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CHAPTER 1  

INTRODUCTION 

 

 

1.1 General 

A time series consists of a series of observations collected over time, where the 

observations are usually dependent on each other. The dependency between adjacent 

observations in a time series is an inherent characteristic. Understanding and analyzing 

this dependency is crucial for practical applications. Time series analysis focuses on 

developing stochastic and dynamic models to capture the patterns and characteristics 

of time series data. These models are then applied to various important fields of study. 

The concept of utilizing a mathematical model to explain how a physical phenomenon 

behaves is widely acknowledged. A deterministic time series is a type of time series 

where the values can be precisely determined based on known mathematical functions. 

On the other hand, a stochastic time series is a type of time series where the future 

values can only be determined in terms of a probability distribution. If this probability 

distribution is constant over time, then the time series is said to be stationary (further 

details about the very important property of stationarity are given later in this chapter). 

If a time series is not stationary, then there are formal statistical procedures to transform 

a non-stationary series into a stationary one. A less strict condition for stationarity 

requires that at least the level and variance of the time series be constant over time. 

While researchers typically test for non-stationarity in the level of a time series using 

various tests, they sometimes overlook non-stationarity in the variance when 

conducting applied research. This may seriously affect (negatively) the quality of 

subsequent analysis and modeling of the series. The development of a  formal statistical 

test for the existence of variance non-stationarity is among the cornerstones of this 

thesis. In the next paragraphs of this first chapter some basic concepts of time series 

analysis which will be useful for the subsequent analysis are reviewed emphasizing on 

macroeconomic, actuarial, and financial time series in conjunction with the objectives 

of the thesis.  
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1.1.1 Stationary stochastic models 

One notable category of stochastic models utilized for characterizing time series, which 

has garnered significant interest, consists of what are commonly referred to as 

stationary models. Typically, the characteristics of a stationary time series can be 

effectively described by its mean, variance, and autocorrelation function. 

Consider that observations are obtained regularly at discrete, fixed time intervals. For 

instance, consider a time series consisting of values 𝑦1, 𝑦2, … , 𝑦𝑇. This time series is 

generated by a group of random variables 𝑌1, 𝑌2, … , 𝑌𝑇  which are governed by a joint 

probability distribution 𝑃(𝑌1, 𝑌2, … , 𝑌𝑇). This group of random variables is formally 

referred to as a stochastic process. Therefore, the recorded time series represents only 

one of the potential results originating from the joint probability distribution 

𝑃(𝑌1, 𝑌2, … , 𝑌𝑇) and it is called as a realization or sample path of the stochastic process 

(Milionis, 2016). 

Suppose the probability density function associated with time 𝑡 is denoted as 𝑓𝑌𝑡. In that 

case, the expected value of the element within the time series of order t can be expressed 

as follows: 

𝜇𝑡 = 𝐸(𝑌𝑡) ≡ ∫ 𝑦𝑡𝑓𝑌𝑡(𝑦𝑡)

+∞

−∞

𝑑𝑦𝑡 

and the equation below will provide the variance of 𝑌𝑡: 

𝛾0𝑡 = 𝐸(𝑌𝑡 − 𝜇𝑡)
2 ≡ ∫ (𝑦𝑡 − 𝜇𝑡)

2𝑓𝑌𝑡(𝑦𝑡)

+∞

−∞

𝑑𝑦𝑡 

When examining the time moments 𝑡, 𝑡 − 1,… , 𝑡 − 𝑗, the 𝑗𝑡ℎ-order autocovariance is 

defined in the following manner: 

𝛾𝐽𝑡 = 𝐸{(𝑌𝑡 − 𝜇𝑡)(𝑌𝑡−𝑗 − 𝜇𝑡−𝑗)} 

≡ ∫ ∫ …

+∞

−∞

+∞

−∞

∫ (𝑦𝑡 − 𝜇𝑡)(𝑦𝑡−𝑗 − 𝜇𝑡−𝑗) 𝑓𝑌𝑡,𝑌𝑡−1,…,𝑌𝑡−𝑗
(𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝑗)

+∞

−∞

𝑑𝑦𝑡𝑑𝑦𝑡−1 …𝑑𝑦𝑡−𝑗  

where,  𝑓𝑌𝑡,𝑌𝑡−1,…,𝑌𝑡−𝑗
(𝑦𝑡, 𝑦𝑡−1, … , 𝑦𝑡−𝑗) is the joint probability function of 

𝑌𝑡 , 𝑌𝑡−1, … , 𝑌𝑡−𝑗. 
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When the mean value, the variance, and the autocovariances (i.e. 𝜇𝑡, 𝛾0𝑡 𝛾𝐽𝑡, 𝑗 = 1,2,… 

correspondingly) do not vary with the time moment t, the stochastic process is referred 

to as weakly stationary or second-order stationary. In other words, for a weakly 

stationary stochastic process, the following conditions are satisfied: 

𝐸(𝑌𝑡) = 𝜇, ∀𝑡, 𝐸{(𝑌𝑡 − 𝜇𝑡)(𝑌𝑡−𝑗 − 𝜇𝑡−𝑗)} = 𝐸{(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑗 − 𝜇)} = 𝛾𝐽𝑡, ∀𝑡 

Therefore, the autocovariance will depend only on the temporal lag 𝑗.  

To qualify as strictly stationary, a stochastic process must exhibit a property wherein 

the entire probability distribution of 𝑌𝑡, 𝑌𝑡+1, … , 𝑌𝑡+𝑠 remains unaffected by the time t, 

indicating that it remains independent despite any temporal shift. 

𝑓𝑌𝑡,𝑌𝑡+1,…,𝑌𝑡+𝑠
(𝑦𝑡, 𝑦𝑡+1, … , 𝑦𝑡+𝑠) = 𝑓𝑌𝑡+𝑘,𝑌𝑡+𝑘+1,…,𝑌𝑡∓𝑘+𝑠

(𝑦𝑡+𝑘 , 𝑦𝑡+𝑘+1, … , 𝑦𝑡+𝑘+𝑠) ∀𝑡, 𝑘, 𝑠 

 

1.1.2 Backward shift (or lag) operator 

A time series operator is a tool that converts either one time series or a set of time series 

into another time series. Among these operators, the lag operator, represented by the 

symbol 𝐵, holds particular significance in time series analysis. When the lag operator 

is applied to a time series, it causes the series to undergo a transformation where the 

resulting new series is the same as the original series but shifted by a number of time 

periods equal to the order of the operator. In other words, it moves the values backward 

in time depending on the operator's order, i.e. 

𝐵𝑌𝑡 = 𝑌𝑡−1, 𝐵
2𝑌𝑡 = 𝑌𝑡−2, … , 𝐵𝑘𝑌𝑡 = 𝑌𝑡−𝑘 

When considering negative powers of 𝐵, denoted as 𝐵−𝑘 with 𝑘 > 0, they represent the 

forward operator 𝐹. The following relationships are valid: 

𝐵−𝑘𝑌𝑡 = 𝐹+𝑘𝑌𝑡 = 𝑌𝑡+𝑘, which can also be written as 𝐵−𝑘 = 𝐹+𝑘. 

The utilization of the operator 𝐵 allows to express difference equations and stochastic 

models in a concise manner. Moreover, through 𝐵, we can establish differentiation 

operators and seasonal differentiation operators, which offer specific and efficient ways 

to handle time series data. More specifically: 

Regular Differentiation operator ≡ ∇ ≡ (1 − 𝐵), where 𝑌𝑡 − 𝑌𝑡−1 = (1 − 𝐵)𝑌𝑡 
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Seasonal differentiation operator ≡ ∇12 ≡ (1 − 𝐵12) where 𝑌𝑡 − 𝑌𝑡−12 = (1 − 𝐵12)𝑌𝑡  

 

1.1.3 The general form of a linear stationary stochastic process 

The fundamental component of discrete stochastic time series models is the white noise 

process, which serves as the essential building block. This time series, denoted as 𝜀𝑡,  

has zero mean (𝐸(𝜀𝑡) = 0), constant variance (𝐸(𝜀𝑡
2) = 𝜎2), and uncorrelated terms 

((𝜀𝑡𝜀𝑡−𝑘) = 0 for 𝑘 > 0) 

The Wold's decomposition theorem (1938) is a fundamental theorem in time series 

analysis that enables us to represent a weakly stationary stochastic process with zero 

mean using the following equation: 

𝑌𝑡 = ∑𝜓𝑖𝜀𝑡−𝑖 + 𝐾𝑡

∞

𝑖=0

 

where: 𝜓0 = 1, 𝜀𝑡 is the white noise, 𝐾𝑡 is the causal component, and ∑ |𝜓𝑖| < ∞∞
𝑖=0 . 

The symbol 𝐾𝑡 denotes any component that can be fully predictable solely based on its 

past values, like an exponential function of time. If 𝐾𝑡 equals zero, the stochastic 

process becomes is purely non-deterministic. Additionally, 𝐾𝑡 is entirely independent 

of the values 𝜀𝑡−𝑖, ∀𝑖 (Milionis, 2016). 

The equation mentioned above can alternatively be represented through the so-called  

linear filter representation, which can be stated as follows: When the lag operator is 

applied to 𝑌𝑡, where 𝑌𝑡 is a purely non-deterministic series, we obtain: 

𝜓0𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 + ⋯ = 𝜓0𝜀𝑡 + 𝜓1𝐵𝜀𝑡 + 𝜓2𝐵
2𝜀𝑡 + ⋯

= (𝜓0 + 𝜓1𝐵 + 𝜓2𝐵
2 + ⋯)𝜀𝑡 = 𝛹(𝛣)𝜀𝑡 

In other words, the time series 𝑌𝑡 is generated by applying the linear filter 𝛹(𝛣) to the 

white noise 𝜀𝑡. The function 𝛹(𝛣) represents the transfer function of this linear filter, 

and its coefficients 𝜓𝑖 are commonly referred to as psi-weights. 



8 
 

1.1.4 The autocorrelation function of the general stationary stochastic process 

and the sample autocorrelation function 

In the case of purely non-deterministic linear stochastic processes with zero mean, the 

expected value will be: 

𝐸(𝑌𝑡) = 𝐸{𝛹(𝛣)𝜀𝑡} = 0 

and the variance is:  

𝛾0 = 𝐸(𝑌𝑡 − 𝐸(𝑌𝑡))
2
= 𝐸(𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 + ⋯)2

= 𝐸(𝜀𝑡
2 + 𝜓1

2𝜀𝑡−1
2  + 𝜓2

2𝜀𝑡−2
2 + ⋯) = 𝜎2 + 𝜓1

2𝜎2 + 𝜓2
2𝜎2 + ⋯ ⇔ 

𝛾0 = 𝜎2 ∑𝜓𝑖
2

∞

𝑖=0

 

where 𝜎2 is the variance of the white noise (Milionis, 2016). 

It is important to highlight that as 𝜀𝑡 represents the white noise, the following statement 

remains valid: 𝐸(𝜀𝑡−𝑖𝜀𝑡−𝑗) = 0 ∀𝑖 ≠ 𝑗, and the autocovariance will be: 

𝛾𝑘 = 𝐸{(𝑌𝑡 − 𝐸(𝑌𝑡)) ∙ (𝑌𝑡−𝑘 − 𝐸(𝑌𝑡))} = 

𝐸(𝜀𝑡 + 𝜓1𝜀𝑡−1 + ⋯+ 𝜓𝑘𝜀𝑡−𝑘 + 𝜓𝑘+1𝜀𝑡−𝑘+1 + ⋯) ∙ (𝜀𝑡−𝑘 + 𝜓1𝜀𝑡−𝑘−1 + 𝜓2𝜀𝑡−𝑘−2 + ⋯) = 

𝜎2𝜓𝑘 + 𝜎2𝜓1𝜓𝑘+1 + 𝜎2𝜓2𝜓𝑘+2 + ⋯ ⇔ 𝛾𝑘 = 𝜎2 ∑𝜓𝑖𝜓𝑖+𝑘

∞

𝑖=0

 

The role of the autocorrelation function, indicated by 𝜌𝑘, is of utmost importance in the 

field of applied time series analysis. In combination with the first and second moment, 

it offers insights into the characteristics of the stochastic process governing the 

evolution of the time series. Its definition is as follows: 

𝜌𝑘 =
𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑘)

√𝑉𝑎𝑟(𝑌𝑡)𝑉𝑎𝑟(𝑌𝑡−𝑘)
=

𝐸{(𝑌𝑡 − 𝜇𝑡)(𝑌𝑡−𝑘 − 𝜇𝑡−𝑘)}

√𝐸(𝑌𝑡 − 𝜇𝑡)2𝐸(𝑌𝑡−𝑘 − 𝜇𝑡−𝑘)2
 

In other words: 

𝜌𝑘 =
𝛾𝑘

𝛾0
=

∑ 𝜓𝑖𝜓𝑖+𝑘
∞
𝑖=0

∑ 𝜓𝑖
2∞

𝑖=0
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In a stationary process, the mean at time 𝑡 equals the mean at time 𝑡 − 𝑘 (𝜇𝑡 = 𝜇𝑡−𝑘), 

and the variance of 𝑌𝑡 is equal to the variance of 𝑌𝑡−𝑘 (𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟(𝑌𝑡−𝑘)). 

Consequently, in the context of stationarity, the following can be deduced: 

𝜌𝑘 =
𝐸{(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)}

𝐸(𝑌𝑡 − 𝜇𝑡)
2

 

The definitions presented thus far hold greater theoretical significance, given that, in 

practical scenarios, obtaining multiple realizations of the stochastic process is often 

unfeasible. With just one realization of the stochastic process, i.e., the time series 

comprising our data 𝑦1, 𝑦2, … , 𝑦𝑇, the mean value can only be calculated across time: 

�̅� =
1

𝑇
∑𝑦𝑡

𝑇

𝑡=1

 

and the 𝑗𝑡ℎ-order autocovariance is calculated utilizing the following equation: 

𝑐𝑗 =
1

𝑇 − 𝑗
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑗 − �̅�)

𝑇

𝑡=𝑗+1

 

The previously mentioned definition of 𝜌𝑘 is purely theoretical since it pertains to a 

stochastic process for which we possess merely a finite number of terms from a single 

sample path. Under the assumption of stationarity, we can estimate 𝜌𝑘 from the given 

𝑁 observations using the subsequent relationship, which yields the sample 

autocorrelation function (ACF): 

�̂�𝑘 = 𝐴𝐶𝐹(𝑘) =
∑ (𝑌𝑡 − �̅�)(𝑌𝑡−𝑘 − �̅�)𝑁−𝑘

𝑡=1

∑ (𝑌𝑡 − �̅�)2𝑁
𝑡=1

 

Because 𝜌𝑘 is symmetric, the 𝐴𝐶𝐹(𝑘) also exhibits symmetry, implying that              

𝐴𝐶𝐹(𝑘) = 𝐴𝐶𝐹(−𝑘). Due to this reason, when graphically depicting the ACF, we 

solely focus on the positive values of 𝑘. 

 

1.1.5 The partial autocorrelation function 

In the context of a time series, the partial autocorrelation of order 𝑘, represented as 𝜑𝑘𝑘, 

is described as the correlation between 𝑌𝑡 and 𝑌𝑡+𝑘 while keeping the intervening terms 

𝑌𝑡+1, 𝑌𝑡+2, … , 𝑌𝑡+𝑘−1 constant (Milionis, 2016). In other words:  
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𝜑𝑘𝑘 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑌𝑡 , 𝑌𝑡+𝑘  / 𝑌𝑡+1, 𝑌𝑡+2, … , 𝑌𝑡+𝑘−1 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

The partial autocorrelation function (𝑃𝐴𝐶𝐹) provides the partial autocorrelation 

coefficient for various time lags, such as 𝑘 = 1,2,3 and so on. Like the autocorrelation 

function, the 𝑃𝐴𝐶𝐹 serves as a valuable resource for understanding the interdependence 

patterns produced by a stochastic process. It proves to be a useful tool in identifying the 

appropriate stochastic model that best fits the data. 

 

1.1.6 Test for autocorrelation 

The Box-Pierce statistic (1970) and Ljung-Box statistic (1978) are both used in time 

series analysis to test the null hypothesis of no autocorrelation in the residuals of a fitted 

model. The Box–Pierce statistic is defined as: 

𝐵𝑃 = 𝑁 ∑ 𝐴𝐶𝐹(𝑘)2
𝑚

𝑘=1

 

and is a measure that quantifies the overall autocorrelation in the residuals of a time 

series model. The Box-Pierce statistic follows a chi-square distribution with 𝑚 degrees 

of freedom under the null hypothesis that all autocorrelation coefficients up to order 𝑚 

are zero.  If the computed 𝐵𝑃 statistic is found to be greater than the chi-square critical 

value at a chosen significance level, it suggests evidence of autocorrelation in the 

residuals (the null hypothesis is rejected), indicating that the model may need further 

refinement.  

The Box–Pierce statistic does not always give accurate results, even when applied to 

datasets of moderate size. Ljung and Box highlighted the improved performance of the 

modified statistic in small samples, which is calculated as follows:  

𝐿𝐵𝑄 = 𝑁(𝑁 + 2) ∑
𝐴𝐶𝐹(𝑘)2

𝑁 − 𝑘
 

𝑚

𝑘=1

 

Like the Box-Pierce statistic, the Ljung-Box statistic also follows a chi-square 

distribution with 𝑚 − 𝑠 degrees of freedom, where 𝑠 is the number of coefficients being 

estimated. Similarly, if the computed 𝐿𝐵𝑄 statistic is greater than the chi-square critical 
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value at a chosen significance level, it indicates evidence of autocorrelation in the 

residuals. 

In practical applications, following the approach mentioned earlier, we examine 

whether individual autocorrelation coefficients lie within the 95% confidence intervals 

and collectively assess their statistical significance using the Ljung-Box statistic to test 

𝐻0. 

Nevertheless, many time series observed across diverse scientific domains, including 

economics, actuarial science, and finance, often exhibit characteristics that are better 

represented as non-stationary. 

 

1.1.7 The model of a random walk  

An example of a simple random walk is the series 𝑌𝑡, where the 𝑡-th term is the sum of 

terms up to order 𝑡 of a white noise process. In a more general context, the model of a 

simple random walk can be expressed as 𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡, with 𝐸(𝜀𝑡
2) = 𝜎2. 

The mean and variance of 𝑌𝑡 can be described as follows (Milionis, 2016): 

𝐸(𝑌𝑡) = 0 and 𝐸(𝑌𝑡
2) = 𝑡𝜎2, therefore lim

𝑡→∞
𝐸(𝑌𝑡

2) = ∞.  

Consequently, the series 𝑌𝑡 exhibits non-stationary behavior. 

If we make the assumption that the initial value of a time series, described by a random 

walk process, is 𝑦0 at time 0, then the general expression for the time series can be 

represented as: 

𝑌𝑡 = 𝑦0 + ∑𝜀𝑖

𝑡

𝑖=1

 

If there is a deterministic drift, the random walk with a drift model is expressed by the 

equation: 

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 + 𝜉. 

For 𝜉 > 0, the series will tend to move upwards. The opposite (downwards) holds  good 

if 𝜉 < 0. The presence of the constant term in the model creates a trend, which can be 

demonstrated as follows:  
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When 𝜉 > 0, the series will tend to exhibit an upward movement, while the opposite 

(downward movement) holds true for 𝜉 < 0. The inclusion of the constant term in the 

model creates a trend, which can be demonstrated as follows: 

Through iterative substitution of  𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑘 into the initial equation, we obtain: 

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 + 𝜉 = 𝑌𝑡−2 + 𝜀𝑡−1 + 𝜀𝑡 + 2𝜉 = ⋯ = 𝑌𝑡−𝑘 + 𝜀𝑡 + 𝜀𝑡−1 + 𝜀𝑡−𝑘+1 + 𝑘𝜉 

Assuming that at 𝑡 = 0, 𝑌𝑡 = 𝑦0, we ultimately arrive at: 

𝑌𝑡 = 𝑦0 + 𝜉𝑡 + ∑𝜀𝑡−𝑗

𝑡−1

𝑗=0

 

The last equation indicates that the constant term 𝜉 represents the slope in the 

deterministic drift, as denoted by the term 𝜉𝑡. The inclusion of this term significantly 

improves the predictive performance of the model. 

 

1.1.8 Difference stationary series and test for non-stationarity 

A non-stationary series that can be transformed into a stationary one by differencing it 

𝑑 times is called a homogeneous non-stationary series of order 𝑑 or an integrated of 

order 𝑑, and is denoted as 𝐼(𝑑). The stationary series is denoted as 𝐼(0). For a 

homogeneous non-stationary series, the autocorrelations in the 𝐴𝐶𝐹(𝑘) decrease very 

slowly as 𝑘 increases. This serves as an initial practical criterion for the presence of 

homogeneous non-stationarity. If the series is stationary, the autocorrelations would 

decrease rapidly as 𝑘 increases. This criterion should be used only as a supplementary 

tool to the classical tests for non-stationarity, such as the test referred to below, and not 

as a standalone method.  

Numerous tests and techniques are available for assessing non-stationarity in levels. 

Dickey and Fuller (1979, 1981) were the first researchers to explore unit root tests. 

Building upon their work, Said and Dickey (1984) extended the basic autoregressive 

unit root test to handle more complex 𝐴𝑅𝑀𝐴(𝑝, 𝑞) models with unknown orders. This 

enhanced test is commonly known as the Augmented Dickey–Fuller (ADF) test. An 

extension of the Dickey–Fuller test is the Phillips and Perron test (Phillips and Perron, 

1988). The Phillips–Perron (PP) test varies from the ADF test primarily in its treatment 
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of serial correlation and heteroskedasticity. More specifically, the PP test does not 

account for any serial correlation, and the main advantage compared to the ADF test is 

its robustness to various forms of heteroskedasticity in the error term. The 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, developed by Kwiatkowski et al. 

(1992), takes a different approach by testing for stationarity rather than a unit root. It 

examines the null hypothesis of stationarity, which is that a time series is 𝐼(0), against 

the alternative hypothesis of a unit root. On the other hand, the null hypothesis of the 

ADF and PP tests is that a time series is 𝐼(1). A drawback of the ADF and PP tests is 

their low statistical power. Elliott, Rothenberg and Stock (1996) proposed an alternative 

test, namely the ERS (Elliott–Rothenberg–Stock) test, which has higher power than the 

ADF and PP unit root tests. In addition, the examination of autocorrelation and partial 

autocorrelation function patterns is a useful technique to test non-stationarity in levels. 

However, non-stationarity can be present not only in the mean but also in the variance. 

Despite the significance of addressing non-constant variance in time series modeling, 

there is limited theoretical research on its detection and correction. Further, at the 

practical level, the treatment of non-stationary variance is insufficient, since when a 

particular transformation is used its selection is often arbitrary. The main objective of 

this Ph.D. thesis is to address this research gap. 

 

1.2 Univariate 𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒) modeling 

According to Wold's theorem, the approach of analyzing a stationary stochastic process 

as a weighted sum of an infinite number of white noise terms necessitates the 

determination of an infinite set of parameters 𝜓𝑖. However, in practice, this becomes 

practically impossible as we typically have only a finite amount of data available. 

Consequently, we will explore the patterns that emerge by introducing additional 

assumptions about the nature of 𝜓1, 𝜓2, …..Specifically, we assume that the infinite-

term polynomial 𝛹(𝛣) can be represented as the division of two polynomials with finite 

degrees, as follows (Milionis, 2016): 

𝛹(𝛣) =
1 − 𝜃1𝛣 − 𝜃2𝛣

2 − ⋯− 𝜃𝑞𝛣
𝑞

1 − 𝜑1𝛣 − 𝜑2𝛣2 − ⋯− 𝜑𝑝𝛣𝑝
=

𝛩(𝛣)

𝛷(𝛣)
= 𝛷−1(𝛣)𝛩(𝛣) 
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Given the aforementioned assumption, a purely non-deterministic stationary stochastic 

process 𝑌𝑡 with a mean of zero can be represented in the following manner: 

𝛷(𝛣)𝑌𝑡 = 𝛩(𝛣)𝜀𝑡 

The coefficients of 𝛷(𝛣) and 𝛩(𝛣) are determined from the available data. In practical 

applications, the mathematical models we use often involve certain constants or 

parameters that need to be estimated based on the available data. It is crucial to strive 

for simplicity by using the minimum number of parameters that still provide sufficient 

representations. This principle of parsimony (Tukey, 1961) emphasizes the importance 

of keeping the models concise and efficient. 

When setting 𝛩(𝛣) to 1, the model can be expressed in the following manner: 

𝛷(𝛣)𝑌𝑡 = 𝜀𝑡 ⇔ (1 − 𝜑1𝛣 − 𝜑2𝛣
2 − ⋯− 𝜑𝑝𝛣

𝑝)𝑌𝑡 = 𝜀𝑡 ⇔ 

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + ⋯+ 𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡 

To clarify, 𝑌𝑡 is represented as a linear combination of past values up to lag 𝑝, along 

with a white noise process, which signifies the stochastic nature of the model. This 

specific model is referred to as an autoregressive model of order 𝑝 and is denoted as 

𝐴𝑅(𝑝). 

When setting 𝛷(𝛣) to 1, the general model can be expressed as follows: 

𝑌𝑡 = 𝛩(𝛣)𝜀𝑡 = (1 − 𝜃1𝛣 − 𝜃2𝛣
2 − ⋯− 𝜃𝑞𝛣

𝑞)𝜀𝑡

= 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯− 𝜃𝑞𝜀𝑡−𝑞 

To elaborate further, 𝑌𝑡 is represented as a linear combination of past values of a white 

noise process, along with the current value of that process. This specific model is 

referred to as the moving average model of order 𝑞 and is denoted as 𝑀𝐴(𝑞). 

The general stationary stochastic process encompasses both the autoregressive process 

of order 𝑝 and the moving average process of order 𝑞. This type of process is referred 

to as a mixed process of order 𝑝 and 𝑞 and is denoted as 𝐴𝑅𝑀𝐴(𝑝, 𝑞). Mixed processes 

are useful for effectively representing an 𝐴𝑅(𝑝) or 𝑀𝐴(𝑞) process, particularly when 

either 𝑝 or 𝑞 is large. 
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When the process 𝑌𝑡 is derived from a homogeneous non-stationary process 𝑊𝑡 through 

𝑑 successive differentiations, 𝑊𝑡 is referred to as an integrated mixed process of order 

𝑝, 𝑑, 𝑞 and is denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞). 

 

1.2.1 The general autoregressive model 𝑨𝑹(𝒑) and the general moving average 

model 𝑴𝑨(𝒒) 

The 𝐴𝑅(𝑝) model is considered stationary when the roots of its characteristic 

polynomial 1 − 𝜑1𝐵 − 𝜑2𝛣
2 − ⋯− 𝜑𝑃𝛣

𝑃 are located outside the unit circle. The 

characteristic polynomial is derived from the following equation: 

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + ⋯+ 𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡 ⇔ 𝑌𝑡 − 𝜑1𝐵𝑌𝑡 − 𝜑2𝛣
2𝑌𝑡 − ⋯− 𝜑𝑃𝛣

𝑃𝑌𝑡

= 𝜀𝑡 ⇔ (1 − 𝜑1𝐵 − 𝜑2𝛣
2 − ⋯− 𝜑𝑃𝛣

𝑃)𝑌𝑡 = 𝜀𝑡 

To calculate the variance of an autoregressive model, we compute the product of the 

𝐴𝑅(𝑝) model with 𝑌𝑡  and then take the expected values: 

𝐸[𝑌𝑡𝑌𝑡] = 𝜑1𝐸[𝑌𝑡𝑌𝑡−1] + 𝜑2𝐸[𝑌𝑡𝑌𝑡−2] + ⋯+ 𝜑𝑝𝐸[𝑌𝑡𝑌𝑡−𝑝] + 𝐸[𝑌𝑡𝜀𝑡] ⇔ 

𝛾0 = 𝜑1𝛾1 + 𝜑2𝛾2 + ⋯+ 𝜑𝑝𝛾𝑝 + 𝜎2 ⇔ 1 = 𝜑1𝜌1 + 𝜑2𝜌2 + ⋯+ 𝜑𝑝𝜌𝑝 +
𝜎2

𝛾0
⇔ 

𝛾0 =
𝜎2

1 − 𝜑1𝜌1 − 𝜑2𝜌2 − ⋯− 𝜑𝑝𝜌𝑝
 

Το determine the autocovariance of an autoregressive model, we multiply the 𝐴𝑅(𝑝) 

model by 𝑌𝑡−𝑘 and then calculate the expected values: 

𝐸[𝑌𝑡𝑌𝑡−𝑘] = 𝜑1𝐸[𝑌𝑡−1𝑌𝑡−𝑘] + 𝜑2𝐸[𝑌𝑡−2𝑌𝑡−𝑘] + ⋯+ 𝜑𝑝𝐸[𝑌𝑡−𝜌𝑌𝑡−𝑘] + 0 since 𝑘 > 0 

So, 𝛾𝑘 = 𝜑1𝛾𝑘−1 + 𝜑2𝛾𝑘−2 + ⋯+ 𝜑𝑝𝛾𝑘−𝑝, 𝑘 > 0 

Dividing 𝛾𝑘 by 𝛾0, we can deduce that 𝜌𝑘 = 𝜑1𝜌𝑘−1 + 𝜑2𝜌𝑘−2 + ⋯+ 𝜑𝑝𝜌𝑘−𝑝 

If we substitute the index 𝑡 with the index 𝑘, the difference equation mentioned above 

is equivalent to the homogeneous part of the difference equation that describes the 

𝐴𝑅(𝑝) process (Milionis, 2016). 

The general solution can be obtained in the following manner: First, the characteristic 

polynomial 𝛷(𝛣) is derived as 1 − 𝜑1𝐵 − 𝜑2𝛣
2 − ⋯− 𝜑𝑃𝛣

𝑃, which factorizes into 
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𝛷(𝛣) = ∏ (1 − 𝑔𝑖𝐵)𝜌
𝑖=1 , where 𝑔1

−1, 𝑔2
−1, … , 𝑔𝑝

−1 represent the roots of 𝛷(𝛣). 

Consequently, the general solution will take the form 𝜌𝑘 = 𝐴1𝑔1
𝑘 + 𝐴2𝑔2

𝑘 + ⋯+ 𝐴𝑝𝑔𝑝
𝑘, 

with 𝐴1, 𝐴2, … , 𝐴𝑝 representing constants determined by the initial conditions. 

We can categorize the following scenarios: 

1) The term 𝐴𝑖𝑔𝑖
𝑘 diminishes exponentially towards zero when the corresponding 𝑔𝑖 

is a real number. 

2) The term 𝐴1𝑑
𝑘𝑐𝑜𝑠(𝜔𝑘 + 𝐴2) represents a damped sine wave with decreasing 

amplitude when the corresponding 𝑔𝑖 is a complex number. In this case, the 

aforementioned term is formed by the root and its complex conjugate. 

As a result, the autocorrelation function will exhibit a mixture of exponential decays 

and damped sinusoidal waves with declining amplitudes. 

Identifying the order of the 𝐴𝑅 process based solely on the form of the autocorrelation 

function (𝐴𝐶𝐹) is challenging. However, the partial autocorrelation function (𝑃𝐴𝐶𝐹) is 

highly beneficial in this regard and aids in determining the appropriate order. In an 

𝐴𝑅(𝑝)  process, the 𝐴𝐶𝐹 slowly decreases, but the 𝑃𝐴𝐶𝐹 displays exactly as many 

statistically significant autocorrelations as the order of the 𝐴𝑅(𝑝) process.: Let's 

represent 𝜑𝑘𝑗 as the 𝑗-th coefficient in an autoregressive model of order 𝑘, where 𝜑𝑘𝑘 

is the coefficient of the last term. In this context, the following equations are valid: 

𝜌𝑗 = 𝜑𝑘1𝜌𝑗−1 + 𝜑𝑘2𝜌𝑗−2 + ⋯+ 𝜑𝑘(𝑘−1)𝜌𝑗−𝑘+1 + 𝜑𝑘𝑘𝜌𝑗−𝑘 for 𝑗 = 1,2, … , 𝑘 

Thus, the Yule–Walker equations are derived, which can be expressed as follows: 

[

1 𝜌1 𝜌2 … 𝜌𝑘−1

𝜌1 1 𝜌1 … 𝜌𝑘−2

     ⋮       ⋮       ⋮     ⋱          ⋮      
𝜌𝑘−1 𝜌𝑘−2 𝜌𝑘−3 … 1  

] [

𝜑𝑘1

𝜑𝑘2

⋮
𝜑𝑘𝑘

] = [

𝜌1

𝜌2

⋮
𝜌𝑘

] 

Or 𝜌𝑘𝜑𝑘⃗⃗⃗⃗  ⃗ = 𝜌𝑘⃗⃗⃗⃗  

By solving the above equations successively for 𝑘 = 1,2,3, …, we obtain: 

𝜑11 = 𝜌1, 𝜑22 =
|
1 𝜌1
𝜌1 𝜌2

|

|
1 𝜌1
𝜌1 1

|
=

𝜌2−𝜌1
2

1−𝜌1
2 , 𝜑33 =

|
1 𝜌1 𝜌1
𝜌1 1 𝜌2
𝜌2 𝜌1 𝜌3

|

|
1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1

|
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In an 𝐴𝑅(𝑝) process, the values of 𝜑𝑘𝑘 will not be zero for 𝑘 ≤ 𝜌, whereas they will 

be zero for 𝑘 > 𝜌. To obtain empirical estimate of the 𝜑𝑘𝑘 coefficients, we replace 𝜌𝑘 

with their sample estimates, denoted as 𝜌�̂�. 

The general moving average model can be represented as follows: 

𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯− 𝜃𝑞𝜀𝑡−𝑞 ⇔ 

𝑌𝑡 = (1 − 𝜃1𝛣 − 𝜃2𝛣
2 − ⋯− 𝜃𝑞𝛣

𝑞)𝜀𝑡 

For the general moving average model to be invertible, the roots of its characteristic 

polynomial 1 − 𝜃1𝛣 − 𝜃2𝛣
2 − ⋯− 𝜃𝑞𝛣

𝑞 must be located outside the unit circle. The 

characteristic polynomial is derived from the following equation: 

𝑌𝑡 = (1 − 𝜃1𝛣 − 𝜃2𝛣
2 − ⋯− 𝜃𝑞𝛣

𝑞)𝜀𝑡 ⇔ 𝜀𝑡 = (1 − 𝜃1𝛣 − 𝜃2𝛣
2 − ⋯− 𝜃𝑞𝛣

𝑞)
−1

𝑌𝑡 

The variance 𝛾0 and the autocovariance 𝛾𝑘 are calculated as follows: 

𝛾0 = 𝜎2 ∑𝜓𝑗
2

∞

𝑗=0

= 𝜎2(1 + 𝜃1
2 + 𝜃2

2 + ⋯+ 𝜃𝑞
2) 

𝛾𝑘 = 𝜎2 ∑ 𝜓𝑗𝜓𝑗+𝑘 =∞
𝑗=0 𝜎2(−𝜃𝑘 + 𝜃1𝜃𝑘+1 + 𝜃2𝜃𝑘+2 + ⋯+ 𝜃𝑞−𝑘𝜃𝑞), 𝑘 = 1,… , 𝑞 

with 𝜃0 = 1 and 𝛾𝑘 = 0 for 𝑘 > 𝑞. 

Consequently, the autocorrelation function is calculated as: 

𝜌𝑘 =
𝛾𝑘

𝛾0
=

−𝜃𝑘+𝜃1𝜃𝑘+1+𝜃2𝜃𝑘+2+⋯+𝜃𝑞−𝑘𝜃𝑞

1+𝜃1
2+𝜃2

2+⋯+𝜃𝑞
2 , with 𝑘 = 1,2,… , 𝑞 and 𝜌𝑘 = 0 for 𝑘 > 𝑞. 

The behavior of the partial autocorrelation function (𝑃𝐴𝐶𝐹) at lag 𝑘 closely resembles 

the autocorrelation function (𝐴𝐶𝐹) for an autoregressive process. In other words, the 

𝑃𝐴𝐶𝐹 of a moving average process will exhibit a mix of exponential decays towards 

zero and damped sine waves with diminishing amplitudes, depending on the type of the 

roots of 𝛩(𝛣) = 0 (the principle of duality between AR and MA processes).  
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1.2.2 Mixed models 

To achieve parsimony, it may be required to incorporate both autoregressive and 

moving average components. Hence, it might be necessary to utilize a mixed 𝐴𝑅𝑀𝐴 

model:  

𝛷(𝛣)𝑌𝑡 = 𝛩(𝛣)𝜀𝑡 

If all the roots of the characteristic equation 𝛷(𝛣) = 0 lie outside the unit circle, the 

process will be considered stationary. Similarly, for the process to be invertible, the 

roots of 𝛩(𝛣) = 0 must be located outside the unit circle. 

The 𝐴𝐶𝐹 and 𝑃𝐴𝐶𝐹 of an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process will begin to decay either exponentially 

towards zero or with damped sine waves after lag 𝑞 and 𝑝, respectively.  

 

1.3 Time series decomposition and seasonal 𝑨𝑹𝑰𝑴𝑨(𝒑,𝒅, 𝒒)(𝑷, 𝑫,𝑸)𝒔 models 

In practical applications, it is beneficial to assume that an observed time series can be 

decomposed into unobservable components using the following equation: 

𝑌𝑡 = 𝑆𝑡 + 𝑃𝑡 + 𝐶𝑡 + 𝑈𝑡  

where: 

𝑌𝑡  is the observed time series or some transformation of it, 

𝑆𝑡 is the seasonal component, 

𝑃𝑡 is the long-term trend, 

𝐶𝑡 is the cyclical component, 

𝑈𝑡 is the irregular component. 

The seasonal component of time series decomposition refers to the recurring patterns 

that occur within a time series at regular intervals, typically over the course of a year. 

These patterns can be influenced by various factors such as weather, holidays, or 

cultural events. Two examples illustrating the seasonal component are tourist arrivals 

(e.g. May to September in Greece) and retail sales (e.g. a retail business that sells winter 

apparel).   
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The long-term trend signifies the general change in the level of the time series.  In non-

stationary time series, the long-term trend can either remain constant or vary over time. 

In instances where the trend is time-varying, linear regression models often lead to 

highly inaccurate forecasts in many cases. 

The cyclical component of time series decomposition refers to the medium-term 

fluctuations in a time series. Unlike the seasonal component, which has regular and 

predictable patterns, cyclical movements are irregular and can vary in duration and 

amplitude. These fluctuations are typically linked to economic or business cycles and 

can span multiple years.  

The irregular component, also known as noise, encompasses the cumulative effects of 

non-systematic factors. It represents the random or unpredictable variations that are not 

accounted for by the systematic components of the time series. The irregular component 

can include various sources of randomness, measurement errors, outliers, or 

unexplained fluctuations that cannot be attributed to the underlying patterns or 

components of the series. 

By drawing an analogy with the non-seasonal model 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), it is possible to 

formulate a similar model to capture the correlations between observations for the same 

month in different years, in the following format: 

𝛷(𝛣12)∇12𝑌𝑡 = 𝛩(𝛣12)𝜀𝑡 

The polynomials 𝛷(𝛣12) and 𝛩(𝛣12) are of degree 𝑃 and 𝑄, respectively, in relation 

to the lag operator 𝐵 raised to the 12th power. In other words: 

𝛷(𝛣12) = 1 − 𝜑1𝛣
12 − 𝜑2𝛣

24 − ⋯− 𝜑𝑃𝛣
𝑃∙12 

𝛩(𝛣12) = 1 − 𝜃1𝛣
12 − 𝜃2𝛣

24 − ⋯− 𝜃𝑄𝛣𝑄∙12 

If we combine the seasonal and non-seasonal model, we arrive the composite model: 

𝛷(𝛣)𝛷(𝛣12)∇∇12𝑌𝑡 = 𝛩(𝛣)𝛩(𝛣12)𝜀𝑡 

In other words, the composite model takes the form of a multiplicative model denoted 

as 𝐴𝑅𝐼𝑀𝐴(𝑝, 1, 𝑞)(𝑃, 1, 𝑄)12. The prevalent type of seasonal model is referred to as 

the airline model, which can be expressed as 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)𝑠, where 𝑠 indicates 

the seasonality.  
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1.3.1 The variable seasonal pattern 

The process of removing the seasonal component from time series data involves 

intricate statistical procedures, and it is commonly executed using specialized statistical 

software like X-12-REG-ARIMA, TRAMO-SEATS, and JDemetra+. More 

specifically: 

X-12-REG-ARIMA is a software package developed by the U.S. Census Bureau and 

the Statistical Office of Canada (Findley et al., 1998), designed for seasonal adjustment 

and time series analysis. It is widely used by statistical agencies, researchers, and 

economists to remove seasonal variations from economic time series data. 

TRAMO-SEATS is widely regarded as a robust and sophisticated tool for seasonal 

adjustment, particularly for complex time series with irregular seasonality. This 

program was developed by Gómez and Maravall (1996) at Banco de España, with the 

support of Eurostat. The latest version operates in a Windows environment under the 

name TSW. TRAMO stands for "Time series Regression with ARIMA noise Missing 

observations and Outliers" and SEATS stands for "Signal Extraction in ARIMA Time 

Series".  

JDemetra+: is an advanced software tool developed by the National Bank of Belgium 

and Eurostat since February 2015. It has gained popularity among statistical 

practitioners due to its powerful capabilities, comprehensive reporting, and user-

friendly interface. It is continually updated and maintained to incorporate the latest 

developments in seasonal adjustment methods, ensuring the accuracy and reliability of 

the results.  

However, users should have a solid understanding of seasonal adjustment principles 

and the specific characteristics of their time series data to make appropriate and 

informed decisions when using the aforementioned software. 

 

1.4 Box–Jenkins univariate stochastic models 

Box-Jenkins univariate stochastic models, also known as ARIMA models, are a 

powerful class of time series models used for analyzing and forecasting single-variable 

time series data. Developed by Box and Jenkins (1976), these models have become 
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widely popular and essential in time series analysis due to their flexibility, simplicity, 

and effectiveness in handling a wide range of time series patterns. The Box-Jenkins 

procedure consists of four main stages for developing an ARIMA model These stages 

are as follows: 

(i) The identification of the model: The first stage involves identifying the appropriate 

orders of the 𝐴𝑅 and 𝑀𝐴 components, as well as the order of differencing needed to 

achieve stationarity. This is done by analyzing the autocorrelation function and partial 

autocorrelation function of the time series data.  Additionally, if the original data is non-

stationary, the order of differencing required to make the data stationary is determined.  

(ii) The estimation of the model: The coefficients of the ARIMA model are estimated 

using various techniques, with maximum likelihood estimation being one of the most 

commonly used methods. The coefficients of the model should fall within the bounds 

of invertibility, stationarity, and demonstrate statistical significance. 

(iii) The diagnosis of the model: The third stage involves performing diagnostic tests to 

assess the adequacy of the model. The diagnosis of the models involve analyzing the 

residuals to ensure that they meet certain assumptions. (i.e. the null hypothesis that the 

residuals of the model are white noise). To avoid rejecting the null hypothesis, two 

conditions must be met: a) there should be no significant correlation up to the initial 

lags and b) the 𝐿𝐵𝑄 test’s value should not exhibit statistical significance. 

(iv) The metadiagnosis of the model: The proposed model is evaluated against other 

competing models, with the key criteria being the model's parsimony and the residual 

mean square (𝑅𝑀𝑆) value. The 𝑅𝑀𝑆 is calculated as follows: 

𝑅𝑀𝑆 =
1

𝑁
√∑𝜀�̂�

2

𝑁 

𝑡=1

 

For the parsimony of the model with the best fit, various statistical criteria can be used 

such as: 

a) The Bayesian information criterion (𝐵𝐼𝐶) of Schwarz (1978): 

𝐵𝐼𝐶(𝑝, 𝑞) = 𝑙𝑛�̂�2 + (𝑝 + 𝑞)𝑁−1𝑙𝑛𝑁, where �̂�2 =
∑ 𝜀𝑡

2𝑇
𝑡=1

𝑁
 is the estimation of the 

variance of the residuals and 𝑁 is the number of terms. 
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b) The Akaike (1974) criterion: 𝐴𝐼𝐶(𝑝, 𝑞) = 𝑙𝑛�̂�2 + 2(𝑝 + 𝑞)𝑁−1 

𝐵𝐼𝐶 has a stronger penalty for model complexity compared to 𝐴𝐼𝐶. This means that 

𝐵𝐼𝐶 tends to prefer simpler models with fewer parameters. If the primary goal is to 

obtain a simpler model and the sample size is relatively large, 𝐵𝐼𝐶 may be preferred as 

it tends to favor more parsimonious models. When choosing between models, the 

lowest value of the above tests indicates a better fit. 

 

1.5 Time series linearization 

The 𝐴𝑅𝐼𝑀𝐴 models provide a practical approach to capturing the features and patterns 

present in time series. Building an 𝐴𝑅𝐼𝑀𝐴 model may require pre-adjustments for the 

following reasons: 

a)  Outliers: Outliers are data points in a time series that deviate significantly from the 

overall pattern or trend. They are extreme values that lie far away from the majority 

of data points and can have a substantial impact on the statistical properties of the 

time series. 𝐴𝑅𝐼𝑀𝐴 models assume that the data are generated from a stationary 

stochastic process with no significant outliers. If outliers are present in the data and 

left untreated, they can lead to inaccurate model parameter estimates, affect the 

model's ability to capture the underlying patterns, and result in unreliable forecasts. 

Outliers are typically linked to three primary types of effects: 

i) Additive Outlier (AO): This effect only impacts a single isolated 

observation. 

ii) Transitory Change (TC): This resembles an additive outlier, but its effect 

does not immediately fade away but rather persists over several periods.  

iii) Level Shift (LS): This implies a change in the mean level of the series. 

 

b) Calendar effects: Calendar effects refer to regular patterns that occur at specific time 

intervals within a year. Some common calendar effects include holiday effect and 

day of the week effect. Typically, these effects are integrated into the model by using 

regression variables. 

c) Intervention variables: Time series data can be influenced by extraordinary or 

uncommon events that are difficult to incorporate into an ARIMA model. 
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Consequently, it becomes necessary to "intervene" in the series to account for the 

effects of these exceptional events. Some examples of such events are policy 

changes, technological advancements, labor strikes, major events and celebrations 

(like the Olympics) and so on. These particular effects can be included in the model 

as regression variables, commonly known as intervention variables according to 

Box and Tiao (1975).  

The general framework of linearization (Kaiser and Maravall, 2001) for the original 

series can be written as 

𝑦𝑡 = 𝑤𝑡
′𝑏 + 𝐶𝑡

′𝜂 + ∑𝛼𝑗𝜇𝑗(𝐵)𝐼𝑡(𝑡𝑗) + 𝑥𝑡

𝑚

𝑗=1

  

Where: 𝑦𝑡 = 𝑓(𝑧𝑡), 𝑓 is some transformation of the raw series zt, which may be 

necessary to stabilize the variance; 

𝑏 = (𝑏1, … , 𝑏𝑛) is a vector of regression coefficients;  

𝑤𝑡
′ = (𝑤1𝑡, … ,𝑤𝑛𝑡) denotes n regression or intervention variables;  

𝐶𝑡
′ denotes the matrix whose columns represent possible calendar effect variables (e.g., 

trading day);  

𝜂 is the vector of associated coefficients; 

𝐼𝑡(𝑡𝑗) is an indicator variable for the possible presence of an outlier at period 𝑡𝑗; 

𝜇𝑗(𝐵) captures the transmission of the j-th effect;  

𝛼𝑗 denotes the coefficient of an outlier in a multiple regression model with m outliers; 

𝑥𝑡, in general, follows a multiplicative seasonal ARIMA(p,d,q)(P,D,Q)s model: 

𝜑(𝐵)𝛷(𝐵𝑠)𝛻𝑑𝛻𝑠
𝐷𝑥𝑡 = 𝜃(𝐵)𝛩(𝛣𝑠)𝜀𝑡              

where: 

𝜑(𝐵) = 1 − 𝜙1𝐵 − ⋯− 𝜙𝑝𝐵
𝑝 is the so-called autoregressive polynomial of order p; 

𝜃(𝐵) = 1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵
𝑞 is the so-called moving average polynomial of order q; 

𝛻𝑑 ≡ (1 − 𝐵)𝑑 is an arithmetic difference operator of order d; 

𝛻𝑠
𝐷 ≡ (1 − 𝐵𝑠)𝐷 is a seasonal arithmetic difference operator of order D and 

seasonality s; 

𝛷(𝐵𝑠) = 1 − 𝛷1𝐵
𝑠 − ⋯− 𝛷𝑃𝐵

𝑃⋅𝑠 is the so-called seasonal autoregressive 

polynomial of order P and seasonality s; 
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𝛩(𝐵𝑠) = 1 − 𝛩1𝐵
𝑠 − ⋯− 𝛩𝑄𝐵𝑄⋅𝑠 is the so-called moving average polynomial of 

order Q and seasonality s; 

𝜀𝑡 is the stochastic disturbance. 

There are several software programs (such as X-12-REG-ARIMA, TRAMO-SEATS, 

and JDemetra+) that implement these procedures to estimate the parameters of the 

general framework of linearization.  

 

1.6 Thesis motivation and main objectives 

1.6.1 Further discussion on stationarity in the second moment 

As far as variance stabilization is concerned, if the variance is functionally related to 

the level and the level is non-stationary (which is often the case with economic-financial 

time series), the variance is neither conditionally nor unconditionally constant. Hence, 

the process is non-homogeneously non-stationary in the sense of Box and Jenkins and 

cannot be made stationary by simply differencing it. One way to tackle variance non-

stationarity is to employ power transformations, such as the well-known class of the 

Box and Cox transformations (Box and Cox, 1964). For instance, the following 

transformation is very often used: 

𝑓(𝑧𝑡) = {
𝑧𝑡

𝜆 − 1

𝜆
 𝑖𝑓 𝜆 ≠  0

𝑙𝑛𝑧𝑡 𝑖𝑓 𝜆 = 0

} 

Regarding the arithmetic values of the exponent 𝜆 of the above equation, for practical 

purposes, Makridakis et al. (1998) state that there is no merit in using arithmetic values 

with several decimal points, as nearby values will produce very similar results. Simple 

arithmetic values of 𝜆 are easier to interpret and, hence, more meaningful. Furthermore, 

Kalligeris et al. (2019) acknowledge that when 𝜆 < 0, an alternative model is necessary, 

which diminishes the attractiveness of the methodology. To address this limitation, they 

propose a comprehensive model selection approach that remains applicable even in 

cases involving negative values. 

At the practical level, the treatment of non-stationary variance is occasionally biased 

towards over-rejection of the null hypothesis of unconditionally constant variance, as 

is argued in subsequent chapters. 
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More specifically, the existing statistical approaches for the detection and correction of 

variance non-stationarity appear to have several disadvantages, viz.: (i) although they 

detect variance non-stationarity, the correction they suggest is not formally and 

rigorously documented (e.g., Hay and McLeay, 1979; Milionis and Davies, 1994);                      

(ii) they usually suffer from subjectivity (see, for instance, Mills, 1990 chapter 4, for a 

short review); and (iii) although they detect variance non-stationarity and are formally 

suggestive of a solution, they lack robustness (Milionis, 2003; Milionis, 2004). 

Failure to account for non-stationarity in variance leads to distortions in both the 

variance itself and the autocovariances of the time series. This can result in a correlation 

between terms that are lags apart, leading to the presence of artificially statistically 

significant coefficients at certain lags. These issues contribute to the problem of 

overparameterized models. Furthermore, variance stationarity is a critical requirement 

for outlier analysis. Without it, the identification of outliers, their types, and any 

economic significance associated with them become invalid. 

It is important to distinguish between two concepts: variance non-stationarity, also 

known as heteroscedasticity, and conditional heteroscedasticity. Heteroscedasticity 

implies a functional relation between the variance of a series which is non-stationary in 

its level and its mean level. This entails non-stationarity in the variance (Milionis, 

2004). On the other hand, conditional heteroscedasticity, usually described by ARCH 

or GARCH models (Engle, 1982; Bollerslev, 1986), means that while the conditional 

variance changes over time, the unconditional variance remains constant.  Therefore, 

the series is stationary in the second moment. 

Indeed, considering,  without loss of generality,  the simple ARCH(1) model, i.e.,                          

𝑓(𝑋𝑡) = 𝑓(𝑋𝑡−1; 𝑏) + 𝑒𝑡, where 𝑋𝑡 is a stochastic process, 𝑏 represents a parameter 

vector, 𝑒𝑡 = 𝑣𝑡√𝜔 + 𝑎1𝑒𝑡−1
2 , 𝜔 > 0, 0 < 𝑎1 < 1, and 𝑣𝑡 is a white noise with unit 

variance. For this model it is easily proved that (Enders (1995), Milionis (2004)):                     

i) the unconditional mean of 𝑒𝑡 is equal to zero, ii) the conditional variance of 𝑒𝑡 is 

equal to 𝜔 + 𝑎1𝑒𝑡−1
2 , meaning it varies with time, and iii) the unconditional variance of 

𝑒𝑡 is equal to 
𝜔

1−𝑎1
, i.e. it is a constant. 

A specific case is that of an integrated GARCH (IGARCH) process, in which volatility 

exhibits persistence, and may require additional examination. Research by Nelson 



26 
 

(1990) has demonstrated that, unlike the typical random walk, even this process is 

strictly stationary, yet its unconditional variance is unbounded. 

In the aforementioned models, the parameters governing the conditional variance are 

concurrently estimated alongside the parameters related to the series' level. From a 

methodological perspective, it is essential to address variance non-stationarity before 

addressing non-stationarity in levels. 

 

1.6.2 Thesis aim 

The aim of this Ph.D. thesis is to present a formal econometric approach that not only 

identifies non-stationary variance and suggests appropriate transformations for 

correction but is also robust to the specific partitioning of a time series, which is a 

necessary step for conducting the test, and the possible presence of outliers. The 

importance of the application of this methodology in macroeconomics, actuarial 

science and finance is thoroughly examined and evidenced in subsequent chapters. A 

brief outline is given below. 

 

1.6.2a) Applications in macroeconomics 

A univariate ARIMA model is a concise quantitative summary of the internal dynamics 

of a time series in a linear framework. It is therefore useful for several reasons, 

including for forecasting. More specifically, univariate forecasts usually serve either as 

short-term or benchmark forecasts. 

The effect of the application of this methodology to some crucial elements of 

macroeconomic time series modeling, such as forecasting and outlier detection, will be 

examined. It is of much interest to investigate how variance non-stationarity could 

potentially affect the specification of the univariate ARIMA model and the detection of 

outliers.  

For instance, examining the time series on monthly external trade statistics from the 

Balance of Payments for Greece (see Chapter 2), the presence of variance non-

stationarity leads to seriously mis-specified univariate ARIMA models, a result that is 

in accordance with that of Milionis (2004). Also, in properly transformed data, the 
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pattern of detected outliers is clearly different, a conclusion that is also in accordance 

with that of Milionis (2004).  

It will also be shown that the TSW program, a specialized software for time series 

analysis, occasionally appears to be biased, favoring the log transformation of the data. 

Furthermore, the results obtained using simulated data show a bias in TSW that depends 

on the initial conditions. Moreover, it will be established that the consequences of 

falsely transforming a time series which is originally variance stationary do exist but 

are less severe than the consequences of falsely not transforming an originally variance 

non-stationary series.  

In addition, utilizing 20 of the most important time series for the Greek economy, the 

empirical findings show a significant improvement in the confidence intervals of 

forecasts but no substantial improvement in point forecasts (see Chapter 3). 

Furthermore, the combined transformation–linearization procedure improves 

substantially the non-normality problem encountered in many macroeconomic time 

series. 

 

1.6.2b) Applications in actuarial science 

Longevity is a threat for insurance companies or pension funds. Longevity risk is 

considered the possibility that life expectancy, or actual survival rates, will exceed the 

"expected". If indeed this happens, then the outflow of money from the funds will be 

greater and, as a result, the risk now lurks for the company or the pension fund. This 

risk exists—in the last 50–60 years there has been a trend of increasing life 

expectancy—therefore insured persons and pensioners have to receive proceeds for 

more time. On the other hand, the number of people reaching retirement age is 

constantly increasing. The combination of the two results in higher payout levels than 

originally thought. The types of plans exposed to the highest levels of longevity risk are 

pension plans and life annuities. Figures for average life expectancy are increasing, and 

even a small change in life expectancy can create serious solvency issues for pension 

plans and insurance companies. Therefore, it is very crucial to predict mortality rates 

as accurately as possible. Aiming at possible improvements of such forecasts, the effect 

of data transformation–linearization on the quality of time series forecasts of mortality 

is examined, and results indicate a clear improvement for interval forecasts of mortality 
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(see Chapter 4). The documented improvement in interval forecasts can significantly 

affect the Solvency Capital Requirement, giving some pension providers a competitive 

advantage. 

 

1.6.3c) Applications in finance 

The predictability of stock returns and the concept of market efficiency have earned 

significant interest among researchers. This is evident from the extensive body of 

research published on these topics. The efficient market hypothesis posits that “security 

prices fully reflect all available information” (Fama, 1970). 

The traditional classification of available information (Roberts, 1959) categorizes 

market efficiency into three forms: weak-form efficiency, which considers past prices 

as the information set; semi-strong efficiency, which contains all publicly available 

information in the information set; and strong-form efficiency, which encompasses both 

publicly and privately available information in the information set. In an efficient 

market, tests of return predictability should fail to reject the null hypothesis of no 

predictability. 

To empirically test the weak-form market efficiency hypothesis (WFME), it is initially 

assumed that conditions of equilibrium can be described in terms of expected returns. 

This can be written as:  

𝐸(�̃�𝑗,𝑡+1 / 𝛷𝑡) = [1 + 𝐸(�̃�𝑗,𝑡+1 / 𝛷𝑡)]𝑃𝑗,𝑡 

where 𝑃𝑗,𝑡 represents the price of security 𝑗 at time 𝑡, 𝑅𝑗,𝑡+1 represents the percentage 

return of security 𝑗 between 𝑡 and 𝑡 + 1, and 𝛷𝑡 represents the information set that is 

fully reflected in 𝑃𝑗,𝑡. The use of tildes denotes random variables at time 𝑡.  

These expected returns are determined using a pricing model, making the test of WFME 

a joint test of WFME and the pricing model. When the adopted model assumes constant 

expected returns in a risk-unadjusted framework, it is common to apply tests for 

autocorrelation in security returns. However, it is important to note that statistically 

significant correlations alone do not necessarily imply the rejection of the WFME 

hypothesis, as the joint hypothesis being tested includes both WFME and the pricing 

model with constant expected returns. 
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Elton et al. (2014) provide a comprehensive compilation of autocorrelation test results 

conducted by multiple researchers. These tests analyze the first differences of prices or 

the logarithms of prices. It is important to note that these tests are valid only when the 

series of first differences of prices exhibits variance stationarity. If this condition is not 

met, the significance testing of autocorrelation coefficients becomes invalid. So, to 

elucidate the conditions under which autocorrelation tests or similar tests for market 

efficiency using returns are significant, the following proof offers a comprehensive 

statistical rationale that establishes the compatibility between interdependence in 

returns and market efficiency (Milionis, 2007). 

Proof: 𝐶𝑂𝑉(�̃�𝑗,𝑡, �̃�𝑗,𝑡+1) = 

∬ (�̃�𝑗,𝑡 − 𝐸(�̃�𝑗,𝑡)) ∙ (�̃�𝑗,𝑡+1 − 𝐸(�̃�𝑗,𝑡+1)) 𝑓(𝑅𝑗,𝑡, 𝑅𝑗,𝑡+1)𝑑𝑅𝑡𝑑𝑅𝑡+1

( )

𝑅𝑡𝑅𝑡+1

= 

∬ (�̃�𝑗,𝑡 − 𝐸(�̃�𝑗,𝑡)) ∙ (�̃�𝑗,𝑡+1 − 𝐸(�̃�𝑗,𝑡+1)) 𝑓(𝑅𝑗,𝑡)𝑓(𝑅𝑗,𝑡+1/𝑅𝑡)𝑑𝑅𝑡𝑑𝑅𝑡+1

( )

𝑅𝑡𝑅𝑡+1

 

as 𝑓(𝑅𝑡, 𝑅𝑡+1) = 𝑓(𝑅𝑡)𝑓(𝑅𝑡+1/𝑅𝑡). 

Based on the definition of conditional expected value, it holds that:  

∫ (�̃�𝑗,𝑡+1𝑓(𝑅𝑡+1/𝑅𝑡)) 𝑑𝑅𝑡+1 = 𝐸(�̃�𝑗,𝑡+1/𝑅𝑡)
𝒂

𝑅𝑡

 

Hence:  

𝐶𝑂𝑉(�̃�𝑡 , �̃�𝑡+1) = ∫ {�̃�𝑡 − 𝐸(�̃�𝑡)} ∙ {𝐸(�̃�𝑡+1/𝑅𝑡) − 𝐸(�̃�𝑗,𝑡+1)} ∙ 𝑓(𝑅𝑡)𝑑𝑅𝑡

𝒂

𝑅𝑡

 

The above equation is used by Fama. As 𝐸(�̃�𝑡+1) = 𝐸{𝐸(�̃�𝑡+1/𝑅𝑡)}, the equation 

provided above can be alternatively expressed as: 

𝐶𝑂𝑉(�̃�𝑡 , �̃�𝑡+1) = ∫ {�̃�𝑡 − 𝐸(�̃�𝑡)} ∙ {𝐸(�̃�𝑡+1/𝑅𝑡) − 𝐸{𝐸(�̃�𝑡+1/𝑅𝑡)}} ∙ 𝑓(𝑅𝑡)𝑑𝑅𝑡

𝒂

𝑅𝑡

 

Based on the analysis presented above, it is clear that both of the previously mentioned 

equations are equivalent to the definition of autocovariance, without any specific 

reference to �̃�𝑗,𝑡, �̃�𝑗,𝑡+1. These equations hold true for any random variables �̃�, �̃�.  
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Therefore, in general, 𝐶𝑂𝑉(�̃�𝑡, �̃�𝑡+1) ≠ 0 as 𝐸(�̃�𝑡+1/𝑅𝑡) − 𝐸{𝐸(�̃�𝑡+1/𝑅𝑡)} ≠ 0, and 

it is evident that for the integral in the last equation to vanish, an additional assumption 

needs to be made. This assumption is known as the constant expected returns, and when 

it holds good, it follows that 𝐸(�̃�𝑡+1/𝑅𝑡) = 𝐸{𝐸(�̃�𝑡+1/𝑅𝑡)} and therefore 

𝐶𝑂𝑉(�̃�𝑡, �̃�𝑡+1) = 0. 

Autocorrelation tests can only be meaningful in cases where the assumption of constant 

expected returns and, in extension, of variance stationarity holds true. In this scenario, 

the presence of autocorrelation in stock returns can be considered as evidence for 

rejecting market efficiency. Specifically, it indicates the rejection of the joint hypothesis 

that assumes both market efficiency and constant expected returns. 

In a risk-adjusted framework, when risk fluctuates over time instead of remaining 

constant, it follows that expected returns, considering risk aversion, should also vary 

over time. One of the most apparent quantitative expressions of this temporal 

relationship between risk and return is found in GARCH-M models, where the 

conditional variance can serve as a predictor for returns (Milionis, 2016). These models 

can be broadly formulated as:  

𝛥𝑙𝑜𝑔𝑃𝑡 = 𝑓(ℎ𝑡
2, 𝛷𝑡−1, 𝛽) + 𝜀𝑡 

The equation presented above represents returns as a function 𝑓 of three components: 

the conditional variance (ℎ𝑡
2) which reflects the risk, the information available up to 

time t-1 (𝛷𝑡−1), and the parameter vector 𝛽. According to Milionis and Moschos 

(2000), two scenarios can be illustrated based on this equation: 

1) When 
𝜕𝑓

𝜕ℎ𝑡
2 < 0, if ℎ𝑡

2 increases, this will result in a decrease in expected returns. In 

that scenario, if the model is correctly specified, it would lead to the rejection of the 

WFME.  

2) When 
𝜕𝑓

𝜕ℎ𝑡
2 > 0, if ℎ𝑡

2 increases, this will result in an increase in expected returns. This 

is not incompatible with the overall concept of WFME, if investors anticipate a positive 

return. 
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1.7 Thesis outline 

The structure of this thesis is as follows. In Chapter 2, the theory of the proposed 

methodology for non-stationarity in the second moment will be developed, and it will 

be demonstrated that the proposed methodology outperforms other methods. Through 

simulations, the superiority of the proposed methodology is highlighted, while also 

exposing the biases in alternative approaches. In Chapter 3, the proposed methodology 

is applied to macroeconomic time series, demonstrating the improvement in prediction 

confidence intervals that arises from its application. In Chapter 4, the aforementioned 

methodology will be used for longevity forecasting, and its advantages over existing 

approaches will be presented. In the last chapter (Chapter 5), the developed 

methodology will contribute to the improvement of the framework of econometric 

assumptions and tests in finance, aiming to determine the rejection or non-rejection of 

the hypothesis of weak-form market efficiency. 
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SUMMARY OF CHAPTER 1 

While researchers typically test for non-stationarity in the level of a time series using 

various tests, they sometimes overlook non-stationarity in the variance when 

conducting applied research. Indeed, regarding time series variance, the research focus 

is mainly directed in modeling conditional heteroscedasticity through a plethora of 

ARCH-GARCH type of models. However, as argued earlier in this chapter, such 

models are variance stationary because although the conditional variance is time-

varying the unconditional variance is constant. The implications of disregarding non-

stationarity in the variance in macroeconomic time series, in actuarial science and 

finance are examined. A formal econometric approach is proposed to test and address 

non-stationarity in the variance. The existence of non-stationarity in the variance results 

in an inaccurate specification of univariate autoregressive integrated moving average 

(ARIMA) models, and the identification and analysis of outliers are then influenced by 

the existence of non-stationarity in the variance. The consequences of testing the 

hypothesis of weak-form market efficiency (WFME) are considered, particularly 

highlighting the inadequacy of conventional autocorrelation tests when applied to the 

differences in asset prices. 
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CHAPTER 2 

DEVELOPMENT OF THE STATISTICAL METHODOLOGY AND 

EVALUATION OF ITS MERIT 

 

2.1 Introduction 

Over the last five decades a vast volume of research work, at both the theoretical and 

the applied level, has been devoted to time series with time-varying second moment. 

This non-constancy in the second moment may be due to various reasons. For the 

purposes of this work, it is methodologically useful to distinguish between type (i): 

series with conditionally non-constant, but unconditionally constant variance, and type 

(ii): series with non-constant variance both conditionally and unconditionally. In the 

present the focus is on the latter. 

If the variance is functionally related to the level and the latter is non-stationary, the 

variance is not constant both conditionally and unconditionally [this is the typical case 

of type (ii)]. Therefore, the procedure is non-homogeneously non-stationary in the sense 

of Box and Jenkins (1976) and cannot be made stationary by merely taking differences. 

To address the issue of non-constant variance, one approach is to utilize power 

transformations, such as the widely recognized Box and Cox transformations (refer to 

section 1.6.1). 

In spite of its importance for time series modelling, there is not much work at the 

theoretical level on the detection and correction of non-constancy in the variance owing 

to its dependence on a non-stationary mean level. Additionally, at the practical level, 

dealing with non-constant variance is not only inadequate (in fact, the choice of a 

specific transformation is often arbitrary) but also, occasionally, tends to show a bias 

towards rejecting the null hypothesis of unconditionally constant variance. This 

argument is discussed later in this chapter. 

More specifically, the existing statistical methods used to detect and correct variance 

non-stationarity seem to have various drawbacks, as outlined in section 1.6.1. The aim 

of this work is to develop a formal econometric approach, which not only allows the 

detection of non-stationary variance and is suggestive of the transformation necessary 

to correct for it but also it is robust to the particular partition of a time series –a 
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procedure necessary for the test- and the possible existence of outliers. Further, the 

possible advantages of the application of this methodology on some crucial elements 

of time series modelling such as outlier detection and seasonal adjustment, as compared 

to existing methods, are examined. 

The chapter is structured as follows: In section 2.2 the statistical methodology (testing 

procedure) is developed and the framework is set upon which the possible advantages 

of the new testing procedure on univariate time series modelling are evaluated. In 

section 2.3 the testing procedure is applied on Greek real data, as well as on artificial 

time series created by statistical simulation. This aims to serve two purposes: (i) to 

evaluate the usefulness of the methodology in analyzing and forecasting time series 

from the real world; (ii) to identify biases in the algorithms incorporated in existing 

specialized statistical software for variance non stationarity testing. Section 2.4 

concludes the chapter. 

 

2.2 Development of the statistical methodology 

As in most other similar studies (Mills, 1990; Milionis and Davies 1994; Milionis 

2004), for the statistical testing approach used in this work time series are partitioned 

into segments (subsamples) of equal length. For each subsample the (local) mean (LM) 

as well as the (local) standard deviation (LSD) are calculated. Local Standard Deviation 

is assumed to be functionally dependent on Local Mean in a non-linear fashion as 

follows:  

                                                   𝐿𝑆𝐷 = 𝑎𝐿𝑀𝛽𝑒𝑢                                                          (1) 

where 𝑎, 𝛽 are model parameters, 𝑒 is the base of natural logarithms and 𝑢 the stochastic 

disturbance. Model parameters 𝑎, 𝛽 are estimated via Ordinary Least Squares 

(henceforth OLS) using the corresponding log-log model. The estimated value of 𝛽 (�̂�) 

provides the necessary information for the existence (or non-existence) and the type of 

data transformation needed to ensure variance stationarity (e.g. for the most popular 

transformations, namely the log-transformation and the square root one, correspond to 

𝛽 = 1, and 𝛽 = 0.5, respectively). This is formally stated and tested by hypothesis 𝐻𝑎 

below.  
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To ensure robustness with respect to a particular partition and the possible existence of 

outliers, as this procedure should precede the detection of outliers, the procedure is 

repeated for different partitions. The number of different partitions is at least equal to 

the number of divisors of the series’ length, giving a quotient (series length over divisor)  

≥ 5 and restricting the size of subsamples to be ≥ 51. Robustness is formally stated and 

tested by hypothesis 𝐻𝑏 below. 

Finally, the previous steps are repeated with the already transformed data. The purpose 

of this last step is to test, whether or not, the suggested transformation is sufficient to 

stabilize the series variance. This is formally stated and tested by hypothesis 𝐻𝑐 below. 

 

2.2.1 Notation and equations 

Before the description of the testing procedure some explanation on the notation and 

definition of the various symbols is necessary. 

• Index (𝑘) indicates the ascending number of a subsample in a partition.  

• Index (𝑗) indicates the ascending number of the particular partition, 

𝑗 = 1,2, … , 𝑗𝑚𝑎𝑥. 

• Index 𝑖𝑗 represents the maximum value of 𝑘 (number of subsamples) in partition 

𝑗. 

• 𝑁 is the total length (size) of the initial time series.  

• 𝑛𝑖𝑗 represents the size of subsamples in partition 𝑗. 

• �̂�𝑗 is the estimate of the exponent 𝛽 using subsamples derived from partition 

with ascending number 𝑗. 

•  �̂�𝑗𝑘, 𝜀�̂�, �̂�𝑗𝑘
∗  are independent of each other regression residuals. 

An asterisk (*) over a symbol denotes the corresponding transformed data, or the 

corresponding parameter estimate derived from the transformed data. 

• 𝑖𝑗 = (𝑁/𝑛𝑖𝑗), if (𝑁/𝑛𝑖𝑗) is an integer; 𝑛𝑖𝑗 ≥ 5, 

• 𝑖𝑗 = 𝑖𝑛𝑡(𝑁/𝑛𝑖𝑗) + 1, if (𝑁/𝑛𝑖𝑗) is not an integer, 𝑛𝑖𝑗 ≥ 5 and the residual of 

the division is ≥ 5,  

 
1Five (5) was selected as a reasonable lower limit for both the size of a subsample, as well as the number 

of subsamples in any partition of the original series.  
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• 𝑖𝑗 = 𝑖𝑛𝑡(𝑁/𝑛𝑖𝑗), if (𝑁/𝑛𝑖𝑗) is not an integer, 𝑛𝑖𝑗 ≥ 5 and the residual of the 

division is < 5, 

• �̂�𝑗 is estimated for each partition 𝑗, 𝑗 = 1,2,… , 𝑗𝑚𝑎𝑥 via OLS from the model 

(First stage regression):  

                       𝑙𝑛( 𝐿𝑆𝐷𝑗𝑘) = 𝑙𝑛( 𝛼𝑗) + �̂�𝑗 𝑙𝑛( 𝐿𝑀𝑗𝑘) + �̂�𝑗𝑘                             
(2) 

• �̂� is estimated via OLS as the constant term of the model (Second stage 

regression):  

 
�̂�𝑗 = �̂� + �̂�𝑗 + 𝜀�̂�                                             

(3) 

• Model using the transformed data (Third stage regression): 

                                         𝑙𝑛( 𝐿𝑆𝐷𝑗𝑘
∗ ) = 𝑙𝑛( 𝛼𝑗

∗) + �̂�𝑗
∗ 𝑙𝑛( 𝐿𝑀𝑗𝑘

∗ ) + �̂�𝑗𝑘
∗

                      
(4) 

 

2.2.2 Statistical Hypotheses and comments 

Applying the procedure described above, it can be made possible to state and test the 

following statistical hypotheses: 

1) 𝑯𝒂: 𝜷𝒋 = 𝟎 ∀𝒋 (or at least the majority of 𝜷𝒋𝒔). 

This hypothesis can be tested from the first stage regression (Equation 2) and is utilized 

to ensure that indeed there exists a dependence of local standard deviation on local 

mean. Failure to reject 𝑯𝒂 means that there is no such dependence, hence, no variance 

instability of type II exists, and therefore, the algorithm stops. 

 

2) 𝑯𝒃: 𝒅 = 𝟎2 (Robustness test) 

The dependent variable in Equation 3 (second stage regression) is the estimate of 𝛽 

derived from the partition of ascending number 𝑗 (�̂�𝑗) , while the independent variable 

is the ascending number of the partition itself (𝑗). Therefore, �̂� is the estimate of the 

slope of the regression. This hypothesis states that the slope �̂� should not be statistically 

significant, and non-rejection of it, means that  �̂� is robust to any particular partition of 

the series, or outliers. Additionally, non-rejection of 𝑯𝒃 also ensures a better estimate 

of 𝛽 by making more efficient use of information available in all partitions. 

 

 
2Typically, an additional Hypothesis: H’b: β=0 should also be tested, but practically its rejection is 

ensured by the previous rejection of Ha. 
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      3) 𝑯𝒄: 𝜷𝒋
∗ = 𝟎 ∀𝒋 (Under-transformation test) 

where 𝛽𝑗
∗ are the corresponding 𝛽𝑗 for the transformed data estimated from the third 

stage regression (Equation 4). The third hypothesis is a kind of an “under-

transformation” test. If  �̂�𝑗
∗ are statistically significant it means that there will still be a 

dependence between local mean and local standard deviation in the already transformed 

data, consequently the chosen transformation did not succeed in removing type II 

variance instability. Therefore, 𝑯𝒄 states that there is no remaining dependence of local 

mean on local standard deviation in the transformed data. Non-rejection of this 

hypothesis ensures that the chosen transformation is sufficient and has adequately 

rendered an unconditionally stable variance. 

The addition of robustness and under-transformation tests to the above methodology 

offers advantages over existing methods, as the latter are devoid of these features. 

 

2.3 Evaluation of methodology’s merit  

Real data will be used to evaluate the proposed statistical methodology against existing 

statistical software programs in time series analysis. More specifically, the advantages 

arising from univariate ARIMA modelling, outlier detection, seasonal adjustment, and 

forecasting performance of the univariate models will be presented through the 

application of the proposed methodology. 

Furthermore, by utilizing real data, the bias which is present in existing statistical tests 

concerning the rejection of the null hypothesis of unconditionally constant variance will 

be highlighted. Additionally, simulated time series will be used to identify one of the 

sources for the bias in rejecting the null hypothesis of constancy in the second moment. 

 

2.3.1 Application on Greek real data  

The Bank of Greece produces routinely, for internal use, seasonally adjusted data, as 

well as purely statistical (atheoretical) univariate forecasts for several Balance of 

Payments(BOP) series of monthly observations. Such benchmark forecasts are useful, 

amongst others, for the comparison with actual values, when the latter become 

available. Seasonal adjustment and forecasts are produced in conjunction with outlier 

detection and use is made of the algorithms of the specialized statistical software TSW 

for this purpose. TSW stands for TRAMO-SEATS for Windows, a Windows version of 
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the DOS programmes TRAMO and SEATS (see Gómez and Maravall, 1996 and section 

1.3.1). TSW is freely available by the provider (Bank of Spain) and is currently used 

by many NCBs, NSIs as well as many other academic and international institutions 

(universities, ECB, EUROSTAT, etc.)3. Using TSW in the course of the routine time 

series analysis within the Bank of Greece it was observed that TSW suggested the 

logarithmic transformation of the original data in order to stabilize the variance far too 

often. This observation was the starting point of this work.  

The time series examined are monthly external trade statistics from the Balance of 

Payments and prices of consumer goods and services for Greece. The particular data 

were selected due to their obvious importance given the continuing economic crisis in 

the country and the initially large current account deficit of Greece at the beginning of 

the economic crisis. This current account deficit is attributed primarily to the deficit of 

the balance of Goods (see press releases on the web site of the Bank of Greece). It is 

apparent that proper statistical modelling is vital for the short-term monitoring and 

forecasting of such series. 

More specifically, the time series from external trade statistics from the Balance of 

Payments for Greece are Total Imports, and Total Exports of Goods excluding fuels and 

ships (source: Bank of Greece). Those series are of special interest for re-analysis, not 

least because they have recently undergone adjustments in several ways. More 

specifically, the International Monetary Fund (IMF henceforth) in its 6th Manual on 

Balance of Payments (IMF, 2009) redefined the item “Total Goods” so as the new 

definition be firmly based on the “change of ownership” principle. In that sense, the 

sub-items “goods for processing” as well as “repairs on goods”, which were included 

in “goods” before the new definition of IMF, are now classified as services, since no 

change of ownership takes place. By contrast, transactions under “merchanting”, which 

used to be classified as services, with the new definition are included in goods, again 

because according to the change of ownership principle such a change does occur in 

the merchanting process. A further adjustment in the series of imports and exports of 

goods occurred owing to the need for harmonization with the external trade statistics 

produced by the Hellenic Statistical Authority (ELSTAT). The recording of goods in 

the latter is based on customs data.  Additionally, ELSTAT data include estimates about 

 
3TSW routines are also incorporated in other econometric software such as E-VIEWS. 
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the volume of illegal trade. The objective of this adjustment is to make BOP statistics 

on external trade on goods fully compatible with the relative notions of the wider 

framework of the System on National Accounts (SNA, 2008). 

The data cover the period from January 2003 to June 2015 and consist of one hundred 

and fifty (150) monthly observations of Total Imports, and Total Exports of Goods 

excluding fuels and ships (source: Bank of Greece). The dates of some of the important 

events that occurred during the crisis are noted in Table 1, while graphical 

representations of the time series are shown in Figures 1 and 2. 

Table 1. Dates of important events during period 

Event Date 

Lehman Brothers’ bankruptcy 15/09/2008 

Commencement of the first 

economic adjustment programme 

for Greece 

06/05/2010 

Commencement of the second 

economic adjustment programme 

for Greece 

13/02/2012 

 

Figure 1. Imports of Goods (in million euro) 
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Figure 2. Exports of Goods without fuels and ship (in million euro) 

 

The sharp decline in both series at end 2008, which is conspicuous from the visual 

inspection of those figures, may be attributed, amongst others, to the Lehman Brothers’ 

bankruptcy and the subsequent sharp reduction in economic activity. 

In addition to the real BOP data, time series of Greek Consumer Price Index (CPI) and 

Harmonized Index of Consumer Price (HICP) covering the same time period (January 

2003 to June 2015, source: Hellenic Statistical Authority) and simulated time series will 

also be used in order to provide further supporting evidence for the conclusions drawn 

from the BOP data. 

 

2.3.1.1 Results – Discussion 

At first the possible need for a data transformation will be examined using the new 

method, as well as the TSW routine. Further, each decision derived from the new 

methodology and the corresponding one derived from the TSW routine will be 

compared. This task is of course of interest in its own right. However, in terms of 

applied time series analysis in general, it is of crucial importance to examine also the 

extent to which that decision affects some crucial elements of time series modelling 

such as outlier detection and seasonal adjustment. Once a decision about the proper data 

transformation is made by the two methods, TSW will be used for both cases for this 

further analysis. 

As far as outlier detection is concerned, outliers are automatically detected, classified 

and corrected using the Chen and Liu (1993) approach. It is noted that in TSW 

framework, outliers are classified into three types, according to their effect on a time 
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series (see section 1.5), as follows (for further details as well as the theoretical 

background good references are Hilmer et al., 1983; Tsay, 1984; Tsay, 1986):  

Additive outliers (AO), Transitory Change outliers (TC), Level shifts (LS). 

Seasonal adjustment with TSW is made after the series are “linearized” (see section 1.5 

for a description on “linearization”). Seasonal adjustment itself is based on ARIMA 

model-based signal extraction. This method uses the Burman-Wilson algorithm 

(Burman, 1980) to decompose a time series into unobserved components [for further 

details see Maravall, (1995); Gómez and Maravall, (1996)]. 

 

2.3.1.2 Comparative analysis of the time series of “Imports of goods” 

i. Analysis using of the new statistical testing methodology 

The results for the first stage regressions for the time series “Imports of goods” are 

presented in Table 2. It can be seen that in all subsample pairs the 𝛽𝑗
∗ estimates are 

statistically significant at the 10% significance level  and in almost all subsample pairs 

at the 5% significance level  (exceptions only for  the partitions with subsample size 10 

and 18, where the estimates are “marginally” significant for the 5% significance level). 

Hence, 𝐻𝑎 is clearly rejected. 

Table 2. Estimates of �̂�𝑗 
for the various partitions for the first stage regression 

Subsample 

size (𝑛𝑖𝑗) 

5 6 8 10 12 14 16 18 20 

Number of 

subsample 

pairs (𝑖𝑗) 

30 25 19 15 13 11 10 9 8 

�̂�𝑗 1.058 1.203 

 

1.052 

 

0.863 

 

1.090 

 

0.955 

 

1.032 0.791 

 

1.246 

t-statistic 2.642 3.230 3.211 2.096 4.204 2.297 3.321 2.278 2.758 

p-value 0.013 0.004 0.005 0.056 0.001 0.047 0.010 0.057 0.033 

 

The results for the first stage regressions are also depicted in Figure 3, where the x-axis 

represents the number of subsamples and the y-axis the value of exponent. From the 

visual inspection of Figure 3 it is apparent that no systematic association between  

estimates and the sample size seems to exist. 
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Figure 3. Graphical representation of the first stage regressions results 

 

This is further supported by the results of the second stage regression with the aid of 

which the Hypothesis 𝐻𝑏: 𝑑 = 0 can be formally tested. Those results are presented in 

Table 3. As is evident, the constant �̂� is statistically significant at the 5% level and equal 

to 1.082, whereas the slope �̂� is not statistically significant. Hence, 𝐻𝑏 cannot be 

rejected.  

Table 3. Results for the second stage regression 

 Estimate t-statistic standard error 

�̂� 1.082 10.956 0.099 

�̂� 0.0005 0.101 0.005 

 

The above results clearly suggest that: (i) the original data series is variance non-

stationary; (ii) the estimated value of  �̂� suggest that the data should be log-transformed.  

To examine, whether or not, the chosen logarithmic transformation is indeed sufficient 

to stabilize the variance the “under-transformation” test is performed. To this end the 

logarithms of the original data are subjected to the logarithmic transformation once 

more and the parameters of the third stage regression are estimated. The results of the 

“under-transformation” test are presented in Table 4. The results of the “under-

transformation” test are presented in Table 4.  

As is evident from the results of Table 4 none of the �̂�𝑗
∗s is statistically significant, 

therefore the hypothesis 𝐻𝑐: 𝛽𝑗
∗=0 ∀j is not rejected. 

The above results clearly suggest that the log-transformation of the original data makes 

the series variance stationary. 
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Table 4. Results for “under-transformation” test 

Subsample 

size (𝑛𝑖𝑗) 

5 6 8 10 12 14 16 18 20 

Number of 

subsample 

pairs (𝑖𝑗) 

30 25 19 15 13 11 10 9 8 

𝛽𝑗
∗ 0.305 

 

1.655 0.222 -1.59 0.558 -0.75 5.882 -1.61 6.470 

t-statistic 0.092 0.540 0.085 -0.50 0.258 -0.23 1.325 -0.56 1.350 

p-value 0.927 0.594 0.933 0.623 0.801 0.821 0.222 0.592 0.220 

 

ii. Analysis using exclusively the TSW testing approach 

The same series were reanalyzed following the standard TSW procedure4. The way 

TSW tests whether or not the data need to be transformed in order to stabilize the 

variance is based on a variant of the so-called range-mean regression (see Gómez and 

Maravall, 1996). For range-mean regression, the series is divided into subsamples and 

the range and mean for each subsample are calculated. Then a regression model using 

the subsamples’ ranges and means is estimated. If the regression slope is found to be 

significant the data are log-transformed. 

Using the TSW procedure, TSW also suggested the logarithmic transformation of the 

original data, as was the conclusion using the new approach. However, when the TSW 

procedure was repeated with the log-transformed data (“under-transformation” test), 

TSW suggested a logarithmic transformation again(!). Indeed, TSW output states that: 

«LOG-LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)^2)=1.0078847 LOGS 

ARE SELECTED». 

Therefore, for the “under-transformation” test, TSW is biased towards rejection of the 

null hypothesis of no transformation. 

 

iii. The effect of data transformation on univariate modelling and outlier detection 

It is of interest to further investigate how variance non-stationarity could potentially 

affect the specification of the univariate ARIMA model and the detection of outliers. 

 
4It is noted that the only alternatives with TSW is either the log-transformation, or no transformation. 
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Table 5 below presents the results of univariate ARIMA modelling with and without the 

log-transformation, while the estimation details are quoted in Tables 6-7. 

Table 5. Univariate ARIMA modelling 

ARIMA model with linearized original data [Model (1)] 

ARIMA(2,1,0) (1,0,1)12 

MODEL SPECIFICATION 

(1 − 0.583𝐵 − 0.401𝐵2) (1 + 0.857𝐵12) (1-𝐵)𝑌𝑡 = (1 + 0.594𝐵12)𝜀𝑡 

ARIMA model with linearized transformed data (TSW and new method)  

[Model (2)] 

ARIMA(0,1,1) (0,1,1)12 

MODEL SPECIFICATION 

(1 − 𝐵) (1-𝐵12) 𝑙𝑜𝑔 𝑌𝑡 = (1 + 0.609𝐵) (1 + 0.592𝐵12)𝜀𝑡 

 

From the results of Table 5 it is apparent that, when variance non-stationarity is taken 

into account, the univariate model is the so-called “airline” model, often encountered 

in data with seasonality (see Box and Jenkins, 1976). In contrast, without considering 

variance non stationarity a much more complicated ARIMA model is selected. Hence, 

the presence of variance non stationarity leads to seriously mis-specified univariate 

ARIMA models, a result that is in accordance with that of other studies (e.g. Milionis, 

2004). 

Table 6. Parameter estimation of model (1) 

Parameter Value t-statistic 

1  0.583 7.480 

2  0.401 5.290 

1  -0.857 -10.890 

1  -0.594 -4.810 
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Table 7. Parameter estimation of model (2) 

Parameter Value t-statistic 

1  -0.609 -8.750 

1  -0.592 -8.360 

 

The results on the detection of outliers are presented in Table 8. As is evident a TC 

outlier at period 39 in the original data does not exist in the transformed data. Further, 

the LS outlier at period 71 (November 2008) in the original data, which could be related 

to the Lehman bankruptcy, has been shifted forward one period in the transformed data, 

while the AO outlier in period 97 in the original data has been shifted backward one 

period in the transformed data. Hence, in properly transformed data the pattern of 

detected outliers is clearly different, a conclusion that is also in accordance with that of 

Milionis (2004). 

Table 8. Outlier Detection (series of Imports of goods) 

Outliers with original data Outliers with log-transformed data 

(TSW, new method) 

39 TC (3 2006), 71 LS (11 2008), 

97 A0 (1 2011) 

72 LS (12 2008), 96 A0 (12 2010) 

 

2.3.1.3 Comparative analysis of the time series of “Exports of goods excluding fuels 

and ships” 

i. Testing for variance non-stationarity 

Table 9 presents the results of the first stage regressions for the exports of goods 

excluding fuels and ships. From these results it is evident that �̂�𝑗 is not statistically 

significant at the 5% significance level, except for the partition with subsample size 6. 

Thus, according to the new testing approach, the series variance is (unconditionally) 

stationary and no transformation of the original data is required. 

However, the conclusion is different when the approach of TSW is followed. Indeed, 

TSW  log-transforms the data as a consequence of the range-mean regression. Indeed, 

TSW output states that: 

«LOG-LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)^2)=1.0106056 LOGS 

ARE SELECTED». 
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Table 9.  Estimates of �̂�𝑗 for the various partitions for the first stage regression 

Subsample 

size (𝑛𝑖𝑗) 

5 6 8 10 12 14 16 18 20 

Number of 

subsample 

pairs (𝑖𝑗) 

30 25 19 15 13 11 10 9 8 

�̂�𝑗 0.654 0.723 0.530 0.467 0.455 0.440 0.595 0.466 0.246 

t-statistic 1.812 2.110 2.015 1.713 1.233 1.111 1.167 1.279 0.392 

p-value 0.081 0.046 0.060 0.110 0.243 0.295 0.277 0.241 0.709 

 

Therefore, once again, TSW is biased towards the logarithmic transformation, whereas 

no transformation of the original data needs to be performed. 

Even worse than that, when the TSW procedure was repeated once again with the 

already log-transformed data (the “under-transformation” test), which were supposed 

to be variance stable, TSW suggested the logarithmic transformation again. Indeed, 

TSW output states that: 

«LOG-LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)^2)=0.98497426 LOGS 

ARE SELECTED». 

Apparently, that suggestion is seriously biased and misleading. 

 

ii. Univariate ARIMA modelling, outlier detection and seasonal adjustments 

Table 10 below presents the results of univariate ARIMA modelling with and without 

the log-transformation for exports of goods excluding fuels and ships, while the 

estimation details are quoted in Tables 11-12.  

From the results of Table 10 it is apparent that in contrast to the univariate models for 

imports of goods here the differences in the two univariate models are of minor 

character, as in both cases the univariate model is of the same type i.e., the so-called 

“airline” model. The differences are confined only to the estimated values of the 

parameters of the two models. This is not surprising as with exports of goods excluding 

fuels and ships, the original, as well as the log-transformed series, are both variance 

stationary. Indeed, this result advocates our previous conclusion for imports of goods 

where the pronounced difference in the character of the univariate ARIMA model for 
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the original and the log-transformed data was attributed to the existence of non-

stationary variance in the original data series. 

Table 10. Univariate ARIMA modelling for the series of Exports of goods excluding 

fuels and ships 

ARIMA model with linearized original data, (new method) [Model (3)] 

ARIMA(0,1,1) (0,1,1)12 

MODEL SPECIFICATION 

(1 − 𝐵) (1-𝐵12)𝑌𝑡 = (1 + 0.584𝐵) (1 + 0.7.64𝐵12)𝜀𝑡 

ARIMA model with linearized transformed data (TSW) [Model (4)] 

ARIMA(0,1,1) (0,1,1)12  

MODEL SPECIFICATION 

(1 − 𝐵) (1-𝐵12) 𝑙𝑜𝑔 𝑌𝑡 = (1 + 0.566𝐵) (1 + 0.821𝐵12)𝜀𝑡 

 

Table 11.  Parameter estimation of model (3) 

Parameter Value t-statistic 

1  -0.584 -8.190 

1  -0.764 -13.490 

 

Table 12. Parameter estimation of model (4) 

Parameter Value t-statistic 

1  -0.566 -7.850 

1  -0.821 -16.430 

 

The results for the detection of outliers for both the original and the log-transformed 

data for exports of goods excluding fuels and ships are quoted in Table 13. As is evident 

the AO outlier is the same in both cases, while the level shift, which could be related, 

amongst other things, to the Lehman bankruptcy and its repercussions, has only been 

moved forward by one time-period in the log-transformed data. 
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Table 13. Outlier Detection (series of Exports of goods excluding fuels and ships) 

Outliers with original data (new 

method) 

Outliers with log-transformed data 

(TSW) 

71 LS (11 2008), 93 AO (9 2010) 72 LS (12 2008), 93 AO (9 2010) 

 

Our next task is to examine if and to what extent the data transformation affects the 

forecasting performance of the univariate models, as well as the seasonally adjusted 

series. The former was evaluated using the Mean Absolute Percentage Error (MAPE). 

The MAPE statistic is given by: 𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1 , where 𝐴𝑡 is the actual 

value and 𝐹𝑡 is the forecast value. 

Table 14 presents the results. As is evident both one-step-ahead and twelve-step- ahead 

forecasts with no transformation (as suggested by the new method) are superior in terms 

of the MAPE value, as compared to the corresponding forecasts with the data log-

transformed, as suggested by TSW. 

Table 14. Values of Mean Absolute Percentage Error of forecasts 
 

MAPE (%)  

Forecasts  Original Data (New 

Method)  

Log-transformed data 

(TSW)  

Twelve step ahead  3.618  4.501  

One step ahead  3.265  3.778  

 

A statistic akin to MAPE, which is used as a means to evaluate the quality of a forecast, 

will be employed in order to assess the difference in the seasonally adjusted data 

produced with and without the log-transformation.   

To this end, the Mean Absolute Percentage Difference (MAPD) statistic was employed 

to assess the differences in the seasonally adjusted series produced from original data 

versus transformed data. MAPD is calculated as: 𝑀𝐴𝑃𝐷 =
1

𝐽
∑ (

|�̃�𝑗
𝑙𝑛−�̃�𝑗

𝑙𝑒𝑣|

�̃�𝑗
𝑙𝑛 ∙ 100)𝑁

𝑗=1 , 

where �̃�𝑗
𝑙𝑛 is the seasonally adjusted value using log-transformed data and �̃�𝑗

𝑙𝑒𝑣 the 

corresponding seasonally adjusted data using the original data themselves. 

The results are presented in Table 15. It should be noted that in the results of Table 15 

quite substantial differences are observed. Indeed, although the value of the MAPD 
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between the two seasonally adjusted series is not so high (approximately 1.3%), the 

minimum percentage difference is as high as -4.3% and the maximum percentage 

difference is equal to 5.5%. 

Table 15. Differences in Seasonally Adjusted Series produced from original 

data versus transformed data 

MAPD (%) Minimum Percentage 

Error (%) 

Maximum Percentage 

Error (%) 

1.297 -4.314 5.515 

 

2.3.1.4 Comparative analysis of the time series of “CPI” and “HICP” 

i. Analysis using of the new statistical testing approach 

The results for the first stage regressions for the time series “CPI” are presented in Table 

16. It can be seen that in almost all subsample pairs the estimates are statistically 

insignificant at 5% significance level (exceptions exist only for the partitions with 

subsample size 5 and 8). Hence, 𝐻𝑎 is not rejected and therefore no transformation of 

the original data is suggested. 

Table 16. Estimates of �̂�𝑗 
for the various partitions for the first stage regression (CPI) 

Subsample 

size (𝑛𝑖𝑗) 

5 6 8 10 12 14 16 18 20 

Number of 

subsample 

pairs (𝑖𝑗)  

30 25 19 15 13 11 10 9 8 

�̂�𝑗 1.604 0.681 1.148 0.933 0.898 0.565 0.377 -

0.629 

0.011 

t-statistic 2.112 1.390 2.166 1.315 1.656 0.891 0.325 -

0.667 

0.010 

p-value 0.047 0.178 0.048 0.211 0.126 0.396 0.753 0.526 0.992 

 

Table 17 presents the results of the first stage regressions for the series of HICP. From 

these results it is evident that is not statistically significant in the 5% significance level.  
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Table 17. Estimates of �̂�𝑗 
for the various partitions for the first stage regression 

(HICP) 

Subsample 

size (𝑛𝑖𝑗) 

5 6 8 10 12 14 16 18 20 

Number of 

subsample 

pairs (𝑖𝑗) 

30 25 19 15 13 11 10 9 8 

�̂�𝑗 1.003 0.076 0.639 0.363 0.399 0.039 0.018 -

0.957 

-

0.503 

t-statistic 1.383 0.146 1.266 0.529 0.689 0.057 0.016 -

1.010 

-

0.460 

p-value 0.178 0.885 0.223 0.606 0.505 0.956 0.988 0.346 0.662 

 

Thus, according to the new testing approach, in both cases no transformation of the 

original data is suggested as the series variance is (unconditionally) stationary. 

 

ii. Analysis using exclusively the TSW testing approach 

Using the TSW procedure for both series, TSW suggested the logarithmic 

transformation of the original data for CPI as well as HICP as the output from TSW that 

refers to this test stated that «LOG-LEVEL PRETEST: 

SSlevels/(SSlog*Gmean(levels)^2)=1.1253168 LOGS ARE SELECTED» and «LOG-

LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)^2)=1.1096478 LOGS ARE 

SELECTED», respectively. 

Therefore, TSW falsely suggests the logarithmic transformation of the data in both 

cases and so there is a bias in favor of the logarithmic transformation, whereas no 

transformation of the original data needs to be performed as shown using the new 

method. 

 

iii. The effect of data transformation on univariate modelling and outlier detection 

The possible effect of log transforming an already variance stationary time series on the 

specification of the univariate ARIMA model and the detection of outliers is examined 

through Tables 18-25. 

For the time series of CPI, Table 18 presents the results on univariate ARIMA modelling 

with and without the log-transformation, while the estimation details are quoted in the 
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Tables 19-20. From the results of Table 18 it is obvious that different ARIMA models 

are proposed for the linearized transformed data and linearized original data. 

Table 18. Univariate ARIMA modelling (CPI) 

ARIMA model with linearized original data (new method) [Model (5)] 

ARIMA(0,1,1) (1,1,0)12  

MODEL SPECIFICATION 

(1 − 0.221𝐵12) (1-𝐵)(1-𝐵12) 𝑌𝑡 = (1 − 0.208𝐵)𝜀𝑡 

ARIMA model with linearized transformed data (TSW) [Model (6)] 

ARIMA(0,1,1) (0,1,1)12  

MODEL SPECIFICATION 

(1 − 𝐵) (1-𝐵12) 𝑙𝑜𝑔 𝑌𝑡 = (1 − 0.206𝐵) (1 + 0.223𝐵12)𝜀𝑡 

 

Table 19. Parameter estimation of model (5) 

Parameter Value t-statistic 

1  0.208 2.49 

1  0.221 2.65 

 

Table 20. Parameter estimation of model (6) 

Parameter Value t-statistic 

1  0.206 2.46 

1  -0.223 -2.68 

 

The results on the detection of outliers are presented in Table 21. As is evident both 

approaches identify the same outliers in terms of both time and type. 

Table 21. Outlier Detection (CPI) 

Outliers with original data (new 

method) 

Outliers with log-transformed data 

(TSW) 

105 LS (9 2011), 118 TC (10 2012), 

131 A0 (11 2013) 

105 LS (9 2011), 118 TC (10 2012), 

131 A0 (11 2013) 
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For the series of HICP, Table 22 presents the results on univariate ARIMA modelling 

with and without the log-transformation (for estimation details see Tables 23-24). From 

the results of Table 22 it is apparent that the differences in the two univariate models 

are of minor character, as in both cases the univariate model is the so-called “airline 

model” of Box and Jenkins (1976). The differences, weak as they are, are confined only 

to the estimated values of the parameters of the two models. 

Table 22. Univariate ARIMA modelling (HICP) 

ARIMA model with linearized original data (new method) [Model (7)] 

ARIMA(0,1,1) (0,1,1)12  

MODEL SPECIFICATION 

(1 − 𝐵) (1-𝐵12)𝑌𝑡 = (1 − 0.188𝐵) (1 + 0.203𝐵12)𝜀𝑡 

ARIMA model with linearized transformed data (TSW) [Model (8)] 

ARIMA(0,1,1) (0,1,1)12  

MODEL SPECIFICATION 

(1 − 𝐵) (1-𝐵12) 𝑙𝑜𝑔 𝑌𝑡 = (1 − 0.213𝐵) (1 + 0.175𝐵12)𝜀𝑡 

 

Table 23.  Parameter estimation of model (7) 

Parameter Value t-statistic 

1  0.188 2.23 

1  -0.203 -2.42 

 

Table 24. Parameter estimation of model (8) 

Parameter Value t-statistic 

1  0.213 2.55 

1  -0.175 -2.08 

 

The results on the detection of outliers with both the original and the log-transformed 

data are quoted in Table 25. As is evident, TSW falsely identifies one more outlier (25 

AO) due to the scale “squizing” caused by the logarithmic transformation. 
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Table 25. Outlier Detection (HICP) 

Outliers with original data (new 

method) 

Outliers with log-transformed 

(TSW) 

105 LS (9 2011), 131 AO (11 

2013) 

25 AO (1 2005), 105 LS (9 2011),       

131 AO (11 2013) 

 

These results should be contrasted to those of the time series of BOP statistics (see 

sections 2.3.1.2 and 2.3.1.3) in which it was documented that the consequences of not 

transforming a variance non-stationary time series were indeed severe, at least as far as 

univariate time series modelling is concerned (Milionis and Galanopoulos, 2017). The 

above conclusions, regarding the severity of the consequences of a wrong decision 

about the transformation of the original values of a time series, may be backed by 

theoretical argumentation. Indeed, in the case of unnecessarily (over) transforming an 

already variance stationary series, the original and the over-transformed series are both 

variance stationary. In contrast, when the original series is variance non-stationary and 

is not transformed (as it should) it is evident that the usual univariate analysis, which 

legitimately can be applied strictly to variance stationary series only, is falsely applied 

to a variance non-stationary series. Hence, it is natural for sharp differences with the 

analysis of the properly transformed series to appear. Obviously, this conclusion is of 

much practical importance. 

 

2.3.1.5 Further Analysis 

The examination of the forecasting performance of the univariate models accordingly 

with the data transformation is assessed using the MAPE statistic. Table 26 presents the 

results and as is evident twelve-step-ahead forecasts with no transformation (as 

suggested by the new method) are superior in terms of the MAPE value, as compared 

to the corresponding forecasts with the data log-transformed, as suggested by TSW. As 

regards the one-step-ahead forecasts, the forecasting performance of CPI is better with 

the new method in terms of the MAPE value, while the MAPE value is exactly the same 

for HICP. 
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Table 26. Values of Mean Absolute Percentage Error of forecasts 

 
 

MAPE (%)  

Time series Forecasts  Original Data               

(new method)  

Log-transformed data 

(TSW)  

CPI Twelve step ahead  1.294  1.457  

HICP Twelve step ahead  0.848 0.865 

CPI One step ahead  0.395  0.467  

HICP One step ahead  0.452 0.452 

 

To evaluate the differences in the seasonally adjusted series produced from original data 

versus transformed data, the MAPD statistic was employed, and the results are 

presented in Table 27. It is remarked that, as expected according to the previous 

conclusion argumentation, the values of MAPD themselves are small in the statistical 

sense, although with possibly higher economic importance as they refer to consumer 

price indices.  

Table 27. Differences in Seasonally Adjusted Series produced from original data 

versus transformed data 

Time series MAPD (%) Minimum Percentage 

Error (%) 

Maximum Percentage 

Error (%) 

CPI 0.018 -0.057 0.037 

HICP 0.017 -0.316 0.035 

 

2.3.2. Application on time series created by statistical simulation 

It should be recalled that in the normal course of an analysis of a time series, the test 

for the possible need to transform the original data in order to stabilize the variance 

precedes all other actions such as the creation of the univariate ARIMA model, the 

seasonal adjustment etc. Therefore, it is obvious that the outcome of those actions is 

affected by the decision on data transformation. That lends even more importance to 

that decision and thus further evidence was sought in favor of our previous finding that 

TSW suggests the log-transformation far too often due to bias. To this end, use was 

made of simulated data. After some experimentation, it was observed that with series 

following 𝐴𝑅𝐼𝑀𝐴(𝑝, 1, 𝑞) processes, the initial conditions influence (although they 

should not) the decision of TSW regarding the log-transformation.  In sequence, 40 time 
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series were artificially created. The first 20 were built simulating a simple Gaussian 

random walk model: 

                     𝑋𝑡 = 𝑋𝑡−1 + 𝑒𝑡 with 𝑒𝑡 ≈ 𝑁(0,1) and initial condition  𝑋𝑜 = 0. 

The other 20 were created by the same manner, except that 𝑋𝑜 was set equal to 1000. 

All simulated data are available in Milionis and Galanopoulos (2018) working paper. 

All these time series are by construction homogeneously stationary, so no data 

transformation is needed. 

Applying the new testing procedure, the outcome was indeed no transformation in all 

40 cases (Milionis and Galanopoulos, 2018). In the simulated series with initial 

condition 𝑋𝑜 = 0 the presence of negative values was observed in every single series. 

Therefore, before log-transforming the series the usual practice of shifting them 

upwards by adding a constant so that the minimum value of each series becomes 

slightly positive was adopted.  

Applying TSW, the outcome was no transformation only in the cases with 𝑋𝑜 = 0. In 

all the cases with 𝑋𝑜 = 1000 TSW, falsely, suggested the log transformation (see Table 

28). Indeed, the results of TSW are, once again, biased in favor of data transformation 

where no transformation is needed and in the particular case at hand this bias is clearly 

related to the initial condition of the simulated series.  

Table 28. Test results for data transformation using TSW 

LOG-LEVEL PRETEST : 

1st simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0004275 

LOGS ARE SELECTED 

2nd simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0004200 

LOGS ARE SELECTED 

3rd simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99937392 

LOGS ARE SELECTED 

4th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99821483 

LOGS ARE SELECTED 

5th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0029646 

LOGS ARE SELECTED 

6th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99932366 

LOGS ARE SELECTED 

7th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99998323 

LOGS ARE SELECTED 
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8th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99976469 

LOGS ARE SELECTED 

9th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99899563 

LOGS ARE SELECTED 

10th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0009120 

LOGS ARE SELECTED 

11th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99940611 

LOGS ARE SELECTED 

12th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99783903 

LOGS ARE SELECTED 

13th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99956026 

LOGS ARE SELECTED 

14th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99996242 

LOGS ARE SELECTED 

15th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0009673 

LOGS ARE SELECTED 

16th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99844882 

LOGS ARE SELECTED 

17th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 0.99780523 

LOGS ARE SELECTED 

18th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0011250 

LOGS ARE SELECTED 

19th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0010450 

LOGS ARE SELECTED 

20th simulated series with 

initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 1.0001285 

LOGS ARE SELECTED 

LOG-LEVEL PRETEST : 

21st simulated series with 

initial value 0 

LEVELS are Selected 

22nd simulated series with 

initial value 0 

LEVELS are Selected 

23rd simulated series with 

initial value 0 

LEVELS are Selected 

24th simulated series with 

initial value 0 

LEVELS are Selected 
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25th simulated series with 

initial value 0 

LEVELS are Selected 

26th simulated series with 

initial value 0 

LEVELS are Selected 

27th simulated series with 

initial value 0 

LEVELS are Selected 

28th simulated series with 

initial value 0 

LEVELS are Selected 

29th simulated series with 

initial value 0 

LEVELS are Selected 

30th simulated series with 

initial value 0 

LEVELS are Selected 

31st simulated series with 

initial value 0 

LEVELS are Selected 

32nd simulated series with 

initial value 0 

LEVELS are Selected 

33rd simulated series with 

initial value 0 

LEVELS are Selected 

34th simulated series with 

initial value 0 

LEVELS are Selected 

35th simulated series with 

initial value 0 

LEVELS are Selected 

36th simulated series with 

initial value 0 

LEVELS are Selected 

37th simulated series with 

initial value 0 

LEVELS are Selected 

38th simulated series with 

initial value 0 

LEVELS are Selected 

39th simulated series with 

initial value 0 

LEVELS are Selected 

40th simulated series with 

initial value 0 

LEVELS are Selected 
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Moreover, even after the log-transformation, when the 20 log-transformed series with 

𝑋𝑜 = 1000 were tested again by TSW, the result was biased again (suggestion to log-

transform the (already log-transformed) series, as was case with the time series of 

exports of goods excluding fuels and ships). Those results are presented in Table 29. 

Table 29. Test results for data transformation using TSW and log-transformed series 

LOG-LEVEL PRETEST : 

1st simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0000550 LOGS ARE SELECTED 

2nd simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0000529 LOGS ARE SELECTED 

3rd simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99989907 LOGS ARE SELECTED 

4th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99973569 LOGS ARE SELECTED 

5th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0003951 LOGS ARE SELECTED 

6th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99989544 LOGS ARE SELECTED 

7th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99999495 LOGS ARE SELECTED 

8th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99996343 LOGS ARE SELECTED 

9th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99984226 LOGS ARE SELECTED 

10th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0001277 LOGS ARE SELECTED 

11th simulated series in log-transformed 

data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99990892 LOGS ARE SELECTED 

12th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99967945 LOGS ARE SELECTED 

13th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99993525 LOGS ARE SELECTED 

14th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99999001 LOGS ARE SELECTED 
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15th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0001311 LOGS ARE SELECTED 

16th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99976445 LOGS ARE SELECTED 

17th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.99966162 LOGS ARE SELECTED 

18th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0001710 LOGS ARE SELECTED 

19th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0001444 LOGS ARE SELECTED 

20th simulated series in log-

transformed data with initial value 1000 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0000163 LOGS ARE SELECTED 

 

2.4. Conclusions 

In this work a new statistical testing procedure for variance non-stationary time series 

is proposed. This procedure improves on existing ones as it combines detection, 

correction and robustness. This is of value in its own right as it results in better 

univariate time series modelling.  

In addition, it was shown empirically using real data (balance of payments and prices 

of consumer goods and services) for Greece, as well as simulated data, that an existing 

test, namely the widely used algorithm of TSW software, provides, occasionally, biased 

results. As a matter of fact, with the aid of the simulated data it was possible to identify 

one of the possible sources responsible for this bias. More specifically, with simulated 

homogeneously non-stationary processes, it was possible to identify that the bias of 

TSW depends on the initial conditions. 

Further, on the basis of the empirical evidence presented it is argued that the type of 

data transformation and the entailed correction for variance–non stationarity is also 

crucial for the detection of outliers and the seasonal adjustment of the original time 

series. In addition, the empirical results provide evidence of an improved forecasting 

performance by the proper use of a data transformation, a result that needs further 

backing by additional empirical evidence. 

It was also established that the consequences of falsely transforming a time series, 

which is originally variance stationary, do exist, but are less severe than the 
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consequences of falsely not transforming an originally variance non-stationary series, 

a conclusion of much practical importance. 

Overall, the proposed statistical testing methodology, placed in a more general 

framework, seems to be a promising tool in applied time series analysis. 
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SUMMARY OF CHAPTER 2 

This chapter aims to fill an existing gap in the literature regarding the statistical testing 

for the existence and the identification of the character of time-varying second moment 

in its dependence on a non-constant mean level in time series. To this end a new 

statistical testing procedure is introduced with some considerable advantages over the 

existing ones. Amongst others it is argued that the existing statistical tests are 

insufficient and sometimes lead to biased results. Further the effect of the application 

of this methodology on some crucial elements of time series modelling such as outlier 

detection and seasonal adjustment is examined, through case studies conducted on a 

comparative basis using both the new methodology and an established one. It is 

established that the consequences of falsely transforming a time series, which is 

originally variance stationary, do exist, but are less severe than the consequences of 

falsely not transforming an originally variance non-stationary series. This empirical 

evidence is supported by theoretical arguments. The data set comprises time series on 

monthly external trade statistics and prices of consumer goods and services for Greece. 

Overall, the resulting empirical evidence favors the new approach. Further supporting 

evidence is provided by the application of the new methodology to simulated data. 
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CHAPTER 3 

FORECASTING MACROECONOMIC TIME SERIES IN THE PRESENCE 

OF VARIANCE INSTABILITY AND OUTLIERS 

 

3.1 Introduction 

A univariate ARIMA model is a concise quantitative summary of the internal dynamics 

of a time series in a linear framework. As such, is useful for several reasons, amongst 

others for forecasting and model-based time series decomposition in unobserved 

components. This work will deal with the former and, in particular, with univariate 

forecasts, which usually serve either as short-term, or benchmark forecasts. However, 

economic time series from the real world are not usually «ready» to be used for 

forecasting purposes and they need to undergo some statistical preparation and pre-

adjustment. This is because in time series of raw data variance non-stationarity may be 

present. Furthermore, very often there exist causes that disrupt the underlying stochastic 

process (existence of outliers, calendar effects, etc.). Their treatment is known as 

«linearization». 

Within that line of reasoning, statistical forecasts can be made after a series itself, or 

some variance stabilizing transformation of it, is «linearized» according to the general 

framework that is described in section 1.5. 

As far as variance stabilization is concerned, if variance is somehow functionally 

related to the mean level it is possible to select a transformation to stabilize the variance. 

Widely used transformations to tackle this problem belong to the class of the power 

Box and Cox transformation (see section 1.6.1). 

So, there are two effects with potential influence on forecasting: transformation and 

«linearization», each of which separately, as well as in combination, may play an 

important role on time series forecasting. 

At the empirical level, studies which have considered the merits of mathematical 

transformations on forecasting have demonstrated that a data transformation generally 

does not have a positive effect on forecast accuracy (Nelson and Granger 1979; 

Makridakis and Hibon, 1979; Makridakis et. al, 1998; Meese and Geweke, 1984). 
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On the other hand, at the theoretical level, Granger and Newbold (1976) found that such 

forecasts are not optimal in terms of minimization of Mean Square Forecast Error 

(MSFE). More specifically, for instance for the most popular transformation, namely 

the logarithmic one, they showed that the minimum MSFE ℎ-step ahead forecast  is not 

equal to �̂�𝑇+ℎ = 𝑒𝑥𝑝(�̂�𝑇+ℎ), as implied by the previous discussion, but is given by the 

expression �̂�𝑇+ℎ = 𝑒𝑥𝑝 (�̂�𝑇+ℎ +
1

2
𝜎ℎ

2), where 𝜎ℎ
2 is the ℎ -step ahead forecast error 

variance. Pankratz and Dudley (1987), building up further on the work of Granger and 

Newbold (1976), relate the bias in using simply the inversely transformed value of the 

forecasts on the transformed time series (as compared to the minimum MSFE forecast) 

amongst others to the value of the exponent 𝜆 of the power transformation. The two 

most frequent transformations, namely the logarithmic and the square root ones, under 

certain conditions may be associated with serious biases (Pankratz and Dudley, 1987). 

Regarding time series linearization, such a procedure is utilized thus far mainly as a 

preadjustment task for seasonal adjustment (Kaiser and Maravall, 2001), so its effect 

on forecasting has not been examined systematically, but only indirectly and                                                                                       

fragmentally. It is also remarked that even in studies coping with forecasting with 

transformed data the attention focuses almost exclusively on point forecasts, by and 

large disregarding interval forecasts. 

Aiming at covering this research gap in the literature the objective in this chapter of the 

thesis is in fact twofold: (a) to examine the effect of «linearization» and transformation 

separately, as well as in combination, on both point forecasts and confidence interval 

forecasts; (b) to use two algorithms specializing in testing, whether or not, a 

transformation of the original data is necessary, namely the algorithm of TSW and the 

algorithm developed in Chapter 2 and, compare the derived results from both (see also 

Milionis and Galanopoulos 2018a). Hereafter the latter will be called M-G algorithm 

for convenience. As a further application, we rank main economic indicators of the 

Greek economy in terms of statistical «forecastability». The intended approach will be 

practical. 

The structure of the chapter is as follows: In section 3.2 details about the data to be used 

for the empirical analysis are given; section 3.3 presents the empirical results and 

relevant comments; section 3.4 concludes the chapter. 
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3.2 Data 

The data set comprises some of the most important macroeconomic time series for the 

Greek economy, which refer to: GDP; unemployment; prices of consumer goods and 

services; monetary aggregates; and balance of payments statistics. More specifically, 

the time series from the balance of payments statistics are imports-exports excluding 

fuels and ships and imports-exports including them. Particularly, in the balance of 

payments, a distinction is made between imports – exports of all goods and imports - 

exports of goods without fuels and ships for several reasons. More specifically: i) the 

IMF in its 6th Manual on Balance of Payments (IMF, 2009), revised the definition of 

the item “Total Goods” to firmly align with the principle of “change of ownership” (for 

more details see section 2.3.1), ii) to ensure consistency with the external trade statistics 

generated by the Hellenic Statistical Authority, iii) according to a study by the Bank of 

Greece (Oikonomou et al., 2010), the dependence of the Greek economy on oil was 

high and was rising at the fastest pace among the euro area countries. For these reasons, 

the time series of Imports of Goods and Exports of Goods without fuels and ships from 

Table 1 (referred to as Total Imports and Total Exports of Goods excluding fuels and 

ships in Chapter 2) are being re-examined. Furthermore, from the same study it is noted 

that the balance of payment of sea transport is significant in the Greek balance of current 

transactions (4% of GPD in 2008) and will be considered separately from other BOP 

transactions on transport.  

Of the twenty economic time series that are used, nineteen are monthly time series, one 

is a quarterly time series (sources: Bank of Greece (BoG) and Hellenic Statistical 

Authority (ELSTAT)). The list of time series used is given in Table 1. 

The monthly time series data cover the period from January 2004 to August 2018 and 

consist of one hundred and seventy-six (176) observations, except for Industrial 

Production Index, where available data existed from January 2010 to August 2018 (104 

observations). The quarterly time series is that of Gross Domestic Product and covers 

the period from 1995 Quarter 1 to 2018 Quarter 3 (95 observations). 
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Table 1. Data 

Time Series Observation 

frequency 

Source 

Gross Domestic Product 

(GDP) 

Quarterly ELSTAT 

Industrial Production Index 

(IPI) 

Monthly ELSTAT 

Consumer Price Index (CPI) Monthly ELSTAT 

Harmonised Index of 

Consumer Prices (HICP) 

Monthly ELSTAT 

Unemployment – thousands Monthly ELSTAT 

Unemployment – percentage Monthly ELSTAT 

Retail sales Monthly ELSTAT 

M1 Monthly BoG 

M2 Monthly BoG 

M3 Monthly BoG 

Balance of payments (BOP) – 

Transport – Payments 

Monthly BoG 

Balance of payments (BOP) – 

Transport – Receipts 

Monthly BoG 

Balance of payments (BOP) – 

Travelling – Payments 

Monthly BoG 

Balance of payments (BOP) – 

Travelling – Receipts 

Monthly BoG 

Balance of payments (BOP) – 

Sea transport – Payments 

Monthly BoG 

Balance of payments (BOP) – 

Sea transport – Receipts 

Monthly BoG 

Exports of Goods Monthly BoG 

Exports of Goods without 

fuels and ships 

Monthly BoG 

Imports of Goods Monthly BoG 
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Imports of Goods without 

fuels and ships 

Monthly BoG 

 

3.3 Empirical results and comments 

As mentioned in section 3.1, the effect of transformation and the effect of linearization 

on forecasting will be examined at first each one separately and, subsequently, in 

combination. 

The aforementioned effects will be studied on a comparative basis utilizing both the 

TSW and the M-G algorithms. In that way, together with those effects themselves, it 

will also be possible to evaluate the performance of each methodology. 

Typical statistics to be used for the assessment of the quality of point forecasts are the 

following: 

i) the Mean Absolute Percentage Error (MAPE) statistic given by: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1 ,  

ii) the Mean Square Forecast Error (MSFE) statistic given by: 

𝑀𝑆𝐹𝐸 =
1

𝑛
∑ (𝐴𝑡 − 𝐹𝑡)

2𝑛
𝑡=1 , and  

       iii) the Mean Absolute Error (MAE) statistic given by: 

                  𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑡 − 𝐹𝑡|

𝑛
𝑡=1 , 

      where 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value.   

Furthermore, as far as interval forecasts are concerned, the width of the forecast 

confidence interval (CI), or the forecast standard error, will be considered. 

Best forecast will obviously be perceived the one with the minimum value of each time 

utilized statistic from the ones mentioned above. 

 

3.3.1 The effect of «linearization» on forecast quality 

We will investigate how time series linearization affects the quality of both point 

forecasts and confidence interval forecasts. Here linearization will not be considered in 

its generality, as described in section 1.5, but will be confined to outliers’ detection and 



67 
 

adjustment. (Calendar effects such as the trading day and leap effects were considered 

and indeed were found to be statistically significant on some occasions. All series were 

properly adjusted for calendar effects before further analysis.). Table 2 presents the 

number of best forecasts with data in levels. Auxiliary Table 3 presents the number of 

best forecasts with log-transformed data indistinguishably for all time series, as it is 

often the case to use log-transformed data in econometric analyses. It is noted that in 

one time series with levels (that of unemployment expressed in percentages) and one 

time series in logs (that of industrial production index) no outliers were detected, hence, 

the total number of time series considered reduced to nineteen for each case. 

Table 2. Summary table - Number of best forecasts (levels)5 

Point Forecasts With detected Outliers Without detection of 

Outliers 

MAPE 10/19 9/19 

MSFE 8/19 11/19 

MAE 9/19 10/19 

 Interval Forecasts With detected Outliers  Without detection of 

Outliers 

Forecast Standard 

Εrror (SE) 

19/19 0/19 

 

From the results of Tables 2 and 3 it is apparent that, when outliers are considered, 

forecasts are better in every single case in terms of the width of the forecast confidence 

interval. In contrast, there is no obvious improvement in point forecasts. One point that 

should be stressed is that such results are in general dependent upon the specific 

characteristics of each time series, especially upon whether an outlier lays among the 

first, the middle or the last observations. For this reason, it would be desirable to use a 

large number of time series, so as to draw conclusions of indisputable confidence. 

Although the number of time series used in this work is relatively small (though 

comparable to that of other similar works, see for instance Nelson and Granger, 1979) 

 
5 As the usual practice, the original data set was split up into the estimation sample, over which model 

estimation is performed, and the holdout (test) sample. In all cases the holdout sample for ex-post 

forecasts was originally set to twelve time periods for the monthly series and ten time periods for GDP. 

Presented results are based on one-step-ahead forecasts. Results for longer forecasting periods (not 

presented) are very similar and are available by the author. 
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the evidence that led to the above conclusions, in particular regarding the width of the 

forecast confidence interval, is so convincing that it really stands far and beyond any 

concern related to micronumerosity. 

Table 3. Summary table – Number of best forecasts (log-data) 

Point Forecasts With detected Outliers Without detection of 

Outliers  

MAPE 9/19 10/19 

MSFE 11/19 8/19 

MAE 10/19 9/19 

Interval Forecasts With detected Outliers  Without detection of 

Outliers  

Forecast Standard 

Error (SE) 

19/19 0/19 

 

3.3.2 The effect of Level Shifts (LS), in particular, on forecast quality 

After a level shift outlier, all observations subsequent to the outlier move to a new level. 

In contrast to additive and transitory outliers a level shift outlier reflects a major change 

in the stochastic process and affects many observations, as it has a permanent effect. 

For this reason, the case with only additive and transitory outliers (i.e. excluding level 

shifts) was considered, and their effect on forecasts was examined separately, 

performing the same analysis as in section 3.3.1. It is noted that this time only fifteen 

time series were considered, i.e. those including all types of outliers. The results are 

presented in Tables 4 and 5. 

From the results below it is obvious that there is a trade-off: confidence interval 

forecasts are better with level shift outliers included and, conversely, point forecasts are 

better excluding level shifts. Given the influence of the level shift outliers it would be 

desirable to possibly consider stricter identification criteria for them relative to the other 

two types of outliers. It is noted that in existing statistical software specializing on time 

series analysis there is no such an option, and a purpose-built routine should be created 

by the researcher. 
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Table 4. Summary table - Number of best forecasts (levels) 

Point Forecasts All Outliers  Outliers without LS 

MAPE 6/15 9/15 

MSFE 5/15 10/15 

MAE 6/15 9/15 

Interval Forecasts All Outliers   Outliers without LS 

Forecast Standard 

Error (SE) 

14/15 1/15 

 

Table 5. Summary table - Number of best forecasts (log-data) 

Point Forecasts All Outliers  Outliers without LS 

MAPE 6/15 9/15 

MSFE 5/15 10/15 

MAE 6/15 9/15 

Interval Forecasts All Outliers   Outliers without LS 

Forecast Standard 

Error (SE) 

13/15 2/15 

 

3.3.3 The effect of a data transformation on forecast quality 

As far as the effect of data transformation is concerned, at first it is important to note 

that the effect of a transformation is meant in two ways: 1) direct and 2) indirect 

(through its influence on outlier detection). Indeed, regarding the latter, it has been 

shown that data transformation affects the number and the character of outliers in a time 

series (Milionis 2003; Milionis, 2004). 

The possible need for a data transformation of the original time series data will be 

examined using both the algorithms of TSW and M-G. Furthermore, each decision 

derived from the Milionis and Galanopoulos methodology and the corresponding one 

derived from the TSW routine will be compared. Once a decision about the proper data 

transformation is made, TSW will be used for both cases for further analysis on 

statistical forecasting. 
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Regarding the arithmetic values of the exponent 𝜆 (see section 1.6.1) and the closely 

related parameter �̂�, as is estimated by Equation (3) of section 2.2.1, for practical 

purposes Makridakis et al. (1998) mention that it is of no merit to use arithmetic values 

with several decimal points, as nearby values will produce very similar results. Simple 

arithmetic values of 𝜆 are easier to interpret, hence, are more meaningful.  

In line with that argument, nearby arithmetic values of �̂� will be grouped together, so 

as to create two sub-logarithmic transformations, namely the square root and cubic root 

ones, the logarithmic itself, and one over-logarithmic, namely the negative inverse 

transformation. More specifically, following some experimentation, the grouping is as 

follows (it is noted that no case with negative value of �̂� was encountered): 

(a) �̂� not statistically significant, then 𝜆 = 1;  

(b) �̂� statistically significant and 0 < �̂� ≤ �̂� + 1.96𝑠𝑒(�̂�) or 0.65, whichever is 

lower, then 𝜆 = 1/2; 

(c) �̂� − 1.96𝑠𝑒(�̂�), or 0.65, whichever is higher < �̂� ≤ �̂� + 1.96𝑠𝑒(�̂�) or 0.80, 

whichever is lower, then 𝜆 = 1/3; 

(d) �̂� − 1.96𝑠𝑒(�̂�) or 0.80, whichever is higher < �̂� ≤ �̂� + 1.96𝑠𝑒(�̂�), then 𝜆 =

0; 

(e) �̂� − 1.96𝑠𝑒(�̂�) > 1 , then 𝜆 = −1. 

Table 6 presents the results on the decision about, transforming or not, the original time 

series data. From these results it is evident that, according to the M-G algorithm, no 

transformation of the original data is suggested in fifteen out of the twenty cases, the 

negative inverse transformation is suggested in four cases and the logarithmic 

transformation in only one case. 

The same series were reanalyzed following the standard TSW procedure. It is noted 

that the only alternatives available with TSW are either the log-transformation, or no 

transformation. Using the TSW routine for these twenty cases, TSW suggested the 

logarithmic transformation of the original data for eighteen cases. It is remarkable that 

only for the two series of unemployment TSW suggests no transformation, as does the 

Milionis Galanopoulos method as well, for the particular two series. It should be 

stressed, however, that as shown by Milionis and Galanopoulos (2018a, 2018b), the 

TSW routine is biased towards suggesting the log-transformation. 
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Table 6. Decision about data transformation 

TIME SERIES METHOD OF TRANSFORMATION 

 LOG-LEVEL PRETEST  

(Output from TSW)  

M-G 

Gross Domestic 

Product (GDP) 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.1380170  LOGS ARE 

SELECTED 

Levels 

Consumer Price Index 

(CPI) 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0781750 LOGS ARE SELECTED 

Levels 

Harmonised Index of 

Consumer Prices 

(HICP) 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0954455 LOGS ARE SELECTED 

Levels 

Industrial Production 

Index (IPI) 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0224433 LOGS ARE SELECTED 

Levels 

Unemployment – 

thousands 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.87725642 LEVELS ARE 

SELECTED 

Levels 

Unemployment – 

percentage 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.86356273 LEVELS ARE 

SELECTED 

Levels 

Retail sales SSlevels/(SSlog*Gmean(levels)^2)= 

1.2755206 LOGS ARE SELECTED 

Negative Inverse 

M1 SSlevels/(SSlog*Gmean(levels)^2)= 

0.98393639 LOGS ARE 

SELECTED 

Levels 

M2 SSlevels/(SSlog*Gmean(levels)^2)= 

1.0714007 LOGS ARE SELECTED 

Levels 

M3 SSlevels/(SSlog*Gmean(levels)^2)= 

1.0422806 LOGS ARE SELECTED 

Levels 

Balance of payments 

(BOP) – Transport – 

Payments 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.0351033 LOGS ARE SELECTED 

Levels 
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Balance of payments 

(BOP) – Transport – 

Receipts 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.1641507 LOGS ARE SELECTED 

Negative Inverse 

Balance of payments 

(BOP) – Travelling – 

Payments 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.1509645 LOGS ARE SELECTED 

Levels 

Balance of payments 

(BOP) – Travelling – 

Receipts 

SSlevels/(SSlog*Gmean(levels)^2)= 

4.3996100 LOGS ARE SELECTED 

Logarithmic 

Balance of payments 

(BOP) – Sea transport 

– Payments 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.98863656 LOGS ARE 

SELECTED 

Levels 

Balance of payments 

(BOP) – Sea transport 

– Receipts 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.1948699 LOGS ARE SELECTED 

Negative Inverse 

Exports of Goods SSlevels/(SSlog*Gmean(levels)^2)= 

0.95751942 LOGS ARE 

SELECTED 

Levels 

Exports of Goods 

without fuels and 

ships 

SSlevels/(SSlog*Gmean(levels)^2)= 

0.96487436 LOGS ARE 

SELECTED 

Levels 

Imports of Goods SSlevels/(SSlog*Gmean(levels)^2)= 

1.1118244 LOGS ARE SELECTED 

Levels 

Imports of Goods 

without fuels and 

ships 

SSlevels/(SSlog*Gmean(levels)^2)= 

1.2957291 LOGS ARE SELECTED 

Negative Inverse 

 

The possible effect of transforming time series on forecasting quality is examined 

through Tables 7a and 7b. From the results below it is concluded that point forecasts 

with either transformation method are slightly better than with no transformation in 

terms of MAPE and MAE, but not in terms of MSFE. As already explained, forecasts 

on transformed variables are not optimal in terms of MSFE. On the other hand, 

confidence interval forecasts are shorter in four of the five cases using transformations 
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with the M-G approach. In contrast this happens in only eight out of the eighteen cases 

using the TSW approach. Though it seems that M-G approach leads to shorter 

confidence interval forecasts, obviously there are very few cases available. Further 

empirical evidence with a larger dataset is needed on that point so as to draw safer 

conclusions. 

Table 7a. Summary table - Number of best forecasts (M-G versus benchmark) 

Point Forecasts M-G - no outliers Levels-no outliers 

(Benchmark) 

MAPE 3/5 2/5 

MSFE 2/5 3/5 

MAE 3/5 2/5 

Interval Forecasts M-G - no outliers Levels-no outliers 

(Benchmark) 

Forecast 

Standard Error 

(SE) 

4/5 1/5 

 

Table 7b. Summary table - Number of best forecasts (TSW versus benchmark) 

Point Forecasts TSW - no outliers Levels-no outliers 

(Benchmark) 

MAPE 9/18 9/18 

MSFE 7/18 11/18 

MAE 9/18 9/18 

Interval Forecasts TSW - no outliers Levels-no outliers 

(Benchmark) 

Forecast 

Standard Error 

(SE) 

8/18 10/18 

 

3.3.4 The combined effect of linearization and data transformation 

The results of the examination of the forecasting performance combining both 

linearization and data transformation are presented in Tables 8a and 8b. The conclusion 
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that is derived is that, by and large, the combined effect does not lead to better point 

forecasts but leads to improved confidence interval forecasts with better performance 

for the M-G approach. The conclusion about the forecast confidence interval is 

reasonable and, to a large extent, expected, as with the transformation of the original 

time series data and the adjustment for outliers the process variance is reduced. It is 

possible to exploit this reduction in obtaining forecasts with increased confidence. 

Table 8a. Summary table - Number of best forecasts (M-G versus benchmark) 

Point Forecasts M-G - All outliers Levels-no outliers 

(Benchmark) 

MAPE 2/5 3/5 

MSFE 2/5 3/5 

MAE 2/5 3/5 

Interval Forecasts M-G - All outliers Levels-no outliers 

(Benchmark) 

Forecast 

Standard Error 

(SE) 

4/5 1/5 

 

Table 8b. Summary table - Number of best forecasts (TSW versus benchmark) 

Point Forecasts TSW - All outliers Levels-no outliers 

(Benchmark) 

MAPE 8/18 10/18 

MSFE 8/18 10/18 

MAE 8/18 10/18 

Interval Forecasts TSW - All outliers Levels-no outliers 

(Benchmark) 

Forecast Standard 

Error (SE) 

12/18 6/18 
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Table 9 presents the ARIMA models for the benchmark model and the combination of 

Milionis-Galanopoulos variance stabilizing method - linearization. It is noted that the 

differences in the ARIMA models for the time series where no transformation was 

needed should be attributed to the existence of outliers adjusted by linearization. 

Table 9. Univariate ARIMA models with and without transformation-linearization 

Time series Benchmark M-G 

Gross 

Domestic 

Product (GDP) 

ARIMA (0,1,1) (0,1,1)4 ARIMA (1,0,0) (1,1,0)4 

∇∇4Yt = (1 + 0.118Β)(1

+ 0.425Β4)εt 

(1 + 0.953Β)(1 − 0.335Β4)∇4Yt

= εt 

Industrial 

Production 

Index (IPI) 

ARIMA (2,0,0) (0,1,1)12 ARIMA (2,0,0) (0,1,1)12 

(1 + 0.379Β + 0.547Β2)∇12Yt = 

(1 + 0.950Β12)εt 

(1 + 0.379Β + 0.547Β2)∇12Yt = 

(1 + 0.950Β12)εt 

Consumer 

Price Index 

(CPI) 

ARIMA (0,1,0) (0,1,1)12 ARIMA (1,1,0) (0,1,0)12 

∇∇12Yt = (1 + 0.260Β12)εt (1 + 0.134Β)∇∇12Yt = εt 

Harmonised 

Index of 

Consumer 

Prices (HICP) 

ARIMA (0,1,0) (0,1,1)12 ARIMA (0,1,0) (0,1,1)12 

∇∇12Yt = (1 + 0.347Β12)εt ∇∇12Yt = (1 + 0.287Β12)εt 

Unemployment 

– thousands 

ARIMA (3,2,1) (0,1,1)12 ARIMA (3,2,1) (0,1,1)12 

(1 − 0.681Β − 0.674Β2

+ 0.062Β3)∇2∇12Yt 

= (1 + 0.758Β)(1

+ 0.938Β12)εt 

(1 − 1.153Β − 1.123Β2

−0.340Β3 )∇2∇12Yt

= 

(1 + 0.614Β)(1 + 0.907Β12)εt 

Unemployment 

– percentage 

ARIMA (2,2,1) (0,1,1)12 ARIMA (2,2,1) (0,1,1)12 

(1 − 0.726Β − 0.715Β2)∇2∇12Yt

= 

(1 + 0.734Β)(1 + 0.816Β12)εt  

(1 − 0.726Β − 0.715Β2)∇2∇12Yt

= 

(1 + 0.734Β)(1 + 0.816Β12)εt 

Retail sales 

ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

∇∇12Yt = (1 + 0.364Β)(1

+ 0.566Β12)εt 

∇∇12

−1

Yt
= 

(1 + 0.316Β)(1 + 0.586Β12)εt 

M1 ARIMA (0,2,1) (0,1,1)12 ARIMA (3,1,0) (0,1,1)12 
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∇2∇12Yt = (1 + 0.838Β)(1

+ 0.682Β12)εt 

(1 + 0.007Β + 0.156Β2

+0.420Β3 )∇∇12Yt

= 

(1 + 0.668Β12)εt 

M2 

ARIMA (3,1,0) (1,0,1)12 ARIMA (3,1,0) (0,1,1)12 

(1 + 0.328Β + 0.040Β2

+ 0.307Β3) 

(1 + 0.868Β12)∇Yt

= (1

+ 0.656Β12)εt 

(1 + 0.375Β + 0.087Β2

+0.311Β3 )∇∇12Yt 

= (1 + 0.822Β12)εt 

M3 

ARIMA (0,2,1) (0,1,1)12 ARIMA (0,2,1) (0,1,1)12 

∇2∇12Yt = (1 + 0.695Β)(1

+ 0.824Β12)εt 

∇2∇12Yt = 

(1 + 0.683Β)(1 + 0.859Β12)εt 

Balance of 

payments 

(BOP) – 

Transport – 

Payments 

ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

∇∇12Yt = (1 + 0.188Β)(1

+ 0.847Β12)εt 

∇∇12Yt = 

(1 + 0.312Β)(1 + 0.859Β12)εt 

Balance of 

payments 

(BOP) – 

Transport – 

Receipts 

ARIMA (3,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

(1 − 0.393Β − 0.050Β2

+ 0.264Β3)∇∇12Yt 

= (1 − 0.288Β)(1

+ 0.950Β12)εt 

∇∇12

−1

Yt
= 

(1 + 0.180Β)(1 + 0.829Β12)εt 

Balance of 

payments 

(BOP) – 

Travelling – 

Payments 

ARIMA (1,0,0) (0,1,1)12 ARIMA (1,0,0) (1,0,0)12 

(1 + 0.339Β)∇12Yt

= (1

+ 0.506Β12)εt 

(1 + 0.314Β)(1 + 0.613Β12)Yt

= εt 

Balance of 

payments 

(BOP) – 

Travelling – 

Receipts 

ARIMA (1,0,0) (1,1,0)12 ARIMA (1,0,0) (1,1,0)12 

(1 + 0.731Β)(1

− 0.371Β12)∇12Yt = εt 

(1 + 0.598Β)(1

− 0.422Β12)∇12𝑙𝑛Yt = εt 

ARIMA (0,1,1) (0,0,0)12 ARIMA (0,1,1) (0,1,1)12 
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Balance of 

payments 

(BOP) – Sea 

transport – 

Payments 

∇Yt = (1 + 0202Β)εt ∇∇12Yt = 

(1 + 0.290Β)(1 + 0.846Β12)εt 

Balance of 

payments 

(BOP) – Sea 

transport – 

Receipts 

ARIMA (3,1,1) (0,1,1)12 ARIMA (3,1,1) (0,1,1)12 

(1 − 0.388Β − 0.020Β2

+ 0.281Β3)∇∇12Yt 

= (1 − 0.262Β)(1

+ 0.848Β12)εt 

(1 − 0.533Β − 0.125Β2

+0.217Β3 )∇∇12

−1

Yt

= 

(1 − 0.414Β)(1 + 0.826Β12)εt 

Exports of 

Goods 

ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

∇∇12Yt = (1 + 0.414Β)(1

+ 0.950Β12)εt 

∇∇12Yt = 

(1 + 0.387Β)(1 + 0.950Β12)εt 

Exports of 

Goods without 

fuels and ships 

ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

∇∇12Yt = (1 + 0.485Β)(1

+ 0.922Β12)εt 

∇∇12Yt = 

(1 + 0.587Β)(1 + 0.785Β12)εt 

Imports of 

Goods 

ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

∇∇12Yt = (1 + 0.495Β)(1

+ 0.950Β12)εt 

∇∇12Yt = 

(1 + 0.655Β)(1 + 0.934Β12)εt 

Imports of 

Goods without 

fuels and ships 

ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12 

∇∇12Yt = (1 + 0.434Β)(1

+ 0.785Β12)εt 

∇∇12

−1

Yt
= 

(1 + 0.313Β)(1 + 0.799Β12)εt 

 

3.3.5 Sensitivity analysis - Outliers (dependence of outlier detection on the 

parameter 𝝉) 

Let �̂�𝑇+1/𝛷𝑇  denote the optimal one-step-ahead  linear  forecast   of 𝑌𝑇+1 given 

the information set 𝛷𝑇, which includes information up to time 𝑇,                                           

𝑒𝑇+1 = 𝑌𝑇+1 − �̂�𝑇+1/𝛷𝑇 denote the associated forecast error, and                                             

𝜎𝑇+1
2 = [𝑌𝑇+1 − �̂�𝑇+1/𝛷𝑇]

2 denote the associated variance. The observation 𝑌𝑇+1 is 

considered as an outlier if the null Hypothesis: 𝐻0: 𝑒𝑇+1 = 0 is rejected. The 

appropriate statistic to test 𝐻0 is: 𝜏 =
𝑒𝑇+1

𝜎𝑇+1
. 



78 
 

However, theory cannot predict the critical value of 𝝉 above which the 

corresponding observation can be considered as an outlier. Α usual practice is to relate 

the critical value of 𝝉 with the length of a time series. The default values of TSW for 𝝉 

are presented in Table 106. In the course of our experimentation, it was observed that 

outlier detection (as well as ARIMA models for the linearized-transformed series), were 

very sensitive to the value of parameter 𝝉. In order to examine, whether or not, the 

critical 𝝉 values could have any noticeable effect on our final conclusions, as an 

alternative set of critical values for 𝝉 we used those suggested by Fischer and Planas 

(2000), who examined a very large number of time series. Their critical values for 𝝉 

were set at 3.5, 3.7 and 4.0 for series lengths of less than 130 observations, between 

131 and 180, and more than 180 observations, respectively.  

Table 10. Critical values for τ 

Observations Default values for 𝝉 in TSW 

164 0.358E+01 

165 – 168 0.359E+01 

169 – 172 0.360E+01 

173 – 175 0.361E+01 

 

Τhe comparison of the results based on default critical 𝝉 values, as well as on 

Fischer – Planas recommendations are presented in Table 11, while the detected outliers 

for each time series and each set of values for the parameter 𝝉 are presented in Table 

12. Looking at Table 12 it is observed that the detection of outliers is indeed sensitive 

even to the examined small changes in the value of 𝝉. On the other hand, however, from 

the results of Table 11, it is apparent that using the Fischer and Planas critical values 

for 𝝉 leads to mixed results regarding the effect on forecast quality.  

By and large, there is only very weak evidence of improvement using the Fischer 

– Planas recommendations7. 

 
6 In the TSW framework the subroutine TERROR is designed especially for outlier detection. Incoming 

data volume in institutions like EUROSTAT, ECB, OECD, NCBs, NSOs etc. may be enormous. Such 

data may be contaminated by errors of various types and origins. Using TERROR is a convenient, yet 

formal way to spot aberrant observations (outliers). It is highly possible that if erroneous data do exist, 

they will be included in the set of observations characterized as outliers by TERROR, hence, in a second 

stage, their possible identification is focused exclusively on that data set. In this work we used the first 

stage only.  
7 Indeed, setting the Fischer –Planas critical values instead of the default ones, the results are identical 

regarding those of Table 8a, while the results pertaining to those of Table 8b they are identical in terms 
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Table 11. Results based on Fischer – Planas recommendations 

Time series  Improvement of 

forecast quality 

Same forecast 

quality  

Deterioration of 

forecast quality 

Gross Domestic 

Product (GDP) 

 
MAPE, MSFE, 

MAE, SE (TSW) 

MAPE, MSFE, 

MAE, SE (M-G) 

Consumer Price 

Index (CPI) 

MAPE, MSFE, 

MAE (TSW) 

MAPE, MSFE, 

MAE, SE (M-G) 

SE (TSW) 

Harmonised Index 

of Consumer 

Prices (HICP) 

MAPE, MSFE, 

MAE (M-G) 

MAPE, MSFE, 

MAE, SE (TSW), 

 
SE (M-G) 

Industrial 

Production Index 

(IPI) 

MAPE, MSFE, 

MAE (M-G) 

MAPE, MSFE, 

MAE, SE (TSW) 

SE (M-G) 

Unemployment – 

thousands 

MSFE (M-G, and 

TSW) 

 
MAPE, MAE, SE 

(M-G, and TSW) 

Unemployment – 

percentage 

MAPE, MSFE, 

MAE 

(M-G, and TSW) 

SE (M-G, and 

TSW) 

 

Retail sales 
  

MAPE, MSFE, 

MAE, SE (M-G, 

and TSW) 

M1 
 

MAPE, MSFE, 

MAE, SE (M-G, 

and TSW) 

 

M2 MAPE, MAE (M-

G) 

 
MAPE, MSFE, 

MAE, SE (TSW), 

MSFE, SE (M-G) 

M3 MAPE, MSFE, 

MAE (M-G) 

 
MAPE, MSFE, 

MAE, SE (TSW), 

 
of the standard error, and 8/18 for MAPE, MAE and MSFE with TSW, as compared to 7/18 using the 

default critical values). 
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SE (M-G) 

Balance of 

payments (BOP) – 

Transport – 

Payments 

MAPE, MSFE, 

MAE (TSW) 

 
MAPE, MSFE, 

MAE, SE (M-G) 

SE (TSW) 

Balance of 

payments (BOP) – 

Transport – 

Receipts 

MAPE, MSFE, 

MAE, SE (M-G, 

and TSW) 

  

Balance of 

payments (BOP) – 

Travelling – 

Payments 

 
MAPE, MAE, SE 

(TSW) 

MSFE (TSW) 

MAPE, MSFE, 

MAE, SE (M-G) 

Balance of 

payments (BOP) – 

Travelling – 

Receipts 

 
SE (M-G, and 

TSW) 

MAPE, MSFE, 

MAE (M-G, and 

TSW) 

Balance of 

payments (BOP) – 

Sea transport – 

Payments 

MAPE, MSFE, 

MAE (M-G, and 

TSW) 

 
SE (M-G, and 

TSW) 

Balance of 

payments (BOP) – 

Sea transport – 

Receipts 

MAPE, MSFE, 

MAE (M-G, and 

TSW) 
 

 
SE (M-G, and 

TSW)  
 

Exports of Goods MAPE, MSFE, 

MAE (M-G, and 

TSW) 

 
SE (M-G, and 

TSW) 
 

Exports of Goods 

without fuels and 

ships 

  
MAPE, MSFE, 

MAE, SE (M-G, 

and TSW) 

Imports of Goods 
 

MAPE, MSFE, 

MAE, SE (M-G) 

MAPE, MSFE, 

MAE, SE (TSW) 
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Imports of Goods 

without fuels and 

ships 

MAPE, MSFE, 

MAE (TSW) 
 

MAPE, MSFE, 

MAE, SE (M-G) 

SE (TSW) 

 

Table 12. Detected outliers for the different values of parameter τ (the first number 

indicate the serial number of the corresponding observation, then follows the type of 

outlier and within the parentheses the corresponding month, or quarter, and year) 

Time series  𝝉 -default TSW critical values 𝝉 -Fischer-Planas 

Gross Domestic 

Product (GDP) OUTLIERS: 57 AO (1 2009) OUTLIERS: 57 AO (1 2009) 

Industrial 

Production 

Index (IPI) 

OUTLIERS: NO OUTLIERS 

DETECTED 

OUTLIERS: NO OUTLIERS 

DETECTED 

Consumer Price 

Index (CPI) 

OUTLIERS: 93 LS ( 9 2011), 

119 AO (11 2013) 

OUTLIERS: 119 AO (11 2013) 

Harmonised 

Index of 

Consumer Prices 

(HICP) 

OUTLIERS: 119 AO (11 2013) 

 

OUTLIERS: 119 AO (11 2013) 

 

Unemployment 

– thousands 

OUTLIERS: 60 LS (12 2008), 

95 LS (11 2011), 98 TC (2 

2012), 126 LS (6 2014), 148 TC 

(4 2016), 156 TC (12 2016) 

OUTLIERS: 60 LS (12 2008), 

95 LS (11 2011), 98 TC (2 

2012), 126 LS (6 2014), 148 

TC (4 2016), 156 TC (12 2016) 

Unemployment 

– percentage 

OUTLIERS: NO OUTLIERS 

DETECTED 

OUTLIERS: NO OUTLIERS 

DETECTED 

Unemployment 

– thousands 

OUTLIERS: NO OUTLIERS 

DETECTED 

 

OUTLIERS: 113 AO (5 2013), 

139 AO (7 2015) 

 

M1 OUTLIERS: 139 LS (7 2015) OUTLIERS: 139 LS (7 2015) 
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M2 

OUTLIERS:  100 AO (4 2012), 

102 AO (6 2012), 133 LS (1 

2015), 138 TC (6 2015) 

OUTLIERS:  100 AO (4 2012), 

102 AO (6 2012), 138 TC (6 

2015) 

M3 

OUTLIERS: 100 AO (4 2012), 

102 AO (6 2012), 133 LS (1 

2015), 138 TC (6 2015) 

OUTLIERS: 100 AO (4 2012), 

102 AO (6 2012), 133 LS (1 

2015), 138 TC (6 2015) 

Balance of 

payments (BOP) 

– Transport – 

Payments 

OUTLIERS: 60 LS (12 2008), 

133 LS (1 2015) 

OUTLIERS: 60 LS (12 2008), 

133 LS (1 2015) 

Balance of 

payments (BOP) 

– Transport – 

Receipts 

OUTLIERS: 59 LS (11 2008) OUTLIERS: 36 TC (12 2006), 

59 LS (11 2008) 

Balance of 

payments (BOP) 

– Travelling – 

Payments 

OUTLIERS: 92 AO ( 8 2011) OUTLIERS: 92 AO ( 8 2011) 

Balance of 

payments (BOP) 

– Travelling – 

Receipts 

OUTLIERS: 2 AO (2 2004),     

113 LS (5 2013) 

OUTLIERS: 2 AO (2 2004), 

113 LS (5 2013) 

Balance of 

payments (BOP) 

– Sea transport – 

Payments 

OUTLIERS: 60 LS (12 2008), 

113 LS (5 2013), 133 LS (1 

2015) 

OUTLIERS: 59 LS (11 2008), 

113 LS (5 2013), 133 LS (1 

2015) 

Balance of 

payments (BOP) 

– Sea transport – 

Receipts 

OUTLIERS: 36 TC (12 2006), 

59 LS (11 2008), 129 AO (9 

2014) 

OUTLIERS: 36 TC (12 2006), 

59 LS (11 2008), 129 AO (9 

2014) 

Exports of 

Goods OUTLIERS: 81 AO ( 9 2010) 
NO OUTLIERS DETECTED 
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Exports of 

Goods without 

fuels and ships 

OUTLIERS: 60 LS (12 2008), 

81 AO (9 2010) 

OUTLIERS: 60 LS (12 2008), 

81 AO (9 2010) 

Imports of 

Goods 

OUTLIERS: NO OUTLIERS 

DETECTED 

OUTLIERS: NO OUTLIERS 

DETECTED 

Imports of 

Goods without 

fuels and ships 

OUTLIERS: 39 AO (3 2007), 

59 LS (11 2008), 75 AO (3 

2010), 82 AO (10 2010), 139 

TC (7 2015) 

OUTLIERS: 39 AO (3 2007), 

59 LS (11 2008), 75 AO (3 

2010), 82 AO (10 2010), 139 

TC (7 2015) 

 

3.3.6 Evaluation of models’ forecasting performance 

The skill of a forecast can be assessed by comparing the relative proximity of both the 

forecast and a benchmark to the observations. The presence of a benchmark makes it 

easier to compare approaches and for this reason a benchmark is proposed to establish 

a common ground for comparison. In the present case an obvious benchmark is to use 

the univariate ARIMA forecasts of the twenty-time series described in section 3.2, non-

linearized and non-transformed. This benchmark forecasts will be used together with 

the forecasts from the TSW and M-G approaches as the three alternatives, the 

performances of which are to be evaluated and compared. Forecasts’ evaluation for each 

model will be based on both point and interval forecasts. A simple and transparent ad-

hoc approach will be used for this purpose. More specifically, for the point forecasts for 

each time series and for each model an arithmetic value is assigned in ascending order 

based on the corresponding value of the MSFE statistic (i.e. 1 for the minimum MSFE 

value, 2 for the mid- MSFE value, 3 for the maximum MSFE value). Then, adding up 

the arithmetic values for all series for a particular model their sum will represent the 

performance of the model. Models will be ranked according to the value of the 

corresponding sum. Apparently, the model with the lowest sum will be considered as 

the best one. For interval forecasts the same procedure will be followed replacing the 

value of the MSFE statistic with the value of the corresponding standard error around 

the point forecasts. 

From the above, it is apparent that use will be made repetitively of the same data set. 

This could potentially make the whole process susceptible to the data snooping trap 
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(White, 2000)8. Such a case is quite common for instance in developing trading 

strategies in financial markets. A well-known tool used by the developers of such 

strategies is the so-called reality check with its refinements and extensions (White 2000; 

Romano and Wolf, 2005; Hansen et. al 2011). In the present case however, the 

possibility that the forecasting performance of one of the three models to be used 

(namely the benchmark model, TSW and M-G) is superior than that of the other two 

simply due to chance is reduced by the fact that the number of models is much lower 

than the number of time series (three against twenty). Therefore, it is unlikely that one 

and the same model would obtain superior performance in all, or at least in most of the 

twenty-time series, just as a result of pure chance. For this reason, the usage of the 

reality check, bearing in mind also its weaknesses (Hansen, 2005; Hansen et. al 2011), 

is not deemed as necessary. 

The results are shown in Tables 13 and 149 and more detailed results are quoted in Table 

15. It is clarified that both the TSW and M-G transformation approaches are coupled 

with the outlier detection-adjustment approach.  

Table 13. Ranking of forecasting performance according to MSFE (point 

forecasts) 

Time series Benchmark TSW M-G 

Consumer Price 

Index (CPI) 

1 2 3 

Harmonised Index 

of Consumer Prices 

(HICP) 

1 3 2 

M3 1 3 2 

M2 2 3 1 

Gross Domestic 

Product (GDP) 

3 1 2 

M1 3 1 2 

 
8 Halbert White in his seminal paper (White, 2000) states that: “data snooping occurs when a given set 

of data is used more than once for purposes of inference or model selection. When such data reuse occurs, 

there is always the possibility that any satisfactory results obtained may simply be due to chance rather 

than to any merit inherent in the method yielding the results. This problem is practically unavoidable in 

the analysis of time series data…”  
9 If for two models the value of MSFE or SE is exactly the same, the mid-point will be used for both. 
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Industrial 

Production Index 

(IPI) 

1 3 2 

Retail sales 2 3 1 

Unemployment – 

thousands 

1 2.5 2.5 

Balance of 

payments (BOP) – 

Transport – 

Receipts 

1 2 3 

Balance of 

payments (BOP) – 

Sea transport – 

Receipts 

1 3 2 

Unemployment – 

percentage 

2 2 2 

Balance of 

payments (BOP) – 

Transport – 

Payments 

1 3 2 

Imports of Goods 

without fuels and 

ships 

2 1 3 

Exports of Goods 

without fuels and 

ships 

3 1 2 

Exports of Goods 2 1 3 

Balance of 

payments (BOP) – 

Sea transport – 

Payments 

3 1 2 

Imports of Goods 3 1 2 
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Balance of 

payments (BOP) – 

Travelling – 

Receipts 

3 1.5 1.5 

Balance of 

payments (BOP) – 

Travelling – 

Payments 

2 1 3 

SUM 38 39 43 

 

Table 14. Ranking of forecasting performance according to SE (interval forecasts) 

Time series Benchmark TSW M-G  

Harmonised Index 

of Consumer Prices 

(HICP) 

3 2 1 

Consumer Price 

Index (CPI) 

3 2 1 

M1 3 2 1 

M3 3 1 2 

M2 3 1 2 

Gross Domestic 

Product (GDP) 

3 1 2 

Unemployment – 

percentage 

2 2 2 

Industrial 

Production Index 

(IPI) 

2 3 1 

Unemployment – 

thousands 

3 1.5 1.5 

Exports of Goods 

without fuels and 

ships 

2 3 1 
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Retail sales 3 2 1 

Exports of Goods 2 3 1 

Balance of 

payments (BOP) – 

Transport – 

Receipts 

3 2 1 

Balance of 

payments (BOP) – 

Transport – 

Payments 

2 3 1 

Balance of 

payments (BOP) – 

Sea transport – 

Receipts 

3 2 1 

Imports of Goods 

without fuels and 

ships 

3 1 2 

Balance of 

payments (BOP) – 

Sea transport – 

Payments 

2 3 1 

Imports of Goods 3 1 2 

Balance of 

payments (BOP) – 

Travelling – 

Payments 

3 1 2 

Balance of 

payments (BOP) – 

Travelling – 

Receipts 

1 2.5 2.5 

SUM 52 39 29 
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From the results of Tables 13 and 14 it is evident that the performance of neither TSW 

nor M-G approach for point forecasts is better than that of the benchmark model (as a 

matter of fact both are slightly worse). On the other hand, for the forecast confidence 

intervals M-G has a better performance than TSW and the benchmark model. 

Furthermore, TSW outperforms the benchmark model. A rather crude way to procced 

to an overall evaluation of the three models is to add up their performances in the two 

categories (i.e. point and interval forecasts). The addition gives the values of 90, 78 and 

72 for the benchmark model, TSW and M-G respectively, which means that both TSW 

and M-G perform clearly better than the benchmark model and further the performance 

of M-G is better than that of TSW. 

Table 15. Detailed forecast quality statistics: MSFE, MAE and Forecast Standard 

Error 

Time series Benchmark TSW M-G 

Consumer 

Price Index 

(CPI) 

0.074 

0.241 

0.461 

0.123 

0.293 

0.450 

0.163 

0.332 

0.426 

Harmonised 

Index of 

Consumer 

Prices 

(HICP) 

0.100 

0.255 

0.466 

0.114 

0.272 

0.452 

0.107 

0.267 

0.448 

M3 1,551,599 

947 

2,448 

2,166,840 

1,100 

1,709 

1,947,577 

1,116 

1,989 

M2 2,410,091 

1,048 

2,440 

2,479,304 

1,094 

1,831 

 

2,224,942 

1,165 

2,046 

Gross 

Domestic 

252,244 212,606 230,028 
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Product 

(GDP) 

371 

1,004 

354 

819 

363 

869 

M1 1,318,053 

908 

1,490 

849,764 

752 

1,470 

1,138,385 

815 

1,319 

Industrial 

Production 

Index (IPI) 

1.618 

0.955 

2.665 

1.639 

1.049 

2.751 

1.619 

0.963 

2.663 

Retail sales 3.159 

1.423 

5.111 

4.389 

1.671 

3.646 

3.048 

1.480 

2.821 

Unemploym

ent – 

thousands 

546.2 

20.8 

26.6 

819.2 

24.8 

24.4 

819.2 

24.8 

24.4 

Balance of 

payments 

(BOP) – 

Transport – 

Receipts 

1,919 

36.0 

70.3 

2,225 

38.5 

68.0 

3,828 

50.8 

66.4 

Balance of 

payments 

(BOP) – Sea 

transport – 

Receipts 

1,215 

31.2 

70.2 

1,574 

32.6 

58.5 

 

1,352 

30.0 

58.1 

Unemploym

ent – 

percentage 

0.399 

0.584 

0.399 

0.584 

0.399 

0.584 
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0.544 0.544 0.544 

Balance of 

payments 

(BOP) – 

Transport – 

Payments 

1,002 

25.4 

49.7 

1,217 

29.0 

51.8 

 

1,106 

27.3 

37.9 

Imports of 

Goods 

without 

fuels and 

ships 

12,479 

98.1 

224.7 

12,246 

96.5 

152.1 

14,772 

102.5 

175.1 

Exports of 

Goods 

without 

fuels and 

ships 

6,020 

67.3 

81.3 

2,793 

45.5 

97.7 

4,520 

58.4 

71.0 

Exports of 

Goods 

20,174 

130.6 

138.8 

16,877 

108.5 

192.8 

 

20,562 

133.4 

133.9 

Balance of 

payments 

(BOP) – Sea 

transport – 

Payments 

1,276 

31.0 

39.8 

711.8 

21.8 

42.9 

1,095 

28.7 

31.8 

Imports of 

Goods 

97,620 

263.4 

345.1 

93,330 

252.6 

319.3 

93,509 

250.3 

324.0 

Balance of 

payments 

(BOP) – 

19,885 

87.7 

13,120 

78.6 

13,120 

78.6 
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Travelling – 

Receipts 

96.6 

 

98.9 98.9 

Balance of 

payments 

(BOP) – 

Travelling – 

Payments 

1,563 

24.4 

28.8 

1,560 

23.4 

23.0 

1,687 

267.0 

25.7 

 

Nelson and Granger (1979) utilized the Box-Cox transformations, amongst others, for 

forecasting purposes (point forecasts) using twenty-one actual economic time series. 

As they failed in getting superior forecasts, they reached to the rather pessimistic 

conclusion that it is not worthwhile to make use of these transformations bearing in 

mind the extra inconvenience, effort, and cost. Their point of view was subsequently 

adopted by other researchers as well, as already mentioned in the introductory section. 

Lest to get too disappointed, despite the fact that cost and effort are much lower 

nowadays than what they were at that time, we further note that Nelson and Granger 

did not associate forecasts on transformed time series with an outlier detection-

adjustment approach. Furthermore, their conclusion was based only on point forecasts, 

disregarding forecast confidence intervals. The latter are of much importance especially 

in cases where the focus is on best-worst forecast scenarios. For instance, such is the 

case with actuarial time series on mortality rates, which may be used further for the 

construction of pension plans. As shown above, the combination of transformation-

linearization leads to shorter forecast confidence intervals. 

It should also be stressed that neither in the existing research works thus far, nor in the 

present one, the treatment of the effect of data transformation on time series forecasting 

is complete for the simple reason that no work extends the analysis in a bivariate (in 

general multivariate) framework. Indeed, the existence of variance non-stationarity in 

time series could potentially contaminate the pre-whitening process (for details about 

the pre-whitening process see Box and Jenkins, 1976), consequently the sample cross 

correlation function, so it will mask the true dynamic relationship between two series, 

one of which is supposed to be the leading indicator, thus affecting negatively the 

conditional (in this case) forecasts. 
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3.3.7 The shift towards normality 

Another serious concern expressed by Nelson and Granger (1979) was the fact that the 

problem of acute non-normal distributions they found in most macroeconomic time 

series they analyzed was restored only very little by their use of data transformations. 

Table 16 presents the results for the Jarque-Bera statistic for normality (Jarque and Bera, 

1980). This statistic is distributed as chi-square with two degrees of freedom. An 

asterisk right next to an arithmetic value of Table 16 indicates a rejection of the null 

hypothesis of normality at the 5% significance level (critical value = 5.99). 

Table 16. Values of the Jarque –Bera statistic (statistically significant values 

are indicated with an asterisk) 

Time series Benchmark TSW M-G 

Consumer Price 

Index (CPI) 

2.889 0.999 0.423 

Harmonised 

Index of 

Consumer Prices 

(HICP) 

6.289* 5.850 8.263* 

M3 19.78* 14.72* 12.44* 

M2 16.71* 7.519* 16.31* 

Gross Domestic 

Product (GDP) 

14.17* 0.541 3.699 

M1 152.6* 2.879 3.597 

Industrial 

Production Index 

(IPI) 

1.118 0.996 1.118 

Retail sales 2.328 0.771 0.545 

Unemployment – 

thousands 

9.745* 7.613* 7.613* 

Balance of 

payments (BOP) 

5.526 0.563 3.587 



93 
 

– Transport – 

Receipts 

Balance of 

payments (BOP) 

– Sea transport – 

Receipts 

7.447* 0.9231E-01 0.7904E-01 

Unemployment – 

percentage 

7.584* 7.584* 7.584* 

Balance of 

payments (BOP) 

– Transport – 

Payments 

137.5* 1.651 5.289 

Imports of Goods 

without fuels and 

ships 

7.938* 0.928 0.266 

Exports of Goods 

without fuels and 

ships 

28.26* 0.473 0.593 

Exports of Goods 0.404 0.380 0.180 

Balance of 

payments (BOP) 

– Sea transport – 

Payments 

210.5* 4.633 4.598 

Imports of Goods 1.589 4.115 0.924 

Balance of 

payments (BOP) 

– Travelling – 

Receipts 

15.31* 4.696 4.696 

Balance of 

payments (BOP) 

2.286 1.978 2.013 
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– Travelling – 

Payments 

 

The results of Table 16 allow, again, for a more optimistic view, inasmuch as it is 

evident that there is a general shift towards normality from the benchmark model to 

either TSW, or M-G transformation-linearization procedure. The phenomenon on some 

occasions is really very pronounced indeed (e.g. in the series of M1 and Balance of 

Payments–transport-payments). This allows for computational algorithms such as 

maximum likelihood estimation, as well as standard statistical tests, to be legitimately 

employed with transformed-linearized data. 

 

3.3.8 Statistical benchmark forecasting 

Seizing the opportunity of the above analysis, it is useful to assess the 

forecastability of the twenty time series of the Greek economy. Here forecastability will 

be perceived in both point and confidence interval forecasts. For the former the MAPE 

statistic will be employed. For the latter the percentage standard error statistic will be 

introduced as the mean average of the ratio of the forecasts’ standard error over the 

corresponding actual value, so as to make forecasts of the various series mutually 

comparable. In all cases one-step-ahead forecasts will be performed10. It is stressed that 

although these forecasts are technically perfectly acceptable, nevertheless they are 

purely statistical, hence, a-theoretical, and they can only serve as benchmark forecasts 

in order to evaluate the merit of more structural econometric forecasts. Tables 17-18 

show the results in descending order in terms of statistical forecastability according to 

the Milionis - Galanopoulos method. 

 

 

 

 

 

 

 
10 Two-(or more)-step-ahead forecasts are available from the author. 
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Table 17. Forecastability of main economic indicators. Greece. Point forecasts 

MAPE 

Time series Benchmark TSW M-G 

Harmonised Index of Consumer Prices 

(HICP) 

0.241% 0.257% 0.252% 

Consumer Price Index (CPI) 0.238% 0.289% 0.328% 

M3 0.561% 0.653% 0.661% 

M2 0.625% 0.650% 0.697% 

M1 0.786% 0.652% 0.706% 

Gross Domestic Product (GDP) 0.760% 0.729% 0.745% 

Industrial Production Index (IPI) 1.011% 1.111% 1.019% 

Retail sales 1.424% 1.666% 1.458% 

Unemployment – thousands 2.170% 2.608% 2.608% 

Balance of payments (BOP) – Sea 

transport – Receipts 

2.789% 2.902% 2.640% 

Unemployment – percentage 2.917% 2.917% 2.917% 

Balance of payments (BOP) – Transport 

– Payments 

2.929% 3.309% 3.134% 

Exports of Goods without fuels and ships 3.718% 2.517% 3.208% 

Imports of Goods without fuels and ships 3.032% 3.026% 3.258% 

Balance of payments (BOP) – Transport 

– Receipts 

2.748% 2.922% 3.835% 

Balance of payments (BOP) – Sea 

transport – Payments 

5.515% 3.883% 5.077% 

Exports of Goods 5.021% 4.238% 5.129% 

Imports of Goods 6.027% 5.750% 5.705% 

Balance of payments (BOP) – Travelling 

– Receipts 

12.194% 7.729% 7.729% 

Balance of payments (BOP) – Travelling 

– Payments 

12.553% 11.775% 13.994% 
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Table 18. Forecastability of main economic indicators. Greece. Interval forecasts 

Percentage Standard Error 

Time series Benchmark TSW M-G  

Consumer Price Index (CPI) 0.454% 0.443% 0.419% 

Harmonised Index of Consumer Prices 

(HICP) 

0.439% 0.427% 0.423% 

M1 1.290% 1.272% 1.142% 

M3 1.451% 1.013% 1.180% 

M2 1.455% 1.090% 1.219% 

Gross Domestic Product (GDP) 2.145% 1.745% 1.855% 

Unemployment – thousands 2.809% 2.572% 2.572% 

Unemployment – percentage 2.737% 2.737% 2.737% 

Retail sales 5.110% 3.636% 2.803% 

Industrial Production Index (IPI) 2.808% 2.890% 2.805% 

Exports of Goods without fuels and ships 4.582% 5.483% 4.008% 

Balance of payments (BOP) – Transport     

– Payments 

5.817% 6.101% 4.469% 

Exports of Goods 5.495% 7.552% 5.294% 

Balance of payments (BOP) – Sea  

transport – Receipts 

6.514% 5.394% 5.332% 

Imports of Goods without fuels and ships 7.151% 4.833% 5.528% 

Balance of payments (BOP) – Sea  

transport – Payments 

7.234% 7.779% 5.807% 

Balance of payments (BOP) – Transport    

– Receipts 

5.565% 5.348% 6.317% 

Balance of payments (BOP) – Travelling   

– Receipts 

24.967% 7.679% 7.679% 
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Imports of Goods 8.170% 7.559% 7.700% 

Balance of payments (BOP) – Travelling   

– Payments 

17.607% 14.157% 16.151% 

 

From the results of the Tables 17 – 18, it is observed that although there are many 

similarities in the two Tables, the ordering is not exactly the same.  For this reason, the 

linear correlation coefficient between orderings based on MSFE and the percentage 

standard error was used. In all cases there is a strong positive correlation (see Table 19). 

The method of Milionis-Galanopoulos has the highest correlation, while TSW has the 

lowest. 

From Tables 17 and 18 it is also noticeable that the BOP series are the least forecastable 

in both Tables. Regarding the imports-exports time series it is noted that the former is 

less forecastable than the latter. Furthermore, imports-exports excluding fuels and ships 

are clearly more forecastable than imports-exports including them. This justifies, here 

form the statistics point of view, the separate recording and usage of the imports-exports 

without the inclusion of fuels and ships for further economic analysis. 

Table 19. Linear correlation coefficient between MSFE and percentage SE ordering 

Method Correlation 

Benchmark 95.40% 

TSW 93.05% 

M-G 97.23% 

 

3.4 Conclusions 

This work dealt with the effect of data transformation for variance stabilization and 

linearization for outlier adjustment on the quality of univariate time series forecasts, 

using two methods for data transformation, those of TSW and Milionis Galanopoulos, 

and following a practical approach.  

There is clear evidence that linearization improves the forecasts’ confidence intervals 

and some evidence that data transformation acts likewise. However, the effect of the 

latter needs to be reconfirmed using a larger dataset. In contrast no evidence was found 

that either transformation or linearization lead to better point forecasts. The combined 
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effect of transformation-linearization improves further the forecasts confidence 

intervals but worsens point forecasts. Furthermore, there is also evidence that the 

overall forecasting performance using the Milionis Galanopoulos data transformation 

procedure is somewhat better than the one using the data transformation procedure of 

TSW.  

One field that the documented in this chapter improvement in forecast confidence 

intervals may be employed with some considerable advantages, is that of the actuarial 

science and more specifically the longevity risk. This risk is caused by the uncertainty 

surrounding the future trend of mortality rates of pensioners, as advancements in 

science and medicine make the prediction of mortality rates a difficult task.  One 

method of addressing the aforementioned issue is to utilize mortality models to forecast 

the trend of mortality rates and its associated uncertainty in the future. The latter is 

directly associated with forecast confidence intervals. The whole upcoming chapter 

(Chapter 4) is exclusively devoted to this topic. 

Last, but certainly not least, the combined transformation-linearization procedure 

improves substantially the non-normality problem encountered in many 

macroeconomic time series. 
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SUMMARY OF CHAPTER 3 

Very often in actual macroeconomic time series there are causes that disrupt the 

underlying stochastic process and their treatment is known as «linearization». In 

addition, variance non-stationarity is in many cases also present in such series and is 

removed by proper data transformation. The impact of either of them (data 

transformation - linearization) on the quality of forecasts has not been adequately 

studied to date. This work examines their effect on univariate forecasting considering 

each one separately, as well as in combination, using twenty of the most important time 

series for the Greek economy. Empirical findings show a significant improvement in 

forecasts’ confidence intervals, but no substantial improvement in point forecasts. 

Furthermore, the combined transformation-linearization procedure improves 

substantially the non-normality problem encountered in many macroeconomic time 

series. 
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CHAPTER 4 

MODELLING LONGEVITY RISK: A PRACTICAL STUDY OF THE 

EFFECT OF STATISTICAL PRE-ADJUSTMENTS ON MORTALITY 

TREND FORECASTS 

 

4.1 Introduction 

The utilization of Chapter 3's findings from analyzing macroeconomic time series in 

the field of modeling longevity risk is highly advantageous, especially in terms of 

dealing with variability. In Chapter 3, it's demonstrated that by applying statistical pre-

adjustments like transformation and linearization, forecast confidence intervals can be 

made shorter. This is achieved through transforming the original time series data and 

adjusting for outliers, which reduces the process variance. This reduction can be 

employed to generate forecasts with higher levels of confidence. 

The significance of forecasting confidence intervals becomes particularly pronounced 

when considering scenarios that encompass both the most optimistic and the most 

pessimistic forecasts. This is exemplified in instances like actuarial time series 

concerning mortality rates, which have the potential for extended application in 

developing pension plans.  

Additionally, managing outliers representing rare real-world events in actuarial data 

could enhance forecasts. A comparable situation that could exert substantial influence 

on mortality data and forecasting is the Covid-19 pandemic, characterized by its 

escalating death toll.  

In this chapter use will be made of the findings of previous chapters in modeling 

actuarial time series, in particular in forecasting longevity risk. The structure of the 

chapter is as follows: In the next section a skeletal review of the subject is provided, 

emphasizing on the link of the findings of Chapter 3 with modeling longevity risk. In 

section 4.3 we describe the data and the software to be employed. In section 4.4 we 

present and comment upon our results. In section 4.5 we conclude.  

 

 

 

 



101 
 

4.2 Skeletal review of the subject 

As time passes, the average lifespan is getting longer, presenting difficulties to both the 

insurance sector and the academic community. The rise in life expectancy along with 

the simultaneous decrease in fertility rates are placing noteworthy financial strain on 

retirement income programs (Dowd et al., 2010; Oeppen and Vaupel, 2002). The 

growing quantity of retirement plans and payouts resulting from longer lifespans 

creates a potential risk of exceeding the budget of pension funds and life insurance 

companies. Thus, financial organizations including pension funds, governments and 

life insurance companies must confront the longevity risk. To address this, various 

regulations have been implemented to ensure the stability of an institution’s reserve 

funds and manage the associated risks. The Solvency II (Directive 2009/138/EC) 

establishes a standardized method for determining capital requirements across all EU 

member states with the goal of maintaining the financial stability (solvency) and risk 

management capabilities of organizations. This capital requirement is called Solvency 

Capital Requirement (SCR) and covers all the potential risks that an insurance company 

may encounter. One of the most substantial non-diversifiable risks, among others, is the 

longevity risk. The longevity risk is meant to be a composition of several components. 

For the non-familiar reader, a short description of these components is given in 

Appendix. This risk is caused by the uncertainty surrounding the future trend of 

mortality rates of those receiving annuities (Dowd et al., 2010; Kleinow and Richards, 

2017), as advancements in science and medicine make the prediction of mortality rates 

a difficult task. In other terms, pensioners are living longer than anticipated causing life 

insurance policies and retirement plans to pay out compensations for an extended period 

of time. As a result, profits are decreasing and there is a risk of insolvency. Considering 

the aforementioned points, Solvency II mandates that insurers maintain sufficient 

reserves to cover 99.5% of potential scenarios that could arise within a one-year period. 

Nevertheless, the longevity risk is associated with the prolonged trend of mortality rates 

over the long term. The aforementioned trend develops over numerous years as a result 

of the accumulation of minor alterations. Although many insurance risks can be easily 

incorporated into a one-year value-at-risk framework, not all risks can be treated in the 

same manner. Demanding that the risk associated with the trend of longevity be 

evaluated solely over a one-year period would be excessively rigid (Richards and 

Currie, 2009). This view of longevity trend risk is sometimes called the run-off 
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approach, and it does not correspond with the one-year view demanded by a pure value-

at-risk methodology. Therefore, assessing the risk associated with longevity requires 

predicting data related to longevity over a time horizon of multiple years.  

One method of addressing the aforementioned issue is to utilize mortality models from 

existing literature to forecast the trend of mortality rates and its associated uncertainty 

in the future. By employing this method, an insurance company can strengthen the 

process of determining capital requirements. Accurately and methodically predicting 

the mortality rates is of paramount importance in managing longevity risk. 

Numerous mortality models have been proposed over time, starting from the Gompertz 

law of mortality in 1825, in order to achieve this goal (Cairns et al., 2006; Currie, 2006; 

Hatzopoulos and Haberman, 2011; Hatzopoulos and Sagianou, 2020; Hyndman and 

Ullah, 2007; Lee and Carter, 1992; Plat, 2009; Renshaw and Haberman, 2006). Recent 

advancements in mortality modeling have tended to be extrapolative in nature, with the 

principal components (PC) approach gaining significant attention. Thus, Bell and 

Monsell (1991) expanded on the Ledermann and Breas (1959) method by utilizing a 

PC approach to predict age-specific mortality rates. Lee and Carter (1992) conducted a 

fundamental study on this method by investigating a modified version of it for the 

purpose of predicting mortality rates. The primary statistical technique employed was 

least-squares estimation via singular value decomposition (SVD) of the matrix of the 

log age specific observed forces of mortality. Improvements to the LC model occur 

when the model is adjusted by fitting a Poisson regression model to the number of 

deaths at each age (Brillinger, 1986). Renshaw and Haberman (2003) incorporate age 

differential effects, introducing a double bilinear predictor structure into the LC 

forecasting methodology, and optimize the Poisson likelihood. Also, Hyndman and 

Ullah (2005) use several PCs in order to capture the differential movements in age-

specific mortality rates, using functional PCA. A number of recent studies have 

suggested new approaches to forecasting mortality rates, which involve 

(nonparametric) smoothing. Thus, Currie et al (2004) use bivariate penalized B-splines 

to smooth the mortality surface in both the time and age dimensions within a penalized 

GLM framework. Hyndman and Ullah (2005) smooth the observed log-mortality rates 

with constrained and weighted penalized regression splines. De Jong and Tickle (2006) 

introduce a state space framework using B-spline smoothing. Gao and Hu (2009) 

introduce a Generalized Dynamic Factor method and multivariate BEKK GARCH 

model to describe mortality dynamics under conditional heteroskedasticity. Lazar and 
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Denuit (2009) utilize dynamic factor analysis and the methodology of Johansen 

cointegration to project mortality through a linear state space representation which 

assumes that common factors can be modelled as a multivariate random walk with drift. 

Further, in many developed countries (including UK, USA, Japan and Germany), there 

is evidence of a cohort effect – thus, in the UK, generations born between 1925 and 

1945 approximately seem to have experienced more rapid mortality decreases than 

earlier or later generations. Renshaw and Haberman (2006) incorporate this effect by 

developing an age-period-cohort version of the LC model which provides an improved 

fit to the data compared to the basic LC model.  

A stochastic mortality model can be used to analyze historical mortality data and gain 

insights into mortality dynamics, including the trend of mortality rates. The mortality 

rates obtained from a stochastic mortality model using historical data can be used with 

the intention to predict the future behavior of mortality trends. 

In this chapter, we use the multiple-component stochastic mortality model 

Hatzopoulos-Sagianou (hereafter called HS) to model the mortality dynamics. The HS 

model uses a semi parametric estimation method. This method adopts Generalized 

Linear Models (GLMs) and Sparse Principal Components Analysis (SPCA). A sparsity 

factor (𝑠 value) is necessary for the SPCA to identify the optimal and most informative 

age–period and age–cohort components. To achieve this, the definition of the sparsity 

factor is based on a methodology tailored for the HS model and is able to measure the 

Unexplained Variance (UVR) of each of the age–period and age–cohort components 

that are incorporated in the proposed model. For more details about the novel dynamic 

structure and estimation method of the HS model see Hatzopoulos and Sagianou (2020). 

In the family of age-period-cohort stochastic mortality models the dynamics of 

mortality are driven by the period and the cohort indices. Therefore, the forecasting of 

mortality rates requires the modeling of these indices using time series techniques. We 

adopt the random walk with drift (henceforth RWD) model, as the standard approach 

in the actuarial literature, for modelling the period indices (Cairns et al., 2006; 2011; 

Haberman and Renshaw, 2011; Lee and Carter, 1992;  Lovász, 2011; Pitacco et al., 

2009; Villegas et al., 2018): 𝑌𝑡 = 𝑑 + 𝑌𝑡−1 + 𝑢𝑡 where 𝑌𝑡 is a stochastic time series,  𝑢𝑡 

is a white noise process, and 𝑑 is a constant. Nevertheless, researchers have attempted 

to use other types of stochastic models to improve the accuracy of mortality forecasts 

(Hatzopoulos and Sagianou, 2020; Lee and Miller, 2001; Plat, 2009; Villegas et al., 
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2018). A set of models that belong to this category are the AutoRegressive Integrated 

Moving Average (henceforth ARIMA) models. Before using time series for forecasting 

purposes, they typically require some statistical preparation and pre-adjustment, as they 

are not usually suitable in their raw form. For instance, a time series of raw data may 

have variance non-stationarity. Moreover, it is common to find outliers and other 

factors, like calendar effects, that disturb the inherent stochastic process. Their 

treatment is known as “linearization”. Variance non-stationarity and outliers not only 

affect the variance of time series data, but also have an impact on the nature of the 

ARIMA model and the identification and character of outliers (Milionis, 2003; 2004; 

Milionis and Galanopoulos, 2019). So, both variance non-stationarity and outliers have 

an impact on the accuracy of point and interval forecasts. Therefore, the presence of 

variance non-stationarity and outliers in time series data can negatively affect the 

accuracy of forecasts, leading to wider confidence intervals, which can in turn adversely 

impact the management of longevity risk. In the actuarial field, the potential presence 

of variance instability and outliers in longevity data can lead to an increase in time 

series variance which can impact the uncertainty surrounding the solvency capital 

requirements of a pension fund or insurance institution, among other factors. An 

increase in time series variance may lead some insurers at a competitive disadvantage 

as they have more capital locked in than the risk profile of the company would imply. 

On the other hand, if the outliers in the actuarial time series data represent rare events 

in the real world, such as world wars or pandemics like the Spanish influenza (1917),  

it may be possible to enhance the accuracy of forecasts by appropriately managing their 

impact. A similar phenomenon that may have a significant impact in mortality data and 

forecasting is the Covid-19 pandemic, with the increasing number of deaths attributed 

to it. In a possible future study of mortality rates, we need to take into account the 

presence of the Covid-19 pandemic and its influence on mortality, in order to possibly 

improve the accuracy and quality of predictions. Recent evidence is conducive to such 

an approach. Indicatively, the New York City Department of Health and Mental 

Hygiene in a recent analysis finds that life expectancy in the city of New York has been 

decreased by as much as 4.6 years as a result of the COVID-19 pandemic (Department 

of Health and Mental Hygiene, 2023).  

Despite the importance of both point and interval forecasts on actuarial time series, 

particularly in mortality rates, the potential presence and nature of variance instability 

and outliers, their importance and impact on such forecasts, and the potential 
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consequences for the performance of actuarial models have not been thoroughly 

investigated to date. This is indeed the scope of this work. To this end, the RWD model 

will be used as a benchmark, as the choice of this particular model is strongly backed 

by the existing literature. Indeed, Lee and Carter (1992) found that a simple random 

walk with drift was an appropriate model for the U.S. data they studied, and although 

they highlighted the possibility of more general models, the random walk with drift is 

typically used in applications. Lee and Carter developed their approach specifically for 

U.S. mortality data, 1933-1987. In fact, the method is now being applied to all-cause 

and cause-specific mortality data from many countries and time periods, all well beyond 

the application for which it was designed. So, the method proposed in Lee and Carter 

(1992) has become the “leading statistical model of mortality forecasting in the 

demographic literature” (Deaton and Paxson, 2004). In addition, stochastic models will 

be utilized with and without statistical pre-adjustments to evaluate the impact of such 

adjustments on forecast accuracy. The intention is clearly towards a practical approach. 

 

4.3 Data and software-computational details 

In this chapter, we use the HS multiple-component stochastic mortality model in order 

to model the mortality dynamics. By utilizing mortality models we estimate the death 

rates and, in turn, the mortality trends in terms of time series, which reveal the behavior 

of mortality over time. In the family of age-period-cohort stochastic mortality models 

the dynamics of mortality are driven by the period and the cohort indices. The data 

used, in order to estimate the time series of the period and cohort indices, consist of the 

number of deaths, 𝐷𝑡,𝑥, and the corresponding central exposures to risk, 𝐸𝑡,𝑥, which are 

defined in rectangular arrangement (𝑡, 𝑥) over a unit range of individual calendar years 

𝑡(𝑡1, … , 𝑡𝑛), and individual ages, 𝑥, last birthday (𝑥1, … , 𝑥𝑛). Thus, we calculate the 

crude (unsmoothed) central death rate for any age 𝑥 and calendar year 𝑡, as               

𝑚𝑡,𝑥 = 𝐷𝑡,𝑥 𝐸𝑡,𝑥⁄ . 𝐸𝑡,𝑥 is usually approximated by an estimate of the population aged 𝑥 

last birthday in the middle of the calendar year 𝑡 or by an estimate of the average 

population aged 𝑥 last birthday of the beginning and the end of the calendar year 𝑡. We 

model the number of deaths as independent Poisson realizations; that is, 𝐷𝑡,𝑥 follow 

Poisson distribution with mean 𝐸𝑡,𝑥 ∙ 𝑚𝑡,𝑥 (Brillinger, 1986; Brouhns et al., 2002). 
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Hatzopoulos and Sagianou (2020) proposed a dynamic multiple-component model that 

includes 𝛿1 age-period and 𝛿2 age-cohort effects. The HS model can be represented by 

the following generic formula: 

                                         𝑙𝑜𝑔(𝑚
~

𝑡,𝑥) = 𝑎𝑥 + ∑ 𝛽𝑥
(𝑖)

𝜅𝑡
(𝑖)

+ ∑ 𝛽𝑥
𝑐(𝑗)

𝛾𝑐
(𝑗)𝛿2

𝑗=1
𝛿1
𝑖=1             (5) 

In equation 5 the tilt above 𝑚𝑡,𝑥 indicates expected value, the term 𝑎𝑥 reflects the main 

age profile of mortality by age, 𝛽𝑥
(𝑖)

 and 𝛽𝑥
𝑐(𝑗)

 represent the age effect for each period 

and cohort component, respectively. The terms 𝜅𝑡
(𝑖)

 reflect period-related effects and 

determine the mortality trend. The terms 𝛾𝑐
(𝑗)

 represent the cohort-related effects, where 

𝑐 = 𝑡 − 𝑥. The parameters 𝛿1 (>=1) and 𝛿2 (>=0) are indices for the number of period 

and cohort components included in the model structure, respectively. The number of 

period and cohort components vary depending on the experimental dataset, i.e., the 

intrinsic mortality peculiarities of the examined population in a given time frame. For 

the England and Wales dataset, for the period 1841-2006, 𝛿1 = 5 and 𝛿2 = 2 and for the 

period 1961-2006, 𝛿1 = 4 and 𝛿2 = 1. For full details of the Estimation Methodology, 

see Hatzopoulos and Sagianou (2020). 

Therefore, these κ values must be projected. These period, 𝜅𝑡
(𝑖)

, indices reveal the 

mortality trends of unique age clusters and can be used by a time series analysis 

technique in order to forecast future mortality trends. 

In this spirit, the approach adopted in this paper is the traditional two-stage process: 

firstly, we fit the stochastic mortality model in order to estimate κ values (see 

Hatzopoulos and Sagianou, 2020) and then we fit a projection model to the estimated κ 

values for forecasting. 

Therefore, considering the aforementioned and according to Hatzopoulos and Sagianou 

(2020) results, the dataset for the time series analysis consists of nine annual time series 

of period indices 𝜅𝑡
(𝑖)

 for England and Wales dataset, of which five are “long” time 

series, while four are “short” time series. The long time series data cover the period 

from 1841 to 2016 and consist of one hundred and seventy-six (176) observations. The 

short time series cover the period from 1961 to 2016 (55 observations). The graphical 

representations of the nine time series are shown in Figures 4-12 (row data with the 

arithmetic values available on request by the author).  
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Figure 4 

 

Figure 5 

 

Figure 6 
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Figure 7 

 

Figure 8 

 

Figure 9 
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Figure 10 

 

Figure 11 

 

Figure 12 
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To assess the effect of statistical pre-adjustments on forecasts two statistical software 

approaches will be employed, namely the “AUTOARIMA” command and its 

extensions of the well-known programming software “R” and the module TRAMO of 

the TSW statistical package. 

The “AUTOARIMA” command of “R” allows for the automatic selection of an 

ARIMA model. Moreover, forecasts based on the selected model may be obtained. On 

the other hand, TRAMO pre-tests for time series transformation to tackle with variance 

non-stationarity. Moreover, it offers several options for the treatment of outliers within 

the frames of the more general pre-adjustment procedure known as “linearization” (see 

section 1.5). Nevertheless, TSW only allows for logarithmic transformation, limiting 

the options for transformation. Therefore, to have a wider range of transformations, 

such as the square root transformation, the statistical approach and recommendations 

suggested by Milionis will also be utilized (Milionis, 2003; 2004; Milionis and 

Galanopoulos, 2019). An observation is classified as an outlier based on the critical 

value of a suitable statistic τ, which is described in Gómez and Maravall (1996); 

Caporello and Maravall (2004). Since the critical value of τ cannot  be predicted by 

theory, it is commonly related to the length of the time series (Fischer and Planas, 2000). 

In this study, the default options of TSW for identifying outliers will be utilized.  

 

4.4 Results and discussion 

4.4.1 Data transformation 

Initially, it is crucial to acknowledge that the impact of a transformation is twofold: 

direct and indirect. The direct effect is evident and pertains to the transformation itself. 

The indirect effect concerns the influence of the transformation on detecting outliers. 

Studies have demonstrated that data transformation has an impact on both the number 

and the character of outliers in a time series (Milionis, 2003; 2004; Milionis and 

Galanopoulos, 2019). 

Table 1 displays the results of deciding whether to transform the original time series 

data using TSW. From the analysis of the nine-time series examined, it was found that 

in seven cases, no transformation of the initial data required, while in only two cases, 

log transformation was deemed necessary. These results were identical when the 

alternative approach of Milionis was applied (2004). 



111 
 

Table 1. Decision about data transformation 

Time series TSW Milionis (2004) 

E&W L.KT1 Levels Levels 

E&W L.KT2 Levels Levels 

E&W L.KT3 Logs Logs 

E&W L.KT4 Logs Logs 

E&W L.KT5 Levels Levels 

E&W S.KT1 Levels Levels 

E&W S.KT2 Levels Levels 

E&W S.KT3 Levels Levels 

E&W S.KT4 Levels Levels 

 

To conduct a more detailed investigation about statistical forecasting, three different 

methods will be considered. These methods are the following: (a) The random walk 

with drift model, which is a commonly employed model in actuarial research due to its 

simplicity, as previously noted, and will be used as benchmark. (b) The 

“AUTOARIMA” command of the programming software “R” for automatic selection 

and forecasting, as in Hatzopoulos and Sagianou (2020). (c) ARIMA models following 

statistical pre-adjustments. The latter implies Variance Reduction and will be called 

“VR” forecasts henceforth.  

Table 2 presents the ARIMA models utilized in methodologies (b) and (c). In our case, 

seasonality is out of context, as annual data will be used. Hence, a non-seasonal ARIMA 

model will be sought for. Moreover,  𝑏1, . . . , 𝑏𝑛, as well as  𝐶𝑡
′𝜂 in equation of the general 

framework of linearization (see section 1.5) will all be set equal to zero. 

It should be noted that differences in the ARIMA models, for time series where no 

transformation was required, may be due to the presence of outliers adjusted by 

linearization and possible differences in the computational algorithms between the two 

software products employed. 
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Table 2. ARIMA models 

Time series “AUTOARIMA”  VR 

E&W L.KT1 
(0,1,0) 

WITH MEAN 

(0,1,1) 

WITH MEAN 

E&W L.KT2 
(0,1,3) 

WITH MEAN 

(3,1,0) 

WITHOUT MEAN 

E&W L.KT3 
(3,0,0) 

WITHOUT MEAN 

(0,1,0) 

WITHOUT MEAN 

E&W L.KT4 
(1,0,3) 

WITHOUT MEAN 

(0,1,1) 

WITHOUT MEAN 

E&W L.KT5 
(1,1,4) 

WITHOUT MEAN 

(1,2,1) 

WITHOUT MEAN 

E&W S.KT1 
(0,2,2) 

WITHOUT MEAN 

(1,1,0) 

WITH MEAN 

E&W S.KT2 
(0,1,0) 

WITHOUT MEAN 

(0,1,0) 

WITHOUT MEAN 

E&W S.KT3 
(0,1,0) 

WITHOUT MEAN 

(0,1,0) 

WITHOUT MEAN 

E&W S.KT4 
(0,1,0) 

WITHOUT MEAN 

(1,0,0) 

WITH MEAN 

 

4.4.2 The effect of “Linearization” 

Outliers are significant fluctuations in values that are noticeable in time series. Upon 

visually analyzing the time series included in our dataset (E&W L.KT3 and E&W L.KT4 

in natural logarithms), it is apparent that in certain instances the amplified variance can 

be attributed to outliers. To detect outliers in all time series, TSW was utilized with 

default settings. 

Table 3 outlines the type of outlier and the order of observation in which they appear. 

The first number refers to the order of observation followed by the type of outlier. For 

instance, 80 LS in E&W L.KT2 time series (see second row of Table 3) shows that the 

order (80) of the observations (years) of detected outlier is the year 1921, as the initial 

observation is the year 1841, and the type of outlier (LS) is Level Shift. 
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Table 3. Detected outliers and their type 

Time series Temporal Position and Type of outliers 

E&W L.KT1 9 AO, 74 LS, 75 LS, 78 TC, 79 LS, 100 LS, 106 LS 

E&W L.KT2 80 LS, 100 AO 

E&W L.KT3 
74 LS, 79 LS, 80 LS, 89 AO, 100 LS, 102 LS, 106 LS, 111 LS, 

113 TC, 116 TC, 118 AO, 124 TC, 128 TC, 130 TC, 133 LS 

E&W L.KT4 9 TC, 18 AO, 74 LS, 79 LS, 88 AO, 95 AO, 100 LS, 106 LS 

E&W L.KT5 
9 AO, 18 AO, 23 TC, 50 TC, 74 TC, 77 TC, 78 AO, 104 AO, 157 

AO 

E&W S.KT1 NO OUTLIERS DETECTED 

E&W S.KT2 NO OUTLIERS DETECTED 

E&W S.KT3 37 AO 

E&W S.KT4 NO OUTLIERS DETECTED 

 

4.4.3 The combined effect of Data Transformation and Linearization 

To evaluate the combined effect of data transformation and linearization on the quality 

of point forecasts some typical statistics will be used. Primarily, the Mean Square 

Forecast Error (MSFE) which measures the average squared difference between the 

forecasting values (𝐹𝑡) and the actual values (𝐴𝑡), i.e. 𝑀𝑆𝐹𝐸 =
1

𝑛
∑ (𝐴𝑡 − 𝐹𝑡)

2𝑛
𝑡=1 . It is 

well known that optimal forecasts are those with the minimum MSFE (Hamilton, 1994). 

Auxiliary, the following statistics will also be used: 

i) the Mean Absolute Percentage Error (MAPE) statistic given by:  

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1 , and 

ii) the Mean Absolute Error (MAE) statistic given by:         

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑡 − 𝐹𝑡|

𝑛
𝑡=1 . 

Furthermore, when evaluating interval forecasts, the forecast standard error will be 

taken into consideration. 

In addition, the Akaike Information Criterion (AIC) will be utilized as a probabilistic 

statistical measure to assess the model’s performance on the training dataset in 

conjunction with the complexity of the model. 
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Best forecast will obviously be perceived the one with the minimum value of the each 

time utilized statistic from the ones mentioned above.  

Table 4 displays the count of forecasts that performed better based on the minimization 

of each statistic mentioned above, when comparing the VR model to the RWD model. 

According to the results presented in Table 4, it is evident that the VR methodology 

outperforms the RWD model in every single case in terms of the width of the forecast 

standard error. Additionally, based on the minimum value of the Akaike information 

criterion, the VR methodology is superior. The point forecasts generated with the VR 

methodology are slightly better in terms of the three statistics (MSFE, MAPE, MAE).  

The results of the examination of the forecasting performance between VR 

methodology and “AUTOARIMA” are presented in Table 5.  

Table 5 is read in the same manner as Table 4, explaining further that when the 

calculated values of a statistic are found to be equal, then the arithmetic value 0.5 is 

assigned in both methodologies. For instance, the AIC values 2.5/9 and 6.5/9 of the 

fourth row of the Table 5 indicate that in two out of the nine time series the 

corresponding statistic value is minimum with the “AUTOARIMA” methodology, in 

six out of the nine time series the corresponding statistic value is minimum with TSW 

methodology, and in one time series the estimated statistic value is equal in both 

methodologies. 

Table 4. Summary table - Number of best forecasts (VR versus RWD) 

(Table is read as follows: for each statistic, in the second and third column the cases 

with the minimum value of the statistic (i.e. the best forecasts) out of the total number 

of cases (i.e. the nine time series of the dataset) are presented). 

Point Forecasts RWD VR 

MSFE 3/9 6/9 

MAPE 4/9 5/9 

MAE 3/9 6/9 

AIC 1/9 8/9 

Interval Forecasts RWD VR 

Forecast Standard 

Error (SE) 

0/9 9/9 

 

From the results of Table 5 it is seen that the VR methodology outperforms 

“AUTOARIMA” in terms of the interval forecasts and is better in terms of the Akaike 
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information criterion. Additionally, it is concluded that point forecasts generated by the 

VR methodology are slightly better in terms of MSFE and MAE compared to those of 

“AUTOARIMA”, and are equal in terms of MAPE. 

Table 5. Summary table - Number of best forecasts (VR versus “AUTOARIMA”) 

Point Forecasts  “AUTOARIMA” with 

further analysis in TSW 

VR 

MSFE 3/9 6/9 

MAPE 4/9 5/9 

MAE 3/9 6/9 

AIC 2.5/9 6.5/9 

Interval Forecasts “AUTOARIMA” with 

analysis further in TSW 

VR 

Forecast Standard Error 

(SE) 

1.5/9 7.5/9 

 

4.4.4 An Ad-Hoc Evaluation of the overall Models’ Forecasting Performance 

The skill of a forecast can be assessed by comparing the relative proximity of both the 

forecast and a benchmark to the observations. The use of a benchmark allows for easier 

comparison between different forecasting methods and for this reason a benchmark is 

proposed to establish a common ground for comparison. In this study an obvious 

benchmark is the Random Walk Model with Drift (RWD) as already mentioned.  

A crude, yet very simple and transparent ad-hoc forecasting evaluation for both point 

and interval forecasts will be used. More specifically, for the point forecasts for each 

time series and for each model an arithmetic value is assigned in ascending order based 

on the corresponding value of the MSFE statistic (i.e., 1 for the best (minimum) MSFE 

value, 2 for the second best MSFE value, 3 for the worst (maximum) MSFE value). 

Then, adding up the arithmetic values for all series for a particular model their sum will 

represent the performance of the model. Models will be ranked according to the value 

of the corresponding sum. Apparently, the model with the lowest sum will be considered 

as the best one. For interval forecasts the same procedure will be followed replacing 

the value of the MSFE statistic with the value of the corresponding standard error 

around point forecasts. The results are presented in Tables 6 and 7.  
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Table 6. Ranking of forecasting performance according to MSFE (points forecasts) 

Time series RWD “AUTOARIMA” VR 

E&W L.KT1 1.5 1.5 3 

E&W L.KT2 1 3 2 

E&W L.KT3 2 3 1 

E&W L.KT4 2 3 1 

E&W L.KT5 2 3 1 

E&W S.KT1 3 1 2 

E&W S.KT2 1 2.5 2.5 

E&W S.KT3 3 1.5 1.5 

E&W S.KT4 2 3 1 

Total 17.5 21.5 15 

 

From the results of Tables 6 it is evident that the performance of VR methodology for 

point forecast is better than that of RWD model and “AUTOARIMA”. It should be 

noted that the RWD model performs better than the “AUTOARIMA”. 

Regarding interval forecasts, the findings presented in Table 7 indicate that the VR 

methodology has a clearly superior performance compared to both the RWD model and 

“AUTOARIMA”. In this case “AUTOARIMA” clearly outperforms RWD model. 

Table 7. Ranking of forecasting performance according to SE (intervals forecasts) 

Time series RWD “AUTOARIMA”  VR 

E&W L.KT1 2.5 2.5 1 

E&W L.KT2 3 2 1 

E&W L.KT3 3 2 1 

E&W L.KT4 3 2 1 

E&W L.KT5 3 2 1 

E&W S.KT1 3 1 2 

E&W S.KT2 3 1.5 1.5 

E&W S.KT3 3 2 1 

E&W S.KT4 3 2 1 

Total 26.5 17 10.5 
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4.4.5 Analysis of the E&W L.KT5 time series 

E&W L.KT5 is a time series which deserves special attention. The series was not found 

to be variance non-stationary in the sense that its variance was not found to be 

functionally related to a non-stationary level, either using the purpose-built TSW 

subroutine, or the methodology suggested by Milionis (2003; 2004). Yet, visual 

inspection of the series (see Figure 8) reveals a clearly non constant behavior in terms 

of its variance. To deal with such cases, existing bibliography suggests a (logarithmic) 

data transformation (Gujarati, 2003, chapter 7). However, we have some reservations 

in using this recommendation as a general rule.  

To examine it further, we perform a forecasting experiment exclusively for the E&W 

L.KT5 time series. More specifically, three forecasting approaches were used: i) outlier 

adjustment without data transformation, ii) “AUTOARIMA”, iii) a combination of 

outlier adjustment and one of the three most commonly used transformations, namely 

the logarithmic, the squared root and the negative inverse. 

For the implementation of this comparison, the forecast values from the ARIMA model 

that derived from “AUTOARIMA” were derived with the programming language R, 

and the forecast values from both the proposed methods of outlier adjustment without 

data transformation and the outlier adjustment with data transformation, were derived 

exclusively with TSW.  

The ARIMA models from all these different procedures, their ARMA parameters 

estimates, and their corresponding standard errors are presented in Table 8, while the 

relevant forecast evaluation statistics are presented in Table 9. The results of Table 9 

indicate that both point, and intervals forecasts are better with the proposed VR 

methodology of solely outlier adjustment, without any data transformation. Hence, the 

above results counterevidence the existing recommendation in the literature regarding 

the treatment of variance instability. Indeed, a case-by-case treatment seems to be more 

reasonable that the blind application of the logarithmic transformation. 
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Table 8. ARIMA models and ARMA parameter estimates for E&W L.KT5 series 

 Parameter Estimates 

“AUTOARIMA” AR(1) MA(1) MA(2) MA(3) MA(4) Integration 

order 

Coefficients 0.8557 -1.1044 0.2115 -

0.1415 

0.2189 1 

s.e. 0.1202 0.1280 0.1310 0.1333 0.0762  

Outlier 

adjustment 

without data 

transformation 

      

Coefficients 0.41651 -0.88345     2 

s.e. 0.74705E-

01 

0.38500E-

01 

    

Outlier 

adjustment and 

Logarithmic 

transformation 

      

Coefficients 0.30645      1 

s.e. 0.74104E-

01 

     

Outlier 

adjustment and 

Squared root 

transformation 

      

Coefficients -0.24422      1 

s.e. 0.75493E-

01 

     

Outlier 

adjustment and 

Negative inverse 

transformation 

      

Coefficients 0.61122       
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s.e. 0.61615E-

01 

    1 

 

Table 9. Summary table – forecast evaluation statistics for E&W L.KT5 (best 

forecasts in bold) 

Point 

Forecasts 

“AUTOARIMA” 

with further 

analysis in R 

TSW – 

levels  

(VR) 

TSW -  

logs 

TSW- 

Negative 

inverse 

TSW- 

Squared 

root 

MSFE 0.1401 0.034 0.3102 0.2950 0.3161 

MAPE 23.33% 11.01% 34.99% 33.86% 35.43% 

MAE 0.3475 0.1612 0.5206 0.5051 0.5268 

Interval 

Forecasts 

“AUTOARIMA” 

with further 

analysis in R 

TSW – 

levels  

(VR) 

TSW -  

logs 

TSW- 

Negative 

inverse 

TSW- 

Squared 

root 

Forecast 

Standard 

Error (SE) 

0.2631 0.2273 0.5751 1.5162 0.3497 

 

4.4.6 Further illustrative and detailed analysis 

It is worthy to present a more detailed analysis for each series. This is done with the aid 

of Figures 13-21 and Tables 10-17. More specifically, Figures 13 and 14 refer to the 

E&W L.KT3 and E&W L.KT4 series respectively. The full potential of the VR 

methodology is realized in these two series where the series are log-transformed and 

there are multiple outliers, as seen in Table 3. Figures 13 and 14 demonstrate that the 

VR method substantially narrows the forecast confidence interval and leads to a 

noticeable improvement in point forecasts. The accuracy of these forecasts is supported 

by the forecast evaluation statistics in Tables 10 and 11. 
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Figure 13. Forecasts and Confidence intervals with both methods for the series E&W 

L.KT3 

 

Figure 14. Forecasts and Confidence intervals with both methods for the series E&W 

L.KT4 
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Table 10. Forecast Evaluation Statistics for the series E&W L.KT3 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.90 0.08 

MAPE 78.57% 22.90% 

MAE 0.89 0.24 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

1.15 0.89 

 

Table 11. Forecast Evaluation Statistics for the series E&W L.KT4 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.02 0.01 

MAPE 100.69% 253.11% 

MAE 0.12 0.10 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

0.55 0.29 

 

In passing, it is also worthy to pay some attention on the value of the MAPE statistic in 

Table 11. Observing Figure 14, as well as the values of MSFE and MAE statistic in 

Table 11 it is obvious that the point forecasts are better with the VR methodology. 

However, the value of MAPE statistic implies the opposite. This is due to the small 

value in the denominator of the MAPE formula with the VR methodology. Such cases 

justify our choice to use more than one statistical criteria for the evaluation of the 

forecasting performance. 

Figure 15 displays the point and interval forecasts for the E&W S.KT3 series. 

According to Table 2, both the VR methodology and the RWD model use a simple 

random walk model without drift. Consequently, both methods generate identical point 

forecasts, which are uninformative, as they are equal to the last observation. However, 

Table 3 reveals that an additive outlier is identified in the 37th observation using the 

VR methodology. Despite the use of the same model in both methods, the VR 

methodology still improved the forecast quality, especially due to the detection of an 
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outlier. This outlier detection resulted in a reduction of the forecast confidence interval. 

The evaluation of these forecasts can be found in Table 12. 

Figure 15. Forecasts and Confidence intervals with both methods for the series E&W 

S.KT3 

 

 

Table 12. Forecast Evaluation Statistics for the series E&W S.KT3 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.05 0.05 

MAPE 114.23% 114.23% 

MAE 0.21 0.21 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

0.17 0.15 

 

Figure 16 shows the point as well as the interval forecasts for the series E&W L.KT5. 

The forecast evaluation statistics are presented in the first three columns of Table 9. The 

aforementioned results indicate that both point, and intervals forecasts are better with 

the proposed VR methodology of solely outlier adjustment, without any data 

transformation. 
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Figure 16. Forecasts and Confidence intervals with both methods for the series E&W 

L.KT5 

 

 

Figure 17 shows the point, as well as the interval forecasts, for the series E&W S.KT4. 

It is noted that with VR methodology a statistically significant drift (see Table 2) was 

found. The results indicate that both point, and intervals forecasts are better with the 

proposed VR methodology. This finding, however, is exclusively due to the ARIMA 

model identification-forecasting algorithm, as neither any data transformation nor 

outlier adjustments were used. The relevant forecast evaluation statistics are presented 

in Table 13. 

Table 13. Forecast Evaluation Statistics for the series E&W S.KT4 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.037 0.009 

MAPE 177.22% 71.12% 

MAE 0.170 0.081 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

0.31 0.26 
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Figure 17. Forecasts and Confidence intervals with both methods for the series E&W 

S.KT4 

 

 

The forecasts and confidence intervals with both methods for the series E&W L.KT1, 

which is the most important in actuarial sciences among the time series we examined, 

are presented in Figure 18. From this figure it is obvious that intervals forecasts are 

better with the proposed VR methodology. This is to be attributed to the outlier 

adjustment (no data transformation was needed in the particular series). However, point 

forecasts are slightly better with the “AUTOARIMA” methodology (see Table 14). 

Table 14. Forecast Evaluation Statistics for the series E&W L.KT1 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.476  0.479 

MAPE 4.31% 4.38% 

MAE 0.618 0.623 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

1.86 0.76 

 

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

Long term forecasts of E&W S. KT4 series

VR VR Autoarima

Autoarima VR point forecasts Autoarima point forecasts

Real values



125 
 

Figure 18. Forecasts and Confidence intervals with both methods for the series E&W 

L.KT1 

 

Figures 19 (series E&W L. KT2) and 20 (series E&W S. KT2) show two cases in which 

both methods fail, as the real values are outside the confidence interval of the forecasts. 

The forecast evaluation statistics for these two time series are presented in Tables 15-

16. 

Table 15. Forecast Evaluation Statistics for the series E&W L.KT2 

Point Forecasts “AUTOARIMA” VR 

MSFE 1.01 0.95 

MAPE 21.13% 20.18% 

MAE 0.95 0.91 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

0.54 0.54 
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Figure 19. Forecasts and Confidence intervals with both methods for the series E&W 

L.KT2 

 

 

Figure 20. Forecasts and Confidence intervals with both methods for the series E&W 

S.KT2 
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Table 16. Forecast Evaluation Statistics for the series E&W S.KT2 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.57 0.57 

MAPE 257.22% 257.22% 

MAE 0.65 0.65 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

0.27 0.27 

 

The results for the detailed analysis for the series E&W S. KT1 are shown in Figure 21 

and Table 17. The results indicate that both point, and intervals forecasts are better with 

the “AUTOARIMA” methodology. It is stressed that for this series neither a 

transformation was necessary, nor any outliers were detected. Hence, any differences 

in the forecasting performance between the two methods should be attributed solely to 

differences in the algorithms for the ARIMA model identification and forecasting 

between the two software products, which in this case are in favour of the 

“AUTOARIMA” approach (in fact in contrast to what was found in the case of series 

E&W S.KT4, see Figure 17). 

Figure 21. Forecasts and Confidence intervals with both methods for the series E&W 

S.KT1 
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Table 17. Forecast Evaluation Statistics for the series E&W S.KT1 

Point Forecasts “AUTOARIMA” VR 

MSFE 0.05 0.28 

MAPE 4.50% 9.32% 

MAE 0.22 0.47 

Interval Forecasts “AUTOARIMA” VR 

Forecast Standard 

Error (SE) 

0.34 0.36 

 

From the above analysis it is evident that for those cases where a data transformation 

and/or outlier adjustments were applied, there is a clear forecasting superiority with the 

VR method. When no such pre-adjustments were necessary the results are not the same, 

but they may be either for or against the VR method because the two statistical products 

obviously use different algorithms for univariate identification and forecasting.  

It also interesting to note that averaging across all cases the calculated overall average 

improvement in interval forecasts is reflected in an approximately 35.4% and 20.4% 

reduction of the forecast standard error of the VR approach, as compared to the 

benchmark (RWD), and to the “AUTOARIMA” approach respectively.  

 

4.4.7 The shift towards normality 

The non-normal distribution of many time series is another serious issue that needs to 

be addressed. Nelson and Granger (1979) discovered in their study that data 

transformations had very little effect on addressing the issue of non-normal 

distributions in most of the macroeconomic time series they examined.  

Table 18 displays the outcomes for the Jarque-Bera statistic for normality, which 

follows a chi-square distribution with two degrees of freedom. A value in Table 18 

marked with an asterisk indicates that the null hypothesis of normality is rejected at a 

5% significance level, with the critical value being 5.99. Based on the values in Table 

18, it appears that there is a noticeable trend towards normality when moving from the 

benchmark and “AUTOARIMA” models towards the VR transformation-linearization 

approach. Milionis and Galanopoulos (2019) obtained similar results in their 

examination of macroeconomic time series in Greece. Upon closer examination of the 

results, all the short time series exhibit normality regardless of the approach used. 
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However, the VR model consistently outperforms the other approaches with better 

values in terms of the Jarque-Bera statistic. The main discrepancy, however, is 

noticeable in the long series, where acute non-normality is present in both RWD and 

“AUTOARIMA” models. This phenomenon is particularly evident is some cases (e.g., 

in the E&W L.KT1 series). This is a reasonable explanation as outliers that reflect real 

events, such as world wars, occurred before 1959. Therefore, the use of computational 

algorithms like maximum likelihood estimation is more justified when using 

transformed-linearized data. 

Table 18. Values of the Jarque –Bera statistic (statistically significant values are 

indicated with an asterisk) 

Time series RWD “AUTOARIMA” 

with further 

analysis in TSW 

VR 

E&W L.KT1 4736.* 4736.* 2.840 

E&W L.KT2 13.639* 12.23* 7.912 * 

E&W L.KT3 0.1057E+05* 4113.* 0.9121 

E&W L.KT4 8583.* 2563.* 27.79 * 

E&W L.KT5 115.5 * 140.7* 1.747 

E&W S.KT1 0.9577 0.9921E-01 0.7816 

E&W S.KT2 0.3713E-01 0.3267E-01 0.3267E-01 

E&W S.KT3 2.956 3.308 0.3408 

E&W S.KT4 2.368 2.584 2.135 

 

4.5 Conclusions – future prospects 

In this work we examined the effect of statistical pre-adjustments (data transformation 

and linearization) on the quality of time series forecasts of mortality rate data. It was 

found that there is a substantial improvement in interval forecasts which on average are 

shortened by approximately 35.4% when comparing VR and RWD and 20.4% when 

comparing VR and “AUTOARIMA”. Moreover, there was a less clear improvement in 

point forecasts. It was also found that for series with unstable, but not functionally 
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dependent on the level, variance the general recommendation of data transformation 

was not confirmed for the examined case (E&W L.KT5 series). A case-by-case study 

for these circumstances seems to be a more sensible approach. Furthermore, it was 

confirmed that the transformed linearized series satisfy the need for normality to a 

clearly larger extent as compared to the other alternatives.  

The above statistical findings have important implication for the actuarial science. More 

specifically, the improvement in interval forecasts can significantly affect the Solvency 

Capital Requirement, and subsequently the Solvency Ratio for a pension fund. Such an 

improvement might put some pension providers at a competitive advantage as they have 

less capital locked in their liabilities. 

As a further research, we intend to explore more comprehensively the effect of 

statistical pre-adjustments to the financial impact on Solvency Capital Requirement, 

under different model structures, actuarial assumptions, and forecast methods. As has 

been noted previously, the most useful tool for investigating uncertainty over longevity 

risk is a stochastic mortality projection model. Since, there is a wide choice of such 

models in the literature, the choice of model can lead to material changes in the best-

estimate reserves, while even within a model family there can be major differences 

(Richards and Currie, 2009). For those models we aim to study the uncertainty over 

future mortality rates, which is measured as the variance of the mortality forecast 

values. In particular, we will investigate their respective contributions to the capital 

requirements for longevity trend risk. Our investigation will be based on the 

Hatzopoulos and Sagianou (2020) family model structure, which uses time-series 

methods to project a mortality index. In this respect, we will quantify analytically the 

respective contributions to capital requirements using VaR calculations. Last but not 

least, it is apparent that the methodology presented in this work may be used in due 

course to adjust for the possible effect of the COVID-19 virus on the forecasting of 

longevity trends. 
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SUMMARY OF CHAPTER 4 

An important risk in the actuarial industry is the longevity risk, therefore the as accurate 

as possible prediction of mortality rates is very crucial. Such predictions are performed 

by modelling the mortality rates using mortality models and predicting the future 

mortality trends. Aiming at possible improvements of such forecasts, we examine the 

effect of data transformation-“linearization” on the quality of time series forecasts of 

mortality, using data resulted from mortality models for England-Wales. By time series 

“linearization” is meant the treatment of causes that disrupt the underlying stochastic 

process. Results indicate a clear improvement for interval forecasts of mortality as with 

the transformation of the original time series data and adjustment for outliers the 

process variance is reduced. However, the result for point forecasts is not as clear. The 

documented improvement in interval forecasts can significantly affect the Solvency 

Capital Requirement, rendering some pension providers at a competitive advantage. 

Furthermore, for series with unstable, but not functionally dependent on the level, 

variance the general recommendation of data transformation was not confirmed, and a 

case-by-case treatment seems to be a more sensible approach. It was also confirmed 

that the transformed-linearized series satisfy better the need for normality as compared 

to the original series. Moreover, the occurrence of outliers associated with the Covid-

19 pandemic would be beneficial to be examined in line with the approach presented in 

this chapter in future research. 
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Appendix 

A short description of the components of longevity risk 

In order to understand and confront the longevity risk, the different potential 

components of longevity risk can be iterated, and below is a sample list of these 

components. A risk that is diversifiable may be decreased by expanding the portfolio's 

size and taking use of the law of big numbers. 

In recent decades, the usage of economic models has grown significantly. This has been 

made possible by technological developments such as improved computing power, new 

software programs, and novel financial securities. Model Risk in finance refers to the 

risk associated with utilizing models while making choices. Each model is a condensed 

representation of reality, but it is never entirely accurate, and failure is always a 

possibility. It can be challenging to determine whether the forecasting model of choice 

is accurate. Therefore, it is necessary to set aside some capital in case the model of 

choice proves to be inaccurate. 

Basis Risk comes in a variety of forms. For instance, there is a chance that a change in 

interest rates will cause the value of a company's or investor's interest-bearing liabilities 

to alter out of proportion to the value of those assets. This will lead to a loss by raising 

liabilities and lowering assets. Additionally, in the workplace, models frequently need 

to be adjusted based on industry or population data rather than the specific portfolio in 

question. Therefore, it is necessary to set aside some capital in case the mortality trend 

inferred from a portfolio's data differs from the population used to establish the model. 

A negative trend could happen by accident but yet be completely consistent with the 

selected model, even if the model is correct and there is no basis risk. Some 

professionals could decide to combine their tolerance for trend risk with one for basis 

risk. 

The risk that occurs by the chance that actuarial calculations are made using estimations 

that are inaccurate representations of the risk's actual characteristics, is called Parameter 

Risk.  

The risk represented by the difference between actual outcomes and central actuarial 

estimations based on a random probability would be Process Risk. 

Capital must be maintained against the possibility of an uncharacteristically low 

mortality experience caused by seasonal or environmental fluctuation over the course 

of a year, such as an exceptionally mild winter and fewer deaths than usual from 
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influenza and other contagious diseases. It should be noted that this Volatility Risk 

could not be completely diversifiable because a single year of low mortality rates could 

also signal the beginning of a negative trend. 

Market Risk is the possibility of financial loss brought on by shifts in the value of 

tradable assets. There are a wide range of asset classes (investment rates, bonds, 

commodities, etc.) and a virtually limitless number of financial products, all of which 

expose investors to market risk. Diversification cannot completely eliminate market 

risk, often known as "systematic risk," although it can be hedged (ie offset currency 

risk). The possibility that a significant natural disaster will cause the market to fall is 

another illustration of market risk. Political upheaval and changes in interest rates are 

two more drivers of market risk. 

Mis-estimation Risk is the degree of ambiguity surrounding the portfolio's actual 

mortality rates, which can only be approximated with a degree of confidence 

corresponding to the size and depth of the data. 

The chance of a rapid and temporary increase in the frequency of fatalities is known as 

Catastrophe Risk. When death benefits are taken into account, it is evident that 

compensation for catastrophic risk is needed (whereas when life benefits are 

considered, the gain arises due to higher actual mortality). However, risk transfers can 

also be taken into consideration as well as the realization of diversity (diversifiable 

effect). 
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CHAPTER 5 

IMPLICATIONS FOR THE ECONOMETRIC TESTING OF THE 

HYPOTHESIS OF EFFICIENT MARKETS 

 

5.1 Introduction 

The concept of efficient markets was introduced to the academic community in 

Bachelier's (1900) doctoral thesis. One of his main contributions was the use of the 

random walk model to describe the prices of financial assets. Bachelier's concepts did 

not receive immediate recognition within the financial research community, and his 

contributions remained relatively obscure for a number of decades. Bachelier's ideas 

started to gain more acknowledgment in the 1950s and 1960s when researchers 

commenced developing mathematical models to value financial instruments. 

The most widely accepted definition of efficient markets has been provided by Fama 

(1970), stating that a market is efficient when “prices fully reflect all available 

information”. Depending on the available information, there are three forms of market 

efficiency (Roberts, 1959). More specifically, there is the weak-form efficiency, the 

semi-strong efficiency, and the strong-form efficiency (for more details, refer to section 

1.6.3c). In this chapter, we will focus on the weak-form market efficiency (WFME), 

where the available information consists of historical prices of financial assets. 

Although the theoretical foundations of market efficiency are laid out in Fama's article 

(1970), the statistical explanation he presents for market efficiency has faced criticism 

(LeRoy, 1976; 1989). For this reason, various definitions have been proposed over time 

(Rubinstein, 1975; Malkiel, 1992; Milionis, 2007) to address these concerns and refine 

the concept of market efficiency. 

Recognizing potential misinterpretations that could arise from the definition Fama 

proposed in his seminal article in 1970, Fama (1976; 1991) addresses one of the most 

significant issues, which is the concern of the joint hypothesis of market efficiency with 

a pricing model (see section 1.6.3c for more details). In 1991, he revised WFME 

introducing the concept of return predictability (Fama, 1991), acknowledging that in an 

efficient market, investors cannot achieve excessive returns or profits. 
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Furthermore, the phenomenon of many researchers frequently using and incorrectly 

linking the statistical methodology of return predictability testing with the hypothesis 

of market efficiency has been observed. For this reason, the conditions that must hold 

in statistical tests (specifically, autocorrelation tests) of return predictability, so that 

their results are accurately linked to market efficiency are detailed in section 1.6.3c. 

More specifically, the time series of financial assets prices (such as stocks, bonds and 

market indices) are usually non-stationary. However, in the majority of cases, empirical 

research only examines the first moment (i.e., price levels) and does not test the second 

moment. This is probably because statistical tests are conducted using asset returns and 

not asset prices. As assets returns are expressed as differences in the logarithms of the 

corresponding price relatives it is silently assumed that owing to the logarithmic 

transformation asset returns are unconditionally variance stationarity. If this is not the 

case, however, the conditions for testing the weak-form efficiency hypothesis with 

autocorrelation tests strictly do not hold, as argued in the introductory chapter.  

For this reason, in this chapter our primary aim is to test, whether or not, this implicit 

assumption holds. Additionally, it is also interesting to examine the extent to which the 

maturity level of a financial market is possibly related to variance non stationarity 

patterns different that the logarithmic transformation and how this affects market 

efficiency testing. 

The structure of this chapter is the following: The next section provides a literature 

review of the random walks and the associated tests of market efficiency in developed 

and emerging financial markets. In section 5.3 the financial markets and the data that 

will be used in the empirical research and analysis are described. Section 5.4 presents 

the results of the empirical research, and in section 5.5, the conclusions and proposals 

for further research are outlined. 

 

5.2 Literature review of the random walks and the associated tests of market 

efficiency in developed and emerging financial markets 

As the problem of joint hypothesis relies on adopting a model that captures past security 

prices, the most prevalent model in the existing literature is the random walk model. If 

we consider 𝑃𝑡−1 to be the price of the security at time 𝑡 − 1, 𝜇 to be the expected 

change in the security price or the trend, and 𝜀𝑡 to be a stochastic process referred to as 
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increments (see Campbell et al., 1997), then the random walk model is expressed in the 

following form: 

                                                   𝑃�̃� = 𝑃𝑡−1 + 𝜇 + 𝜀�̃� ,                                                  (6) 

where the use of tildes denotes random variables. 

Depending on the conditions that hold for the increments, Campbell et al. (1997) 

distinguish three cases of random walk models. More specifically, if the increments are 

independent and identically distributed with a mean of 0 and variance of 𝜎2, then any 

nonlinear function of the increments is uncorrelated. In this case, the random walk 

model 1 arises. As the natural logarithm of prices is widely used in empirical literature 

(Carol, 2009; Bodie et al., 2020; Hull, 2021; Benninga and Mofkadi, 2022), defining 

𝑝𝑡−1 = 𝑙𝑛𝑃𝑡−1 equation (6) is transformed as follows:  

𝑝�̃� = 𝑝𝑡−1 + 𝜇 + 𝜀�̃� 

Since continuously compounded returns are defined as �̃�𝑡 = �̃�𝑡 − 𝑝𝑡−1, it follows that 

returns are i.i.d. when the random walk model 1 holds. In other words, continuously 

compounded returns can be computed by taking the first differences of the natural 

logarithms of the prices (Zivot, 2023). The first differences of the natural logarithms of 

the prices is commonly known as the logarithmic return, and it serves as a standard 

measure in finance for quantifying the percentage change in the price of an asset over 

a specific period.  

The case of the random walk model 2 arises if the increments are independent but not 

necessarily identically distributed. This case better corresponds to reality, as the prices 

of securities do not remain identically distributed over extended periods of time. 

Additionally, if it is assumed that the increments are uncorrelated but not independent 

or identically distributed, then the case of the random walk model 3 emerges. This 

specific case of random walk is the one that is most frequently examined in empirical 

literature. 

It is worth noting that the random walk model 2 encompasses the random walk model 

1 as a special case. Furthermore, the random walk model 3 includes both the random 

walk models 1 and 2 as specific instances. In contrast, if 𝐶𝑜𝑣(𝜀�̃�, 𝜀�̃�−𝑗) = 0 ∀𝑗 ≠ 0 and 

if 𝐶𝑜𝑣(𝜀�̃�
2, 𝜀�̃�−𝑗

2 ) ≠ 0 for some 𝑗 ≠ 0, then only the conditions for the random walk 

model 3 are satisfied, as there exists dependence in the squared increments. 
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The most widely used tests for the assumption of random walk model 1 are the 

sequences and reversals tests, as well as the runs test. For a comprehensive analysis of 

the aforementioned tests, as well as the tests for the other 2 cases of random walks, refer 

to Campbell et al. (1997). The tests applied for the assumption of random walk model 

2 are the filter rules and the technical analysis. The most common tests for the 

assumption of random walk model 3 are the autocorrelation tests using the so-called 

portmanteau statistics, namely the Box-Pierce statistic (1970) and Ljung-Box statistic 

(1978) (for more details, refer to section 1.1.6). Also, section 1.6.3c discusses the 

conditions for autocorrelation tests to be properly applied. Furthermore, many 

researchers use variance ratio tests to evaluate the assumption of random walk model 

3. 

Developed markets, characterized by a higher degree of maturity compared to emerging 

markets, have been shown to exhibit efficiency more frequently than emerging markets, 

which predominantly demonstrate inefficiency. This could be attributed to the fact that 

emerging markets have lower capitalization value, thinner volume of daily trade, fewer 

listed companies, and generally less transparent operations and regulatory framework 

compared to developed markets. 

More specifically, developed markets exhibit mixed results regarding their efficiency, 

depending on the time period and the specific financial market under examination by 

each researcher. Until 1990, it was established for developed markets that the 

hypothesis of WFME was not rejected (Fama, 1970; Dryden, 1970; Brealey and 

Mayers, 1988; Fama, 1991). However, there were also studies that were not in favor of 

the random walk theory in developed markets (e.g. Conrad and Juttner, 1973). In 

contrast, in emerging markets, the results consistently obtained from the literature 

indicated that the random walk theory is not suitable to describe the behavior of stock 

prices and indices (Ayadi and Pyun, 1994; Hamid et al., 2010; Nisar and Hanif, 2012; 

Mehla and Goyal, 2012; Aggarwal, 2018; Malafeyev et al., 2019).  

Regarding studies that simultaneously examine emerging and developed markets, 

Milionis (1998) concluded that for the Athens Stock Exchange (ASE), which belongs 

to emerging markets (a detailed presentation of how markets are classified as emerging 

and developed is provided in the next section), the hypothesis of WFME is rejected. On 

the contrary, for the Standard and Poor's 500 (SPX) and FTSE 100 (UKX) stock indices, 

used for New York and London respectively, which belong to developed financial 
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markets, it was demonstrated that they exhibit random walks. This suggests that the 

hypothesis of WFME is not rejected. More specifically, for the ASE, Alexakis and 

Xanthakis (1995) demonstrated using daily data that the day of the week effect 

phenomenon exists. The day of the week effect is a financial market anomaly where 

certain days of the week may be associated with higher or lower returns, and it is not 

consistent with the hypothesis of WFME. 

Borges (2010) reached the same conclusion for the ASE. A similar conclusion, namely 

the rejection of the hypothesis of WFME, emerged for the stock indices of Portugal, 

France, and the United Kingdom. On the contrary, efficient markets were found to be 

the stock markets of Germany and Spain. From Table 1a, it is evident that the stock 

indices of Portugal, France, the United Kingdom, Germany, and Spain are classified as 

developed markets. Dias et al. (2020) found that among the 16 stock indices they 

examined (7 European, 6 Asian, and 3 American), some of which belong to developed 

markets and others to emerging markets, the hypothesis of WFME is rejected. 

Therefore, over time, it becomes evident that conflicting empirical results may arise 

regarding testing for WFME across different time periods for the same countries. Thus, 

as market efficiency is observed to evolve it is natural for researchers' interest to remain 

unabated in examining market efficiency within the same stock markets. This is done 

using different sets of data and applying diverse statistical tests, thus enriching the 

existing extensive literature. The concern, as expressed previously in this chapter, is, 

whether or not, the statistical methodology for efficiency testing has been properly used 

thus far in the published literature. Indeed, this is to be extensively examined in what 

follows in sections 5.4 and 5.5. 

 

5.3 Data 

The classification of financial markets is extensively utilized by investors for the 

purpose of evaluating and making investments in various markets. One of the most 

widespread market classification systems is the Morgan Stanley Capital International 

(MSCI) market classification framework. According to this framework (MSCI, 2023), 

a financial market is classified as developed, emerging, frontier, or standalone based on 

three criteria. 
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The first criterion is country’s economic development, specifically the sustainability of 

economic development. A market is classified as developed when the country's Gross 

National Income per capita is 25% higher than the high-income threshold for 3 

consecutive years. The high-income threshold is determined by the World Bank using 

the Atlas method (see https://datahelpdesk.worldbank.org/). The distinction lacks 

importance between emerging and frontier markets due to the extensive range of 

developmental stages present within each of these two categories.  

The second criterion is related to companies that need to meet certain minimum 

requirements regarding liquidity and size (company size, security size, security 

liquidity). The third criterion pertains to market accessibility by international 

institutional investors and consists of five sub-criteria, which are: i) opennsess to 

foreign ownership, ii) ease of capital inflows / outflows, iii) efficiency of operational 

framework, iv) availability of investment instruments, iv) stability of the institutional 

framework.  

Markets that were previously classified as developed, emerging, or frontier and are now 

categorized as standalone owing to either a significant downgrade in size and liquidity 

requirements or market accessibility. Additionally, a second reason for classifying a 

market as standalone is the fulfillment of all three criteria set by MSCI, which were not 

met by the specific market in previous years or the market was subject to a specific 

category of investors.  

Tables 1a and 1b present the classification of markets, based on how well a country met 

the three aforementioned criteria (MSCI, 2023). More specifically, Table 1a displays 

markets that fulfilled the criteria for developed countries, while Table 1b showcases 

markets that have been categorized as emerging, frontier, or standalone markets. The 

abbreviations EMEA and APAC, shown in the first row of Table 1, stand for Europe, 

Middle East, and Africa (EMEA) and Asia Pacific (APAC), respectively. 

 

 

 

 

 

 



140 
 

Table 1a. MSCI Market Classification – Developed Markets 

Americas EMEA APAC 

Canada Austria Australia 

USA Belgium Hong Kong 

 Denmark Japan 

 Finland New Zealand 

 France Singapore 

 Germany  

 Ireland  

 Israel  

 Italy  

 Netherlands  

 Norway  

 Portugal  

 Spain  

 Sweden  

 Switzerland  

 United Kingdom (UK)  

 

Table 1b. MSCI Market Classification – Emerging, Frontier and Standalone 

Markets 

Emerging Markets Frontier Markets 

Americas EMEA APAC Americas EMEA APAC 

Brazil Czech 

Republic 

China - Bahrain Bangladesh 

Chile Egypt India  Benin Pakistan 

Colombia Greece Indonesia  Burkina 

Faso 

Sri Lanka 

Mexico Hungary Korea  Croatia Vietnam 

Peru Kuwait Malaysia  Estonia  

 Poland Philippines  Iceland  

 Qatar Taiwan  Ivory 

Coast 
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 Saudi 

Arabia 

Thailand  Jordan  

 South 

Africa 

  Kazakhstan  

 Turkey   Kenya  

 UAE   Lithuania  

    Mauritius  

    Morocco  

    Nigeria  

    Oman  

    Romania  

    Senegal  

    Serbia  

    Slovenia  

    Tunisia  

Standalone Markets 

Americas EMEA APAC 

Argentina Bosnia and Herzegovina - 

Jamaica Botswana  

Panama Bulgaria  

Trinidad and Tobago Lebanon  

 Malta  

 Palestine  

 Ukraine  

 Zimbabwe  

 

Markets that belong to the MSCI standalone markets index, despite not being included 

in the categories of the MSCI emerging markets index and the MSCI frontier markets 

index, utilize the same methodological criteria concerning the size and liquidity of 

companies (criterion 2) as the markets that fall under either the MSCI emerging markets 

index or the MSCI frontier markets index. 
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Based on the interrelation among emerging, frontier, and standalone markets (criterion 

2 mentioned earlier, as well as criterion 3 regarding the availability of investment 

instruments and the stability of the institutional framework — for more details, see 

MSCI (2023)), along with the distinct separation suggested by criterion 1 between 

developed markets and the other market categories, for the purpose of this study 

onwards, emerging markets, frontier markets, and standalone markets will be 

collectively referred to as emerging markets. 

Our dataset will include twenty-five financial market indices, of which fifteen stock 

indices belong to advanced markets, while ten belong to emerging markets (see Table 

2). The dataset of 25 market indices covers the period from 1987 to 2016 except for 

PCOMP, JCI, SMI (1988-2016) and MERVAL (1989-2016) using daily closing prices 

(source: Bloomberg database). The year 1987 was selected as the starting point for this 

study because it marked the beginning of trading for the Athens Stock Exchange. The 

entire time period will be divided into six five-year intervals (1987-1991, 1992-1996, 

1997-2001, 2002-2006, 2007-2011, 2012-2016) in order to examine how the 

conclusions regarding the weak-form efficiency of the market change in both developed 

and emerging markets under different conditions prevailing in the global economic 

context. For the stock indices PCOMP, JCI, and SMI, the initial time period spans from 

1988 to 1991, while for the Stock Index MERVAL, the initial time period is from 1989 

to 1991. This is because these four indices started trading either in 1988 or 1989. The 

other five five-year intervals remain the same for all 25 stock indices. 
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Table 2. Data 

Market Indexes Region Country 

MSCI World Indexes 

AEX  Europe Netherlands 

ATX  Europe Austria 

CAC  Europe France 

CCMP - NASDAQ  Americas USA 

DAX Europe Germany 

INDU – Dow Jones 

Industrial Average 

Americas USA 

UKX – FTSE 100 Europe United Kingdom (London) 

HEX Europe Finland 

HSI Pacific China (Hong Kong) 

IBEX Europe Spain 

NKY – Nikkei Pacific Japan 

OMX – Stockholm 30 Europe Sweden 

SPX – S&P 500 Americas USA 

SMI Europe Switzerland 

SXXP – STOXX Europe 

600 

Europe - 

MSCI Emerging Markets 

ASE Europe Greece 

FBMKLCI  Asia Malaysia 

JCI Asia Indonesia 

KOSPI  Asia Korea 

PCOMP  Asia Philippines 

SET  Asia Thailand 

TWSE Asia Taiwan 

MSCI Standalone Markets 

JMSMX Americas Jamaica 

MERVAL  Americas Argentina 

MSCI Frontier Markets 
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CSEALL  Asia Sri Lanka 

 

5.4 Empirical results and comments 

5.4.1 Data transformation 

It is important to consider that during the typical process of examining a time series of 

Stock Index prices, the initial step involves testing whether there's a potential 

requirement to transform the original data for the purpose of stabilizing variance. This 

precedes any other tasks like identifying outliers. It is noted that owing to the fact that 

efficiency tests are usually applied in returns rather than prices it is the logarithmic 

transformation that is used. While this transformation is the proper one in terms of 

finance, there is no guarantee that this is also the case statistics-wise. 

To determine if the time series exhibit stationarity with respect to variance, two 

specialized algorithms will be employed to assess whether the transformation of the 

initial data is necessary. One algorithm is embedded within the JDemetra+ software 

(see section 1.3.1 for more details), while the other algorithm is the one developed in 

Chapter 2 (refer also to Milionis and Galanopoulos 2018a). The algorithm from Chapter 

2 will be denoted as the M-G algorithm from here onwards. 

In more detail, JDemetra+ utilizes the test for variance stationarity embedded in 

TRAMO, which is based on estimating the parameter 𝜆 within the framework of the 

Box-Cox transformation (see section 1.6.1). This estimation is conducted through the 

maximum likelihood method. If 𝜆 = 1, the logarithmic transformation is 

recommended, while if 𝜆 = 0, no transformation is suggested.  

Therefore, since JDemetra+ only allows the logarithmic transformation, the statistical 

methodology developed in section 2.2 will be employed. This approach permits the 

square root transformation and the transformation with negative inverse, as outlined in 

section 3.3.3. Additionally, the M-G algorithm is used, as TRAMO has been shown to 

exhibit bias towards the logarithmic transformation (Milionis and Galanopoulos, 

2018a; 2018b; Grudkowska, 2016). 

The comparison of decisions resulting from the new proposed methodology and the 

corresponding decisions from the JDemetra+ routine will be compared. Table 6 displays 
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the outcomes regarding the choice of whether to apply the logarithmic transformation 

to the original time series data or not. 

Table 3. Decision about data transformation 

Data transformation 

Market indexes M-G JDemetra+ 

MSCI World Indexes Log  No - Log Log  No - Log 

AEX 1 5 2 4 

ATX 0 6 3 3 

CAC 0 6 3 3 

CCMP 1 5 3 3 

DAX 1 5 4 2 

DOWJONES 0 6 3 3 

FTSE 100 1 5 2 4 

HEX 1 5 5 1 

HSI 0 6 3 3 

IBEX 0 6 2 4 

Nikkei 0 6 3 3 

OMX 2 4 3 3 

S&P 500 1 5 3 3 

SMI 0 6 3 3 

SXXP 0 6 2 4 

Total 1 8 / 90 82 / 90 44 / 90 46 / 90 

MSCI Emerging 

Markets 

M-G JDemetra+ 

ASE 3 3 6 0 

FBMKLCI 1 5 3 3 

JCI 0 6 5 1 

KOSPI 0 6 3 3 

PCOMP 3 3 5 1 

SET 4 2 5 1 

TWSE 1 5 4 2 

Total 2 12 / 42 30 / 42 31 / 42 11 / 42 

MSCI Standalone 

Markets 

M-G JDemetra+ 

JMSMX 2 4 6 0 

MERVAL 2 4 4 2 

Total 3 4 / 12 8 / 12 10 / 12 2 /12 

MSCI Frontier 

Markets  

M-G JDemetra+ 

CSEALL 1 5 5 1 

Total 4 1 / 6 5 / 6 5 / 6 1 / 6 

Total 2 + Total 3 + 

Total 4 

17 / 60 43 / 60 46 / 60 14 / 60 

Total 25 / 150 125 / 150 90 / 150  60 / 150 
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From the results in Table 3, it is obvious that the application of the logarithmic 

transformation to the stock market prices, which is typically used in the existing 

financial literature as mentioned above, is erroneous in most of the cases, as far as the 

purpose of this research is concerned. This arises from the fact that with the M-G 

methodology, the logarithmic transformation is suggested in only 25 out of 150 cases 

(or 1/6 cases) that were examined. In all other cases, specifically in 125 out of 150 cases 

(or 5/6 cases), either some other transformation (such as the square root or negative 

inverse) should be applied or no transformation at all. Particularly in developed 

markets, the logarithmic transformation should only be applied in 8.9% of cases (8 out 

of 90), and in emerging markets, in 26.7% of cases (17 out of 60). 

Furthermore, the bias of existing statistical software towards the logarithmic 

transformation becomes evident once again. Indeed, out of the 90 cases where 

JDemetra+ recommends the logarithmic transformation, utilizing the M-G algorithm, 

it was found that in 27 out of these 90 cases, no transformation at all should be applied. 

It is further noted that in only 25 of the remaining 63 cases for which JDemetra+ 

recommends the logarithmic transformation the M-G algorithm recommends the 

logarithmic transformation as well. This difference results from the fact that with the 

M-G algorithm instead of the logarithmic transformation, the square root and the 

negative inverse transformations are recommended in 20 and 18 cases respectively. 

 

5.4.2 The effect of “Linearization” 

The existence of a benchmark facilitates the process of comparing different approaches. 

Consequently, proposing a benchmark serves the purpose of establishing a universal 

foundation for conducting comparisons. As explained earlier (see section 5.2), the first 

differences of the natural logarithms of prices is widely used in the field of finance and 

will serve as benchmark for this chapter in comparison to JDemetra+ software and the 

M-G methodology. Henceforth, the First Differences of the natural Logarithms will be 

denoted as FDL. 

It is essential to acknowledge that the effects of a transformation are two-fold: direct 

and indirect. The direct effect is easily noticeable and is tied to the transformation 

process itself. Meanwhile, the indirect impact centers on how the transformation shapes 

the identification of outliers. Research has shown that data transformation affects both 
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the quantity and nature of outliers within a time series (Milionis, 2003; 2004; Milionis 

and Galanopoulos, 2019). 

It is remarked that within the JDemetra+ framework, outliers are categorized into three 

distinct types based on their impact on a time series (refer to section 1.5). Table 4 

illustrates the number of detected outliers for each Stock Index across the six examined 

time periods. 

From these results, it is apparent that data transformation significantly influences the 

pattern of outliers. Particularly in developed markets, the impact of the continuous 

application of the logarithmic transformation (FDL method) is obvious compared to the 

M-G method, where 226 fewer outliers are detected. Moreover, applying the 

logarithmic transformation in nearly half of the cases (see Table 3 for the decision about 

log-transforming the original price data according to JDemetra+) results in a substantial 

difference compared to the FDL method (with continuous logarithmic transformation) 

and a smaller difference compared to the M-G method. In the remaining half of cases, 

JDemetra+ did not recommend any transformation, a conclusion aligned with the M-G 

methodology in most of the cases. Therefore, in appropriately transformed data, the 

observed pattern of detected outliers exhibits distinct variations, a deduction that 

corresponds to the findings of Milionis (2004) as well. 

Conversely, in emerging markets, there are not as pronounced differences among the 

three methodologies in terms of identifying outliers. The numerous imperfections that 

emerging markets exhibit make them susceptible to financial events and, consequently, 

subject to pronounced variability.  
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Table 4. Detected outliers 

Outliers detection 

Market indexes    

MSCI World 

Indexes 

M-G FDL JDemetra+ 

AEX 40 76 41 

ATX 44 54 46 

CAC 30 46 31 

CCMP 37 48 30 

DAX 29 47 41 

DOWJONES 34 50 41 

FTSE 100 33 39 34 

HEX 46 43 46 

HSI 35 43 34 

IBEX 34 55 37 

Nikkei 36 38 36 

OMX 27 48 33 

S&P 500 32 49 32 

SMI 37 55 34 

SXXP 36 65 45 

Total 1 530 756 561 

MSCI Emerging 

Markets 

M-G FDL JDemetra+ 

ASE 64 66 66 

FBMKLCI 60 69 63 

JCI 57 61 58 

KOSPI 20 15 13 

PCOMP 35 41 39 

SET 48 56 54 

TWSE 22 15 19 

Total 2 306 323 312 

MSCI Standalone 

Markets 

M-G FDL JDemetra+ 

JMSMX 98 80 80 

MERVAL 31 40 29 

Total 3 129 120 109 

MSCI Frontier 

Markets  

M-G FDL JDemetra+ 

CSEALL 110 105 98 

Total 4 110 105 98 

Total 2 + Total 3 + 

Total 4 

545 548 519 

Total 1075 1304 1080 
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5.4.3 Testing of the WFME 

Before employing time series for evaluating the WFME, these series generally need 

certain statistical pre-adjustments, as they are typically unsuitable in their raw form. 

For example, the original time series data could exhibit non-stationary variance. 

Consequently, the presence of variance non-stationarity can negatively affect the 

decision of whether a market is efficient or not, which in turn can have an adverse 

impact on investors' decisions regarding the investment strategy they will pursue. 

To conduct a more in-depth examination regarding the testing of the WFME, three 

distinct methods will be taken into account. These approaches include: (a) The First 

Differences of the natural Logarithm (FDL) of the daily prices, a widely used technique 

in finance as mentioned earlier, and will serve as benchmark, (b) The proposed M-G 

methodology, which allows the possibility of applying alternative transformations 

(square root, logarithmic, negative inverse) for stabilizing variance when it is non-

stationary. (c) The JDemetra+ software, which includes as an initial step a test 

concerning the non-stationarity with respect to variance in the original price data. In 

cases where the logarithmic transformation is suggested, because all time series in our 

sample are 𝐼(1)11, the conclusion regarding market efficiency will be the same as the 

conclusion of the FDL method. If the logarithmic transformation is not recommended 

(thus no transformation of the data within the JDemetra+ framework), then if the M-G 

methodology also does not propose any transformation, the conclusion regarding 

market efficiency will align with the decision of the M-G method. Finally, if JDemetra+ 

does not recommend any transformation and the M-G method suggests a transformation 

(hypothetically, for example, square root transformation), then we separately examine 

all three methods. 

The evaluation and comparison of results regarding market efficiency among the three 

alternative methods will be based on the possible existence of serial correlation of the 

transformed and stationary series derived from the original time series of Stock Index 

prices for all the considered Capital Markets. The LBQ test (see section 1.1.6) which 

considers autocorrelations for several lags jointly will be used. More specifically, if no 

statistically significant autocorrelations are detected at any time lag up to the 30th lag, 

 
11 Space limitations do not allow the presentation of all detailed results, which are available by the 

author. 
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then the hypothesis of WFME is not rejected. Conversely, if statistically significant 

autocorrelations are identified, then the hypothesis of WFME is rejected. The results 

concerning the decision about WFME are presented in Table 5. 

We remind that the assessment of the hypothesis of WFME is examined for each Stock 

Index in 6 different time periods and employing three different methods. Additionally, 

the symbol * appearing in the results of Table 5 indicates: i) either that there are no 

statistically significant autocorrelations in the first 10 (and possibly 20) lags, while there 

are statistically significant autocorrelations in lags with higher order. In this case, with 

reservations, the recorded result is that the hypothesis of WFME is not rejected*, ii) or 

that there are statistically significant autocorrelations in the first 10 (and possibly 20) 

lags, while there are no statistically significant autocorrelations in lags with higher 

order. In this case, with reservations, the recorded result is that the hypothesis of WFME 

is rejected*. 

By way of an example, in the sixth row of Table 5, which presents the results for the 

CAC index, using the M-G method in 4 out of the 6 time periods (second column of 

Table 5) under examination, the hypothesis of WFME is rejected, in contrast to 2 out 

of the 6 time periods (third column of Table 5) where it is not rejected. With the FDL 

method, the notation 6 (2*) (fourth column of Table 5) indicates that the hypothesis of 

WFME is rejected in all 6 examined time periods, of which 2 times with reservations. 

Conversely, the hypothesis of weak market efficiency is not rejected in any time period 

(fifth column of Table 5). Similar interpretations of results with the FDL method arise 

for the JDemetra+ method. 

From the results below, in developed markets we observe that with the M-G method, 

the hypothesis of WFME is not rejected in 51.1% of the examined cases, while with the 

established method FDL, the hypothesis is not rejected in 26.7% of the examined cases. 

Using the JDemetra+ software, where only the logarithmic transformation is allowed, 

the hypothesis of WFME is not rejected in 44.4% of the examined cases. In the existing 

literature, the examination of the hypothesis of WFME in developed markets yields 

mixed results, although in the initial years of studying developed markets, market 

efficiency had been established (Brealey and Mayers, 1988). This conclusion is 

primarily supported by the proposed M-G methodology and to some extent by the 

JDemetra+. In contrast, the benchmark indicates a bias towards rejecting the hypothesis 

of WFME. 
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Table 5. Decision about the WFME  

WFME 

Market 

indexes 

M-G FDL JDemetra+ 

MSCI 

World 

Indexes 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

AEX 3 (1*) 3 (1*) 6 (1*) 0 3 (1*) 3 (1*) 

ATX 4 2 5 1 (1*) 5 1 

CAC 4 2 6 (2*) 0 6 (2*) 0 

CCMP 2 4 (2*) 3 3 (2*) 2 4 (2*) 

DAX 3 (1*) 3 (1*) 3 3 (3*) 3 (1*) 3 (2*) 

DOWJONES 1 5 (2*) 3 3 (2*) 1 5 (3*) 

FTSE 100 5 1 6 0 5 1 

HEX 4 2 (1*) 4 (1*) 2 (1*) 4 (1*) 2 (1*) 

HSI 2 (1*) 4 (2*) 3 (1*) 3 (2*) 2 (1*) 4 (2*) 

IBEX 4 2 6 0 4 2 

Nikkei 1 5 (1*) 3 (1*) 3 (1*) 3 (1*) 3 

OMX 3 (1*) 3 (1*) 4 2 (2*) 3 3 (1*) 

S&P 500 1 5 (3*) 3 3 (2*) 2 4 (2*) 

SMI 4 2 (1*) 5 1 4 2 (1*) 

SXXP 3 3 (2*) 6 0 3 3 (2*) 

Total 1 

44 / 90 

(4*) 

46 / 90 

(17*)  

 66 / 90 

(6*) 

24 / 90 

(16*) 

50 / 90 

(7*) 

40 / 90 

(17*) 

MSCI 

Emerging 

Markets 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

ASE 4 2 (2*) 5 1 5 1 

FBMKLCI 5 1 (1*) 5 1 (1*) 5 1 (1*) 

JCI 6 0 6 0 6 0 

KOSPI 3 3 3 3 3 3 

PCOMP 6 0 6 0 6 0 

SET 4 2 4 2 4 2 

TWSE 2 (1*) 4 (2*) 3 3  2 4 (2*) 

Total 2 

30 / 42 

(1*) 

12 / 42 

(5*) 

32 / 42 10 / 42  

(1*) 

31 / 42 11 /42  

(3*) 

MSCI 

Standalone 

Markets 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

JMSMX 5 1 5 1 5 1 

MERVAL 3 3 (1*) 4 (1*) 2 (1*) 3 3 (2*) 

Total 3 

8 / 12 4 / 12  

(1*) 

9 / 12  

(1*) 

3 / 12  

(1*) 

8 / 12 4 / 12  

(2*) 

MSCI 

Frontier 

Markets  

Rejection Non-

Rejection 

Rejection Non-

Rejection 

Rejection Non-

Rejection 

CSEALL 6 0 6 0 6 0 

Total 4 6 / 6 0 / 6 6 / 6 0 / 6 6 / 6 0 / 6 
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Total 2 + 

Total 3 + 

Total 4 

44 / 60 

(1*) 

16 / 60 

(6*) 

47 / 60 

(1*) 

13 / 60  

(2*) 

45 / 60 15 / 60  

(5*) 

Total 

88 / 150 

(5*) 

62 / 150 

(23*) 

113 / 150  

(7*) 

37 / 150 

(18*) 

95 / 150 

(7*) 

55 / 150 

(22*) 

 

On the contrary, in emerging markets, the hypothesis of WFME is rejected in 73.3%, 

78.3% and 75 % of the examined cases using the M-G method, the benchmark, and 

JDemetra+ respectively. This finding confirms the existing literature and holds true 

across all three different methodologies, indicating that the hypothesis of WFME is 

predominantly rejected in emerging markets. 

 

5.4.4 Cases of different decision about WFME 

In the following table (Table 6), all the time periods that yield different conclusions 

regarding market efficiency are presented for each Stock Index, comparing the three 

methodologies. More specifically, the 2nd, 3rd, and 4th columns display the time 

periods with different conclusions between the M-G methodology and the benchmark, 

the M-G methodology and JDemetra+, and the benchmark and JDemetra+, 

respectively. A more detailed analysis is provided through Tables 7-11. 

 

Table 6. Time periods with different conclusions about WFME 

Market indexes Time periods with different decision 

MSCI World 

Indexes 

M-G - FDL M-G - JDemetra+ FDL - JDemetra+ 

AEX 

1987-1991, 1997-

2001, 2007-2011 

- 1987-1991, 1997-

2001, 2007-2011 

ATX 2002-2006 2002-2006  

CAC 

1992-1996, 1997-

2001 

1992-1996, 1997-

2001 

- 

CCMP 

1997-2001, 2007-

2011 

1997-2001  2007-2011 

DAX - - - 

DOWJONES 

1987-1991, 2002-

2006 

- 1987-1991, 2002-

2006 

FTSE 100 1992-1996 - 1992-1996 

HEX 

1997-2001, 2007-

2011 

1997-2001, 2007-

2011 

- 

HSI 2007-2011 - 2007-2011 
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IBEX 

2002-2006, 2007-

2011 

- 2002-2006, 2007-

2011 

Nikkei 

1997-2001, 2012-

2016 

1997-2001, 2012-

2016 

- 

OMX 2007-2011 - 2007-2011 

S&P 500 

1987-1991, 1992-

1996 

1992-1996 1987-1991 

SMI 2002-2006 - 2002-2006 

SXXP 

1992-1996, 2002-

2006, 2007-2001 

- 1992-1996, 2002-

2006, 2007-2011 

MSCI Emerging 

Markets 

M-G - FDL M-G - JDemetra+ FDL - JDemetra+ 

ASE 2007-2011 2007-2011 - 

FBMKLCI - - - 

JCI - - - 

KOSPI - - - 

PCOMP - - - 

SET - - - 

TWSE 1992-1996  1992-1996 - 

MSCI Standalone 

Markets 

M-G - FDL M-G - JDemetra+ FDL - JDemetra+ 

JMSMX - - - 

MERVAL 2007-2011 - 2007-2011 

MSCI Frontier 

Markets 

M-G - FDL M-G - JDemetra+ FDL - JDemetra+ 

CSEALL - - - 

 

Emphasis should be placed on cases where, with the logarithmic transformation, the 

transformed time series of prices are not stationary with respect to variance (see Table 

7), and therefore, the analysis using the LBQ test commonly employed by researchers 

in the existing literature is not valid. The full potential of the proposed M-G 

methodology becomes evident in the first four cases of Table 7 (rows 3 to 6 of Table 7), 

where i) with the logarithmic transformation recommended by JDemetra+, non-

stationarity with respect to variance persists, and ii) a different conclusion regarding 

market efficiency is reached. The aforementioned is depicted in detail in Tables 8-9. 
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Table 7. Cases where the time series are not variance stationary with the log-

transformation 

Market 

indexes 

Decision about data transformation 

MSCI 

World 

Indexes 

Time periods JDemetra+ M-G Estimated 

value of  �̂� 

according to 

M-G method 

ATX 2002-2006 Log Negative inverse 1.21 

CCMP 1997-2001 Log Negative inverse 1.57 

HEX 1997-2001 Log Negative inverse 1.50 

S&P 500 1992-1996 Log Negative inverse 1.76 

ATX 1987-1991 Log Negative inverse 2.03 

MSCI 

Emerging 

Markets 

Time periods JDemetra+ M-G Estimated 

value of  �̂� 

according to 

M-G method 

JCI 1988-1991 Log Negative inverse 1.27 

JCI 1992-1996 Log Negative inverse 1.31 

JMSMX 1987-1991 Log Negative inverse 1.57 

JMSMX 2012-2016 Log Negative inverse 1.46 

MERVAL 1987-1991 Log Negative inverse 1.49 

MERVAL 1992-1996 Log Negative inverse 2.14 

 

More specifically, in Table 8, one case is depicted where, with the M-G methodology, 

the market is efficient, while with the methodologies of JDemetra+ and the benchmark, 

the market is not efficient. Similar conclusions, albeit with reservations, are drawn for 

the Stock Index S&P 500 during the time period 1992-1996. 
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Table 8. Decision about data transformation and WFME for the series                               

ATX 2002-2006 

Data transformation 

JDemetra+ 

Time series in Levels 

Decision Logs 

M-G 

Time series in Levels 

�̂� 1.21 

Decision Negative inverse 

Time series in Negative inverse 

�̂� Not statistical significant 

Variance stationarity 

Time series in Levels Logs Negative inverse 

Decision No No Yes 

Time series in First differences of 

negative inverse (M-G) 

First differences of log 

(FDL and JDemetra+) 

Lag LBQ p-value LBQ p-value 

10 6,586 0,764 24,523 0,006 

20 23,091 0,284 38,170 0,008 

30 35,716 0,218 47,462 0,022 

WFME Not Rejected  Rejected 

 

On the contrary, in Table 9, with the M-G methodology, the hypothesis of WFME is 

rejected, while the benchmark and JDemetra+ suggest not rejecting the hypothesis of 

WFME. Similar findings, though with reservations, are reached regarding the CCMP 

Stock Index between the years 1997 and 2001.   
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Table 9. Decision about data transformation and WFME for the series                               

HEX 1997-2001 

Data transformation 

JDemetra+ 

Time series in Levels 

Decision Logs 

M-G 

Time series in Levels 

�̂� 1.50 

Decision Negative inverse 

Time series in Negative inverse 

�̂� Not statistical significant 

Variance stationarity 

Time series in Levels Logs Negative inverse 

Decision No No Yes 

Time series in First differences of 

negative inverse (M-G) 

First differences of log 

(FDL and JDemetra+) 

Lag LBQ p-value LBQ p-value 

10 19,357 0,036 7,970 0,632 

20 37,519 0,010 19,327 0,501 

30 48,249 0,019 38,315 0,142 

WFME Rejected Not Rejected 

 

In the other cases listed in Table 7, even though variance doesn't become stationary with 

the logarithmic transformation, the same conclusion regarding market efficiency arises. 

More specifically, with all three methodologies, the hypothesis of WFME is rejected, 

and the markets are not efficient. The result obtained for the specific stock indices                        

(JCI, JMSMX, MERVAL) confirms the existing literature, indicating that in emerging 

markets there are so many imperfections that regardless of the approach employed, the 

conclusion about market efficiency remains unchanged (i.e., markets are not efficient). 

However, the result for the ATX Stock Index (the time period 1987-1991), which now 

belongs to developed markets, should not surprise us. As noted by Milionis and 
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Papanagiotou (2008), the ATX Stock Index exhibited many similarities with the ASE 

Stock Index, which belongs to emerging markets, and in most cases, the hypothesis of 

WFME is rejected for the ASE index. 

Another point that requires particular attention when analyzing the results from Table 

7 is that in all cases where the time series are non-stationary in terms of variance, even 

when the logarithmic transformation is applied, the estimated value of �̂� using the 

proposed M-G methodology (see section 2.2) is greater than 1.21 (and can go up to 

2.14). This suggests the preference for the negative inverse transformation, which 

converts the time series to being stationary in terms of variance. This specific finding 

not only indicates that when the negative inverse transformation needs to be applied, 

the logarithmic transformation might not make the time series stationary in terms of 

variance, thus rendering the conclusions about WFME from the benchmark invalid, but 

also provides a future direction for research into the M-G methodology. More 

specifically, a future aim is to conduct Monte Carlo simulations in order to accurately 

determine critical values and intervals for the parameter �̂� within the framework of the 

M-G methodology. These simulations will indicate when each specific data 

transformation should be applied or when no transformation should be applied at all. 

Another case that highlights the superiority of the proposed M-G methodology 

compared to JDemetra+ and the benchmark is presented in Table 10. More specifically, 

despite the initial time series of prices for the TWSE index during the period 1992-1996 

being stationary with respect to variance, JDemetra+ incorrectly suggests applying the 

logarithmic transformation, once again indicating the bias of the statistical software 

towards using the logarithmic transformation. However, beyond this, the application of 

unnecessary and erroneous transformation affects the conclusion regarding market 

efficiency. In more detail, according to the M-G methodology, it is determined that the 

markets are not efficient, thus investors have the opportunity to profit from the market 

by implementing proper investment strategies (similar findings were noted in the cases 

of the market indices ATX during the time period 2002-2006 (as shown in Table 8) and 

S&P 500 during the time period 1992-1996). In contrast, using the benchmark and 

JDemetra+, investors would miss out on this opportunity to gain profits, as they indicate 

that the markets are efficient. 
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Table 10. Decision about data transformation and WFME for the series                             

TWSE 1992-1996 

Data transformation 

JDemetra+ 

Time series in Levels 

Decision Logs 

M-G 

Time series in Levels 

�̂� Not statistical significant 

Decision  None 

Variance stationarity 

Time series in Levels Logs 

Decision Yes Yes 

Time series in First differences of 

levels (M-G) 

First Differences of log 

(FDL and JDemetra+) 

Lag LBQ p-value LBQ p-value 

10 19,372 0,036 12,352 0,262 

20 32,896 0,035 29,010 0,088 

30 40,194 0,101 39,260 0,120 

WFME Rejected* 

 

Not Rejected 

 

However, in all the other cases presented in Table 6, the M-G methodology indicates 

that the markets are efficient, the benchmark suggests that the markets are not efficient, 

while JDemetra+ sometimes concludes that the markets are efficient, and other times 

that the markets are not efficient. All these cases, except for the instances of the market 

indices HEX during the time period 1997-2001 (presented in Table 9) and CCMP during 

the same time period, where the further analysis with the LBQ test should not have been 

pursued at all, as the conditions for stationarity in the second moment are not met, are 

provided in Table 11.  
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Table 11. Time periods with different decision about WFME when the time series are 

variance stationary 

Market indexes Time periods with different decision 

MSCI World 

Indexes 

Time period M-G FDL  JDemetra+ 

AEX 1987-1991 Not rejected Rejected Not rejected 

AEX 1997-2001 Not rejected Rejected Not rejected 

AEX 2007-2011 Not rejected Rejected Not rejected 

CAC 1992-1996 Not rejected Rejected Rejected 

CAC 1997-2001 Not rejected Rejected Rejected 

CCMP 2007-2011 Not rejected Rejected Not rejected 

DOWJONES 1987-1991 Not rejected Rejected Not rejected 

DOWJONES 2002-2006 Not rejected Rejected Not rejected 

FTSE100 1992-1996 Not rejected Rejected Not rejected 

HEX 2007-2011 Not rejected Rejected Rejected 

HSI 2007-2011 Not rejected Rejected Not rejected 

IBEX 2002-2006 Not rejected Rejected Not rejected 

IBEX 2007-2011 Not rejected Rejected Not rejected 

NIKKEI 1997-2001 Not rejected Rejected Rejected 

NIKKEI 2012-2016 Not rejected Rejected Rejected 

OMX 2007-2011 Not rejected Rejected Not rejected 

S&P 500 1987-1991 Not rejected Rejected Not rejected 

SMI 2002-2006 Not rejected Rejected Not rejected 

SXXP 1992-1996 Not rejected Rejected Not rejected 

SXXP 2002-2006 Not rejected Rejected Not rejected 

SXXP 2007-2011 Not rejected Rejected Not rejected 

MSCI Emerging 

Markets 

    

ASE 2007-2011 Not rejected Rejected Rejected 

MSCI Standalone 

Markets 

 - - - 

MERVAL 2007-2011 Not rejected Rejected Not rejected 

 

From the results above, the bias of the benchmark towards rejecting the hypothesis of 

WFME is apparent. As 21 out of the 23 cases presented in Table 11 pertain to developed 

markets, this contradicts the existing literature where mixed results in recent years, or 

non-rejection of the hypothesis of WFME in the initial years of studying developed 

markets (Brealey and Mayers, 1988), are often observed. Conversely, this finding 

further supports the outcomes of the M-G methodology. 
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5.5 Conclusions-future prospects 

Although the concept of market efficiency has been studied for several decades, 

researchers naturally use extensively asset returns (i.e., the first differences of the 

natural logarithms of prices) as a standard measure, without checking whether these 

time series are stationary with respect to variance. According to this research, it 

becomes evident that utilizing the logarithmic transformation for Stock Index prices is 

inadequate for stabilizing the variance in most of the cases that were examined. This 

has the consequence that the use of autocorrelation tests, which are among the most 

common practices for testing market efficiency, may not be valid. This conclusion was 

also reached in the present study, where it was indicated that the first differences of the 

natural logarithms of prices often did not satisfy the condition of variance stationarity. 

As a result, in some cases the hypothesis of WFME was: i) falsely rejected, and ii) 

falsely not rejected. These cases emerged in the study of developed markets. In these 

cases, the same conclusion was reached by JDemetra+, which recommended the 

logarithmic transformation. In contrast, with the M-G method, which allows for the 

application of various transformations, it was found that: i) the time series of first 

differences of prices became stationary with respect to variance, and ii) the proper and 

valid use of autocorrelation tests led to opposite conclusions regarding market 

efficiency compared to the first differences of the natural logarithms of prices and 

JDemetra+. 

Furthermore, in emerging markets, it was found that in all cases where the rejection of 

the hypothesis of WFME emerged as a conclusion by JDemetra+, the same conclusion 

reached by the M-G method in almost all these cases. This is due to the fact that 

emerging markets have so many “imperfections” that, regardless of the approach used, 

in the majority of the existing literature, the hypothesis of WFME is rejected. 

Moreover, the divergent conclusions that emerged, primarily in developed markets, 

using all three methods (first differences of the natural logarithms of prices, JDemetra+, 

M-G), are caused by the fact that the M-G methodology's findings documented that 

with the existing methodologies in terms of statistical testing of market efficiency there 

is a profound bias towards rejecting market efficiency. In that sense, the M-G 

methodology provides support to the persisting view of Eugene Fama that markets are 

efficient in the weak sense. 
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In general, analyzing the entire examined dataset, it was found that the first differences 

of the natural logarithms of prices exhibits bias in rejecting the weak-form efficiency 

in developed markets. This contradicts the existing literature, where depending on the 

time period and the Stock Index under examination, mixed results arise regarding the 

hypothesis of WFME (although in the initial years of studying developed markets, 

market efficiency had been established). This finding about mixed results was 

confirmed by the proposed M-G methodology and partially by JDemetra+. In emerging 

markets, using all three different methods that were examined, the long-standing 

conclusion in the existing literature was reaffirmed, i.e., that markets are generally not 

efficient. 

Furthermore, the bias of JDemetra+ regarding the application of the logarithmic 

transformation was confirmed once again, which consequently affects the detection and 

number of outliers. The difference in the number of detected outliers (which is of lesser 

importance as compared to the statistical testing of efficiency) is evident when the 

logarithmic transformation is continuously applied (using the FDL method), and the 

results are compared with the M-G method, which suggests the logarithmic 

transformation only a few times. 

A field of future research is the pursuit of determining critical values for the parameter 

�̂� within the framework of the M-G methodology, using Monte Carlo simulations. In 

this way, the value of �̂� will indicate which transformation (or none) should be applied 

to satisfy the stationarity criterion in the second moment. Additionally, a future 

direction is to employ GARCH-type models to capture the conditional 

heteroskedasticity, which is different from variance non-stationarity, frequently 

observed in the time series of financial assets prices. 
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SUMMARY OF CHAPTER 5 

In the context of market efficiency, decades of research have very often involved the 

first differences of natural logarithms of prices (i.e., asset returns), but without 

adequately verifying the stationarity of these time series in terms of variance. Based on 

this study, it arises that the application of the logarithmic transformation for stock 

market prices is in many cases inappropriate for stabilizing the variance of the 

corresponding price relatives. Consequently, utilizing autocorrelation tests, commonly 

employed to test market efficiency, may be invalid. Indeed, in this chapter it was 

documented that autocorrelation tests cannot be legitimately employed as a statistical 

tool for testing market efficiency in 83.3% of the examined cases. Moreover, it was 

determined that the usage of the first differences of natural logarithms of prices 

introduces bias in rejecting the weak-form efficiency in developed markets. This 

finding was corroborated by the proposed M-G methodology and partially by 

JDemetra+ software.  

It is also remarkable that following the statistical testing based on the M-G methodology 

the conclusion about the hypothesis of WFME is the opposite of that based on the 

established methodology in 27.7% of the cases for the developed Capital Markets. 

In the case of emerging markets, employing all three methods that were investigated 

reaffirmed the enduring conclusion in existing literature – namely, that markets are 

generally not efficient, even though for several cases again the established methodology 

could not be legitimately employed. For these markets the extent of inefficiency is such 

that it is consistently detected regardless of the method employed. Thus, there is 

evidence confirming that the maturity level of the financial market affects market 

efficiency. Furthermore, the recurring bias of JDemetra+ in applying the logarithmic 

transformation was confirmed once again, thereby impacting the identification and 

quantity of outliers. The discrepancy in the number of detected outliers becomes evident 

when the logarithmic transformation is consistently applied (using the FDL method), 

and the results are compared to the M-G method, which suggests the logarithmic 

transformation only on a few cases. 
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EXTENDED SUMMARY/PROSPECTS 

A stochastic time series is a type of time series where the future values can only be 

determined in terms of a probability distribution. If this probability distribution is 

constant over time, then the time series is said to be stationary. A less strict condition 

for stationarity requires that at least the level and variance of the time series be constant 

over time.  

Researchers employ various tests to check for non-stationarity in the level of a time 

series, but more often than not they neglect to investigate non-stationarity in its variance 

when conducting applied research. In fact, regarding time series variance, the primary 

research emphasis is on modeling autoregressive conditional heteroscedasticity, 

typically using a variety of ARCH-GARCH models. 

It is essential to differentiate between two key concepts: variance non-stationarity, often 

referred to as heteroscedasticity, and conditional heteroscedasticity. Heteroscedasticity 

implies a functional relation between the variance of a series which is non-stationary in 

its level and its mean level. This entails non-stationarity in the variance, and the 

variance is neither conditionally nor unconditionally constant. Consequently, the 

process is non-homogeneously non-stationary in the sense of Box and Jenkins and 

cannot be made stationary by simply differencing it. To address variance                                     

non-stationarity, one approach is to apply power transformations, such as the well-

known Box and Cox transformations. On the other hand, conditional heteroscedasticity, 

often described using ARCH or GARCH models, signifies that while the conditional 

variance varies over time, the unconditional variance remains constant. As a result, the 

series is stationary in the second moment. In the present Ph.D. thesis, the focus is on 

the series with non-constant variance both conditionally and unconditionally, covering 

to a certain extent a gap in that area, as the existing research work is relatively scanty. 

Indeed, even though it is crucial to deal with non-constant variance in time series 

modeling, there is a shortage of comprehensive theoretical research on its detection and 

correction. Moreover, in practical applications, the treatment of non-stationary variance 

is not only insufficient, as the choice of a specific transformation is often arbitrary, but 

also, as is documented in Chapter 2, occasionally biased towards over-rejection of the 

null hypothesis of unconditionally constant variance.  
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The aim of this Ph.D. thesis is to present a formal econometric approach that not only 

identifies non-stationary variance and suggests appropriate transformations for 

correction, but also is robust to the specific partitioning of a time series, which is a 

necessary step for conducting the test, and the possible presence of outliers. The 

importance of employing this approach in the fields of macroeconomics, actuarial 

science and finance is extensively examined and supported in Chapters 3, 4 and 5 

respectively. 

In Chapter 2, the Ph.D. thesis elaborates on the theoretical foundation of the proposed 

methodology, which focuses on statistical testing for the existence and the identification 

of the character of time-varying second moment in its dependence on a non-constant 

mean level in time series. This approach represents an enhancement over current 

methods as it combines detection, correction, and robustness.  

It is important that during the typical process of analyzing a time series, the initial step 

is to assess whether the original data requires transformation to make the variance 

stable. This assessment is carried out before any other actions, including building the 

univariate ARIMA model, performing seasonal adjustments, etc. Consequently, it is 

clear that the results of these subsequent actions are influenced by the choice made 

regarding data transformation. 

This is of value in its own right as it leads to the improvement of univariate time series 

modelling. Furthermore, empirical evidence is presented using real data (Greece’s 

balance of payments and prices of consumer goods and services), as well as simulated 

data, from which it comes out that an existing test, specifically the widely used 

algorithm of TSW software, occasionally yields biased results. TSW stands for 

TRAMO-SEATS for Windows, a Windows version of the DOS programmes TRAMO 

and SEATS of Gómez and Maravall. TRAMO stands for "Time series Regression with 

ARIMA noise Missing observations and Outliers" and SEATS stands for "Signal 

Extraction in ARIMA Time Series". TSW routines are also incorporated in other widely 

used econometric software. Notably, TSW offers only two alternatives for data 

transformation: log-transformation or no transformation.   

Indeed, by utilizing simulated data, it was feasible to identify one of the possible origins 

of this bias. More specifically, with simulated homogeneously non-stationary 

processes, it became evident that the bias of TSW depends on the initial conditions. 
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Moreover, drawing from the empirical evidence presented, it is argued that the type of 

data transformation and the entailed correction for variance–non stationarity is also 

crucial for the detection of outliers and the seasonal adjustment of the original time 

series. In addition, the empirical results provide evidence of an improved forecasting 

performance by the proper use of a data transformation, a result that is backed by 

additional empirical evidence in Chapters 3 and 4. 

It was also determined that the consequences of erroneously transforming a time series, 

which is originally variance stationary, do exist, but are comparatively less severe than 

the consequences of erroneously not transforming an originally variance non-stationary 

series. This is a conclusion that holds substantial practical importance.  

In Chapter 3, the proposed methodology is applied to macroeconomic time series. As a 

matter of fact, real-world economic time series are not immediately suitable for 

forecasting purposes, and they require some statistical preparation and pre-adjustment.  

This is because raw data time series can often exhibit non-stationary variance. 

Furthermore, very often there exist causes that disrupt the underlying stochastic 

process, such as the existence of outliers and calendar effects. Their treatment is 

referred to as «linearization». 

The impact of either data transformation or linearization on the accuracy of forecasts,  

including both point forecasts and confidence interval forecasts, has not been 

thoroughly explored until now. This study investigates their impact on univariate 

forecasting, analyzing each one individually and in combination, employing twenty of 

the most important time series related to the Greek economy. 

For data transformation, two algorithms were utilized, namely those of TSW and 

Milionis Galanopoulos (M-G henceforth). The M-G algorithm is the statistical 

methodology developed in Chapter 2, which allows data transformation not only 

through the logarithmic transformation but also through the square root and negative 

inverse.  

Empirical findings show a significant improvement in forecasts’ confidence intervals, 

but no substantial improvement in point forecasts. Furthermore, there is also evidence 

that the overall forecasting performance using the M-G data transformation procedure 

is somewhat better than the one using the data transformation procedure of TSW. 
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Moreover, the combined transformation-linearization procedure improves substantially 

the non-normality problem encountered in many macroeconomic time series. 

One area where the enhanced forecast confidence intervals documented in Chapter 3 

could be particularly advantageous is the field of actuarial science, particularly in 

dealing with longevity risk. This risk arises from the uncertainty surrounding the future 

trend of mortality rates of pensioners, as advancements in science and medicine make 

the prediction of mortality rates a difficult task. To address this issue, one approach is 

to employ mortality models to forecast the trend of mortality rates and its associated 

uncertainty in the future. This uncertainty is directly associated with forecast 

confidence intervals.  

In Chapter 4, aiming at possible improvements of such forecasts, it is examined how 

statistical pre-adjustments (data transformation and linearization) affect the accuracy of 

time series forecasts of mortality. This analysis was conducted using data derived from 

mortality models for England-Wales.  

To conduct a detailed investigation about statistical forecasting, three distinct methods 

were considered. These methods were the following: (a) The random walk with drift 

model, which is widely used in actuarial research due to its simplicity and served as the 

benchmark. (b) The “AUTOARIMA” command within the programming software “R” 

for automatic model selection and forecasting, as demonstrated in the published work 

of Hatzopoulos and Sagianou. (c) ARIMA models implemented after statistical pre-

adjustments, which implies Variance Reduction and will be referred to as “VR” 

forecasts.   

The empirical findings demonstrate a clear improvement in interval forecasts which on 

average are shortened by approximately 35.4% when comparing VR and RWD and 

20.4% when comparing VR and “AUTOARIMA”. However, the conclusion for point 

forecasts is not as clear. The documented improvement in interval forecasts can have a 

substantial impact on the Solvency Capital Requirement, rendering some pension 

providers at a competitive advantage. The Solvency Capital Requirement covers all the 

possible risks that an insurance company may encounter.  

Furthermore, for series with unstable but not functionally dependent on the level 

variance, the conventional recommendation in the literature for transformation of the 

original data, did not receive confirmation. A case-by-case treatment seems to be a more 
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sensible approach. It was also validated that the series subjected to both transformation 

and linearization satisfy better the need for normality as compared to the other 

alternatives.  

The above statistical findings have important implication for the actuarial science. More 

specifically, the improvement in interval forecasts can significantly affect the Solvency 

Capital Requirement, and subsequently the Solvency Ratio for a pension fund. Such an 

improvement might put some pension providers at a competitive advantage as they have 

less capital locked in their liabilities. 

As further research, the intention is to explore more comprehensively the effect of 

statistical pre-adjustments to the financial impact on Solvency Capital Requirement, 

under different model structures, actuarial assumptions, and forecast methods. As it is 

noted in Chapter 4, the most useful tool for investigating uncertainty over longevity risk 

is a stochastic mortality projection model. Since, there is a wide choice of such models 

in the literature, the choice of model can lead to material changes in the best-estimate 

reserves, while even within a model family there can be major differences. For those 

models it is aimed to study the uncertainty over future mortality rates, which is 

measured as the variance of the mortality forecast values. By this method, it will be 

quantified analytically the respective contributions to capital requirements using Value 

at Risk calculations. Last but not least, the overall methodology presented in Chapter 4 

may be used also in due course to adjust for the possible effect of the COVID-19 virus 

on the forecasting of longevity trends. 

In the last chapter (Chapter 5), the developed methodology contributes to the 

improvement of the framework of econometric assumptions and tests in finance, aiming 

to determine the rejection or non-rejection of the hypothesis of weak-form market 

efficiency. Weak-form market efficiency (WFME) deals with situations where the 

available information pertains solely to historical prices of financial assets. 

While the concept of market efficiency has been a subject of study for several decades, 

researchers naturally use extensively asset returns, which are essentially the first 

differences of the natural logarithms of prices, as a standard measure, without checking 

whether these time series are stationary with respect to variance. In a risk-unadjusted 

framework, it is crucial to emphasize that these tests are valid only when the series of 

logarithmic prices exhibits variance stationarity. If this condition is not satisfied, the 
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significance testing of autocorrelation coefficients in the widely used autocorrelation 

tests becomes invalid. It is noted that since efficiency tests are typically conducted using 

returns rather than prices it is the logarithmic transformation that is employed. While 

this transformation is the proper one in terms of finance, there is no guarantee that this 

is also the case statistics-wise. 

The classification of financial markets is widely employed by investors to assess and 

make investment decisions across various markets. The examined dataset consists of 

twenty-five financial market indices, comprising fifteen stock indices from developed 

markets and ten from emerging markets.  

To conduct a more thorough investigation into the testing of the WFME, three different 

approaches were considered. These methods include: (a) The First Differences of the 

natural Logarithm (FDL) of the daily prices, a commonly used technique in finance, 

and served as a benchmark, (b) The proposed M-G methodology, which allows for the 

application of alternative transformations to stabilize variance when it is non-stationary 

(c) The JDemetra+ software, which includes as an initial step, a test for non-stationarity 

with respect to variance in the original price data. In more detail, JDemetra+ utilizes 

the test for variance stationarity embedded in TRAMO. However, as JDemetra+ only 

permits the logarithmic transformation, the M-G statistical methodology developed in 

Chapter 2 was employed. Additionally, the M-G algorithm is chosen because TRAMO 

has been shown to exhibit bias towards the logarithmic transformation. 

According to this study, it is clear that using the logarithmic transformation for Stock 

Index prices is inadequate for stabilizing the variance in most of the cases that were 

examined. Consequently, utilizing autocorrelation tests, commonly employed to test 

market efficiency, may be invalid. Indeed, in this chapter it was documented that 

autocorrelation tests cannot be legitimately employed as a statistical tool for testing 

market efficiency in 83.3% of the examined cases. 

Furthermore, it was established that employing the first differences of natural 

logarithms of prices can introduce a bias in rejecting weak-form efficiency in developed 

markets. This result was supported by the proposed M-G methodology and, to some 

extent, by the JDemetra+ software. It is noteworthy that, after conducting the statistical 

testing using the M-G methodology, the conclusion regarding the WFME hypothesis 
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contradicts that obtained through the established methodology in 27.7% of the cases for 

developed Capital Markets. 

In the case of emerging markets, the use of all three methods that were examined 

reconfirmed the long-standing consensus in existing literature – that is, markets in these 

regions are typically not efficient. However, it is worth noting that for several cases, the 

established methodology could not be validly applied. In these markets, the degree of 

inefficiency is pronounced and consistently detected irrespective of the method used. 

This confirms the existing research that supports that the maturity level of a financial 

market affects its efficiency. 

Additionally, the previously noted bias of JDemetra+ in its use of the logarithmic 

transformation was once again verified. Consequently, this bias affects the detection 

and number of outliers. The difference in the number of detected outliers (which is of 

lesser importance as compared to the statistical testing of efficiency) becomes apparent 

when the logarithmic transformation is continuously applied (using the FDL method), 

and the results are compared with the M-G method, which suggests the application of 

the logarithmic transformation only a few times. 

Regarding future prospects of this research, beyond what has already been mentioned, 

such a field is the pursuit of determining critical values for the parameter �̂� within the 

framework of the M-G methodology, using Monte Carlo simulations. In this way, the 

value of �̂� will (more formally) indicate which transformation (or none) should be 

applied to satisfy the stationarity criterion in the second moment. Additionally, a future 

direction is to study variance non-stationarity in time series in conjunction with 

GARCH-type models which capture the autoregressive conditional heteroskedasticity. 

It is worrisome that researchers often proceed to GARCH models without assurances 

about stationarity in the second moment.  

Finally, it is remarked that the conclusions related to variance non-stationarity of stock 

index prices and, in sequence, to autocorrelation tests in stock index returns, are 

unavoidably linked not only to the particular type of assets (stock indices), but also to 

the particular sampling time interval that was used (five years). Hence, it should not 

necessarily be taken for granted that these conclusions are identically valid for other 

types of assets and, more importantly, for the particular asset, but over longer time 

intervals. There is little doubt that this is yet another field for further future research. 
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ 

Μία στοχαστική χρονοσειρά είναι ένας τύπος χρονοσειράς όπου οι μελλοντικές τιμές 

μπορούν να καθοριστούν μόνο σε όρους μιας κατανομής πιθανότητας. Aν αυτή η 

κατανομή πιθανότητας είναι σταθερή με την πάροδο του χρόνου, τότε η χρονοσειρά 

λέγεται στάσιμη. Μια λιγότερο αυστηρή συνθήκη για τη στασιμότητα απαιτεί 

τουλάχιστον το επίπεδο και η διακύμανση της χρονοσειράς να είναι σταθερά με την 

πάροδο του χρόνου. 

Οι ερευνητές χρησιμοποιούν διάφορους ελέγχους για να εξετάσουν τη μη-στασιμότητα 

στο επίπεδο μιας χρονοσειράς, αλλά συχνά παραμελούν να εξετάσουν τη μη-

στασιμότητα στη διακύμανσή της, κατά την διεξαγωγή εφαρμοσμένης έρευνας. 

Πράγματι, όσον αφορά τη διακύμανση της χρονοσειράς, η πρωταρχική ερευνητική 

έμφαση δίνεται στη μοντελοποίηση της αυτοπαλίνδρομης δεσμευμένης (υπό συνθήκη) 

ετεροσκεδαστικότητας, συνήθως χρησιμοποιώντας διάφορα ARCH-GARCH τύπου 

μοντέλα. 

Είναι ουσιώδες να διακρίνουμε ανάμεσα σε δύο βασικές έννοιες: την μη-στασιμότητα 

της διακύμανσης, που συχνά αναφέρεται και ως ετεροσκεδαστικότητα, και της 

δεσμευμένης ετεροσκεδαστικότητας. Η ετεροσκεδαστικότητα συνεπάγεται μια 

συναρτησιακή σχέση μεταξύ της διακύμανσης μίας σειράς, που είναι μη-στάσιμη στο 

επίπεδό της και του μέσου επιπέδου της. Αυτό έχει ως αποτέλεσμα τη μη-στασιμότητα 

στη διακύμανση, και η διακύμανση είναι μη-σταθερή τόσο υπό συνθήκη, όσο και χωρίς 

συνθήκη (μη-δεσμευμένη). Συνεπώς, η διαδικασία είναι μη-ομοιογενώς μη-στάσιμη 

στο πλαίσιο των Box και Jenkins και δεν μπορεί να γίνει στάσιμη απλώς παίρνοντας 

τις διαφορές. Για να αντιμετωπιστεί η μη-στασιμότητα της διακύμανσης, μια 

προσέγγιση είναι η εφαρμογή μετασχηματισμών, όπως είναι οι ευρέως γνωστοί 

μετασχηματισμοί των Box και Cox. Από την άλλη πλευρά, η δεσμευμένη 

ετεροσκεδαστικότητα, που περιγράφεται συχνά χρησιμοποιώντας μοντέλα του τύπου 

ARCH-GARCH, υπονοεί ότι ενώ η δεσμευμένη διακύμανση μεταβάλλεται με τον 

χρόνο, η μη-δεσμευμένη διακύμανση παραμένει σταθερή. Ως αποτέλεσμα, η σειρά 

είναι στάσιμη στη δεύτερη ροπή. Στην παρούσα διδακτορική διατριβή, 

επικεντρωνόμαστε σε σειρές με μη-σταθερή διακύμανση τόσο υπό συνθήκη όσο και 

χωρίς συνθήκη, καλύπτοντας μέχρι ένα βαθμό ένα κενό στην ευρύτερη περιοχή, καθώς 

η υπάρχουσα ερευνητική βιβλιογραφία είναι σχετικά περιορισμένη. 
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Πράγματι, αν και είναι ουσιώδες να αντιμετωπιστεί η μη-σταθερή διακύμανση στη 

μοντελοποίηση χρονοσειρών, υπάρχει έλλειψη συγκροτημένης θεωρητικής έρευνας 

σχετικά με την ανίχνευση και τη διόρθωσή της. Επιπλέον, στις πρακτικές εφαρμογές, 

η αντιμετώπιση της μη-στασιμότητας της διακύμανσης δεν είναι μόνο ανεπαρκής, 

καθώς η επιλογή ενός συγκεκριμένου μετασχηματισμού συχνά είναι αυθαίρετη, αλλά 

επίσης, όπως τεκμαίρεται στο Κεφάλαιο 2, περιστασιακά είναι μεροληπτική ως προς 

την υπερβολική απόρριψη της μηδενικής υπόθεσης της μη-δεσμευμένης σταθερής 

διακύμανσης. 

Ο σκοπός της παρούσας διδακτορικής διατριβής είναι να παρουσιάσει μια επίσημη 

οικονομετρική προσέγγιση που όχι μόνο ανιχνεύει τη μη-στασιμότητα της 

διακύμανσης και προτείνει κατάλληλους μετασχηματισμούς για τη διόρθωσή της, αλλά 

επίσης είναι ανθεκτική αφενός ως προς τις διάφορες διαμερίσεις μιας χρονοσειράς, που 

αποτελεί απαραίτητο βήμα για τη διεξαγωγή του ελέγχου, και αφετέρου την πιθανή 

ύπαρξη ακραίων τιμών. Η σημαντικότητα της χρήσης αυτής της προσέγγισης στους 

τομείς της μακροοικονομίας, της αναλογιστικής επιστήμης και της 

χρηματοοικονομικής εξετάζεται λεπτομερώς και υποστηρίζεται στα Κεφάλαια 3, 4 και 

5 αντίστοιχα. 

Στο Κεφάλαιο 2 της διδακτορικής διατριβής αναπτύσσονται τα θεωρητικά θεμέλια της 

προτεινόμενης μεθοδολογίας, η οποία επικεντρώνεται στον στατιστικό έλεγχο για την 

ύπαρξη και τον προσδιορισμό του χαρακτήρα της χρονικά μεταβαλλόμενης δεύτερης 

ροπής ως προς την εξάρτησή της από ένα μη-σταθερό μέσο επίπεδο στη χρονοσειρά. 

Αυτή η προσέγγιση αντιπροσωπεύει μια βελτίωση έναντι των υφιστάμενων μεθόδων 

καθώς συνδυάζει την ανίχνευση, τη διόρθωση και την ανθεκτικότητα. 

Είναι σημαντικό ότι κατά την τυπική διαδικασία ανάλυσης μιας χρονοσειράς, το αρχικό 

βήμα είναι να αξιολογηθεί εάν τα αρχικά δεδομένα απαιτούν μετασχηματισμό για να 

γίνει η διακύμανση σταθερή. Αυτή η αξιολόγηση πραγματοποιείται πριν από 

οποιαδήποτε άλλη ενέργεια, συμπεριλαμβανομένης της κατασκευής του 

μονομεταβλητού ARIMA υποδείγματος, της πραγματοποίησης εποχικών διορθώσεων, 

κλπ. Ως αποτέλεσμα, είναι σαφές ότι τα αποτελέσματα αυτών των επόμενων ενεργειών 

επηρεάζονται από την επιλογή που γίνεται σχετικά με τον μετασχηματισμό των 

δεδομένων. 
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Αυτό έχει αξία καθαυτή, καθώς οδηγεί στη βελτίωση της μονομεταβλητής 

μοντελοποίησης χρονοσειρών. Επιπλέον, παρουσιάζονται εμπειρικά ευρήματα 

χρησιμοποιώντας πραγματικά δεδομένα της Ελλάδας (ισοζύγιο πληρωμών και τιμές 

καταναλωτικών αγαθών και υπηρεσιών), καθώς και προσομοιωμένα δεδομένα, από τα 

οποία προκύπτει ότι ένας υφιστάμενος έλεγχος, ειδικότερα ο ευρέως 

χρησιμοποιούμενος αλγόριθμος του λογισμικού TSW, μερικές φορές παράγει 

μεροληπτικά αποτελέσματα. Το TSW αντιπροσωπεύει το TRAMO-SEATS για 

Windows, μια έκδοση για Windows των DOS προγραμμάτων TRAMO και SEATS των 

Gómez και Maravall. Το TRAMO αντιπροσωπεύει τη φράση "Time series Regression 

with ARIMA noise Missing observations and Outliers" και το SEATS αντιπροσωπεύει 

τη φράση "Signal Extraction in ARIMA Time Series" και ως αλγόριθμος είναι 

ενσωματωμένος και σε άλλα ευρέως χρησιμοποιούμενα στατιστικά λογισμικά. Επίσης, 

το TSW προσφέρει μόνο δύο εναλλακτικές για τον μετασχηματισμό των δεδομένων: 

τον λογαριθμικό μετασχηματισμό ή κανένα μετασχηματισμό. 

Πράγματι, μέσω της χρήσης προσομοιωμένων δεδομένων, ήταν δυνατό να εντοπιστεί 

μία από τις πιθανές αιτίες αυτής της μεροληψίας. Συγκεκριμένα, με προσομοιωμένες 

ομοιογενώς μη-στάσιμες διαδικασίες, έγινε εμφανές ότι η μεροληψία του TSW 

εξαρτάται από τις αρχικές συνθήκες. 

Επιπλέον, βασιζόμενοι στα παρουσιαζόμενα εμπειρικά ευρήματα, αιτιολογείται ότι ο 

τύπος του μετασχηματισμού των δεδομένων και η συνοδευόμενη διόρθωση της μη-

στασιμότητας της διακύμανσης είναι επίσης ουσιώδης για την ανίχνευση των ακραίων 

τιμών και την εποχιακή διόρθωση της αρχικής χρονοσειράς. Επιπλέον, τα εμπειρικά 

αποτελέσματα παρέχουν ενδείξεις βελτιωμένης προβλεπτικής ικανότητας μέσω της 

σωστής χρήσης του μετασχηματισμού των δεδομένων, ένα αποτέλεσμα που 

υποστηρίζεται από επιπλέον εμπειρικά ευρήματα στα Κεφάλαια 3 και 4. 

Περαιτέρω, τεκμαίρεται ότι οι συνέπειες ενός εσφαλμένου μετασχηματισμού μιας 

χρονοσειράς, η οποία είναι αρχικά στάσιμη ως προς τη διακύμανση, ναι μεν 

υφίστανται, αλλά είναι συγκριτικά λιγότερο σοβαρές από τις συνέπειες  της μη χρήσης 

μετασχηματισμού για μία χρονοσειρά που είναι αρχικά μη-στάσιμη ως προς τη 

διακύμανση. Αυτό είναι ένα συμπέρασμα που έχει ιδιαίτερη πρακτική σημασία. 

Στο Κεφάλαιο 3, η προτεινόμενη μεθοδολογία εφαρμόζεται σε μακροοικονομικές 

χρονοσειρές. Σημειώνεται ότι οι χρονοσειρές οικονομικών δεδομένων από τον 
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πραγματικό κόσμο δεν είναι αμέσως κατάλληλες για προβλεπτικούς σκοπούς και 

απαιτούν ορισμένη στατιστική προετοιμασία και προ-επεξεργασία. Αυτό συμβαίνει 

επειδή οι χρονοσειρές των αρχικών δεδομένων συχνά εμφανίζουν μη-στασιμότητα στη 

διακύμανση, επιπλέον δε πολύ συχνά υπάρχουν αιτίες που διαταράσσουν την 

υποκείμενη στοχαστική διαδικασία, όπως η ύπαρξη ακραίων τιμών και οι 

ημερολογιακές επιδράσεις. Ο τρόπος αντιμετώπισής τους αναφέρεται ως 

«γραμμικοποίηση». 

Η επίδραση είτε του μετασχηματισμού των δεδομένων είτε της γραμμικοποίησης στην 

ακρίβεια των προβλέψεων, συμπεριλαμβανομένων τόσο των σημειακών προβλέψεων 

όσο και των διαστημάτων εμπιστοσύνης των προβλέψεων, δεν έχει εξεταστεί εκτενώς 

μέχρι στιγμής. Αυτή η μελέτη εξετάζει την επίδρασή τους στη μονομεταβλητή 

πρόβλεψη, αναλύοντάς κάθε μία επίδραση τόσο ξεχωριστά όσο και σε συνδυασμό, 

χρησιμοποιώντας είκοσι από τις πιο σημαντικές χρονοσειρές που σχετίζονται με την 

ελληνική οικονομία. 

Για τον μετασχηματισμό των δεδομένων, χρησιμοποιήθηκαν δύο αλγόριθμοι. Πιο 

συγκεκριμένα, χρησιμοποιήθηκαν ο αλγόριθμος του TSW και ο αλγόριθμος των 

Milionis-Galanopoulos (M-G εφεξής). Ο αλγόριθμος M-G είναι η στατιστική 

μεθοδολογία που αναπτύχθηκε στο Κεφάλαιο 2, η οποία επιτρέπει τον μετασχηματισμό 

των δεδομένων όχι μόνο μέσω του λογαριθμικού μετασχηματισμού, αλλά και μέσω της 

τετραγωνικής ρίζας και του αρνητικού αντίστροφου. 

Τα εμπειρικά ευρήματα δείχνουν σημαντική βελτίωση στα διαστήματα εμπιστοσύνης 

των προβλέψεων, αλλά καμία ουσιώδη βελτίωση στις σημειακές προβλέψεις. 

Επιπλέον, υπάρχουν ενδείξεις ότι η συνολική προβλεπτική ικανότητα 

χρησιμοποιώντας την διαδικασία M-G για τον μετασχηματισμό των δεδομένων είναι 

κάπως καλύτερη από εκείνη που χρησιμοποιεί τη διαδικασία μετασχηματισμού 

δεδομένων του TSW. Περαιτέρω, η συνδυαστική διαδικασία μετασχηματισμού-

γραμμικοποίησης βελτιώνει σημαντικά το πρόβλημα της μη-κανονικής κατανομής που 

εντοπίζεται σε πολλές μακροοικονομικές χρονοσειρές. 

Μία ερευνητική περιοχή, όπου τα βελτιωμένα διαστήματα εμπιστοσύνης των 

προβλέψεων που καταγράφονται στο Κεφάλαιο 3, θα μπορούσαν να είναι ιδιαίτερα 

χρήσιμα είναι ο τομέας της αναλογιστικής επιστήμης, ιδιαίτερα όσον αφορά τον 

κίνδυνο μακροζωίας. Αυτός ο κίνδυνος προκύπτει από την αβεβαιότητα που περιβάλλει 
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τη μελλοντική τάση των ποσοστών θνησιμότητας των συνταξιούχων, καθώς οι 

βελτιώσεις στην επιστήμη και την ιατρική καθιστούν δύσκολη την πρόβλεψη των 

ποσοστών θνησιμότητας. Για να αντιμετωπιστεί αυτό το πρόβλημα, μια προσέγγιση 

είναι η χρησιμοποίηση μοντέλων θνησιμότητας για να προβλέπουν την τάση των 

ποσοστών θνησιμότητας και τη συνοδευόμενη αβεβαιότητα στο μέλλον. Αυτή η 

αβεβαιότητα συνδέεται άμεσα με τα διαστήματα εμπιστοσύνης των προβλέψεων. 

Στο Κεφάλαιο 4, με στόχο τις πιθανές βελτιώσεις σε τέτοιες προβλέψεις, εξετάζεται 

πώς η στατιστική προ-επεξεργασία (μετασχηματισμός δεδομένων και 

γραμμικοποίηση) επηρεάζουν την ακρίβεια των προβλέψεων χρονοσειρών 

θνησιμότητας. Αυτή η ανάλυση διεξήχθη χρησιμοποιώντας δεδομένα που προέρχονται 

από μοντέλα θνησιμότητας για την Αγγλία-Ουαλία. 

Για να διεξαχθεί μια λεπτομερής έρευνα σχετικά με τις στατιστικές προβλέψεις, 

λήφθηκαν υπόψη τρεις διαφορετικοί μέθοδοι. Αυτές οι μέθοδοι ήταν οι εξής: (α) Το 

υπόδειγμα του τυχαίου περιπάτου με τάση, το οποίο χρησιμοποιείται ευρέως στην 

αναλογιστική έρευνα λόγω της απλότητάς του, και χρησίμευσε ως σημείο αναφοράς. 

(β) Η εντολή "AUTOARIMA" του λογισμικού "R" για την αυτόματη επιλογή μοντέλου 

και πρόβλεψη, όπως παρουσιάστηκε σε δημοσιευμένη εργασία των Hatzopoulos και 

Sagianou. (γ) Τα υποδείγματα ARIMA που εφαρμόζονται μετά από στατιστική προ-

επεξεργασία, που συνεπάγεται μείωση της διακύμανσης (Variance Reduction) και θα 

αναφέρονται ως "VR" προβλέψεις. 

Τα εμπειρικά ευρήματα υποδεικνύουν μια σαφή βελτίωση στις προβλέψεις 

διαστήματος, τα οποία κατά μέσο όρο μειώνονται περίπου 35.4% όταν συγκρίνεται το 

VR με το RWD και περίπου 20.4% όταν συγκρίνεται το VR με το "AUTOARIMA". 

Ωστόσο, το συμπέρασμα για τις σημειακές προβλέψεις δεν είναι τόσο σαφές. Η 

τεκμηριωμένη βελτίωση στις προβλέψεις διαστήματος μπορεί να έχει σημαντική 

επίδραση στην Κεφαλαιακή Απαίτηση Φερεγγυότητας (Solvency Capital 

Requirement), καθιστώντας ορισμένους παρόχους συντάξεων σε συγκριτικό 

πλεονέκτημα. Η Κεφαλαιακή Απαίτηση Φερεγγυότητας καλύπτει όλους τους πιθανούς 

κινδύνους που μπορεί να αντιμετωπίσει μια ασφαλιστική εταιρεία. 

Επιπλέον, για χρονοσειρές με ασταθή, αλλά όχι συναρτησιακά εξαρτώμενη από το 

επίπεδο διακύμανση, η συμβατική στη βιβλιογραφία σύσταση του μετασχηματισμού 

δεδομένων δεν επιβεβαιώθηκε, και μια πρόταση μελέτης κατά περίπτωση φαίνεται να 
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είναι μια πιο λογική προσέγγιση. Επίσης, επιβεβαιώθηκε ότι οι σειρές που 

υποβλήθηκαν τόσο σε μετασχηματισμό δεδομένων όσο και σε γραμμικοποίηση 

ικανοποιούν καλύτερα την ανάγκη για τη κανονική κατανομή σε σύγκριση με τις άλλες 

εναλλακτικές.  

Τα παραπάνω στατιστικά ευρήματα έχουν σημαντικές συνέπειες για την αναλογιστική 

επιστήμη. Συγκεκριμένα, η βελτίωση στις προβλέψεις διαστήματος μπορεί να 

επηρεάσει σημαντικά την Κεφαλαιακή Απαίτηση Φερεγγυότητας, και συνεπώς, τον 

Δείκτη Φερεγγυότητας (Solvency Ratio) για μία εταιρεία διαχείρισης συντάξεων 

(pension fund). Μια τέτοια βελτίωση μπορεί να θέσει ορισμένους παρόχους συντάξεων 

σε ανταγωνιστικό πλεονέκτημα, καθώς έχουν αποθηκεύσει λιγότερο κεφάλαιο για τις 

υποχρεώσεις τους.  

Ως περαιτέρω έρευνα, θα μπορούσε να μελετηθεί πιο διεξοδικά ο αντίκτυπος της 

στατιστικής προ-επεξεργασίας στην χρηματοοικονομική επίδραση της Κεφαλαιακής 

Απαίτησης Φερεγγυότητας, υπό διάφορες δομές υποδειγμάτων, αναλογιστικές 

υποθέσεις και μεθόδους πρόβλεψης. Όπως αναφέρεται στο Κεφάλαιο 4, το πιο χρήσιμο 

εργαλείο για την εξέταση της αβεβαιότητας ως προς τον κίνδυνο μακροζωίας είναι ένα 

στοχαστικό μοντέλο προβολής θνησιμότητας. Δεδομένου ότι υπάρχει ευρεία επιλογή 

τέτοιων μοντέλων στη βιβλιογραφία, η επιλογή του μοντέλου μπορεί να οδηγήσει σε 

σημαντικές αλλαγές για τις καλύτερες-εκτιμήσεις αποθεμάτων, καθώς ακόμα και εντός 

μιας οικογένειας μοντέλων, μπορεί να υπάρχουν σημαντικές διαφορές. Για αυτά τα 

μοντέλα, ο σκοπός είναι η μελέτη της αβεβαιότητας σχετικά με τα μελλοντικά ποσοστά 

θνησιμότητας, που μετριούνται ως η διακύμανση των τιμών πρόβλεψης της 

θνησιμότητας. Με τον τρόπο αυτό θα ήταν δυνατή η ποσοτική εκτίμηση στις 

αντίστοιχες συνεισφορές στις κεφαλαιακές απαιτήσεις χρησιμοποιώντας 

υπολογισμούς της Αξίας σε Κίνδυνο (Value at Risk). Αξίζει ακόμα να σημειωθεί ότι η 

όλη μεθοδολογία που αναπτύσσεται στο Κεφάλαιο 4 μπορεί να χρησιμοποιηθεί στο 

μέλλον και για την προσαρμογή της δυνητικής επίδρασης της πανδημίας COVID-19 

στην πρόβλεψη των τάσεων μακροζωίας. 

Στο τελευταίο κεφάλαιο (Κεφάλαιο 5), η προτεινόμενη μεθοδολογία συμβάλει στη 

βελτίωση του πλαισίου των οικονομετρικών υποθέσεων και ελέγχων στη 

χρηματοοικονομική, με στόχο τον προσδιορισμό της απόρριψης ή μη-απόρριψης της 

υπόθεσης της αποτελεσματικότητας της αγοράς υπό την μορφή ασθενούς ισχύος. Αυτή 
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η μορφή αποτελεσματικότητας της αγοράς (Weak-form market efficiency - WFME) 

συνδέεται με καταστάσεις όπου οι διαθέσιμες πληροφορίες αφορούν αποκλειστικά τις 

ιστορικές τιμές των χρηματοοικονομικών περιουσιακών στοιχείων. 

Ενώ η έννοια της αποτελεσματικότητας των αγορών έχει αποτελέσει αντικείμενο 

μελέτης για αρκετές δεκαετίες, οι ερευνητές χρησιμοποιούν εκτενώς τις  αποδόσεις των 

περιουσιακών στοιχείων, οι οποίες ουσιαστικά είναι οι πρώτες διαφορές των φυσικών 

λογαρίθμων των τιμών, ως ένα πρότυπο μέτρο, χωρίς να ελέγχουν εάν αυτές οι 

χρονοσειρές είναι στάσιμες ως προς τη διακύμανση. Σε ένα πλαίσιο όπου δεν 

λαμβάνεται υπόψη ο κίνδυνος, είναι σημαντικό να σημειωθεί ότι αυτοί οι έλεγχοι είναι 

έγκυροι μόνο όταν οι σειρές των λογαρίθμων των τιμών εμφανίζουν στάσιμη 

διακύμανση. Εάν αυτή η συνθήκη δεν πληρείται, ο έλεγχος σημαντικότητας των 

συντελεστών αυτοσυσχέτισης στους ευρέως χρησιμοποιούμενους ελέγχους 

αυτοσυσχέτισης δεν είναι έγκυρος. Σημειώνεται ότι καθώς οι έλεγχοι 

αποτελεσματικότητας πραγματοποιούνται συνήθως χρησιμοποιώντας αποδόσεις και 

όχι τιμές, χρησιμοποιείται ο λογαριθμικός μετασχηματισμός. Ενώ αυτός ο 

μετασχηματισμός είναι ο κατάλληλος από πλευράς χρηματοοικονομικής, δεν υπάρχει 

καμία εγγύηση ότι αυτό είναι επίσης ορθό από πλευράς στατιστικής. 

Η κατηγοριοποίηση των χρηματοοικονομικών αγορών χρησιμοποιείται ευρέως από 

τους επενδυτές για να αξιολογήσουν και να λάβουν επενδυτικές αποφάσεις σε διάφορες 

αγορές. Το εξεταζόμενο σύνολο δεδομένων αποτελείται από είκοσι πέντε δείκτες 

χρηματοοικονομικών αγορών, συμπεριλαμβανομένων δεκαπέντε μετοχικών δεικτών 

από ανεπτυγμένες αγορές και δέκα μετοχικών δεικτών από αναδυόμενες αγορές. 

Για να διεξαγάγουμε μια πιο λεπτομερή έρευνα σχετικά με τον έλεγχο της WFME, τρεις 

διαφορετικές προσεγγίσεις εξετάστηκαν. Αυτές οι μέθοδοι περιλαμβάνουν: (α) Τις 

Πρώτες Διαφορές του φυσικού Λογαρίθμου (First Difference of the natural Logarithm-

FDL) των ημερήσιων τιμών, μια κοινή χρησιμοποιούμενη τεχνική στη 

χρηματοοικονομική, που χρησίμευσαν ως σημείο αναφοράς, (β) Την προτεινόμενη 

μεθοδολογία M-G, η οποία επιτρέπει την εφαρμογή εναλλακτικών μετασχηματισμών 

για τη σταθεροποίηση της διακύμανσης όταν αυτή είναι μη-στάσιμη, (γ) Το λογισμικό 

JDemetra+, το οποίο περιλαμβάνει ως αρχικό βήμα, έναν έλεγχο για την μη-

στασιμότητα ως προς τη διακύμανση στα αρχικά δεδομένα τιμών. Πιο συγκεκριμένα, 

το JDemetra+ χρησιμοποιεί τον έλεγχο για τη στασιμότητα της διακύμανσης που 
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περιλαμβάνεται στο TRAMO. Ωστόσο, καθώς το JDemetra+ επιτρέπει μόνο τον 

λογαριθμικό μετασχηματισμό, χρησιμοποιήθηκε η στατιστική μεθοδολογία M-G που 

αναπτύχθηκε στο Κεφάλαιο 2. Επιπλέον, ο αλγόριθμος M-G επιλέγεται επειδή έχει 

αποδειχθεί ότι το TRAMO εμφανίζει μεροληψία προς τον λογαριθμικό 

μετασχηματισμό. 

Σύμφωνα με την παρούσα μελέτη, είναι σαφές ότι η χρήση του λογαριθμικού 

μετασχηματισμού για τιμές Χρηματιστηριακών Δεικτών είναι ανεπαρκής για τη 

σταθεροποίηση της διακύμανσης στις περισσότερες από τις περιπτώσεις που 

εξετάστηκαν. Ως αποτέλεσμα, η χρήση των ελέγχων αυτοσυσχέτισης, που συνήθως 

χρησιμοποιούνται για τον έλεγχο της αποτελεσματικότητας της αγοράς, μπορεί να μην 

είναι έγκυρη. Πράγματι, σε αυτό το κεφάλαιο καταγράφηκε ότι οι έλεγχοι 

αυτοσυσχέτισης δεν μπορούν να χρησιμοποιηθούν έγκυρα ως στατιστικό εργαλείο για 

τον έλεγχο της αποτελεσματικότητας της αγοράς στο 83.3% των εξεταζόμενων 

περιπτώσεων. 

Επιπλέον, διαπιστώθηκε ότι η χρήση των πρώτων διαφορών των φυσικών λογαρίθμων 

των τιμών μπορεί να εισάγει μεροληψία ως προς την απόρριψη της 

αποτελεσματικότητας ασθενούς ισχύος στις ανεπτυγμένες αγορές. Αυτό το 

αποτέλεσμα υποστηρίχθηκε από την προτεινόμενη μεθοδολογία M-G και, έως ένα 

βαθμό, από το λογισμικό JDemetra+. Είναι σημαντικό να σημειωθεί ότι μετά τη 

διενέργεια των στατιστικών ελέγχων χρησιμοποιώντας τη μεθοδολογία M-G, τα 

συμπεράσματα σχετικά με την WFME υπόθεση ήρθαν σε αντίθεση με αυτά που 

προέκυψαν μέσω της εδραιωμένης μεθοδολογίας στο 27.7% των περιπτώσεων για τις 

ανεπτυγμένες Αγορές Κεφαλαίου. 

Στην περίπτωση των αναδυόμενων αγορών, η χρήση και των τριών μεθόδων που 

εξετάστηκαν, επανεπιβεβαίωσε την πολυετή ομοφωνία στην υπάρχουσα βιβλιογραφία, 

δηλαδή, ότι οι αναδυόμενες αγορές δεν είναι συνήθως αποτελεσματικές. Ωστόσο, 

αξίζει να σημειώσουμε ότι σε αρκετές περιπτώσεις, η εδραιωμένη μεθοδολογία δεν 

μπορούσε να εφαρμοστεί έγκυρα. Σε αυτές τις αγορές, ο βαθμός της μη-

αποτελεσματικότητας είναι τόσο έντονος ώστε να ανιχνεύεται ανεξαρτήτως της 

μεθόδου που χρησιμοποιείται. Αυτό επιβεβαιώνει τις υπάρχουσες ερευνητικές εργασίες 

που υποστηρίζουν ότι το επίπεδο ωριμότητας μιας χρηματοοικονομικής αγοράς 

επηρεάζει την αποτελεσματικότητα της. 
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Επιπλέον, η προηγουμένως αναφερθείσα μεροληψία του JDemetra+ στη χρήση του 

λογαριθμικού μετασχηματισμού επαληθεύτηκε για μια ακόμη φορά. Ως εκ τούτου, 

αυτή η μεροληψία επηρεάζει την ανίχνευση και τον αριθμό των ακραίων τιμών. Η 

διαφορά στον αριθμό των ανιχνεύσιμων ακραίων τιμών (που είναι λιγότερο σημαντική 

σε σχέση με το στατιστικό έλεγχο της αποτελεσματικότητας) γίνεται εμφανής όταν ο 

λογαριθμικός μετασχηματισμός εφαρμόζεται συνεχώς (με τη χρήση της μεθόδου FDL), 

και τα αποτελέσματα συγκρίνονται με τη μέθοδο M-G, η οποία υποδεικνύει την 

εφαρμογή του λογαριθμικού μετασχηματισμού μόνο σε λίγες περιπτώσεις. 

Όσον αφορά μελλοντικές προοπτικές της παρούσας έρευνας, πέραν των ήδη 

αναφερθέντων, ένα τέτοιο πεδίο είναι η επιδίωξη καθορισμού κρίσιμων τιμών για την 

παράμετρο �̂� στο πλαίσιο της μεθοδολογίας M-G, χρησιμοποιώντας προσομοιώσεις 

Monte Carlo. Με αυτό τον τρόπο, η τιμή του �̂� θα υποδεικνύει (και τυπικά) ποιος 

μετασχηματισμός (ή κανένας) πρέπει να εφαρμοστεί για να ικανοποιείται το κριτήριο 

της στασιμότητας στη δεύτερη ροπή. Επιπλέον, μια μελλοντική κατεύθυνση είναι η 

μελέτη της μη-στασιμότητας ως προς τη διακύμανση σε χρονοσειρές σε συνδυασμό με 

μοντέλα τύπου GARCH που περιγράφουν την αυτοπαλίνδρομη δεσμευμένη 

ετεροσκεδαστικότητα. Είναι ανησυχητικό το γεγονός ότι οι ερευνητές προκρίνουν την 

χρησιμοποίηση GARCH υποδειγμάτων χωρίς να υπάρχει επιβεβαίωση σχετικά με τη 

στασιμότητα στη δεύτερη ροπή.  

Τέλος, σημειώνεται ότι τα συμπεράσματα που σχετίζονται με τη μη-στασιμότητα της 

διακύμανσης των τιμών των μετοχικών δεικτών και, κατά συνέπεια, με τους ελέγχους 

αυτοσυσχέτισης στις αποδόσεις των μετοχικών δεικτών, συνδέονται αναπόφευκτα όχι 

μόνο με το συγκεκριμένο είδος περιουσιακών στοιχείων (δείκτες μετοχών), αλλά και 

με το συγκεκριμένο χρονικό διάστημα δειγματοληψίας που χρησιμοποιήθηκε (πέντε 

έτη). Επομένως, δεν πρέπει απαραίτητα να θεωρείται δεδομένο ότι αυτά τα 

συμπεράσματα ισχύουν πανομοιότυπα για άλλα είδη περιουσιακών στοιχείων, και 

ακόμη σημαντικότερα, για τα συγκεκριμένα μεν περιουσιακά στοιχεία, αλλά σε 

μεγαλύτερα χρονικά διαστήματα. Δεν υπάρχει αμφιβολία ότι αυτό αποτελεί ένα ακόμη 

πεδίο για μελλοντική έρευνα. 
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