές, προσαρμοσμένες στο

συγκεκριμένο πρόβλημα, λύσεις, συμπεριλαμβανομένης της δημιουργίας κρυπτογραφικού το-

ύνελ (tunnel) επιπέδου εφαρμογής για τη διασφάλιση της ιδιωτικότητας και της ανωνυμίας

των τελικών χρηστών σε επικοινωνίες που βασίζονται στο SIP.

Επιπροσθέτως, η διατριβή προτείνει, υλοποιεί, και αξιολογεί λύσεις για τη θεραπεία των προ-

βλημάτων ιδιωτικότητας υπηρεσιώνWebRTC, συγκεκριμένα τη διαρροή ευαίσθητων πληρο-

φοριών σε κακόβουλους ιστότοπους. Αυτό επιτυγχάνεται μέσω της εφαρμογής δύο δια-

φορετικών μεθόδων ελέγχου τέτοιων ιστότοπων πριν από την καταφόρτωση του πηγαίου

κώδικά τους στο πρόγραμμα περιήγησης (browser) του τελικού χρήστη.

Acknowledgements

I would like to express my deepest gratitude to my advisor Professor Georgios Kam-

bourakis, for the invaluable guidance, unwavering support, and boundless expertise

throughout the entire journey of my PhD. His encouragement, insightful feedback, and

mentorship have been instrumental in shaping my research and pushing me to achieve

my best.

In addition, I want to thank Dr. Georgios Karopoulos, an exceptional and dedicated

researcher who had a significant and influential role in my PhD progression. His expertise,

guidance, and collaborative efforts have been invaluable.

I would like to express my heartfelt gratitude to Dr. Zisis Tsiatsikas. His encouragement,

reassurance, and belief in my abilities have helped me overcome moments of self-doubt

and have motivated me to persevere. Whether it was through a meaningful conversation

over a cup of coffee or his empathetic presence during times of stress, he consistently

demonstrated their commitment to my personal and professional growth.

I would also like to acknowledge the support and encouragement of my colleague and

fellow researcher, Dr. Dimitrios Papamartzivanos. His insightful discussions and collab-

orative spirit have greatly contributed to the development and refinement of my research

ideas.

Moreover, I would like to express my heartfelt gratitude to Mrs Sofia Anagnwstou, for

her unwavering love, support, and understanding throughout my PhD journey. Her

presence, encouragement, and belief in me have been a constant source of strength, and

her unwavering support has helped me navigate the challenges with resilience.

I am incredibly fortunate to have the unwavering support and love of my parents, Nikolao

and Evgenia Faki. From the very beginning of this journey, they have stood by my

side as not only my parents, but also my best friends. Their constant encouragement,

belief in my abilities, and sacrifices have been the bedrock of my success. Without their

guidance, understanding, and unconditional support, this entire journey would have been

impossible.

x

Dedicated to my parents

Nikolao Faki & Eugenia Faki.

Contents

Greek Declaration of Authorship i

Declaration of Authorship ii

Advising Committee of this Doctoral Thesis iii

Approved by the Examining Committee iv

Copyright v

Abstract vi

Extended Abstract in Greek viii

Acknowledgements x

List of Figures xv

List of Tables xvi

Abbreviations xvii

1 Introduction 1
1.1 Motivation . 4
1.2 Methodology and Milestones . 6
1.3 Thesis contributions . 7
1.4 Thesis structure . 9

2 Background 10
2.1 VoIP services . 10
2.2 SIP protocol . 10
2.3 PrivaSIP . 12
2.4 Tor anonymity network . 13
2.5 WebRTC . 15

xii

Contents xiii

2.6 Discussion . 16

3 Related work 17
3.1 Protecting User Information in SIP Networks 17
3.2 WebRTC privacy leaks . 21
3.3 Tor network deanonymization . 24

3.3.1 Implementation . 25
3.3.1.1 Exit node . 27

3.3.2 Limitations and Countermeasures 29
3.3.3 Discussion . 30

4 Complete SIP message obfuscation 31
4.1 Introduction . 31
4.2 SIP Torification . 33

4.2.1 PrivaSIP and PrivaSIP over Tor 33
4.2.2 Privacy analysis . 36

4.3 Testbed and performance evaluation . 37
4.3.1 Testbed . 37
4.3.2 Results . 38

4.4 Discussion . 39

5 OnionSIP: Preserving Privacy in SIP with Onion Routing 43
5.1 Motivation . 43
5.2 Attacker’s model . 46
5.3 OnionSIP . 47

5.3.1 Asymmetric OnionSIP . 48
5.3.2 Symmetric OnionSIP . 49
5.3.3 Key exchange . 51

5.4 Implementation . 52
5.4.1 Tor . 53
5.4.2 Orbot . 54
5.4.3 I2P . 54
5.4.4 OnionSIP . 54

5.5 Evaluation . 56

6 Fixing WebRTC privacy leaks 61
6.1 Introduction . 61
6.2 Media Connections . 64
6.3 WebRTC background . 68
6.4 IP Disclosure . 70

6.4.1 Adversary Model . 70
6.4.2 Problem Statement . 70

6.5 Dealing with IP Leaks . 75
6.5.1 Browser Extension . 76
6.5.2 Gateway . 77

6.6 Implementation . 77
6.6.1 Browser Extension Implementation 77
6.6.2 Gateway Implementation . 78

xiii

Contents xiv

6.7 Evaluation . 80
6.7.1 Browser Extension Evaluation . 80
6.7.2 Gateway Evaluation . 80

7 Conclusions and Future Directions 86
7.1 Conclusions . 86
7.2 Future directions . 89

Bibliography 91

xiv

List of Figures

3.1 Tor operation at the client side: (a) Normal, (b) After infection by Snoopy-
Bot . 27

3.2 High-level description of the attack for an HTTP request 27
3.3 High-level description of the attack for an HTTPS request (basic steps) . 27
3.4 Filtered log file records at the Exit node for the (HTTP traffic) 28
3.5 Filtered log file records at the Exit node (HTTPS traffic) 28

4.1 Prototype PrivaSIP over Tor architecture 35
4.2 Frequency of call delays for plain SIP over Tor 40
4.3 Frequency of call delays for PrivaSIP over Tor 41

5.1 Example of anonymizing a SIP INVITE message 50
5.2 Architecture of OnionSIP multi-layer encryption 55
5.3 Delay comparison of privacy schemes for SIP 57
5.4 Box-and-Whisker plots representation of SIP call establishment delays . . 58

6.1 WebRTC triangle network architecture . 64
6.2 WebRTC trapezoid network architecture 65
6.3 Using a STUN server. 66
6.4 Using a TURN server. 66
6.5 Preview a timing breakdown with Chrome 82

xv

List of Tables

4.1 SIP message header format . 32
4.2 Range of call delays for plain SIP over Tor 39
4.3 Range of call delays for PrivaSIP over Tor 40

5.1 SIP message header format . 44
5.2 Software characteristics per node . 52
5.3 Hardware characteristics per node . 53
5.4 OSI layer placement of used platforms . 53
5.5 Comparison of each solution’s standard deviation 58
5.6 Comparison of SIP anonymity schemes . 60

6.1 Performance comparison of C++ and Golang in file processing 80
6.2 Performance comparison of C++ and Golang proxy implementations vis-

à-vis to the typical proxyless setting. Content and response current ap-
proximate sizes are in MB, while load times are in seconds and represented
as a 95% confidence interval over 50 measurements done in different days
and times. 84

7.1 Overview of PhD thesis contributions and related publications 86

xvi

Abbreviations

AON Anonymization Overlay Network

API Application Programming Interface

CA Certificate Authority

CDR Call Detail Record

CDF Cumulative Distribution Function

DOM Document Object Model

DOS Denial Of Service

DTLS Datagram Transport Layer Security

HTTP HyperText Transfer Protocol

I2P Invisible Internet Project

ICE Interactive Connectivity Establishment

ICT Information and Communications Technology

JSEP JavaScript Session Establishment Protocol

KDC Key Distribution Center

LDAP Lightweight Directory Access Protocol

OSI Open Systems Interconnection

OS Operating System

P2P Peer to Peer

QoS Quality of Service

RFC Request For Comments

SDP Session Description Protocol

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer

STUN Session Traversal Utilities for NAT

xvii

Abbreviations xviii

S/MIME S/Multipurpose Internet Mail Extensions

TCP Transmission Control Protocol

TLS Transport Layer Security

TOR The Onion Routing

TTFB Time To First Byte

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

URI Uniform Resource Identifier

VM Virtual Machine

VPN Virtual Private Network

VoIP Voice over Internet Protocol

WebRTC Web RealTime Communication

W3C Wide WebConsortium

xviii

Chapter 1

Introduction

As Information and Communications Technology (ICT) technological means become

increasingly integrated in our daily lives, privacy violations become more severe, partic-

ularly in user-to-user communication. Multimedia services, e.g., Voice and video calling,

have become the most prevalent forms of modern communication as a result of the prolif-

eration of high-speed Internet and the advancements of cellular mobile communications.

In particular, a steep increase in the use of multimedia modes of communication has

been observed in the past three years, mostly due to the emergence of the COVID-19

pandemic. Namely, many organizations resorted to remote communication and collabo-

ration, leading to a surge in the use of multimedia modes of communication [1].

Due to low end-to-end delays and high bandwidth requirements, Voice over IP (VoIP)

protocols have experienced unprecedented growth in recent years. Its cost-effectiveness

and superior functionality over the traditional Public Switched Telephone Network

(PSTN) revolutionized formal telephone communication in a profound way. Among

others, VoIP reduces the cost of international phone calls, online meetings, and educa-

tion. The term “Copper Switch Off” [2] refers to the plan by Openreach Limited, the

company that maintains nearly all telephone cables in the United Kingdom, to replace

all traditional telephone lines with newer, faster, and more dependable technology by

2027. According to the Copper Switch Off directive, the entire analog network used for

telephone communications in most of the European countries will be replaced by VoIP

technology by 2025 for facilitating the technological evolution of communications.

1

Chapter 1. Introduction 2

Security and privacy are top concerns for any business or individual, so it is no wonder

that Session Initiation Protocol (SIP) security and privacy is one of the most commonly

discussed topics in VoIP. SIP is an application layer signaling protocol responsible for

establishing, modifying, and terminating multimedia sessions. Because SIP allows users

to establish and terminate voice and multimedia sessions over the Internet, it brings along

additional risks not present in traditional voice calls, such as eavesdropping or data theft.

These threats can leave businesses and customers vulnerable to unwanted intrusions and

security breaches that can jeopardize sensitive personal and business information.

SIP is a text-based protocol, incorporating many elements of the Hypertext Transfer

Protocol (HTTP) and the Simple Mail Transfer Protocol (SMTP). Similarly to these

protocols, SIP transmits data in plaintext without using any kind of encryption, which

means that any information included in the message headers or body can be intercepted

and read by third-parties. Specifically, the SIP header contains information about the

caller and the callee, including their respective IP addresses.

Bearing in mind the lack of privacy and anonymity in the SIP protocol, a variety of

solutions are required for SIP’s full message obfuscation. The first solution involves

the use of the well-known Onion Router (Tor) network to conceal the IP addresses of

both sides. Tor is a free and open source software application that enables anonymous

Internet communication. Tor functions by routing traffic through a vast network of relays

operated by volunteers around the globe. These relays anonymize the traffic, making it

more challenging to identify the source or destination of communications.

Initially, the client program utilizes a central directory known as the Onion Router to

route traffic through the Tor network. This central directory provides a list of other Tor

nodes and routes traffic through them before transmitting it to its ultimate destination.

The network’s nodes employ specialized encryption techniques to conceal the origin of

traffic from the relay. This method is known as telescopic encryption, a cryptographic

technique where the final layer of encryption is split into multiple smaller layers, with

each layer corresponding to a different node in the network. This allows the message to be

routed through multiple nodes without revealing the final destination until it reaches the

last node, which decrypts the final layer and forwards the message to its destination. This

procedure ensures that no one can trace the origin of the traffic, preventing it from being

monitored by third parties. When utilizing Tor, both parties will have the capability to

2

Chapter 1. Introduction 3

conceal their actual IP addresses. However, to achieve this, it is imperative that both

parties establish a connection with the Tor network. In addition, any communication

between the parties will be encrypted and routed through multiple nodes, making it

nearly impossible for a third party to eavesdrop. By routing SIP traffic through the Tor

network, not only are the messages themselves encrypted, but the IP addresses of the

sending and receiving devices are also concealed, ensuring complete confidentiality and

anonymity at all levels of the communication stack.

Invisible Internet Protocol, also known as I2P [3], is an alternative anonymity solution

that can also be used to safeguard SIP signaling. I2P is a network layer designed to

provide its users with privacy, security, and anonymity. I2P functions by routing traffic

through multiple nodes and employing a variety of techniques, such as onion routing

and garlic routing, to conceal the origin and destination of data. In addition, it employs

layered encryption to prevent traffic analysis and man-in-the-middle attacks. Despite

I2P’s lower adoption rate compared to Tor, it can, with proper configuration, offer a

strong alternative solution for keeping VoIP calls private. Other anonymity networks

could be considered, although most of them will either come with the cost of increased

communication latency [4] or the possibility of connection to untrusted nodes.

Privacy can also be achieved either by the construction of lower level tunnels, say, via

the use of Transport Layer Security (TLS) or IPsec protocols, or by employing a custom-

tailored solution. However, TLS and IPsec are known for leading to undesirable, non-

affordable delays, and thus the need for a SIP-oriented solution seems preferable.

Another prevalent VoIP technology that is currently utilized by numerous web appli-

cations is Web Real-Time Communication (WebRTC) [5]. WebRTC is an application

protocol that employs SIP protocol to enable secure and reliable communications be-

tween multiple parties. To establish peer-to-peer (P2P) connections and achieve real-

time web-based communication, the WebRTC framework requires address information

of the communicating peers. This means that users behind, say, Network Address Trans-

lation (NAT) or firewalls normally rely on the Interactive Connectivity Establishment

(ICE) framework for the sake of negotiating information about the connection and me-

dia transferring. This typically involves Session Traversal Utilities for NAT (STUN) or

Traversal using Relays around NAT (TURN) servers.

3

Chapter 1. Introduction 4

The latter entities assist peers to discover each other’s private and public socket (IP:port),

and appropriately relay traffic if direct connection fails. Nevertheless, these IP:port pieces

of data can be easily captured by anyone who controls the corresponding STUN/TURN

server, and even more become readily available to the JavaScript application running on

the webpage. While this is acceptable for a user who deliberately initiates a WebRTC

connection, it becomes a worrisome privacy issue for those who are unaware that such a

connection is attempted. Furthermore, the STUN and TURN servers can acquire more

information about the local network architecture compared to what is exposed in usual

HTTP(S) interactions, where only the public source IP address of the client performing

an HTTP(S) request is visible. Even though this problem is well-known in the related

literature, no practical solution has been proposed so far. While intermediate proxies

could be a cost-effective solution for protecting SIP’s privacy and anonymity, in WebRTC,

an intermediate gateway could detect any WebRTC Application Programming Interface

(API) call prior to its execution and inform the end-user accordingly about the intentions

of the visited webpage.

Keeping in mind the privacy and anonymity shortcomings existing in VoIP protocols,

specifically in SIP and WebRTC, the purpose of the current thesis is twofold. First,

to provide a range of robust solutions to mitigate the corresponding shortcomings and

compare the proposed solutions to one another. Second, to detail the way analogous

solutions could be bypassed by opponents.

1.1 Motivation

With the proliferation of VoIP technologies, it is imperative to protect user privacy and

anonymity. Several legacy protocols in this domain are several years old and lack any

by-design security and privacy mechanisms. For instance, as previously indicated, SIP

does not provide any measure to protect user’s privacy. End-users must therefore utilize

add-on or external solutions. The latter focus on the encryption of sensitive SIP header

fields and may be combined with an anonymization network to provide a comprehensive,

cross-layer solution. To this end, as already pointed out, this thesis details a number of

application and network layer anonymity-preserving schemes for protecting the identities

of the communicating peers.

4

Chapter 1. Introduction 5

Even among the most recent VoIP technologies, the issue of user anonymity persists,

despite the numerous research studies devoted to safeguarding anonymity and privacy,

while maintaining low latency to satisfy quality of service (QoS) requirements [6, 7, 8].

This is also showcased by the WebRTC protocol design, which is one of the most modern

VoIP technologies used by main multimedia software, such as Google Meet and Discord.

As part of WebRTC, TURN and STUN servers are utilized to establish peer-to-peer

communications between two or more peers over the Internet. In particular, STUN

servers assist the user’s device in identifying its public IP address and port when this

functionality is blocked by NAT routers or firewalls. The STUN server will respond with

the IP address of the requesting device when the webpage makes a request. This response

will then be available to the JavaScript code on the webpage, allowing it to retrieve the

peer’s IP address. As a (negative) result, any website can leverage Javascript to force

the user’s device to connect to a STUN server controlled by the owner of the website for

revealing the user’s actual IP address. Consequently, even if an anonymity network is in

use, such as Tor, a malicious website is still capable of discerning the actual identity of

a user in terms of its IP address.

The key motivations of this work can be summarized as follows:

• There is a substantial amount of literature focused on protecting SIP users’ privacy

or anonymity at the application layer, whereas solutions for the transport layer have

yet to be developed.

• In the majority of cases, ready-to-deploy, well-respected solutions like Tor are ef-

fective for achieving cross-layer anonymity; nevertheless, the additional penalty

in terms of network delay should be examined. As an alternative, particularly

for SIP, a more straightforward and lightweight approach could provide adequate

anonymity with significantly fewer delays.

• Currently, in the absence of a straightforward method, it is infeasible to detect

whether a website is sneakily tracking end-users’ IP addresses via the ICE protocol.

5

Chapter 1. Introduction 6

1.2 Methodology and Milestones

The research methodology involved in this PhD thesis comprises four stages aimed at

addressing both SIP and WebRTC anonymity issues, as mentioned in subsection 1.1.

These stages include:

i. Provide a thorough study of the privacy, particularly anonymity, issues existing

in the most common VoIP protocols. The purpose of this analysis is to offer a

comprehensive, overarching understanding of existing VoIP anonymity issues and

possible solutions.

ii. Design and implementation of a SIP-over-Tor scheme to assess the performance of

the most popular anonymity overlay when used to establish a SIP session. That

is, the SIP traffic is routed through Tor using open-source tools, and multiple

performance tests are conducted for evaluating its performance. As part of our

efforts to achieve a higher level of security, namely security in a cross-layer fashion,

we combine the privacy provided by the PrivaSIP scheme [9, 10] with the anonymity

provided by Tor. Additionally, we evaluate the impact on SIP performance in terms

of additional delays introduced by any of the previously mentioned solutions.

iii. The design and implementation of a novel privacy-preserving SIP signaling scheme.

To this end, we exploit the knowledge gained from the second milestone. Specif-

ically, we design and evaluate an “onion-routing” approach, similar to Tor, where

selected sensitive fields of SIP messages are encrypted using either asymmetric or

symmetric encryption. In addition to Tor, which was utilized in the preceding mile-

stone, we will also employ I2P. These additional schemes cater for a comprehensive

comparison among the various anonymity solutions, including a clearer assessment

of their performance.

iv. The implementation of novel security solutions to mitigate the issue of detect-

ing and preventing in real-time the execution of STUN/TURN hidden, privacy-

invading requests. This comes in the form of two distinct mechanisms, namely,

a browser extension and an HTTP gateway. The intended purpose of both these

mechanisms is to scrutinize the Javascript code embedded within a webpage, prior

to its execution on the user’s browser.

6

Chapter 1. Introduction 7

1.3 Thesis contributions

The main goal of this PhD research is the design and implementation of various methods

to successfully preserve the anonymity and privacy of VoIP users.

As an initial contribution, we present techniques for enhancing the level of anonymity

of VoIP users utilizing existing anonymity technologies. Specifically, we combined a

privacy-preserving solution known as PrivaSIP [9, 10] with the most prevalent anonymity

network, namely Tor. To protect sensitive fields in SIP messages, PrivaSIP implements

field-level encryption, enabling privacy at the application layer. On the other hand, Tor

offers anonymity at the third layer of the Open Systems Interconnection (OSI) model, i.e.,

the network level. By combining these solutions, we achieve anonymity in a cross-layer

fashion.

Moreover, a major contribution of this PhD thesis is the development of a novel tailor-

made encryption-based privacy-preserving scheme, where sensitive information contained

in a SIP message is encrypted in a multilayer fashion. This is done by capitalizing on

the onion routing concept.

An important part of this study is to evaluate the performance of the SIP protocol

in conjunction with the previous mentioned solutions. To this end, we compared the

session initialization delay of the aforementioned solutions. Additionally, we present a

brief comparison of the evaluated schemes, indicating the key criteria each one satisfies.

No less important, we design and implement two different kinds of privacy-reserving

solutions for tackling WebRTC IP leaks. The proposed solutions are implemented dif-

ferently, but in essence, use the same detection technique. Namely, the first one is a

browser extension, which basically uses a preload mechanism to prevent the correspond-

ing JavaScript calls before the actual HTML Document Object Model (DOM) loading

starts. The second uses a gateway, either local or third-party, to inspect the JavaScript

code the user is about to download.

Particularly, this PhD thesis has contributed to publications in scientific journals and

conference proceedings in the following three ways. These contributions correspond to

and fulfill an equal number of thesis objectives.

7

Chapter 1. Introduction 8

• Obj. 1: Enhancing the level of anonymity provided by SIP-based VoIP services

by utilizing PrivaSIP in conjunction with Tor anonymity network1.

• Obj. 2: Designing and implementing an encryption-based privacy-preserving

scheme in which all sensitive fields are encrypted using onion routing2. Specifi-

cally, this implementation comprises two variants:

– Public-key encryption based on SIP proxy server certificate.

– Symmetric key encryption.

• Obj. 3: The provision of an effective means by which a user can be notified if

a webpage attempts to perform WebRTC requests without their consent3. Two

different methods were presented:

– A browser extension, which uses preload mechanisms to prevent such

JavaScript calls before the actual DOM loading starts.

– A custom gateway that inspects the JavaScript code of the webpage the user

is about to download.

1Karopoulos, G., Fakis, A., & Kambourakis, G. (2014). Complete SIP message obfuscation: PrivaSIP
over Tor. Proc. of the 9th International Conference on Availability, Reliability and Security (ARES),
pp. 217-226, IEEE. https://doi.org/10.1109/ares.2014.36

2Fakis, A., Karopoulos, G., & Kambourakis, G. (2017). OnionSIP: Preserving Privacy in SIP with
Onion Routing. J. Univers. Comput. Sci., 23(10), 969-991. https://doi.org/10.3217/jucs-023-10-0969

3Fakis, A.; Karopoulos, G.; Kambourakis, G. Neither Denied nor Exposed: Fixing WebRTC Privacy
Leaks. Future Internet 2020, 12, 92. https://doi.org/10.3390/fi12050092

8

Chapter 1. Introduction 9

1.4 Thesis structure

The next chapter briefly presents a background on the communications technologies that

are relevant to the present PhD thesis. It specifically details SIP and WebRTC protocols,

alongside their respective vulnerabilities regarding privacy and anonymity.

Chapter 3 offers a literature review, emphasizing on four main axes. The first concerns

existing solutions to protect user’s privacy in SIP protocol. The second pertains to

schemes that could be used to anonymize SIP traffic in the transport layer. The third

axis outlines a range of suggested remedies, which users can exploit to safeguard their

anonymity whilst utilizing WebRTC. The final axis centers on ways to deanonymize Tor

traffic.

The proposed SIP-over-Tor scheme is presented and assessed in Chapter 4. Specifically,

this chapter details the performance of both plain SIP and PrivaSIP-over-Tor.

A novel approach to safeguard users’ privacy and anonymity in the SIP protocol is given

in Chapter 5. This includes the implementation of an onion architecture, similar to that

utilized by Tor, which conceals the user’s IP address and simultaneously encrypts any

sensitive data contained in SIP messages.

Chapter 6 addresses WebRTC privacy leaks that can expose the user’s IP address while

they visit a potentially malicious webpage. Two distinct solutions are presented: a

browser plugin and a gateway. Both these options are capable of examining HTTP

traffic and detect and block suspicious Javascript pieces of code.

The last chapter completes this PhD thesis by concluding the results of the conducted

research. Directions for future work are also presented at the end of the same chapter.

9

Chapter 2

Background

2.1 VoIP services

The immense growth of ICT technologies and the mushrooming of high-speed wireless

networks, led to a drastic shift in the ways people communicate. The traditional meth-

ods of telephone communication and face-to-face meetings are no longer as efficient or

convenient as they used to be. Nowadays, the use of telecommunications technology is be-

coming increasingly prevalent in everyday tasks, such as communicating and conducting

business. This has resulted in a massive increase in demand for high-quality, always-

available telecommunications services. Such a key service is VoIP, which allows people

to communicate using the Internet instead of traditional landlines. Without a doubt,

modern VoIP technologies offer a number of advantages over traditional forms of telecom-

munication. Users can access the service from anywhere with an Internet connection and

receive improved audio quality at a lower cost than standard telephone services. However,

when it comes to security and privacy, as with any popular Internet technology or proto-

col, VoIP services are susceptible to cyberattacks [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],

which can affect its Quality of Service (QoS) and compromise end-users’ privacy.

2.2 SIP protocol

SIP is a signaling protocol defined in [22] for initiating, maintaining, updating, and

terminating real-time sessions involving video, phone, message, and other multimedia

10

Chapter 2. Background 11

applications and services between two or more Internet endpoints. Similar to HTTP,

SIP is a request-response protocol that relies on text-based communications and proxy

servers to establish, manage, and terminate sessions between two or more peers.

Various communication systems use SIP to administer VoIP sessions. SIP inherently

supports different communication modes, such as audio, video, text, and multimedia,

and can be used across several transport protocols, including UDP and TCP [22].

SIP relies on protocols such as Real-Time Transport Protocol (RTP) [23] and Secure Real-

Time Transport Protocol (SRTP) [24] to transport media streams between endpoints [25].

The media and communication parameters of a session are typically described through

a session description protocol, such as Session Description Protocol (SDP) [26].

To relay SIP requests from one server or client to another, SIP proxies are commonly

used as intermediary servers. Essential features of SIP gateways include message routing

and the setup and maintenance of communication sessions. SIP proxies may further offer

authentication, authorization, billing, and NAT traversal services [22].

Similar to HTTP, SIP does not use any message encryption by default. Therefore,

if unencrypted, SIP messages can be easily intercepted and read by anyone who has

access to the network. This means that the contents of the messages, including sensitive

information such as call setup information, caller ID, and call content, can be accessed by

unauthorized eavesdroppers. Possible malicious or honest-but-curious opponents include

network administrators, Internet service providers (ISPs), and other parties who are able

to access and sniff the network.

To prevent SIP message interception, it is critical to encrypt the messages’ contents. A

straightforward solution is the creation of a TLS tunnel, providing hop-by-hop security for

communication between SIP clients and servers. However, even if TLS is implemented,

there is no guarantee that encryption will be used in all the network hops, thus users’

information hiding is not to be taken for granted.

Finally, the SIP protocol was designed to work with traditional telephony systems where

anonymity is not an issue. As a result, it lacks by-design mechanisms for concealing

users’ identities, IP addresses, and other sensitive information. Therefore, among others,

end-users may be vulnerable to eavesdropping, man-in-the-middle attacks, and denial-of-

service (DoS) attacks. Overall, SIP users who wish anonymity protection should consider

11

Chapter 2. Background 12

exploiting add-on security measures, including Virtual Private Networks (VPNs), Tor,

or custom-built encryption schemes.

2.3 PrivaSIP

PrivaSIP [9, 10] is an application-layer privacy-preserving scheme, whose main idea is

that each end-user’s real ID shown in a SIP message should be individually encrypted in

a way that it can be recovered only by authorized entities. In this way, untrusted proxies

or malicious users performing traffic analysis, cannot eavesdrop or even recover from the

corresponding ciphertext the real ID of the user. This way, a basic level of unlinkability

[27] of SIP transactions made by the same user in the course of time can be retained as

well. There exist two versions of PrivaSIP depending on level of privacy offered:

• PrivaSIP-1 [9]: It offers caller identity privacy

• PrivaSIP-2 [10]: It caters for both caller and callee identity privacy.

PrivaSIP-1, provides only identity privacy for the person making the call. This is achieved

by encrypting the username of the caller and using the created ciphertext on every SIP

message that will be exchanged between the caller and the callee. To avoid personal

information leakage, the display name field on the SIP message is removed. On the other

hand, PrivaSIP-2, provides identity privacy for both the caller and the callee. Precisely,

in PrivaSIP-2, the caller’s SIP application encrypts both caller’s and callee’s username,

while removing the display names that appear in every SIP message. PrivaSIP also

varies in the encryption methods it employs: a user can choose between symmetric or

asymmetric cryptography. Specifically, different implementations have been presented,

including symmetric, traditional asymmetric, and Elliptic Curve cryptography:

• Symmetric cryptographic algorithm

– PrivaSIP-1 using AES

• Asymmetric cryptographic algorithms

– PrivaSIP-1 or -2 using RSA

12

Chapter 2. Background 13

– PrivaSIP-1 or -2 using Elliptic Curve (ECIES)

In PrivaSIP-AES, AES is utilized for the encryption of the caller ID. Since the caller and

their home proxy share a password, which is used for digest authentication, this password

can also be used as a key (or as a key seed or master key) for the encryption of the user’s

ID. PrivaSIP-RSA uses the caller and callee’s proxy public keys to encrypt the caller’s

user ID and digest username, and the callee’s user ID, respectively. PrivaSIP-ECIES

works similarly with the difference of using Elliptic Curve cryptography.

The cost that comes along with PrivaSIP is negligible concerning the privacy features

offered, when symmetric cryptography is used. Nevertheless, as argued in [9, 10], a user

may perceive an affordable latency ranging between 0.5 to 2 sec for the first SIP message

when asymmetric cryptography is chosen, depending on the server load. In subsequent

SIP messages, this time penalty can be minimized, provided that some caching method is

used for the correspondence between real and encrypted IDs. In any case, the aforemen-

tioned latency occurs only during the setup phase of the call. For more details regarding

the PrivaSIP schemes, the reader is referred to [9, 10].

2.4 Tor anonymity network

Nowadays, Tor [28] is probably the most popular open-source implementation of a dis-

tributed overlay network, which aims to anonymize TCP-based traffic. The Tor software,

namely Onion Proxy (OP), at the user side chooses a random path through the available

Onion Routers (OR) in the network and builds a circuit, in which each OR in the path

knows only its predecessor and successor, but no other nodes. After that, the user’s traffic

flows down the selected circuit using onion routing, which is based on layered encryption,

also known as “telescopic encryption”. To further block analysis of data based on the

traffic characteristics, the Tor overlay uses cells of fixed size to communicate users’ data

among the different ORs. Overall, as already pointed out, this approach blocks traffic

analysis because no entity is aware of the full path a packet (cell) has traveled.

There are three types of relays in the Tor network: Directory Authorities (DA), Exit

Relays (ER), and Guard Relays (GR). Each of them is responsible for a specific part

of the network. A DA provides current information about other relays on the network.

13

Chapter 2. Background 14

ER allow users’ traffic to exit the Tor overlay by forwarding their traffic to its final

destination. Finally, GRs provide security and integrity to the rest of the network by

preventing hostile third parties from gaining access to it [29].

To build a circuit, the OP retrieves the list of available ORs from the DA and randomly

selects a set of ORs forming the circuit between the sender and destination node. The

OP establishes an ephemeral session key with each OR in the circuit by means of a Diffie-

Hellman handshake. After that, the sender can initiate anonymous communications with

the receiver. All information entering a circuit is in fixed-size cells (data-packets) of 512

bytes. Tor mandates all the cells transmitted from an OP toward the receiver to be

repeatedly enciphered under the session keys shared with ORs consisting the circuit.

This way, no individual relay is aware of the complete path a given cell has followed.

The OR lying at the edge of the circuit will eventually remove the last layer of encryption,

obtaining the original data. Furthermore, in order to safeguard the transmission of data

between each node in the circuit, Tor employs a TLS tunnel. This ensures that observers

cannot intercept and examine the contents of the tunnel to identify the destination circuit

of a given cell. The TLS tunnel is established between each pair of adjacent ORs in the

circuit. This trasport layer tunnel ensures that any piece of data transmitted between

ORs is protected and cannot be read by an attacker.

Overall, Tor capitalizes on the onion routing mechanism to deliver a low-latency Internet

networking service designed to anonymize the data relayed through it. As a result,

Tor is also employed as a powerful weapon against Internet censorship carried out by

governments or by private organizations on behalf of others. BitTorrent and HTTP are

well-known to use Tor services to enhance their level of anonymity. Tor traffic passes

through a large number (more than 6K) of relays that are distributed globally and

operated by volunteers [30]. Even though Tor is considered one of the most effective

tools for achieving online privacy, it also has a number of limitations that make its

use more cumbersome than traditional web services. For example, the Tor network is

typically quite slow and requires significant bandwidth in order to function effectively.

This makes it difficult to download large files and use the system for streaming content.

However, these limitations are relatively minor when compared to the benefits in terms

of anonymity. Altogether, Tor provides a useful way for accessing the Internet without

the fear of being monitored or tracked by third parties.

14

Chapter 2. Background 15

2.5 WebRTC

Real-Time Communication (RTC) refers to the technology that enables individuals to

communicate and exchange information in real-time over the internet without requiring

physical proximity. This technology has become increasingly important in recent years as

individuals and businesses rely on online communication for work, education, and social

interaction among others. RTC encompasses a variety of communication modalities,

including video and voice chat, text messaging, and online gaming.

Even more, the significant popularity of the browser platform, which was not originally

intended for interactive RTCs, has resulted in the emergence of browser-based applica-

tions that utilize real-time communication on the web [31]. The resulting WebRTC [5]

technology is a relatively new, open-source project that enables two-way communication

between browsers and other applications. Specifically, WebRTC has gained significant

popularity as a technology for real-time communication, with increasing adoption and

support from industry leaders including Google and Microsoft. Its usage and acceptance

continue to expand, reflecting its growing prominence in the field of real-time communi-

cation. In 2019, the worldwide market size for WebRTC was valued at USD 2.3 billion. It

is projected to exhibit a compound annual growth rate of 43.4% from 2020 to 2027 [32].

WebRTC uses a signaling protocol to initiate and manage calls, and a communication

channel to carry audio, video, or text data between the endpoints. The latter can

be legacy desktop computers, mobile devices, or even cloud-based Web applications.

Moreover, WebRTC uses a combination of JavaScript APIs and communication protocols

such as RTP and SRTP to establish P2P communication channels between browsers

without requiring any additional plugins or software installations. This allows developers

to easily add real-time communication capabilities to their web applications, enabling

seamless communication between users across different devices and platforms.

Despite its popularity, WebRTC has a potential security issue that could compromise

the privacy of its users. Specifically, WebRTC can expose the IP address of the user,

which can reveal sensitive information about their location and online activities. This

happens when a website forces a user to use the ICE protocol, which is a key component

of WebRTC. Namely, the ICE protocol is used to establish a connection between two

devices, involving exchanging information about network addresses. Unfortunately, it is

15

Chapter 2. Background 16

obvious that this information can be used to identify a user’s IP address, even if they

are behind a VPN or other privacy-enhancing technology.

2.6 Discussion

Taking all the above into account, we conclude that SIP, despite being the common-

est signaling protocol, it lacks security protections, leaving user’s sensitive information

unprotected. PrivaSIP is a protocol that effectively addresses the major privacy gaps

present in SIP. However, it is worth noting that the absence of cross-layer anonymity

mechanisms remains a significant concern. As such, it is essential to develop a compre-

hensive solution to protect the confidentiality of user information during the initiation

of SIP sessions and call control operations. In reference to this matter, it is imperative

that the development of a solution should prioritize two distinct aspects: (i) obfuscating

sensitive SIP data and selectively making it available only to trusted entities, and (b)

providing anonymity in a cross-layer fashion.

The utilization of the Tor network may constitute a viable and concrete solution for

addressing the privacy gap of SIP, augmenting user anonymity. That is, integrating Tor

with PrivaSIP could potentially result in complete message obfuscation, thereby offering

privacy protection in both application and transport layers. Nevertheless, it should be

emphasized that the integration of Tor and PrivaSIP poses technical complexities and

may necessitate additional resources to ensure seamless operation. It is also important

to conduct a careful assessment of the potential trade-offs between security, privacy, and

performance while deploying this solution. Despite these challenges, the employment

of the Tor network could represent a promising avenue for enhancing the privacy and

anonymity of SIP users.

Equally important, WebRTC is a widely adopted, modern technology that facilitates

real-time communication among users. Nevertheless, it is key that users are made aware

of the potential privacy risks associated with this technology, which may leak their actual

IP address to an interested party. As detailed in Chapter 3, to the best of our knowledge,

the existing literature provides no practical solution to safeguard one’s privacy other than

completely disabling WebRTC. Consequently, a more practical and potentially transpar-

ent to the user solution to this problem is needed.

16

Chapter 3

Related work

This chapter offers a comprehensive survey regarding VoIP privacy and anonymity.

Specifically, it first details works pertaining to anonymity issues in the SIP protocol

in Section 3.1, while contributions referring to WebRTC technology privacy leaks are

discussed in Section 3.2. Additionally, Section 3.3 overviews Tor deanonymization is-

sues.

3.1 Protecting User Information in SIP Networks

This section briefly reports on works that have been presented in the literature so far

regarding SIP privacy. It also presents related work on several solutions that could

potentially be used for anonymizing SIP traffic. As explained further down, despite the

various proposals, most of them are more or less unsuited to SIP.

There is one group of mechanisms based on PGPfone and its successor, Zfone. Zfone [33]

is a software for secure VoIP communications, using the ZRTP protocol [34]. Zfone

works on top of existing SIP and RTP protocols and the security it offers is limited to

encrypting and decrypting voice packets only. Moreover, it seems that since 2009 its

development has stopped.

Silent Circle [35] is a company offering secure communications to its subscribers. In order

to protect voice and video call data on cellular and Wi-Fi networks from interception

and eavesdropping, the company developed a private communication infrastructure called

17

Chapter 3. Related work 18

Silent Network. The connection between the caller and the Silent Network, as well as the

connection between the Silent Network and the callee, are both encrypted provided that

both users are subscribers of the service. If one of the two users is not a subscriber, then

the respective connection is unencrypted. Its operation is based on the ZRTP protocol,

mostly protecting from Man-in-the-Middle (MiTM) attacks without taking care of end-

users’ identity privacy.

RedPhone [36] uses a signaling protocol that is custom to RedPhone and the voice traf-

fic is encrypted using ZRTP. Its signaling protocol is similar to HTTP and protected by

means of a TLS tunnel. However, since TLS is used between clients and relay servers, the

communicating parties are indeed identifiable by their IP addresses. Jitsi [37], formerly

known as SIP Communicator, supports many protocols including SIP, Jabber/XMPP

(GoogleTalk and Facebook), MSN, ICQ, etc., and offers call encryption to SIP and

those protocols that are based on Extensible Messaging and Presence Protocol (XMPP)

through ZRTP. For SIP, secure signaling with the use of TLS is also supported. Never-

theless, the same problem still stands; the communicating end-users are identifiable by

their IP addresses. The Open {Secure, Source, Standards} Telephony Network (OSTN)

project [38] is foreseen to provide an end-to-end secure VoIP service based on open stan-

dards. SIP signaling is protected with Secure Socket Layer (SSL), while voice traffic is

secured by ZRTP. As with other solutions, the issue with this system is that end-users

are left protected against traffic analysis attacks.

There is also a group of solutions that are based on proprietary protocols and/or are

unsupported. These include Speak Freely [39] (since 2002) and the “I Hear U” (IHU)

project [40] (since 2008). GSMK CryptoPhone [41] provides a range of hardware and

software products including mobile, landline, and satellite phones, softphones, and even

a crypto PBX. It is a proprietary solution and the source code is offered for download;

however, it seems outdated since the last version is from 2003, and no safe claims can

be made about its secure operation. Mumble [42] is an open-source, voice chat software

mainly intended for use while gaming. Communication to and from the server is protected

through encryption, which is mandatory and cannot be disabled. The voice as well as the

control channel, which transports chat messages and other non-time critical information,

are both encrypted. The latter is protected by TLS, making IP address discovery of

end-users possible.

18

Chapter 3. Related work 19

Nautilus Secure Phone [43] uses the Diffie-Hellman key agreement, followed by a verbal

comparison of the hashed value of the agreed session key, to prevent a “man in the middle”

attack from compromising the system. Three voice encryption algorithms, namely Triple-

DES, Blowfish, and IDEA, are supported.

Regarding the protection of end-user’s anonymity, most anonymity networks target di-

verse needs, so existing systems are implemented with a specific purpose in mind. First

and foremost, the majority of the considered anonymity systems or tools rely on Tor or

other widespread networks to achieve anonymity, wrapped and foisted with some minor

changes. Other systems, like iMule [44], StealthNet [45] or Mixmaster [46], are used for

different purposes such as sending emails or exchange files anonymously, without giving

the choice of proxy for a third app like a SIP client.

There is also a plethora of networks proposed in the bibliography that promise anonymity,

but they are on an early or prototype stage, such as Tarzan [47], MorphMix [48], and

Phantom protocol [49]. Hornet [50], which name is an acronym for High-speed Onion

Routing at the Network Layer, is yet another anonymity network, similar to Tor. Their

creators claim that Hornet will be able to reach speeds exceeding Tor network. However,

there is still, by the time this PhD thesis was written, no tangible implementation of

Hornet, and thus there is no way to test it. Last but not least, in 2016 MIT researchers

presented a new onion-routing based anonymity scheme called Riffle [51]. The authors

claim that Riffle network affords robust security and anonymity, utilizing bandwidth

with superior efficiency compared to alternative anonymity networks, all while employ-

ing security methodologies akin to Tor. Nevertheless, the research prototype currently

showcased is not yet prepared for testing, as it is solely operational in two distinct modes:

filesharing and microblogging. In the latter, a client can transmit a message that will

be disseminated to other users within the network. Consequently, although Riffle holds

promise, our ability to evaluate it with SIP was impeded.

Other researchers used various approaches to anonymize or preserve privacy in VoIP

systems. In [52] the authors proposed a premature effort on using Tor to anonymize

SIP traffic. They succeeded in providing full SIP message obfuscation by adapting an

application-layer, encryption framework, called PrivaSIP [10, 9]. Using PrivaSIP over

Tor, they were able to encrypt the sensitive contents of SIP messages, including “From”

and “To” header fields, thus preventing unauthorized users from reading these fields. As

19

Chapter 3. Related work 20

also explained in Section 4, the combination of PrivaSIP with Tor can be considered a

complete SIP privacy solution, as it achieves both application and network layer privacy.

In [53], the authors proposed a scheme which is resistant against two attacks (comple-

mentary matching and watermark) that a malicious user can perform to discover “who

calls whom”, even though traffic is proxyfied through an Anonymization Overlay Net-

work (AON). The authors claim that they devised a way to prevent malicious actors

from performing such attacks, by applying Voice Activity Detection in every call. That

is, the originator’s user-agent can produce voice packets in a constant rate and instruct

the AON proxies to drop those packets, hindering the attacker to disclose users identities.

Nevertheless, as the authors mention, the above defense is not a comprehensive solution

that can provide highly usable, efficient, and practical anonymity for all VoIP users.

In [54], the author details the different aspects of anonymity and accountability in the

SIP protocol. Moreover, he presents the two major categories that privacy mechanisms

are divided into, the cryptographic-based solutions, like SIP over TLS and SIP using

S/MIME, and the non-cryptographic ones, which anonymize the SIP URI. Based on

this separation, a discussion is made about the custom solutions, plus the generic and

lower layer ones. The protection of SIP using S/MIME is documented extensively in

RFC 3853 [55]. Each message is treated like an email attachment and so it is encrypted,

using an algorithm like AES, and signed via S/MIME. Using such a methodology, all the

security services that S/MIME provides can be added to SIP, including authentication,

message integrity, non-repudiation of origin, privacy, and data security. However, in

S/MIME, some of the header fields of the message must always remain in plaintext, as

they are necessary for successful message delivery. More specifically, the “To”, “From”,

“Call-ID”, and “Contact” fields are still unprotected.

Herd [56] is a scalable, traffic analysis resistant anonymity network designed for VoIP

systems. The authors claim that Herd provides user anonymity by forwarding traffic

through cloud-based proxies that can be considered as low-delay circuits. Herd uses a

hop-by-hop and layered encryption over a circuit of nodes, using Datagram TLS (DTLS)

[57] to accomplish lower latency than other similar anonymity networks. The proposed

solution is claimed by the authors to be quite efficient with lower bandwidth requirements,

however, it achieves that through a dedicated infrastructure, incurring additional costs

and delays.

20

Chapter 3. Related work 21

In [58], the authors highlight the problem arising from the metadata contained in Call

Detail Records (CDRs), which contain sensitive information such as source, destination,

start time, and duration of a call. They propose Phonion, an architecture where every

call is routed over the telephony infrastructure. The authors claim that Phonion can

achieve high quality calls while obfuscating call data records. However, Phonion only

protects the CDRs and not the actual contents of the VoIP messages, therefore, a call is

still vulnerable to traffic analysis attacks.

Finally, a product that offers anonymity in VoIP is TORFone [59], which is a product

that is independent of the Tor Project. It is based on Tor and PGPfone, and since the

connection between users passes through six transit nodes located anywhere in the world,

the voice latency can reach 4 to 5 secs. Apart from that, the main issue with TORFone

is that it is based on outdated security software (PGPfone is unmaintained since 1999)

and it does not use standard protocols, like SIP.

3.2 WebRTC privacy leaks

At the time of writing this PhD thesis, the WebRTC API privacy issue has been explored

by a handful of works in the literature. The work in [60] details the privacy threat occur-

ring when WebRTC is exploited by browsers. The authors conduct different experiments

in order to examine which types of IP addresses can get compromised. To this end,

they tested a variety of widely used VPN services on different browsers and presented

the results of their experiments, concluding that none of the tested VPN services has

proven to be a perfect privacy solution. From the results offered by the authors, one can

realize that each VPN service exposes a different set of user’s IPs, with TorGuard being

the preferred privacy-preserving VPN service, exposing just the private IPv4 of the user

assigned by the VPN server. However, based on their results, a VPN solution is neither a

silver bullet to the IP leaking issue, nor efficient, as VPN networks are highly dependent

on the bandwidth of their VPN server, which are often geographically dispersed.

The issue of using WebRTC for mapping the intranet topology from an external attacker

is discussed in [61]. The authors present a JavaScript piece of code, namely Malice-

Script, which collects intranet information abusing the features of WebRTC, and then

infiltrates a targeted website from its own intranet. This work concentrates on the attack

21

Chapter 3. Related work 22

implementation and only provides recommendations for end-user protection. One of the

defensive measures is to notify the user of the browser and ask for explicit authorization

before calling the WebRTC API, which is actually what our implementations in Chapter

6 provide.

Among other security and privacy risks, the authors in [62] concentrate on that of We-

bRTC. Specifically, they were able to perform a network scan on victim networks and

collect sensitive network information about other internal nodes, such as open ports,

based on heuristics like round-trip delays. They also claim that they developed a browser

extension that can warn users about possible malicious activities, when a certain num-

ber of connections made to the private IP address of a user is surpassed. However, the

countermeasure they propose for the specific privacy issue is just disabling WebRTC or

using other extensions that can expose only the user’s public IP.

Additionally, the work in [63] capitalizes on WebRTC in an attempt to disclose the user’s

private IP and execute network scans using an open source JavaScript scanner, called

jslanscanner [64]. The network scan is supposed to detect not only possible online local

network nodes, but routers as well. The authors extend the way a malicious party can

exploit WebRTC to expose a user’s IP; nonetheless, they omit proposing a solution to

safeguard against these kinds of attacks.

A Browser scanner is proposed in [65] where an online service uses an XMLHttpRequest

and WebRTC for the purpose of collecting information about the network a user resides

in. The authors present the results they were able to gather from the scanned networks;

however, they suggest that JavaScipt and WebRTC should be disabled for avoiding such

scans by malicious websites.

In [66], the use of mDNS [67] is proposed for protecting private IP addresses. In the

proposed mechanism, the web browser registers an ephemeral mDNS name for the private

IP address of the host and then provides this name in its ICE candidates (explained in

Chapter 1) instead of the IP address. The ICE candidates negotiation can proceed as

usual, and the mDNS names can be resolved to IP addresses only when necessary and

without revealing the actual address to the other endpoint. The main issue with this

approach is that it can break WebRTC applications. There are various reasons for that:

(a) mDNS is built on the assumption that the names never leave the local domain, (b)

22

Chapter 3. Related work 23

the SDP protocol expects IP addresses instead of DNS names, and (c) if a DNS server

tries to resolve an mDNS name it will fail as no relevant resource record exists.

WebRTC’s IP leak issue is also addressed by some browser add-ons for content-filtering,

including ad-blocking. Two of them, namely Privacy Badger [68] and uBlock Origin [69],

both multi-platform and open-source, seem to stand out. However, while these extensions

prevent WebRTC from leaking the peer machine’s private IP address by blocking it, they

do not solve the problem of public IP leakage happening through STUN requests.

There is also a mass of works which utilize the WebRTC leak in order to fulfil other pur-

poses. In [70, 71, 72], WebRTC is used to collect private IP addresses for user tracking

and device fingerprinting. The authors in [73] utilize WebRTC for device fingerprinting

with the aim of tracing web attackers even when they are hidden behind VPN or anony-

mous networks. WebRTC is also exploited in [74] for device fingerprinting for improving

user authentication. In all the previous cases, no countermeasures against the WebRTC

leak have been implemented.

It is worth noting here that, as explained in [75] the signaling protocol between web

servers is not part of WebRTC. This means that, even if a competent solution that

protects end-user’s privacy is employed on WebRTC, personal user information can leak

from the signaling protocol [54]. On the application level, this can be prevented with

solutions, including [9, 10] when SIP is utilized as the signaling protocol. On the network

level, Tor-based solutions ([4, 52]) can prevent leaking IP addresses to unauthorized

entities.

Overall, while the given vulnerability of WebRTC is addressed by a number of works

in the literature, most of them either use this vulnerability to fingerprint clients inside

a network or propose countermeasures that partially protect user privacy, such as the

use of a VPN or a combination of browser extensions. In addition, some works propose

the complete deactivation of WebRTC on the browser, which would obligate the user to

re-enable it every time they need it. To the best of our knowledge, the work detailed

in Chapter 6 is the first to propose two different practical and effective schemes which

can detect the use of WebRTC by a webpage in time, i.e., before any WebRTC requests

are made. Namely, the proposed solutions can inform the user on-the-fly about whether

their privacy is at risk by WebRTC when they try to visit a webpage. Thus, if the user

23

Chapter 3. Related work 24

is really in need of WebRTC capabilities, then the webpage is allowed to load; otherwise,

the user can choose to continue by disabling the corresponding JavaScript code.

3.3 Tor network deanonymization

Based on the literature, the most powerful deanonymization attacks on Tor are based

on some scheme that renders possible the correlation of the data between two points,

preferably the Entry and Exit node, of the Tor overlay. This strategy is also followed by

“SnoopyBot” [76], which is detailed in Section 3.3.1.

Undoubtedly, the weakest node in a Tor circuit is the Exit node. This is because at this

node the actual data sent by the Tor user is decrypted and forwarded toward its final

destination. An Exit node can behave maliciously in a variety of ways, having a key role

in the identification of a Tor user. For instance, as described in [77], the Exit node can

inject a piece of software that will be executed by the victim’s browser. Another approach

that makes use of a malicious Exit node was given by the authors in [78]. That is, they

either injected a forged web page back to the Entry node or they modified the HTTP

traffic passing through it, mounting a web page modification attack. Other contributions

like the one described by [79] focus on timing attacks done by a malicious Entry node.

Similar to the previous one, the method proposed by [80] places the attacker at both a

malicious entry and exit OR. Specifically, the attacker manipulates the outbound cells

originating from the various OPs, causing them to be determined at the exit node, and

thus eventually confirming the communication relationship between the sender and the

receiver.

A second category of deanonymization methods capitalizes on web browsers with en-

abled Javascript, Flash, or similar technologies. Although these features are designed to

enhance user’s experience when browsing, they are potentially privacy-invasive, as de-

scribed by [81]. An attack taking advantage of this fact can use a malicious Exit node for

modifying web pages through the injection of JavaScript code that repeatedly connects

to a logger server sending a distinctive signal.

Overall, the majority of the attacks in the literature are mainly based on infected Entry or

Exit nodes, considering that even security-savvy users cannot detect any untrustworthy

node in the Tor Network. Naturally, this capacity enables attackers to stelathly eavesdrop

24

Chapter 3. Related work 25

on traffic produced by any torified network application, including multimedia ones. To

delve into this situation, the rest of this section details “SnoopyBot” [76] spyware, which

demonstrates that the interlinking of Tor endpoints are feasible, given certain limitations

as discussed in section 3.3.21. Nevertheless, the way SnoopyBot operates differs from the

related work in two aspects. First, the manipulation of data is performed at the client

before the user’s data reaches the OP. Secondly, it does not require the attacker to

possess special equipment or a large mass of computing resources. No less important, its

operation at both ends, i.e., the client and the Exit node, is as stealthy as possible.

3.3.1 Implementation

The architecture of the authors’ implementation [76] consists of two main components.

The first one, is a user’s side spyware, named SnoopyBot, which is essentially a malicious

Android application that must be installed on user’s smart device. SnoopyBot was

developed for Android v4.4 and has also been successfully tested on Android v5.1.1. The

second component of authors’ architecture is at least one specially configured Tor Exit

node that sniffs user traffic passing through it. When the Exit node receives data having

the unique signature of SnoopyBot, it instantly logs and deanonymizes it. Specifically,

SnoopyBot was developed and used on the test smartphone, and the only traffic that

was logged on the Exit node was solely the one stemming from that smartphone.

At a high level, assuming an HTTP or HTTPS connection, SnoopyBot has three main

goals. First, it modifies the default settings of any Tor application running on the smart

device and are necessary to access Tor network. These applications are, Orbot and

Orweb. Second, it obtains the public IP of the user, and third, it hijacks (acting as a

man-in-the-middle) the connection in order to inject the user’s personal information to

the requested URL.

SnoopyBot is designed to instantly launch right after its installation, as well as after every

reboot of the smart device. After its successful installation, SnoopyBot masquerades

itself as Adobe Flash v2.0, which is a well-known software and will normally present

itself as a benign application to the owner of the smart device. Moreover, it removes

any application (SuperSU, Superuser) that gives root permissions to the user, including

pop-up permission request dialogs. Pop-up dialogs are shown to the user by means of
1The article [76] is not considered part of the core contributions of this PhD thesis.

25

Chapter 3. Related work 26

toast messages, every time an application requests root permissions. This kind of action

can attract the victim’s attention, and such a suspicion could eventually lead to have

SnoopyBot uninstalled. Besides, the authors particularly concentrated on the stealthy

operation of SnoopyBot to make harder its detection by anti-spyware software. Towards

this goal, the authors minimized the number of connections SnoopyBot makes outside the

Tor network. Precisely, SnoopyBot generates only one request to a public web service,

to obtain the user’s public IP, while the rest of the communication remains within the

Tor network. Naturally, every time the IP of the user changes, the same request must

be repeated.

As already pointed out, the spyware needs to modify Tor settings at the client side.

Figure 3.1A depicts a typical HTTP or HTTPS GET transaction when processed by Tor

at the client side. The spyware invades this procedure and modifies Orbot configuration

settings inside the torrc file, to always use the attacker’s exit node during the creation

of any Tor circuit. After that, it prohibits any further modifications to torrc. Note that

Orbot consists of two main components: the Polipo [82] HTTP proxy that listens on port

8118, and the Privoxy SOCKS proxy [83] that listens on port 9050. Essentially, Polipo

forwards the HTTP traffic to Privoxy, which subsequently forwards the traffic to Tor.

Additionally, as depicted in Figure 3.1B, SnoopyBot alters the HTTP proxy settings of

Orweb to point to destination port 8119 instead of the default 8118. This forces all the

victim’s traffic to be proxied through the SnoopyBot HTTP proxy. After manipulating

the GET request, SnoopyBot forwards it to HTTP port 8118 as normal, which is Orbot’s

HTTP Port. Simply put, SnoopyBot HTTP proxy acts as a MiTM between Orweb and

Orbot, therefore it can eavesdrop on and modify any data passing through this network

link. Next, SnoopyBot triggers a connection to a public service to obtain the user’s

(victim’s) public IP. Since this is the only outbound connection made by the spyware, its

footprint on the system is minimal. Having the public IP of the victim, the SnoopyBot

proxy injects it along with a certain identification string (i.e., SnoopyBot’s signature)

into all URLs requested by the victim.

For example, assuming that the requested URL is http://www.example.com before in-

jection, it will be modified to http://www.example.com/&sourceip = 65.65.65.65 and be

forwarded to Orbot. The SnoopyBot signature’s in this case is the “&sourceip” string.

Naturally, this string is entirely up to the spyware coder and can be changed between

the different versions of the spyware. As illustrated in fig. 3.2, this signature will be

26

Chapter 3. Related work 27

Figure 3.1: Tor operation at the client side: (a) Normal, (b) After infection by
SnoopyBot

Figure 3.2: High-level description of the attack for an HTTP request

removed at the Exit node. Moreover, as shown in fig. 3.3, in case an HTTPS request is

detected, SnoopyBot momentarily blocks it and then constructs and forwards an identi-

cal HTTP one, injected with the victim’s public IP as normal. At nearly the same time,

it forwards the original HTTPS request to Orbot to be dispatched via the Tor overlay.

This time, however, SnoopyBot’s signature in the HTTP bogus request is changed to

“&sourceiphttps”. As explained in section 3.3.1.1, this alteration will enable the Exit

node to log and then discard the corresponding GET message. Several scans using pop-

ular mobile antivirus applications (including Kasperksy, Bitdefender and CleanMaster)

did not detect SnoopyBot.

3.3.1.1 Exit node

For the exit node, the authors used the official Tor software on a Linux Ubuntu server,

and configured the torre file so as for the authors’ server to operate as a trusted Exit

Figure 3.3: High-level description of the attack for an HTTPS request (basic steps)

27

Chapter 3. Related work 28

node. Particularly, they configured the torrc file in the Exit node to route HTTP and

HTTPS traffic (ExitPolicy accept ∗ : 80 and ExitPolicy accept ∗ : 443). The authors

adjusted the amount of bandwidth that will be made available to Tor, and provided a

name for the Exit node.

Moreover, a Python HTTP proxy was implemented. This proxy listens on a different

port on the same box as Tor and eavesdrops on incoming traffic. By using iptables, the

authors redirected all the incoming traffic with destination port 80 or 8080 (http-alt)

to HTTP proxy owned by the authors. As observed from fig. 3.3, upon the reception

of any HTTP request that carries one of the SnoopyBot’s signatures, the HTTP proxy

logs it, strips the signature from the request, and forwards the request to its destination,

e.g., a webserver as normal. An exception to this rule is any incoming bogus HTTP

request, which is blocked in order for the destination not to receive an extra HTTP

request corresponding to the original HTTPS one. As explained in section 3.3.1, all

bogus HTTP requests carry a special SnoopyBot’s signature. The HTTP response from

the webserver is forwarded to the Tor network with no further manipulation. As shown

in fig. 3.4 and 3.5, a bash script was created to filter the logged traffic and present the

results containing the victim’s source IP to the attacker.

Figure 3.4: Filtered log file records at the Exit node for the (HTTP traffic)

Figure 3.5: Filtered log file records at the Exit node (HTTPS traffic)

28

Chapter 3. Related work 29

3.3.2 Limitations and Countermeasures

The current version of SnoopyBot presents the following three limitations.

• SnoopyBot needs to somehow infect and spread amongst users. One way to do

so is to bundle the spyware apk setup file with another apk, belonging to an app

that requires root permissions during installation. The latter apk may belong to

a legitimate app that the user would download from an alternative Android app

market. Using this method, during apk installation, the root permissions that the

legitimate app would ask from the user for performing its tasks would also be given

to the spyware after installation. Another way to propagate SnoopyBot is to make

an on-the-fly bundle and inject the spyware when a user makes a request to the Exit

node controlled by the attacker for an .apk download. Nevertheless, this method

augments the chances of the malevolent Exit node to be detected by Tor. It is

also implied that the infection of specific users is considered more difficult than

spreading SnoopyBot among the public at large.

• Currently, SnoopyBot works only with Orweb. However, there are several other

web browsers that can be used in cooperation with Orbot, and thus SnoopyBot

needs to be modified to co-work with each one of them.

• The user’s smart device must be rooted. This condition is necessary for the spyware

to perform its actions.

Basically, to cope with the attack described in [76], defenders need to take precautions

for both the Exit node and the mobile device. This is because the only thing the attack

does is to build a covert channel between the mobile device and the Exit node, which are

both controlled by the attacker. Regarding the Exit node, traffic sniffing is very hard to

detect; practically, there is no foolproof way for the Tor network to tell if an Exit node

monitors traffic. This means that the only effective countermeasure against a rogue Exit

node is to only use Exit nodes that are known to be trusted, at least up to a certain

degree, e.g., by consulting [84].

SnoopyBot requires a rooted device, which in turn means that a non-rooted device is

invulnerable. If the mobile device is rooted, then the settings for Orbot can be stored in

29

Chapter 3. Related work 30

an encrypted database to avoid being manipulated by an evildoer. Barring the situation

that a great number of malicious Exit nodes exist, if SnoopyBot cannot access Orbot

settings, the probability for a mobile user to get infected by SnoopyBot and use a ma-

licious Exit node is tiny. Naturally, another defensive measure is to alert the end-user

upon detecting any unprovoked change to the mobile browser settings. This would be

enough to raise the user’s suspicion, making them to initiate a device scan for malicious

apps. Moreover, the user should avoid installing any app that is not in, say, the Play

Store and/or its origin is vague.

Lastly, provided that there is an Intrusion Detection System (IDS) installed in the device

(or on the same network with the mobile device), there should be an alert for any internal

IP that queries websites for obtaining the user’s public IP, especially if it is a frequent

request from the same internal IP.

3.3.3 Discussion

As already mentioned, Tor’s major weakness is the Exit node of each circuit, as all traffic

that passes through this node is potentially unprotected. This shortcoming attracted

several researchers to develop methods of tracking and avoiding malicious Exit nodes.

However, as with SnoopyBot, this is hard to achieve in cases where the Exit node just

silently logs the traffic passing via it, leaving no other trace of its privacy-invasive activity.

In this case, countermeasures need to be taken on the client side as well. For instance,

the apps that provide access to Tor must encrypt their settings or use a secure database

for storing them. In any case, however, the root cause of the Exit node’s problem is

not because of the internal workings of Tor, but to end-users not employing HTTPS

connections or other means of protection at the application layer. This problem is even

aggravated by badly configured web browsers or other applications and the rise of privacy-

invasive software, as in our case.

Moreover, one of the most prominent security issues that can occur during Tor installation

on, e.g., a smartphone is the root permissions Tor requires to anonymize outgoing traffic

stemming from any application other than Tor’s official browser. This requirement leads

many users to root their smart device, which, as a direct consequence, enables any

malicious application to gain access to critical files on the Android system.

30

Chapter 4

Complete SIP message obfuscation

4.1 Introduction

As already mentioned in Section 1, the demand for private communications is high among

businesses, activists, journalists, military, and law enforcement [85]. Nowadays, telecom-

munication providers increasingly shift their business model towards VoIP communica-

tions which are more flexible and inexpensive, but with more security and privacy issues

compared to traditional communications. One of the most prominent protocols sup-

porting multimedia services is the SIP [86], which is an application layer, text-based,

signaling protocol responsible for session management. With reference to Section 2.2,

despite its popularity, SIP still suffers from privacy issues, two of the most notable of

which are (a) user identity, and (b) IP address disclosure. Simply put, since SIP sig-

naling messages are in plaintext, an eavesdropper can acquire sensitive data such as:

communicating parties’ names and affiliations, IP addresses and hostnames, and SIP

Uniform Resource Identifiers (URIs). The SIP header fields that reveal these details are

mainly From, To, Contact, and Call-ID. An example of a SIP message header format

is presented in Table 4.1; here, some data like branch and tag values were omitted for

readability.

Apart from SIP signaling messages, the architecture of the protocol per se is also another

source of problems. That is, SIP can be employed in either client/server or P2P archi-

tectures; in both cases the participation of intermediary servers complicates the privacy

problem. Previous work on these issues [87, 88] has shown that several header fields

31

Chapter 4. Complete SIP message obfuscation 32

Table 4.1: SIP message header format

INVITE sip:al@agn.org SIP/2.0
Via: SIP/2.0/UDP pc8.agn.org;branch=...
Max-Forwards: 70
To: Al <sip:al@agn.org>
From: Geo <sip:geo@agn.org>;tag=...
Call-ID: a84b4c76e66710@pc8.agn.org
CSeq: 314159 INVITE
Contact: <sip:geo@pc8.agn.org>
Content-Type: application/sdp
Content-Length: 142

can provide private pieces of data to eavesdroppers. Although for some data privacy

protection is straightforward if the user selects not to provide them, other header data

cannot be omitted since they are needed for the correct routing of SIP messages to their

final destination.

Ideally, any complete anonymity solution for SIP should be designed and provided in a

cross-layer manner. That is, while SIP operates at the application layer, several other

sensitive information regarding its signaling inevitably leak from lower layers. For ex-

ample, while it is possible to conceal the IDs of the communicating parties by applying,

say, a pseudonymity scheme to Via and From headers, the IP addresses of both ends are

available to an observer by just tracking the headers of the IP packets conveying SIP

messages.

In line with Obj. 1 defined in Section 1.3, this shortcoming motivated us to think of

taking advantage of the services of a generic anonymization system with the aim to apply

a holistic anonymity solution for SIP. On the one hand, such a solution seems promising

as anonymization systems like Tor [89] are self-reliant, i.e., normally their operation does

not hinge on the protocols of upper layers, hence they can be straightforwardly combined

with them. Moreover, as discussed further in Section 4.2.2, such a system can protect

SIP signaling from a plethora of other type of attacks including timing and collusion

ones. However, on the negative side, taking Tor as an example, the problem with SIP

is that currently Tor only supports TCP for its transport layer. As a result, although

RFC 3261 [86] requires all SIP entities to mandatory implement both UDP and TCP,

many real-world VoIP applications rely solely on UDP for latency reasons. Therefore,

at least for the time being, this is a serious impediment for VoIP users to enjoy strong

anonymity to real-time voice communication. Tunneling of the UDP traffic through Tor

does not really solve this issue because the traffic would be encapsulated in TCP. The

32

Chapter 4. Complete SIP message obfuscation 33

latency induced by Tor is also known to be quite heavy, as the system relays and mixes

its traffic via multiple nodes.

And if so, to which network hops should be preferably Tor activated for achieving a

fair balance between the level of anonymity and the time penalty introduced? Moreover,

what is the additional delay if one considers to even anonymize network links that cannot

be covered by Tor (think of the first hop between the caller and the outbound SIP proxy

or the registrar).

To shed light on the aforementioned questions, we implemented a proof-of-concept

SIP-over-Tor system and conducted measurements to assess its performance in terms

of service times. Additionally, we combine this system with a pure application layer

anonymization solution for SIP to make a decision whether an end-to-end preservation

of anonymity is affordable. The results we obtained seem quite promising, showing a la-

tency in the vicinity of 2 secs across all the tested scenarios. It should be noted here that

our solution, as well as the aforementioned delay, concerns SIP signaling only; namely,

media protection should be considered separately.

As discussed in Section 4.2, previous work in the same topic is fragmentary and has

only touched upon these issues, not considering SIP at all. Therefore, to the best of

our knowledge, this is the first work that elucidates on the foregoing issues and provides

real-life results that can be used as a reference towards building truly anonymous VoIP

systems.

4.2 SIP Torification

This section details how the combination of PrivaSIP [9, 10] with Tor can be highly

profitable in terms of preserving end-users’ privacy.

4.2.1 PrivaSIP and PrivaSIP over Tor

PrivaSIP provides an advanced level of privacy compared with plain SIP; however, due

to its application-oriented nature, it is not a complete solution. The main issue is that,

while real user IDs are concealed, the IP addresses of the communicating peers are still

visible. This is because the IP addresses are needed for the proper SIP message routing.

33

Chapter 4. Complete SIP message obfuscation 34

A secondary issue is that end-users’ network domains are visible for the same reason,

but this is rather minor since domains can also be derived from IP addresses.

The above-mentioned issues of PrivaSIP motivated us to employ Tor to alleviate them.

In the rest of this chapter, the term “PrivaSIP” refers to PrivaSIP-2 which obfuscates

both the caller and the callee’s real IDs. The advantages of using PrivaSIP over Tor are

briefly the following; we will further elaborate on them later in this section:

• Third parties cannot mount traffic analysis attacks.

• The real user ID is not leaked to intermediate SIP proxies.

• Log files in intermediate SIP proxies do not contain the real user’s ID.

• The real caller ID is unknown to the callee.

• The real caller ID is unknown to the callee’s proxy.

• The real callee ID is unknown to the caller’s proxy.

• User authentication and accountability, say, for billing purposes, are still supported.

A prototype architecture of our proposed scheme is shown in Figure 4.1. Here we assume

that Client A resides in a corporate network and their SIP proxy is placed in the same

local network as well. Therefore, it is not necessary to protect this communication with

Tor; we do protect, however, the real IDs of the end-users from other corporate users by

employing PrivaSIP. The traffic data (a) between Proxy A and Proxy B, and (b) between

Proxy B and Client B, are protected from third parties by Tor. To avoid the Tor exit

node eavesdropping issue as explained in Section 3.3, it is required that Proxy B and

Client B act as Tor relays, so that no plaintext SIP messages are transmitted through

the Internet.

One major question related to our choice of protocols is why someone would use PrivaSIP

over Tor and not plain SIP. The short answer is because PrivaSIP offers a more advanced

level of privacy. First off, since the first hop in the path (i.e., between the caller and

the proxy in the corporate network) is not protected by Tor, PrivaSIP assures that the

real IDs of the communicating parties are not revealed to the rest of the corporate users.

Tor protects the traffic data from third parties; with PrivaSIP we also hide the real ID

34

Chapter 4. Complete SIP message obfuscation 35

Figure 4.1: Prototype PrivaSIP over Tor architecture

of the caller from the callee. Last but not least, SIP messages are delivered as plaintext

to intermediate SIP proxies; by employing PrivaSIP we allow their proper routing while

protecting the real IDs of the communicating parties at the same time. This also has an

implication on proxies’ log files, where no real user IDs are stored. This works in favor

of unlinkability as well, i.e., certain SIP transactions cannot be correlated in such a way

that can be traced back to the same user.

Apart from the aforementioned advantages, the main benefit of our proposal is the protec-

tion of traffic data offered by Tor. Essentially, Tor solves the inherent issues of PrivaSIP

as presented in Section 2.3. Thus, it prevents traffic analysis attacks by obfuscating

traffic data, including SIP end-users’ IP addresses and domain names. A more detailed

analysis of Tor’s benefits can be found in Section 2.4.

Another point of discussion is related to the deployment of the proposed solution and

its compatibility vis-à-vis existing SIP infrastructures. Regarding PrivaSIP, some modi-

fications are needed in SIP proxies and user clients in order to properly encrypt/decrypt

obfuscated user IDs; more information on this point can be found in [9, 10]. Tor, on the

other hand, acts as a proxy, so it can be transparently utilized by end-users and servers.

It is, however, needed to be installed and configured so that the callee’s SIP proxy and

client act as Tor relays.

35

Chapter 4. Complete SIP message obfuscation 36

4.2.2 Privacy analysis

As discussed in the previous section, the qualities of Tor can be of great value in

SIP. Specifically, enabling SIP over Tor communications can lead to a robust cross-

layer privacy preserving system capable of dealing with a variety of major privacy at-

tacks [89, 90, 91, 92]. First off, message size types of attack are avoided. With reference

to Section 2.4, this is because Tor mandates the use of fixed-length cells. As a result,

an observer is unable to infer any usable information when examining a cell’s length.

Moreover, due to the use of encryption, no one is in position to change a cell’s coding

when in transit through the Tor network. This particular quality also works in favor of

protecting from packet context oriented attacks. Simply put, the IP address, application

port, etc., included in the TCP header remain well-hidden. In any case, all connections

in Tor use TLS link encryption based on ephemeral keys. This way, connections between

entities enjoy perfect forward secrecy, preventing medication of data while in transit. For

the same reason, attacks aiming at masquerading an OR are also considered unpractical.

In addition, observers are blocked from spying on which circuit a given cell is intended for.

Periodical and independent re-keying of TLS ephemeral keys imposed by Tor reduces the

impact of a potential key leak. Attacks based on collusion of nodes are also considered

highly unpractical. This stands true as all information entering the Tor network is routed

through a private network pathway of ORs (circuit) where each relay only knows the

previous and the next relay. Lastly, Tor is known to generally defeat privacy attacks based

on message timing. In fact, to our knowledge, this issue has been already investigated

in [93, 94, 95, 96]. Specifically, the work in [93] argues that a timing attack in Tor is

feasible under the global attacker model. However, to be profitable, this attack requires

the aggressor to be able to eavesdrop on all network nodes. Moreover, the authors

in [94, 95] bring into the foreground some viable attacks under the weaker threat model

(no global adversary).

These attacks however are known to be repelled if using supportive protection schemes

such as adaptive padding or the insertion of cover traffic in a way that the network

cannot perceive between the different network streams [94, 95, 96]. Last but not least,

Tor gives the opportunity to the end-user to also join Tor and become an OR by itself

(either a relay or a bridge). This situation presents two significant advantages. First, it

is anticipated to gradually reduce the latency perceived by all the nodes, and also results

36

Chapter 4. Complete SIP message obfuscation 37

in a safer network. Secondly, it would end up in a situation in which a malicious user

would be unable to distinguish which connection is initiated as a user and which as an

OR.

A last remark here, also succinctly pointed out in the previous sections and in Chapter 2,

is that the boundaries of the system do not enjoy protection by Tor. That is, the endmost

communication link between the last OR and the callee cannot be protected, therefore

an ill motivated entity could eavesdrop on the packet content. In our case, this problem

is tackled by requiring the callee’s SIP proxy and client to act as Tor relays so that the

packet content is not revealed to third parties. For the other end of the communication

path, i.e., between the sender and the OP, it is argued that no protection is required as

an OP runs locally in the caller’s machine. Overall, it can be said that the synergistic

operation of PrivaSIP with Tor assembles a powerful solution that achieves the protection

of end-users’ privacy in a cross-layer fashion. Naturally, PrivaSIP could be easily co-work

with other privacy solutions for TCP/IP layer, including MorphMix [97] and Tarzan [98]

ones.

4.3 Testbed and performance evaluation

Since Tor is known to cause long delays, our biggest concern is whether the latency in

the proposed system is affordable from the user viewpoint. The current section presents

the architecture used in our experiments and shows that the delay perceived by the end-

users is relatively low, within the range of 1.8 to 2 sec in the worst case. This time

penalty is in absolute relation with the protection of users’ privacy, more specifically the

preservation of their anonymity. As a reference, in previous works [9, 10] the delays were

approximately 0.5 sec for plain SIP and 1.2 sec for PrivaSIP-2-RSA. Those measurements,

however, were taken with a different hardware setup and server traffic and cannot be

directly compared with the present results.

4.3.1 Testbed

The architecture used for the experiments is a simplified interpretation of a real-life case,

described in the following and depicted in Figure 4.1. Alice (Client A) wants to call

Bob (Client B). Alice is registered to a network domain served by SIP Proxy A, which

37

Chapter 4. Complete SIP message obfuscation 38

is situated within a corporate network. Since Alice and SIP Proxy A belong to the same

network, which is considered trusted in the normal case, we avoid using Tor on this link.

However, Tor is employed outside the corporate network, that is, both between the two

SIP proxies, and SIP Proxy B and Bob.

First, we describe the underlying hardware used in our testbed. All servers and clients

were hosted on Virtual Machines (VM). To host those VMs, we chose Okeanos1, a cloud

service provided for the Greek Research and Academic Community. With Okeanos, we

had the ability to create VMs with dual-core processors, 4 GB of RAM, and 60 GB

storage. Okeanos provides high speed Internet connection to its users which can reach

up to 520 Mbps. There is also the possibility to choose between numerous operating

systems; for our scenarios we chose CentOS 6 for the servers, and Ubuntu 12.04 for the

clients.

Both SIP proxies were based on SER 0.9.62, and modified accordingly as in [9, 10] to

support PrivaSIP. For traffic generation on the caller side, IPp3 was used, along with

sipsak4. On the callee side, a modified User Agent (UA) that supports PrivaSIP was

used, based on Twinkle software phone5.

4.3.2 Results

This section describes the procedures followed and the metrics used during the exper-

iments, as well as the results obtained. First, Bob’s UA acting as the caller sends an

INVITE message using PrivaSIP-2 to conceal both the caller’s and the callee’s IDs using

RSA. As a consequence, the caller first receives back a 100 (TRYING) message followed

by a 180 (RINGING) signifying that Alice’s phone is ringing. In this context, we measure

the time starting from when the INVITE was sent until the RINGING message is being

received back at the caller side. This network time includes the operations needed for

PrivaSIP, as well as delays imposed by Tor. We should note here that we take the worst

case scenario for Tor delay. Since Tor utilizes the same circuit for sessions that take place

within the same 10 min or so, we force each new call to be placed over a new circuit.
1https://okeanos.grnet.gr
2http://www.iptel.org/ser
3http://sipp.sourceforge.net
4http://sourceforge.net/projects/sipsak.berlios
5http://www.twinklephone.com

38

Chapter 4. Complete SIP message obfuscation 39

For the sake of comparison, we measured call delays for two scenarios: (a) plain SIP over

Tor, and (b) PrivaSIP over Tor. These two scenarios do not have the same level of privacy

protection, so they cannot be directly compared. The reason we chose them is to identify

the sources of delays, since more than one protocols are involved. In each scenario we

followed the aforementioned procedure and 100 calls were sequentially produced with

the help of SIPp tool. Using Wireshark on the caller’s side, we were able to compute all

call delays. The derived values were rounded to one decimal digit and the frequency per

value was counted.

For the plain SIP scenario, the results are summarized in Table 4.2 and illustrated in

Figure 4.2. As it is easily observed from the table, the majority of the delays span

between 0.9 and 1.1 sec. On the other hand, for the PrivaSIP scenario, the results are

presented in Table 4.3 and Figure 4.3. In that case, the majority of the delays are

between 1.8 and 2 sec, leading to the conclusion that the perceived delay from the end-

users while waiting for the call to be established is relatively low. What these results

show us is that PrivaSIP together with SIP operations adds a delay of approximately 1

sec to the whole scheme, and the rest is caused by Tor. Even if the plain SIP scenario has

better performance, the one employing PrivaSIP is preferred, since it comes with more

advanced privacy preserving features. In any case, both these methods can be offered to

the end-users in an opt-in basis.

4.4 Discussion

Few will argue that the preservation of user anonymity is an important issue which

pertains to almost any protocol or technology deployed in the wired or wireless Internet.

Table 4.2: Range of call delays for plain SIP over Tor

Delay (sec) Frequency

0.6 3
0.7 5
0.8 2
0.9 27
1 43
1.1 18
1.2 1
1.3 0
1.4 1

39

Chapter 4. Complete SIP message obfuscation 40

0

10

20

30

40

50

0.6 0.8 1.0 1.2 1.4

Fr
eq

ue
nc
y

Delay (sec)

Figure 4.2: Frequency of call delays for plain SIP over Tor

Table 4.3: Range of call delays for PrivaSIP over Tor

Delay (sec) Frequency

1.5 1
1.6 0
1.7 3
1.8 26
1.9 37
2 27
2.1 0
2.2 1
2.3 0
2.4 2
2.5 2
2.6 0
2.7 0
2.8 0
2.9 0
3 1

When it comes to VoIP, it is for sure that not only a broad category of users would

highly appreciate anonymous communications, but also several providers would value

such a service towards expanding their market share. Unfortunately, all works proposed

so far in the literature – either standardization efforts or custom-made solutions – tackle

40

Chapter 4. Complete SIP message obfuscation 41

0

10

20

30

40

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

Fr
eq

ue
nc
y

Delay (sec)

Figure 4.3: Frequency of call delays for PrivaSIP over Tor

this problem in an unsatisfactory way. Some of them focus solely on the application layer,

thus neglecting sensitive data leaking from lower layers, while others propose inflexible

or difficult to deploy mechanisms that either require external infrastructures or are in

direct contrast with user accountability. On the other hand, secure tunneling of VoIP

traffic by means of, say, a TLS tunnel is considered mostly unpractical.

Compelled by this fact, we came with the idea of taking advantage of the well-known

Tor anonymization overlay to achieve complete SIP message privacy. While this may

be seen straightforward, it is quite tricky because the majority of SIP apps are designed

to operate over UDP for increased performance. Tor on the other hand works solidly

over TCP and introduces additional delays due to the use of public-key cryptography,

complex segmentation, and routing of its messages via a set of nodes. Therefore, the

main impediment here is performance in terms of service times. In this context, our

experiments employing different setups showed that SIP over Tor is quite affordable, as

it adds a time penalty that fluctuates between 1.8 and 2 sec in the great majority of

cases. Overall, we think that the extra security and privacy gains that Tor brings along

compensate for this penalization, which, after all, concerns the establishment of the call

and not the multimedia session itself.

41

Chapter 4. Complete SIP message obfuscation 42

The work involved with the present chapter can be used as a reference towards building

anonymization solutions that consider privacy in a cross-layer fashion. This is not only

bound to VoIP applications, but also for other protocols as that in [99], where its authors

have already identified this need and provide the necessary background towards a full-

fledged solution.

42

Chapter 5

OnionSIP: Preserving Privacy in

SIP with Onion Routing

5.1 Motivation

The need for ways of communication with lower cost and less maintenance than tradi-

tional ones based on PSTN, led most users and organizations to turn their attention to

more flexible solutions, like VoIP. The most concrete VoIP benefit that is easily noticed

vis-à-vis PSTN is the cost savings, although the high scalability and many free added-

value features cannot be ignored either. Recall from Section 4.1 that one of the most

prominent VoIP protocols offering multimedia services is SIP [100]; it is an application

layer, text-based protocol, used for signaling and managing multimedia sessions. Despite

its popularity, SIP still suffers from basic privacy weaknesses and security issues, e.g.,

information about the users participating in a voice call can be easily exposed to a third

party user.

Specifically, with reference to Sections 2.2 and 4.1, due to its text-based nature, SIP

suffers from two main weaknesses: the disclosure of (a) user identities, and (b) user

IP addresses. Overall, the main reason why SIP is not considered a secure protocol is

because the contents of each SIP message are transferred in plaintext, rather than being

encrypted in any way. Having that in mind, any malicious user or intermediate proxy,

which is able to read the SIP message contents, can reveal sensitive information about

the users participating in the call. Specifically, a malicious user may reveal: (a) the

43

Chapter 5. Preserving Privacy in SIP with Onion Routing 44

caller’s name, username, and IP address, and (b) the callee’s name, username, and IP

address. As already mentioned in Section 4.1, these pieces of information derive from the

unprotected From, To, Contact and Call-ID fields. As with Figure 4.1, an example of

a typical SIP message is shown in Table 5.1; here some data, like branch and tag values,

were omitted for readability.

INVITE sip:alfakis@agn.org SIP/2.0
Via: SIP/2.0/UDP pc8.agn.org;branch=...
Max-Forwards: 70
To: Alex <sip:alfakis@agn.org>
From: George <sip:geokarop@agn.org>;tag=...
Call-ID: a84b4c76e66710@pc8.agn.org
CSeq: 314159 INVITE
Contact: <sip:geokarop@194.252.165.10>
Content-Type: application/sdp
Content-Length: 142

Table 5.1: SIP message header format

Apart from the fact that SIP messages are transferred in plaintext format and user IPs

are exposed through SIP header fields, IPs are also disclosed from packet exchange on

the network layer. In that case, any observer can obtain the IP addresses of both ends,

just by tracking the headers of the IP packets conveying SIP messages. Thus, it is

meaningless to try concealing any IP address appearing in SIP header fields, for instance

the ones in From and To fields. Obfuscating only the application layer information would

have no actual effect, as the observer can easily correlate a message leaving the caller

with another message that is reaching the callee.

Although standard security protocols, like IPsec and TLS, constitute an effective solu-

tion for initializing a VoIP session securely, they come with significant implementation

demands, while call setup delays are not negligible either. In [101], the delay of a SIP call

setup is measured in two scenarios: (a) using plain IP, and (b) using IPsec. In SIP over

plain IP, delays are between 0.5 and 1 sec, while the utilization of IPsec for initiating a

call can approach a delay of 7.5 seconds, using the encryption scheme only. The intro-

duced delays concern the SIP protocol and occur only once during session establishment,

without affecting the actual call data, which are exchanged in a later phase.

The lack of a truly efficient and easily deployable privacy solution for SIP motivated us

to search for a different approach to deal with the user identity and IP address disclosure

issues. Our interest was spurred by how a VoIP protocol, like SIP, would act if an

anonymizing network intervened. Our research started from the two most widespread

44

Chapter 5. Preserving Privacy in SIP with Onion Routing 45

anonymizing networks, Tor [28] and I2P [102]. At first, Tor offers the ability to a user

to use it as a SOCKS proxy [103], making it a suitable solution for anonymizing SIP

traffic. On the other hand, as I2P works quite different from Tor, one will need an

outbound proxy to communicate with non-I2P users. At the moment, built-in SOCKS

proxy support is not available in I2P, so the only alternative way to anonymize traffic is

by using its HTTP proxies or creating a SOCKS client tunnel and forward any traffic to

I2P using a third-party SOCKS proxy.

Even though we examined other solutions, apart from Tor and I2P, they cannot support

SIP anonymization with reasonable deployment effort. Some are in development or in

early experimental stage, like Tarzan [104] or Riffle [51], while others do not provide

an applicable proxy to pass SIP traffic through. The above-mentioned facts restrict the

diverse techniques to anonymize SIP traffic.

In search of a simpler and more efficient solution, and in accordance to Obj. 2 of Sec-

tion 1.3, we decided to design and implement an encryption-based privacy-preserving

scheme, called “OnionSIP”, where all SIP sensitive fields are encrypted. The same in-

formation can later be recovered only by authorized parties, i.e., the proxies of each

user, as well as the users participating in the call. In the proposed onion-routing based

scheme given in the present Chapter, sensitive information contained in a SIP message is

encrypted in a multilayer fashion, capitalizing on the onion routing concept [105]. This

way, inbound and outbound SIP messages cannot be correlated, as long as the appli-

cation layer fields are hidden. However, traffic analysis could still be possible through

various techniques, including timing attacks. In order to defend against such attacks,

numerous solutions have been proposed in the literature. In [106], the authors propose

adding dummy traffic to hide the actual amount of the original traffic, while others [107]

suggest the use of constant rate padding between each hop to protect users anonymity.

Another approach [108] used a random delay in each message for preventing the execution

of timing or similar kind of attacks.

For the scheme contributed by this chapter, we implemented two different types of sce-

narios. In the first, public-key encryption is used for field protection, based on SIP

proxy server certificates, while in the second symmetric-key encryption is used. We com-

pared our solution with Tor, I2P, Orbot [109], which is a smartphone proxy app allowing

traffic redirection through Tor, and a previous approach of ours called PrivaSIP over

45

Chapter 5. Preserving Privacy in SIP with Onion Routing 46

Tor [52] based on Tor network and PrivaSIP [9, 10]; recall that the latter is described

in Chapter 2. Briefly, the experimental results presented in Section 5.5, suggest that

PrivaSIP over Tor is less efficient than plain SIP over Tor by almost 1 sec. However, only

the former protects user’s ID from intermediate SIP proxies; thus the trade-off here is

more delay for more privacy. Overall, PrivaSIP over Tor is still affordable, since it takes

around 2 secs for a call to be established. OnionSIP, on the other hand, presents better

performance from related solutions, while at the same time offers more advanced privacy

protection compared to PrivaSIP over Tor by not exposing communicating domains to

intermediate proxies.

5.2 Attacker’s model

Our proposal focuses on privacy protection of SIP signaling, thus, in the below attacker’s

model we only consider privacy-related attacks. As a communication model, we assume

the traditional SIP trapezoid, where two users communicate using two intermediate SIP

proxies. We identify two main classes of attackers:

• SIP proxies: While SIP proxies are system entities, they cannot be completely

trusted. That is, a mobile user can utilize an outbound proxy that does not belong

to their service provider. Here, we argue that SIP proxies follow the honest-but-

curious model. According to this model, the proxies are assumed not to drop or

modify messages routed through them, allowing the system to run smoothly, while

at the same time try to infer private information from the exchanged messages.

This way, the proxies, as well as the entities who control them, can mount traffic

analysis attacks and get access to private user information, including caller and

callee usernames, IP addresses, and network domains.

• Third parties: This class concerns external attackers that are neither system

entities nor participate in the call. As SIP is a text-based protocol and messages

are sent in plaintext, third parties can eavesdrop on all messages that are exchanged

among users and SIP proxies. These type of attackers can perform traffic analysis

attacks and access caller and callee usernames, IP addresses, and network domains.

The difference from the previous class is that third parties can also modify or drop

SIP messages in order to mount Denial-of-Service or call hijacking.

46

Chapter 5. Preserving Privacy in SIP with Onion Routing 47

5.3 OnionSIP

As already pointed out, SIP is a protocol whose messages are transferred in plaintext,

thus, any third party is in position to identify the caller, the callee, as well as their

locations. To protect these sensitive pieces of information, in OnionSIP we encrypt any

fields that should be hidden from any parties that are not authorized to read. Namely,

any user or proxy should be able to read only the information needed to make the call

establishment possible. Our proposal is a multilayered encryption scheme, similar to

onion-routing, which gives the ability to every node to decrypt the appropriate fields

and forward the message to the next node, based on the information it decrypted. The

above idea is based on the fact that intermediate proxies in a SIP path can forward

packets without problems, although unused sensitive information are hidden from their

sight. Similarly to other anonymity networks, OnionSIP’s degree of anonymity is highly

dependent on the number of gateways that are used between each party. The more the

gateways, the higher the level of privacy.

With reference to Chapter 4, OnionSIP is a novel scheme which constitutes a more

efficient solution than the previously proposed PrivaSIP over Tor [9, 10], while at the

same time preserves the high level of privacy and anonymity the latter offered, i.e.,

protecting call metadata even from intermediate proxies. In contrast to PrivaSIP over

Tor, OnionSIP does not use any third party anonymization system, like Tor. Instead,

to achieve user anonymity and privacy, OnionSIP hides the content of each SIP message

individually by encrypting the necessary fields and not the whole message.

To choose which fields are sensitive and should be protected, we first consider which

ones contain useful information about the call or the users participating in it. First

off, the INVITE URI contains information about the final user, i.e., the username and

the destination domain. In addition, From field contains information about the caller,

while To field holds the “logical recipient” of the message, which may or may not be

the ultimate recipient of the request. These fields include the username, or in some

cases even the real name of the user, as well as the domain name of their SIP Registar.

Moreover, the Call-ID is used for offering uniqueness to a session. Apart from the fact

that Call-ID could help an observer correlate two different SIP messages, it also includes

the sender’s IP address, making it possible for the eavesdropper to identify every node

47

Chapter 5. Preserving Privacy in SIP with Onion Routing 48

that is involved in the session. Last but not least, the Contact field is used to represent

a direct route to contact the caller. All the above fields are considered sensitive, as they

can easily expose information about the call, therefore they should be protected. For the

proposed OnionSIP system, we apply two different encryption schemes: an asymmetric,

and a symmetric one.

5.3.1 Asymmetric OnionSIP

The first variation of our proposal, also called OnionSIP-RSA, makes use of public-key

encryption to encrypt the appropriate fields of SIP messages. It is assumed that the caller

already possesses the public keys of all the network hops in the path of the call towards

the callee, including the callee’s public key. To explain how our framework works, we

assume that Alice, registered to SIP Proxy A, wants to call Bob, who is registered to

SIP Proxy B, as depicted in Figure 5.1. Sensitive fields in the INVITE message are

being encrypted by Alice in layers in such a way that each party can decrypt one layer,

obtaining information for the next hop only. In the following, we present the steps that

take place for the call establishment:

Step 1: Alice concatenates INVITE, From, To, Call-ID and Contact fields forming

the Layer1 message shown in Figure 5.1. Then, she encrypts it with Bob’s

public key (KC).

Step 2: Alice appends the string “To: Bob@proxyB.org” to this encrypted message

and encrypts the result with the public key of Proxy B (KB).

Step 3: Alice concatenates the string “To: anon@proxyB.org” to the last encrypted

message and encrypts the result with Proxy’s A public key (KA).

Step 4: The encrypted message is placed in the message body of the SIP message, while

SIP header fields are all replaced with anonymous SIP URIs, for example “To:

anon@hidden.org”.

Step 5: Alice forwards the resulting SIP message to its own proxy, i.e., Proxy A.

Step 6: Proxy A decrypts the message it finds in the SIP message body using its private

key (KA-1).

48

Chapter 5. Preserving Privacy in SIP with Onion Routing 49

Step 7: Proxy A replaces, in the SIP message it received, the header To with the de-

crypted value, i.e., “To: anon@proxyB.org”; this way it knows the next hop

which is Proxy B without knowing the final destination, i.e., Bob.

Step 8: Proxy A replaces the SIP message body with the decrypted message without

including the “To: anon@proxyB.org” value.

Step 9: Before forwarding the INVITE message, Proxy A generates a TRYING message

and encrypts any sensitive information contained in it, using Alice’s public key,

and sends it back to her.

Step 10: Similarly, Proxy B decrypts the message it finds in the message body, using

its private key (KB-1), replaces the To field with “To: Bob@proxyB.org”, and

also replaces the message body with the decrypted message, responding back

to Proxy A with an onion-encrypted TRYING message.

Step 11: Finally, Bob decrypts the message it finds in the SIP message body with his

own private key (KC-1), where he can find all the necessary information about

the caller.

Step 12: If Bob needs to send a reply, he follows the same concept and encrypts sensitive

information using the public keys of the same path in the reverse order or a

totally different path for enhanced privacy.

The above procedure is presented in Figure 5.1. As one can easily observe, the domain

of the To header field in Msg. 1 is not hidden, as it contains information about the next

hop.

5.3.2 Symmetric OnionSIP

In this variation, also called OnionSIP-AES, the OnionSIP framework works as men-

tioned above, with the main difference being that the parties that need to communicate

with each other already share a symmetric key to encrypt SIP message contents. We

assume that the involved parties already have digital certificates and the caller has earlier

established a different session key with each of the parties along the path to the callee,

i.e., Alice should negotiate session keys with Proxy A, Proxy B, and Bob during the

registration process by means of, say, an authenticated Diffie-Hellman handshake. This

49

Chapter 5. Preserving Privacy in SIP with Onion Routing 50

Figure 5.1: Example of anonymizing a SIP INVITE message

50

Chapter 5. Preserving Privacy in SIP with Onion Routing 51

implementation is close to how modern anonymization networks using onion routing (like

Tor) work, as they use symmetric encryption to protect traffic traversing through each

node of the chain.

5.3.3 Key exchange

The correct operation of OnionSIP requires that Alice and Bob exchange their public

keys or agree to a common key. This kind of authentication and key exchange can lead

to privacy leakage to an adversary that observes communicating IP addresses; however,

apart from the direct exchange of keys, there are alternative solutions that do not breach

user privacy. First, Alice can acquire Bob’s certificate from a Lightweight Directory

Access Protocol (LDAP) server or a Certificate Authority (CA) and vice versa. This is

a common solution that can occur whenever two users need to communicate with each

other for the first time. Moreover, when a user receives a certificate, the latter can be

stored for future transactions, as long as the key is considered long-termed. In the case

of symmetric keys, a Key Distribution Center (KDC) can be used in order to avoid direct

communication; these session keys can also be stored for a limited period and used for

more than one call.

As mentioned in Section 5.1, a comparison was conducted among six candidate solutions,

including the solution proposed in this chapter (both asymmetric and symmetric Onion-

SIP), SIP-over-I2P, Orbot, SIP-over-Tor, and PrivaSIP-over-Tor, with respect to delay.

In our experimental results given in Section 5.5, when it comes to OnionSIP, we have not

considered key exchange/agreement delays, as a plethora of parameters and conditions

could affect the key exchange phase in different ways. For instance, some keys can be

stored during previous sessions and reused in future ones. In addition, Tor’s performance

is highly dependent upon various parameters of each node that is part of the final circuit,

like the location and the bandwidth of each node. As the authors in [110] mention, it

usually takes almost 4 sec in average for a Tor client to establish a circuit. This is a

significant delay, meaning that in a real-world application an established circuit would

be reused, leaving the key agreement procedure out of the session establishment.

51

Chapter 5. Preserving Privacy in SIP with Onion Routing 52

5.4 Implementation

As presented in Table 5.2, for the first five candidate solutions of our comparison, we uti-

lized Kamailio Server v.4.4 [111] on Cloud-based VM’s hosted on our own infrastructure

for SIP Proxies, while SER v.0.9.6 was used on the PrivaSIP-over-Tor, given in [52]. The

Kamailio servers were installed on Ubuntu 14.04. Each VM, of both clients and servers,

incorporated 4 GB RAM, an Intel Xeon E5-2690 processor and 60 GB of SSD storage.

Each SIP client, behaves differently to each of the anonymization systems, therefore we

exploited different clients for each scenario, depending on which one worked. We chose to

use Twinkle v1.4.2 [112] for both Tor and I2P, while for Orbot we used CSipSimple [113]

on the caller’s side and Sipdroid [114] on the callee’s one. Finally, for the OnionSIP-

AES and OnionSIP-RSA schemes, we used Jitsi v2.9 for both caller and callee. The

above software characteristics are summarized in Table 5.2, while Table 5.3 presents the

hardware characteristics of each host used in our experiments.

In Table 5.4 we make a layered representation of the different platforms we examined

in the context of OnionSIP. Specifically, we present each system we used and in which

OSI layer it belongs, along with the type of each system. OnionSIP along with the two

SIP clients are both sitting on the application layer. Tor and its mobile version Orbot

are using a SOCKS proxy to forward traffic through the onion-routing network, so they

both operate on the Session Layer [115]. On the other hand, I2P uses its own API to

No. Scheme name Proxy A Proxy B Client A Client B

1 OnionSIP-AES Kamailio
v.4.4.0

Kamailio
v.4.4.0

Jitsi v.2.9 Jitsi v.2.9

2 OnionSIP-RSA Kamailio
v.4.4.0

Kamailio
v.4.4.0

Jitsi v.2.9 Jitsi v.2.9

3 Tor Kamailio
v.4.4.0

Kamailio
v.4.4.0

Twinkle
v.1.4.2

Twinkle
v.1.4.2

4 I2P Kamailio
v.4.4.0

Kamailio
v.4.4.0

Twinkle
v.1.4.2

Twinkle
v.1.4.2

5 Orbot Kamailio
v.4.4.0

Kamailio
v.4.4.0

CSipSimple
v.1.02.03

Sipdroid
v.3.0

6 PrivaSIP over Tor SER v.0.9.6 SER v.0.9.6 Twinkle
v.1.4.2

Twinkle
v.1.4.2

Table 5.2: Software characteristics per node

52

Chapter 5. Preserving Privacy in SIP with Onion Routing 53

Machine CPU RAM OS

Proxy A Single-Core Intel Xeon E5-2690 4 GB Centos 7 ker-
nel v.3.10

Proxy B Single-Core Intel Xeon E5-2690 4 GB Centos 7 ker-
nel v.3.10

Client A Single-Core Intel Xeon E5-2690 4 GB Ubuntu 14.04
kernel v.3.16

Client B Single-Core Intel Xeon E5-2690 4 GB Ubuntu 14.04
kernel v.3.16

Android
Caller

Snapdragon 800 Quad-core 2.3
GHz

2 GB Android 6.0

Android
Callee

Snapdragon 800 Quad-core 2.3
GHz

2 GB Android 5.0

Table 5.3: Hardware characteristics per node

anonymize traffic rather than a SOCKS proxy, so it is considered to work on top of the

Network Layer [116].

5.4.1 Tor

To anonymize network traffic originating from a SIP client or a SIP Proxy, we should

make use of Tor network as an intermediate, using Tor’s default port 9050 on localhost.

As there is no SIP client able to handle SOCKS5 connections, we used Proxychains [117],

a software which can tunnel traffic through any proxy server in order to force Twinkle to

use Tor. Proxychains advantage is its SOCKS5 support, which is the main protocol for

transferring packets through Tor. On the other hand, we used iptables routing rules

OSI Layers Platforms/Systems Type

Application

Jitsi SIP Client
SipDroid Android SIP Client
CSipSimple Android SIP Client
Twinkle SIP Client
OnionSIP Anonymity Network

Presentation

Session Tor Anonymity Network
Orbot Anonymity Network

Transport
Network I2P Anonymity Network
Data Link
Physical

Table 5.4: OSI layer placement of used platforms

53

Chapter 5. Preserving Privacy in SIP with Onion Routing 54

to force any traffic originating from the caller’s proxy to get through the Tor network

via Tor’s standard port 9050. However, this is necessary only at the caller’s proxy side

while communicating with the callee’s proxy. Both the caller and callee have already

established a connection through Tor with their proxies during Register.

5.4.2 Orbot

For testing Orbot, we used two rooted Android smartphones, a Nexus 5 with Qualcomm

MSM8974 Snapdragon 800 processor and 2 GB of RAM as a caller, and an LG G3, with

a Qualcomm MSM8974AC Snapdragon 801 processor and 3 GB of RAM as a callee.

We also used CSipSimple hlADD REF as the caller and set up Orbot to anonymize any

traffic coming from it. Lastly, the callee used Sipdroid hlADD REF.

5.4.3 I2P

I2P administrators, have cut down SOCKS outproxies support, making it impossible to

create and use a SOCKS proxy as an exit-node to the Internet. The only alternative

is to use Tor as an exit node, but this is considered already a heavy burden to carry.

However, considering the “HTMLish” form of SIP, it is possible to use HTTP proxies

that are provided for anonymity networks, like I2P. The clients are using Proxychains to

connect to I2P network through I2P’s default port (4444) on localhost. Additionally, the

caller’s proxy is using iptables routing rules to redirect any outgoing traffic through

port 4444. Nevertheless, if two users wish to communicate securely, they both need to

be part of the I2P network. If they are not, an outproxy needs to be used, transferring

traffic from I2P to the Internet. In that case, the outproxy acts similarly to a Tor exit

node, thus after that step all traffic is in its original form, i.e., if no encryption was

initially used, then it is in plaintext.

5.4.4 OnionSIP

As described in Section 5.3, for OnionSIP, we implemented two different schemes, with

the first using asymmetric encryption to achieve onion-routing, while the other is ex-

ploiting symmetric encryption. For the first version, we chose RSA as the public-key

54

Chapter 5. Preserving Privacy in SIP with Onion Routing 55

algorithm, with each key having a 2048 bit size. The symmetric-key of the latter is

implemented using AES with 128 bit long symmetric keys, similarly to Tor [28].

We implemented six different SOCKS gateways written in Python, which intervene be-

tween the communicating parties as shown in Figure 5.2. The caller and the callee have

one gateway proxy each, serving both for encryption and decryption. Each SIP proxy

has two gateways: the first is used for decrypting incoming traffic, while the second is

used for encrypting outgoing traffic. For example, Proxy’s B Gateway 1, is responsible

for encrypting and decrypting any traffic that is sent to or received by Bob, while Gate-

way 2 is responsible for handling communication between Proxy B and Proxy A. The

gateways may coexist with the proxies and/or the end-user machine or operate in sepa-

rate machines. Each party communicates using a TCP connection, as SOCKS5 requires

applications to establish a TCP connection to the SOCKS proxy before it forwards any

packet.

It is worth noting that by using such a scheme, SIP messages contain extra, unknown

information in their body, without affecting the call establishment in any way. This

means that OnionSIP is fully compatible with SIP and can be used without modifications

Figure 5.2: Architecture of OnionSIP multi-layer encryption

55

Chapter 5. Preserving Privacy in SIP with Onion Routing 56

to SIP infrastructure except the addition of the corresponding gateways. Kamailio does

not use any SDP parser to check if the messages transferred are valid or malicious in any

way. This can constitute a major security flaw for a widely-used SIP proxy, like Kamailio,

thus it should be taken into account before wide deployment of this solution [118].

5.5 Evaluation

For the evaluation and comparison of the systems contained in Table 5.2, we measured

the establishment delay of at least 100 SIP calls per scheme. First, Alice, who acts as a

caller, sends an INVITE message to Bob, who accordingly acts as a callee. Alice receives

a 100 (TRYING) message while the proxies, which intervene between the call, try to

forward the request to Bob. Finally, when Bob receives the INVITE message, he replies

to Alice through the involved proxies with a 180 (RINGING) message. We measure the

time between the moment Alice sends the INVITE message and the time she receives

the RINGING message back from Bob. Following the above procedure, we produced

more than 100 calls sequentially with the help of the SIPp tool hlADD REF. We utilized

Wireshark on the caller’s side, enabling us to compute each call establishment delay.

The derived values were rounded to one decimal digit and the frequency per value was

counted.

In Figure 5.3, we present the comparison of the six different alternatives which attempt

to preserve user privacy in SIP, using the Cumulative Distribution Function (CDF).

OnionSIP based on AES is the most efficient scheme, according to our results, followed

by OnionSIP based on RSA, which has a slightly better performance than Tor. In

order to have comparable results with Tor, in our AES variation experiments we do not

take into account the session key establishment delays. This operation, just like in Tor,

takes place one time and, after that, the call establishment delays are those shown in

Figure 5.3. Tor has close performance with Orbot, something that was expected since

Orbot is based on Tor; they both show delays mainly between 0.9 and 1.1 sec. I2P

presents delays between 1.1 and 1.5 sec; this result was expected since SOCKS proxies

are by definition noticeable faster that HTTP ones. Finally, PrivaSIP over Tor [52] is

the least efficient scheme in terms of performance vis-à-vis the rest of the schemes.

56

Chapter 5. Preserving Privacy in SIP with Onion Routing 57

0.3 0.7 1.1 1.5 1.9

0

20

40

60

80

100

0.5 0.9 1.3 1.7 2.1+

Delay (sec)

C
u
m
u
la
ti
ve

d
is
tr
ib
u
ti
on

OnionSIP-AES OnionSIP-RSA
Tor Orbot
I2P PrivaSIP-Tor

Figure 5.3: Delay comparison of privacy schemes for SIP

Taking into consideration the results produced by the CDF graph in Figure 5.3, one can

discern that PrivaSIP-over-Tor has a narrow range between 1.7 and 2.1 sec, while other

schemes present a wider range, approximately between 0.3 and 1.5 sec. Moreover, Orbot

and PrivaSIP-over-Tor present larger delays compared to Tor as expected, since they are

based on Tor adding other mechanisms on top of it. Table 5.5 includes the mean and

standard deviation metrics for each solution. In this table, one can observe that both

OnionSIP and I2P solutions produce the lowest standard deviation compared to the rest

of the proposals. Bear in mind that the lower the standard deviation, the more data

are clustered around the mean value. Therefore, despite the fact that PrivaSIP-over-

Tor seems to have a narrower range (1.7-2.1 sec), OnionSIP introduces more predictable

delays; this observation holds both for OnionSIP based on AES and on RSA. Even

if the two flavors of OnionSIP are based on symmetric and asymmetric cryptography

respectively, we chose to compare them so that adopters can decide whether to take the

extra burden required for key management in the symmetric case or not.

The box-and-whisker plot presented in Figure 5.4 illustrates the statistical distribution of

57

Chapter 5. Preserving Privacy in SIP with Onion Routing 58

Solutions Mean Standard Deviation

OnionSIP-AES 0.6528 14.514
OnionSIP-RSA 0.7265 14.8324

Tor 0.9505 16.970
Orbot 1.0508 15.318
I2P 1.2486 13.523

PrivaSIP over Tor 1.9582 21.260

Table 5.5: Comparison of each solution’s standard deviation

the call establishment delays. Specifically, this plot presents the median, the interquar-

tile range, and the range. This plot confirms that OnionSIP, in both of its variations,

outperforms other privacy preserving schemes.

Table 5.6 presents a brief comparison of the evaluated schemes, indicating the most

important criteria each one satisfies. The first two criteria are related to anonymity

and privacy, which all the schemes satisfy. The third one concerns the type of message

O
ni
on
SI
P
-A

E
S

O
ni
on
SI
P
-R

SA

To
r

O
rb
ot

I2
P

P
riv

aS
IP
-T
or

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scheme

D
el
ay

(s
ec
)

Figure 5.4: Box-and-Whisker plots representation of SIP call establishment delays

58

Chapter 5. Preserving Privacy in SIP with Onion Routing 59

encryption per utilized scheme. For instance, while OnionSIP encrypts only the sensitive

fields of a SIP message, Tor and I2P use a different method by encrypting the whole

message. Obviously, the type of encryption each scheme uses, affects the way each

proxy stores its logs. Consequently, while both OnionSIP and PrivaSIP encrypt only

selected SIP message fields, the intermediate parties will finally store logs where the

sensitive information of each message is hidden. On the other hand, in Tor and I2P, the

SIP proxies will store logs with each message having its initial form. According to the

above, while all solutions offer privacy against third parties, only OnionSIP and PrivaSIP

obfuscate user identity from intermediate SIP proxies.

Furthermore, as all the schemes use some kind of encryption, we should distinguish which

of them need extra time to establish any keys needed; apart from OnionSIP-RSA, the

rest of the schemes will need extra time for key establishment, circuit creation, and so

on. Another important criterion is which scheme needs an extra application or system

configuration, in order to function properly. In that case, schemes using Tor or I2P need

a proxifier to redirect any traffic through them; OnionSIP variations work on the go,

therefore no external application is needed. None of these solutions are based on any

single point or central server, so all of them offer decentralization.

When it comes to the maturity of the codebase, only Tor offers a mature solution, as

I2P is an anonymization network which requires many improvements, and the rest of

the solutions are in proof-of-concept status. Finally, based on the fact that I2P requires

both users to be part of I2P network or specify an outproxy in combination with the

fact that an external application is needed, makes the use of I2P a rather cumbersome

task. Additionally, Tor and PrivaSIP over Tor, require the use of an external software

to redirect traffic through Tor network. Considering all these facts, OnionSIP forms a

privacy solution which could be characterized by ease of deployment.

59

Chapter 5. Preserving Privacy in SIP with Onion Routing 60

Criteria OnionSIP-
AES

OnionSIP-
RSA

Tor I2P PrivaSIP
over Tor

Anonymity X X X X X
Privacy X X X X X
Encryption Certain

fields
Certain
fields

Whole
message

Whole
message

Certain
fields

Privacy against proxies X X 7 7 X
Privacy against third
parties

X X X X X

No extra time for
7 X 7 7 7key establishment

External application
X X 7 7 7independent

Decentralization 3 3 3 3 3
Maturity of the code-
base

1 1 3 2 1

Ease of Deployment 3 3 2 1 2

Table 5.6: Comparison of SIP anonymity schemes (X: included, 7: not included, 1:
low, 2: medium, 3: high)

60

Chapter 6

Fixing WebRTC privacy leaks

In Chapters 4 and 5, we presented a range of schemes to preserve the anonymity of

users utilizing multimedia services over the SIP protocol. Nevertheless, as mentioned

in Chapter 1, SIP is also utilized by other communication technologies, like WebRTC,

which are lacking a session initiation protocol. On the other hand, WebRTC requires

the identification of users’ actual IP addresses for establishing a connection among peers,

which in turn can potentially expose their privacy when abused by malicious users or

websites. In accordance with Obj. 3 as defined in Chapter 1, the present Chapter

elaborates on this issue and proposes and evaluates practical solutions for solving it.

6.1 Introduction

The need for enabling P2P communication without the requirement of providing extra

plugins or native applications to the peers has been of utmost importance for years. In

2011, WebRTC [5] was developed, offering high-quality real-time communication between

browsers, mobile applications and IoT devices. WebRTC uses JavaScript APIs, defined

by World Wide Web Consortium (W3C), in order to enable multi-platform voice, text,

and video communications.

Typically, WebRTC is used for realizing real-time audio and video calls, web conferenc-

ing between a number of peers, and even direct file transfers, without the need for extra

extensions or additional applications. The biggest benefit of this technology is that the

entire communication is achieved through a typical web browser, like Chrome or Mozilla.

61

Chapter 6. Fixing WebRTC privacy leaks 62

Although WebRTC is supported by companies such as Google, Microsoft, Mozilla and

Opera, and despite WebRTC’s popularity [119], a significant privacy issue remains unre-

solved: the IP address, both local and public, of each client visiting a website, which is

capable of performing a WebRTC peer connection request, can be potentially revealed

to the website host. This enables malicious websites to attack clients which would other-

wise be inaccessible, e.g., behind a firewall or NAT. It is worth noting here that such an

attack is not due to vulnerabilities in the WebRTC protocol per se, but only by abusing

its legitimate features.

In more detail, any user browsing the web can to visit a webpage or use services, say,

sending an email. This is feasible as web servers have either a public or a port-forwarded

IP address, exchanging data with any device. Specifically, in case the client is behind

a NAT gateway, NAT maps the device’s private IP address to a public IP address and

forwards each request to the server and each response back to the client. However, when

it comes to P2P services like videotelephony where both devices, i.e., the caller and

callee, are behind different NAT gateways, an obstacle arises when trying to establish

the connection. This is because, when the caller tries to initiate a session, the callee’s

NAT box will be unaware of the callee behind it, and thus will drop the connection [5].

For bypassing such impediments and explore different connection methods, WebRTC

deploys some extra protocols.

WebRTC allows media to get transferred between peers, regardless their network topol-

ogy, even if the peers are behind NAT. Nevertheless, for successfully establishing a con-

nection, each peer needs to dynamically generate and discover the most effective path

for sending media to the rest of the peers. WebRTC achieves that by taking advantage

of the ICE [100] protocol. Precisely, ICE uses two different protocols, STUN [120] and

TURN [121], to correspondingly assist with the user’s browser to identify their public

IP address and port, and relay traffic if a direct connection fails. A STUN server is used

by a peer if the latter needs to identify its IP:port socket information as seen from a

public perspective, i.e., as it is generated by the NAT box closest to the server, while the

TURN server acts as an intermediate when the peer’s network forbids P2P connections.

The response received by STUN is made available to the JavaScript code that initiated

the request; since this piece of code runs locally on the user’s system, it has access to

the private IP address of the user as well. This procedure is transparent to the end-user,

62

Chapter 6. Fixing WebRTC privacy leaks 63

so they are completely unaware of these STUN/TURN requests when they visit such a

webpage.

An attacker is able to set up their own STUN/TURN server, forcing the user’s browser

to perform queries to this server, by placing a short JavaScript code to a webpage before

the user visits it. As a result, anyone who has access to this rogue or compromised

server is able to obtain the private and the public IP of the user, which is a piece of

personal information that may lead to the identification, say, at minimum by means of

geolocation, of the end-user.

WebRTC technology exists in all modern web browsers, so any security and privacy

issues would affect any end-user browsing the web, and that is the reason why propos-

ing an effective solution is important. In order to avoid risking their endpoint security,

most security-savvy users that are aware of WebRTC’s issues, prefer to disable any We-

bRTC services. Naturally, this is a temporary and certainly incommodious solution,

as real-time communication is an integral part of most messaging platforms, including

Messenger, Google Hangouts, and others. Some users even employ a VPN solution or

connect via Tor or the I2P anonymity networks, but this may come at the expense of ex-

periencing low quality real-time communication. Furthermore, as detailed in Section 6.4,

the aforementioned solutions are sometimes ineffective.

A more reasonable solution would inform the user whether the visited website is trying

to use the browser’s WebRTC capabilities [61], rather than completely disabling it for

all websites. Any website that is not related to web communication between users, for

instance a “news” webpage, should probably not try to make any WebRTC requests, thus

the user could safely select to block it.

To solve the aforementioned vulnerability following a user-awareness approach, we imple-

mented and propose two novel solutions: (a) a browser extension and (b) an intermediate

trusted gateway, both able to examine a webpage before it is loaded on the browser and

inform the user about any WebRTC actions that the webpage is about to execute. We

scrupulously evaluate the proposed schemes in terms of performance and show that the

additional delay is most of the time negligible, even for websites with an above average

size.

63

Chapter 6. Fixing WebRTC privacy leaks 64

6.2 Media Connections

There are two basic call topology types in WebRTC. In the simplest scenario, the peers

are employing the same WebRTC service offered by the same webpage, creating a triangle

model as Figure 6.1 depicts. On the other hand, if the peers’ browser are using services

hosted by separate web servers, then the model becomes a trapezoid, inspired by the

so-called SIP trapezoid model, as illustrated in Figure 6.2. In this latter case, the two

different web servers need a way to communicate, and thus, signaling messages are used

to set up, manage and terminate the communication. The protocol used for this commu-

nication is not part of WebRTC, however, a standard protocol, such as SIP, JavaScript

Session Establishment Protocol (JSEP) [122], or a proprietary one can be used [123]. In

both the triangle and trapezoid models, the caller’s and the callee’s browser is communi-

cating with the corresponding server, exchanging signaling messages using either HTTP

or WebSocket protocol, in a way also external to WebRTC.

Most of the time, P2P communication over the Internet is complicated despite the sim-

plicity of the network architecture. Precisely, the peers might either be behind a firewall

restricting network access, sitting behind a NAT box lacking of a public IP, or their

router may forbid a direct connection to peers, so the use of a relay is necessary. In the

Figure 6.1: WebRTC triangle network architecture

64

Chapter 6. Fixing WebRTC privacy leaks 65

Figure 6.2: WebRTC trapezoid network architecture

context of WebRTC, the ICE framework offers a solution to the aforementioned prob-

lems. Specifically, as depicted in Figure 6.3, ICE enables the caller’s and callee’s device,

to be informed about their public and private IP (IP:port), by making requests to a

STUN server. In case of using the same WebRTC service, the peers will most probably

use a common STUN server; otherwise, different STUN servers will serve them.

After the peers become aware of their IP:port address as seen from the STUN’s perspec-

tive, they can easily establish a direct communication over (preferably) UDP or TCP, if

UDP fails. If at least one of them is unable to do so in the presence of one or more of

the aforementioned network obstacles, say, a non-STUN compatible NAT, then a TURN

server can be used as a fallback mechanism. As illustrated in Figure 6.4, this server acts

as an intermediate node to relay data packets between the peers. Note that, typically, a

TURN server offers STUN functionality too. Moreover, due to the provision of real-time

voice and video services, WebRTC preferably runs over UDP. Thus, in addition, “UDP

hole punching” may be needed for establishing a direct connection between the peers

successfully.

Browsers supporting WebRTC can make STUN requests and get informed about the

65

Chapter 6. Fixing WebRTC privacy leaks 66

Figure 6.3: Using a STUN server.

Figure 6.4: Using a TURN server.

66

Chapter 6. Fixing WebRTC privacy leaks 67

actual private and public IP address of the end-user before passing this information

to the JavaScript API. To initialize a connection to a remote peer, the local browser

will use the RTCPeerConnection interface. Plainly, an RTCPeerConnection represents

a WebRTC connection between the local machine and a remote peer, providing all the

necessary methods to the user’s browser to connect to a remote peer and then maintain,

manage, and monitor the established connection.

To demonstrate a common scenario, we use an example where a client is behind a sym-

metric NAT and thus, TURN is used instead of STUN. In such a case, the caller needs

to ask the TURN server to allocate some of its resources for them, as the TURN server

will be used as a relay to contact the other peer [121]. In the log entry in Listing 6.1,

one can easily observe the information that the TURN server logs after the client initi-

ated an “Allocate transaction”, using an Allocate type of request. First, a time handler

responsible for the process termination starts. The default lifetime of an allocation is 10

min, but the actual time is defined in the initial Allocate request [120]. Later on, the

server logs the public IP and the port of the client for completing the allocation for this

particular client, as presented on the “remote” information, while “local” information is

the public IP and the port of the TURN server. Following a successful allocation process,

the initiator can either keep the connection alive using refresh requests, or terminate it.

1 client_to_be_allocated_timeout_handler:start

2 shutdown_client_connection:start

3 session 00100001: close (2nd stage), user

4 realm <> origin <>, local 198.201.166.150:3478

5 remote 31.132.100.72:1348 , reason: allocation

6 watchdog determined stale session state

7 shutdown_client_connection:end

8 cliend_to_be_allocated_timeout_handler:end

Listing 6.1: TURN server log

67

Chapter 6. Fixing WebRTC privacy leaks 68

6.3 WebRTC background

Before explaining how a malicious user can exploit any browser offering WebRTC ca-

pabilities, we should detail the way WebRTC works. Let us consider an example with

two users, Alice and Bob, who both use a WebRTC client, and Alice wishes to call

Bob, as depicted in Figure 6.3. To create a P2P connection, Alice needs to generate an

SDP offer. Note that SDP [26] is a format protocol intended to describe media details,

transport addresses, and any other session description metadata to the peers. In our

example, the SDP message is sent between the peers, using HTTP or WebSockets. That

is, Alice and Bob have to exchange SDP data using the existing signaling channel for ne-

gotiating audio and video media parameters, such as media codecs and video resolution.

Additional information regarding setting up, updating, and tearing down the WebRTC

session, such as transport addresses and related metadata, will also be exchanged using

SDP. This process is initiated along with the creation of an RTCPeerConnection object

as explained in Section 6.2.

The SDP offer includes information about Alice’s network connection, and as Alice’s

data may follow different communication paths before they reach the outside, this offer

must contain the shortest and most efficient network path. This is where ICE is applied

to help gather the different nodes of Alice’s network, known as ICE candidates. The

reason why the SDP offer is vital in this step is that it includes all the ICE candidates

that Bob can use for communicating with Alice, along with others, important for the

call information.

For building the list of ICE candidates, Alice makes a STUN request to a STUN server,

which is expected to respond with her public IP address and port(s). At this point, the

STUN server allows Alice’s client to discover its public IP address and, say, the type of

NAT it is behind from, by sending back to her a success response which contains all the

appropriate information.

All in all, every node that forwards Alice’s traffic from the local network to the Internet

is considered an ICE candidate, and the whole process of IP and port identification is

called ICE candidate gathering. There are three types of candidates:

68

Chapter 6. Fixing WebRTC privacy leaks 69

i. Host Candidate: Contains the private IP address and local UDP and TCP ports

which are associated with the user’s local network interface. They are generated

by the client itself.

ii. Server Reflexive Candidate: Contains the public IP address and UDP and

TCP port of the user that is returned by the STUN server. In contrast to Host

Candidate, the client sends query messages to the STUN server, which will pass

through the NAT, creating a NAT binding that is a public-private IP address

mapping. The response contains the public IP and port (IP:port) generated for

the binding.

iii. Relayed Candidate: Similar to Server Reflexive Candidate, this type of candi-

date contains the translated public address of the user; however, the NAT binding

is obtained by a TURN server, instead of a STUN.

An example of an SDP message following a “RTCPeerConnection” initiation procedure

is presented in Listing 6.2. As observed from the listing, three different candidates were

gathered. The first consists of the user’s interface (private) IP address, along with the

port the browser is listening to. In this case, if the remote peer, i.e., the callee, is part

of the same intranet, this candidate will be selected, and the RTP, which is the protocol

used for delivering audio and video, will run over UDP. The second candidate is identical

to the first; however, TCP will be used instead of UDP. The last candidate is a reflexive

one, as a STUN server was used to return the user’s public IP:port. Therefore, it is a

lower priority candidate, but it will be nonetheless probed if the peers reside in different

networks. It is to be noted that the returned number of candidates could be augmented

depending on whether the peer’s machine is multi-homed or is connected via a VPN or

an anonymity network.

1 a=candidate:0 1 UDP 2122252543 remote 31.132.100.72:13481 typ host

2 a=candidate:2 1 TCP 2105524479 remote 31.132.100.72:13482 typ host tcptype active

3 a=candidate:1 1 UDP 1686052863 remote 31.132.100.72:13483 typ srflx raddr

remote 31.132.100.72:13484

Listing 6.2: List of ICE Candidates

After receiving Alice’s SDP message, Bob needs to follow the same procedure to produce

an SDP message as a response and send it back to Alice. After the two users obtain the

69

Chapter 6. Fixing WebRTC privacy leaks 70

appropriate information via the exchange of SDP messages, they both perform a number

of connectivity checks. These checks comprise a series of STUN requests to each IP and

port pair of the ICE candidates. If the other party’s browser responds, the originated

request is considered successful and the checked pair is marked as valid. After the checks

are completed, the ICE algorithm will decide which of the valid candidate pairs are the

most efficient, based on a list of rules, including the IP address family, the utilization

of media intermediary, say, a TURN server, and the peer’s connection security, i.e., the

use of VPN or not. If no valid pair is found, then the peers will make TURN requests

to the TURN server in order to use it as an intermediate. After the connection has

been established, the TURN server will forward any packets transferred between the two

parties, as depicted in Figure 6.4. More specifically, in case of using a TURN server,

TURN will remain in the media path, even after the connection has been established,

and will act as a relay between the two ends.

6.4 IP Disclosure

6.4.1 Adversary Model

The present study mainly targets the privacy threats while users are operating a typical

web browser. Consequently, adversaries are individuals or organizations which attempt

to compromise the privacy of any Internet user. We consider an adversary with the

following capabilities: (1) they can intercept, modify, or inject any message in the public

communication channels; (2) they adhere to all cryptographic assumptions, e.g., an ad-

versary is unable to decrypt an encrypted message without knowledge of the decryption

key; (3) they are able to set up and operate their own STUN/TURN server; (4) they are

able to inject JavaScript code to any webpage; (5) they can lure individuals into visiting

certain webpages by, say, exercising social engineering techniques. An extensive threat

model for WebRTC can also be found in [124].

6.4.2 Problem Statement

Bear in mind that there are two possible ways for the browser to execute a piece of

JavaScript code on a webpage: (a) either immediately in the order it appears, or (b) wait

70

Chapter 6. Fixing WebRTC privacy leaks 71

for a triggered event to be executed. In any case, injected JavaScript code will always

be executed transparently in the background without the user’s permission. Taking this

into account, a webpage that supports WebRTC will execute some WebRTC API calls

in the background and will try to initiate a call to the specified remote party. A code

snippet responsible for such an action is given in Listing 6.3.

1 //initialize list of ICE servers

2 var servers = {iceServers:

3 [{url:"stun:stunserver.org",

4 "credential":"my_password"}]};

5

6 //construct a new RTCPeerConnection

7 var rtc = new RTCPeerConnection(

8 servers);

9

10 //Event Handler for new ICE candidate

11 rtc.onicecandidate = function (ice) {

12 if (ice.candidate) {

13 //Returns a DOMString describing

14 //the candidate in detail

15 console.log(ice.candidate.candidate);

16 }

17 };

18

19 //create a bogus data channel

20 rtc.createDataChannel("");

21 //create an offer sdp

22 rtc.createOffer(function (result) {

23 //trigger the stun server request

24 rtc.setLocalDescription(result,

25 function () { }, function () { });

26 }, function () { });

Listing 6.3: Initializing a WebRTC call

This small piece of JavaScript code actually configures the STUN server that will be used

for the initiation of the call and then constructs an RTCPeerConnection object, which

executes the STUN or TURN requests. Precisely, the code first initializes a JavaScript

71

Chapter 6. Fixing WebRTC privacy leaks 72

object with a list of possible ICE servers that could be used during the procedure, adding

for each candidate the IP/domain of the server and the user’s password, if needed (lines

2 to 4). As observed, in line 3, the URI scheme “stun” is used, followed by the server

domain, while the credential field in line 4 carries the authentication password.

In most cases, the selected STUN server will be one of the available servers that are

offered by organizations like Google, e.g., stun.l.google.com:19302. In lines 7 to 8 of

Listing 6.3, the RTCPeerConnection object gets instantiated and saved in the “servers”

variable. The “onicecandidate” in line 11 is an EventHandler, where a function is speci-

fied, and it is called when an “icecandidate” event occurs, namely, when an ICE candidate

is discovered. This is the function via which the caller/callee will retrieve any information

about herself, namely any local or external IPs they are using. Finally, the “createDat-

aChannel” function in line 20 creates a new communication channel with the callee, over

which any data can be transmitted. On the other hand, the “createOffer” function in

line 22 initializes an SDP offer, with the purpose of creating a WebRTC connection with

the callee. After the JavaScript code is executed, the peer will communicate with the

declared STUN server and exchange data with it.

However, setting up and running a STUN server is a task that even a script-kiddie can

easily perform, aiming to expose the IP address of any user who executes the JavaScript

code in Listing 6.3. Therefore, if a threat actor installs a STUN server on the “mali-

cious_stun_server.org” domain, they could easily replace lines 2 to 4 of Listing 6.3 with

lines in Listing 6.4:

1 var servers = {iceServers:

2 [{url:"stun:eve@malicious_stun_server.org",

3 "credential":"my_password"}]};

Listing 6.4: Choosing the preferred STUN or TURN server

By doing so, the attacker is able to force the caller’s browser to use a STUN or TURN

server controlled by them. Now, the aggressor could inject the script in the source

code of a webpage that they own or have compromised, and as a result any browser

visiting this page will fain executing a STUN request to the STUN server controlled by

the attacker. For instance, think of a watering hole variant attack scenario or the use

of specially selected advertisements displayed to the victim. Accordingly, any webpage

containing the JavaScript code listed in Listing 6.3 and the corresponding STUN server

72

Chapter 6. Fixing WebRTC privacy leaks 73

can instantly acquire the public IP:port of the peer. Bear in mind that the JavaScript

code becomes knowledgeable of all ICE candidates of the peer, and as each one of them is

associated with a peer’s private interface, the mapping of the user’s connection topology

is feasible. The script injection mentioned above can be performed using a Cross-Site

Scripting (XSS) attack. This is feasible on a web application where user input is directly

included in the webpage without previous validation or encoding. If the XSS attack is

successful and the script executes any STUN requests, then those requests will not be

blocked by extensions such as Adblock [125], given that STUN requests are made outside

the normal XMLHttpRequest procedure.

While the main role of a STUN server is informing the peer of their public IP address and

port as seen from its viewpoint, there are no completely safe ways for a user to hide their

public or local IP address, even if VPN or an anonymity network like Tor is employed.

Bear in mind that, when a user connects to a VPN, a virtual network interface is created

to handle all the network traffic, redirecting any data inside the VPN tunnel. Linux-

based systems use the network tunnel (TUN) or network tap (TAP) [126] to provide

packet reception and transmission when VPN is enabled. When a new virtual network

interface is created, two or more adapters will be present, and the Operating System

(OS) has to decide which one will use in order to send traffic. The selection is based on

each adapter properties, which, for example, in MS Windows OS are determined by a

feature called Automatic Metric.

After this process, the VPN adapter will be selected as default for achieving secure and

confidential communication. However, the previous main network interface, that is the

Ethernet or Wi-Fi adapter, is still active. In every OS, the software can choose any active

network interface for communication, but usually the default one selected by the OS is

used. Therefore, in the context of this adapter selection process, a STUN request may

also reveal the end-user’s public IP as allocated by the ISP to the JavaScript running on

the webpage. Current trials over well-known VPN services, including TunnelBear [127]

and Hotspot Shield [128], verify this situation. Although the MS Windows OS is the

main victim of such a flaw, Mac and Linux systems may be vulnerable as well, depending

on the user’s VPN client and how it is configured [129]. In a similar research [130], the

authors claim that both Firefox and Chrome are vulnerable regardless of the underlying

OS, with iOS being the only exception. They also mention that the only browsers that

73

Chapter 6. Fixing WebRTC privacy leaks 74

support WebRTC, but immune to this vulnerability, are Safari on Mac and Microsoft

Edge on Windows.

A straightforward solution for protecting users’ IP addresses would be the use of a VPN

firewall, but still without ensuring full anonymity. Generally, if a VPN connection fails,

any data will be sent unsecured. A VPN firewall will ensure that any outgoing traffic will

be sent through the established VPN tunnel, forbidding any connection in case the tunnel

breaks down for any reason. In addition, a VPN firewall offers more benefits, including

tight firewall rules and defeating the shared VPN/Tor server leak bug [131]. However,

even this approach will not ensure full anonymity. This is because some browsers can

store data from past user activities, like previously opened tabs. In that case, if a tab is

opened before the user connects to the VPN, the public IP of the user will be cached in

memory. In addition, even if the public IP address is not leaked, the end-user’s local IP

is still left unprotected, since JavaScript is able to identify it. As a result, the server will

retrieve and log all the available information that could be used to identify the user.

Based on the WebRTC API [132], apart from public and private IP addresses, media in-

formation can also be retrieved by the “MediaDeviceInfo” interface. Precisely, WebRTC

can leak the existence of any microphone and camera that the user may utilize. After

obtaining an array of the available “MediaDeviceInfo” objects, one per media device,

the browser can collect information for input and output devices though the object’s

properties. For instance, the “kind” property will return an enumerated value that is

either “videoinput”, “audioinput” or “audiooutput”, while the “label” property will return

a DOMString describing the device. By default, the “label” is an empty string; however

if one or more media streams are active, or if the user granted persistent permissions to

the browser, then the DOMString will contain information about any employed periph-

eral device, including its name and type, e.g., “External USB Webcam”. For example,

the enumeration of “MediaDeviceInfo” array may produce an output similar to that in

Listing 6.5. Thus, if two audio and one video input were attached to the client’s machine,

the kind of each input along with its ID would be outputted.

1 videoinput: id = 56430b9613fcb1ac822fd53a6c25

2 audioinput: id = 321668ae7aebb94d0d2b90bee995

3 audioinput: id = 0fd5b84ae87e3420486e2e2c4d9f

Listing 6.5: Example of MediaDeviceInfo output

74

Chapter 6. Fixing WebRTC privacy leaks 75

On the other hand, each item of Listing 6.5 would contain all the available information

in case one or more media streams were active or permissions were granted by the user,

as presented in Listing 6.6. That is, for each media input, apart from the device’s ID

and its type, the “label” describing the device and a “groupID” would also be returned.

The “groupID” represents the group of the device, and two devices have the same group

identifier if they are part of the same physical device, for example, if both a camera and

microphone belong to the same monitor.

1 kind: videoinput

2 label: Integrated Webcam (1bcf:28b0)

3 deviceId: 56430b9613fcb1ac822fd53a6c25

4 groupId: 85632d755cfb1dfb30228124124ec

5

6 kind: audioinput

7 label: Microphone (Realtek Audio)

8 deviceId: 0fd5b84ae87e3420486e2e2c4d9f

9 groupId: 40756e2116ee3d4d75183136bd03e

10

11 kind: audioinput

12 label: Headset (HD 4.40BT Hands-Free AG Audio)

13 deviceId: 321668ae7aebb94d0d2b90bee995

14 groupId: b0d25385669f2a63bfe9d556fee46

Listing 6.6: MediaDeviceInfo output with granted permissions

6.5 Dealing with IP Leaks

As discussed in Section 6.2, a browser informs the actual WebRTC application about

the location of STUN and TURN servers using the RTCPeerConnection object. The

peer can later use this object to connect to the STUN server, get informed about its

own IP addresses through this connection, and create SDP offers for initializing a call.

It is therefore straightforward that a webpage that is not destined to execute WebRTC

requests should not use by any means the RTCPeerConnection object. In that case, if

a binding request to a STUN server takes place, then the user should be informed that

the visited website needs to access private information (the public IP address) in order

to use WebRTC.

75

Chapter 6. Fixing WebRTC privacy leaks 76

Taking the latest Android update as an example, a “runtime” permission system would be

the ideal approach against such kind of actions. More precisely, a user should be informed

that the webpage is trying to access their IP address information to initiate a WebRTC

call and the exact time the user is placing the call. A similar type of permission request

is used in some browsers, like Chrome, to inform the user that the current webpage is

trying to access their location or wishes to send notifications. In such circumstances, if

the user approves the request, then the browser will be able to get the appropriate user’s

information. Contrariwise, if the user rejects the request, the action should get blocked,

also meaning they will be unable to make a call, if that is the case.

To address the above issue and detect whether a webpage attempts to execute a STUN

or TURN request, we propose two diverse kinds of solutions, which are implemented

differently, but, in essence, use the same detection technique. The first approach is a

browser extension, which uses a preload mechanism to prevent such JavaScript calls

before the actual HTML DOM loading starts. The second uses a gateway, either local

or third-party, to inspect the JavaScript code the user is about to download.

6.5.1 Browser Extension

The implemented browser extension can prevent any WebRTC requests before they are

executed by a webpage. This is achieved by dereferencing any WebRTC objects that

could be used by a webpage for executing STUN or TURN requests. Initially, when a

user visits a webpage, the WebRTC requests are blocked, while the rest of the page loads

normally without any user interruptions. After the webpage loading is completed, the ex-

tension inspects for any suspicious WebRTC requests, and if any is detected, the browser

asks for WebRTC permissions from the user. If the user wishes to use WebRTC capabil-

ities, the extension will restore any WebRTC objects that were previously dereferenced,

allowing the user to initiate a WebRTC call. As browser extensions are implemented

differently on each browser, the drawback of this approach is that a different extension

per browser is needed. As detailed in Section 6.7, our extension has been implemented

for use with the popular Chrome browser.

76

Chapter 6. Fixing WebRTC privacy leaks 77

6.5.2 Gateway

A more generic solution is to implement a gateway, which examines the webpage source

code before it is delivered to the user’s browser. The user has the ability to choose the

gateway that will be used, and thus, the gateway is considered trusted. This way, a user

would again be informed by the trusted gateway if the website that they would like to

visit is trying to make a WebRTC request. If the user is unaware about that website

actions, they may block the relative JavaScript or blacklist the website by storing the

domain on the gateway’s list. Then, this list will be checked every time a user visits a

website, so the latter will be prevented from loading if its domain already exists in the

list. In contrast to the browser extension, any check will be conducted by the gateway

before the webpage loads to the user, and thus, an extra delay will be added to the load

time of the webpage. Those extra delays are presented later in Section 6.7.

6.6 Implementation

The source code of both the implemented solutions is correspondingly given un-

der the European Union Public License (EUPL) [133] at: https://github.

com/IncredibleMe/WebRTC-IP-Leak-Chrome-Extension and https://github.com/

IncredibleMe/WebRTC-IP-Leak-Gateways.

6.6.1 Browser Extension Implementation

As already pointed out in Section 6.4, STUN requests are made outside the normal

XMLHttpRequest procedure, so a common extension responsible for ad blocking, for

instance, is unable to detect such requests. The implemented extension should prevent

the webpage for such possible STUN requests by inspecting any JavaScript code. The

main hurdle is that any JavaScript residing on the source code will be immediately

executed after the webpage has been downloaded, so blocking is infeasible, and, as a

result, a different approach should be followed. While implementing a browser extension,

lots of information about it should be declared in the “manifest.json” file, such as the name

of the extension, its version and its permissions. In the manifest file, one can also force

the extension to be executed as fast as possible, using the “run_at : document_start”

77

https://github.com/IncredibleMe/WebRTC-IP-Leak-Chrome-Extension
https://github.com/IncredibleMe/WebRTC-IP-Leak-Chrome-Extension
https://github.com/IncredibleMe/WebRTC-IP-Leak-Gateways
https://github.com/IncredibleMe/WebRTC-IP-Leak-Gateways

Chapter 6. Fixing WebRTC privacy leaks 78

option. We also deployed the same “run_at” option, since we need to inject a JavaScript

piece of code preventing WebRTC requests in the webpage’s source code before any other

DOM is constructed, or any other script is executed.

This option gives us the ability to inject JavaScript code as a script at the top of the

website’s HTML document and execute it immediately after the DOMContentLoaded

event. Bear in mind that in an HTML document all scripts are treated the same, thus,

they are executed in the order they appear in the document. Having our defensive script

placed on top of everything else, every malicious action that may appear later in the

document can be prevented.

The next step is to create a JavaScript element and backup up the “RTCPeerConnection”

object value, along with the compatible objects for Firefox and Chrome, “mozRTCPeer-

Connection” and “webkitRTCPeerConnection” respectively, to some temporary values.

After that, one can set those object values to null, so any later scripts will be unable

to use them. By using this technique, we are able to break any malicious code during

execution. In addition, if any use of those objects is detected in the source code, the user

will be informed, and if they wish to proceed, the script can revert on-the-fly the initial

value to the RTCPeerConnection object.

6.6.2 Gateway Implementation

The gateway can either be a SOCKS [103] or an HTTP proxy, and while a plethora

of programming languages can be used to develop such a software, there is no actual

limitation about the implementation details. However, the main question that needs to

be answered is what is the delay that this process adds to the webpage loading process.

With that in mind, a high-performance programming language should be used, making

the code-examining process a really quick task. For the sake of this work, we developed

two different versions of an HTTP proxy: one written in C++ and one in Golang, two

of the most high-performance server programming languages. Using the aforementioned

implementations, we measured the time penalty produced by different webpages of var-

ious sizes (data volume) and characteristics. To dereference the induced time penalty

from any network latencies, the gateway runs in the same machine where the user is

located.

78

Chapter 6. Fixing WebRTC privacy leaks 79

No less important, the gateway is able to examine the content of any webpage using either

HTTP or HTTPS. Precisely, for HTTPS traffic, the gateway works as a transparent

proxy, which acts as a MiTM at the TLS tunnel, therefore it is able to read the traffic

even if the content is encrypted with TLS. Typically, a client would connect to a proxy by

executing a CONNECT request, for instance “CONNECT example.com:443 HTTP/1.1”,

and open a P2P connection between the client and the destination web server.

Using a modern programming language, the parsing of an average webpage’s source code

will be completed in a few milliseconds. Table 6.1 presents a comparison of Golang

and C++ when it comes to processing text files of diverse sizes and characteristics.

As observed, the results pertaining to both languages are almost identical, and even on

much larger file sizes than the average webpage size, which is ≈3 MB [134]. Moreover, the

searching of certain keywords can be achieved in less than a second on files even 100 MB

large, that is ≈534 ms and ≈513 ms on average for C++ and Golang, correspondingly.

We should also mention that on each search the whole text file was examined, reaching

to the conclusion that the document is safe.

However, if a malicious JavaScript was included in a document, the result would be

obtained before reaching the end of the file, and thus the delay is expected to be even

lesser. It is to noted that the results reported in Table 6.1 have been acquired after

conducting 500 searches per different text file size and computing the mean value. As

observed from the Table 6.1, the average value is almost half a second for files even

thirty times as big as the size of the average webpage. This leads us to conclude that

most of the delay of this gateway-based approach is expected to be mainly due to the

bandwidth of the gateway and the network speed, rather than the actual examination of

the webpage’s source code.

79

Chapter 6. Fixing WebRTC privacy leaks 80

Filesize (MB)
Delay (ms)

Golang C++

0.5 3 3

1 6 6

5 28 28

10 56 58

50 283 269

100 513 534

Table 6.1: Performance comparison of C++ and Golang in file processing

6.7 Evaluation

6.7.1 Browser Extension Evaluation

As already pointed out in Section 6.6, to assess the performance of the proposed browser

extension, we created a proof-of-concept implementation for the Chrome browser running

on Ubuntu Linux 18.10 on a laptop machine equipped with an Intel Core i7-6700HQ

3.4 GHz CPU and 16 GB of RAM. Typically, Chrome extensions tend to be a heavy

burden to the overall performance of the browser, as they currently work for each active

tab. For instance, the popular Adblock extension consumes ≈100 MB of memory in

Chrome [135]. We used Chrome’s task manager to measure the CPU and memory usage

of our extension when visiting a webpage. Regarding CPU usage while the extension

loads, it only happens once, and according to our measurements was negligible, i.e., less

than 0.1%. Upon the examination of the webpage, the extension consumed ≈0.15%

of the available CPU, while the memory footprint reached ≈3 and 5 MB for websites

having correspondingly a size of ≈3 and 10 MB. This is due to the fact that the extension

initially blocks any STUN or TURN requests before they execute, rather than checking

the whole webpage’s source code for such requests.

6.7.2 Gateway Evaluation

To measure the time penalty induced by the examination of the webpage source code, we

used Chrome Developers Tools [136] and made measurements during webpage loading,

80

Chapter 6. Fixing WebRTC privacy leaks 81

both with and without the use of the gateway. To approximate the actual time it

takes for each HTTP/HTTPS GET request to be examined before it is sent back to the

user, we need to identify the different components that contribute to the final webpage

load time. To this end, we employed the Resource Timing API [137], which provides a

way to obtain detailed network timing data about the resource loading. The interface

splits the webpage’s loading time in different parts, each one representing a network

event, such as DNS lookup delay, response start and end times, as well as the actual

content downloading. Modern browsers use Resource Timing API [137], which is usually

embedded by default, to offer developers the ability to calculate a web request load and

serving time. For instance, in Chrome, a user can observe detailed information about

the time each request needs to be fulfilled, using the Network Analysis Tool, which is

part of the Chrome Developers Tools, placed in the Network panel. An example of a

request’s timing breakdown is presented in Figure 6.5.

In the following, we succinctly describe each of the webpage phases for the sake of

understanding the whole lifecycle of a web request. Before each request is sent to its

final destination it may need to be delayed for several reasons, like other higher priority

requests waiting to be served, the allowed number of TCP connections has been exceeded,

or the disk cache is full. For each one of the aforementioned reasons, a request may be

queued and even stalled. The “DNS Lookup” delay, comprises the time spent for a request

to perform a DNS lookup for a certain network domain in a webpage. However, if the

same webpage along with the carrying domains has been visited in the past, most or

even all of its domains already exist in the DNS cache of the browser, and thus the DNS

Lookup delay will be negligible. The connection process with the remote web server is

measured by the “Initial connection” metric, which represents the time the connection

needs to be initialized, including the TCP handshake and the needed retries, and, if

applicable, the negotiation of TLS, that is, the TLS handshake between the client and

the server.

Finally, the “SSL” is the time spent until the TLS handshake protocol completes, that is,

the “change cipher spec” message, which is used to switch to symmetric key protection.

After the connection is established, a number of other phases take place. The “Request

Sent” is the actual time spent for the request to be sent, overcoming any network issues,

which usually is negligible. The subsequent two phases, are probably the most significant

ones when it comes to the delay of the request. The “Waiting” represents the time

81

Chapter 6. Fixing WebRTC privacy leaks 82

spent waiting for the initial response to be processed, also known as Time to First Byte

(TTFB). This pertains to the number of milliseconds it takes for a browser to accept

the first byte of the response after a request has been sent to a web server, that is, the

latency of a round trip to the server. Last but not least, the “Content Download” is the

actual time spent before the client receives the complete web content from the server, a

phase which is obviously the most critical, as most of the web request’s time is consumed

here.

It is expected that, as the whole webpage source is downloaded and parsed by our proxy,

the size of the webpage’s source code will probably affect the final delay. However, the

browser can also employ several techniques to speed up the content downloading process,

including caching. Namely, the browser cache is being used to store website documents

like HTML files, CSS style sheets and JavaScript code for avoiding downloading it again

in future website visits. This means that if a user revisits a given webpage, the browser

will try to download only new content, loading the rest from its cache. The previous

action, will naturally lead to insignificant delays when it comes to security checks on a

webpage, since the content has already been checked in the (near) past.

As already mentioned, the average webpage size is ≈3 MB, which makes source code

parsing a really quick task. It is also worth mentioning that the heavier part of the

webpage is being bound by images or other multimedia type objects, while our interest

Figure 6.5: Preview a timing breakdown with Chrome

82

Chapter 6. Fixing WebRTC privacy leaks 83

lies solely on the JavaScript source code possibly existing in the webpage. With that in

mind, the proxy needs to only deal with the parsing of the source code, whose actual

size will be significantly reduced, hence introducing less delay.

The gateways were implemented in C++ and Golang and installed on Ubuntu Linux

18.10 on a laptop machine equipped with an Intel Core i7-6700HQ 3.4 GHz CPU and 16

GB of RAM. The Internet connection used provided a bandwidth of 34 Mbps downstream

and 28 Mbps upstream. The laptop machine was connected to the Internet via an IEEE

802.11n wireless access point. We also configured a Coturn server [138], which is an

open-source TURN/STUN server for Linux. Additionally, we created a webpage, which

executes requests to our STUN server, and thus, we were able to examine the exact log

entry at the server side.

We compared the two gateway implementations and logged key metrics that characterize

a website visit. The acquired results are summarized in Table 6.2. As observed from the

table, we tested our gateway implementations against some of the most popular websites

which mandate HTTPS, as well as websites that are plain HTTP.

The time each solution needs to download all the (possibly compressed) contents of the

webpage is naturally dependent upon its size. The “content size” column in the table

represents the actual size of the resource, while “response size” column represents the

number of MBytes transferred on the wire or the wireless medium. As long as most of

the modern web servers use compression to the response body before they are sent over

the network, the size of the transferred data are significantly reduced. The “load time”

column is the total time delay that the webpage consumes for loading all of its contents,

including JavaScript and CSS code, images, as well as the main HTML document. In

detail, the “load time” is divided into the “DOM content load time” and the webpage

rendering. The first represents the time that the webpage needs to build the DOM.

Namely, when the browser receives the HTML document from the server, it stores it into

the local memory and automatically parses it for creating the DOM tree. During this

time, any synchronous scripts will be executed and static assets, such as images saved on

the server side, will be downloaded as well. The webpage rendering phase is the amount

of time that the browser needs to display the content of the webpage to the end-user.

83

Chapter 6. Fixing WebRTC privacy leaks 84

Table 6.2: Performance comparison of C++ and Golang proxy implementations vis-
à-vis to the typical proxyless setting. Content and response current approximate sizes
are in MB, while load times are in seconds and represented as a 95% confidence interval

over 50 measurements done in different days and times.
.

URL Content Size Response Size Type of Proxy Load Time DOM Content Load Time

https://wikipedia.org
C++ 3.91 ± 1.36 5.18 ± 1.27

0.22 0.09 Golang 4.05 ± 1.37 4.89 ± 1.33
Proxyless 2.41 ± 1.26 2.54 ± 1.29

https://office.com
C++ 1.69 ± 0.28 2.43 ± 0.31

1.46 0.77 Golang 1.65 ± 0.25 2.31 ± 0.38
Proxyless 1.13 ± 0.16 1.65 ± 0.25

https://ebay.com
C++ 2.51 ± 0.26 3.21 ± 0.41

2.66 1.25 Golang 2.15 ± 0.22 2.57 ± 0.27
Proxyless 1.78 ± 0.14 2.41 ± 0.34

https://vk.com
C++ 4.48 ± 0.80 6.16 ± 0.77

3.27 1.16 Golang 4.09 ± 0.94 5.70 ± 0.85
Proxyless 3.09 ± 0.64 4.32 ± 0.85

https://instagram.com
C++ 2.39 ± 0.19 3.93 ± 0.34

3.44 1.11 Golang 2.14 ± 0.15 3.66 ± 0.30
Proxyless 1.11 ± 0.16 2.51 ± 0.31

https://aliexpress.com
C++ proxy 4.49 ± 0.24 7.45 ± 0.52

5.40 3.12 Golang 2.78 ± 0.21 7.40 ± 0.96
Proxyless 1.92 ± 0.13 6.17 ± 0.75

https://yahoo.com
C++ 1.57 ± 0.18 2.00 ± 0.23

0.31 0.14 Golang 1.78 ± 0.16 2.62 ± 0.22
Proxyless 0.66 ± 0.14 0.87 ± 0.29

https://netflix.com
C++ 3.97 ± 0.27 4.74 ± 0.40

5.37 2.24 Golang 3.38 ± 0.25 4.26 ± 0.34
Proxyless 2.47 ± 0.32 2.86 ± 0.52

https://amazon.com
C++ 2.80 ± 0.24 3.02 ± 0.35

9.84 2.93 Golang 3.57 ± 0.22 4.85 ± 0.38
Proxyless 1.41 ± 0.19 1.93 ± 0.37

https://twitch.tv
C++ 5.60 ± 0.56 13.09 ± 2.08

22.73 17.46 Golang proxy 5.1 ± 0.56 12.45 ± 1.99
Proxyless 3.76 ± 0.58 10.74 ± 2.14

http://wired.com
C++ 6.09 ± 1.53 21.18 ± 5.54

20.20 11.61 Golang 5.76 ± 1.54 20.77 ± 5.52
Proxyless 4.83 ± 1.49 19.57 ± 5.44

http://nba.com
C++ 6.82 ± 1.06 19.10 ± 3.25

23.60 14.50 Golang 7.52 ± 0.97 20.59 ± 3.09
Proxyless 5.85 ± 0.95 17.29 ± 3.22

http://espn.com
C++ 4.15 ± 0.74 8.64 ± 2.06

1.56 0.55 Golang 3.77 ± 0.78 8.28 ± 2.13
Proxyless 2.98 ± 0.79 7.31 ± 1.89

However, in that stage, no extra delay will be added since the initial code will be sent

directly to the client’s browser.

As observed from Table 6.2, checking a website’s intentions, in terms of JavaScript code,

comes with a cost, although most of the time it will not be noticeable. Both C++ and

Golang have proven good choices for a proxy implementation, producing negligible delay

vis-à-vis a non-proxy scenario. Precisely, neglecting the webpage size factor, in the case

of the C++ proxy, the average time across all the websites we tested was 6.25 sec with

a standard deviation of 3.41 sec, while for the Golang one the corresponding times were

84

https://wikipedia.org
https://office.com
https://ebay.com
https://vk.com
https://instagram.com
https://aliexpress.com
https://yahoo.com
https://netflix.com
https://amazon.com
https://twitch.tv
http://wired.com
http://nba.com
http://espn.com

Chapter 6. Fixing WebRTC privacy leaks 85

5.83 and 2.69 sec. These times compared to those of the proxyless configuration (4.18

sec and 1.65 sec) are rather insignificant. However, the delay becomes noticeable on sites

almost 300% bigger than the average one, which in our table exceed the size of 8 MB.

In addition, no major difference appears between HTTP and HTTPS websites, which

means that the client’s gateway acting as an “TLS Termination Proxy” adds a negligible

delay. All in all, the most critical parameter is the “content size” of each website. The

most significant time delay was observed on amazon.com, nba.com and espn.com whose

size is among the biggest in Table 6.2. As expected, the larger the size of the source code

to be examined, the greater the webpage’s loading time.

85

Chapter 7

Conclusions and Future Directions

7.1 Conclusions

The main aim of the present PhD thesis is to emphasize the importance of ongoing re-

search regarding privacy-enhancing technologies, specifically those pertaining to VoIP

and other real-time communication protocols. That is, as these communication tech-

nologies continue to advance and proliferate, it is imperative to develop new privacy and

security solutions capable of addressing emerging threats in a more holistic manner. In

this context, through this study, we aim to build upon and contribute to the past and

ongoing efforts towards enhancing the privacy and security of Internet services from an

end-user viewpoint.

Altogether, considering the thesis’ objectives outlined in Chapter 1, this work provides

and evaluates a range of mechanisms aimed at safeguarding users’ anonymity and privacy

in both SIP and WebRTC protocols. An overview of the contributions of this PhD thesis

in comparison to the existing literature is presented in Table 7.1.

Table 7.1: Overview of PhD thesis contributions and related publications

Objective Chapter Contribution Publication
Obj. 1 4 Complete SIP message obfuscation: Pri-

vaSIP over Tor
[52]

Obj. 2 5 OnionSIP: Preserving Privacy in SIP with
Onion Routing

[4]

Obj. 3 6 Neither Denied nor Exposed: Fixing We-
bRTC Privacy Leaks

[139]

86

Chapter 7. Conclusions and Future Directions 87

With reference to Table 7.1, the key contribution of this PhD thesis hinges upon the lack

of privacy protections in SIP. Given that the latter protocol is plaintext by design, it ne-

cessitates external (add-on) mechanisms to safeguard end-users’ privacy and anonymity.

Excluding the proposed solutions by this PhD thesis, to the best of our knowledge, as

detailed in Chapter 3, the only practical privacy-preserving solution so far is PrivaSIP.

The latter preserves privacy at the application layer by encrypting sensitive SIP fields,

and may be utilized in conjunction with layer 3 or 4 protocols, including TLS and IP Se-

cure (IPSec), to offer privacy at the transport or network layer. However, thus far, there

is no single scheme able to provide privacy and anonymity in a cross-layer fashion. To

investigate this potential, the present thesis came with the idea of harnessing the power

of popular anonymity Internet overlays, namely Tor and IP2, to fulfill the previously

mentioned goal. To this end, we first evaluated the performance of PrivaSIP-over-Tor

and over-I2P. From the derived results in Section 4.3, it is obvious the while such a

scheme is powerful in terms of privacy, it introduces significant latency in SIP session

establishment.

In the same direction and to mitigate the aforementioned issue, another contribution of

this thesis is the design and implementation of a custom-tailored solution, which relies

on the onion routing concept. The evaluation results regarding the proposed scheme

demonstrated that our solution not only provides a high level of anonymity to the end-

users, but also is considerably faster vis-à-vis PrivaSIP-over-Tor and SIP-over-I2P by at

least 0.6 secs. In particular, we implemented two discrete solutions for the encryption

of all the sensitive fields within a SIP message. The first leverages public-key encryp-

tion, which is supported by means of SIP proxy server self-signed or Private CA X.509

certificates, while the latter employs symmetric-key encryption.

SIP is also a key component of WebRTC, a modern VoIP technology that allows browsers

to establish direct communication between devices, allowing users to engage in real-time

audio and video communication without the need to download plugins or additional

thrird-party software. Despite its many benefits, WebRTC raises significant privacy

concerns. Namely, JavaScript code embedded in websites can expose users’ IP addresses,

even if they are utilizing VPNs or anonymization software like Tor. Precisely, to establish

a connection, WebRTC includes a feature called “ICE” that gathers information about

IP addresses and networks. The deployment of JavaScript code on a website provides

87

Chapter 7. Conclusions and Future Directions 88

malicious or semi-honest parties with the opportunity to exploit ICE, forcing end-users

to unknowingly use the ICE protocol, revealing their actual IP address.

Through the above-mentioned prism, the current PhD thesis proposes and meticu-

lously evaluated novel solutions to mitigate the aforementioned privacy invasion threat.

Namely, a first solution comes in the form of a browser plugin that detects any STUN or

TURN requests originating from the webpage that a user intends to visit. These requests

can potentially expose both the user’s private and public IP addresses. Therefore, our

plugin temporarily deactivates WebRTC functionality, thereby notifying the end-user

about the webpage’s intentions. Given that the aforementioned solution is lightweight

and effective, a distinct custom-tailored implementation is required for each browser.

Bearing this in mind, we also proposed an alternative browser-independent approach

that employs a gateway, which acts as a MiTM entity and proactively inspects the con-

tents of the webpage, that is, before they are transmitted to the client. Overall, both

of the proposed solutions are designed to notify users when a loading webpage attempts

to establish a WebRTC connection without their consent. Finally, we evaluated the pro-

posed solutions in terms of the delay penalty they introduce, and the results show that

it is negligible, around 6 sec, as detailed in Section 6.7.

88

Chapter 7. Conclusions and Future Directions 89

7.2 Future directions

This PhD thesis contributed a number of novel methods aimed at safeguarding the

privacy and anonymity of VoIP users. We detailed the advantages and drawbacks of

each method, with a particular focus on two aspects: the level of anonymity they provide

and the introduced penalty in terms of time delay. Nevertheless, several research topics

remain open for future investigation.

• A potential future direction involves conducting further experiments that closely

approximate real SIP signaling traffic and exploring methods for reducing the ≈2

sec overhead caused by anonymization networks like Tor. Precisely, one could

examine more complex VoIP infrastructures and scenarios with multiple users, ser-

vices, and intermediate SIP elements. While the delay introduced by the Tor net-

work can be considered bearable, improvements can be made through optimization,

mitigating network limitations and improving user experience. To lower delays pre-

sented by Tor network, one could implement an automated way to create circuits

using nodes with higher advertised bandwidth chosen by the Tor central directory.

Comparable outcomes may be obtained through the utilization of ShorTor [140], an

overlay for the Tor network that employs sophisticated routing techniques, claiming

to decrease the latency among relays within a circuit.

• Another direction for future research is the incorporation of more anonymity-

preserving solutions such as ShadowSocks [141]. The latter is a secure socks5

proxy that is predominantly utilized for evading censorship and overcoming geo-

restrictions. It employs a proprietary encryption methodology that enhances its

competence to evade detection and blockages compared to traditional proxies.

ShadowSocks works by channeling Internet traffic through an encrypted tunnel

to a remote server, which then dispatches the traffic to its intended destina-

tion. Although both VPN and ShadowSocks encrypt data, ShadowSocks offers

a more streamlined approach. Unlike VPN, which employs several layers of slow

and resource-heavy encryption protocols to entirely conceal traffic on its servers,

ShadowSocks renders data unidentifiable to resemble HTTPS traffic, enabling un-

restricted movement. As demonstrated in Chapters 4 and 5, it is feasible to funnel

89

Chapter 7. Conclusions and Future Directions 90

SIP traffic through a socks5 proxy; hence, the utilization of ShadowSocks is un-

likely to pose any issues in this regard. This approach could potentially enable SIP

message anonymization, while incurring considerably lower delays than alternative

solutions like VPN.

• Another future direction pertains to the security enhancement of the scheme pro-

posed by this PhD thesis in Chapter 5. This can be done by implementing encryp-

tion either at each layer of the onion routing scheme or by integrating multi-hop

routing to further obscure the origin of the SIP traffic.

• Regarding WebRTC, additional privacy-preserving solutions may be evaluated, in-

cluding browser extensions that are capable of white-listing STUN and TURN

servers. That is, the identification of trusted servers (similarly to the HTTP Strict

Transport Security (HSTS) preload list for HTTPS-only websites) could prevent IP

logging from non-authorized parties. Moreover, the use of browser fingerprinting

techniques has the potential to assist in thwarting user tracking, including that

which arises from WebRTC leaks. Certain browsers, like Firefox, have already

integrated this mechanism, thereby providing users with a noteworthy degree of

protection against fingerprinting. This can be accomplished by impeding third-

party requests to domains that are known to partake in fingerprinting, such as

malicious STUN/TURN servers.

• With reference to WebRTC, a further line of research may entail exploring addi-

tional security concerns that can arise when an unwitting user employs a fraudulent

STUN or TURN server, beyond the exposure of the IP:port. These concerns may

include session hijacking, MiTM, DoS, and DNS spoofing.

90

Bibliography

[1] Adam Rowe. 11 voip stats that prove the importance of the business tech, Sep

2022. URL https://tech.co/business-phone-systems/voip-statistics.

[2] Ilsa Godlovitch and Peter Kroon. Copper switch-off: European experience and

practical considerations. Technical report, WIK-Consult White paper, 2020.

[3] I2p anonymous network, 2013. URL https://geti2p.net/en/.

[4] Alexandros Fakis, Georgios Karopoulos, and Georgios Kambourakis. Onionsip:

Preserving privacy in sip with onion routing. J. Univers. Comput. Sci., 23(10):

969–991, 2017.

[5] WebRTC 1.0: Real-time Communication Between Browsers. https://www.w3.

org/TR/webrtc/, 2019. Accessed: 2019-06-21.

[6] Zahraa Sabra and Hassan Artail. Preserving anonymity and quality of service

for voip applications over hybrid networks. In MELECON 2014-2014 17th IEEE

Mediterranean Electrotechnical Conference, pages 421–425. IEEE, 2014.

[7] Mudhakar Srivatsa, Ling Liu, and Arun Iyengar. Preserving caller anonymity in

voice-over-ip networks. In 2008 IEEE Symposium on Security and Privacy (sp

2008), pages 50–63. IEEE, 2008.

[8] Maimun Rizal. A Study of VoIP performance in anonymous network-The onion

routing (Tor). PhD thesis, Georg-August-Universität Göttingen, 2014.

[9] Giorgos Karopoulos, Georgios Kambourakis, Stefanos Gritzalis, and Elisavet Kon-

stantinou. A framework for identity privacy in SIP. Journal of Network and Com-

puter Applications, 33(1):16–28, January 2010. ISSN 1084-8045. doi: 10.1016/j.

jnca.2009.07.004. URL http://www.sciencedirect.com/science/article/pii/

S1084804509001052.

91

https://tech.co/business-phone-systems/voip-statistics
https://geti2p.net/en/
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
http://www.sciencedirect.com/science/article/pii/S1084804509001052
http://www.sciencedirect.com/science/article/pii/S1084804509001052

Bibliography 92

[10] Giorgos Karopoulos, Georgios Kambourakis, and Stefanos Gritzalis. PrivaSIP:

ad-hoc identity privacy in SIP. Computer Standards & Interfaces, 33(3):301–314,

March 2011. ISSN 0920-5489. doi: 10.1016/j.csi.2010.07.002. URL http://www.

sciencedirect.com/science/article/pii/S0920548910000942.

[11] Dimitris Geneiatakis, Tasos Dagiuklas, Georgios Kambourakis, Costas Lambri-

noudakis, Stefanos Gritzalis, Sven Ehlert, and Dorgham Sisalem. Survey of se-

curity vulnerabilities in session initiation protocol. IEEE Commun. Surv. Tu-

torials, 8(1-4):68–81, 2006. doi: 10.1109/COMST.2006.253270. URL https:

//doi.org/10.1109/COMST.2006.253270.

[12] Dimitris Geneiatakis, Georgios Kambourakis, Costas Lambrinoudakis, Tasos Dag-

iuklas, and Stefanos Gritzalis. A framework for protecting a sip-based infrastruc-

ture against malformed message attacks. Comput. Networks, 51(10):2580–2593,

2007. doi: 10.1016/j.comnet.2006.11.014. URL https://doi.org/10.1016/j.

comnet.2006.11.014.

[13] Sven Ehlert, Ge Zhang, Dimitris Geneiatakis, Georgios Kambourakis, Tasos Dag-

iuklas, Jirí Markl, and Dorgham Sisalem. Two layer denial of service preven-

tion on SIP voip infrastructures. Comput. Commun., 31(10):2443–2456, 2008.

doi: 10.1016/j.comcom.2008.03.016. URL https://doi.org/10.1016/j.comcom.

2008.03.016.

[14] Dimitris Geneiatakis, Georgios Kambourakis, Tasos Dagiuklas, Costas Lambri-

noudakis, and Stefanos Gritzalis. A framework for detecting malformed messages

in SIP networks. In The 14th IEEE Workshop on Local and Metropolitan Area Net-

works, LANMAN 2005, Chania, Crete, Greece, September 18, 2005. IEEE, 2005.

doi: 10.1109/LANMAN.2005.1541543. URL https://doi.org/10.1109/LANMAN.

2005.1541543.

[15] Dimitris Geneiatakis, Georgios Kambourakis, Tasos Dagiuklas, Costas Lambri-

noudakis, and Stefanos Gritzalis. Sip security mechanisms: A state-of-the-art re-

view. In Proceedings of the Fifth International Network Conference (INC 2005),

pages 147–155, 2005.

[16] Dimitris Geneiatakis, Georgios Kambourakis, C Lambrinoudakis, T Dagiuklas, and

S Gritzalis. Sip message tampering: The sql code injection attack. In Proceedings

92

http://www.sciencedirect.com/science/article/pii/S0920548910000942
http://www.sciencedirect.com/science/article/pii/S0920548910000942
https://doi.org/10.1109/COMST.2006.253270
https://doi.org/10.1109/COMST.2006.253270
https://doi.org/10.1016/j.comnet.2006.11.014
https://doi.org/10.1016/j.comnet.2006.11.014
https://doi.org/10.1016/j.comcom.2008.03.016
https://doi.org/10.1016/j.comcom.2008.03.016
https://doi.org/10.1109/LANMAN.2005.1541543
https://doi.org/10.1109/LANMAN.2005.1541543

Bibliography 93

of 13th International Conference on Software, Telecommunications and Computer

Networks (SoftCOM 2005), Split, Croatia, 2005.

[17] Dimitris Geneiatakis, Costas Lambrinoudakis, and Georgios Kambourakis. An

ontology-based policy for deploying secure sip-based voip services. Comput. Secur.,

27(7-8):285–297, 2008. doi: 10.1016/j.cose.2008.07.002. URL https://doi.org/

10.1016/j.cose.2008.07.002.

[18] Zisis Tsiatsikas, Dimitris Geneiatakis, Georgios Kambourakis, and Angelos D.

Keromytis. An efficient and easily deployable method for dealing with dos in SIP

services. Comput. Commun., 57:50–63, 2015. doi: 10.1016/j.comcom.2014.11.002.

URL https://doi.org/10.1016/j.comcom.2014.11.002.

[19] Zisis Tsiatsikas, Georgios Kambourakis, Dimitris Geneiatakis, and Hua Wang. The

devil is in the detail: Sdp-driven malformed message attacks and mitigation in SIP

ecosystems. IEEE Access, 7:2401–2417, 2019. doi: 10.1109/ACCESS.2018.2886356.

URL https://doi.org/10.1109/ACCESS.2018.2886356.

[20] Dimitris Geneiatakis, Tasos Dagiuklas, Costas Lambrinoudakis, Georgios Kam-

bourakis, and Stefanos Gritzalis. Novel protecting mechanism for sip-based in-

frastructure against malformed message attacks: Performance evaluation study.

In Proceedings of the 5th International Conference on Communication Systems,

Networks and Digital Signal Processing (CSNDSP), pages 261–266. Citeseer, 2006.

[21] Georgios Kambourakis, Dimitris Geneiatakis, Stefanos Gritzalis, Costas Lambri-

noudakis, Tasos Dagiuklas, Sven Ehlert, and Jens Fiedler. High availability for

sip: Solutions and real-time measurement performance evaluation. International

Journal of Disaster Recovery and Business Continuity, 1(1), 2010.

[22] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon

Peterson, Robert Sparks, Mark Handley, and Eve Schooler. Rfc3261: Sip: session

initiation protocol, 2002.

[23] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson. Rfc3550:

Rtp: A transport protocol for real-time applications, 2003.

[24] Mark Baugher, David McGrew, Mats Naslund, Elisabetta Carrara, and Karl Nor-

rman. The secure real-time transport protocol (srtp). Technical report, 2004.

93

https://doi.org/10.1016/j.cose.2008.07.002
https://doi.org/10.1016/j.cose.2008.07.002
https://doi.org/10.1016/j.comcom.2014.11.002
https://doi.org/10.1109/ACCESS.2018.2886356

Bibliography 94

[25] Mark Baugher, David McGrew, Mats Naslund, Elisabetta Carrara, and Karl Nor-

rman. Rfc3711: The secure real-time transport protocol (srtp), 2004.

[26] Mark Handley, Van Jacobson, and Colin Perkins. SDP: session description proto-

col. RFC, 4566:1–49, 2006. doi: 10.17487/RFC4566. URL https://doi.org/10.

17487/RFC4566.

[27] Alissa Cooper, Hannes Tschofenig, Bernard Aboba, Jon Peterson, John B. Morris,

Marit Hansen, and Rhys Smith. Privacy considerations for internet protocols. RFC,

6973:1–36, 2013. doi: 10.17487/RFC6973. URL https://doi.org/10.17487/

RFC6973.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. Technical report, Naval Research Lab Washington DC,

2004.

[29] Rob Jansen, Kevin S Bauer, Nicholas Hopper, and Roger Dingledine. Methodically

modeling the tor network. In CSET, 2012.

[30] Tor Metrics-Relays. https://metrics.torproject.org/networksize.html,

2023. Accessed: 2023-05-02.

[31] Radhika Ranjan Roy. Handbook of SDP for Multimedia Session Negotiations: SIP

and WebRTC IP Telephony. CRC Press, 2018.

[32] Web Real-Time Communication Market. https://www.grandviewresearch.com/

industry-analysis/web-real-time-communication-market, 2023. Accessed:

2023-05-04.

[33] The Zfone project, 2003. URL http://zfoneproject.com/. online:

http://zfoneproject.com/.

[34] Philip Zimmermann, Alan Johnston, and Jon Callas. ZRTP: media path key agree-

ment for unicast secure RTP. RFC, 6189:1–115, 2011. doi: 10.17487/RFC6189.

URL https://doi.org/10.17487/RFC6189.

[35] Silent Circle. https://silentcircle.com, 2003. Accessed: 2022-11-09.

[36] RedPhone, a secure calling app for android, 2003. URL https://github.com/

WhisperSystems/RedPhone/wiki. online: https://github.com/WhisperSystems/

RedPhone/wiki.

94

https://doi.org/10.17487/RFC4566
https://doi.org/10.17487/RFC4566
https://doi.org/10.17487/RFC6973
https://doi.org/10.17487/RFC6973
https://metrics.torproject.org/networksize.html
https://www.grandviewresearch.com/industry-analysis/web-real-time-communication-market
https://www.grandviewresearch.com/industry-analysis/web-real-time-communication-market
http://zfoneproject.com/
https://doi.org/10.17487/RFC6189
https://silentcircle.com
https://github.com/WhisperSystems/RedPhone/wiki
https://github.com/WhisperSystems/RedPhone/wiki

Bibliography 95

[37] Jitsi. https://jitsi.org, 2003. Accessed: 2022-11-09.

[38] Ostel. https://ostel.me, 2003. Accessed: 2022-11-09.

[39] Speak Freely. http://www.speakfreely.org, 2003. Accessed: 2022-11-09.

[40] IHU. http://ihu.sourceforge.net, 2003. Accessed: 2022-11-09.

[41] CryptoPhone. http://www.cryptophone.de, 2003. Accessed: 2022-11-09.

[42] Mumble. http://mumble.sourceforge.net, 2003. Accessed: 2022-11-09.

[43] Nautilus Secure Phone. https://github.com/argotel/nautilus, 2003. Accessed:

2023-05-22.

[44] iMule (2003). http://echelon.i2p.xyz/imule/, 2003. Accessed: 2022-11-09.

[45] StealthNet (2007). http://www.stealthnet.de/en_index.php, 2003. Accessed:

2022-11-09.

[46] Parekh (1996). Prospects for remailers. First Monday, 1(2), 1996. Accessed: 2022-

11-09.

[47] Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing

network layer. In Proceedings of the 9th ACM conference on Computer and com-

munications security, pages 193–206, 2002.

[48] Marc Rennhard. Morphmix: Peer-to-peer based anonymous internet usage with

collusion detection (available at http://www. tik. ee. ethz. ch/˜ rennhard/publi-

cations/morphmix. pdf). tik technical report nr. 147. TIK, ETH Zurich, Zurich,

CH, 2002.

[49] M Brading. Generic, decentralized, unstoppable anonymity: the phantom protocol.

White paper, 2011.

[50] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig.

Hornet: High-speed onion routing at the network layer. In Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security, pages

1441–1454, 2015.

[51] Albert Hyukjae Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An

efficient communication system with strong anonymity. 2015.

95

https://jitsi.org
https://ostel.me
http://www.speakfreely.org
http://ihu.sourceforge.net
http://www.cryptophone.de
http://mumble.sourceforge.net
https://github.com/argotel/nautilus
http://echelon.i2p.xyz/imule/
http://www.stealthnet.de/en_index.php

Bibliography 96

[52] Georgios Karopoulos, Alexandros Fakis, and Georgios Kambourakis. Complete sip

message obfuscation: Privasip over tor. In 2014 Ninth International Conference

on Availability, Reliability and Security, pages 217–226. IEEE, 2014.

[53] Ge Zhang and Simone Fischer-Hübner. Peer-to-peer voip communications using

anonymisation overlay networks. In IFIP International Conference on Communi-

cations and Multimedia Security, pages 130–141. Springer, 2010.

[54] Georgios Kambourakis. Anonymity and closely related terms in the cyberspace:

An analysis by example. Journal of information security and applications, 19(1):

2–17, 2014.

[55] J Peterson. S/mime advanced encryption standard (aes) requirement for the session

initiation protocol (sip). Technical report, 2004.

[56] Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel, and Nicholas

Merritt. Herd: A scalable, traffic analysis resistant anonymity network for voip

systems. In Proceedings of the 2015 ACM Conference on Special Interest Group on

Data Communication, pages 639–652, 2015.

[57] Nagendra Modadugu and Eric Rescorla. The design and implementation of data-

gram tls. In NDSS, 2004.

[58] Stephan Heuser, Bradley Reaves, Praveen Kumar Pendyala, Henry Carter, Alexan-

dra Dmitrienko, William Enck, Negar Kiyavash, Ahmad-Reza Sadeghi, and Patrick

Traynor. Phonion: Practical protection of metadata in telephony networks. Proc.

Priv. Enhancing Technol., 2017(1):170–187, 2017.

[59] TORFone. URL http://torfone.org/index.html. online:

http://torfone.org/index.html.

[60] Nasser Mohammed Al-Fannah. One leak will sink a ship: Webrtc ip address leaks.

In 2017 International Carnahan Conference on Security Technology (ICCST),

pages 1–5. IEEE, 2017.

[61] Chaoge Liu, Xiang Cui, Zhi Wang, Xiaoxi Wang, Yun Feng, and Xiaoyun Li. Mal-

icescript: a novel browser-based intranet threat. In 2018 IEEE Third International

Conference on Data Science in Cyberspace (DSC), pages 219–226. IEEE, 2018.

96

http://torfone.org/index.html

Bibliography 97

[62] Mohammadreza Hazhirpasand and Mohammad Ghafari. One leak is enough to

expose them all. In International Symposium on Engineering Secure Software and

Systems, pages 61–76. Springer, 2018.

[63] Andreas Reiter and Alexander Marsalek. Webrtc: your privacy is at risk. In

Proceedings of the Symposium on Applied Computing, pages 664–669. ACM, 2017.

[64] JSLanScanner. https://code.google.com/archive/p/jslanscanner/, 2016. Ac-

cessed: 2022-11-09.

[65] Rio Hosoi, Takamichi Saito, Takayuki Ishikawa, Daichi Miyata, and Yongyan Chen.

A browser scanner: Collecting intranet information. In 2016 19th International

Conference on Network-Based Information Systems (NBiS), pages 140–145. IEEE,

2016.

[66] Y Fablet, JD Borst, J Uberti, and Q Wang. Using multicast dns to protect privacy

when exposing ice candidates. Technical report, Internet-Draft draft-ietf-rtcweb-

mdns-ice-candidates-04, 2021.

[67] Stuart Cheshire and Marc Krochmal. Rfc 6762: Multicast dns, 2013.

[68] EFForg/Privacy Badger. https://github.com/EFForg/privacybadger, 2016. Ac-

cessed: 2022-11-09.

[69] uBlock Origin. https://github.com/gorhill/uBlock, 2016. Accessed: 2022-11-

09.

[70] Amit Klein and Benny Pinkas. From {IP}{ID} to device {ID} and {KASLR}

bypass. In 28th USENIX Security Symposium (USENIX Security 19), pages 1063–

1080, 2019.

[71] Nasser Mohammed Al-Fannah and Wanpeng Li. Not all browsers are created equal:

Comparing web browser fingerprintability. In International workshop on security,

pages 105–120. Springer, 2017.

[72] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site mea-

surement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security, pages 1388–1401, 2016.

97

https://code.google.com/archive/p/jslanscanner/
https://github.com/EFForg/privacybadger
https://github.com/gorhill/uBlock

Bibliography 98

[73] Xiaofeng Liu, Qixu Liu, Xiaoxi Wang, and Zhaopeng Jia. Fingerprinting web

browser for tracing anonymous web attackers. In 2016 IEEE First International

Conference on Data Science in Cyberspace (DSC), pages 222–229. IEEE, 2016.

[74] Furkan Alaca and Paul C Van Oorschot. Device fingerprinting for augmenting web

authentication: classification and analysis of methods. In Proceedings of the 32nd

annual conference on computer security applications, pages 289–301, 2016.

[75] WebRTC. URL http://www.webrtc.org/. online: http://www.webrtc.org/.

[76] Evangelos Mitakidis, Dimitrios Taketzis, Alexandros Fakis, and Georgios Kam-

bourakis. Snoopybot: An android spyware to bridge the mixes in tor. In 24th

International Conference on Software, Telecommunications and Computer Net-

works, SoftCOM 2016, Split, Croatia, September 22-24, 2016, pages 1–5. IEEE,

2016. doi: 10.1109/SOFTCOM.2016.7772180. URL https://doi.org/10.1109/

SOFTCOM.2016.7772180.

[77] A. Christensen. Practical onion hacking: Find the real address of tor clients,

Oct 2016. URL http://www.fortconsult.net/images/pdf/Practical_Onion_

Hacking.pdf.

[78] Xiaogang Wang, Junzhou Luo, Ming Yang, and Zhen Ling. A potential http-based

application-level attack against tor. Future Generation Computer Systems, 27(1):

67–77, 2011.

[79] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A new

cell counter based attack against tor. In Proceedings of the 16th ACM conference

on Computer and communications security, pages 578–589, 2009.

[80] Xinwen Fu, Zhen Ling, J Luo, W Yu, W Jia, and W Zhao. One cell is enough to

break tor’s anonymity. In Proceedings of Black Hat Technical Security Conference,

pages 578–589, 2009.

[81] Timothy G Abbott, Katherine J Lai, Michael R Lieberman, and Eric C Price.

Browser-based attacks on tor. In International Workshop on Privacy Enhancing

Technologies, pages 184–199. Springer, 2007.

[82] Polipo - a caching web proxy, 2024. URL https://www.irif.fr/~jch/software/

polipo/. Accessed: 2022-11-09.

98

http://www.webrtc.org/
https://doi.org/10.1109/SOFTCOM.2016.7772180
https://doi.org/10.1109/SOFTCOM.2016.7772180
http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
https://www.irif.fr/~jch/software/polipo/
https://www.irif.fr/~jch/software/polipo/

Bibliography 99

[83] Privoxy-Developers, 2003. online: https://www.privoxy.org/.

[84] TorStatus - tor network status. URL https://torstatus.rueckgr.at/. Accessed:

2022-11-09.

[85] Georgios Kambourakis. Anonymity and closely related terms in the cyberspace:

An analysis by example. Journal of Information Security and Applications, 2014.

ISSN 2214-2126. doi: http://dx.doi.org/10.1016/j.jisa.2014.04.001. URL http:

//www.sciencedirect.com/science/article/pii/S2214212614000209.

[86] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed

Standard), June 2002. URL http://www.ietf.org/rfc/rfc3261.txt. Updated

by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141,

6665, 6878.

[87] J. Peterson. A Privacy Mechanism for the Session Initiation Protocol (SIP). RFC

3323 (Proposed Standard), November 2002. URL http://www.ietf.org/rfc/

rfc3323.txt.

[88] Charles Shen and Henning Schulzrinne. A VoIP privacy mechanism and its ap-

plication in VoIP peering for voice service provider topology and identity hiding.

arXiv e-print 0807.1169, July 2008. URL http://arxiv.org/abs/0807.1169.

[89] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-

generation Onion Router. In Proceedings of the 13th Conference on USENIX Se-

curity Symposium - Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004.

USENIX Association. URL http://dl.acm.org/citation.cfm?id=1251375.

1251396.

[90] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-tin. How much anonymity

does network latency leak? In Proceedings of the 14th ACM Conference on Com-

puter and Communications Security, pages 82–91. ACM, 2007.

[91] Oliver Berthold, Hannes Federrath, and Marit Köhntopp. Project “anonymity

and unobservability in the internet". In Proceedings of the Tenth Conference on

Computers, Freedom and Privacy: Challenging the Assumptions, CFP ’00, pages

57–65, New York, NY, USA, 2000. ACM. doi: 10.1145/332186.332211.

99

https://torstatus.rueckgr.at/
http://www.sciencedirect.com/science/article/pii/S2214212614000209
http://www.sciencedirect.com/science/article/pii/S2214212614000209
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc3323.txt
http://arxiv.org/abs/0807.1169
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396

Bibliography 100

[92] Angelos D Keromytis. A comprehensive survey of voice over ip security research.

IEEE Communications Surveys & Tutorials, 14(2):514–537, 2011.

[93] George Danezis. The traffic analysis of continuous-time mixes. In Privacy Enhanc-

ing Technologies, pages 35–50, 2004.

[94] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix net-

works: Attacks and defenses. In ESORICS, pages 18–33, 2006.

[95] Rungrat Wiangsripanawan, Willy Susilo, and Reihaneh Safavi-Naini. Design prin-

ciples for low latency anonymous network systems secure against timing attacks.

In ACSW Frontiers, pages 183–191, 2007.

[96] Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. Preventing active timing

attacks in low-latency anonymous communication. In Privacy Enhancing Tech-

nologies, pages 166–183, 2010.

[97] Marc Rennhard and Bernhard Plattner. Practical anonymity for the masses with

morphmix. In Financial Cryptography, pages 233–250, 2004.

[98] Michael J. Freedman and Robert Morris. Tarzan: a peer-to-peer anonymizing

network layer. In ACM Conference on Computer and Communications Security,

pages 193–206, 2002.

[99] F. Pereñiguez-Garcia, R. Marin-Lopez, G. Kambourakis, A. Ruiz-Martinez,

S. Gritzalis, and A.F. Skarmeta-Gomez. Kamu: providing advanced user privacy

in kerberos multi-domain scenarios. International Journal of Information Security,

pages 1–21, 2013. doi: 10.1007/s10207-013-0201-1.

[100] J Rosenberg. Rfc 5245: Interactive connectivity establishment (ice): A protocol for

network address translator (nat) traversal for offer. Answer Protocols, Feb, 2010.

[101] Gouda I Salama, M Elemam Shehab, AA Hafez, and M Zaki. Performance anal-

ysis of transmitting voice over communication links implementing ipsec. In Paper

in 13th International Conference on Aerospace Sciences and Aviation Technology

(ASAT), Military Technical College, Cairo, Egypt, 2009.

[102] Bassam Zantout and Ramzi Haraty. I2p data communication system. In Proceed-

ings of ICN, pages 401–409, 2011.

100

Bibliography 101

[103] Marcus Leech, Matt Ganis, Y Lee, Ron Kuris, David Koblas, and L Jones. Rfc1928:

Socks protocol version 5, 1996.

[104] Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing

network layer. In Proceedings of the 9th ACM conference on Computer and com-

munications security, pages 193–206. ACM, 2002.

[105] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an

analysis of onion routing security. In Designing Privacy Enhancing Technologies,

pages 96–114. Springer, 2001.

[106] Paul Baran. On distributed communications networks. IEEE transactions on

Communications Systems, 12(1):1–9, 1964.

[107] Paul F Syverson, David M Goldschlag, and Michael G Reed. Anonymous connec-

tions and onion routing. In Proceedings. 1997 IEEE Symposium on Security and

Privacy (Cat. No. 97CB36097), pages 44–54. IEEE, 1997.

[108] Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. Active traffic anal-

ysis attacks and countermeasures. In 2003 International Conference on Computer

Networks and Mobile Computing, 2003. ICCNMC 2003., pages 31–39. IEEE, 2003.

[109] Guardian-project. orbot: Tor for android. URL https://guardianproject.info/

apps/orbot/.

[110] Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath. Performance compar-

ison of low-latency anonymisation services from a user perspective. In International

Workshop on Privacy Enhancing Technologies, pages 233–253. Springer, 2007.

[111] Kamailio – the open source sip server. URL https://www.kamailio.org. online:

https://www.kamailio.org.

[112] Twinkle, open source SIP softphone. URL http://www.twinklephone.com. Ac-

cessed: 2023-05-21.

[113] csipsimple. URL https://code.google.com/archive/p/csipsimple/. Accessed:

2023-05-23.

[114] sipdroid. URL http://www.twinklephone.com. Accessed: 2023-05-21.

101

https://guardianproject.info/apps/orbot/
https://guardianproject.info/apps/orbot/
https://www.kamailio.org
http://www.twinklephone.com
https://code.google.com/archive/p/csipsimple/
http://www.twinklephone.com

Bibliography 102

[115] Sam Bowne. How socks5 works. https://samsclass.info/122/proj/

how-socks5-works.html, 2009. Accessed: 2016-09-30.

[116] I2P. The invisible internet project. https://geti2p.net/en/, 2013. Accessed:

2016-09-30.

[117] ProxyChains. Tcp and dns through proxy server. http://proxychains.

sourceforge.net/, 2002. Accessed: 2016-09-30.

[118] Zisis Tsiatsikas, Marios Anagnostopoulos, Georgios Kambourakis, Sozon Lambrou,

and Dimitris Geneiatakis. Hidden in plain sight. sdp-based covert channel for bot-

net communication. In International Conference on Trust and Privacy in Digital

Business, pages 48–59. Springer, 2015.

[119] The WebRTC Wave Is Now Unstoppable. https://www.nojitter.com/

webrtc-wave-now-unstoppable, 2018. Accessed: 2019-01-03.

[120] Rohan Mahy, Philippe Matthews, and Jonathan Rosenberg. Rfc 5766: Traversal

using relays around nat (turn): relay extensions to session traversal utilities for nat

(stun). Internet Engineering Task Force, 2010.

[121] R Mahy RFC5766, J Rosenberg, and C Huitema. Turn: traversal using relay nat.

Technical report, Internet draft, Internet Engineering Task Force, 2004.

[122] J Uberti, C Jennings, and E Rescorla. Javascript session establishment protocol,

draft-ietf-rtcweb-jsep-25, 2018.

[123] Alan B Johnston and Daniel C Burnett. WebRTC: APIs and RTCWEB protocols

of the HTML5 real-time web. Digital Codex LLC, 2012.

[124] E Rescorla. Rfc 8826 security considerations for webrtc. 2021.

[125] AdBlock. Adblock plus. https://github.com/adblockplus/adblockplus, 2017.

[126] Maxim Krasnyansky and M Yevmenkin. Virtual point-to-point (tun) and ethernet

(tap) devices, 2006.

[127] Tunnelbear llc. tunnelbear. URL https://www.tunnelbear.com/. Accessed: 2023-

05-23.

[128] Anchorfree, hotspot shield. URL https://www.hotspotshield.com/. Accessed:

2023-05-23.

102

https://samsclass.info/122/proj/how-socks5-works.html
https://samsclass.info/122/proj/how-socks5-works.html
https://geti2p.net/en/
http://proxychains.sourceforge.net/
http://proxychains.sourceforge.net/
https://www.nojitter.com/webrtc-wave-now-unstoppable
https://www.nojitter.com/webrtc-wave-now-unstoppable
https://github.com/adblockplus/adblockplus
https://www.tunnelbear.com/
https://www.hotspotshield.com/

Bibliography 103

[129] Christer Jakobsson. Peer-to-peer communication in web browsers using webrtc a

detailed overview of webrtc and what security and network concerns exists, 2015.

[130] Hazhirpasand Mohammadreza and Ghafari Mohammad. One leak is enought to

expose them all. In Engineering Secure Software and Systems: 10th International

Symposium, pages 664–669. ACM, 2018.

[131] Patrick Schleizer. Fix shared vpn/tor server leak bug. https://github.com/

adrelanos/vpn-firewall/issues/12, 2016.

[132] Media Capture and Streams. https://dev.w3.org/2011/webrtc/editor/

archives/20140619/getusermedia.html, 2014. Accessed: 2019-06-19.

[133] European union public licence. URL https://ec.europa.eu/info/

european-union-publiclicence_en. Accessed: 2023-05-23.

[134] The average web page is 3MB. How much should we care? https://speedcurve.

com/blog/web-performance-page-bloat, 2016. Accessed: 2019-10-09.

[135] 10 Ad Blocking Extensions Tested for Best Performance. https://www.raymond.

cc/blog/10-ad-blocking-extensions-tested-for-best-performance/3/,

2017. Accessed: 2020-03-20.

[136] Chrome developer tools, 2023. URL https://developer.chrome.com/docs/

devtools/. Accessed: 2023-05-23.

[137] A Primer for Web Performance Timing APIs.

urlhttps://w3c.github.io/perf-timing-primer/, 2019.

[138] Oleg Moskalenko. coturn turn server project. https://https://github.com/

coturn/coturn, 2016.

[139] Alexandros Fakis, Georgios Karopoulos, and Georgios Kambourakis. Neither de-

nied nor exposed: Fixing webrtc privacy leaks. Future Internet, 12(5):92, 2020.

[140] Kyle Hogan, Sacha Servan-Schreiber, Zachary Newman, Ben Weintraub, Cristina

Nita-Rotaru, and Srinivas Devadas. Shortor: Improving tor network latency via

multi-hop overlay routing. In 2022 IEEE Symposium on Security and Privacy (SP),

pages 1933–1952. IEEE, 2022.

[141] Shadowsocks. URL https://shadowsocks.org. Accessed: 2023-05-23.

103

https://github.com/adrelanos/vpn-firewall/issues/12
https://github.com/adrelanos/vpn-firewall/issues/12
https://dev.w3.org/2011/webrtc/editor/archives/20140619/getusermedia.html
https://dev.w3.org/2011/webrtc/editor/archives/20140619/getusermedia.html
https://ec.europa.eu/info/european-union-publiclicence_en
https://ec.europa.eu/info/european-union-publiclicence_en
https://speedcurve.com/blog/web-performance-page-bloat
https://speedcurve.com/blog/web-performance-page-bloat
https://www.raymond.cc/blog/10-ad-blocking-extensions-tested-for-best-performance/3/
https://www.raymond.cc/blog/10-ad-blocking-extensions-tested-for-best-performance/3/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://https://github.com/coturn/coturn
https://https://github.com/coturn/coturn
https://shadowsocks.org

	Greek Declaration of Authorship
	Declaration of Authorship
	Advising Committee of this Doctoral Thesis
	Approved by the Examining Committee
	Copyright
	Abstract
	Extended Abstract in Greek
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Methodology and Milestones
	1.3 Thesis contributions
	1.4 Thesis structure

	2 Background
	2.1 VoIP services
	2.2 SIP protocol
	2.3 PrivaSIP
	2.4 Tor anonymity network
	2.5 WebRTC
	2.6 Discussion

	3 Related work
	3.1 Protecting User Information in SIP Networks
	3.2 WebRTC privacy leaks
	3.3 Tor network deanonymization
	3.3.1 Implementation
	3.3.1.1 Exit node

	3.3.2 Limitations and Countermeasures
	3.3.3 Discussion

	4 Complete SIP message obfuscation
	4.1 Introduction
	4.2 SIP Torification
	4.2.1 PrivaSIP and PrivaSIP over Tor
	4.2.2 Privacy analysis

	4.3 Testbed and performance evaluation
	4.3.1 Testbed
	4.3.2 Results

	4.4 Discussion

	5 OnionSIP: Preserving Privacy in SIP with Onion Routing
	5.1 Motivation
	5.2 Attacker's model
	5.3 OnionSIP
	5.3.1 Asymmetric OnionSIP
	5.3.2 Symmetric OnionSIP
	5.3.3 Key exchange

	5.4 Implementation
	5.4.1 Tor
	5.4.2 Orbot
	5.4.3 I2P
	5.4.4 OnionSIP

	5.5 Evaluation

	6 Fixing WebRTC privacy leaks
	6.1 Introduction
	6.2 Media Connections
	6.3 WebRTC background
	6.4 IP Disclosure
	6.4.1 Adversary Model
	6.4.2 Problem Statement

	6.5 Dealing with IP Leaks
	6.5.1 Browser Extension
	6.5.2 Gateway

	6.6 Implementation
	6.6.1 Browser Extension Implementation
	6.6.2 Gateway Implementation

	6.7 Evaluation
	6.7.1 Browser Extension Evaluation
	6.7.2 Gateway Evaluation

	7 Conclusions and Future Directions
	7.1 Conclusions
	7.2 Future directions

	Bibliography

