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CHAPTER 1

INTRODUCTION

1.1 General

A time series consists of a series of observations collected over time, where the
observations are usually dependent on each other. The dependency between adjacent
observations in a time series is an inherent characteristic. Understanding and analyzing
this dependency is crucial for practical applications. Time series analysis focuses on
developing stochastic and dynamic models to capture the patterns and characteristics

of time series data. These models are then applied to various important fields of study.

The concept of utilizing a mathematical model to explain how a physical phenomenon
behaves is widely acknowledged. A deterministic time series is a type of time series
where the values can be precisely determined based on known mathematical functions.
On the other hand, a stochastic time series is a type of time series where the future
values can only be determined in terms of a probability distribution. If this probability
distribution is constant over time, then the time series is said to be stationary (further
details about the very important property of stationarity are given later in this chapter).
If a time series is not stationary, then there are formal statistical procedures to transform
a non-stationary series into a stationary one. A less strict condition for stationarity
requires that at least the level and variance of the time series be constant over time.
While researchers typically test for non-stationarity in the level of a time series using
various tests, they sometimes overlook non-stationarity in the variance when
conducting applied research. This may seriously affect (negatively) the quality of
subsequent analysis and modeling of the series. The development of a formal statistical
test for the existence of variance non-stationarity is among the cornerstones of this
thesis. In the next paragraphs of this first chapter some basic concepts of time series
analysis which will be useful for the subsequent analysis are reviewed emphasizing on
macroeconomic, actuarial, and financial time series in conjunction with the objectives

of the thesis.



1.1.1 Stationary stochastic models

One notable category of stochastic models utilized for characterizing time series, which
has garnered significant interest, consists of what are commonly referred to as
stationary models. Typically, the characteristics of a stationary time series can be

effectively described by its mean, variance, and autocorrelation function.

Consider that observations are obtained regularly at discrete, fixed time intervals. For
instance, consider a time series consisting of values yy, y,, ..., yr. This time series is
generated by a group of random variables Y3, Y,, ..., Y7 which are governed by a joint
probability distribution P(Y;,Y5, ..., Yy). This group of random variables is formally
referred to as a stochastic process. Therefore, the recorded time series represents only
one of the potential results originating from the joint probability distribution

P(Y,,Y,,...,Yr) and it is called as a realization or sample path of the stochastic process

(Milionis, 2016).

Suppose the probability density function associated with time ¢ is denoted as fy,. In that

case, the expected value of the element within the time series of order t can be expressed

as follows:

+ 00

we = E(Y,) = j Vel 0 dye

—00

and the equation below will provide the variance of Y;:

+00
Yor = E(Y; — up)* = f e — 1) fr, ) dyy

When examining the time moments t,t — 1, ...,t — j, the jth-order autocovariance is

defined in the following manner:

Vit = E{(Yt - /’Lt)(yt—j - Ht—j)}
+00 +00 +00

= f j j (Ve — #t)(}’t—j - #t—j) fyt,yt_l,...,yt_,-(J’t;}’t—p ---:Yt—j) dyidyi—1 ...dye—;

—00 —00

where, fyt,yt_l’_“’yt_j(yt, Vi_1r wes yt_j) is the joint probability function of
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When the mean value, the variance, and the autocovariances (i.e. ¢, Yot ¥jerJ = 1,2, ...

correspondingly) do not vary with the time moment t, the stochastic process is referred
to as weakly stationary or second-order stationary. In other words, for a weakly

stationary stochastic process, the following conditions are satisfied:
E(Y) = w Ve, E{(Y; = u)(Yej = pte—j)} = E{(V; = 1D (Yeej — 1)} = ¥y, V't
Therefore, the autocovariance will depend only on the temporal lag j.

To qualify as strictly stationary, a stochastic process must exhibit a property wherein
the entire probability distribution of Y;, Y; 4, ..., Y45 remains unaffected by the time t,

indicating that it remains independent despite any temporal shift.

fYt,YtH,...,YHS(yt' Vests oo Vews) = fYt.,.k,Yt.,_k.,_l,...,Yt;k_,_s Vesks Yerks1s -0 Vewkes) VE ke, s

1.1.2 Backward shift (or lag) operator

A time series operator is a tool that converts either one time series or a set of time series
into another time series. Among these operators, the lag operator, represented by the
symbol B, holds particular significance in time series analysis. When the lag operator
is applied to a time series, it causes the series to undergo a transformation where the
resulting new series is the same as the original series but shifted by a number of time
periods equal to the order of the operator. In other words, it moves the values backward

in time depending on the operator's order, i.e.
BY, =Y,_{,B%Y, =Y;_,,...,B¥Y, = Y,_,,

When considering negative powers of B, denoted as B~* with k > 0, they represent the

forward operator F. The following relationships are valid:
B~*Y, = F*XY, = Y, ., which can also be written as B~% = F*k,

The utilization of the operator B allows to express difference equations and stochastic
models in a concise manner. Moreover, through B, we can establish differentiation
operators and seasonal differentiation operators, which offer specific and efficient ways

to handle time series data. More specifically:

Regular Differentiation operator = V= (1 — B), where Y, — Y;_; = (1 — B)Y,



Seasonal differentiation operator = V,, = (1 — B'?) where ¥; — Y;_;, = (1 — B1?)Y,

1.1.3 The general form of a linear stationary stochastic process

The fundamental component of discrete stochastic time series models is the white noise
process, which serves as the essential building block. This time series, denoted as &,
has zero mean (E(g;) = 0), constant variance (E (&,2) = ¢2), and uncorrelated terms

((Sté‘t_k) =0 fOI‘ k> 0)

The Wold's decomposition theorem (1938) is a fundamental theorem in time series
analysis that enables us to represent a weakly stationary stochastic process with zero

mean using the following equation:
Yy = z Y& + Ky
i=0

where: Py = 1, & is the white noise, K; is the causal component, and };;2,|9;| < .

The symbol K; denotes any component that can be fully predictable solely based on its
past values, like an exponential function of time. If K, equals zero, the stochastic
process becomes is purely non-deterministic. Additionally, K; is entirely independent

of the values &;_;, Vi (Milionis, 2016).

The equation mentioned above can alternatively be represented through the so-called
linear filter representation, which can be stated as follows: When the lag operator is

applied to Y;, where Y; is a purely non-deterministic series, we obtain:

Yo&r + Y161 + Po8_p + - = Po&p + Py Bep + P, BPep + -
= (Yo + PY1B + P,B* + - )&, = ¥ (B)g,

In other words, the time series Y; is generated by applying the linear filter ¥ (B) to the
white noise &;. The function ¥ (B) represents the transfer function of this linear filter,

and its coefficients 1); are commonly referred to as psi-weights.



1.1.4 The autocorrelation function of the general stationary stochastic process

and the sample autocorrelation function

In the case of purely non-deterministic linear stochastic processes with zero mean, the

expected value will be:
E(Y) = E{¥(B)g} =0

and the variance is:

2
Yo=E(Y; —E(Yp) =E(e; + Y1801 +Pr_p + -+ )?
= E(e® +iel, +P3ely+ ) = o2 +Pla? + Yo%+ &

Yo = Gzleiz
i=0

where o2 is the variance of the white noise (Milionis, 2016).

It is important to highlight that as &; represents the white noise, the following statement

remains valid: E (st_ist_ j) = 0 Vi # j, and the autocovariance will be:
vie = E{(Y; = E(1) - (Yeop — E(W))} =

E(er + Y181+ -+ Vi + Yrg18e—p41 + ) * (Eei T V1E—p—1 + Y282 + ) =
[ee]
i+ T Prtias + 0P iesz + S Vi = 02 ) Vi
i=0

The role of the autocorrelation function, indicated by py, is of utmost importance in the
field of applied time series analysis. In combination with the first and second moment,
it offers insights into the characteristics of the stochastic process governing the

evolution of the time series. Its definition is as follows:

_ Cov(Yy, Ye_p) _ E{(Y; — pe) (Voo — te—i)}
\/Var(Yt)Var(Yt_k) \/E(Yt - llt)ZE(Yt—k - ﬂt—k)z

Pk

In other words:

o = Vi YizoVilisk
k= T vyo .52
Yo o Wi



In a stationary process, the mean at time t equals the mean at time t — k (U = Ur—x),
and the variance of Y; is equal to the variance of Y,_, (Var(Y.) = Var(Y,._y)).

Consequently, in the context of stationarity, the following can be deduced:

B - w e — W}
Pie = E(Y: — pe)?

The definitions presented thus far hold greater theoretical significance, given that, in
practical scenarios, obtaining multiple realizations of the stochastic process is often
unfeasible. With just one realization of the stochastic process, i.e., the time series

comprising our data y4, y,, ..., ¥, the mean value can only be calculated across time:

T
Z Yt
t=1

and the jth-order autocovariance is calculated utilizing the following equation:

}7:

~| =

T
i = %tz Ve — )_’)(}’t—j - 3_’)
=j+1

The previously mentioned definition of py is purely theoretical since it pertains to a
stochastic process for which we possess merely a finite number of terms from a single
sample path. Under the assumption of stationarity, we can estimate p;, from the given
N observations using the subsequent relationship, which yields the sample
autocorrelation function (ACF):

LY =Wy = 1)

T (Y — 7)?

Pr = ACF (k) =

Because p, is symmetric, the ACF(k) also exhibits symmetry, implying that
ACF (k) = ACF(—k). Due to this reason, when graphically depicting the ACF, we

solely focus on the positive values of k.

1.1.5 The partial autocorrelation function

In the context of a time series, the partial autocorrelation of order k, represented as @y,
is described as the correlation between Y; and Y, while keeping the intervening terms

Yii1, Yeqo, o) Yepr—q constant (Milionis, 2016). In other words:

9



@i = Correlation(Yy, Yeig / Yes1, Yeszs oo s Yerr—1 constant)

The partial autocorrelation function (PACF) provides the partial autocorrelation
coefficient for various time lags, such as k = 1,2,3 and so on. Like the autocorrelation
function, the PACF serves as a valuable resource for understanding the interdependence
patterns produced by a stochastic process. It proves to be a useful tool in identifying the

appropriate stochastic model that best fits the data.

1.1.6 Test for autocorrelation

The Box-Pierce statistic (1970) and Ljung-Box statistic (1978) are both used in time
series analysis to test the null hypothesis of no autocorrelation in the residuals of a fitted

model. The Box—Pierce statistic is defined as:
m
BP =N Z ACF (k)?
k=1

and is a measure that quantifies the overall autocorrelation in the residuals of a time
series model. The Box-Pierce statistic follows a chi-square distribution with m degrees
of freedom under the null hypothesis that all autocorrelation coefficients up to order m
are zero. If the computed BP statistic is found to be greater than the chi-square critical
value at a chosen significance level, it suggests evidence of autocorrelation in the
residuals (the null hypothesis is rejected), indicating that the model may need further

refinement.

The Box—Pierce statistic does not always give accurate results, even when applied to
datasets of moderate size. Ljung and Box highlighted the improved performance of the

modified statistic in small samples, which is calculated as follows:

ACF (k)?

LBQ=N(N+2) Y ——

Like the Box-Pierce statistic, the Ljung-Box statistic also follows a chi-square

distribution with m — s degrees of freedom, where s is the number of coefficients being

estimated. Similarly, if the computed LBQ statistic is greater than the chi-square critical

10



value at a chosen significance level, it indicates evidence of autocorrelation in the

residuals.

In practical applications, following the approach mentioned earlier, we examine
whether individual autocorrelation coefficients lie within the 95% confidence intervals
and collectively assess their statistical significance using the Ljung-Box statistic to test

Hy.

Nevertheless, many time series observed across diverse scientific domains, including
economics, actuarial science, and finance, often exhibit characteristics that are better

represented as non-stationary.

1.1.7 The model of a random walk

An example of a simple random walk is the series Y;, where the t-th term is the sum of
terms up to order t of a white noise process. In a more general context, the model of a

simple random walk can be expressed as Y; = Y;_; + &, with E(g,2) = 2.
The mean and variance of Y; can be described as follows (Milionis, 2016):

E(Y,) = 0 and E(Y?) = to?, therefore tlim E(Y?) = oo.

Consequently, the series Y; exhibits non-stationary behavior.

If we make the assumption that the initial value of a time series, described by a random
walk process, is ¥, at time 0, then the general expression for the time series can be

represented as:

t
Y =3’0+Z<9i
i=1

If there is a deterministic drift, the random walk with a drift model is expressed by the

equation:
Vi =Y +e+$.

For & > 0, the series will tend to move upwards. The opposite (downwards) holds good
if & < 0. The presence of the constant term in the model creates a trend, which can be

demonstrated as follows:

11



When & > 0, the series will tend to exhibit an upward movement, while the opposite
(downward movement) holds true for ¢ < 0. The inclusion of the constant term in the

model creates a trend, which can be demonstrated as follows:
Through iterative substitution of Y;_4, Y;_,, ..., Y;_j into the initial equation, we obtain:
Yt = Yt—l + Et + f = Yt_z + gt—l + gt + 25 — = Yt—k + gt + gt—l + gt—k-l—l + kf
Assuming that at t = 0, Y; = y,, we ultimately arrive at:
t—1
Vo=yo+ét+ ) e
j=o

The last equation indicates that the constant term ¢ represents the slope in the
deterministic drift, as denoted by the term &t. The inclusion of this term significantly

improves the predictive performance of the model.

1.1.8 Difference stationary series and test for non-stationarity

A non-stationary series that can be transformed into a stationary one by differencing it
d times is called a homogeneous non-stationary series of order d or an integrated of
order d, and is denoted as I(d). The stationary series is denoted as I(0). For a
homogeneous non-stationary series, the autocorrelations in the ACF (k) decrease very
slowly as k increases. This serves as an initial practical criterion for the presence of
homogeneous non-stationarity. If the series is stationary, the autocorrelations would
decrease rapidly as k increases. This criterion should be used only as a supplementary
tool to the classical tests for non-stationarity, such as the test referred to below, and not

as a standalone method.

Numerous tests and techniques are available for assessing non-stationarity in levels.
Dickey and Fuller (1979, 1981) were the first researchers to explore unit root tests.
Building upon their work, Said and Dickey (1984) extended the basic autoregressive
unit root test to handle more complex ARMA(p, @) models with unknown orders. This
enhanced test is commonly known as the Augmented Dickey—Fuller (ADF) test. An
extension of the Dickey—Fuller test is the Phillips and Perron test (Phillips and Perron,
1988). The Phillips—Perron (PP) test varies from the ADF test primarily in its treatment

12



of serial correlation and heteroskedasticity. More specifically, the PP test does not
account for any serial correlation, and the main advantage compared to the ADF test is
its robustness to various forms of heteroskedasticity in the error term. The
Kwiatkowski—Phillips—Schmidt—Shin (KPSS) test, developed by Kwiatkowski et al.
(1992), takes a different approach by testing for stationarity rather than a unit root. It
examines the null hypothesis of stationarity, which is that a time series is 1(0), against
the alternative hypothesis of a unit root. On the other hand, the null hypothesis of the
ADF and PP tests is that a time series is 1(1). A drawback of the ADF and PP tests is
their low statistical power. Elliott, Rothenberg and Stock (1996) proposed an alternative
test, namely the ERS (Elliott—Rothenberg—Stock) test, which has higher power than the
ADF and PP unit root tests. In addition, the examination of autocorrelation and partial

autocorrelation function patterns is a useful technique to test non-stationarity in levels.

However, non-stationarity can be present not only in the mean but also in the variance.
Despite the significance of addressing non-constant variance in time series modeling,
there is limited theoretical research on its detection and correction. Further, at the
practical level, the treatment of non-stationary variance is insufficient, since when a
particular transformation is used its selection is often arbitrary. The main objective of

this Ph.D. thesis is to address this research gap.

1.2 Univariate ARIMA(p,d, g) modeling

According to Wold's theorem, the approach of analyzing a stationary stochastic process
as a weighted sum of an infinite number of white noise terms necessitates the
determination of an infinite set of parameters ;. However, in practice, this becomes
practically impossible as we typically have only a finite amount of data available.
Consequently, we will explore the patterns that emerge by introducing additional
assumptions about the nature of 4,5, .....Specifically, we assume that the infinite-
term polynomial ¥ (B) can be represented as the division of two polynomials with finite

degrees, as follows (Milionis, 2016):

1-6,B—6,82—-—0,89 0(B)
1— @B — @B —-—@,B?  ®(B)

= @ 1(B)O(B)
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Given the aforementioned assumption, a purely non-deterministic stationary stochastic

process Y; with a mean of zero can be represented in the following manner:
®(B)Y, = 0(B)e,

The coefficients of @(B) and @(B) are determined from the available data. In practical
applications, the mathematical models we use often involve certain constants or
parameters that need to be estimated based on the available data. It is crucial to strive
for simplicity by using the minimum number of parameters that still provide sufficient
representations. This principle of parsimony (Tukey, 1961) emphasizes the importance

of keeping the models concise and efficient.
When setting @ (B) to 1, the model can be expressed in the following manner:
B, =g & (1— @B — @,B2 — - — p,BP)Y, = ¢, &
Vo=@V at @Yot +@pYept e

To clarify, Y; is represented as a linear combination of past values up to lag p, along
with a white noise process, which signifies the stochastic nature of the model. This

specific model is referred to as an autoregressive model of order p and is denoted as

AR(p).

When setting @(B) to 1, the general model can be expressed as follows:

Y, =0(B)e = (1—6,B— 0,82 —--—0,B%)g,

=& — 0161 — 026 — = g€ 4

To elaborate further, Y; is represented as a linear combination of past values of a white
noise process, along with the current value of that process. This specific model is

referred to as the moving average model of order g and is denoted as MA(q).

The general stationary stochastic process encompasses both the autoregressive process
of order p and the moving average process of order q. This type of process is referred
to as a mixed process of order p and q and is denoted as ARMA(p, q). Mixed processes
are useful for effectively representing an AR(p) or MA(q) process, particularly when

either p or q is large.
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When the process Y; is derived from a homogeneous non-stationary process W; through
d successive differentiations, W, is referred to as an integrated mixed process of order

p,d, q and is denoted as ARIMA(p, d, q).

1.2.1 The general autoregressive model AR(») and the general moving average

model MA(q)

The AR(p) model is considered stationary when the roots of its characteristic

polynomial 1 — @B — ¢,B? — -+ — @pBF are located outside the unit circle. The

characteristic polynomial is derived from the following equation:

Yi =01V + @Yo a + 4+ @pYep + & © Y, — 91 BY; — 9,B*Y, — - — pB"Y,
=& © (1—@B— @B — - —@pB"), = ¢

To calculate the variance of an autoregressive model, we compute the product of the

AR(p) model with Y; and then take the expected values:

E[YY:] = 0 E[Y:Yio1] + @2 E[Y Y o] + -+ + ‘PpE[Yth—p] + E[Ye] &

0.2

Yo=@1V1+ @a¥2+ -+ @p¥p + 0% S 1 =@ip1 + @02+ + @ppp + e
0

0.2

1= 1P — Papr — = PpPyp

Yo
To determine the autocovariance of an autoregressive model, we multiply the AR (p)
model by Y;_, and then calculate the expected values:

ElYYi] = @1E[Ye-1Yei] + @2E[Ye 5o+ + @pE[Ye— Yo i] + O since k > 0

S0, ¥k = P1¥—1 + P2Vi—2 + - + PpVi—p, k > 0
Dividing yx by v, we can deduce that py = @1px—1 + @202 + - + OpPr—p
If we substitute the index t with the index k, the difference equation mentioned above

is equivalent to the homogeneous part of the difference equation that describes the

AR (p) process (Milionis, 2016).

The general solution can be obtained in the following manner: First, the characteristic

polynomial ®(B) is derived as 1 — @B — ¢,B% — --- — @pBF, which factorizes into
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®(B) =[17_,(1 — g;B), where gi',g;%, ..,g," represent the roots of @(B).
Consequently, the general solution will take the form p, = A1 g% + A, 9% + -+ + A, g5,

with A4, Ay, ..., Ay, representing constants determined by the initial conditions.
We can categorize the following scenarios:

1) The term A;g¥ diminishes exponentially towards zero when the corresponding g;
is a real number.

2) The term A;d*cos(wk + A,) represents a damped sine wave with decreasing
amplitude when the corresponding g; is a complex number. In this case, the

aforementioned term is formed by the root and its complex conjugate.

As a result, the autocorrelation function will exhibit a mixture of exponential decays

and damped sinusoidal waves with declining amplitudes.

Identifying the order of the AR process based solely on the form of the autocorrelation
function (ACF) is challenging. However, the partial autocorrelation function (PACF) is
highly beneficial in this regard and aids in determining the appropriate order. In an
AR(p) process, the ACF slowly decreases, but the PACF displays exactly as many
statistically significant autocorrelations as the order of the AR(p) process.: Let's
represent @y as the j-th coefficient in an autoregressive model of order k, where @y
is the coefficient of the last term. In this context, the following equations are valid:

Pj = Pr1Pj-1+ Pr2Pj-2 + =+ Pk-1)Pj-k+1 T PixPj-i forj = 1,2, ...,k

Thus, the Yule—Walker equations are derived, which can be expressed as follows:
1 py P2 - Pr-1 Pr1
pr 1 P1 - Pk 2 (sz
Pk-1  Pr-2 Pk-3 - Qﬂkk

Or pr®x = P

By solving the above equations successively for k = 1,2,3, ..., we obtain:

1 p1 p1

1 P1| P11 p

P1 P2 p2—p} P2 P1 P3

P11 = P1, P22 = | pi| = 1 p2° P33 =11 p; _p»
P11 P11 pq

pz p1 1
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In an AR(p) process, the values of @ will not be zero for k < p, whereas they will
be zero for k > p. To obtain empirical estimate of the ¢ coefficients, we replace py

with their sample estimates, denoted as py.
The general moving average model can be represented as follows:
Vi =& — 0161 — 0262 — = 04&tq &
Y, =(1—-6,B—0,B2—--—0,B9)e,

For the general moving average model to be invertible, the roots of its characteristic
polynomial 1 — 8;B — ,B? — -+ — 6,87 must be located outside the unit circle. The

characteristic polynomial is derived from the following equation:
V,=(1—0,B—0,B% — -~ 0,B%)e, & &, = (1— 6,8 — 0,82 — - — 0,89) Y,
The variance y,, and the autocovariance yj, are calculated as follows:

Yo = azz:tp]2 =02(1+ 602 +62+-+62)
7=0

Vi =02 ZiloWijsk = 0% (=0 + 01641 + 020)42 + -+ 0_10g), k = 1, ..., q
with 8, = 1 and y, = 0 for k > q.
Consequently, the autocorrelation function is calculated as:

_ Y _ _9k+919k+1+929k+2+"'+9q_k9q
Pr Yo 14602 +05++67

,withk =1,2,...,q and p, = 0 for k > q.

The behavior of the partial autocorrelation function (PACF) at lag k closely resembles
the autocorrelation function (ACF) for an autoregressive process. In other words, the
PACF of a moving average process will exhibit a mix of exponential decays towards
zero and damped sine waves with diminishing amplitudes, depending on the type of the

roots of @(B) = 0 (the principle of duality between AR and MA processes).
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1.2.2 Mixed models

To achieve parsimony, it may be required to incorporate both autoregressive and
moving average components. Hence, it might be necessary to utilize a mixed ARMA

model:

If all the roots of the characteristic equation @(B) = 0 lie outside the unit circle, the
process will be considered stationary. Similarly, for the process to be invertible, the

roots of @(B) = 0 must be located outside the unit circle.

The ACF and PACF of an ARMA(p, q) process will begin to decay either exponentially

towards zero or with damped sine waves after lag q and p, respectively.

1.3 Time series decomposition and seasonal ARIMA(p,d,q)(P,D, Q). models

In practical applications, it is beneficial to assume that an observed time series can be

decomposed into unobservable components using the following equation:
Y, =S+ P +C + U,

where:

Y; 1s the observed time series or some transformation of it,

S; is the seasonal component,

P, is the long-term trend,

C; 1s the cyclical component,

U; is the irregular component.

The seasonal component of time series decomposition refers to the recurring patterns
that occur within a time series at regular intervals, typically over the course of a year.
These patterns can be influenced by various factors such as weather, holidays, or
cultural events. Two examples illustrating the seasonal component are tourist arrivals
(e.g. May to September in Greece) and retail sales (e.g. a retail business that sells winter

apparel).
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The long-term trend signifies the general change in the level of the time series. In non-
stationary time series, the long-term trend can either remain constant or vary over time.
In instances where the trend is time-varying, linear regression models often lead to

highly inaccurate forecasts in many cases.

The cyclical component of time series decomposition refers to the medium-term
fluctuations in a time series. Unlike the seasonal component, which has regular and
predictable patterns, cyclical movements are irregular and can vary in duration and
amplitude. These fluctuations are typically linked to economic or business cycles and

can span multiple years.

The irregular component, also known as noise, encompasses the cumulative effects of
non-systematic factors. It represents the random or unpredictable variations that are not
accounted for by the systematic components of the time series. The irregular component
can include wvarious sources of randomness, measurement errors, outliers, or
unexplained fluctuations that cannot be attributed to the underlying patterns or

components of the series.

By drawing an analogy with the non-seasonal model ARIMA(p, d, q), it is possible to
formulate a similar model to capture the correlations between observations for the same

month in different years, in the following format:
®(B™)V,,Y, = 0(B'?)e,

The polynomials @ (B'?) and @(B?) are of degree P and Q, respectively, in relation

to the lag operator B raised to the 12" power. In other words:
®(B2) =1 — ¢,B'2 — ¢,B?* — - — pBP12
0(B'?) =1—-60,B' — 6,B** — ... — ,B9"?
If we combine the seasonal and non-seasonal model, we arrive the composite model:
@(B)®(B1?)VV,,Y; = 0(B)O(B?)¢,

In other words, the composite model takes the form of a multiplicative model denoted
as ARIMA(p,1,q)(P,1,Q)1,. The prevalent type of seasonal model is referred to as
the airline model, which can be expressed as ARIMA(0,1,1)(0,1,1),, where s indicates

the seasonality.
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1.3.1 The variable seasonal pattern

The process of removing the seasonal component from time series data involves
intricate statistical procedures, and it is commonly executed using specialized statistical
software like X-12-REG-ARIMA, TRAMO-SEATS, and JDemetra+. More
specifically:

X-12-REG-ARIMA is a software package developed by the U.S. Census Bureau and
the Statistical Office of Canada (Findley et al., 1998), designed for seasonal adjustment
and time series analysis. It is widely used by statistical agencies, researchers, and

economists to remove seasonal variations from economic time series data.

TRAMO-SEATS is widely regarded as a robust and sophisticated tool for seasonal
adjustment, particularly for complex time series with irregular seasonality. This
program was developed by Gomez and Maravall (1996) at Banco de Espafia, with the
support of Eurostat. The latest version operates in a Windows environment under the
name TSW. TRAMO stands for "Time series Regression with ARIMA noise Missing
observations and Outliers" and SEATS stands for "Signal Extraction in ARIMA Time

Series".

JDemetra+: is an advanced software tool developed by the National Bank of Belgium
and Eurostat since February 2015. It has gained popularity among statistical
practitioners due to its powerful capabilities, comprehensive reporting, and user-
friendly interface. It is continually updated and maintained to incorporate the latest
developments in seasonal adjustment methods, ensuring the accuracy and reliability of

the results.

However, users should have a solid understanding of seasonal adjustment principles
and the specific characteristics of their time series data to make appropriate and

informed decisions when using the aforementioned software.

1.4 Box—Jenkins univariate stochastic models

Box-Jenkins univariate stochastic models, also known as ARIMA models, are a
powerful class of time series models used for analyzing and forecasting single-variable

time series data. Developed by Box and Jenkins (1976), these models have become
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widely popular and essential in time series analysis due to their flexibility, simplicity,
and effectiveness in handling a wide range of time series patterns. The Box-Jenkins
procedure consists of four main stages for developing an ARIMA model These stages

are as follows:

(1) The identification of the model: The first stage involves identifying the appropriate
orders of the AR and MA components, as well as the order of differencing needed to
achieve stationarity. This is done by analyzing the autocorrelation function and partial
autocorrelation function of the time series data. Additionally, if the original data is non-

stationary, the order of differencing required to make the data stationary is determined.

(i1) The estimation of the model: The coefficients of the ARIMA model are estimated
using various techniques, with maximum likelihood estimation being one of the most
commonly used methods. The coefficients of the model should fall within the bounds

of invertibility, stationarity, and demonstrate statistical significance.

(i11) The diagnosis of the model: The third stage involves performing diagnostic tests to
assess the adequacy of the model. The diagnosis of the models involve analyzing the
residuals to ensure that they meet certain assumptions. (i.e. the null hypothesis that the
residuals of the model are white noise). To avoid rejecting the null hypothesis, two
conditions must be met: a) there should be no significant correlation up to the initial

lags and b) the LBQ test’s value should not exhibit statistical significance.

(iv) The metadiagnosis of the model: The proposed model is evaluated against other
competing models, with the key criteria being the model's parsimony and the residual

mean square (RMS) value. The RMS is calculated as follows:

RMS =

2|

For the parsimony of the model with the best fit, various statistical criteria can be used

such as:
a) The Bayesian information criterion (BIC) of Schwarz (1978):
T 2
BIC(p,q) = In6? + (p + ¢)N~"LInN, where 6% = thN—lst is the estimation of the
variance of the residuals and N is the number of terms.
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b) The Akaike (1974) criterion: AIC(p,q) = In6% + 2(p + )N 1

BIC has a stronger penalty for model complexity compared to AIC. This means that

BIC tends to prefer simpler models with fewer parameters. If the primary goal is to

obtain a simpler model and the sample size is relatively large, BIC may be preferred as

it tends to favor more parsimonious models. When choosing between models, the

lowest value of the above tests indicates a better fit.

1.5 Time series linearization

The ARIM A models provide a practical approach to capturing the features and patterns

present in time series. Building an ARIMA model may require pre-adjustments for the

following reasons:

a)

b)

Outliers: Outliers are data points in a time series that deviate significantly from the
overall pattern or trend. They are extreme values that lie far away from the majority
of data points and can have a substantial impact on the statistical properties of the
time series. ARIMA models assume that the data are generated from a stationary
stochastic process with no significant outliers. If outliers are present in the data and
left untreated, they can lead to inaccurate model parameter estimates, affect the
model's ability to capture the underlying patterns, and result in unreliable forecasts.
Outliers are typically linked to three primary types of effects:
1) Additive Outlier (AO): This effect only impacts a single isolated
observation.
i1) Transitory Change (TC): This resembles an additive outlier, but its effect
does not immediately fade away but rather persists over several periods.

1) Level Shift (LS): This implies a change in the mean level of the series.

Calendar effects: Calendar effects refer to regular patterns that occur at specific time
intervals within a year. Some common calendar effects include holiday effect and
day of the week effect. Typically, these effects are integrated into the model by using
regression variables.

Intervention variables: Time series data can be influenced by extraordinary or

uncommon events that are difficult to incorporate into an ARIMA model.
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Consequently, it becomes necessary to "intervene" in the series to account for the
effects of these exceptional events. Some examples of such events are policy
changes, technological advancements, labor strikes, major events and celebrations
(like the Olympics) and so on. These particular effects can be included in the model

as regression variables, commonly known as intervention variables according to

Box and Tiao (1975).

The general framework of linearization (Kaiser and Maravall, 2001) for the original

series can be written as

m

v, =wib + Cln + Z ain; (B (L) + x;

J=1

Where: y; = f(z.),f is some transformation of the raw series z;, which may be

necessary to stabilize the variance;

b = (by, ..., by) is a vector of regression coefficients;

w{ = (W4, ..., Wn) denotes n regression or intervention variables;

C{ denotes the matrix whose columns represent possible calendar effect variables (e.g.,

trading day);

7 is the vector of associated coefficients;

It(tj) is an indicator variable for the possible presence of an outlier at period t;;

11;(B) captures the transmission of the j-th effect;

a; denotes the coefficient of an outlier in a multiple regression model with m outliers;

X¢, in general, follows a multiplicative seasonal ARIMA(p,d,q)(P,D,Q)s model:
p(B)P(B*)VV x, = 0(B)O(B)e,

where:
@(B) =1 —¢B — -+ — ¢, BP is the so-called autoregressive polynomial of order p;
6(B) =1—6,B — -+ — §,B% is the so-called moving average polynomial of order g;

74 = (1 — B)% is an arithmetic difference operator of order d;

VP = (1 —B5)P is a seasonal arithmetic difference operator of order D and
seasonality s;

®(B5)=1—®BS — - — ®,BPS is the so-called seasonal autoregressive

polynomial of order P and seasonality s;
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O(B%) =1—0,B° — -+ — 0,B?* is the so-called moving average polynomial of
order Q and seasonality s;
& 1s the stochastic disturbance.
There are several software programs (such as X-12-REG-ARIMA, TRAMO-SEATS,
and JDemetra+) that implement these procedures to estimate the parameters of the

general framework of linearization.

1.6 Thesis motivation and main objectives

1.6.1 Further discussion on stationarity in the second moment

As far as variance stabilization is concerned, if the variance is functionally related to
the level and the level is non-stationary (which is often the case with economic-financial
time series), the variance is neither conditionally nor unconditionally constant. Hence,
the process is non-homogeneously non-stationary in the sense of Box and Jenkins and
cannot be made stationary by simply differencing it. One way to tackle variance non-
stationarity is to employ power transformations, such as the well-known class of the
Box and Cox transformations (Box and Cox, 1964). For instance, the following

transformation is very often used:

zt—1

ifA#0
Inz,if A=0

f(z) =

Regarding the arithmetic values of the exponent A of the above equation, for practical
purposes, Makridakis et al. (1998) state that there is no merit in using arithmetic values
with several decimal points, as nearby values will produce very similar results. Simple
arithmetic values of A are easier to interpret and, hence, more meaningful. Furthermore,
Kalligeris et al. (2019) acknowledge that when A < 0, an alternative model is necessary,
which diminishes the attractiveness of the methodology. To address this limitation, they
propose a comprehensive model selection approach that remains applicable even in

cases involving negative values.

At the practical level, the treatment of non-stationary variance is occasionally biased
towards over-rejection of the null hypothesis of unconditionally constant variance, as

is argued in subsequent chapters.
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More specifically, the existing statistical approaches for the detection and correction of
variance non-stationarity appear to have several disadvantages, viz.: (i) although they
detect variance non-stationarity, the correction they suggest is not formally and
rigorously documented (e.g., Hay and McLeay, 1979; Milionis and Davies, 1994);
(i1) they usually suffer from subjectivity (see, for instance, Mills, 1990 chapter 4, for a
short review); and (iii) although they detect variance non-stationarity and are formally

suggestive of a solution, they lack robustness (Milionis, 2003; Milionis, 2004).

Failure to account for non-stationarity in variance leads to distortions in both the
variance itself and the autocovariances of the time series. This can result in a correlation
between terms that are lags apart, leading to the presence of artificially statistically
significant coefficients at certain lags. These issues contribute to the problem of
overparameterized models. Furthermore, variance stationarity is a critical requirement
for outlier analysis. Without it, the identification of outliers, their types, and any

economic significance associated with them become invalid.

It is important to distinguish between two concepts: variance non-stationarity, also
known as heteroscedasticity, and conditional heteroscedasticity. Heteroscedasticity
implies a functional relation between the variance of a series which is non-stationary in
its level and its mean level. This entails non-stationarity in the variance (Milionis,
2004). On the other hand, conditional heteroscedasticity, usually described by ARCH
or GARCH models (Engle, 1982; Bollerslev, 1986), means that while the conditional
variance changes over time, the unconditional variance remains constant. Therefore,

the series is stationary in the second moment.

Indeed, considering, without loss of generality, the simple ARCH(1) model, i.e.,
f(X.) = f(X;,_1; b) + e;, where X, is a stochastic process, b represents a parameter
vector, e; = vtm, w>0,0<a; <1, and v, is a white noise with unit
variance. For this model it is easily proved that (Enders (1995), Milionis (2004)):
1) the unconditional mean of e; is equal to zero, ii) the conditional variance of e; is

equal to w + a;e? ;, meaning it varies with time, and iii) the unconditional variance of

e; is equal to T, l.e. itis a constant.
—41

A specific case is that of an integrated GARCH (IGARCH) process, in which volatility

exhibits persistence, and may require additional examination. Research by Nelson
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(1990) has demonstrated that, unlike the typical random walk, even this process is

strictly stationary, yet its unconditional variance is unbounded.

In the aforementioned models, the parameters governing the conditional variance are
concurrently estimated alongside the parameters related to the series' level. From a
methodological perspective, it is essential to address variance non-stationarity before

addressing non-stationarity in levels.

1.6.2 Thesis aim

The aim of this Ph.D. thesis is to present a formal econometric approach that not only
identifies non-stationary variance and suggests appropriate transformations for
correction but is also robust to the specific partitioning of a time series, which is a
necessary step for conducting the test, and the possible presence of outliers. The
importance of the application of this methodology in macroeconomics, actuarial
science and finance is thoroughly examined and evidenced in subsequent chapters. A

brief outline is given below.

1.6.2a) Applications in macroeconomics

A univariate ARIMA model is a concise quantitative summary of the internal dynamics
of a time series in a linear framework. It is therefore useful for several reasons,
including for forecasting. More specifically, univariate forecasts usually serve either as

short-term or benchmark forecasts.

The effect of the application of this methodology to some crucial elements of
macroeconomic time series modeling, such as forecasting and outlier detection, will be
examined. It is of much interest to investigate how variance non-stationarity could
potentially affect the specification of the univariate ARIMA model and the detection of

outliers.

For instance, examining the time series on monthly external trade statistics from the
Balance of Payments for Greece (see Chapter 2), the presence of variance non-
stationarity leads to seriously mis-specified univariate ARIMA models, a result that is

in accordance with that of Milionis (2004). Also, in properly transformed data, the
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pattern of detected outliers is clearly different, a conclusion that is also in accordance

with that of Milionis (2004).

It will also be shown that the TSW program, a specialized software for time series
analysis, occasionally appears to be biased, favoring the log transformation of the data.
Furthermore, the results obtained using simulated data show a bias in TSW that depends
on the initial conditions. Moreover, it will be established that the consequences of
falsely transforming a time series which is originally variance stationary do exist but
are less severe than the consequences of falsely not transforming an originally variance

non-stationary series.

In addition, utilizing 20 of the most important time series for the Greek economy, the
empirical findings show a significant improvement in the confidence intervals of
forecasts but no substantial improvement in point forecasts (see Chapter 3).
Furthermore, the combined transformation—linearization procedure improves
substantially the non-normality problem encountered in many macroeconomic time

series.

1.6.2b) Applications in actuarial science

Longevity is a threat for insurance companies or pension funds. Longevity risk is
considered the possibility that life expectancy, or actual survival rates, will exceed the
"expected". If indeed this happens, then the outflow of money from the funds will be
greater and, as a result, the risk now lurks for the company or the pension fund. This
risk exists—in the last 50-60 years there has been a trend of increasing life
expectancy—therefore insured persons and pensioners have to receive proceeds for
more time. On the other hand, the number of people reaching retirement age is
constantly increasing. The combination of the two results in higher payout levels than
originally thought. The types of plans exposed to the highest levels of longevity risk are
pension plans and life annuities. Figures for average life expectancy are increasing, and
even a small change in life expectancy can create serious solvency issues for pension
plans and insurance companies. Therefore, it is very crucial to predict mortality rates
as accurately as possible. Aiming at possible improvements of such forecasts, the effect
of data transformation—linearization on the quality of time series forecasts of mortality

is examined, and results indicate a clear improvement for interval forecasts of mortality
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(see Chapter 4). The documented improvement in interval forecasts can significantly
affect the Solvency Capital Requirement, giving some pension providers a competitive

advantage.

1.6.3¢c) Applications in finance

The predictability of stock returns and the concept of market efficiency have earned
significant interest among researchers. This is evident from the extensive body of
research published on these topics. The efficient market hypothesis posits that “security

prices fully reflect all available information” (Fama, 1970).

The traditional classification of available information (Roberts, 1959) categorizes
market efficiency into three forms: weak-form efficiency, which considers past prices
as the information set; semi-strong efficiency, which contains all publicly available
information in the information set; and strong-form efficiency, which encompasses both
publicly and privately available information in the information set. In an efficient
market, tests of return predictability should fail to reject the null hypothesis of no

predictability.

To empirically test the weak-form market efficiency hypothesis (WFME), it is initially
assumed that conditions of equilibrium can be described in terms of expected returns.

This can be written as:
E(F)j,t+1 / ‘I’t) = [1 + E(Rj,t+1 / ¢’t)]Pj,t

where P;; represents the price of security j at time t, R;;,, represents the percentage

return of security j between t and t + 1, and @, represents the information set that is

fully reflected in P; ;. The use of tildes denotes random variables at time ¢.

These expected returns are determined using a pricing model, making the test of WFME
a joint test of WFME and the pricing model. When the adopted model assumes constant
expected returns in a risk-unadjusted framework, it is common to apply tests for
autocorrelation in security returns. However, it is important to note that statistically
significant correlations alone do not necessarily imply the rejection of the WFME
hypothesis, as the joint hypothesis being tested includes both WFME and the pricing

model with constant expected returns.
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Elton et al. (2014) provide a comprehensive compilation of autocorrelation test results
conducted by multiple researchers. These tests analyze the first differences of prices or
the logarithms of prices. It is important to note that these tests are valid only when the
series of first differences of prices exhibits variance stationarity. If this condition is not
met, the significance testing of autocorrelation coefficients becomes invalid. So, to
elucidate the conditions under which autocorrelation tests or similar tests for market
efficiency using returns are significant, the following proof offers a comprehensive
statistical rationale that establishes the compatibility between interdependence in

returns and market efficiency (Milionis, 2007).

Proof: COV(ﬁj't, ﬁj’tﬂ) =

ff (ﬁj,t - E(ﬁj,t)) ) (ﬁj,t+1 - E(ﬁj,t+1)) f(Rj,t' Rj,t+1)thth+1 =
R

tRe+1

|| (BB @) (Rvs = EEyern)) FRF Byevs/R)ReARe

tRe+1

as f(Re, Re1) = f(R)f(Res1/Re).

Based on the definition of conditional expected value, it holds that:

fR (Rjesrf Re/RD)) dReys = E(Rjes1/R,)

t

Hence:
COV(RoRers) = | (Re= ER)) (E(Resa/R) = E(Rycan)) - FROAR,

The above equation is used by Fama. As E(R;41) = E{E(R;;1/R;)}, the equation

provided above can be alternatively expressed as:
COV(RoRes) = [ (Re = B(R)}- (B (Ress /) = BERen/ROY) - F(ROAR,
R¢

Based on the analysis presented above, it is clear that both of the previously mentioned
equations are equivalent to the definition of autocovariance, without any specific

reference to R; ¢, R; ¢+1. These equations hold true for any random variables X, Y.
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Therefore, in general, COV(ﬁt, ﬁt+1) # 0 as E(ﬁHl/Rt) — E{E(ﬁHl/Rt)} # 0, and
it is evident that for the integral in the last equation to vanish, an additional assumption
needs to be made. This assumption is known as the constant expected returns, and when

it holds good, it follows that E(ﬁt+1/Rt)=E{E(ﬁt+1/Rt)} and therefore
COV(R;, Riy1) = 0.

Autocorrelation tests can only be meaningful in cases where the assumption of constant
expected returns and, in extension, of variance stationarity holds true. In this scenario,
the presence of autocorrelation in stock returns can be considered as evidence for
rejecting market efficiency. Specifically, it indicates the rejection of the joint hypothesis

that assumes both market efficiency and constant expected returns.

In a risk-adjusted framework, when risk fluctuates over time instead of remaining
constant, it follows that expected returns, considering risk aversion, should also vary
over time. One of the most apparent quantitative expressions of this temporal
relationship between risk and return is found in GARCH-M models, where the
conditional variance can serve as a predictor for returns (Milionis, 2016). These models

can be broadly formulated as:
AlogP, = f(hi, @¢_1,B) + &

The equation presented above represents returns as a function f of three components:
the conditional variance (h?) which reflects the risk, the information available up to
time t-1 (®;_q), and the parameter vector 5. According to Milionis and Moschos

(2000), two scenarios can be illustrated based on this equation:
] . . . . .
1) When a—’fz < 0, if h? increases, this will result in a decrease in expected returns. In
t
that scenario, if the model is correctly specified, it would lead to the rejection of the

WFME.

d ) . . . . . .
2) When a—}{z > 0, if h? increases, this will result in an increase in expected returns. This
t

is not incompatible with the overall concept of WFME, if investors anticipate a positive

return.
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1.7 Thesis outline

The structure of this thesis is as follows. In Chapter 2, the theory of the proposed
methodology for non-stationarity in the second moment will be developed, and it will
be demonstrated that the proposed methodology outperforms other methods. Through
simulations, the superiority of the proposed methodology is highlighted, while also
exposing the biases in alternative approaches. In Chapter 3, the proposed methodology
is applied to macroeconomic time series, demonstrating the improvement in prediction
confidence intervals that arises from its application. In Chapter 4, the aforementioned
methodology will be used for longevity forecasting, and its advantages over existing
approaches will be presented. In the last chapter (Chapter 5), the developed
methodology will contribute to the improvement of the framework of econometric
assumptions and tests in finance, aiming to determine the rejection or non-rejection of

the hypothesis of weak-form market efficiency.
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SUMMARY OF CHAPTER 1

While researchers typically test for non-stationarity in the level of a time series using
various tests, they sometimes overlook non-stationarity in the variance when
conducting applied research. Indeed, regarding time series variance, the research focus
is mainly directed in modeling conditional heteroscedasticity through a plethora of
ARCH-GARCH type of models. However, as argued earlier in this chapter, such
models are variance stationary because although the conditional variance is time-
varying the unconditional variance is constant. The implications of disregarding non-
stationarity in the variance in macroeconomic time series, in actuarial science and
finance are examined. A formal econometric approach is proposed to test and address
non-stationarity in the variance. The existence of non-stationarity in the variance results
in an inaccurate specification of univariate autoregressive integrated moving average
(ARIMA) models, and the identification and analysis of outliers are then influenced by
the existence of non-stationarity in the variance. The consequences of testing the
hypothesis of weak-form market efficiency (WFME) are considered, particularly
highlighting the inadequacy of conventional autocorrelation tests when applied to the

differences in asset prices.
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CHAPTER 2

DEVELOPMENT OF THE STATISTICAL METHODOLOGY AND
EVALUATION OF ITS MERIT

2.1 Introduction

Over the last five decades a vast volume of research work, at both the theoretical and
the applied level, has been devoted to time series with time-varying second moment.
This non-constancy in the second moment may be due to various reasons. For the
purposes of this work, it is methodologically useful to distinguish between type (i):
series with conditionally non-constant, but unconditionally constant variance, and type
(i1): series with non-constant variance both conditionally and unconditionally. In the

present the focus is on the latter.

If the variance is functionally related to the level and the latter is non-stationary, the
variance is not constant both conditionally and unconditionally [this is the typical case
of type (i1)]. Therefore, the procedure is non-homogeneously non-stationary in the sense
of Box and Jenkins (1976) and cannot be made stationary by merely taking differences.
To address the issue of non-constant variance, one approach is to utilize power
transformations, such as the widely recognized Box and Cox transformations (refer to

section 1.6.1).

In spite of its importance for time series modelling, there is not much work at the
theoretical level on the detection and correction of non-constancy in the variance owing
to its dependence on a non-stationary mean level. Additionally, at the practical level,
dealing with non-constant variance is not only inadequate (in fact, the choice of a
specific transformation is often arbitrary) but also, occasionally, tends to show a bias
towards rejecting the null hypothesis of unconditionally constant variance. This

argument is discussed later in this chapter.

More specifically, the existing statistical methods used to detect and correct variance
non-stationarity seem to have various drawbacks, as outlined in section 1.6.1. The aim
of this work is to develop a formal econometric approach, which not only allows the
detection of non-stationary variance and is suggestive of the transformation necessary

to correct for it but also it is robust to the particular partition of a time series —a
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procedure necessary for the test- and the possible existence of outliers. Further, the
possible advantages of the application of this methodology on some crucial elements
of time series modelling such as outlier detection and seasonal adjustment, as compared

to existing methods, are examined.

The chapter is structured as follows: In section 2.2 the statistical methodology (testing
procedure) is developed and the framework is set upon which the possible advantages
of the new testing procedure on univariate time series modelling are evaluated. In
section 2.3 the testing procedure is applied on Greek real data, as well as on artificial
time series created by statistical simulation. This aims to serve two purposes: (i) to
evaluate the usefulness of the methodology in analyzing and forecasting time series
from the real world; (i1) to identify biases in the algorithms incorporated in existing
specialized statistical software for variance non stationarity testing. Section 2.4

concludes the chapter.

2.2 Development of the statistical methodology

As in most other similar studies (Mills, 1990; Milionis and Davies 1994; Milionis
2004), for the statistical testing approach used in this work time series are partitioned
into segments (subsamples) of equal length. For each subsample the (local) mean (LM)
as well as the (local) standard deviation (LSD) are calculated. Local Standard Deviation
is assumed to be functionally dependent on Local Mean in a non-linear fashion as

follows:
LSD = aLMPe" (D)

where a, f are model parameters, e is the base of natural logarithms and u the stochastic
disturbance. Model parameters a,f are estimated via Ordinary Least Squares
(henceforth OLS) using the corresponding log-log model. The estimated value of 8 ()
provides the necessary information for the existence (or non-existence) and the type of
data transformation needed to ensure variance stationarity (e.g. for the most popular
transformations, namely the log-transformation and the square root one, correspond to
p =1,and f = 0.5, respectively). This is formally stated and tested by hypothesis H,

below.
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To ensure robustness with respect to a particular partition and the possible existence of
outliers, as this procedure should precede the detection of outliers, the procedure is
repeated for different partitions. The number of different partitions is at least equal to
the number of divisors of the series’ length, giving a quotient (series length over divisor)
> 5 and restricting the size of subsamples to be > 5. Robustness is formally stated and

tested by hypothesis H;, below.

Finally, the previous steps are repeated with the already transformed data. The purpose
of this last step is to test, whether or not, the suggested transformation is sufficient to

stabilize the series variance. This is formally stated and tested by hypothesis H,. below.

2.2.1 Notation and equations

Before the description of the testing procedure some explanation on the notation and

definition of the various symbols is necessary.

e Index (k) indicates the ascending number of a subsample in a partition.

e Index (j) indicates the ascending number of the particular partition,
J=12, .., jmax-

e Index i; represents the maximum value of k (number of subsamples) in partition
j.

e N is the total length (size) of the initial time series.

e n;; represents the size of subsamples in partition j.

o ,@j is the estimate of the exponent £ using subsamples derived from partition
with ascending number j.

e 1y, &, il are independent of each other regression residuals.

An asterisk (*) over a symbol denotes the corresponding transformed data, or the

corresponding parameter estimate derived from the transformed data.
= (N/n;j), if (N /n;;) is an integer; n;; = 5,
o ;= int(N/n;) + 1, if (N/n;;) is not an integer, n;; = 5 and the residual of

the division is > 5,

Five (5) was selected as a reasonable lower limit for both the size of a subsample, as well as the number
of subsamples in any partition of the original series.

35



e [; =int(N/n), if (N/n;;) is not an integer, n;; = 5 and the residual of the
division is < 5,
. ,[?j is estimated for each partition j, j = 1,2, ..., jijnax Via OLS from the model
(First stage regression):
In(LSDy) = In(a;) + B In(LMj,) + Qi (2)
e [ is estimated via OLS as the constant term of the model (Second stage
regression):
Bi=pB+dj+é& (3)
e Model using the transformed data (Third stage regression):

In(LSDj;,) = In(a}) + B In(LMj,) + 1, (4)

2.2.2 Statistical Hypotheses and comments

Applying the procedure described above, it can be made possible to state and test the
following statistical hypotheses:

1) Hg: B; = 0Vj (or at least the majority of B;s).
This hypothesis can be tested from the first stage regression (Equation 2) and is utilized
to ensure that indeed there exists a dependence of local standard deviation on local
mean. Failure to reject H, means that there is no such dependence, hence, no variance

instability of type II exists, and therefore, the algorithm stops.

2) Hy:d = 0% (Robustness test)
The dependent variable in Equation 3 (second stage regression) is the estimate of [
derived from the partition of ascending number j (ﬁ j) , while the independent variable
is the ascending number of the partition itself (j). Therefore, d is the estimate of the
slope of the regression. This hypothesis states that the slope d should not be statistically
significant, and non-rejection of it, means that f is robust to any particular partition of
the series, or outliers. Additionally, non-rejection of Hy, also ensures a better estimate

of § by making more efficient use of information available in all partitions.

2Typically, an additional Hypothesis: H’s»: =0 should also be tested, but practically its rejection is
ensured by the previous rejection of Ha.
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3) H¢: B = 0 Vj (Under-transformation test)

where ;" are the corresponding f; for the transformed data estimated from the third

3

stage regression (Equation 4). The third hypothesis is a kind of an “under-

transformation” test. If ,[? J’-“ are statistically significant it means that there will still be a
dependence between local mean and local standard deviation in the already transformed
data, consequently the chosen transformation did not succeed in removing type II
variance instability. Therefore, H states that there is no remaining dependence of local
mean on local standard deviation in the transformed data. Non-rejection of this
hypothesis ensures that the chosen transformation is sufficient and has adequately
rendered an unconditionally stable variance.

The addition of robustness and under-transformation tests to the above methodology

offers advantages over existing methods, as the latter are devoid of these features.

2.3 Evaluation of methodology’s merit

Real data will be used to evaluate the proposed statistical methodology against existing
statistical software programs in time series analysis. More specifically, the advantages
arising from univariate ARIMA modelling, outlier detection, seasonal adjustment, and
forecasting performance of the univariate models will be presented through the
application of the proposed methodology.

Furthermore, by utilizing real data, the bias which is present in existing statistical tests
concerning the rejection of the null hypothesis of unconditionally constant variance will
be highlighted. Additionally, simulated time series will be used to identify one of the

sources for the bias in rejecting the null hypothesis of constancy in the second moment.

2.3.1 Application on Greek real data

The Bank of Greece produces routinely, for internal use, seasonally adjusted data, as
well as purely statistical (atheoretical) univariate forecasts for several Balance of
Payments(BOP) series of monthly observations. Such benchmark forecasts are useful,
amongst others, for the comparison with actual values, when the latter become
available. Seasonal adjustment and forecasts are produced in conjunction with outlier
detection and use is made of the algorithms of the specialized statistical software TSW

for this purpose. TSW stands for TRAMO-SEATS for Windows, a Windows version of
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the DOS programmes TRAMO and SEATS (see Gomez and Maravall, 1996 and section
1.3.1). TSW is freely available by the provider (Bank of Spain) and is currently used
by many NCBs, NSIs as well as many other academic and international institutions
(universities, ECB, EUROSTAT, etc.)?. Using TSW in the course of the routine time
series analysis within the Bank of Greece it was observed that TSW suggested the
logarithmic transformation of the original data in order to stabilize the variance far too

often. This observation was the starting point of this work.

The time series examined are monthly external trade statistics from the Balance of
Payments and prices of consumer goods and services for Greece. The particular data
were selected due to their obvious importance given the continuing economic crisis in
the country and the initially large current account deficit of Greece at the beginning of
the economic crisis. This current account deficit is attributed primarily to the deficit of
the balance of Goods (see press releases on the web site of the Bank of Greece). It is
apparent that proper statistical modelling is vital for the short-term monitoring and

forecasting of such series.

More specifically, the time series from external trade statistics from the Balance of
Payments for Greece are Total Imports, and Total Exports of Goods excluding fuels and
ships (source: Bank of Greece). Those series are of special interest for re-analysis, not
least because they have recently undergone adjustments in several ways. More
specifically, the International Monetary Fund (IMF henceforth) in its 6th Manual on
Balance of Payments (IMF, 2009) redefined the item “Total Goods™ so as the new
definition be firmly based on the “change of ownership” principle. In that sense, the
sub-items “goods for processing” as well as “repairs on goods”, which were included
in “goods” before the new definition of IMF, are now classified as services, since no
change of ownership takes place. By contrast, transactions under “merchanting”, which
used to be classified as services, with the new definition are included in goods, again
because according to the change of ownership principle such a change does occur in
the merchanting process. A further adjustment in the series of imports and exports of
goods occurred owing to the need for harmonization with the external trade statistics
produced by the Hellenic Statistical Authority (ELSTAT). The recording of goods in
the latter is based on customs data. Additionally, ELSTAT data include estimates about

3TSW routines are also incorporated in other econometric software such as E-VIEWS.
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the volume of illegal trade. The objective of this adjustment is to make BOP statistics

on external trade on goods fully compatible with the relative notions of the wider

framework of the System on National Accounts (SNA, 2008).

The data cover the period from January 2003 to June 2015 and consist of one hundred
and fifty (150) monthly observations of Total Imports, and Total Exports of Goods
excluding fuels and ships (source: Bank of Greece). The dates of some of the important
events that occurred during the crisis are noted in Table 1, while graphical

representations of the time series are shown in Figures 1 and 2.

Table 1. Dates of important events during period

Event Date
Lehman Brothers’ bankruptcy 15/09/2008
Commencement of the first 06/05/2010
economic adjustment programme
for Greece
Commencement of the second 13/02/2012

economic adjustment programme

for Greece

Figure 1. Imports of Goods (in million euro)
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Figure 2. Exports of Goods without fuels and ship (in million euro)
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The sharp decline in both series at end 2008, which is conspicuous from the visual
inspection of those figures, may be attributed, amongst others, to the Lehman Brothers’

bankruptcy and the subsequent sharp reduction in economic activity.

In addition to the real BOP data, time series of Greek Consumer Price Index (CPI) and
Harmonized Index of Consumer Price (HICP) covering the same time period (January
2003 to June 2015, source: Hellenic Statistical Authority) and simulated time series will

also be used in order to provide further supporting evidence for the conclusions drawn
from the BOP data.

2.3.1.1 Results — Discussion

At first the possible need for a data transformation will be examined using the new
method, as well as the TSW routine. Further, each decision derived from the new
methodology and the corresponding one derived from the TSW routine will be
compared. This task is of course of interest in its own right. However, in terms of
applied time series analysis in general, it is of crucial importance to examine also the
extent to which that decision affects some crucial elements of time series modelling
such as outlier detection and seasonal adjustment. Once a decision about the proper data
transformation is made by the two methods, TSW will be used for both cases for this
further analysis.

As far as outlier detection is concerned, outliers are automatically detected, classified
and corrected using the Chen and Liu (1993) approach. It is noted that in TSW

framework, outliers are classified into three types, according to their effect on a time
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series (see section 1.5), as follows (for further details as well as the theoretical
background good references are Hilmer et al., 1983; Tsay, 1984; Tsay, 1986):

Additive outliers (AO), Transitory Change outliers (TC), Level shifts (LS).

Seasonal adjustment with TSW is made after the series are “linearized” (see section 1.5
for a description on “linearization”). Seasonal adjustment itself is based on ARIMA
model-based signal extraction. This method uses the Burman-Wilson algorithm
(Burman, 1980) to decompose a time series into unobserved components [for further

details see Maravall, (1995); Gémez and Maravall, (1996)].

2.3.1.2 Comparative analysis of the time series of “Imports of goods”

i. Analysis using of the new statistical testing methodology

The results for the first stage regressions for the time series “Imports of goods” are
presented in Table 2. It can be seen that in all subsample pairs the f; estimates are
statistically significant at the 10% significance level and in almost all subsample pairs
at the 5% significance level (exceptions only for the partitions with subsample size 10
and 18, where the estimates are “marginally” significant for the 5% significance level).

Hence, H,, is clearly rejected.

Table 2. Estimates of ; for the various partitions for the first stage regression

Subsample 5 6 8 10 12 14 16 18 20
size (nl-j)
Number of 30 25 19 15 13 11 10 9 8
subsample
pairs (i)

Bj 1.058 | 1.203 | 1.052 | 0.863 | 1.090 | 0.955 | 1.032 | 0.791 | 1.246

t-statistic | 2.642 | 3.230 | 3.211 | 2.096 | 4.204 | 2.297 | 3.321 | 2.278 | 2.758

p-value 0.013 | 0.004 | 0.005 | 0.056 | 0.001 | 0.047 | 0.010 | 0.057 | 0.033

The results for the first stage regressions are also depicted in Figure 3, where the x-axis
represents the number of subsamples and the y-axis the value of exponent. From the
visual inspection of Figure 3 it is apparent that no systematic association between

estimates and the sample size seems to exist.
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Figure 3. Graphical representation of the first stage regressions results

Vabee of Forecast
#

¥ 12 17 33 a7 i3

Mumbar &l subsamples

This is further supported by the results of the second stage regression with the aid of
which the Hypothesis Hy: d = 0 can be formally tested. Those results are presented in

Table 3. As is evident, the constant § is statistically significant at the 5% level and equal
to 1.082, whereas the slope d is not statistically significant. Hence, H), cannot be

rejected.

Table 3. Results for the second stage regression

Estimate t-statistic standard error
[? 1.082 10.956 0.099
d 0.0005 0.101 0.005

The above results clearly suggest that: (i) the original data series is variance non-
stationary; (ii) the estimated value of /3 suggest that the data should be log-transformed.
To examine, whether or not, the chosen logarithmic transformation is indeed sufficient
to stabilize the variance the “under-transformation” test is performed. To this end the
logarithms of the original data are subjected to the logarithmic transformation once
more and the parameters of the third stage regression are estimated. The results of the
“under-transformation” test are presented in Table 4. The results of the “under-
transformation” test are presented in Table 4.

As 1s evident from the results of Table 4 none of the ﬁAj‘s is statistically significant,
therefore the hypothesis H.: ;=0 Vj is not rejected.

The above results clearly suggest that the log-transformation of the original data makes

the series variance stationary.
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Table 4. Results for “under-transformation” test

Subsample 5 6 8 10 12 14 16 18 20
size (TLU)
Number of | 30 25 19 15 13 11 10 9 8
subsample
pairs (i;)

B; 0.305 | 1.655 | 0.222 | -1.59 | 0.558 | -0.75 | 5.882 | -1.61 | 6.470

t-statistic | 0.092 | 0.540 | 0.085 | -0.50 | 0.258 | -0.23 | 1.325 | -0.56 | 1.350

p-value | 0.927 | 0.594 | 0.933 | 0.623 | 0.801 | 0.821 | 0.222 | 0.592 | 0.220

ii. Analysis using exclusively the TSW testing approach

The same series were reanalyzed following the standard TSW procedure®. The way
TSW tests whether or not the data need to be transformed in order to stabilize the
variance is based on a variant of the so-called range-mean regression (see Gémez and
Maravall, 1996). For range-mean regression, the series is divided into subsamples and
the range and mean for each subsample are calculated. Then a regression model using
the subsamples’ ranges and means is estimated. If the regression slope is found to be
significant the data are log-transformed.

Using the TSW procedure, TSW also suggested the logarithmic transformation of the
original data, as was the conclusion using the new approach. However, when the TSW
procedure was repeated with the log-transformed data (“under-transformation” test),
TSW suggested a logarithmic transformation again(!). Indeed, TSW output states that:
«LOG-LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)*2)=1.0078847 LOGS
ARE SELECTEDw.

Therefore, for the “under-transformation” test, TSW is biased towards rejection of the

null hypothesis of no transformation.

iii. The effect of data transformation on univariate modelling and outlier detection
It is of interest to further investigate how variance non-stationarity could potentially

affect the specification of the univariate ARIMA model and the detection of outliers.

41t is noted that the only alternatives with TSW is either the log-transformation, or no transformation.
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Table 5 below presents the results of univariate ARIMA modelling with and without the

log-transformation, while the estimation details are quoted in Tables 6-7.

Table 5. Univariate ARIMA modelling

ARIMA model with linearized original data [Model (1)]

ARIMA(2,1,0) (1,0,1)12
MODEL SPECIFICATION

(1 — 0.583B — 0.401B2) (1 + 0.857B'2) (1-B)Y; = (1 + 0.594B?)¢,

ARIMA model with linearized transformed data (TSW and new method)
[Model (2)]

ARIMA(0,1,1) (0,1,1)1
MODEL SPECIFICATION

(1—B) (1-B®)log Y, = (1 + 0.609B) (1 + 0.592B82)¢,

From the results of Table 5 it is apparent that, when variance non-stationarity is taken
into account, the univariate model is the so-called “airline” model, often encountered
in data with seasonality (see Box and Jenkins, 1976). In contrast, without considering
variance non stationarity a much more complicated ARIMA model is selected. Hence,
the presence of variance non stationarity leads to seriously mis-specified univariate
ARIMA models, a result that is in accordance with that of other studies (e.g. Milionis,

2004).

Table 6. Parameter estimation of model (1)

Parameter Value t-statistic
&, 0.583 7.480
®, 0.401 5.290
d, -0.857 -10.890
0, -0.594 -4.810
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Table 7. Parameter estimation of model (2)

Parameter Value t-statistic
6, -0.609 -8.750
0, -0.592 -8.360

The results on the detection of outliers are presented in Table 8. As is evident a TC
outlier at period 39 in the original data does not exist in the transformed data. Further,
the LS outlier at period 71 (November 2008) in the original data, which could be related
to the Lehman bankruptcy, has been shifted forward one period in the transformed data,
while the AO outlier in period 97 in the original data has been shifted backward one
period in the transformed data. Hence, in properly transformed data the pattern of
detected outliers is clearly different, a conclusion that is also in accordance with that of

Milionis (2004).

Table 8. Outlier Detection (series of Imports of goods)

Outliers with original data Outliers with log-transformed data
(TSW, new method)

39 TC (3 2006), 71 LS (11 2008), | 72 LS (12 2008), 96 A0 (12 2010)
97 A0 (1 2011)

2.3.1.3 Comparative analysis of the time series of “Exports of goods excluding fuels

and ships”

i. Testing for variance non-stationarity

Table 9 presents the results of the first stage regressions for the exports of goods
excluding fuels and ships. From these results it is evident that ,E’j is not statistically
significant at the 5% significance level, except for the partition with subsample size 6.
Thus, according to the new testing approach, the series variance is (unconditionally)
stationary and no transformation of the original data is required.

However, the conclusion is different when the approach of TSW is followed. Indeed,
TSW log-transforms the data as a consequence of the range-mean regression. Indeed,
TSW output states that:

«LOG-LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)*2)=1.0106056 LOGS
ARE SELECTED».
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Table 9. Estimates of ; for the various partitions for the first stage regression

Subsample 5 6 8 10 12 14 16 18 20
size (nl-j)

Number of | 30 25 19 15 13 11 10 9 8
subsample

pairs (i;)

,@j 0.654 | 0.723 | 0.530 | 0.467 | 0.455 | 0.440 | 0.595 | 0.466 | 0.246

t-statistic | 1.812 | 2.110 | 2.015 | 1.713 | 1.233 | 1.111 | 1.167 | 1.279 | 0.392

p-value | 0.081 | 0.046 | 0.060 | 0.110 | 0.243 | 0.295 | 0.277 | 0.241 | 0.709

Therefore, once again, TSW is biased towards the logarithmic transformation, whereas
no transformation of the original data needs to be performed.

Even worse than that, when the TSW procedure was repeated once again with the
already log-transformed data (the “under-transformation” test), which were supposed
to be variance stable, TSW suggested the logarithmic transformation again. Indeed,
TSW output states that:

«LOG-LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)*2)=0.98497426 LOGS
ARE SELECTED».

Apparently, that suggestion is seriously biased and misleading.

ii. Univariate ARIMA modelling, outlier detection and seasonal adjustments
Table 10 below presents the results of univariate ARIMA modelling with and without
the log-transformation for exports of goods excluding fuels and ships, while the
estimation details are quoted in Tables 11-12.

From the results of Table 10 it is apparent that in contrast to the univariate models for
imports of goods here the differences in the two univariate models are of minor
character, as in both cases the univariate model is of the same type i.e., the so-called
“airline” model. The differences are confined only to the estimated values of the
parameters of the two models. This is not surprising as with exports of goods excluding
fuels and ships, the original, as well as the log-transformed series, are both variance
stationary. Indeed, this result advocates our previous conclusion for imports of goods

where the pronounced difference in the character of the univariate ARIMA model for

46



the original and the log-transformed data was attributed to the existence of non-
stationary variance in the original data series.
Table 10. Univariate ARIMA modelling for the series of Exports of goods excluding
fuels and ships
ARIMA model with linearized original data, (new method) [Model (3)]

ARIMA(0,1,1) (0,1,1)1
MODEL SPECIFICATION

(1-B) (1-B¥)Y, = (1 + 0.584B) (1 + 0.7.64B?)¢,

ARIMA model with linearized transformed data (TSW) [Model (4)]

ARIMA(0,1,1) (0,1,1)12
MODEL SPECIFICATION

(1-B) (1-B%)log Y, = (1 + 0.566B) (1 + 0.821B1?)¢,

Table 11. Parameter estimation of model (3)

Parameter Value t-statistic
6, -0.584 -8.190
0, -0.764 -13.490

Table 12. Parameter estimation of model (4)

Parameter Value t-statistic
0, -0.566 -7.850
CH -0.821 -16.430

The results for the detection of outliers for both the original and the log-transformed
data for exports of goods excluding fuels and ships are quoted in Table 13. As is evident
the AO outlier is the same in both cases, while the level shift, which could be related,
amongst other things, to the Lehman bankruptcy and its repercussions, has only been

moved forward by one time-period in the log-transformed data.
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Table 13. Outlier Detection (series of Exports of goods excluding fuels and ships)

Outliers with log-transformed data
(TSW)

Outliers with original data (new
method)

71 LS (11 2008), 93 AO (9 2010) | 72 LS (12 2008), 93 AO (9 2010)

Our next task is to examine if and to what extent the data transformation affects the
forecasting performance of the univariate models, as well as the seasonally adjusted

series. The former was evaluated using the Mean Absolute Percentage Error (MAPE).

100% <,

The MAPE statistic is given by: MAPE = ——X¥., Al

At

, where A; is the actual

value and F; is the forecast value.

Table 14 presents the results. As is evident both one-step-ahead and twelve-step- ahead
forecasts with no transformation (as suggested by the new method) are superior in terms
of the MAPE value, as compared to the corresponding forecasts with the data log-

transformed, as suggested by TSW.

Table 14. Values of Mean Absolute Percentage Error of forecasts

MAPE (%)
Forecasts Original Data (New Log-transformed data
Method) (TSW)
Twelve step ahead 3.618 4.501
One step ahead 3.265 3.778

A statistic akin to MAPE, which is used as a means to evaluate the quality of a forecast,
will be employed in order to assess the difference in the seasonally adjusted data
produced with and without the log-transformation.

To this end, the Mean Absolute Percentage Difference (MAPD) statistic was employed

to assess the differences in the seasonally adjusted series produced from original data

gin_glev
versus transformed data. MAPD is calculated as: MAPD = %Z?Ll (JX—MJ| 100),
Jj

where X jl” is the seasonally adjusted value using log-transformed data and X jle” the

corresponding seasonally adjusted data using the original data themselves.
The results are presented in Table 15. It should be noted that in the results of Table 15

quite substantial differences are observed. Indeed, although the value of the MAPD
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between the two seasonally adjusted series is not so high (approximately 1.3%), the
minimum percentage difference is as high as -4.3% and the maximum percentage
difference is equal to 5.5%.

Table 15. Differences in Seasonally Adjusted Series produced from original
data versus transformed data

MAPD (%) Minimum Percentage | Maximum Percentage
Error (%) Error (%)
1.297 -4.314 5.515

2.3.1.4 Comparative analysis of the time series of “CPI” and “HICP”

i. Analysis using of the new statistical testing approach

The results for the first stage regressions for the time series “CPI” are presented in Table
16. It can be seen that in almost all subsample pairs the estimates are statistically
insignificant at 5% significance level (exceptions exist only for the partitions with
subsample size 5 and 8). Hence, H, is not rejected and therefore no transformation of

the original data is suggested.

Table 16. Estimates of 3 ; for the various partitions for the first stage regression (CPI)

Subsample 5 6 8 10 12 14 16 18 20
size (TlU)

Number of | 30 25 19 15 13 11 10 9 8

subsample
pairs (i;)
'BAJ- 1.604 | 0.681 | 1.148 | 0.933 | 0.898 | 0.565 | 0.377 - 0.011
0.629
t-statistic | 2.112 | 1.390 | 2.166 | 1.315 | 1.656 | 0.891 | 0.325 - 0.010
0.667

p-value 0.047 | 0.178 | 0.048 | 0.211 | 0.126 | 0.396 | 0.753 | 0.526 | 0.992

Table 17 presents the results of the first stage regressions for the series of HICP. From

these results it is evident that is not statistically significant in the 5% significance level.
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Table 17. Estimates of ; for the various partitions for the first stage regression
(HICP)

Subsample 5 6 8 10 12 14 16 18 20
size (Tlu)

Number of | 30 25 19 15 13 11 10 9 8

subsample
pairs (i;)
/?j 1.003 | 0.076 | 0.639 | 0.363 | 0.399 | 0.039 | 0.018 - -
0.957 | 0.503
t-statistic | 1.383 | 0.146 | 1.266 | 0.529 | 0.689 | 0.057 | 0.016 | - -
1.010 | 0.460

p-value | 0.178 | 0.885 | 0.223 | 0.606 | 0.505 | 0.956 | 0.988 | 0.346 | 0.662

Thus, according to the new testing approach, in both cases no transformation of the

original data is suggested as the series variance is (unconditionally) stationary.

ii. Analysis using exclusively the TSW testing approach

Using the TSW procedure for both series, TSW suggested the logarithmic
transformation of the original data for CPI as well as HICP as the output from TSW that
refers to this test stated that «LOG-LEVEL PRETEST:
SSlevels/(SSlog*Gmean(levels)*2)=1.1253168 LOGS ARE SELECTED» and «LOG-
LEVEL PRETEST: SSlevels/(SSlog*Gmean(levels)*2)=1.1096478 LOGS ARE
SELECTEDpy, respectively.

Therefore, TSW falsely suggests the logarithmic transformation of the data in both
cases and so there is a bias in favor of the logarithmic transformation, whereas no
transformation of the original data needs to be performed as shown using the new

method.

iii. The effect of data transformation on univariate modelling and outlier detection
The possible effect of log transforming an already variance stationary time series on the
specification of the univariate ARIMA model and the detection of outliers is examined
through Tables 18-25.

For the time series of CPI, Table 18 presents the results on univariate ARIMA modelling

with and without the log-transformation, while the estimation details are quoted in the
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Tables 19-20. From the results of Table 18 it is obvious that different ARIMA models

are proposed for the linearized transformed data and linearized original data.

Table 18. Univariate ARIMA modelling (CPI)
ARIMA model with linearized original data (new method) [Model (5)]

ARIMA(0,1,1) (1,1,0)12
MODEL SPECIFICATION

(1—0.221B2) (1-B)(1-B'?) Y, = (1 — 0.208B)¢,

ARIMA model with linearized transformed data (TSW) [Model (6)]

ARIMA(0,1,1) (0,1,1)1
MODEL SPECIFICATION

(1—B) (1-B2)log Y, = (1 — 0.206B) (1 + 0.223B12)¢,

Table 19. Parameter estimation of model (5)

Parameter Value t-statistic
.91 0.208 2.49
D, 0.221 2.65

Table 20. Parameter estimation of model (6)

Parameter Value t-statistic
6, 0.206 2.46
e, -0.223 2.68

The results on the detection of outliers are presented in Table 21. As is evident both

approaches identify the same outliers in terms of both time and type.

Table 21. Outlier Detection (CPI)

Outliers with original data (new Outliers with log-transformed data
method) (TSW)

105 LS (9 2011), 118 TC (10 2012), | 105 LS (9 2011), 118 TC (10 2012),
131 A0 (11 2013) 131 A0 (11 2013)
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For the series of HICP, Table 22 presents the results on univariate ARIMA modelling
with and without the log-transformation (for estimation details see Tables 23-24). From
the results of Table 22 it is apparent that the differences in the two univariate models
are of minor character, as in both cases the univariate model is the so-called “airline
model” of Box and Jenkins (1976). The differences, weak as they are, are confined only

to the estimated values of the parameters of the two models.

Table 22. Univariate ARIMA modelling (HICP)

ARIMA model with linearized original data (new method) [Model (7)]

ARIMA(0,1,1) (0,1,1)1
MODEL SPECIFICATION

(1— B) (1-B2)Y, = (1 — 0.188B) (1 + 0.203B12)¢,

ARIMA model with linearized transformed data (TSW) [Model (8)]

ARIMA(0,1,1) (0,1,1)12
MODEL SPECIFICATION

(1—-B) (1-B¥®)log Y, = (1 —0.213B) (1 + 0.175B1?)¢,

Table 23. Parameter estimation of model (7)

Parameter Value t-statistic
6, 0.188 2.23
) -0.203 2.4

Table 24. Parameter estimation of model (8)

Parameter Value t-statistic
6, 0.213 2.55
) -0.175 2.08

The results on the detection of outliers with both the original and the log-transformed
data are quoted in Table 25. As is evident, TSW falsely identifies one more outlier (25

AO) due to the scale “squizing” caused by the logarithmic transformation.
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Table 25. Outlier Detection (HICP)

Outliers with original data (new Outliers with log-transformed
method) (TSW)
105 LS (92011), 131 AO (11 25 A0 (12005), 105 LS (9 2011),
2013) 131 AO (11 2013)

These results should be contrasted to those of the time series of BOP statistics (see
sections 2.3.1.2 and 2.3.1.3) in which it was documented that the consequences of not
transforming a variance non-stationary time series were indeed severe, at least as far as
univariate time series modelling is concerned (Milionis and Galanopoulos, 2017). The
above conclusions, regarding the severity of the consequences of a wrong decision
about the transformation of the original values of a time series, may be backed by
theoretical argumentation. Indeed, in the case of unnecessarily (over) transforming an
already variance stationary series, the original and the over-transformed series are both
variance stationary. In contrast, when the original series is variance non-stationary and
is not transformed (as it should) it is evident that the usual univariate analysis, which
legitimately can be applied strictly to variance stationary series only, is falsely applied
to a variance non-stationary series. Hence, it is natural for sharp differences with the
analysis of the properly transformed series to appear. Obviously, this conclusion is of

much practical importance.

2.3.1.5 Further Analysis

The examination of the forecasting performance of the univariate models accordingly
with the data transformation is assessed using the MAPE statistic. Table 26 presents the
results and as is evident twelve-step-ahead forecasts with no transformation (as
suggested by the new method) are superior in terms of the MAPE value, as compared
to the corresponding forecasts with the data log-transformed, as suggested by TSW. As
regards the one-step-ahead forecasts, the forecasting performance of CPI is better with
the new method in terms of the MAPE value, while the MAPE value is exactly the same
for HICP.
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Table 26. Values of Mean Absolute Percentage Error of forecasts

MAPE (%)
Time series Forecasts Original Data Log-transformed data
(new method) (TSW)
CPI Twelve step ahead 1.294 1.457
HICP Twelve step ahead 0.848 0.865
CPI One step ahead 0.395 0.467
HICP One step ahead 0.452 0.452

To evaluate the differences in the seasonally adjusted series produced from original data
versus transformed data, the MAPD statistic was employed, and the results are
presented in Table 27. It is remarked that, as expected according to the previous
conclusion argumentation, the values of MAPD themselves are small in the statistical
sense, although with possibly higher economic importance as they refer to consumer
price indices.

Table 27. Differences in Seasonally Adjusted Series produced from original data
versus transformed data

Time series | MAPD (%) | Minimum Percentage | Maximum Percentage
Error (%) Error (%)
CPI 0.018 -0.057 0.037
HICP 0.017 -0.316 0.035

2.3.2. Application on time series created by statistical simulation

It should be recalled that in the normal course of an analysis of a time series, the test
for the possible need to transform the original data in order to stabilize the variance
precedes all other actions such as the creation of the univariate ARIMA model, the
seasonal adjustment etc. Therefore, it is obvious that the outcome of those actions is
affected by the decision on data transformation. That lends even more importance to
that decision and thus further evidence was sought in favor of our previous finding that
TSW suggests the log-transformation far too often due to bias. To this end, use was
made of simulated data. After some experimentation, it was observed that with series
following ARIMA(p, 1,q) processes, the initial conditions influence (although they

should not) the decision of TSW regarding the log-transformation. In sequence, 40 time

54



series were artificially created. The first 20 were built simulating a simple Gaussian
random walk model:

X; = X;_q + e, with e, = N(0,1) and initial condition X, = 0.
The other 20 were created by the same manner, except that X, was set equal to 1000.
All simulated data are available in Milionis and Galanopoulos (2018) working paper.
All these time series are by construction homogeneously stationary, so no data
transformation is needed.
Applying the new testing procedure, the outcome was indeed no transformation in all
40 cases (Milionis and Galanopoulos, 2018). In the simulated series with initial
condition X, = 0 the presence of negative values was observed in every single series.
Therefore, before log-transforming the series the usual practice of shifting them
upwards by adding a constant so that the minimum value of each series becomes
slightly positive was adopted.
Applying TSW, the outcome was no transformation only in the cases with X, = 0. In
all the cases with X, = 1000 TSW, falsely, suggested the log transformation (see Table
28). Indeed, the results of TSW are, once again, biased in favor of data transformation
where no transformation is needed and in the particular case at hand this bias is clearly

related to the initial condition of the simulated series.

Table 28. Test results for data transformation using TSW

LOG-LEVEL PRETEST :
1st simulated series with SSlevels/(SSlog*Gmean(levels)*2)= 1.0004275
initial value 1000 LOGS ARE SELECTED

2nd simulated series with SSlevels/(SSlog*Gmean(levels)*2)= 1.0004200
initial value 1000 LOGS ARE SELECTED

3rd simulated series with SSlevels/(SSlog*Gmean(levels)*2)= 0.99937392
initial value 1000 LOGS ARE SELECTED

4th simulated series with SSlevels/(SSlog*Gmean(levels)*2)= 0.99821483
initial value 1000 LOGS ARE SELECTED

Sth simulated series with SSlevels/(SSlog*Gmean(levels)*2)=1.0029646
initial value 1000 LOGS ARE SELECTED

6th simulated series with SSlevels/(SSlog*Gmean(levels)*2)= 0.99932366
initial value 1000 LOGS ARE SELECTED

7th simulated series with SSlevels/(SSlog*Gmean(levels)*2)=0.99998323
initial value 1000 LOGS ARE SELECTED
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8th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99976469
LOGS ARE SELECTED

9th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99899563
LOGS ARE SELECTED

10th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=1.0009120
LOGS ARE SELECTED

11th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99940611
LOGS ARE SELECTED

12th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=0.99783903
LOGS ARE SELECTED

13th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99956026
LOGS ARE SELECTED

14th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99996242
LOGS ARE SELECTED

15th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 1.0009673
LOGS ARE SELECTED

16th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99844882
LOGS ARE SELECTED

17th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)= 0.99780523
LOGS ARE SELECTED

18th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=1.0011250
LOGS ARE SELECTED

19th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=1.0010450
LOGS ARE SELECTED

20th simulated series with
initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=1.0001285
LOGS ARE SELECTED

LOG-LEVEL PRETEST :

21st simulated series with
initial value 0

LEVELS are Selected

22nd simulated series with
initial value 0

LEVELS are Selected

23rd simulated series with
initial value 0

LEVELS are Selected

24th simulated series with
initial value 0

LEVELS are Selected
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25th simulated series with
initial value 0

LEVELS are Selected

26th simulated series with
initial value 0

LEVELS are Selected

27th simulated series with
initial value 0

LEVELS are Selected

28th simulated series with
nitial value 0

LEVELS are Selected

29th simulated series with
nitial value 0

LEVELS are Selected

30th simulated series with
initial value 0

LEVELS are Selected

31st simulated series with
initial value 0

LEVELS are Selected

32nd simulated series with
initial value 0

LEVELS are Selected

33rd simulated series with
initial value 0

LEVELS are Selected

34th simulated series with
initial value 0

LEVELS are Selected

35th simulated series with
initial value 0

LEVELS are Selected

36th simulated series with
nitial value 0

LEVELS are Selected

37th simulated series with
initial value 0

LEVELS are Selected

38th simulated series with
initial value 0

LEVELS are Selected

39th simulated series with
initial value 0

LEVELS are Selected

40th simulated series with
initial value 0

LEVELS are Selected
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Moreover, even after the log-transformation, when the 20 log-transformed series with
X, = 1000 were tested again by TSW, the result was biased again (suggestion to log-
transform the (already log-transformed) series, as was case with the time series of

exports of goods excluding fuels and ships). Those results are presented in Table 29.

Table 29. Test results for data transformation using TSW and log-transformed series

LOG-LEVEL PRETEST :

Ist simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)2)=
1.0000550 LOGS ARE SELECTED

2nd simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
1.0000529 LOGS ARE SELECTED

3rd simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=
0.99989907 LOGS ARE SELECTED

4th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=
0.99973569 LOGS ARE SELECTED

5th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
1.0003951 LOGS ARE SELECTED

6th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99989544 LOGS ARE SELECTED

7th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99999495 LOGS ARE SELECTED

8th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99996343 LOGS ARE SELECTED

9th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)2)=
0.99984226 LOGS ARE SELECTED

10th simulated series in log-
transformed data with initial value 1000

SSlevels/(SSlog*Gmean(levels)*2)=
1.0001277 LOGS ARE SELECTED

11th simulated series in log-transformed
data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99990892 LOGS ARE SELECTED

12th simulated series in log-
transformed data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99967945 LOGS ARE SELECTED

13th simulated series in log-
transformed data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99993525 LOGS ARE SELECTED

14th simulated series in log-
transformed data with initial value 1000

SSlevels/(SSlog*Gmean(levels)"2)=
0.99999001 LOGS ARE SELECTED
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15th simulated series in log- SSlevels/(SSlog*Gmean(levels)2)=
transformed data with initial value 1000 1.0001311 LOGS ARE SELECTED

16th simulated series in log- SSlevels/(SSlog*Gmean(levels)*2)=
transformed data with initial value 1000 | 0.99976445 LOGS ARE SELECTED

17th simulated series in log- SSlevels/(SSlog*Gmean(levels)*2)=
transformed data with initial value 1000 | 0.99966162 LOGS ARE SELECTED

18th simulated series in log- SSlevels/(SSlog*Gmean(levels)"2)=
transformed data with initial value 1000 1.0001710 LOGS ARE SELECTED

19th simulated series in log- SSlevels/(SSlog*Gmean(levels)"2)=
transformed data with initial value 1000 1.0001444 LOGS ARE SELECTED

20th simulated series in log- SSlevels/(SSlog*Gmean(levels)"2)=
transformed data with initial value 1000 1.0000163 LOGS ARE SELECTED

2.4. Conclusions

In this work a new statistical testing procedure for variance non-stationary time series
is proposed. This procedure improves on existing ones as it combines detection,
correction and robustness. This is of value in its own right as it results in better
univariate time series modelling.

In addition, it was shown empirically using real data (balance of payments and prices
of consumer goods and services) for Greece, as well as simulated data, that an existing
test, namely the widely used algorithm of TSW software, provides, occasionally, biased
results. As a matter of fact, with the aid of the simulated data it was possible to identify
one of the possible sources responsible for this bias. More specifically, with simulated
homogeneously non-stationary processes, it was possible to identify that the bias of
TSW depends on the initial conditions.

Further, on the basis of the empirical evidence presented it is argued that the type of
data transformation and the entailed correction for variance—non stationarity is also
crucial for the detection of outliers and the seasonal adjustment of the original time
series. In addition, the empirical results provide evidence of an improved forecasting
performance by the proper use of a data transformation, a result that needs further
backing by additional empirical evidence.

It was also established that the consequences of falsely transforming a time series,

which is originally variance stationary, do exist, but are less severe than the
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consequences of falsely not transforming an originally variance non-stationary series,
a conclusion of much practical importance.
Overall, the proposed statistical testing methodology, placed in a more general

framework, seems to be a promising tool in applied time series analysis.
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SUMMARY OF CHAPTER 2

This chapter aims to fill an existing gap in the literature regarding the statistical testing
for the existence and the identification of the character of time-varying second moment
in its dependence on a non-constant mean level in time series. To this end a new
statistical testing procedure is introduced with some considerable advantages over the
existing ones. Amongst others it is argued that the existing statistical tests are
insufficient and sometimes lead to biased results. Further the effect of the application
of this methodology on some crucial elements of time series modelling such as outlier
detection and seasonal adjustment is examined, through case studies conducted on a
comparative basis using both the new methodology and an established one. It is
established that the consequences of falsely transforming a time series, which is
originally variance stationary, do exist, but are less severe than the consequences of
falsely not transforming an originally variance non-stationary series. This empirical
evidence is supported by theoretical arguments. The data set comprises time series on
monthly external trade statistics and prices of consumer goods and services for Greece.
Overall, the resulting empirical evidence favors the new approach. Further supporting

evidence is provided by the application of the new methodology to simulated data.
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CHAPTER 3

FORECASTING MACROECONOMIC TIME SERIES IN THE PRESENCE
OF VARIANCE INSTABILITY AND OUTLIERS

3.1 Introduction

Aunivariate ARIMA model is a concise quantitative summary of the internal dynamics
of a time series in a linear framework. As such, is useful for several reasons, amongst
others for forecasting and model-based time series decomposition in unobserved
components. This work will deal with the former and, in particular, with univariate
forecasts, which usually serve either as short-term, or benchmark forecasts. However,
economic time series from the real world are not usually «ready» to be used for
forecasting purposes and they need to undergo some statistical preparation and pre-
adjustment. This is because in time series of raw data variance non-stationarity may be
present. Furthermore, very often there exist causes that disrupt the underlying stochastic
process (existence of outliers, calendar effects, etc.). Their treatment is known as

«linearization».

Within that line of reasoning, statistical forecasts can be made after a series itself, or
some variance stabilizing transformation of it, is «linearized» according to the general

framework that is described in section 1.5.

As far as variance stabilization is concerned, if variance is somehow functionally
related to the mean level it is possible to select a transformation to stabilize the variance.
Widely used transformations to tackle this problem belong to the class of the power

Box and Cox transformation (see section 1.6.1).

So, there are two effects with potential influence on forecasting: transformation and
«linearizationy», each of which separately, as well as in combination, may play an

important role on time series forecasting.

At the empirical level, studies which have considered the merits of mathematical
transformations on forecasting have demonstrated that a data transformation generally
does not have a positive effect on forecast accuracy (Nelson and Granger 1979;

Makridakis and Hibon, 1979; Makridakis et. al, 1998; Meese and Geweke, 1984).
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On the other hand, at the theoretical level, Granger and Newbold (1976) found that such
forecasts are not optimal in terms of minimization of Mean Square Forecast Error
(MSFE). More specifically, for instance for the most popular transformation, namely
the logarithmic one, they showed that the minimum MSFE h-step ahead forecast is not

equal to Zr,,, = exp(Jr4n), as implied by the previous discussion, but is given by the
A ~ 1 .
expression Zy,p = exp (yT+h + 50',%), where o/ is the h -step ahead forecast error

variance. Pankratz and Dudley (1987), building up further on the work of Granger and
Newbold (1976), relate the bias in using simply the inversely transformed value of the
forecasts on the transformed time series (as compared to the minimum MSFE forecast)
amongst others to the value of the exponent 4 of the power transformation. The two
most frequent transformations, namely the logarithmic and the square root ones, under

certain conditions may be associated with serious biases (Pankratz and Dudley, 1987).

Regarding time series linearization, such a procedure is utilized thus far mainly as a
preadjustment task for seasonal adjustment (Kaiser and Maravall, 2001), so its effect
on forecasting has not been examined systematically, but only indirectly and
fragmentally. It is also remarked that even in studies coping with forecasting with
transformed data the attention focuses almost exclusively on point forecasts, by and

large disregarding interval forecasts.

Aiming at covering this research gap in the literature the objective in this chapter of the
thesis is in fact twofold: (a) to examine the effect of «linearization» and transformation
separately, as well as in combination, on both point forecasts and confidence interval
forecasts; (b) to use two algorithms specializing in testing, whether or not, a
transformation of the original data is necessary, namely the algorithm of TSW and the
algorithm developed in Chapter 2 and, compare the derived results from both (see also
Milionis and Galanopoulos 2018a). Hereafter the latter will be called M-G algorithm
for convenience. As a further application, we rank main economic indicators of the
Greek economy in terms of statistical «forecastability». The intended approach will be

practical.

The structure of the chapter is as follows: In section 3.2 details about the data to be used
for the empirical analysis are given; section 3.3 presents the empirical results and

relevant comments; section 3.4 concludes the chapter.
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3.2 Data

The data set comprises some of the most important macroeconomic time series for the
Greek economy, which refer to: GDP; unemployment; prices of consumer goods and
services; monetary aggregates; and balance of payments statistics. More specifically,
the time series from the balance of payments statistics are imports-exports excluding
fuels and ships and imports-exports including them. Particularly, in the balance of
payments, a distinction is made between imports — exports of all goods and imports -
exports of goods without fuels and ships for several reasons. More specifically: 1) the
IMF in its 6th Manual on Balance of Payments (IMF, 2009), revised the definition of
the item “Total Goods” to firmly align with the principle of “change of ownership” (for
more details see section 2.3.1), ii) to ensure consistency with the external trade statistics
generated by the Hellenic Statistical Authority, iii) according to a study by the Bank of
Greece (Oikonomou et al., 2010), the dependence of the Greek economy on oil was
high and was rising at the fastest pace among the euro area countries. For these reasons,
the time series of Imports of Goods and Exports of Goods without fuels and ships from
Table 1 (referred to as Total Imports and Total Exports of Goods excluding fuels and
ships in Chapter 2) are being re-examined. Furthermore, from the same study it is noted
that the balance of payment of sea transport is significant in the Greek balance of current
transactions (4% of GPD in 2008) and will be considered separately from other BOP

transactions on transport.

Of the twenty economic time series that are used, nineteen are monthly time series, one
is a quarterly time series (sources: Bank of Greece (BoG) and Hellenic Statistical

Authority (ELSTAT)). The list of time series used is given in Table 1.

The monthly time series data cover the period from January 2004 to August 2018 and
consist of one hundred and seventy-six (176) observations, except for Industrial
Production Index, where available data existed from January 2010 to August 2018 (104
observations). The quarterly time series is that of Gross Domestic Product and covers

the period from 1995 Quarter 1 to 2018 Quarter 3 (95 observations).
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Table 1. Data

Time Series Observation Source
frequency
Gross Domestic Product Quarterly ELSTAT
(GDP)
Industrial Production Index Monthly ELSTAT
(IP1)
Consumer Price Index (CPI) Monthly ELSTAT
Harmonised Index of Monthly ELSTAT
Consumer Prices (HICP)
Unemployment — thousands Monthly ELSTAT
Unemployment — percentage Monthly ELSTAT
Retail sales Monthly ELSTAT
M1 Monthly BoG
M2 Monthly BoG
M3 Monthly BoG
Balance of payments (BOP) — Monthly BoG
Transport — Payments
Balance of payments (BOP) — Monthly BoG
Transport — Receipts
Balance of payments (BOP) — Monthly BoG
Travelling — Payments
Balance of payments (BOP) — Monthly BoG
Travelling — Receipts
Balance of payments (BOP) — Monthly BoG
Sea transport — Payments
Balance of payments (BOP) — Monthly BoG
Sea transport — Receipts
Exports of Goods Monthly BoG
Exports of Goods without Monthly BoG
fuels and ships
Imports of Goods Monthly BoG
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Imports of Goods without Monthly BoG
fuels and ships

3.3 Empirical results and comments

As mentioned in section 3.1, the effect of transformation and the effect of linearization
on forecasting will be examined at first each one separately and, subsequently, in

combination.

The aforementioned effects will be studied on a comparative basis utilizing both the
TSW and the M-G algorithms. In that way, together with those effects themselves, it

will also be possible to evaluate the performance of each methodology.

Typical statistics to be used for the assessment of the quality of point forecasts are the

following:

1) the Mean Absolute Percentage Error (MAPE) statistic given by:

100% wn

MAPE ===y | |

At

1) the Mean Square Forecast Error (MSFE) statistic given by:
MSFE =~ 3% (4, — F;)?, and

iii) the Mean Absolute Error (MAE) statistic given by:
1
MAE = n t=1l4¢ — Fel,

where A; is the actual value and F; is the forecast value.

Furthermore, as far as interval forecasts are concerned, the width of the forecast

confidence interval (CI), or the forecast standard error, will be considered.

Best forecast will obviously be perceived the one with the minimum value of each time

utilized statistic from the ones mentioned above.

3.3.1 The effect of «linearization» on forecast quality

We will investigate how time series linearization affects the quality of both point
forecasts and confidence interval forecasts. Here linearization will not be considered in

its generality, as described in section 1.5, but will be confined to outliers’ detection and
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adjustment. (Calendar effects such as the trading day and leap effects were considered
and indeed were found to be statistically significant on some occasions. All series were
properly adjusted for calendar effects before further analysis.). Table 2 presents the
number of best forecasts with data in levels. Auxiliary Table 3 presents the number of
best forecasts with log-transformed data indistinguishably for all time series, as it is
often the case to use log-transformed data in econometric analyses. It is noted that in
one time series with levels (that of unemployment expressed in percentages) and one
time series in logs (that of industrial production index) no outliers were detected, hence,

the total number of time series considered reduced to nineteen for each case.

Table 2. Summary table - Number of best forecasts (levels)®

Point Forecasts With detected Outliers Without detection of
Outliers
MAPE 10/19 9/19
MSFE 8/19 11/19
MAE 9/19 10/19
Interval Forecasts With detected Outliers Without detection of
Outliers
Forecast Standard 19/19 0/19
Error (SE)

From the results of Tables 2 and 3 it is apparent that, when outliers are considered,
forecasts are better in every single case in terms of the width of the forecast confidence
interval. In contrast, there is no obvious improvement in point forecasts. One point that
should be stressed is that such results are in general dependent upon the specific
characteristics of each time series, especially upon whether an outlier lays among the
first, the middle or the last observations. For this reason, it would be desirable to use a
large number of time series, so as to draw conclusions of indisputable confidence.
Although the number of time series used in this work is relatively small (though

comparable to that of other similar works, see for instance Nelson and Granger, 1979)

5 As the usual practice, the original data set was split up into the estimation sample, over which model
estimation is performed, and the holdout (test) sample. In all cases the holdout sample for ex-post
forecasts was originally set to twelve time periods for the monthly series and ten time periods for GDP.
Presented results are based on one-step-ahead forecasts. Results for longer forecasting periods (not
presented) are very similar and are available by the author.
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the evidence that led to the above conclusions, in particular regarding the width of the
forecast confidence interval, is so convincing that it really stands far and beyond any

concern related to micronumerosity.

Table 3. Summary table — Number of best forecasts (log-data)

Point Forecasts With detected Outliers Without detection of
Outliers
MAPE 9/19 10/19
MSFE 11/19 8/19
MAE 10/19 9/19
Interval Forecasts With detected Outliers Without detection of
Outliers
Forecast Standard 19/19 0/19
Error (SE)

3.3.2 The effect of Level Shifts (LLS), in particular, on forecast quality

After a level shift outlier, all observations subsequent to the outlier move to a new level.
In contrast to additive and transitory outliers a level shift outlier reflects a major change
in the stochastic process and affects many observations, as it has a permanent effect.
For this reason, the case with only additive and transitory outliers (i.e. excluding level
shifts) was considered, and their effect on forecasts was examined separately,
performing the same analysis as in section 3.3.1. It is noted that this time only fifteen
time series were considered, i.e. those including all types of outliers. The results are

presented in Tables 4 and 5.

From the results below it is obvious that there is a trade-off: confidence interval
forecasts are better with level shift outliers included and, conversely, point forecasts are
better excluding level shifts. Given the influence of the level shift outliers it would be
desirable to possibly consider stricter identification criteria for them relative to the other
two types of outliers. It is noted that in existing statistical software specializing on time
series analysis there is no such an option, and a purpose-built routine should be created

by the researcher.
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Table 4. Summary table - Number of best forecasts (levels)

Error (SE)

Point Forecasts All Outliers Outliers without LS
MAPE 6/15 9/15
MSFE 5/15 10/15
MAE 6/15 9/15
Interval Forecasts All Outliers Outliers without LS
Forecast Standard 14/15 1/15

Table 5. Summary table - Number of best forecasts (log-data)

Point Forecasts All Outliers Outliers without LS
MAPE 6/15 9/15
MSFE 5/15 10/15
MAE 6/15 9/15
Interval Forecasts All Outliers Outliers without LS
Forecast Standard 13/15 2/15
Error (SE)

3.3.3 The effect of a data transformation on forecast quality

As far as the effect of data transformation is concerned, at first it is important to note
that the effect of a transformation is meant in two ways: 1) direct and 2) indirect
(through its influence on outlier detection). Indeed, regarding the latter, it has been

shown that data transformation affects the number and the character of outliers in a time

series (Milionis 2003; Milionis, 2004).

The possible need for a data transformation of the original time series data will be
examined using both the algorithms of TSW and M-G. Furthermore, each decision
derived from the Milionis and Galanopoulos methodology and the corresponding one
derived from the TSW routine will be compared. Once a decision about the proper data

transformation is made, TSW will be used for both cases for further analysis on

statistical forecasting.
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Regarding the arithmetic values of the exponent A (see section 1.6.1) and the closely
related parameter f3, as is estimated by Equation (3) of section 2.2.1, for practical
purposes Makridakis et al. (1998) mention that it is of no merit to use arithmetic values
with several decimal points, as nearby values will produce very similar results. Simple

arithmetic values of A are easier to interpret, hence, are more meaningful.

In line with that argument, nearby arithmetic values of § will be grouped together, so
as to create two sub-logarithmic transformations, namely the square root and cubic root
ones, the logarithmic itself, and one over-logarithmic, namely the negative inverse
transformation. More specifically, following some experimentation, the grouping is as

follows (it is noted that no case with negative value of 8 was encountered):

(a) B not statistically significant, then A = 1;

(b) f statistically significant and 0 < § < B + 1.96se(f) or 0.65, whichever is
lower, then A = 1/2;

(c) B — 1.96se(B), or 0.65, whichever is higher < § < 8 + 1.96se(f) or 0.80,
whichever is lower, then A = 1/3;

(d) B — 1.96se(B) or 0.80, whichever is higher < f < B + 1.96se(f), then 1 =
0;

(e) f —1.96se(f) > 1,then 1 = —1.

Table 6 presents the results on the decision about, transforming or not, the original time
series data. From these results it is evident that, according to the M-G algorithm, no
transformation of the original data is suggested in fifteen out of the twenty cases, the
negative inverse transformation is suggested in four cases and the logarithmic

transformation in only one case.

The same series were reanalyzed following the standard TSW procedure. It is noted
that the only alternatives available with TSW are either the log-transformation, or no
transformation. Using the TSW routine for these twenty cases, TSW suggested the
logarithmic transformation of the original data for eighteen cases. It is remarkable that
only for the two series of unemployment TSW suggests no transformation, as does the
Milionis Galanopoulos method as well, for the particular two series. It should be
stressed, however, that as shown by Milionis and Galanopoulos (2018a, 2018b), the

TSW routine is biased towards suggesting the log-transformation.
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Table 6. Decision about data transformation

TIME SERIES METHOD OF TRANSFORMATION
LOG-LEVEL PRETEST M-G
(Output from TSW)
Gross Domestic SSlevels/(SSlog*Gmean(levels)*2)= Levels
Product (GDP) 1.1380170 LOGS ARE
SELECTED
Consumer Price Index | SSlevels/(SSlog*Gmean(levels)*2)= Levels
(CPI) 1.0781750 LOGS ARE SELECTED
Harmonised Index of | SSlevels/(SSlog*Gmean(levels)*2)= Levels
Consumer Prices 1.0954455 LOGS ARE SELECTED
(HICP)
Industrial Production | SSlevels/(SSlog*Gmean(levels)*2)= Levels
Index (IPI) 1.0224433 LOGS ARE SELECTED
Unemployment — SSlevels/(SSlog*Gmean(levels)”2)= Levels
thousands 0.87725642 LEVELS ARE
SELECTED
Unemployment — SSlevels/(SSlog*Gmean(levels)*2)= Levels

percentage 0.86356273 LEVELS ARE
SELECTED
Retail sales SSlevels/(SSlog*Gmean(levels)*2)=| Negative Inverse
1.2755206 LOGS ARE SELECTED
M1 SSlevels/(SSlog*Gmean(levels)*2)= Levels
0.98393639 LOGS ARE
SELECTED
M2 SSlevels/(SSlog*Gmean(levels)*2)= Levels
1.0714007 LOGS ARE SELECTED
M3 SSlevels/(SSlog*Gmean(levels)*2)= Levels
1.0422806 LOGS ARE SELECTED
Balance of payments | SSlevels/(SSlog*Gmean(levels)"2)= Levels

(BOP) — Transport —

Payments

1.0351033 LOGS ARE SELECTED
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Balance of payments
(BOP) — Transport —

SSlevels/(SSlog*Gmean(levels)*2)=
1.1641507 LOGS ARE SELECTED

Negative Inverse

Receipts
Balance of payments | SSlevels/(SSlog*Gmean(levels)"2)= Levels
(BOP) — Travelling — | 1.1509645 LOGS ARE SELECTED

Payments
Balance of payments | SSlevels/(SSlog*Gmean(levels)*2)= Logarithmic
(BOP) — Travelling — | 4.3996100 LOGS ARE SELECTED

Receipts
Balance of payments | SSlevels/(SSlog*Gmean(levels)*2)= Levels

(BOP) — Sea transport

— Payments

0.98863656 LOGS ARE
SELECTED

Balance of payments
(BOP) — Sea transport

SSlevels/(SSlog*Gmean(levels)*2)=
1.1948699 LOGS ARE SELECTED

Negative Inverse

— Receipts
Exports of Goods SSlevels/(SSlog*Gmean(levels)*2)= Levels
0.95751942 LOGS ARE
SELECTED
Exports of Goods SSlevels/(SSlog*Gmean(levels)*2)= Levels
without fuels and 0.96487436 LOGS ARE
ships SELECTED
Imports of Goods SSlevels/(SSlog*Gmean(levels)*2)= Levels

1.1118244 LOGS ARE SELECTED

Imports of Goods
without fuels and

ships

SSlevels/(SSlog*Gmean(levels)*2)=
1.2957291 LOGS ARE SELECTED

Negative Inverse

The possible effect of transforming time series on forecasting quality is examined
through Tables 7a and 7b. From the results below it is concluded that point forecasts
with either transformation method are slightly better than with no transformation in
terms of MAPE and MAE, but not in terms of MSFE. As already explained, forecasts
on transformed variables are not optimal in terms of MSFE. On the other hand,

confidence interval forecasts are shorter in four of the five cases using transformations
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with the M-G approach. In contrast this happens in only eight out of the eighteen cases
using the TSW approach. Though it seems that M-G approach leads to shorter
confidence interval forecasts, obviously there are very few cases available. Further
empirical evidence with a larger dataset is needed on that point so as to draw safer

conclusions.

Table 7a. Summary table - Number of best forecasts (M-G versus benchmark)

Point Forecasts M-G - no outliers | Levels-no outliers

(Benchmark)
MAPE 3/5 2/5
MSFE 2/5 3/5
MAE 3/5 2/5
Interval Forecasts | M-G - no outliers | Levels-no outliers
(Benchmark)
Forecast 4/5 1/5

Standard Error
(SE)

Table 7b. Summary table - Number of best forecasts (TSW versus benchmark)

Point Forecasts

TSW - no outliers

Levels-no outliers

(Benchmark)
MAPE 9/18 9/18
MSFE 7/18 11/18
MAE 9/18 9/18
Interval Forecasts | TSW - no outliers | Levels-no outliers
(Benchmark)
Forecast 8/18 10/18

Standard Error
(SE)

3.3.4 The combined effect of linearization and data transformation

The results of the examination of the forecasting performance combining both

linearization and data transformation are presented in Tables 8a and 8b. The conclusion

73



that is derived is that, by and large, the combined effect does not lead to better point
forecasts but leads to improved confidence interval forecasts with better performance
for the M-G approach. The conclusion about the forecast confidence interval is
reasonable and, to a large extent, expected, as with the transformation of the original
time series data and the adjustment for outliers the process variance is reduced. It is

possible to exploit this reduction in obtaining forecasts with increased confidence.

Table 8a. Summary table - Number of best forecasts (M-G versus benchmark)

Point Forecasts | M-G - All outliers | Levels-no outliers
(Benchmark)
MAPE 2/5 3/5
MSFE 2/5 3/5
MAE 2/5 3/5
Interval Forecasts | M-G - All outliers | Levels-no outliers
(Benchmark)
Forecast 4/5 1/5
Standard Error
(SE)

Table 8b. Summary table - Number of best forecasts (TSW versus benchmark)

Point Forecasts

TSW - All outliers

Levels-no outliers

(Benchmark)
MAPE 8/18 10/18
MSFE 8/18 10/18
MAE 8/18 10/18

Interval Forecasts

TSW - All outliers

Levels-no outliers
(Benchmark)

Forecast Standard
Error (SE)

12/18

6/18
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Table 9 presents the ARIMA models for the benchmark model and the combination of
Milionis-Galanopoulos variance stabilizing method - linearization. It is noted that the

differences in the ARIMA models for the time series where no transformation was

needed should be attributed to the existence of outliers adjusted by linearization.

Table 9. Univariate ARIMA models with and without transformation-linearization

Time series Benchmark M-G
Gross ARIMA (0,1,1) (0,1,1)4 ARIMA (1,0,0) (1,1,0)4
Domestic VV,Y; = (14 0.118B)(1 (1 + 0.953B)(1 — 0.335B4)V, Y,
Product (GDP) + 0.425B%)¢, =g
Industrial ARIMA (2,0,0) (0,1,1)12 ARIMA (2,0,0) (0,1,1)12
Production | (1 + 0.379B + 0.547B%)V,,Y, = | (1 + 0.379B + 0.547B2)V,,Y, =
Index (IPI) (1+ 0.950B'2)g, (1+ 0.950B'2)g,
Consumer ARIMA (0,1,0) (0,1,1)12 ARIMA (1,1,0) (0,1,0)12
Price Index UV, Y, = (1 + 0.260B12)g, (1 + 0.134B)VV,,Y, = &
(CPI)
Harmonised ARIMA (0,1,0) (0,1,1)12 ARIMA (0,1,0) (0,1,1)12
Index of UV, Y, = (1 + 0.347B12)g, UV, Y, = (1 4+ 0.287B12)g,
Consumer

Prices (HICP)

Unemployment
— thousands

ARIMA (3,2,1) (0,1,1)12

ARIMA (3,2,1) (0,1,1)12

(1 —0.681B — 0.674B2
+ 0.062B3)V2V,,Y,
= (1+ 0.758B)(1
+ 0.938B12)g,

(1 —1.153B — 1.123B%
—0.340B3

) V2V,

(1 + 0.614B)(1 + 0.907B12)g,

Unemployment

ARIMA (2,2,1) (0,1,1)12

ARIMA (2,2,1) (0,1,1)12

(1— 0.726B — 0.715B2)V2V,, Y,

(1— 0.726B — 0.715B2)V2V,,Y,

— percentage = =
(1+0.734B)(1 + 0.816B1?)¢, (1+ 0.734B)(1 + 0.816B1?)¢,
ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12
Retail sales VWia¥e = (1 +0.364B)(1 VVi, -1 =
+ 0.566B12)g, Ye
(1+ 0.316B)(1 + 0.586B12)¢,
M1 ARIMA (0,2,1) (0,1,1)12 ARIMA (3,1,0) (0,1,1)12
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V2V,,Y, = (1 + 0.838B)(1
+ 0.682B12)¢,

(1 + 0.007B + 0.156B2

+0.420B3 )W”Yt

(1 + 0.668B'?)g,

M2

ARIMA (3,1,0) (1,0,1)1

ARIMA (3,1,0) (0,1,1)12

(1+ 0.328B + 0.040B2

+ 0.307B3)
(1 + 0.868B12)VY,

= (1
+ 0.656B12)g,

1+ 0.375B + 0.087132)
VY., Y,
( +0.311B3 127t

= (1+ 0.822B?)g,

M3

ARIMA (0,2,1) (0,1,1)12

ARIMA (0,2,1) (0,1,1)12

V2V,,Y, = (1 + 0.695B)(1
+ 0.824B12)g,

V2V12Yt =
(1 +0.683B)(1 + 0.859B1%)g,

Balance of
payments
(BOP) —

Transport —

Payments

ARIMA (0,1,1) (0,1,1)12

ARIMA (0,1,1) (0,1,1)12

VY., Y = (1 + 0.188B)(1
+0.847B12)¢,

VV12Yt =
(14 0.312B)(1 + 0.859B12)¢,

Balance of
payments
(BOP) —

Transport —

Receipts

ARIMA (3,1,1) (0,1,1)12

ARIMA (0,1,1) (0,1,1)12

(1 — 0.393B — 0.050B2

+ 0.264B3)VV,, Y,

= (1 - 0.288B)(1

+ 0.950B12)¢,

(1 + 0.180B)(1 + 0.829B12)g,

Balance of
payments
(BOP) —
Travelling —
Payments

Balance of

ARIMA (1,0,0) (0,1,1)12

ARIMA (1,0,0) (1,0,0)12

(1 +0.339B)V,,Y;

= (1
+ 0.506B12)g,

(1+0.314B)(1 + 0.613B12)Y,

payments
(BOP) —
Travelling —

Receipts

ARIMA (1,0,0) (1,1,0)12

ARIMA (1,0,0) (1,1,0)12

(1+0.731B)(1
— 0.371B2)V,,Y; = &

(1 +0.598B)(1
— 0.422B12)V,,InY, = &

ARIMA (0,1,1) (0,0,0)12

ARIMA (0,1,1) (0,1,1)12
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Balance of

VY, = (1 + 0202B)¢,

VVlet =

payments (1+ 0.290B)(1 + 0.846B'?)g,
(BOP) — Sea
transport —
Payments
Balance of ARIMA (3,1,1) (0,1,1)12 ARIMA (3,1,1) (0,1,1)1»
payments (1 —0.388B — 0.020B> 1—0.533B — 0.125B2 -1
( +0.217B3 )W“T
(BOP) — Sea + 0.281B3)VV,,Y, : t
transport — = (1-0.262B)(1 - .
Receipts +0.848B12)g, (1-0.414B)(1 + 0.826B*“)&;
ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12
Exports of
VVlet = (1 + 0414B)(1 VVlet =
Goods
+ 0.950B12)g, (14 0.387B)(1 + 0.950B12)g,
Exports of ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12

Goods without

fuels and ships

VV,,Y, = (1 + 0.485B)(1
+0.922B12)¢,

VY =
(1 + 0.587B)(1 + 0.785B'?)g,

ARIMA (0,1,1) (0,1,1)12

ARIMA (0,1,1) (0,1,1)12

Imports of
vvlet = (1 + 04‘958)(1 Vvlet -
Goods
+ 0.950B12)g, (1 + 0.655B)(1 + 0.934B12)g,
Imports of ARIMA (0,1,1) (0,1,1)12 ARIMA (0,1,1) (0,1,1)12
. = -1
Goods without VVi2Ye = (1 +0.434B)(1 VVi, v =
t

. 0.785B1?
fuels and ships * et

(1 + 0.313B)(1 + 0.799B12)g,

3.3.5 Sensitivity analysis - Outliers (dependence of outlier detection on the

parameter 7)

Let Yr,,/®r denote the optimal one-step-ahead linear forecast of Yy, given
@, which

denote the

the information set includes information up to time T,

associated  forecast  error, and

ers1 = Yro1 — Vria /@
02,1 = [Yr41 — Y7r41/P1]? denote the associated variance. The observation Yy, is

considered as an outlier if the null Hypothesis: Hy:eryq =0 is rejected. The

appropriate statistic to test Hy is: T = er+1

OT+1

77



However, theory cannot predict the critical value of T above which the
corresponding observation can be considered as an outlier. A usual practice is to relate
the critical value of T with the length of a time series. The default values of TSW for
are presented in Table 10°. In the course of our experimentation, it was observed that
outlier detection (as well as ARIMA models for the linearized-transformed series), were
very sensitive to the value of parameter 7. In order to examine, whether or not, the
critical T values could have any noticeable effect on our final conclusions, as an
alternative set of critical values for T we used those suggested by Fischer and Planas
(2000), who examined a very large number of time series. Their critical values for T
were set at 3.5, 3.7 and 4.0 for series lengths of less than 130 observations, between

131 and 180, and more than 180 observations, respectively.

Table 10. Critical values for T

Observations Default values for T in TSW
164 0.358E+01
165 - 168 0.359E+01
169 - 172 0.360E+01
173 -175 0.361E+01

The comparison of the results based on default critical T values, as well as on
Fischer — Planas recommendations are presented in Table 11, while the detected outliers
for each time series and each set of values for the parameter T are presented in Table
12. Looking at Table 12 it is observed that the detection of outliers is indeed sensitive
even to the examined small changes in the value of 7. On the other hand, however, from
the results of Table 11, it is apparent that using the Fischer and Planas critical values

for T leads to mixed results regarding the effect on forecast quality.

By and large, there is only very weak evidence of improvement using the Fischer

— Planas recommendations’.

8 In the TSW framework the subroutine TERROR is designed especially for outlier detection. Incoming
data volume in institutions like EUROSTAT, ECB, OECD, NCBs, NSOs etc. may be enormous. Such
data may be contaminated by errors of various types and origins. Using TERROR is a convenient, yet
formal way to spot aberrant observations (outliers). It is highly possible that if erroneous data do exist,
they will be included in the set of observations characterized as outliers by TERROR, hence, in a second
stage, their possible identification is focused exclusively on that data set. In this work we used the first
stage only.

" Indeed, setting the Fischer —Planas critical values instead of the default ones, the results are identical
regarding those of Table 8a, while the results pertaining to those of Table 8b they are identical in terms
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Table 11. Results based on Fischer — Planas recommendations

Time series

Improvement of

Same forecast

Deterioration of

forecast quality quality forecast quality
Gross Domestic MAPE, MSFE, MAPE, MSFE,
Product (GDP) MAE, SE (TSW) | MAE, SE (M-G)
Consumer Price MAPE, MSFE, MAPE, MSFE, SE (TSW)
Index (CPI) MAE (TSW) MAE, SE (M-G)
Harmonised Index MAPE, MSFE, SE (M-G)
of Consumer MAE (M-G)
Prices (HICP) MAPE, MSFE,
MAE, SE (TSW),
Industrial MAPE, MSFE, MAPE, MSFE, SE (M-G)
Production Index MAE (M-G) MAE, SE (TSW)

(1P1)

Unemployment —

MSFE (M-G, and

MAPE, MAE, SE

thousands TSW) (M-G, and TSW)
Unemployment — | MAPE, MSFE, SE (M-G, and
percentage MAE TSW)
(M-G, and TSW)
Retail sales MAPE, MSFE,
MAE, SE (M-G,
and TSW)
M1 MAPE, MSFE,
MAE, SE (M-G,
and TSW)
M2 MAPE, MAE (M- MAPE, MSFE,
G) MAE, SE (TSW),
MSFE, SE (M-G)
M3 MAPE, MSFE, MAPE, MSFE,
MAE (M-G) MAE, SE (TSW),

of the standard error, and 8/18 for MAPE, MAE and MSFE with TSW, as compared to 7/18 using the

default critical values).




SE (M-G)
Balance of MAPE, MSFE, MAPE, MSFE,
payments (BOP) — MAE (TSW) MAE, SE (M-G)
Transport — SE (TSW)
Payments
Balance of MAPE, MSFE,
payments (BOP) — | MAE, SE (M-G,
Transport — and TSW)
Receipts
Balance of MAPE, MAE, SE MSFE (TSW)
payments (BOP) — (TSW) MAPE, MSFE,
Travelling — MAE, SE (M-G)
Payments
Balance of SE (M-G, and MAPE, MSFE,
payments (BOP) — TSW) MAE (M-G, and
Travelling — TSW)
Receipts
Balance of MAPE, MSFE, SE (M-G, and
payments (BOP) — | MAE (M-G, and TSW)
Sea transport — TSW)
Payments
Balance of MAPE, MSFE, SE (M-G, and
payments (BOP) — | MAE (M-G, and TSW)
Sea transport — TSW)
Receipts
Exports of Goods MAPE, MSFE, SE (M-G, and
MAE (M-G, and TSW)
TSW)
Exports of Goods MAPE, MSFE,
without fuels and MAE, SE (M-G,
ships and TSW)
Imports of Goods MAPE, MSFE, MAPE, MSFE,
MAE, SE (M-G) | MAE, SE (TSW)
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Imports of Goods
without fuels and

ships

MAPE, MSFE,
MAE (TSW)

MAPE, MSFE,
MAE, SE (M-G)

SE (TSW)

Table 12. Detected outliers for the different values of parameter t (the first number
indicate the serial number of the corresponding observation, then follows the type of
outlier and within the parentheses the corresponding month, or quarter, and year)

Time series

T -default TSW critical values

T -Fischer-Planas

Gross Domestic

Product (GDP) OUTLIERS: 57 AO (1 2009) OUTLIERS: 57 AO (1 2009)
Industrial
) OUTLIERS: NO OUTLIERS OUTLIERS: NO OUTLIERS
Production
DETECTED DETECTED
Index (IPI)

Consumer Price
Index (CPI)

OUTLIERS: 93 LS ( 9 2011),
119 AO (11 2013)

OUTLIERS: 119 AO (11 2013)

Harmonised
Index of
Consumer Prices
(HICP)

OUTLIERS: 119 AO (11 2013)

OUTLIERS: 119 AO (11 2013)

Unemployment

— thousands

OUTLIERS: 60 LS (12 2008),
95 LS (11 2011), 98 TC (2
2012), 126 LS (6 2014), 148 TC
(4 2016), 156 TC (12 2016)

OUTLIERS: 60 LS (12 2008),
95 LS (11 2011), 98 TC (2
2012), 126 LS (6 2014), 148
TC (4 2016), 156 TC (12 2016)

Unemployment

— percentage

OUTLIERS: NO OUTLIERS
DETECTED

OUTLIERS: NO OUTLIERS
DETECTED

Unemployment

— thousands

OUTLIERS: NO OUTLIERS
DETECTED

OUTLIERS: 113 AO (5 2013),
139 AO (7 2015)

M1

OUTLIERS: 139 LS (7 2015)

OUTLIERS: 139 LS (7 2015)
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OUTLIERS: 100 AO (4 2012),

OUTLIERS: 100 AO (4 2012),

M2 102 AO (6 2012), 133 LS (1 102 AO (6 2012), 138 TC (6
2015), 138 TC (6 2015) 2015)
OUTLIERS: 100 AO (4 2012), | OUTLIERS: 100 AO (4 2012),
M3 102 AO (6 2012), 133 LS (1 102 AO (6 2012), 133 LS (1
2015), 138 TC (6 2015) 2015), 138 TC (6 2015)
Balance of
payments (BOP) OUTLIERS: 60 LS (12 2008) OUTLIERS: 60 LS (12 2008),
— Transport — 133 LS (1 2015) 133 LS (1 2015)
Payments
Balance of
OUTLIERS: 59 LS (11 2008) | OUTLIERS: 36 TC (12 2006),
payments (BOP)
59 LS (11 2008)
— Transport —
Receipts
Balance of
payments (BOP)
_ OUTLIERS: 92 AO (8 2011) OUTLIERS: 92 AO (18 2011)
— Travelling —
Payments
Balance of
OUTLIERS: 2 AO (2 2004), OUTLIERS: 2 AO (2 2004),
payments (BOP) ( ) ( )
_ 113 LS (5 2013) 113 LS (5 2013)
— Travelling —
Receipts
Balance of
OUTLIERS: 60 LS (12 2008), | OUTLIERS: 59 LS (11 2008),
payments (BOP)
113 LS (5 2013), 133 LS (1 113 LS (5 2013), 133 LS (1
— Sea transport —
2015) 2015)
Payments
Balance of
payments (BOP) OUTLIERS: 36 TC (12 2006), | OUTLIERS: 36 TC (12 2006),

— Sea transport —

59 LS (11 2008), 129 AO (9

59 LS (11 2008), 129 AO (9

Receipts 2014) 2014)
Exports of
Goods OUTLIERS: 81 AO ( 9 2010) NO OUTLIERS DETECTED
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Exports of

Goods without | OUTLIERS: 60 LS (12 2008), | OUTLIERS: 60LS (12.2008),

fuels and ships 81 AO (9 2010) 81A0 (9 2010)
Imports of OUTLIERS: NO OUTLIERS OUTLIERS: NO OUTLIERS
Goods DETECTED DETECTED
Imports of

OUTLIERS: 39 AO (3 2007),
59 LS (11 2008), 75 AO (3
2010), 82 AO (10 2010), 139
TC (7 2015)

OUTLIERS: 39 AO (3 2007),
59 LS (11 2008), 75 AO (3
2010), 82 AO (10 2010), 139
TC (7 2015)

Goods without

fuels and ships

3.3.6 Evaluation of models’ forecasting performance

The skill of a forecast can be assessed by comparing the relative proximity of both the
forecast and a benchmark to the observations. The presence of a benchmark makes it
easier to compare approaches and for this reason a benchmark is proposed to establish
a common ground for comparison. In the present case an obvious benchmark is to use
the univariate ARIMA forecasts of the twenty-time series described in section 3.2, non-
linearized and non-transformed. This benchmark forecasts will be used together with
the forecasts from the TSW and M-G approaches as the three alternatives, the
performances of which are to be evaluated and compared. Forecasts’ evaluation for each
model will be based on both point and interval forecasts. A simple and transparent ad-
hoc approach will be used for this purpose. More specifically, for the point forecasts for
each time series and for each model an arithmetic value is assigned in ascending order
based on the corresponding value of the MSFE statistic (i.e. 1 for the minimum MSFE
value, 2 for the mid- MSFE value, 3 for the maximum MSFE value). Then, adding up
the arithmetic values for all series for a particular model their sum will represent the
performance of the model. Models will be ranked according to the value of the
corresponding sum. Apparently, the model with the lowest sum will be considered as
the best one. For interval forecasts the same procedure will be followed replacing the
value of the MSFE statistic with the value of the corresponding standard error around

the point forecasts.

From the above, it is apparent that use will be made repetitively of the same data set.

This could potentially make the whole process susceptible to the data snooping trap
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(White, 2000)%. Such a case is quite common for instance in developing trading
strategies in financial markets. A well-known tool used by the developers of such
strategies is the so-called reality check with its refinements and extensions (White 2000;
Romano and Wolf, 2005; Hansen et. al 2011). In the present case however, the
possibility that the forecasting performance of one of the three models to be used
(namely the benchmark model, TSW and M-G) is superior than that of the other two
simply due to chance is reduced by the fact that the number of models is much lower
than the number of time series (three against twenty). Therefore, it is unlikely that one
and the same model would obtain superior performance in all, or at least in most of the
twenty-time series, just as a result of pure chance. For this reason, the usage of the
reality check, bearing in mind also its weaknesses (Hansen, 2005; Hansen et. al 2011),

is not deemed as necessary.

The results are shown in Tables 13 and 14° and more detailed results are quoted in Table
15. It is clarified that both the TSW and M-G transformation approaches are coupled

with the outlier detection-adjustment approach.

Table 13. Ranking of forecasting performance according to MSFE (point

forecasts)
Time series Benchmark TSW M-G
Consumer Price 1 2 3
Index (CPI)
Harmonised Index 1 3 2
of Consumer Prices
(HICP)
M3 1 3 2
M2 2 3 1
Gross Domestic 3 1 2
Product (GDP)
M1 3 1 2

8 Halbert White in his seminal paper (White, 2000) states that: “data snooping occurs when a given set
of data is used more than once for purposes of inference or model selection. When such data reuse occurs,
there is always the possibility that any satisfactory results obtained may simply be due to chance rather
than to any merit inherent in the method yielding the results. This problem is practically unavoidable in
the analysis of time series data...”

% If for two models the value of MSFE or SE is exactly the same, the mid-point will be used for both.
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Industrial
Production Index

(IPI)

Retail sales

Unemployment —

thousands

2.5

2.5

Balance of
payments (BOP) —
Transport —
Receipts

Balance of
payments (BOP) —
Sea transport —

Receipts

Unemployment —

percentage

Balance of
payments (BOP) —
Transport —

Payments

Imports of Goods
without fuels and

ships

Exports of Goods
without fuels and

ships

Exports of Goods

Balance of
payments (BOP) —
Sea transport —

Payments

Imports of Goods
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Balance of
payments (BOP) —
Travelling —

Receipts

1.5

1.5

Balance of
payments (BOP) —
Travelling —

Payments

SUM

38

39

43

Table 14. Ranking of forecasting performance according to SE (interval forecasts)

Time series Benchmark TSW M-G
Harmonised Index 3 2 1
of Consumer Prices
(HICP)
Consumer Price 3 2 1
Index (CPI)
M1 3 2 1
M3 3 1 2
M2 3 1 2
Gross Domestic 3 1 2
Product (GDP)
Unemployment — 2 2 2
percentage
Industrial 2 3 1
Production Index
(IPT)
Unemployment — 3 1.5 1.5
thousands
Exports of Goods 2 3 1

without fuels and

ships
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Retail sales

Exports of Goods

Balance of
payments (BOP) —
Transport —
Receipts

Balance of
payments (BOP) —
Transport —

Payments

Balance of
payments (BOP) —
Sea transport —

Receipts

Imports of Goods
without fuels and

ships

Balance of
payments (BOP) —
Sea transport —

Payments

Imports of Goods

Balance of
payments (BOP) —
Travelling —

Payments

Balance of
payments (BOP) —
Travelling —

Receipts

2.5

2.5

SUM

52

39

29
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From the results of Tables 13 and 14 it is evident that the performance of neither TSW
nor M-G approach for point forecasts is better than that of the benchmark model (as a
matter of fact both are slightly worse). On the other hand, for the forecast confidence
intervals M-G has a better performance than TSW and the benchmark model.
Furthermore, TSW outperforms the benchmark model. A rather crude way to procced
to an overall evaluation of the three models is to add up their performances in the two
categories (i.e. point and interval forecasts). The addition gives the values of 90, 78 and
72 for the benchmark model, TSW and M-G respectively, which means that both TSW
and M-G perform clearly better than the benchmark model and further the performance

of M-GQ is better than that of TSW.

Table 15. Detailed forecast quality statistics: MSFE, MAE and Forecast Standard

Error
Time series Benchmark TSW M-G
Consumer 0.074 0.123 0.163
Price Index 0.241 0.293 0.332
(CPI)
0.461 0.450 0.426
Harmonised 0.100 0.114 0.107
Index of 0.255 0.272 0.267
Consumer
Prices 0.466 0.452 0.448
(HICP)
M3 1,551,599 2,166,840 1,947,577
947 1,100 1,116
2,448 1,709 1,989
M2 2,410,091 2,479,304 2,224,942
1,048 1,094 1,165
2,440 1,831 2,046
Gross 252,244 212,606 230,028
Domestic
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Product 371 354 363
(GDP) 1,004 819 869
M1 1,318,053 849,764 1,138,385
908 752 815
1,490 1,470 1,319
Industrial 1.618 1.639 1.619
Production 0.955 1.049 0.963
Index (IPI)
2.665 2.751 2.663
Retail sales 3.159 4.389 3.048
1.423 1.671 1.480
5.111 3.646 2.821
Unemploym 546.2 819.2 819.2
ent = 208 24.8 24.8
thousands
26.6 24.4 24.4
Balance of 1,919 2,225 3,828
payments 36.0 38.5 50.8
(BOP) —
Transport — 70.3 68.0 66.4
Receipts
Balance of 1,215 1,574 1,352
payments 31.2 326 30.0
(BOP) — Sea
transport — 70.2 58.5 58.1
Receipts
Unemploym 0.399 0.399 0.399
ent = 0.584 0.584 0.584
percentage

89




0.544 0.544 0.544
Balance of 1,002 1,217 1,106
t
payments 25.4 29.0 273
(BOP) —
Transport - 49.7 51.8 37.9
Payments
Imports of 12,479 12,246 14,772
Goods 98.1 96.5 102.5
without
fuels and 2047 152.1 175.1
ships
Exports of 6,020 2,793 4,520
Goods 67.3 455 58.4
without
fucls and 813 97.7 71.0
ships
Exports of 20,174 16,877 20,562
Goods 130.6 108.5 133.4
138.8 192.8 133.9
Balance of 1,276 711.8 1,095
t
payments 31.0 21.8 28.7
(BOP) — Sea
iranspott — 39.8 42.9 31.8
Payments
Imports of 97,620 93,330 93,509
Goods 263.4 252.6 250.3
345.1 319.3 324.0
Balance of 19,885 13,120 13,120
payments 87.7 78.6 78.6
(BOP) —
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Travelling — 96.6 98.9 98.9
Receipts

Balance of 1,563 1,560 1,687
payments 244 234 267.0
(BOP) —

Travelling — 28.8 23.0 25.7
Payments

Nelson and Granger (1979) utilized the Box-Cox transformations, amongst others, for
forecasting purposes (point forecasts) using twenty-one actual economic time series.
As they failed in getting superior forecasts, they reached to the rather pessimistic
conclusion that it is not worthwhile to make use of these transformations bearing in
mind the extra inconvenience, effort, and cost. Their point of view was subsequently
adopted by other researchers as well, as already mentioned in the introductory section.
Lest to get too disappointed, despite the fact that cost and effort are much lower
nowadays than what they were at that time, we further note that Nelson and Granger
did not associate forecasts on transformed time series with an outlier detection-
adjustment approach. Furthermore, their conclusion was based only on point forecasts,
disregarding forecast confidence intervals. The latter are of much importance especially
in cases where the focus is on best-worst forecast scenarios. For instance, such is the
case with actuarial time series on mortality rates, which may be used further for the
construction of pension plans. As shown above, the combination of transformation-

linearization leads to shorter forecast confidence intervals.

It should also be stressed that neither in the existing research works thus far, nor in the
present one, the treatment of the effect of data transformation on time series forecasting
is complete for the simple reason that no work extends the analysis in a bivariate (in
general multivariate) framework. Indeed, the existence of variance non-stationarity in
time series could potentially contaminate the pre-whitening process (for details about
the pre-whitening process see Box and Jenkins, 1976), consequently the sample cross
correlation function, so it will mask the true dynamic relationship between two series,
one of which is supposed to be the leading indicator, thus affecting negatively the

conditional (in this case) forecasts.
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3.3.7 The shift towards normality

Another serious concern expressed by Nelson and Granger (1979) was the fact that the
problem of acute non-normal distributions they found in most macroeconomic time
series they analyzed was restored only very little by their use of data transformations.
Table 16 presents the results for the Jarque-Bera statistic for normality (Jarque and Bera,
1980). This statistic is distributed as chi-square with two degrees of freedom. An
asterisk right next to an arithmetic value of Table 16 indicates a rejection of the null
hypothesis of normality at the 5% significance level (critical value = 5.99).

Table 16. Values of the Jarque —Bera statistic (statistically significant values
are indicated with an asterisk)

Time series Benchmark TSW M-G
Consumer Price 2.889 0.999 0.423
Index (CPI)
Harmonised 6.289* 5.850 8.263*
Index of

Consumer Prices

(HICP)
M3 19.78* 14.72%* 12.44*
M2 16.71%* 7.519* 16.31*
Gross Domestic 14.17* 0.541 3.699
Product (GDP)
M1 152.6* 2.879 3.597
Industrial 1.118 0.996 1.118
Production Index
(IP])
Retail sales 2.328 0.771 0.545
Unemployment — 9.745* 7.613* 7.613*
thousands
Balance of 5.526 0.563 3.587
payments (BOP)
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— Transport —
Receipts

Balance of
payments (BOP)
— Sea transport —

Receipts

7.447%*

0.9231E-01

0.7904E-01

Unemployment —

percentage

7.584*

7.584*

7.584*

Balance of
payments (BOP)
— Transport —

Payments

137.5*

1.651

5.289

Imports of Goods
without fuels and

ships

7.938%*

0.928

0.266

Exports of Goods
without fuels and

ships

28.26*

0.473

0.593

Exports of Goods

0.404

0.380

0.180

Balance of
payments (BOP)
— Sea transport —

Payments

210.5%*

4.633

4.598

Imports of Goods

1.589

4.115

0.924

Balance of
payments (BOP)
— Travelling —

Receipts

15.31*

4.696

4.696

Balance of

payments (BOP)

2.286

1.978

2.013
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— Travelling —

Payments

The results of Table 16 allow, again, for a more optimistic view, inasmuch as it is
evident that there is a general shift towards normality from the benchmark model to
either TSW, or M-G transformation-linearization procedure. The phenomenon on some
occasions is really very pronounced indeed (e.g. in the series of M1 and Balance of
Payments—transport-payments). This allows for computational algorithms such as
maximum likelihood estimation, as well as standard statistical tests, to be legitimately

employed with transformed-linearized data.

3.3.8 Statistical benchmark forecasting

Seizing the opportunity of the above analysis, it is useful to assess the
forecastability of the twenty time series of the Greek economy. Here forecastability will
be perceived in both point and confidence interval forecasts. For the former the MAPE
statistic will be employed. For the latter the percentage standard error statistic will be
introduced as the mean average of the ratio of the forecasts’ standard error over the
corresponding actual value, so as to make forecasts of the various series mutually
comparable. In all cases one-step-ahead forecasts will be performed?®. It is stressed that
although these forecasts are technically perfectly acceptable, nevertheless they are
purely statistical, hence, a-theoretical, and they can only serve as benchmark forecasts
in order to evaluate the merit of more structural econometric forecasts. Tables 17-18
show the results in descending order in terms of statistical forecastability according to

the Milionis - Galanopoulos method.

10 Two-(or more)-step-ahead forecasts are available from the author.
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Table 17. Forecastability of main economic indicators. Greece. Point forecasts

MAPE
Time series Benchmark TSW M-G
Harmonised Index of Consumer Prices 0.241% 0.257% 0.252%
(HICP)
Consumer Price Index (CPI) 0.238% 0.289% 0.328%
M3 0.561% 0.653% 0.661%
M2 0.625% 0.650% 0.697%
M1 0.786% 0.652% 0.706%
Gross Domestic Product (GDP) 0.760% 0.729% 0.745%
Industrial Production Index (IPI) 1.011% 1.111% 1.019%
Retail sales 1.424% 1.666% 1.458%
Unemployment — thousands 2.170% 2.608% 2.608%
Balance of payments (BOP) — Sea 2.789% 2.902% 2.640%
transport — Receipts
Unemployment — percentage 2.917% 2.917% 2.917%
Balance of payments (BOP) — Transport 2.929% 3.309% 3.134%
— Payments
Exports of Goods without fuels and ships 3.718% 2.517% 3.208%
Imports of Goods without fuels and ships 3.032% 3.026% 3.258%
Balance of payments (BOP) — Transport 2.748% 2.922% 3.835%
— Receipts
Balance of payments (BOP) — Sea 5.515% 3.883% 5.077%
transport — Payments
Exports of Goods 5.021% 4.238% 5.129%
Imports of Goods 6.027% 5.750% 5.705%
Balance of payments (BOP) — Travelling 12.194% 7.729% 7.729%
— Receipts
Balance of payments (BOP) — Travelling 12.553% 11.775% 13.994%

— Payments
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Table 18. Forecastability of main economic indicators. Greece. Interval forecasts

Percentage Standard Error

Time series Benchmark TSW M-G
Consumer Price Index (CPI) 0.454% 0.443% 0.419%
Harmonised Index of Consumer Prices 0.439% 0.427% 0.423%

(HICP)
M1 1.290% 1.272% 1.142%
M3 1.451% 1.013% 1.180%
M2 1.455% 1.090% 1.219%
Gross Domestic Product (GDP) 2.145% 1.745% 1.855%
Unemployment — thousands 2.809% 2.572% 2.572%
Unemployment — percentage 2.737% 2.737% 2.737%
Retail sales 5.110% 3.636% 2.803%
Industrial Production Index (IPI) 2.808% 2.890% 2.805%
Exports of Goods without fuels and ships 4.582% 5.483% 4.008%
Balance of payments (BOP) — Transport 5.817% 6.101% 4.469%
— Payments
Exports of Goods 5.495% 7.552% 5.294%
Balance of payments (BOP) — Sea 6.514% 5.394% 5.332%
transport — Receipts
Imports of Goods without fuels and ships 7.151% 4.833% 5.528%
Balance of payments (BOP) — Sea 7.234% 7.779% 5.807%
transport — Payments
Balance of payments (BOP) — Transport 5.565% 5.348% 6.317%
— Receipts

Balance of payments (BOP) — Travelling 24.967% 7.679% 7.679%

— Receipts
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Imports of Goods 8.170% 7.559% 7.700%

Balance of payments (BOP) — Travelling 17.607% 14.157% 16.151%

— Payments

From the results of the Tables 17 — 18, it is observed that although there are many
similarities in the two Tables, the ordering is not exactly the same. For this reason, the
linear correlation coefficient between orderings based on MSFE and the percentage
standard error was used. In all cases there is a strong positive correlation (see Table 19).
The method of Milionis-Galanopoulos has the highest correlation, while TSW has the

lowest.

From Tables 17 and 18 it is also noticeable that the BOP series are the least forecastable
in both Tables. Regarding the imports-exports time series it is noted that the former is
less forecastable than the latter. Furthermore, imports-exports excluding fuels and ships
are clearly more forecastable than imports-exports including them. This justifies, here
form the statistics point of view, the separate recording and usage of the imports-exports

without the inclusion of fuels and ships for further economic analysis.

Table 19. Linear correlation coefficient between MSFE and percentage SE ordering

Method Correlation
Benchmark 95.40%
TSW 93.05%
M-G 97.23%

3.4 Conclusions

This work dealt with the effect of data transformation for variance stabilization and
linearization for outlier adjustment on the quality of univariate time series forecasts,
using two methods for data transformation, those of TSW and Milionis Galanopoulos,

and following a practical approach.

There is clear evidence that linearization improves the forecasts’ confidence intervals
and some evidence that data transformation acts likewise. However, the effect of the
latter needs to be reconfirmed using a larger dataset. In contrast no evidence was found

that either transformation or linearization lead to better point forecasts. The combined
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effect of transformation-linearization improves further the forecasts confidence
intervals but worsens point forecasts. Furthermore, there is also evidence that the
overall forecasting performance using the Milionis Galanopoulos data transformation
procedure is somewhat better than the one using the data transformation procedure of

TSW.

One field that the documented in this chapter improvement in forecast confidence
intervals may be employed with some considerable advantages, is that of the actuarial
science and more specifically the longevity risk. This risk is caused by the uncertainty
surrounding the future trend of mortality rates of pensioners, as advancements in
science and medicine make the prediction of mortality rates a difficult task. One
method of addressing the aforementioned issue is to utilize mortality models to forecast
the trend of mortality rates and its associated uncertainty in the future. The latter is
directly associated with forecast confidence intervals. The whole upcoming chapter

(Chapter 4) is exclusively devoted to this topic.

Last, but certainly not least, the combined transformation-linearization procedure
improves substantially the non-normality problem encountered in many

macroeconomic time series.
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SUMMARY OF CHAPTER 3

Very often in actual macroeconomic time series there are causes that disrupt the
underlying stochastic process and their treatment is known as «linearization». In
addition, variance non-stationarity is in many cases also present in such series and is
removed by proper data transformation. The impact of either of them (data
transformation - linearization) on the quality of forecasts has not been adequately
studied to date. This work examines their effect on univariate forecasting considering
each one separately, as well as in combination, using twenty of the most important time
series for the Greek economy. Empirical findings show a significant improvement in
forecasts’ confidence intervals, but no substantial improvement in point forecasts.
Furthermore, the combined transformation-linearization procedure improves
substantially the non-normality problem encountered in many macroeconomic time

series.
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CHAPTER 4

MODELLING LONGEVITY RISK: A PRACTICAL STUDY OF THE
EFFECT OF STATISTICAL PRE-ADJUSTMENTS ON MORTALITY
TREND FORECASTS

4.1 Introduction

The utilization of Chapter 3's findings from analyzing macroeconomic time series in
the field of modeling longevity risk is highly advantageous, especially in terms of
dealing with variability. In Chapter 3, it's demonstrated that by applying statistical pre-
adjustments like transformation and linearization, forecast confidence intervals can be
made shorter. This is achieved through transforming the original time series data and
adjusting for outliers, which reduces the process variance. This reduction can be
employed to generate forecasts with higher levels of confidence.

The significance of forecasting confidence intervals becomes particularly pronounced
when considering scenarios that encompass both the most optimistic and the most
pessimistic forecasts. This is exemplified in instances like actuarial time series
concerning mortality rates, which have the potential for extended application in
developing pension plans.

Additionally, managing outliers representing rare real-world events in actuarial data
could enhance forecasts. A comparable situation that could exert substantial influence
on mortality data and forecasting is the Covid-19 pandemic, characterized by its
escalating death toll.

In this chapter use will be made of the findings of previous chapters in modeling
actuarial time series, in particular in forecasting longevity risk. The structure of the
chapter is as follows: In the next section a skeletal review of the subject is provided,
emphasizing on the link of the findings of Chapter 3 with modeling longevity risk. In
section 4.3 we describe the data and the software to be employed. In section 4.4 we

present and comment upon our results. In section 4.5 we conclude.
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4.2 Skeletal review of the subject

As time passes, the average lifespan is getting longer, presenting difficulties to both the
insurance sector and the academic community. The rise in life expectancy along with
the simultaneous decrease in fertility rates are placing noteworthy financial strain on
retirement income programs (Dowd et al., 2010; Oeppen and Vaupel, 2002). The
growing quantity of retirement plans and payouts resulting from longer lifespans
creates a potential risk of exceeding the budget of pension funds and life insurance
companies. Thus, financial organizations including pension funds, governments and
life insurance companies must confront the longevity risk. To address this, various
regulations have been implemented to ensure the stability of an institution’s reserve
funds and manage the associated risks. The Solvency II (Directive 2009/138/EC)
establishes a standardized method for determining capital requirements across all EU
member states with the goal of maintaining the financial stability (solvency) and risk
management capabilities of organizations. This capital requirement is called Solvency
Capital Requirement (SCR) and covers all the potential risks that an insurance company
may encounter. One of the most substantial non-diversifiable risks, among others, is the
longevity risk. The longevity risk is meant to be a composition of several components.
For the non-familiar reader, a short description of these components is given in
Appendix. This risk is caused by the uncertainty surrounding the future trend of
mortality rates of those receiving annuities (Dowd et al., 2010; Kleinow and Richards,
2017), as advancements in science and medicine make the prediction of mortality rates
a difficult task. In other terms, pensioners are living longer than anticipated causing life
insurance policies and retirement plans to pay out compensations for an extended period
of time. As a result, profits are decreasing and there is a risk of insolvency. Considering
the aforementioned points, Solvency II mandates that insurers maintain sufficient
reserves to cover 99.5% of potential scenarios that could arise within a one-year period.
Nevertheless, the longevity risk is associated with the prolonged trend of mortality rates
over the long term. The aforementioned trend develops over numerous years as a result
of the accumulation of minor alterations. Although many insurance risks can be easily
incorporated into a one-year value-at-risk framework, not all risks can be treated in the
same manner. Demanding that the risk associated with the trend of longevity be
evaluated solely over a one-year period would be excessively rigid (Richards and

Currie, 2009). This view of longevity trend risk is sometimes called the run-off
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approach, and it does not correspond with the one-year view demanded by a pure value-
at-risk methodology. Therefore, assessing the risk associated with longevity requires
predicting data related to longevity over a time horizon of multiple years.

One method of addressing the aforementioned issue is to utilize mortality models from
existing literature to forecast the trend of mortality rates and its associated uncertainty
in the future. By employing this method, an insurance company can strengthen the
process of determining capital requirements. Accurately and methodically predicting
the mortality rates is of paramount importance in managing longevity risk.

Numerous mortality models have been proposed over time, starting from the Gompertz
law of mortality in 1825, in order to achieve this goal (Cairns et al., 2006; Currie, 2006;
Hatzopoulos and Haberman, 2011; Hatzopoulos and Sagianou, 2020; Hyndman and
Ullah, 2007; Lee and Carter, 1992; Plat, 2009; Renshaw and Haberman, 2006). Recent
advancements in mortality modeling have tended to be extrapolative in nature, with the
principal components (PC) approach gaining significant attention. Thus, Bell and
Monsell (1991) expanded on the Ledermann and Breas (1959) method by utilizing a
PC approach to predict age-specific mortality rates. Lee and Carter (1992) conducted a
fundamental study on this method by investigating a modified version of it for the
purpose of predicting mortality rates. The primary statistical technique employed was
least-squares estimation via singular value decomposition (SVD) of the matrix of the
log age specific observed forces of mortality. Improvements to the LC model occur
when the model is adjusted by fitting a Poisson regression model to the number of
deaths at each age (Brillinger, 1986). Renshaw and Haberman (2003) incorporate age
differential effects, introducing a double bilinear predictor structure into the LC
forecasting methodology, and optimize the Poisson likelihood. Also, Hyndman and
Ullah (2005) use several PCs in order to capture the differential movements in age-
specific mortality rates, using functional PCA. A number of recent studies have
suggested new approaches to forecasting mortality rates, which involve
(nonparametric) smoothing. Thus, Currie et al (2004) use bivariate penalized B-splines
to smooth the mortality surface in both the time and age dimensions within a penalized
GLM framework. Hyndman and Ullah (2005) smooth the observed log-mortality rates
with constrained and weighted penalized regression splines. De Jong and Tickle (2006)
introduce a state space framework using B-spline smoothing. Gao and Hu (2009)
introduce a Generalized Dynamic Factor method and multivariate BEKK GARCH

model to describe mortality dynamics under conditional heteroskedasticity. Lazar and
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Denuit (2009) utilize dynamic factor analysis and the methodology of Johansen
cointegration to project mortality through a linear state space representation which
assumes that common factors can be modelled as a multivariate random walk with drift.
Further, in many developed countries (including UK, USA, Japan and Germany), there
is evidence of a cohort effect — thus, in the UK, generations born between 1925 and
1945 approximately seem to have experienced more rapid mortality decreases than
earlier or later generations. Renshaw and Haberman (2006) incorporate this effect by
developing an age-period-cohort version of the LC model which provides an improved
fit to the data compared to the basic LC model.

A stochastic mortality model can be used to analyze historical mortality data and gain
insights into mortality dynamics, including the trend of mortality rates. The mortality
rates obtained from a stochastic mortality model using historical data can be used with
the intention to predict the future behavior of mortality trends.

In this chapter, we use the multiple-component stochastic mortality model
Hatzopoulos-Sagianou (hereafter called HS) to model the mortality dynamics. The HS
model uses a semi parametric estimation method. This method adopts Generalized
Linear Models (GLMs) and Sparse Principal Components Analysis (SPCA). A sparsity
factor (s value) is necessary for the SPCA to identify the optimal and most informative
age—period and age—cohort components. To achieve this, the definition of the sparsity
factor is based on a methodology tailored for the HS model and is able to measure the
Unexplained Variance (UVR) of each of the age—period and age—cohort components
that are incorporated in the proposed model. For more details about the novel dynamic
structure and estimation method of the HS model see Hatzopoulos and Sagianou (2020).
In the family of age-period-cohort stochastic mortality models the dynamics of
mortality are driven by the period and the cohort indices. Therefore, the forecasting of
mortality rates requires the modeling of these indices using time series techniques. We
adopt the random walk with drift (henceforth RWD) model, as the standard approach
in the actuarial literature, for modelling the period indices (Cairns et al., 2006; 2011;
Haberman and Renshaw, 2011; Lee and Carter, 1992; Lovasz, 2011; Pitacco et al.,
2009; Villegas et al., 2018): Y; = d + Y;_1 + u, where Y; is a stochastic time series, u;
is a white noise process, and d is a constant. Nevertheless, researchers have attempted
to use other types of stochastic models to improve the accuracy of mortality forecasts

(Hatzopoulos and Sagianou, 2020; Lee and Miller, 2001; Plat, 2009; Villegas et al.,
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2018). A set of models that belong to this category are the AutoRegressive Integrated
Moving Average (henceforth ARIMA) models. Before using time series for forecasting
purposes, they typically require some statistical preparation and pre-adjustment, as they
are not usually suitable in their raw form. For instance, a time series of raw data may
have variance non-stationarity. Moreover, it is common to find outliers and other
factors, like calendar effects, that disturb the inherent stochastic process. Their
treatment is known as “linearization”. Variance non-stationarity and outliers not only
affect the variance of time series data, but also have an impact on the nature of the
ARIMA model and the identification and character of outliers (Milionis, 2003; 2004;
Milionis and Galanopoulos, 2019). So, both variance non-stationarity and outliers have
an impact on the accuracy of point and interval forecasts. Therefore, the presence of
variance non-stationarity and outliers in time series data can negatively affect the
accuracy of forecasts, leading to wider confidence intervals, which can in turn adversely
impact the management of longevity risk. In the actuarial field, the potential presence
of variance instability and outliers in longevity data can lead to an increase in time
series variance which can impact the uncertainty surrounding the solvency capital
requirements of a pension fund or insurance institution, among other factors. An
increase in time series variance may lead some insurers at a competitive disadvantage
as they have more capital locked in than the risk profile of the company would imply.
On the other hand, if the outliers in the actuarial time series data represent rare events
in the real world, such as world wars or pandemics like the Spanish influenza (1917),
it may be possible to enhance the accuracy of forecasts by appropriately managing their
impact. A similar phenomenon that may have a significant impact in mortality data and
forecasting is the Covid-19 pandemic, with the increasing number of deaths attributed
to it. In a possible future study of mortality rates, we need to take into account the
presence of the Covid-19 pandemic and its influence on mortality, in order to possibly
improve the accuracy and quality of predictions. Recent evidence is conducive to such
an approach. Indicatively, the New York City Department of Health and Mental
Hygiene in a recent analysis finds that life expectancy in the city of New York has been
decreased by as much as 4.6 years as a result of the COVID-19 pandemic (Department
of Health and Mental Hygiene, 2023).

Despite the importance of both point and interval forecasts on actuarial time series,
particularly in mortality rates, the potential presence and nature of variance instability

and outliers, their importance and impact on such forecasts, and the potential
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consequences for the performance of actuarial models have not been thoroughly
investigated to date. This is indeed the scope of this work. To this end, the RWD model
will be used as a benchmark, as the choice of this particular model is strongly backed
by the existing literature. Indeed, Lee and Carter (1992) found that a simple random
walk with drift was an appropriate model for the U.S. data they studied, and although
they highlighted the possibility of more general models, the random walk with drift is
typically used in applications. Lee and Carter developed their approach specifically for
U.S. mortality data, 1933-1987. In fact, the method is now being applied to all-cause
and cause-specific mortality data from many countries and time periods, all well beyond
the application for which it was designed. So, the method proposed in Lee and Carter
(1992) has become the “leading statistical model of mortality forecasting in the
demographic literature” (Deaton and Paxson, 2004). In addition, stochastic models will
be utilized with and without statistical pre-adjustments to evaluate the impact of such

adjustments on forecast accuracy. The intention is clearly towards a practical approach.

4.3 Data and software-computational details

In this chapter, we use the HS multiple-component stochastic mortality model in order
to model the mortality dynamics. By utilizing mortality models we estimate the death
rates and, in turn, the mortality trends in terms of time series, which reveal the behavior
of mortality over time. In the family of age-period-cohort stochastic mortality models
the dynamics of mortality are driven by the period and the cohort indices. The data
used, in order to estimate the time series of the period and cohort indices, consist of the
number of deaths, D, ,, and the corresponding central exposures to risk, E; ,, which are
defined in rectangular arrangement (t, x) over a unit range of individual calendar years
t(tq, ..., t,), and individual ages, x, last birthday (xy, ..., x;). Thus, we calculate the
crude (unsmoothed) central death rate for any age x and calendar year t, as
My = Dy x/E¢ 5. Et x 1s usually approximated by an estimate of the population aged x
last birthday in the middle of the calendar year ¢ or by an estimate of the average
population aged x last birthday of the beginning and the end of the calendar year t. We
model the number of deaths as independent Poisson realizations; that is, D, , follow

Poisson distribution with mean E , - m, , (Brillinger, 1986; Brouhns et al., 2002).
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Hatzopoulos and Sagianou (2020) proposed a dynamic multiple-component model that
includes §; age-period and &, age-cohort effects. The HS model can be represented by

the following generic formula:
log(mt x) = a, + Zl L ng) ) + Z C(J) (J) (5)
In equation 5 the tilt above m, , indicates expected value, the term a, reflects the main

age profile of mortality by age, ﬁ,gi) and ,8;(] ) represent the age effect for each period

(@

and cohort component, respectively. The terms k; ) reflect period-related effects and

determine the mortality trend. The terms yCU ) represent the cohort-related effects, where

¢ =t — x. The parameters §; (>=1) and §, (>=0) are indices for the number of period
and cohort components included in the model structure, respectively. The number of
period and cohort components vary depending on the experimental dataset, i.e., the
intrinsic mortality peculiarities of the examined population in a given time frame. For
the England and Wales dataset, for the period 1841-2006, §; = 5 and §, = 2 and for the
period 1961-2006, 6; = 4 and §, = 1. For full details of the Estimation Methodology,
see Hatzopoulos and Sagianou (2020).

Therefore, these k values must be projected. These period, Kt(i), indices reveal the
mortality trends of unique age clusters and can be used by a time series analysis
technique in order to forecast future mortality trends.

In this spirit, the approach adopted in this paper is the traditional two-stage process:
firstly, we fit the stochastic mortality model in order to estimate k values (see
Hatzopoulos and Sagianou, 2020) and then we fit a projection model to the estimated «
values for forecasting.

Therefore, considering the aforementioned and according to Hatzopoulos and Sagianou

(2020) results, the dataset for the time series analysis consists of nine annual time series

of period indices K ) for England and Wales dataset, of which five are “long” time
series, while four are “short” time series. The long time series data cover the period
from 1841 to 2016 and consist of one hundred and seventy-six (176) observations. The
short time series cover the period from 1961 to 2016 (55 observations). The graphical
representations of the nine time series are shown in Figures 4-12 (row data with the

arithmetic values available on request by the author).
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Figure 4
Real values of E&W L. KT1 series
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Figure 7
Real values of E&W L. KT4 series
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Figure 8
Real values of E&W L. KT5 series
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Figure 10
Real values of E&W S. KT2 series
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Figure 11
Real values of E&W S. KT3 series
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Figure 12
Real values of E&W S. KT4 series

0.6
0.3
0.
-0.3
-0.6
-0.9

1961196419671970197319761979198219851988199119941997200020032006200920122015

Year

109



To assess the effect of statistical pre-adjustments on forecasts two statistical software
approaches will be employed, namely the “AUTOARIMA” command and its
extensions of the well-known programming software “R” and the module TRAMO of
the TSW statistical package.

The “AUTOARIMA” command of “R” allows for the automatic selection of an
ARIMA model. Moreover, forecasts based on the selected model may be obtained. On
the other hand, TRAMO pre-tests for time series transformation to tackle with variance
non-stationarity. Moreover, it offers several options for the treatment of outliers within
the frames of the more general pre-adjustment procedure known as “linearization” (see
section 1.5). Nevertheless, TSW only allows for logarithmic transformation, limiting
the options for transformation. Therefore, to have a wider range of transformations,
such as the square root transformation, the statistical approach and recommendations
suggested by Milionis will also be utilized (Milionis, 2003; 2004; Milionis and
Galanopoulos, 2019). An observation is classified as an outlier based on the critical
value of a suitable statistic 7, which is described in Gomez and Maravall (1996);
Caporello and Maravall (2004). Since the critical value of 7 cannot be predicted by
theory, it is commonly related to the length of the time series (Fischer and Planas, 2000).
In this study, the default options of TSW for identifying outliers will be utilized.

4.4 Results and discussion

4.4.1 Data transformation

Initially, it is crucial to acknowledge that the impact of a transformation is twofold:
direct and indirect. The direct effect is evident and pertains to the transformation itself.
The indirect effect concerns the influence of the transformation on detecting outliers.
Studies have demonstrated that data transformation has an impact on both the number
and the character of outliers in a time series (Milionis, 2003; 2004; Milionis and
Galanopoulos, 2019).

Table 1 displays the results of deciding whether to transform the original time series
data using TSW. From the analysis of the nine-time series examined, it was found that
in seven cases, no transformation of the initial data required, while in only two cases,
log transformation was deemed necessary. These results were identical when the

alternative approach of Milionis was applied (2004).
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Table 1. Decision about data transformation

Time series TSW Milionis (2004)
E&W L.KT1 Levels Levels
E&W L.KT2 Levels Levels
E&W L.KT3 Logs Logs
E&W L.KT4 Logs Logs
E&W L.KT5 Levels Levels
E&W S.KT1 Levels Levels
E&W S.KT2 Levels Levels
E&W S.KT3 Levels Levels
E&W S.KT4 Levels Levels

To conduct a more detailed investigation about statistical forecasting, three different
methods will be considered. These methods are the following: (a) The random walk
with drift model, which is a commonly employed model in actuarial research due to its
simplicity, as previously noted, and will be used as benchmark. (b) The
“AUTOARIMA” command of the programming software “R” for automatic selection
and forecasting, as in Hatzopoulos and Sagianou (2020). (¢) ARIMA models following
statistical pre-adjustments. The latter implies Variance Reduction and will be called
“VR” forecasts henceforth.

Table 2 presents the ARIMA models utilized in methodologies (b) and (c). In our case,
seasonality is out of context, as annual data will be used. Hence, a non-seasonal ARIMA
model will be sought for. Moreover, by,..., b,,aswell as C{n in equation of the general
framework of linearization (see section 1.5) will all be set equal to zero.

It should be noted that differences in the ARIMA models, for time series where no
transformation was required, may be due to the presence of outliers adjusted by
linearization and possible differences in the computational algorithms between the two

software products employed.
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Table 2. ARIMA models

Time series “AUTOARIMA” VR
0,1,0 0,1,1
E&W L.KTI ( : ( :
WITH MEAN WITH MEAN
0,1,3 3,1,0
E&W L.KT2 ( : ( )
WITH MEAN WITHOUT MEAN
3,0,0 0,1,0
E&W L.KT3 ( ) ( )
WITHOUT MEAN | WITHOUT MEAN
1,0,3 0,1,1
E&W L.KT4 ( ) ( )
WITHOUT MEAN | WITHOUT MEAN
1,1,4 1,2,1
E&W L.KT5 ( ) ( :
WITHOUT MEAN | WITHOUT MEAN
0,2,2 1,1,0
E&W SKTI ( ) ( )
WITHOUT MEAN WITH MEAN
0,1,0 0,1,0
E&W S.KT2 ( ) ( )
WITHOUT MEAN | WITHOUT MEAN
(0,1,0) (0,1,0)
E&W S.KT3
WITHOUT MEAN | WITHOUT MEAN
0,1,0 1,0,0
E&W S.KT4 ( ) ( )
WITHOUT MEAN WITH MEAN

4.4.2 The effect of “Linearization”

Outliers are significant fluctuations in values that are noticeable in time series. Upon
visually analyzing the time series included in our dataset (E&W L.KT3 and E&W L. KT4
in natural logarithms), it is apparent that in certain instances the amplified variance can

be attributed to outliers. To detect outliers in all time series, TSW was utilized with

default settings.

Table 3 outlines the type of outlier and the order of observation in which they appear.
The first number refers to the order of observation followed by the type of outlier. For
instance, 80 LS in E&W L.KT2 time series (see second row of Table 3) shows that the

order (80) of the observations (years) of detected outlier is the year 1921, as the initial

observation is the year 1841, and the type of outlier (LS) is Level Shift.
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Table 3. Detected outliers and their type

Time series Temporal Position and Type of outliers
E&W L.KTI 9A0,74 LS, 75LS, 78 TC, 79 LS, 100 LS, 106 LS
E&W L.KT? 80 LS, 100 AO
74 LS, 79 LS, 80 LS, 89 AO, 100 LS, 102 LS, 106 LS, 111 LS,

E&W L.KT3

113 TC, 116 TC, 118 AO, 124 TC, 128 TC, 130 TC, 133 LS
E&W L.KT4 9TC, 18 AO, 74 LS, 79 LS, 88 AO, 95 AO, 100 LS, 106 LS

9AO, 18 AO, 23 TC, 50 TC, 74 TC, 77 TC, 78 AO, 104 AO, 157
E&W L.KT5
AO

E&W S.KTI NO OUTLIERS DETECTED
E&W S.KT2 NO OUTLIERS DETECTED
E&W S.KT3 37 A0
E&W S.KT4 NO OUTLIERS DETECTED

4.4.3 The combined effect of Data Transformation and Linearization

To evaluate the combined effect of data transformation and linearization on the quality
of point forecasts some typical statistics will be used. Primarily, the Mean Square

Forecast Error (MSFE) which measures the average squared difference between the
forecasting values (F;) and the actual values (4;), i.e. MSFE = % (A —F)2 Ttis

well known that optimal forecasts are those with the minimum MSFE (Hamilton, 1994).
Auxiliary, the following statistics will also be used:

1) the Mean Absolute Percentage Error (MAPE) statistic given by:

100% n

MAPE = =22y |2

t

, and

i1) the Mean Absolute Error (MAE) statistic given by:

MAE = ~%7_,|A, - Fl.
Furthermore, when evaluating interval forecasts, the forecast standard error will be
taken into consideration.
In addition, the Akaike Information Criterion (AIC) will be utilized as a probabilistic
statistical measure to assess the model’s performance on the training dataset in

conjunction with the complexity of the model.
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Best forecast will obviously be perceived the one with the minimum value of the each
time utilized statistic from the ones mentioned above.

Table 4 displays the count of forecasts that performed better based on the minimization
of each statistic mentioned above, when comparing the VR model to the RWD model.

According to the results presented in Table 4, it is evident that the VR methodology
outperforms the RWD model in every single case in terms of the width of the forecast
standard error. Additionally, based on the minimum value of the Akaike information
criterion, the VR methodology is superior. The point forecasts generated with the VR
methodology are slightly better in terms of the three statistics (MSFE, MAPE, MAE).

The results of the examination of the forecasting performance between VR
methodology and “AUTOARIMA?” are presented in Table 5.

Table 5 is read in the same manner as Table 4, explaining further that when the
calculated values of a statistic are found to be equal, then the arithmetic value 0.5 is
assigned in both methodologies. For instance, the AIC values 2.5/9 and 6.5/9 of the
fourth row of the Table 5 indicate that in two out of the nine time series the
corresponding statistic value is minimum with the “AUTOARIMA” methodology, in
six out of the nine time series the corresponding statistic value is minimum with TSW
methodology, and in one time series the estimated statistic value is equal in both

methodologies.

Table 4. Summary table - Number of best forecasts (VR versus RWD)

(Table is read as follows: for each statistic, in the second and third column the cases
with the minimum value of the statistic (i.e. the best forecasts) out of the total number
of cases (i.e. the nine time series of the dataset) are presented).

Point Forecasts RWD VR
MSFE 3/9 6/9
MAPE 4/9 5/9
MAE 3/9 6/9

AIC 1/9 8/9
Interval Forecasts RWD VR
Forecast Standard 0/9 9/9

Error (SE)

From the results of Table 5 it is seen that the VR methodology outperforms
“AUTOARIMA” in terms of the interval forecasts and is better in terms of the Akaike
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information criterion. Additionally, it is concluded that point forecasts generated by the
VR methodology are slightly better in terms of MSFE and MAE compared to those of
“AUTOARIMA”, and are equal in terms of MAPE.

Table 5. Summary table - Number of best forecasts (VR versus “AUTOARIMA”)

Point Forecasts “AUTOARIMA” with VR
further analysis in TSW

MSFE 3/9 6/9

MAPE 4/9 5/9

MAE 3/9 6/9

AlIC 2.5/9 6.5/9

Interval Forecasts “AUTOARIMA” with VR
analysis further in TSW

Forecast Standard Error 1.5/9 7.5/9

(SE)

4.4.4 An Ad-Hoc Evaluation of the overall Models’ Forecasting Performance

The skill of a forecast can be assessed by comparing the relative proximity of both the
forecast and a benchmark to the observations. The use of a benchmark allows for easier
comparison between different forecasting methods and for this reason a benchmark is
proposed to establish a common ground for comparison. In this study an obvious
benchmark is the Random Walk Model with Drift (RWD) as already mentioned.

A crude, yet very simple and transparent ad-hoc forecasting evaluation for both point
and interval forecasts will be used. More specifically, for the point forecasts for each
time series and for each model an arithmetic value is assigned in ascending order based
on the corresponding value of the MSFE statistic (i.e., 1 for the best (minimum) MSFE
value, 2 for the second best MSFE value, 3 for the worst (maximum) MSFE value).
Then, adding up the arithmetic values for all series for a particular model their sum will
represent the performance of the model. Models will be ranked according to the value
of the corresponding sum. Apparently, the model with the lowest sum will be considered
as the best one. For interval forecasts the same procedure will be followed replacing
the value of the MSFE statistic with the value of the corresponding standard error

around point forecasts. The results are presented in Tables 6 and 7.
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Table 6. Ranking of forecasting performance according to MSFE (points forecasts)

Time series RWD “AUTOARIMA” VR
E&W L.KT1 15 1.5 3
E&W L.KT2 1 3 2
E&W L.KT3 2 3 1
E&W L.KT4 2 3 1
E&W L.KTS 2 3 1
E&W S.KT1 3 1 2
E&W S.KT2 1 2.5 2.5
E&W S.KT3 3 1.5 1.5
E&W S.KT4 2 3 1
Total 17.5 21.5 15

From the results of Tables 6 it is evident that the performance of VR methodology for
point forecast is better than that of RWD model and “AUTOARIMA”. It should be
noted that the RWD model performs better than the “AUTOARIMA”.

Regarding interval forecasts, the findings presented in Table 7 indicate that the VR
methodology has a clearly superior performance compared to both the RWD model and

“AUTOARIMA”. In this case “AUTOARIMA” clearly outperforms RWD model.

Table 7. Ranking of forecasting performance according to SE (intervals forecasts)

Time series RWD “AUTOARIMA” VR
E&W L.KT1 2.5 2.5 1
E&W L.KT2 3 2 1
E&W L.KT3 3 2 1
E&W L.KT4 3 2 1
E&W L.KT5 3 2 1
E&W S.KT1 3 1 2
E&W S.KT2 3 1.5 1.5
E&W S.KT3 3 2 1
E&W S.KT4 3 2 1
Total 26.5 17 10.5
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4.4.5 Analysis of the E&W L.KTS5 time series

E&W L.KTS5 is a time series which deserves special attention. The series was not found
to be variance non-stationary in the sense that its variance was not found to be
functionally related to a non-stationary level, either using the purpose-built TSW
subroutine, or the methodology suggested by Milionis (2003; 2004). Yet, visual
inspection of the series (see Figure 8) reveals a clearly non constant behavior in terms
of its variance. To deal with such cases, existing bibliography suggests a (logarithmic)
data transformation (Gujarati, 2003, chapter 7). However, we have some reservations
in using this recommendation as a general rule.

To examine it further, we perform a forecasting experiment exclusively for the E&W
L.KTS5 time series. More specifically, three forecasting approaches were used: 1) outlier
adjustment without data transformation, i1) “AUTOARIMA”, iii) a combination of
outlier adjustment and one of the three most commonly used transformations, namely
the logarithmic, the squared root and the negative inverse.

For the implementation of this comparison, the forecast values from the ARIMA model
that derived from “AUTOARIMA” were derived with the programming language R,
and the forecast values from both the proposed methods of outlier adjustment without
data transformation and the outlier adjustment with data transformation, were derived
exclusively with TSW.

The ARIMA models from all these different procedures, their ARMA parameters
estimates, and their corresponding standard errors are presented in Table 8, while the
relevant forecast evaluation statistics are presented in Table 9. The results of Table 9
indicate that both point, and intervals forecasts are better with the proposed VR
methodology of solely outlier adjustment, without any data transformation. Hence, the
above results counterevidence the existing recommendation in the literature regarding
the treatment of variance instability. Indeed, a case-by-case treatment seems to be more

reasonable that the blind application of the logarithmic transformation.

117



Table 8. ARIMA models and ARMA parameter estimates for E&W L.KTS5 series

Parameter Estimates

“AUTOARIMA” AR(1) MA(1) MA(2) | MA(3) | MA(4) | Integration
order
Coefficients 0.8557 -1.1044 | 0.2115 - 0.2189 1
0.1415
s.e. 0.1202 0.1280 | 0.1310 | 0.1333 | 0.0762
Outlier
adjustment
without data
transformation
Coefficients 0.41651 | -0.88345 2
s.e. 0.74705E- | 0.38500E-
01 01
Outlier
adjustment and
Logarithmic
transformation
Coefficients 0.30645 1
s.e. 0.74104E-
01
Outlier
adjustment and
Squared root
transformation
Coefficients -0.24422 1
s.e. 0.75493E-
01
Outlier
adjustment and
Negative inverse
transformation
Coefficients 0.61122
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S.e.

0.61615E-
01

Table 9. Summary table — forecast evaluation statistics for E&W L.KT5 (best

forecasts in bold)

Point “AUTOARIMA” TSW — TSW - TSW- TSW-
Forecasts with further levels logs Negative | Squared
analysisin R (VR) inverse root
MSFE 0.1401 0.034 0.3102 0.2950 0.3161
MAPE 23.33% 11.01% 34.99% 33.86% 35.43%
MAE 0.3475 0.1612 0.5206 0.5051 0.5268
Interval | “AUTOARIMA” TSW — TSW - TSW- TSW-
Forecasts | with further levels logs Negative | Squared
analysis in R (VR) inverse root
Forecast 0.2631 0.2273 0.5751 1.5162 0.3497
Standard
Error (SE)

4.4.6 Further illustrative and detailed analysis

It is worthy to present a more detailed analysis for each series. This is done with the aid
of Figures 13-21 and Tables 10-17. More specifically, Figures 13 and 14 refer to the
E&W L.KT3 and E&W L.KT4 series respectively. The full potential of the VR
methodology is realized in these two series where the series are log-transformed and
there are multiple outliers, as seen in Table 3. Figures 13 and 14 demonstrate that the
VR method substantially narrows the forecast confidence interval and leads to a
noticeable improvement in point forecasts. The accuracy of these forecasts is supported

by the forecast evaluation statistics in Tables 10 and 11.
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Figure 13. Forecasts and Confidence intervals with both methods for the series E&W
L.KT3
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Figure 14. Forecasts and Confidence intervals with both methods for the series E&W
L.KT4

Long term forecasts series for E&W L. KT4 series
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Table 10. Forecast Evaluation Statistics for the series E&W L.KT3

Point Forecasts “AUTOARIMA” VR
MSFE 0.90 0.08
MAPE 78.57% 22.90%
MAE 0.89 0.24

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 1.15 0.89
Error (SE)

Table 11. Forecast Evaluation Statistics for the series E&W L.KT4

Point Forecasts “AUTOARIMA” VR
MSFE 0.02 0.01
MAPE 100.69% 253.11%
MAE 0.12 0.10

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 0.55 0.29
Error (SE)

In passing, it is also worthy to pay some attention on the value of the MAPE statistic in
Table 11. Observing Figure 14, as well as the values of MSFE and MAE statistic in
Table 11 it is obvious that the point forecasts are better with the VR methodology.
However, the value of MAPE statistic implies the opposite. This is due to the small
value in the denominator of the MAPE formula with the VR methodology. Such cases
justify our choice to use more than one statistical criteria for the evaluation of the
forecasting performance.

Figure 15 displays the point and interval forecasts for the E&W S.KT3 series.
According to Table 2, both the VR methodology and the RWD model use a simple
random walk model without drift. Consequently, both methods generate identical point
forecasts, which are uninformative, as they are equal to the last observation. However,
Table 3 reveals that an additive outlier is identified in the 37th observation using the
VR methodology. Despite the use of the same model in both methods, the VR

methodology still improved the forecast quality, especially due to the detection of an

121



outlier. This outlier detection resulted in a reduction of the forecast confidence interval.

The evaluation of these forecasts can be found in Table 12.

Figure 15. Forecasts and Confidence intervals with both methods for the series E&W
S.KT3

Long term forecasts of E&W S. KT3 series
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Table 12. Forecast Evaluation Statistics for the series E&W S.KT3

Point Forecasts “AUTOARIMA” VR
MSFE 0.05 0.05
MAPE 114.23% 114.23%
MAE 0.21 0.21

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 0.17 0.15
Error (SE)

Figure 16 shows the point as well as the interval forecasts for the series E&W L.KTS5.
The forecast evaluation statistics are presented in the first three columns of Table 9. The
aforementioned results indicate that both point, and intervals forecasts are better with
the proposed VR methodology of solely outlier adjustment, without any data

transformation.
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Figure 16. Forecasts and Confidence intervals with both methods for the series E&W
L.KT5

Long term forecasts of E&W L. KT5 series
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Figure 17 shows the point, as well as the interval forecasts, for the series E&W S.KT4.
It is noted that with VR methodology a statistically significant drift (see Table 2) was
found. The results indicate that both point, and intervals forecasts are better with the
proposed VR methodology. This finding, however, is exclusively due to the ARIMA
model identification-forecasting algorithm, as neither any data transformation nor

outlier adjustments were used. The relevant forecast evaluation statistics are presented

in Table 13.

Table 13. Forecast Evaluation Statistics for the series E&W S.KT4

Point Forecasts “AUTOARIMA” VR
MSFE 0.037 0.009
MAPE 177.22% 71.12%
MAE 0.170 0.081

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 0.31 0.26
Error (SE)
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Figure 17. Forecasts and Confidence intervals with both methods for the series E&W

S.KT4
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The forecasts and confidence intervals with both methods for the series E&W L.KT1,

which is the most important in actuarial sciences among the time series we examined,

are presented in Figure 18. From this figure it is obvious that intervals forecasts are

better with the proposed VR methodology. This is to be attributed to the outlier

adjustment (no data transformation was needed in the particular series). However, point

forecasts are slightly better with the “AUTOARIMA” methodology (see Table 14).

Table 14. Forecast Evaluation Statistics for the series E&W L.KT1

Point Forecasts “AUTOARIMA” VR
MSFE 0.476 0.479
MAPE 4.31% 4.38%
MAE 0.618 0.623

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 1.86 0.76
Error (SE)
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Figure 18. Forecasts and Confidence intervals with both methods for the series E&W
L.KTI
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Figures 19 (series E&W L. KT2) and 20 (series E&W S. KT2) show two cases in which
both methods fail, as the real values are outside the confidence interval of the forecasts.

The forecast evaluation statistics for these two time series are presented in Tables 15-

16.

Table 15. Forecast Evaluation Statistics for the series E&W L.KT2

Point Forecasts “AUTOARIMA” VR
MSFE 1.01 0.95
MAPE 21.13% 20.18%
MAE 0.95 0.91

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 0.54 0.54
Error (SE)
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Figure 19. Forecasts and Confidence intervals with both methods for the series E&W
L.KT2

Long term forecasts of E&W L. KT2 series
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Figure 20. Forecasts and Confidence intervals with both methods for the series E&W
S.KT2
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Table 16. Forecast Evaluation Statistics for the series E&W S.KT2

Point Forecasts “AUTOARIMA” VR
MSFE 0.57 0.57
MAPE 257.22% 257.22%
MAE 0.65 0.65

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 0.27 0.27
Error (SE)

The results for the detailed analysis for the series E&W S. KT1 are shown in Figure 21

and Table 17. The results indicate that both point, and intervals forecasts are better with

the “AUTOARIMA” methodology. It is stressed that for this series neither a

transformation was necessary, nor any outliers were detected. Hence, any differences

in the forecasting performance between the two methods should be attributed solely to

differences in the algorithms for the ARIMA model identification and forecasting

between the two software products, which in this case are in favour of the

“AUTOARIMA” approach (in fact in contrast to what was found in the case of series

E&W S.KT4, see Figure 17).

Figure 21. Forecasts and Confidence intervals with both methods for the series E&W

S.KT1
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Table 17. Forecast Evaluation Statistics for the series E&W S.KT1

Point Forecasts “AUTOARIMA” VR
MSFE 0.05 0.28
MAPE 4.50% 9.32%
MAE 0.22 0.47

Interval Forecasts “AUTOARIMA” VR
Forecast Standard 0.34 0.36
Error (SE)

From the above analysis it is evident that for those cases where a data transformation
and/or outlier adjustments were applied, there is a clear forecasting superiority with the
VR method. When no such pre-adjustments were necessary the results are not the same,
but they may be either for or against the VR method because the two statistical products
obviously use different algorithms for univariate identification and forecasting.

It also interesting to note that averaging across all cases the calculated overall average
improvement in interval forecasts is reflected in an approximately 35.4% and 20.4%
reduction of the forecast standard error of the VR approach, as compared to the

benchmark (RWD), and to the “AUTOARIMA” approach respectively.

4.4.7 The shift towards normality

The non-normal distribution of many time series is another serious issue that needs to
be addressed. Nelson and Granger (1979) discovered in their study that data
transformations had very little effect on addressing the issue of non-normal
distributions in most of the macroeconomic time series they examined.

Table 18 displays the outcomes for the Jarque-Bera statistic for normality, which
follows a chi-square distribution with two degrees of freedom. A value in Table 18
marked with an asterisk indicates that the null hypothesis of normality is rejected at a
5% significance level, with the critical value being 5.99. Based on the values in Table
18, it appears that there is a noticeable trend towards normality when moving from the
benchmark and “AUTOARIMA” models towards the VR transformation-linearization
approach. Milionis and Galanopoulos (2019) obtained similar results in their
examination of macroeconomic time series in Greece. Upon closer examination of the

results, all the short time series exhibit normality regardless of the approach used.
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However, the VR model consistently outperforms the other approaches with better
values in terms of the Jarque-Bera statistic. The main discrepancy, however, is
noticeable in the long series, where acute non-normality is present in both RWD and
“AUTOARIMA” models. This phenomenon is particularly evident is some cases (e.g.,
in the E&W L.KT]1 series). This is a reasonable explanation as outliers that reflect real
events, such as world wars, occurred before 1959. Therefore, the use of computational
algorithms like maximum likelithood estimation is more justified when using
transformed-linearized data.

Table 18. Values of the Jarque —Bera statistic (statistically significant values are
indicated with an asterisk)

Time series RWD “AUTOARIMA” VR
with further
analysis in TSW

E&W LKTI 4736.* 4736.* 2.840
E&W LKT?2 13.639* 12.23* 7912 *
E&W LKT3 0.1057E+05* 4113.* 0.9121
E&W L.KT4 8583.* 2563 * 27.79 *
E&W L.KT5 115.5 * 140.7* 1.747
E&W S.KTI 0.9577 0.9921E-01 0.7816
E&W S.KT2 0.3713E-01 0.3267E-01 0.3267E-01
E&W S.KT3 2.956 3.308 0.3408
E&W S.KT4 2.368 2.584 2.135

4.5 Conclusions — future prospects

In this work we examined the effect of statistical pre-adjustments (data transformation
and linearization) on the quality of time series forecasts of mortality rate data. It was
found that there is a substantial improvement in interval forecasts which on average are
shortened by approximately 35.4% when comparing VR and RWD and 20.4% when
comparing VR and “AUTOARIMA”. Moreover, there was a less clear improvement in

point forecasts. It was also found that for series with unstable, but not functionally
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dependent on the level, variance the general recommendation of data transformation
was not confirmed for the examined case (E&W L.KT5 series). A case-by-case study
for these circumstances seems to be a more sensible approach. Furthermore, it was
confirmed that the transformed linearized series satisfy the need for normality to a
clearly larger extent as compared to the other alternatives.

The above statistical findings have important implication for the actuarial science. More
specifically, the improvement in interval forecasts can significantly affect the Solvency
Capital Requirement, and subsequently the Solvency Ratio for a pension fund. Such an
improvement might put some pension providers at a competitive advantage as they have
less capital locked in their liabilities.

As a further research, we intend to explore more comprehensively the effect of
statistical pre-adjustments to the financial impact on Solvency Capital Requirement,
under different model structures, actuarial assumptions, and forecast methods. As has
been noted previously, the most useful tool for investigating uncertainty over longevity
risk is a stochastic mortality projection model. Since, there is a wide choice of such
models in the literature, the choice of model can lead to material changes in the best-
estimate reserves, while even within a model family there can be major differences
(Richards and Currie, 2009). For those models we aim to study the uncertainty over
future mortality rates, which is measured as the variance of the mortality forecast
values. In particular, we will investigate their respective contributions to the capital
requirements for longevity trend risk. Our investigation will be based on the
Hatzopoulos and Sagianou (2020) family model structure, which uses time-series
methods to project a mortality index. In this respect, we will quantify analytically the
respective contributions to capital requirements using VaR calculations. Last but not
least, it is apparent that the methodology presented in this work may be used in due
course to adjust for the possible effect of the COVID-19 virus on the forecasting of

longevity trends.
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SUMMARY OF CHAPTER 4

An important risk in the actuarial industry is the longevity risk, therefore the as accurate
as possible prediction of mortality rates is very crucial. Such predictions are performed
by modelling the mortality rates using mortality models and predicting the future
mortality trends. Aiming at possible improvements of such forecasts, we examine the
effect of data transformation-“linearization” on the quality of time series forecasts of
mortality, using data resulted from mortality models for England-Wales. By time series
“linearization” is meant the treatment of causes that disrupt the underlying stochastic
process. Results indicate a clear improvement for interval forecasts of mortality as with
the transformation of the original time series data and adjustment for outliers the
process variance is reduced. However, the result for point forecasts is not as clear. The
documented improvement in interval forecasts can significantly affect the Solvency
Capital Requirement, rendering some pension providers at a competitive advantage.
Furthermore, for series with unstable, but not functionally dependent on the level,
variance the general recommendation of data transformation was not confirmed, and a
case-by-case treatment seems to be a more sensible approach. It was also confirmed
that the transformed-linearized series satisfy better the need for normality as compared
to the original series. Moreover, the occurrence of outliers associated with the Covid-
19 pandemic would be beneficial to be examined in line with the approach presented in

this chapter in future research.
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Appendix

A short description of the components of longevity risk

In order to understand and confront the longevity risk, the different potential
components of longevity risk can be iterated, and below is a sample list of these
components. A risk that is diversifiable may be decreased by expanding the portfolio's
size and taking use of the law of big numbers.

In recent decades, the usage of economic models has grown significantly. This has been
made possible by technological developments such as improved computing power, new
software programs, and novel financial securities. Model Risk in finance refers to the
risk associated with utilizing models while making choices. Each model is a condensed
representation of reality, but it is never entirely accurate, and failure is always a
possibility. It can be challenging to determine whether the forecasting model of choice
is accurate. Therefore, it is necessary to set aside some capital in case the model of
choice proves to be inaccurate.

Basis Risk comes in a variety of forms. For instance, there is a chance that a change in
interest rates will cause the value of a company's or investor's interest-bearing liabilities
to alter out of proportion to the value of those assets. This will lead to a loss by raising
liabilities and lowering assets. Additionally, in the workplace, models frequently need
to be adjusted based on industry or population data rather than the specific portfolio in
question. Therefore, it is necessary to set aside some capital in case the mortality trend
inferred from a portfolio's data differs from the population used to establish the model.
A negative trend could happen by accident but yet be completely consistent with the
selected model, even if the model is correct and there is no basis risk. Some
professionals could decide to combine their tolerance for trend risk with one for basis
risk.

The risk that occurs by the chance that actuarial calculations are made using estimations
that are inaccurate representations of the risk's actual characteristics, is called Parameter
Risk.

The risk represented by the difference between actual outcomes and central actuarial
estimations based on a random probability would be Process Risk.

Capital must be maintained against the possibility of an uncharacteristically low
mortality experience caused by seasonal or environmental fluctuation over the course

of a year, such as an exceptionally mild winter and fewer deaths than usual from
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influenza and other contagious diseases. It should be noted that this Volatility Risk
could not be completely diversifiable because a single year of low mortality rates could
also signal the beginning of a negative trend.

Market Risk is the possibility of financial loss brought on by shifts in the value of
tradable assets. There are a wide range of asset classes (investment rates, bonds,
commodities, etc.) and a virtually limitless number of financial products, all of which
expose investors to market risk. Diversification cannot completely eliminate market
risk, often known as "systematic risk," although it can be hedged (ie offset currency
risk). The possibility that a significant natural disaster will cause the market to fall is
another illustration of market risk. Political upheaval and changes in interest rates are
two more drivers of market risk.

Mis-estimation Risk is the degree of ambiguity surrounding the portfolio's actual
mortality rates, which can only be approximated with a degree of confidence
corresponding to the size and depth of the data.

The chance of a rapid and temporary increase in the frequency of fatalities is known as
Catastrophe Risk. When death benefits are taken into account, it is evident that
compensation for catastrophic risk is needed (whereas when life benefits are
considered, the gain arises due to higher actual mortality). However, risk transfers can

also be taken into consideration as well as the realization of diversity (diversifiable

effect).
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CHAPTER 5

IMPLICATIONS FOR THE ECONOMETRIC TESTING OF THE
HYPOTHESIS OF EFFICIENT MARKETS

5.1 Introduction

The concept of efficient markets was introduced to the academic community in
Bachelier's (1900) doctoral thesis. One of his main contributions was the use of the
random walk model to describe the prices of financial assets. Bachelier's concepts did
not receive immediate recognition within the financial research community, and his
contributions remained relatively obscure for a number of decades. Bachelier's ideas
started to gain more acknowledgment in the 1950s and 1960s when researchers

commenced developing mathematical models to value financial instruments.

The most widely accepted definition of efficient markets has been provided by Fama
(1970), stating that a market is efficient when “prices fully reflect all available
information”. Depending on the available information, there are three forms of market
efficiency (Roberts, 1959). More specifically, there is the weak-form efficiency, the
semi-strong efficiency, and the strong-form efficiency (for more details, refer to section
1.6.3c). In this chapter, we will focus on the weak-form-market efficiency (WFME),

where the available information consists of historical prices of financial assets.

Although the theoretical foundations of market efficiency are laid out in Fama's article
(1970), the statistical explanation he presents for market efficiency has faced criticism
(LeRoy, 1976; 1989). For this reason, various definitions have been proposed over time
(Rubinstein, 1975; Malkiel, 1992; Milionis, 2007) to address these concerns and refine

the concept of market efficiency.

Recognizing potential misinterpretations that could arise from the definition Fama
proposed in his seminal article in 1970, Fama (1976; 1991) addresses one of the most
significant issues, which is the concern of the joint hypothesis of market efficiency with
a pricing model (see section 1.6.3c for more details). In 1991, he revised WFME
introducing the concept of return predictability (Fama, 1991), acknowledging that in an

efficient market, investors cannot achieve excessive returns or profits.
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Furthermore, the phenomenon of many researchers frequently using and incorrectly
linking the statistical methodology of return predictability testing with the hypothesis
of market efficiency has been observed. For this reason, the conditions that must hold
in statistical tests (specifically, autocorrelation tests) of return predictability, so that

their results are accurately linked to market efficiency are detailed in section 1.6.3c.

More specifically, the time series of financial assets prices (such as stocks, bonds and
market indices) are usually non-stationary. However, in the majority of cases, empirical
research only examines the first moment (i.e., price levels) and does not test the second
moment. This is probably because statistical tests are conducted using asset returns and
not asset prices. As assets returns are expressed as differences in the logarithms of the
corresponding price relatives it is silently assumed that owing to the logarithmic
transformation asset returns are unconditionally variance stationarity. If this is not the
case, however, the conditions for testing the weak-form efficiency hypothesis with

autocorrelation tests strictly do not hold, as argued in the introductory chapter.

For this reason, in this chapter our primary aim is to test, whether or not, this implicit
assumption holds. Additionally, it is also interesting to examine the extent to which the
maturity level of a financial market is possibly related to variance non stationarity
patterns different that the logarithmic transformation and how this affects market

efficiency testing.

The structure of this chapter is the following: The next section provides a literature
review of the random walks and the associated tests of market efficiency in developed
and emerging financial markets. In section 5.3 the financial markets and the data that
will be used in the empirical research and analysis are described. Section 5.4 presents
the results of the empirical research, and in section 5.5, the conclusions and proposals

for further research are outlined.

5.2 Literature review of the random walks and the associated tests of market

efficiency in developed and emerging financial markets

As the problem of joint hypothesis relies on adopting a model that captures past security
prices, the most prevalent model in the existing literature is the random walk model. If
we consider P;_; to be the price of the security at time t — 1, u to be the expected

change in the security price or the trend, and &; to be a stochastic process referred to as
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increments (see Campbell et al., 1997), then the random walk model is expressed in the

following form:
Pb=P_+pu+¢, (6)
where the use of tildes denotes random variables.

Depending on the conditions that hold for the increments, Campbell et al. (1997)
distinguish three cases of random walk models. More specifically, if the increments are
independent and identically distributed with a mean of 0 and variance of o2, then any
nonlinear function of the increments is uncorrelated. In this case, the random walk
model 1 arises. As the natural logarithm of prices is widely used in empirical literature
(Carol, 2009; Bodie et al., 2020; Hull, 2021; Benninga and Mofkadi, 2022), defining

Pi—1 = InP;_; equation (6) is transformed as follows:
Pe=p-1tU+E

Since continuously compounded returns are defined as R, = P, — p;_;, it follows that
returns are i1.i.d. when the random walk model 1 holds. In other words, continuously
compounded returns can be computed by taking the first differences of the natural
logarithms of the prices (Zivot, 2023). The first differences of the natural logarithms of
the prices is commonly known as the logarithmic return, and it serves as a standard
measure in finance for quantifying the percentage change in the price of an asset over

a specific period.

The case of the random walk model 2 arises if the increments are independent but not
necessarily identically distributed. This case better corresponds to reality, as the prices

of securities do not remain identically distributed over extended periods of time.

Additionally, if it is assumed that the increments are uncorrelated but not independent
or identically distributed, then the case of the random walk model 3 emerges. This
specific case of random walk is the one that is most frequently examined in empirical

literature.

It is worth noting that the random walk model 2 encompasses the random walk model
1 as a special case. Furthermore, the random walk model 3 includes both the random
walk models 1 and 2 as specific instances. In contrast, if C ov(ét, &_ j) = 0Vj # 0and
if C ov(étz, &2 j) # 0 for some j # 0, then only the conditions for the random walk

model 3 are satisfied, as there exists dependence in the squared increments.
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The most widely used tests for the assumption of random walk model 1 are the
sequences and reversals tests, as well as the runs test. For a comprehensive analysis of
the aforementioned tests, as well as the tests for the other 2 cases of random walks, refer
to Campbell et al. (1997). The tests applied for the assumption of random walk model
2 are the filter rules and the technical analysis. The most common tests for the
assumption of random walk model 3 are the autocorrelation tests using the so-called
portmanteau statistics, namely the Box-Pierce statistic (1970) and Ljung-Box statistic
(1978) (for more details, refer to section 1.1.6). Also, section 1.6.3c discusses the
conditions for autocorrelation tests to be properly applied. Furthermore, many
researchers use variance ratio tests to evaluate the assumption of random walk model

3.

Developed markets, characterized by a higher degree of maturity compared to emerging
markets, have been shown to exhibit efficiency more frequently than emerging markets,
which predominantly demonstrate inefficiency. This could be attributed to the fact that
emerging markets have lower capitalization value, thinner volume of daily trade, fewer
listed companies, and generally less transparent operations and regulatory framework

compared to developed markets.

More specifically, developed markets exhibit mixed results regarding their efficiency,
depending on the time period and the specific financial market under examination by
each researcher. Until 1990, it was established for developed markets that the
hypothesis of WFME was not rejected (Fama, 1970; Dryden, 1970; Brealey and
Mayers, 1988; Fama, 1991). However, there were also studies that were not in favor of
the random walk theory in developed markets (e.g. Conrad and Juttner, 1973). In
contrast, in emerging markets, the results consistently obtained from the literature
indicated that the random walk theory is not suitable to describe the behavior of stock
prices and indices (Ayadi and Pyun, 1994; Hamid et al., 2010; Nisar and Hanif, 2012;
Mehla and Goyal, 2012; Aggarwal, 2018; Malafeyev et al., 2019).

Regarding studies that simultaneously examine emerging and developed markets,
Milionis (1998) concluded that for the Athens Stock Exchange (ASE), which belongs
to emerging markets (a detailed presentation of how markets are classified as emerging
and developed is provided in the next section), the hypothesis of WFME is rejected. On
the contrary, for the Standard and Poor's 500 (SPX) and FTSE 100 (UKX) stock indices,

used for New York and London respectively, which belong to developed financial
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markets, it was demonstrated that they exhibit random walks. This suggests that the
hypothesis of WFME is not rejected. More specifically, for the ASE, Alexakis and
Xanthakis (1995) demonstrated using daily data that the day of the week effect
phenomenon exists. The day of the week effect is a financial market anomaly where
certain days of the week may be associated with higher or lower returns, and it is not

consistent with the hypothesis of WFME.

Borges (2010) reached the same conclusion for the ASE. A similar conclusion, namely
the rejection of the hypothesis of WFME, emerged for the stock indices of Portugal,
France, and the United Kingdom. On the contrary, efficient markets were found to be
the stock markets of Germany and Spain. From Table 1a, it is evident that the stock
indices of Portugal, France, the United Kingdom, Germany, and Spain are classified as
developed markets. Dias et al. (2020) found that among the 16 stock indices they
examined (7 European, 6 Asian, and 3 American), some of which belong to developed

markets and others to emerging markets, the hypothesis of WFME is rejected.

Therefore, over time, it becomes evident that conflicting empirical results may arise
regarding testing for WFME across different time periods for the same countries. Thus,
as market efficiency is observed to evolve it is natural for researchers' interest to remain
unabated in examining market efficiency within the same stock markets. This is done
using different sets of data and applying diverse statistical tests, thus enriching the
existing extensive literature. The concern, as expressed previously in this chapter, is,
whether or not, the statistical methodology for efficiency testing has been properly used
thus far in the published literature. Indeed, this is to be extensively examined in what

follows in sections 5.4 and 5.5.

5.3 Data

The classification of financial markets is extensively utilized by investors for the
purpose of evaluating and making investments in various markets. One of the most
widespread market classification systems is the Morgan Stanley Capital International
(MSCI) market classification framework. According to this framework (MSCI, 2023),
a financial market is classified as developed, emerging, frontier, or standalone based on

three criteria.
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The first criterion is country’s economic development, specifically the sustainability of
economic development. A market is classified as developed when the country's Gross
National Income per capita is 25% higher than the high-income threshold for 3
consecutive years. The high-income threshold is determined by the World Bank using
the Atlas method (see https://datahelpdesk.worldbank.org/). The distinction lacks
importance between emerging and frontier markets due to the extensive range of

developmental stages present within each of these two categories.

The second criterion is related to companies that need to meet certain minimum
requirements regarding liquidity and size (company size, security size, security
liquidity). The third criterion pertains to market accessibility by international
institutional investors and consists of five sub-criteria, which are: 1) opennsess to
foreign ownership, i1) ease of capital inflows / outflows, iii) efficiency of operational
framework, iv) availability of investment instruments, iv) stability of the institutional

framework.

Markets that were previously classified as developed, emerging, or frontier and are now
categorized as standalone owing to either a significant downgrade in size and liquidity
requirements or market accessibility. Additionally, a second reason for classifying a
market as standalone is the fulfillment of all three criteria set by MSCI, which were not
met by the specific market in previous years or the market was subject to a specific

category of investors.

Tables 1a and 1b present the classification of markets, based on how well a country met
the three aforementioned criteria (MSCI, 2023). More specifically, Table 1a displays
markets that fulfilled the criteria for developed countries, while Table 1b showcases
markets that have been categorized as emerging, frontier, or standalone markets. The
abbreviations EMEA and APAC, shown in the first row of Table 1, stand for Europe,
Middle East, and Africa (EMEA) and Asia Pacific (APAC), respectively.
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Table 1a. MSCI Market Classification — Developed Markets

Americas

EMEA

APAC

Canada

Austria

Australia

USA

Belgium

Hong Kong

Denmark

Japan

Finland

New Zealand

France

Singapore

Germany

Ireland

Israel

Italy

Netherlands

Norway

Portugal

Spain

Sweden

Switzerland
United Kingdom (UK)

Table 1b. MSCI Market Classification — Emerging, Frontier and Standalone

Markets
Emerging Markets Frontier Markets
Americas | EMEA APAC Americas | EMEA APAC
Brazil Czech China - Bahrain | Bangladesh
Republic
Chile Egypt India Benin Pakistan
Colombia | Greece Indonesia Burkina Sri Lanka
Faso
Mexico | Hungary Korea Croatia Vietnam
Peru Kuwait Malaysia Estonia
Poland Philippines Iceland
Qatar Taiwan Ivory
Coast
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Saudi Thailand Jordan
Arabia
South Kazakhstan
Africa
Turkey Kenya
UAE Lithuania
Mauritius
Morocco
Nigeria
Oman
Romania
Senegal
Serbia
Slovenia
Tunisia
Standalone Markets
Americas EMEA APAC
Argentina Bosnia and Herzegovina -
Jamaica Botswana
Panama Bulgaria
Trinidad and Tobago Lebanon
Malta
Palestine
Ukraine
Zimbabwe

Markets that belong to the MSCI standalone markets index, despite not being included
in the categories of the MSCI emerging markets index and the MSCI frontier markets
index, utilize the same methodological criteria concerning the size and liquidity of

companies (criterion 2) as the markets that fall under either the MSCI emerging markets

index or the MSCI frontier markets index.
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Based on the interrelation among emerging, frontier, and standalone markets (criterion
2 mentioned earlier, as well as criterion 3 regarding the availability of investment
instruments and the stability of the institutional framework — for more details, see
MSCI (2023)), along with the distinct separation suggested by criterion 1 between
developed markets and the other market categories, for the purpose of this study
onwards, emerging markets, frontier markets, and standalone markets will be

collectively referred to as emerging markets.

Our dataset will include twenty-five financial market indices, of which fifteen stock
indices belong to advanced markets, while ten belong to emerging markets (see Table
2). The dataset of 25 market indices covers the period from 1987 to 2016 except for
PCOMP, ICI, SMI (1988-2016) and MERVAL (1989-2016) using daily closing prices
(source: Bloomberg database). The year 1987 was selected as the starting point for this
study because it marked the beginning of trading for the Athens Stock Exchange. The
entire time period will be divided into six five-year intervals (1987-1991, 1992-1996,
1997-2001, 2002-2006, 2007-2011, 2012-2016) in order to examine how the
conclusions regarding the weak-form efficiency of the market change in both developed
and emerging markets under different conditions prevailing in the global economic
context. For the stock indices PCOMP, JCI, and SMI, the initial time period spans from
1988 to 1991, while for the Stock Index MERVAL, the initial time period is from 1989
to 1991. This is because these four indices started trading either in 1988 or 1989. The

other five five-year intervals remain the same for all 25 stock indices.
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Table 2. Data

Market Indexes Region Country
MSCI World Indexes
AEX Europe Netherlands
ATX Europe Austria
CAC Europe France
CCMP - NASDAQ Americas USA
DAX Europe Germany
INDU — Dow Jones Americas USA
Industrial Average
UKX - FTSE 100 Europe United Kingdom (London)
HEX Europe Finland
HSI Pacific China (Hong Kong)
IBEX Europe Spain
NKY — Nikkei Pacific Japan
OMX — Stockholm 30 Europe Sweden
SPX — S&P 500 Americas USA
SMI Europe Switzerland
SXXP — STOXX Europe Europe -
600
MSCI Emerging Markets
ASE Europe Greece
FBMKLCI Asia Malaysia
JCI Asia Indonesia
KOSPI Asia Korea
PCOMP Asia Philippines
SET Asia Thailand
TWSE Asia Taiwan
MSCI Standalone Markets
JMSMX Americas Jamaica
MERVAL Americas Argentina

MSCI Frontier Markets
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CSEALL Asia Sri Lanka

5.4 Empirical results and comments

5.4.1 Data transformation

It is important to consider that during the typical process of examining a time series of
Stock Index prices, the initial step involves testing whether there's a potential
requirement to transform the original data for the purpose of stabilizing variance. This
precedes any other tasks like identifying outliers. It is noted that owing to the fact that
efficiency tests are usually applied in returns rather than prices it is the logarithmic
transformation that is used. While this transformation is the proper one in terms of

finance, there is no guarantee that this is also the case statistics-wise.

To determine if the time series exhibit stationarity with respect to variance, two
specialized algorithms will be employed to assess whether the transformation of the
initial data is necessary. One algorithm is embedded within the JDemetra+ software
(see section 1.3.1 for more details), while the other algorithm is the one developed in
Chapter 2 (refer also to Milionis and Galanopoulos 2018a). The algorithm from Chapter

2 will be denoted as the M-G algorithm from here onwards.

In more detail, JDemetra+ utilizes the test for variance stationarity embedded in
TRAMO, which is based on estimating the parameter A within the framework of the
Box-Cox transformation (see section 1.6.1). This estimation is conducted through the
maximum likelihood method. If A =1, the logarithmic transformation is

recommended, while if A = 0, no transformation is suggested.

Therefore, since JDemetra+ only allows the logarithmic transformation, the statistical
methodology developed in section 2.2 will be employed. This approach permits the
square root transformation and the transformation with negative inverse, as outlined in
section 3.3.3. Additionally, the M-G algorithm is used, as TRAMO has been shown to
exhibit bias towards the logarithmic transformation (Milionis and Galanopoulos,

2018a; 2018b; Grudkowska, 2016).

The comparison of decisions resulting from the new proposed methodology and the

corresponding decisions from the JDemetra+ routine will be compared. Table 6 displays
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the outcomes regarding the choice of whether to apply the logarithmic transformation

to the original time series data or not.

Table 3. Decision about data transformation

Data transformation
Market indexes M-G JDemetra+
MSCI World Indexes Log No - Log Log No - Log
AEX 1 5 2 4
ATX 0 6 3 3
CAC 0 6 3 3
CCMP 1 5 3 3
DAX 1 5 4 2
DOWJONES 0 6 3 3
FTSE 100 1 5 2 4
HEX 1 5 5 1
HSI 0 6 3 3
IBEX 0 6 2 4
Nikkei 0 6 3 3
OMX 2 4 3 3
S&P 500 1 5 3 3
SMI 0 6 3 3
SXXP 0 6 2 4
Total 1 8/90 82 /90 44 /90 46 /90
MSCI Emerging M-G JDemetra+
Markets
ASE 3 3 6 0
FBMKLCI 1 5 3 3
JCI 0 6 5 1
KOSPI 0 6 3 3
PCOMP 3 3 5 1
SET 4 2 5 1
TWSE 1 5 4 2
Total 2 12742 30/ 42 31/42 11/42
MSCI Standalone M-G JDemetra+
Markets
JMSMX 2 4 6 0
MERVAL 2 4 4 2
Total 3 4/12 8/12 10/ 12 2/12
MSCI Frontier M-G JDemetra+
Markets
CSEALL 1 5 5 1
Total 4 1/6 5/6 5/6 1/6
Total 2 + Total 3 + 17 /60 43 /60 46 /60 14/ 60
Total 4
Total 25/ 150 125/ 150 90/ 150 60/ 150
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From the results in Table 3, it is obvious that the application of the logarithmic
transformation to the stock market prices, which is typically used in the existing
financial literature as mentioned above, is erroneous in most of the cases, as far as the
purpose of this research is concerned. This arises from the fact that with the M-G
methodology, the logarithmic transformation is suggested in only 25 out of 150 cases
(or 1/6 cases) that were examined. In all other cases, specifically in 125 out of 150 cases
(or 5/6 cases), either some other transformation (such as the square root or negative
inverse) should be applied or no transformation at all. Particularly in developed
markets, the logarithmic transformation should only be applied in 8.9% of cases (8 out

0f 90), and in emerging markets, in 26.7% of cases (17 out of 60).

Furthermore, the bias of existing statistical software towards the logarithmic
transformation becomes evident once again. Indeed, out of the 90 cases where
JDemetra+ recommends the logarithmic transformation, utilizing the M-G algorithm,
it was found that in 27 out of these 90 cases, no transformation at all should be applied.
It is further noted that in only 25 of the remaining 63 cases for which JDemetra+
recommends the logarithmic transformation the M-G algorithm recommends the
logarithmic transformation as well. This difference results from the fact that with the
M-G algorithm instead of the logarithmic transformation, the square root and the

negative inverse transformations are recommended in 20 and 18 cases respectively.

5.4.2 The effect of “Linearization”

The existence of a benchmark facilitates the process of comparing different approaches.
Consequently, proposing a benchmark serves the purpose of establishing a universal
foundation for conducting comparisons. As explained earlier (see section 5.2), the first
differences of the natural logarithms of prices is widely used in the field of finance and
will serve as benchmark for this chapter in comparison to JDemetra+ software and the
M-G methodology. Henceforth, the First Differences of the natural Logarithms will be
denoted as FDL.

It is essential to acknowledge that the effects of a transformation are two-fold: direct
and indirect. The direct effect is easily noticeable and is tied to the transformation
process itself. Meanwhile, the indirect impact centers on how the transformation shapes

the identification of outliers. Research has shown that data transformation affects both
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the quantity and nature of outliers within a time series (Milionis, 2003; 2004; Milionis

and Galanopoulos, 2019).

It is remarked that within the JDemetra+ framework, outliers are categorized into three
distinct types based on their impact on a time series (refer to section 1.5). Table 4
illustrates the number of detected outliers for each Stock Index across the six examined

time periods.

From these results, it is apparent that data transformation significantly influences the
pattern of outliers. Particularly in developed markets, the impact of the continuous
application of the logarithmic transformation (FDL method) is obvious compared to the
M-G method, where 226 fewer outliers are detected. Moreover, applying the
logarithmic transformation in nearly half of the cases (see Table 3 for the decision about
log-transforming the original price data according to JDemetra+) results in a substantial
difference compared to the FDL method (with continuous logarithmic transformation)
and a smaller difference compared to the M-G method. In the remaining half of cases,
JDemetra+ did not recommend any transformation, a conclusion aligned with the M-G
methodology in most of the cases. Therefore, in appropriately transformed data, the
observed pattern of detected outliers exhibits distinct variations, a deduction that

corresponds to the findings of Milionis (2004) as well.

Conversely, in emerging markets, there are not as pronounced differences among the
three methodologies in terms of identifying outliers. The numerous imperfections that
emerging markets exhibit make them susceptible to financial events and, consequently,

subject to pronounced variability.
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Table 4. Detected outliers

Outliers detection

Market indexes
MSCI World M-G FDL JDemetra+
Indexes
AEX 40 76 41
ATX 44 54 46
CAC 30 46 31
CCMP 37 48 30
DAX 29 47 41
DOWJONES 34 50 41
FTSE 100 33 39 34
HEX 46 43 46
HSI 35 43 34
IBEX 34 55 37
Nikkei 36 38 36
OMX 27 48 33
S&P 500 32 49 32
SMI 37 55 34
SXXP 36 65 45
Total 1 530 756 561
MSCI Emerging M-G FDL JDemetra+
Markets
ASE 64 66 66
FBMKLCI 60 69 63
JCI 57 61 58
KOSPI 20 15 13
PCOMP 35 41 39
SET 48 56 54
TWSE 22 15 19
Total 2 306 323 312
MSCI Standalone M-G FDL JDemetra+
Markets
JMSMX 98 80 80
MERVAL 31 40 29
Total 3 129 120 109
MSCI Frontier M-G FDL JDemetra+
Markets
CSEALL 110 105 98
Total 4 110 105 98
Total 2 + Total 3 + 545 548 519
Total 4
Total 1075 1304 1080
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5.4.3 Testing of the WFME

Before employing time series for evaluating the WFME, these series generally need
certain statistical pre-adjustments, as they are typically unsuitable in their raw form.
For example, the original time series data could exhibit non-stationary variance.
Consequently, the presence of variance non-stationarity can negatively affect the
decision of whether a market is efficient or not, which in turn can have an adverse

impact on investors' decisions regarding the investment strategy they will pursue.

To conduct a more in-depth examination regarding the testing of the WFME, three
distinct methods will be taken into account. These approaches include: (a) The First
Differences of the natural Logarithm (FDL) of the daily prices, a widely used technique
in finance as mentioned earlier, and will serve as benchmark, (b) The proposed M-G
methodology, which allows the possibility of applying alternative transformations
(square root, logarithmic, negative inverse) for stabilizing variance when it is non-
stationary. (c) The JDemetra+ software, which includes as an initial step a test
concerning the non-stationarity with respect to variance in the original price data. In
cases where the logarithmic transformation is suggested, because all time series in our
sample are I(1)!, the conclusion regarding market efficiency will be the same as the
conclusion of the FDL method. If the logarithmic transformation is not recommended
(thus no transformation of the data within the JDemetra+ framework), then if the M-G
methodology also does not propose any transformation, the conclusion regarding
market efficiency will align with the decision of the M-G method. Finally, if JDemetra+
does not recommend any transformation and the M-G method suggests a transformation
(hypothetically, for example, square root transformation), then we separately examine

all three methods.

The evaluation and comparison of results regarding market efficiency among the three
alternative methods will be based on the possible existence of serial correlation of the
transformed and stationary series derived from the original time series of Stock Index
prices for all the considered Capital Markets. The LBQ test (see section 1.1.6) which
considers autocorrelations for several lags jointly will be used. More specifically, if no

statistically significant autocorrelations are detected at any time lag up to the 30th lag,

1 Space limitations do not allow the presentation of all detailed results, which are available by the
author.
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then the hypothesis of WFME is not rejected. Conversely, if statistically significant
autocorrelations are identified, then the hypothesis of WFME is rejected. The results

concerning the decision about WFME are presented in Table 5.

We remind that the assessment of the hypothesis of WFME is examined for each Stock
Index in 6 different time periods and employing three different methods. Additionally,
the symbol * appearing in the results of Table 5 indicates: 1) either that there are no
statistically significant autocorrelations in the first 10 (and possibly 20) lags, while there
are statistically significant autocorrelations in lags with higher order. In this case, with
reservations, the recorded result is that the hypothesis of WFME is not rejected™, ii) or
that there are statistically significant autocorrelations in the first 10 (and possibly 20)
lags, while there are no statistically significant autocorrelations in lags with higher
order. In this case, with reservations, the recorded result is that the hypothesis of WFME

is rejected™.

By way of an example, in the sixth row of Table 5, which presents the results for the
CAC index, using the M-G method in 4 out of the 6 time periods (second column of
Table 5) under examination, the hypothesis of WFME is rejected, in contrast to 2 out
of the 6 time periods (third column of Table 5) where it is not rejected. With the FDL
method, the notation 6 (2*) (fourth column of Table 5) indicates that the hypothesis of
WFME is rejected in all 6 examined time periods, of which 2 times with reservations.
Conversely, the hypothesis of weak market efficiency is not rejected in any time period
(fifth column of Table 5). Similar interpretations of results with the FDL method arise

for the JDemetra+ method.

From the results below, in developed markets we observe that with the M-G method,
the hypothesis of WFME is not rejected in 51.1% of the examined cases, while with the
established method FDL, the hypothesis is not rejected in 26.7% of the examined cases.
Using the JDemetra+ software, where only the logarithmic transformation is allowed,
the hypothesis of WFME is not rejected in 44.4% of the examined cases. In the existing
literature, the examination of the hypothesis of WFME in developed markets yields
mixed results, although in the initial years of studying developed markets, market
efficiency had been established (Brealey and Mayers, 1988). This conclusion is
primarily supported by the proposed M-G methodology and to some extent by the
JDemetra+. In contrast, the benchmark indicates a bias towards rejecting the hypothesis

of WFME.
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Table 5. Decision about the WFME

WFME
Market M-G FDL JDemetra+
indexes
MSCI Rejection Non- Rejection Non- Rejection Non-
World Rejection Rejection Rejection
Indexes
AEX 3 (1% 3 (1% 6 (1%) 0 3(1%) 3 (1%
ATX 4 2 5 1(1%) 5 1
CAC 4 2 6 (2%) 0 6 (2%) 0
CCMP 2 4 (2%) 3 3 (2%) 2 4 (2%)
DAX 3 (1% 3 (1% 3 3(3%) 3 (1% 3(2%)
DOWJONES 1 5 (2%) 3 3(2%) 1 5(3%)
FTSE 100 5 1 6 0 5 1
HEX 4 2 (1%) 4 (1%) 2 (1%) 4 (1%) 2 (1%
HSI 2 (1% 4 (2%) 3 (1% 3(2%) 2 (1% 4 (2%)
IBEX 4 2 6 0 4 2
Nikkei 1 5(1%) 3 (1% 3(1% 3 (1% 3
OMX 3 (1% 3 (1% 4 2 (2%) 3 3(1%
S&P 500 1 5(3%) 3 3 (2%) 2 4 (2%)
SMI 4 2 (1% 5 1 4 2 (1%)
SXXP 3 3 (2%) 6 0 3 3(2%)
44190 46 /90 66 /90 24190 50/90 40/90
Total 1 (4™ (17%) (6™) (16%) (7™ (17%)
MSCI Rejection Non- Rejection Non- Rejection Non-
Emerging Rejection Rejection Rejection
Markets
ASE 4 2 (2%) 5 1 5 1
FBMKLCI 5 1(1%) 5 1(1%) 5 1(1%
JCI 6 0 6 0 6 0
KOSPI 3 3 3 3 3 3
PCOMP 6 0 6 0 6 0
SET 4 2 4 2 4 2
TWSE 2 (1% 4 (2%) 3 3 2 4 (2%)
30/42 12/42 32/42 10/ 42 31/42 11 /42
Total 2 (1% (5™) (1*) (3*)
MSCI Rejection Non- Rejection Non- Rejection Non-
Standalone Rejection Rejection Rejection
Markets
JMSMX 5 1 5 1 5 1
MERVAL 3 3(1% 4 (1%) 2 (1%) 3 3(2%)
8/12 4/12 9/12 3/12 8/12 4112
Total 3 (1*) (1™ (1™ (2*)
MSCI Rejection Non- Rejection Non- Rejection Non-
Frontier Rejection Rejection Rejection
Markets
CSEALL 6 0 6 0 6 0
Total 4 6/6 0/6 6/6 0/6 6/6 0/6
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Total 2 + 44 /60 16 /60 47 /60 13/60 45/ 60 15/60
Total 3 + (1% (6%) 1 (2% (5%)
Total 4
88/150 | 62/150 | 113/150 | 37/150 | 95/150 | 55/150
Total (5™ (23%) (7 (18%) (7 (22%)

On the contrary, in emerging markets, the hypothesis of WFME is rejected in 73.3%,

78.3% and 75 % of the examined cases using the M-G method, the benchmark, and

JDemetra+ respectively. This finding confirms the existing literature and holds true

across all three different methodologies, indicating that the hypothesis of WFME is

predominantly rejected in emerging markets.

5.4.4 Cases of different decision about WFME

In the following table (Table 6), all the time periods that yield different conclusions

regarding market efficiency are presented for each Stock Index, comparing the three

methodologies. More specifically, the 2nd, 3rd, and 4th columns display the time

periods with different conclusions between the M-G methodology and the benchmark,

the M-G methodology and JDemetra+, and the benchmark and JDemetra+,

respectively. A more detailed analysis is provided through Tables 7-11.

Table 6. Time periods with different conclusions about WFME

Market indexes Time periods with different decision
MSCI World M-G - FDL M-G - JDemetra+ | FDL - JDemetra+
Indexes
1987-1991, 1997- - 1987-1991, 1997-
AEX 2001, 2007-2011 2001, 2007-2011
ATX 2002-2006 2002-2006
1992-1996, 1997- | 1992-1996, 1997- -
CAC 2001 2001
1997-2001, 2007- 1997-2001 2007-2011
CCMP 2011
DAX - - -
1987-1991, 2002- - 1987-1991, 2002-
DOWJONES 2006 2006
FTSE 100 1992-1996 - 1992-1996
1997-2001, 2007- | 1997-2001, 2007- -
HEX 2011 2011
HSI 2007-2011 - 2007-2011
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2002-2006, 2007- - 2002-2006, 2007-
IBEX 2011 2011
1997-2001, 2012- | 1997-2001, 2012- -
Nikkei 2016 2016
OMX 2007-2011 - 2007-2011
1987-1991, 1992- 1992-1996 1987-1991
S&P 500 1996
SMI 2002-2006 - 2002-2006
1992-1996, 2002- - 1992-1996, 2002-
SXXP 2006, 2007-2001 2006, 2007-2011
MSCI Emerging M-G - FDL M-G - JDemetra+ | FDL - JDemetra+
Markets
ASE 2007-2011 2007-2011 -
FBMKLCI - - -
JCI - - -
KOSPI - - -
PCOMP - - -
SET - - -
TWSE 1992-1996 1992-1996 -
MSCI Standalone M-G - FDL M-G - JDemetra+ | FDL - JDemetra+
Markets
JMSMX - - -
MERVAL 2007-2011 - 2007-2011
MSCI Frontier M-G - FDL M-G - JDemetra+ | FDL - JDemetra+
Markets
CSEALL - - -

Emphasis should be placed on cases where, with the logarithmic transformation, the

transformed time series of prices are not stationary with respect to variance (see Table

7), and therefore, the analysis using the LBQ test commonly employed by researchers

in the existing literature is not valid. The full potential of the proposed M-G

methodology becomes evident in the first four cases of Table 7 (rows 3 to 6 of Table 7),

where 1) with the logarithmic transformation recommended by JDemetra+, non-

stationarity with respect to variance persists, and ii) a different conclusion regarding

market efficiency is reached. The aforementioned is depicted in detail in Tables 8-9.
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Table 7. Cases where the time series are not variance stationary with the log-

transformation
Market Decision about data transformation
indexes
MSCI Time periods | JDemetra+ M-G Estimated
World value of B
Indexes according to
M-G method
ATX 2002-2006 Log Negative inverse 1.21
CCMP 1997-2001 Log Negative inverse 1.57
HEX 1997-2001 Log Negative inverse 1.50
S&P 500 1992-1996 Log Negative inverse 1.76
ATX 1987-1991 Log Negative inverse 2.03
MSCI Time periods | JDemetra+ M-G Estimated
Emerging value of 8
Markets according to
M-G method
JCI 1988-1991 Log Negative inverse 1.27
JCI 1992-1996 Log Negative inverse 1.31
JMSMX 1987-1991 Log Negative inverse 1.57
JMSMX 2012-2016 Log Negative inverse 1.46
MERVAL 1987-1991 Log Negative inverse 1.49
MERVAL 1992-1996 Log Negative inverse 2.14

More specifically, in Table 8, one case is depicted where, with the M-G methodology,
the market is efficient, while with the methodologies of JDemetra+ and the benchmark,
the market is not efficient. Similar conclusions, albeit with reservations, are drawn for

the Stock Index S&P 500 during the time period 1992-1996.
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Table 8. Decision about data transformation and WFME for the series

ATX 2002-2006

Data transformation

JDemetra+
Time series in Levels
Decision Logs
M-G
Time series in Levels
B 121
Decision Negative inverse

Time series in

Negative inverse

J4 Not statistical significant
Variance stationarity
Time series in Levels Logs Negative inverse
Decision No No Yes
Time series in First differences of First differences of log
negative inverse (M-G) (FDL and JDemetra+)
Lag LBQ p-value LBQ p-value
10 6,586 0,764 24,523 0,006
20 23,091 0,284 38,170 0,008
30 35,716 0,218 47,462 0,022
WFME Not Rejected Rejected

On the contrary, in Table 9, with the M-G methodology, the hypothesis of WFME is
rejected, while the benchmark and JDemetra+ suggest not rejecting the hypothesis of
WFME. Similar findings, though with reservations, are reached regarding the CCMP
Stock Index between the years 1997 and 2001.
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Table 9. Decision about data transformation and WFME for the series

HEX 1997-2001

Data transformation

JDemetra+
Time series in Levels
Decision Logs
M-G
Time series in Levels
J4 1.50
Decision Negative inverse

Time series in

Negative inverse

I Not statistical significant

Variance stationarity

Time series in Levels Logs Negative inverse
Decision No No Yes
Time series in First differences of First differences of log
negative inverse (M-G) (FDL and JDemetra+)
Lag LBQ p-value LBQ p-value
10 19,357 0,036 7,970 0,632
20 37,519 0,010 19,327 0,501
30 48,249 0,019 38,315 0,142
WFME Rejected Not Rejected

In the other cases listed in Table 7, even though variance doesn't become stationary with
the logarithmic transformation, the same conclusion regarding market efficiency arises.
More specifically, with all three methodologies, the hypothesis of WFME is rejected,
and the markets are not efficient. The result obtained for the specific stock indices
(JCIL, IMSMX, MERVAL) confirms the existing literature, indicating that in emerging
markets there are so many imperfections that regardless of the approach employed, the
conclusion about market efficiency remains unchanged (i.e., markets are not efficient).
However, the result for the ATX Stock Index (the time period 1987-1991), which now

belongs to developed markets, should not surprise us. As noted by Milionis and
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Papanagiotou (2008), the ATX Stock Index exhibited many similarities with the ASE
Stock Index, which belongs to emerging markets, and in most cases, the hypothesis of

WFME is rejected for the ASE index.

Another point that requires particular attention when analyzing the results from Table
7 is that in all cases where the time series are non-stationary in terms of variance, even
when the logarithmic transformation is applied, the estimated value of § using the
proposed M-G methodology (see section 2.2) is greater than 1.21 (and can go up to
2.14). This suggests the preference for the negative inverse transformation, which
converts the time series to being stationary in terms of variance. This specific finding
not only indicates that when the negative inverse transformation needs to be applied,
the logarithmic transformation might not make the time series stationary in terms of
variance, thus rendering the conclusions about WFME from the benchmark invalid, but
also provides a future direction for research into the M-G methodology. More
specifically, a future aim is to conduct Monte Carlo simulations in order to accurately
determine critical values and intervals for the parameter § within the framework of the
M-G methodology. These simulations will indicate when each specific data

transformation should be applied or when no transformation should be applied at all.

Another case that highlights the superiority of the proposed M-G methodology
compared to JDemetra+ and the benchmark is presented in Table 10. More specifically,
despite the initial time series of prices for the TWSE index during the period 1992-1996
being stationary with respect to variance, JDemetra+ incorrectly suggests applying the
logarithmic transformation, once again indicating the bias of the statistical software
towards using the logarithmic transformation. However, beyond this, the application of
unnecessary and erroneous transformation affects the conclusion regarding market
efficiency. In more detail, according to the M-G methodology, it is determined that the
markets are not efficient, thus investors have the opportunity to profit from the market
by implementing proper investment strategies (similar findings were noted in the cases
of the market indices ATX during the time period 2002-2006 (as shown in Table 8) and
S&P 500 during the time period 1992-1996). In contrast, using the benchmark and
JDemetra+, investors would miss out on this opportunity to gain profits, as they indicate

that the markets are efficient.
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Table 10. Decision about data transformation and WFME for the series

TWSE 1992-1996

Data transformation

JDemetra+
Time series in Levels
Decision Logs
M-G
Time series in Levels
J4 Not statistical significant
Decision None

Variance stationarity

Time series in Levels Logs
Decision Yes Yes
Time series in | First differences of First Differences of log
levels (M-G) (FDL and JDemetra+)
Lag LBQ p-value LBQ p-value
10 19,372 0,036 12,352 0,262
20 32,896 0,035 29,010 0,088
30 40,194 0,101 39,260 0,120
WFME Rejected* Not Rejected

However, in all the other cases presented in Table 6, the M-G methodology indicates
that the markets are efficient, the benchmark suggests that the markets are not efficient,
while JDemetra+ sometimes concludes that the markets are efficient, and other times
that the markets are not efficient. All these cases, except for the instances of the market
indices HEX during the time period 1997-2001 (presented in Table 9) and CCMP during
the same time period, where the further analysis with the LBQ test should not have been
pursued at all, as the conditions for stationarity in the second moment are not met, are

provided in Table 11.
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Table 11. Time periods with different decision about WFME when the time series are

variance stationary

Market indexes Time periods with different decision
MSCI World Time period M-G FDL JDemetra+
Indexes
AEX 1987-1991 | Not rejected | Rejected | Not rejected
AEX 1997-2001 | Not rejected | Rejected | Not rejected
AEX 2007-2011 | Not rejected | Rejected | Not rejected
CAC 1992-1996 | Not rejected | Rejected Rejected
CAC 1997-2001 | Not rejected | Rejected Rejected
CCMP 2007-2011 | Not rejected | Rejected | Not rejected
DOWJONES 1987-1991 | Not rejected | Rejected | Not rejected
DOWJONES 2002-2006 | Not rejected | Rejected | Not rejected
FTSE100 1992-1996 | Not rejected | Rejected | Not rejected
HEX 2007-2011 | Not rejected | Rejected Rejected
HSI 2007-2011 | Not rejected | Rejected | Not rejected
IBEX 2002-2006 | Not rejected | Rejected | Not rejected
IBEX 2007-2011 | Not rejected | Rejected | Not rejected
NIKKEI 1997-2001 | Not rejected | Rejected Rejected
NIKKEI 2012-2016 | Not rejected | Rejected Rejected
OMX 2007-2011 | Not rejected | Rejected | Not rejected
S&P 500 1987-1991 | Not rejected | Rejected | Not rejected
SMI 2002-2006 | Not rejected | Rejected | Not rejected
SXXP 1992-1996 | Not rejected | Rejected | Not rejected
SXXP 2002-2006 | Not rejected | Rejected | Not rejected
SXXP 2007-2011 | Not rejected | Rejected | Not rejected
MSCI Emerging
Markets
ASE 2007-2011 | Not rejected | Rejected Rejected
MSCI Standalone - - -
Markets
MERVAL 2007-2011 | Not rejected | Rejected | Not rejected

From the results above, the bias of the benchmark towards rejecting the hypothesis of
WFME is apparent. As 21 out of the 23 cases presented in Table 11 pertain to developed
markets, this contradicts the existing literature where mixed results in recent years, or
non-rejection of the hypothesis of WFME in the initial years of studying developed
markets (Brealey and Mayers, 1988), are often observed. Conversely, this finding

further supports the outcomes of the M-G methodology.
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5.5 Conclusions-future prospects

Although the concept of market efficiency has been studied for several decades,
researchers naturally use extensively asset returns (i.e., the first differences of the
natural logarithms of prices) as a standard measure, without checking whether these
time series are stationary with respect to variance. According to this research, it
becomes evident that utilizing the logarithmic transformation for Stock Index prices is
inadequate for stabilizing the variance in most of the cases that were examined. This
has the consequence that the use of autocorrelation tests, which are among the most
common practices for testing market efficiency, may not be valid. This conclusion was
also reached in the present study, where it was indicated that the first differences of the
natural logarithms of prices often did not satisfy the condition of variance stationarity.
As a result, in some cases the hypothesis of WFME was: 1) falsely rejected, and ii)
falsely not rejected. These cases emerged in the study of developed markets. In these
cases, the same conclusion was reached by JDemetra+, which recommended the
logarithmic transformation. In contrast, with the M-G method, which allows for the
application of various transformations, it was found that: i) the time series of first
differences of prices became stationary with respect to variance, and ii) the proper and
valid use of autocorrelation tests led to opposite conclusions regarding market
efficiency compared to the first differences of the natural logarithms of prices and

JDemetra+.

Furthermore, in emerging markets, it was found that in all cases where the rejection of
the hypothesis of WFME emerged as a conclusion by JDemetra+, the same conclusion
reached by the M-G method in almost all these cases. This is due to the fact that
emerging markets have so many “imperfections” that, regardless of the approach used,

in the majority of the existing literature, the hypothesis of WFME is rejected.

Moreover, the divergent conclusions that emerged, primarily in developed markets,
using all three methods (first differences of the natural logarithms of prices, JDemetra+,
M-QG), are caused by the fact that the M-G methodology's findings documented that
with the existing methodologies in terms of statistical testing of market efficiency there
is a profound bias towards rejecting market efficiency. In that sense, the M-G
methodology provides support to the persisting view of Eugene Fama that markets are

efficient in the weak sense.
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In general, analyzing the entire examined dataset, it was found that the first differences
of the natural logarithms of prices exhibits bias in rejecting the weak-form efficiency
in developed markets. This contradicts the existing literature, where depending on the
time period and the Stock Index under examination, mixed results arise regarding the
hypothesis of WFME (although in the initial years of studying developed markets,
market efficiency had been established). This finding about mixed results was
confirmed by the proposed M-G methodology and partially by JDemetra+. In emerging
markets, using all three different methods that were examined, the long-standing
conclusion in the existing literature was reaffirmed, i.e., that markets are generally not

efficient.

Furthermore, the bias of JDemetra+ regarding the application of the logarithmic
transformation was confirmed once again, which consequently affects the detection and
number of outliers. The difference in the number of detected outliers (which is of lesser
importance as compared to the statistical testing of efficiency) is evident when the
logarithmic transformation is continuously applied (using the FDL method), and the
results are compared with the M-G method, which suggests the logarithmic

transformation only a few times.

A field of future research is the pursuit of determining critical values for the parameter
£ within the framework of the M-G methodology, using Monte Carlo simulations. In
this way, the value of § will indicate which transformation (or none) should be applied
to satisfy the stationarity criterion in the second moment. Additionally, a future
direction is to employ GARCH-type models to capture the conditional
heteroskedasticity, which is different from variance non-stationarity, frequently

observed in the time series of financial assets prices.
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SUMMARY OF CHAPTER §

In the context of market efficiency, decades of research have very often involved the
first differences of natural logarithms of prices (i.e., asset returns), but without
adequately verifying the stationarity of these time series in terms of variance. Based on
this study, it arises that the application of the logarithmic transformation for stock
market prices is in many cases inappropriate for stabilizing the variance of the
corresponding price relatives. Consequently, utilizing autocorrelation tests, commonly
employed to test market efficiency, may be invalid. Indeed, in this chapter it was
documented that autocorrelation tests cannot be legitimately employed as a statistical
tool for testing market efficiency in 83.3% of the examined cases. Moreover, it was
determined that the usage of the first differences of natural logarithms of prices
introduces bias in rejecting the weak-form efficiency in developed markets. This
finding was corroborated by the proposed M-G methodology and partially by

JDemetra+ software.

It is also remarkable that following the statistical testing based on the M-G methodology
the conclusion about the hypothesis of WFME is the opposite of that based on the
established methodology in 27.7% of the cases for the developed Capital Markets.

In the case of emerging markets, employing all three methods that were investigated
reaffirmed the enduring conclusion in existing literature — namely, that markets are
generally not efficient, even though for several cases again the established methodology
could not be legitimately employed. For these markets the extent of inefficiency is such
that it is consistently detected regardless of the method employed. Thus, there is
evidence confirming that the maturity level of the financial market affects market
efficiency. Furthermore, the recurring bias of JDemetra+ in applying the logarithmic
transformation was confirmed once again, thereby impacting the identification and
quantity of outliers. The discrepancy in the number of detected outliers becomes evident
when the logarithmic transformation is consistently applied (using the FDL method),
and the results are compared to the M-G method, which suggests the logarithmic

transformation only on a few cases.
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EXTENDED SUMMARY/PROSPECTS

A stochastic time series is a type of time series where the future values can only be
determined in terms of a probability distribution. If this probability distribution is
constant over time, then the time series is said to be stationary. A less strict condition
for stationarity requires that at least the level and variance of the time series be constant

over time.

Researchers employ various tests to check for non-stationarity in the level of a time
series, but more often than not they neglect to investigate non-stationarity in its variance
when conducting applied research. In fact, regarding time series variance, the primary
research emphasis is on modeling autoregressive conditional heteroscedasticity,

typically using a variety of ARCH-GARCH models.

It is essential to differentiate between two key concepts: variance non-stationarity, often
referred to as heteroscedasticity, and conditional heteroscedasticity. Heteroscedasticity
implies a functional relation between the variance of a series which is non-stationary in
its level and its mean level. This entails non-stationarity in the variance, and the
variance is neither conditionally nor unconditionally constant. Consequently, the
process is non-homogeneously non-stationary in the sense of Box and Jenkins and
cannot be made stationary by simply differencing it. To address variance
non-stationarity, one approach is to apply power transformations, such as the well-
known Box and Cox transformations. On the other hand, conditional heteroscedasticity,
often described using ARCH or GARCH models, signifies that while the conditional
variance varies over time, the unconditional variance remains constant. As a result, the
series is stationary in the second moment. In the present Ph.D. thesis, the focus is on
the series with non-constant variance both conditionally and unconditionally, covering

to a certain extent a gap in that area, as the existing research work is relatively scanty.

Indeed, even though it is crucial to deal with non-constant variance in time series
modeling, there is a shortage of comprehensive theoretical research on its detection and
correction. Moreover, in practical applications, the treatment of non-stationary variance
is not only insufficient, as the choice of a specific transformation is often arbitrary, but
also, as is documented in Chapter 2, occasionally biased towards over-rejection of the

null hypothesis of unconditionally constant variance.
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The aim of this Ph.D. thesis is to present a formal econometric approach that not only
identifies non-stationary variance and suggests appropriate transformations for
correction, but also is robust to the specific partitioning of a time series, which is a
necessary step for conducting the test, and the possible presence of outliers. The
importance of employing this approach in the fields of macroeconomics, actuarial
science and finance is extensively examined and supported in Chapters 3, 4 and 5

respectively.

In Chapter 2, the Ph.D. thesis elaborates on the theoretical foundation of the proposed
methodology, which focuses on statistical testing for the existence and the identification
of the character of time-varying second moment in its dependence on a non-constant
mean level in time series. This approach represents an enhancement over current

methods as it combines detection, correction, and robustness.

It is important that during the typical process of analyzing a time series, the initial step
is to assess whether the original data requires transformation to make the variance
stable. This assessment is carried out before any other actions, including building the
univariate ARIMA model, performing seasonal adjustments, etc. Consequently, it is
clear that the results of these subsequent actions are influenced by the choice made

regarding data transformation.

This is of value in its own right as it leads to the improvement of univariate time series
modelling. Furthermore, empirical evidence is presented using real data (Greece’s
balance of payments and prices of consumer goods and services), as well as simulated
data, from which it comes out that an existing test, specifically the widely used
algorithm of TSW software, occasionally yields biased results. TSW stands for
TRAMO-SEATS for Windows, a Windows version of the DOS programmes TRAMO
and SEATS of Goémez and Maravall. TRAMO stands for "Time series Regression with
ARIMA noise Missing observations and Outliers" and SEATS stands for "Signal
Extraction in ARIMA Time Series". TSW routines are also incorporated in other widely
used econometric software. Notably, TSW offers only two alternatives for data

transformation: log-transformation or no transformation.

Indeed, by utilizing simulated data, it was feasible to identify one of the possible origins
of this bias. More specifically, with simulated homogeneously non-stationary

processes, it became evident that the bias of TSW depends on the initial conditions.
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Moreover, drawing from the empirical evidence presented, it is argued that the type of
data transformation and the entailed correction for variance—non stationarity is also
crucial for the detection of outliers and the seasonal adjustment of the original time
series. In addition, the empirical results provide evidence of an improved forecasting
performance by the proper use of a data transformation, a result that is backed by

additional empirical evidence in Chapters 3 and 4.

It was also determined that the consequences of erroneously transforming a time series,
which is originally variance stationary, do exist, but are comparatively less severe than
the consequences of erroneously not transforming an originally variance non-stationary

series. This is a conclusion that holds substantial practical importance.

In Chapter 3, the proposed methodology is applied to macroeconomic time series. As a
matter of fact, real-world economic time series are not immediately suitable for
forecasting purposes, and they require some statistical preparation and pre-adjustment.
This is because raw data time series can often exhibit non-stationary variance.
Furthermore, very often there exist causes that disrupt the underlying stochastic
process, such as the existence of outliers and calendar effects. Their treatment is

referred to as «linearizationy.

The impact of either data transformation or linearization on the accuracy of forecasts,
including both point forecasts and confidence interval forecasts, has not been
thoroughly explored until now. This study investigates their impact on univariate
forecasting, analyzing each one individually and in combination, employing twenty of

the most important time series related to the Greek economy.

For data transformation, two algorithms were utilized, namely those of TSW and
Milionis Galanopoulos (M-G henceforth). The M-G algorithm is the statistical
methodology developed in Chapter 2, which allows data transformation not only
through the logarithmic transformation but also through the square root and negative

inverse.

Empirical findings show a significant improvement in forecasts’ confidence intervals,
but no substantial improvement in point forecasts. Furthermore, there is also evidence
that the overall forecasting performance using the M-G data transformation procedure

is somewhat better than the one using the data transformation procedure of TSW.
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Moreover, the combined transformation-linearization procedure improves substantially

the non-normality problem encountered in many macroeconomic time series.

One area where the enhanced forecast confidence intervals documented in Chapter 3
could be particularly advantageous is the field of actuarial science, particularly in
dealing with longevity risk. This risk arises from the uncertainty surrounding the future
trend of mortality rates of pensioners, as advancements in science and medicine make
the prediction of mortality rates a difficult task. To address this issue, one approach is
to employ mortality models to forecast the trend of mortality rates and its associated
uncertainty in the future. This uncertainty is directly associated with forecast

confidence intervals.

In Chapter 4, aiming at possible improvements of such forecasts, it is examined how
statistical pre-adjustments (data transformation and linearization) affect the accuracy of
time series forecasts of mortality. This analysis was conducted using data derived from

mortality models for England-Wales.

To conduct a detailed investigation about statistical forecasting, three distinct methods
were considered. These methods were the following: (a) The random walk with drift
model, which is widely used in actuarial research due to its simplicity and served as the
benchmark. (b) The “AUTOARIMA” command within the programming software “R”
for automatic model selection and forecasting, as demonstrated in the published work
of Hatzopoulos and Sagianou. (c) ARIMA models implemented after statistical pre-
adjustments, which implies Variance Reduction and will be referred to as “VR”

forecasts.

The empirical findings demonstrate a clear improvement in interval forecasts which on
average are shortened by approximately 35.4% when comparing VR and RWD and
20.4% when comparing VR and “AUTOARIMA”. However, the conclusion for point
forecasts is not as clear. The documented improvement in interval forecasts can have a
substantial impact on the Solvency Capital Requirement, rendering some pension
providers at a competitive advantage. The Solvency Capital Requirement covers all the

possible risks that an insurance company may encounter.

Furthermore, for series with unstable but not functionally dependent on the level
variance, the conventional recommendation in the literature for transformation of the

original data, did not receive confirmation. A case-by-case treatment seems to be a more
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sensible approach. It was also validated that the series subjected to both transformation
and linearization satisfy better the need for normality as compared to the other

alternatives.

The above statistical findings have important implication for the actuarial science. More
specifically, the improvement in interval forecasts can significantly affect the Solvency
Capital Requirement, and subsequently the Solvency Ratio for a pension fund. Such an
improvement might put some pension providers at a competitive advantage as they have

less capital locked in their liabilities.

As further research, the intention is to explore more comprehensively the effect of
statistical pre-adjustments to the financial impact on Solvency Capital Requirement,
under different model structures, actuarial assumptions, and forecast methods. As it is
noted in Chapter 4, the most useful tool for investigating uncertainty over longevity risk
is a stochastic mortality projection model. Since, there is a wide choice of such models
in the literature, the choice of model can lead to material changes in the best-estimate
reserves, while even within a model family there can be major differences. For those
models it is aimed to study the uncertainty over future mortality rates, which is
measured as the variance of the mortality forecast values. By this method, it will be
quantified analytically the respective contributions to capital requirements using Value
at Risk calculations. Last but not least, the overall methodology presented in Chapter 4
may be used also in due course to adjust for the possible effect of the COVID-19 virus

on the forecasting of longevity trends.

In the last chapter (Chapter 5), the developed methodology contributes to the
improvement of the framework of econometric assumptions and tests in finance, aiming
to determine the rejection or non-rejection of the hypothesis of weak-form market
efficiency. Weak-form market efficiency (WFME) deals with situations where the

available information pertains solely to historical prices of financial assets.

While the concept of market efficiency has been a subject of study for several decades,
researchers naturally use extensively asset returns, which are essentially the first
differences of the natural logarithms of prices, as a standard measure, without checking
whether these time series are stationary with respect to variance. In a risk-unadjusted
framework, it is crucial to emphasize that these tests are valid only when the series of

logarithmic prices exhibits variance stationarity. If this condition is not satisfied, the
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significance testing of autocorrelation coefficients in the widely used autocorrelation
tests becomes invalid. It is noted that since efficiency tests are typically conducted using
returns rather than prices it is the logarithmic transformation that is employed. While
this transformation is the proper one in terms of finance, there is no guarantee that this

1s also the case statistics-wise.

The classification of financial markets is widely employed by investors to assess and
make investment decisions across various markets. The examined dataset consists of
twenty-five financial market indices, comprising fifteen stock indices from developed

markets and ten from emerging markets.

To conduct a more thorough investigation into the testing of the WFME, three different
approaches were considered. These methods include: (a) The First Differences of the
natural Logarithm (FDL) of the daily prices, a commonly used technique in finance,
and served as a benchmark, (b) The proposed M-G methodology, which allows for the
application of alternative transformations to stabilize variance when it is non-stationary
(c) The JDemetra+ software, which includes as an initial step, a test for non-stationarity
with respect to variance in the original price data. In more detail, JDemetra+ utilizes
the test for variance stationarity embedded in TRAMO. However, as JDemetra+ only
permits the logarithmic transformation, the M-G statistical methodology developed in
Chapter 2 was employed. Additionally, the M-G algorithm is chosen because TRAMO

has been shown to exhibit bias towards the logarithmic transformation.

According to this study, it is clear that using the logarithmic transformation for Stock
Index prices is inadequate for stabilizing the variance in most of the cases that were
examined. Consequently, utilizing autocorrelation tests, commonly employed to test
market efficiency, may be invalid. Indeed, in this chapter it was documented that
autocorrelation tests cannot be legitimately employed as a statistical tool for testing

market efficiency in 83.3% of the examined cases.

Furthermore, it was established that employing the first differences of natural
logarithms of prices can introduce a bias in rejecting weak-form efficiency in developed
markets. This result was supported by the proposed M-G methodology and, to some
extent, by the JDemetra+ software. It is noteworthy that, after conducting the statistical

testing using the M-G methodology, the conclusion regarding the WFME hypothesis
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contradicts that obtained through the established methodology in 27.7% of the cases for
developed Capital Markets.

In the case of emerging markets, the use of all three methods that were examined
reconfirmed the long-standing consensus in existing literature — that is, markets in these
regions are typically not efficient. However, it is worth noting that for several cases, the
established methodology could not be validly applied. In these markets, the degree of
inefficiency is pronounced and consistently detected irrespective of the method used.
This confirms the existing research that supports that the maturity level of a financial

market affects its efficiency.

Additionally, the previously noted bias of JDemetrat+ in its use of the logarithmic
transformation was once again verified. Consequently, this bias affects the detection
and number of outliers. The difference in the number of detected outliers (which is of
lesser importance as compared to the statistical testing of efficiency) becomes apparent
when the logarithmic transformation is continuously applied (using the FDL method),
and the results are compared with the M-G method, which suggests the application of

the logarithmic transformation only a few times.

Regarding future prospects of this research, beyond what has already been mentioned,
such a field is the pursuit of determining critical values for the parameter 8 within the
framework of the M-G methodology, using Monte Carlo simulations. In this way, the
value of B will (more formally) indicate which transformation (or none) should be
applied to satisfy the stationarity criterion in the second moment. Additionally, a future
direction is to study variance non-stationarity in time series in conjunction with
GARCH-type models which capture the autoregressive conditional heteroskedasticity.
It is worrisome that researchers often proceed to GARCH models without assurances

about stationarity in the second moment.

Finally, it is remarked that the conclusions related to variance non-stationarity of stock
index prices and, in sequence, to autocorrelation tests in stock index returns, are
unavoidably linked not only to the particular type of assets (stock indices), but also to
the particular sampling time interval that was used (five years). Hence, it should not
necessarily be taken for granted that these conclusions are identically valid for other
types of assets and, more importantly, for the particular asset, but over longer time

intervals. There is little doubt that this is yet another field for further future research.
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EKTENHX IIEPIAHYH

Mio 6T0X06TIKY XPOVOGELPA givol £vag TOTOG YPOVOCELPAG OOV Ol LEAAOVTIKES TUUES
pmopovv vo. KaBoplotovv PHdvo Ge OPOLS Lo KATOVOUNS ThovotnToc. Av auth m
Katovoun mlavotntag eivon otabepr| e TV TAPOSO TOL YPOVOVL, TOTE 1| YPOVOCELPA
Aéyeton otdoyn. Mw Ayotepo ovotnpn ouvOnkn Yoo TN OTOGILOTNTO OTOLTEL
TOVAQYLOTOV TO EMMESO KOl 1 OLOKVUAVOT TNG YPOVOGEPAS va givol otabepd pe tnv

napodo Tov YPOVOUL.

O1 gpguvnTég Y PNOILOTOLOVV H1APOPOVS EAEYYOVS Y10, VO, EEETAGOVV TN UN-CTAGILOTNTO
0T0 &€minmedo WIag XPOVOGEPAS, OAAGL CLYVA TOPAUEAOVV Vo €EeTGoOVY TN -
OTOCIUOTNTO OTN OLOKLUAVON TNG, KATA TNV Oleéaymyn €QOPUOGUEVNG EPELVOG.
[Ipdypatt, 660V a@opd T SLUKOLAVOT TNG XPOVOCELPAS, 1| TPOTOPYIKT EPEVVITIKN
éupaon diveTal 6T HOVIELOTOINGT TG AV TOTAAIVOpOUNG deGELIEVNC (VTTO GLVONKN)
€TEPOOKESOOTIKOTNTAG, SLVIBWG Ypnotpomoldvtag dbpopo. ARCH-GARCH tomov

HOVTELQL.

Eivar ovoiddeg va drakpivovpe avapesa e d00 Pactkés EVVOLES: TNV UN-GTAGIULOTNTO.
™G OKOUOVONG, OV GLYVEL OVOEEPETAL KOU G ETEPOOKEOACTIKOTNTO, KOl TNG
OeoUEVUEVNG  eTEPOOKEDNOTIKOTNTOS. H  €TEPOOKESNCTIKOTNTO CUVETAYETOL ML
oLVOPTNOOKN GY€om HeTadD TG dtaKvUavVoNS Hog GEPAg, Tov gival Un-oTdoiun 6To
eMinedd TG Kot TOL HECOV EMTEGOL TNG. AVTO £XEL OC OMOTEAEGLOL T UN-CTAGILOTNTO
oT1 OLOKOLLOVGT), KOt 1 S1aKVLaVeN €ivat un-otafept) 1060 vTd GLVONKT, 660 Kot Y®Pig
ouvONK” (UN-0ecUEVUEVT)). ZVVETMOC, 1 dtodkacio Elvol UN-OUOI0YEV(DS UN-OTAGIUN
oto mAaiclo Tov Box kot Jenkins kot dev pumopel va yivel 6TAoIun omA®S ToipvovTog
11§ Owpopés. o va avrpetoniotel n PnN-otactudTTo TG OUKVUOVONG, Mo
TPOGEYYIoN €ivol M EQOPUOYN UETACYNUOTICUAOV, OO &ival ol gupiéms YvmoTol
petaoynuoticpot tov Box kot Cox. Amd v GAAN mAgvpd, M OECUELUEVM
ETEPOCKESOCTIKOTNTA, TTOV TEPLYPAPETOL GLYVE YPNOLUOTOIDOVTAG LOVTELD TOV TUTTOV
ARCH-GARCH, vmovoei 611 evdd 1 deopeLpEVT SlakOUOVOT HETOPAAAETOL e TOV
XPOVO, M UN-OEGUEVIEVT] OLOUKVULOVOT TOPAUEVEL GTAOEPT. G AmOTELEGO, 1| GEPA
elvar  otdowyn ot  0gLTEPN POM). XTIV  TOPOLGH  OOAKTOPIKY  oTpPipi,
EMKEVIPOVOLOOTE GE GEPES e Un-otafepn dtokdpavon 1660 vtd cuvOnKn 6co Kot
yopic cuvONkn, KaAvmtovrog pExpt Eva fabud va kevd otnv evpvTEPN TTEPLOYT, KAODG

N vdpyovoa epevvnTikn PiPAoypopio etvor GYeTIKE TEPLOPIGUEVT).
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[Ipdypatt, av kot gival ovouUDOES VO OVTILETOMIOTEL 1| UN-oTtafepn S10KVUOVGT OTN
LOVTEAOTOINGM YPOVOGEIPDV, LITAPYEL EAAEIYT GLYKPOTNUEVNG BE@PNTIKNG £PEVVOC
OYETIKA e TNV aviyvevon Kot ) 010pOwon . EmmAéov, o011 mpaktikés epappoyEs,
N OVTILETOTION TNG UN-CTOCIUOTNTOS TNG JlaKVvUaveng 0gv gival HOvVo avemapKNG,
KaOADS 1 EMAOYT EVOS GUYKEKPYEVOD LETAGYNUATIGHLOD GLyvd etvan avBaipetn, alid
emiong, onw¢ tekpaipetal 6to Kepdhowo 2, mepiotactokd £ivol LEPOANTTIKY MG TPOG
™V vIePPoMKN amdppyn NG UNOEVIKNG LIOBeoNC TG UN-0ECUEVUEVIC GTOOEPNC

SO poveng.

O okomdc ¢ Tapovoag SBAKTOPIKNG JATPIPNG Elval va TapPOVCIAGEL fo eXionun
OWKOVOUETPIKT] TPOGEYYIOT] 7oL Oyl KOVO  aviyveDel TN  UN-CGTOAGLOTNTO TNG
LKV LLOLVONG KO TPOTEIVEL KATOAANAOVS LETAGYNUOTIGLOVGS Yia TN S10pOwaen TG, aAAG
emiong tvot avOekTIKn apeVOg MG TPOG TIC SLAPOPES JLALEPITELS OGS XPOVOGELPES, TOV
anotelel anapaitmro Prua yu t deEoywyn Tov EAEYYOV, Kot aQETEPOL TNV ThAvN
vmapén akpoiov Tipnav. H onuoavtikdtro g xpMong ovTng e TpocEyyIons 6TouG
TOMEG TG HOKPOOWKOVOUING, 1TNG  OVOAOYIOTIKNG — EMICTHUNG  KOU  TNG
YPNLLOTOOIKOVOLLKT|G e€eTaleTan AemTopepmg kol vtootnpiletan ota Kepdioa 3, 4 ot

5 avtioTouya.

210 Kepdloro 2 g 0100KTOpIKNG d1aTptng avamtucocovtol To Oempntikd Bepédia g
TPOTEWVOUEVNC HeBOOOAOYING, 1) OTTOlaL EMIKEVIPMOVETAL GTOV GTOTIOTIKO EAEYYO Y10 TNV
VapEn Kot ToV TPOGOIOPIGHO TOV YOPOKTHPA TNG XPOVIKE HeTABaAAOUEVNC devTEPTG
POTNG G TTPog TNV €€APTNOT TS amd Eva un-otafepd PEco eminedo 6T YPOVOGELPA.
AV N TPOGEYYION AVTITPOCMTEVEL Lo PEATIOON EVOVTL TOV VPLOTAPEVOV UEBOO®V

KkaBmg cuvovalel TNV aviyvevon, ™ dOpHmaon Kot TNV avOEKTIKOTNTA.

Etvor onpovtikd 0t Kot Ty Tumikn d1adikacio ovaAVoNG LA XPOVOGELPAGC, TO aPYLKO
Brpa glvar va, a&toAoynOel edv o apyikd dESOUEVO OTOLTOVV LETAGYNUATIGUO Y10, VO
yivet n dwaxvpaven otabepr. Avty n afloddynon mpoaypotomoleital Tpw  amd
omoladnmote  GAAN  evépyela, ovumeptlopPavopévng NG KOTOOKELNG  TOV
povopetapintod ARIMA vodelypatoc, Tng TpoyLOTOTOINGTG EMOYIKOV d10pOdhcemv,
KAT. QG amoTEAEG LA, EIVAL GOPES OTL T ATOTEAEGLATO QVTAOV TMOV ETOUEVOV EVEPYELDV
emnpedlovtol amd TNV EMAOYN OV YIVETOL GYETIKO HE TOV HUETACYNUATICUO TOV

OEOOUEVMV.
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Avtd €xer o&la kaBovtn, kaBdg odnyel omn Peitioon ™G HOVOUETOPANTAG
povtelomoinong ypovooelpmv. EmmAéov, mapovcotalovtol EUTEPIKA  ELPTLOTO
YPNOUOTOIOVTOG TPayUaTkd dedopéva tng EALGdg (1colvyio mANpou®V Kot TIHEG
KOTAVOADTIKOV 0yaf®V Kot VINPESLOV), KAONDG Kot TPOGOUOIOUEVH dEdOUEVA, ATO T
omolo.  TPOKVMTEL OTL  €vaG  VOIOTAUEVOS  EAEYXOC,  EOIKOTEPA O  EVPEMC
YPNOOTOO0HEVOG  0AyOpOog tov Aoywopkod TSW, pepwcés @opéc mapdyst
peponmrikd amoteAéopata. To TSW aviummpocwnever to TRAMO-SEATS yia
Windows, o ékdoon yio Windows twv DOS wpoypappdtov TRAMO kot SEATS tov
Gomez ka1 Maravall. To TRAMO avtinpoocwonevet ) @pdon "Time series Regression
with ARIMA noise Missing observations and Outliers" kot 1o SEATS avturpoconedet
™ o¢pdon "Signal Extraction in ARIMA Time Series" kot ¢ adyopiOuog eivon
EVOOUATOUEVOS KO GE AAAL EVPEMG YPNCLOTOIOVLUEVA GTATIOTIKA AOYIopIKA. Emtiong,
10 TSW mpocpépetl pévo 600 EVOALUKTIKES Y100 TOV LETOACYNLOTIGUO TOV OEOOUEVMV:

TOV AOYOPOKS PETACYNUATIOUO 1) KOVEVO LETOACYNUOTIGHO.

[Ipdypatt, pécw TG YPNONS TPOGOUOLOUEVOV OEOOUEVMV, NTAV OLVOTO VO, EVTOTIGTEL
pio amd Tig mbavég antieg avtg TG LEPOANYING. ZVYKEKPIUEVQ, LE TPOGOLUOUDUEVES
OUOLOYEVAS UN-OTAGIUES Ol00IKAGIES, £yve gueavég OTL M pepolnyio tov TSW

eCaptatal amod TG apykéG GLVONKEG.

Emniéov, Pacilopevol ota mapovstalOUeva EUTEPIKE EVPNLOTO, OLTIOAOYEITAL OTL O
TOTOG TOV UETOCYNLOATICHOD TV OES0UEVAOV Kot 1] GuvodeLdeEVT) d10pOBman g Un-
OTOGIHOTNTOG TNG OLOKVULOVONG Elval ETIOTG OVGLDANG Y10 TNV AVIYVELST TV OKPOimV
TILAV Kol TNV EMOYOKT O10pOmon TG apykng ypovocelpds. EmumAéov, ta euneipikd
aroteAéopato TopEyovv evoeiEelg PeATiopévng TPoPAERTIKNG KAVOTNTOG HECH TNG
OMOTNAG YPNONG TOV UETACYNUATIOHOD T®V OEOUEV®V, &VO  OTOTEAECUO, TTOV

vrootnpileTon amd emmAéov eumepikd svpruota oto Kepdioto 3 ko 4.

[Mepontépm, TEKUAIPETOL OTL Ol GUVENEIEC EVOG EGOOAUEVOL LETOCYNUATIGUOD HLOGC
YPOVOCEPEG, 1 omoio lvar apykd OTAGUN ®C TPOg TN SKOUOVOT), VOl UEV
veiotoavtal, oAAG etval cUYKPITIKE AMydTEPO GOPOPES OO TIC GUVETELES TNG U1 XPNONG
LETOCYNUOTIGHOD Y10 [0 XPOVOCEPA oL €ivol apylkd UN-CGTAGUYN ®G TPOG TN

dtakvpavon. Avto gival £va GUUTEPAGILO TOV £XEL IO10ATEPT) TPOKTIKT OLUAGTOL.

Y10 Kepdhowo 3, n mpotewvdpuevn peBodoroyia epapudleTonr o€ LOKPOOIKOVOIKES

YPOVOOCELPEG. LNUELDVETOL OTL Ol YPOVOGEIPES OIKOVOUIK®Y OEO0UEVOV Omd TOV
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TPOYUATIKO KOGHO Ogv gival auéomg KATOAANAES Yoo TPOPAENTIKOVG GKOTOVG Ko
OmouToOV OPIGUEVN OTATIOTIKY] TPOETOHACio Kal mpo-eneepyosio. Avtd cvupaiver
EMEON O1 YPOVOGELPEG TMV OPYIKAOV OEGOUEVAOV GLYVA ELPOVILOVY UN-CTAGIUOTNTA GTN
dlkvpavor, emmAéov 0g TOAD GLYVA VTAPYOLV ouTieg TOV JLUTAPACCOVY TNV
VIoKeilEVT] oTOYUOTIKY dwdkacia, Omwg M Vmapln okpoiov TYW®OV Kol Ot
nueporoylokés emopdoels. O TPOMOG  AVIIUETOMONG TOVG  OVOQEPETAL  OG

CYPOULKOTTOTNON.

H enidpaon eite T0U HETAGYNUATIGLOD TOV OEGOUEVOV EITE TNG YPUUUKOTOINONG OTNV
axpifela TV TPoPAEYEWV, CUUTEPIAAUPAVOUEVOV TOCO TMV CNUEOKOV TPOPAEYEDV
0G0 KOl TOV JCTNUATOV EUTIGTOCHVNG TOV TPOPAEYE®Y, deV EYEl EEETAOTEL EKTEVAG
péyxpt otryunc. Avti mn perétn egetdlel v emidpacn TOVG OTH HOVOUETOPANTN
TpoOPAeYN, avolvovidg kKaOe pio emidpaocm 1000 Eex®PloTd 0GO KOL GE GLVOLAGHUO,
YPNOLUOTOIOVTAG EIKOGL OO TIG O CNUOVTIKES YPOVOGEPEG TOV oyeTilovTan e TV

EAMVIKY okovopia.

Mo tov petaoymuotiopd tTov dedopévov, ypnotpomomnkay dvo aiydpiduot. Mo
OLYKEKPIUEVO, ypnotpomombnkay o adyopiBpoc tov TSW kot o aAdydpiBuog tov
Milionis-Galanopoulos (M-G epe&ng). O aiyopiOuog M-G elvor 1 otoTioTIK)
pebodoroyia mov avartuyOnke oto Kepddato 2, ) omoio EMTPETEL TOV LETOGYNUOTIOUO
TV 0E00UEVAV 0L LOVO HEG® TOV AOYOPLOKOD HETACYNUATIGLOV, OAAG Kot LEC® TNG

TETPAYOVIKNG pilog Kol TOL apVNTIKOD OVTIGTPOPOL.

To epmepcd evprjpata delyvouy onUAvVTIKY BEATIOON GTO SIGTHUATO EUTIGTOGVVIG
TV mpoPAéyewy, oAAd kapic ovoudon Peitiowon oTig onpelnkés TPOPAEVELS.
Emumiéov, vmbpyovv evoeifelg Ot M ovvolkn  TmpoPAEmTIKY  KovOTNTO
YPNOoOTOI®VTOG TV dtadikacio M-G yio Tov HETOAOYNUATICUO T®V dEdOUEVDY Elvat
KOmwg KaAOTEPN amd €Keiviy mov ypnolpomolel T SadIKOGI HETACYNUOTIGLO
dedopévov tov TSW. Tleportépm, 1M oLVOLOCTIKY OlOOIKAGIO UETOCYNLOTIGHOD-
YPOLLKOTOINONG PEATIOVEL GNUOVTIKG TO TPOPANLLO TG UN-KOVOVIKTG KATOVOUNG TTOV

evtomiletal 6 TOAAEG LOKPOOTIKOVOLUKEG YPOVOGELPEG.

Mio epguvntikn meployn, Omov To PEATIOUEVO OUCTHUOTO EUTIGTOGUVIG TMOV
wpoPAéyemv mov kataypapovtal 6to Kepdiawo 3, o umopodoav va sivor daitepa
YPNOE Vol 0 TORENS TNG OVOAOYIOTIKNG EMICTAUNG, WO0iTEPA OGOV OPOPE TOV

kivouvo poakpolmiog. Avtdg o kivovvog mpokvmtel amd TV affefardtnra mov TepPaiiet
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N HEAAOVTIKY] TAON TV TOcOooTOV Bvnodtrag tov cuvtadlovymv, Kabdg ot
BEATIOOELS OTNV EMOTHUN KoL TV 10TPIKN KaB1oToOV SVGKOAN TV TTPOPAeyn TV
nocoot®v Ovnoomrtag. o va aviipetoniotel avtd to TpOPANL, Lo TPOGEYYIoN
etvar M ypnowonoinon povtéAwv Bvnopdmrag yioo va tpoPAémovy v tdon Twv
TOGOCTM®V Bvnodmntag kol ) ovvodevouevn afefardtmra oto péAAov. Avt) n

afefardmra cuvIEeTan AUESH LE TO SIOUCTNLOTO EUTIGTOGVUVIG TMV TPOPAEYEDV.

>to Kepdrawo 4, pe otoyo 11g mbavég Pertunoelg o tétoteg mpoPAéyels, eEetaletan
TOC M OTOTIOTIKN  Tpo-emeCepyoacion  (LETAOYNUATICUOS — OedOUévmv Kot
ypoppkonoinon) emmpedlovv v akpifeln  twv  TpoPAéyewv  ¥POVOGEIPDOV
BvnodTTog. Avti 1 avaivon SeENxOn xPNOUOTOLOVTOG SEGOUEVO TTOV TPOEPYOVTUL

amo poviéha Bvmopotrag yio v Ayyiio-Ovalia.

Mo va die&aybel por Aemtopepng €peuva GYETIKA HE TIG OTOTIOTIKEG TPOPAEVELS,
MeOnKav vIoOY™N TPELS dtapopeTikol pEBodot. Avtég ot péBodot Tav ot e€ng: (a) To
VROOELY O TOV TVUYOIOV TEPITATOV UE TAGT), TO OTOI0 YPNCLLOTOEITOL EVPEWMS BTNV
OVOAOYIOTIKNY £pELVO AOY® TNG OMAOTNTAG TOV, Kol XPNCILEVCE WG CNLEID aVOPOPAg.
(B) H evtodq "AUTOARIMA" tov Aoyiopikod "R" yio v avtopatn emAoyn LoviéLov
Kot TPOPAEYN, OO TAPOLGLACTNKE GE ONUOGLELUEVT epyacia Tov Hatzopoulos kot
Sagianou. (y) Ta vrodeiypota ARIMA mov epapuolovior HETA omd GTATIGTIKY TPO-
enekepyacia, mov cuvendyetol peimon g dtoukvpavong (Variance Reduction) ko 0o

avagépovtot ¢ "VR" mpofAréyers.

To eumepikd svpiuoto vodeikvdiovv o coen Peitioon otig TpoPAdyelg
SCTNUATOG, TO 0TOla KATé EGO Opo peltdvovtal tepimov 35.4% dtav cuykpivetal To
VR pe 10 RWD xo mepinov 20.4% otav cuykpivetoan 10 VR pe to "AUTOARIMA™".
QoTO60, TO CLUTEPUGHO YO TIG ONUEWKES TPoPAEyeElg oev givon t000 copés. H
TEKUNPLOUEVT Pedtioon oTig mPoPAEYELS JOCTNUATOG UTOPEL VO EXEL OMUOVTIKY|
enidpaon omv Keporowokn Amaitnon Depeyyvdmrag (Solvency Capital
Requirement), xafictdvrog opiopévovg mapdyovg ocuvvTdEemv O©E  GLYKPLTIKO
mieovéktnua. H Kepahoraxn Araitnon Oepeyyvotnrag KaAdmtel GAovE Toug mbavong

KIVOOVOLG TTOV UITOPEL VO OVTILETOTIGEL L0 CPAAICTIKY) ETOUPELQL.

Emniéov, yia ypovocelpés pe aotadn, aAld Oyt cvuvaptnolokd eoptodpevn and 1o
emimedo dtakvpavon, n cvppotikny ot PpAoypapio CHGTOCT TOV UETAGYTLATIGLOV

dedopévmv dev emPeParminke, Kot po TpOTOoT] LEAETNG KT TepimTmon @aivetal va
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elvar o mo Aoywn mpocéyywon. Emiong, emPePoardbnke Ot1 o1 oepég mov
vroPBAnOnKav 1660 G UETACYNUOATICUO OEOOUEVEOV OCO KOl GE YPOLLKOTOINGN
KOVOTTO100V KOADTEPO TNV OVAYKT] Y10l T KOVOVIKT] KATOVOUT GE GUYKPLoT UE TIG GALES

EVOANOKTIKEG.

To Topomdve GTATIGTIKA ELPNUOTA EYOVV CNUOVTIKEG GUVETELEG Y10, TV OVOAOYLIGTIKN
EMOTAUN. Xvykekpiéva, M Pektioon otig mpoPAEyelg SoTNUATOG WITOPEl Vo
emnpedoet onuoavtika v Kepolowokn Anaitmon Oepeyyvdttog, Kol GUVETNDS, TOV
Agiktn Depeyyvomnrag (Solvency Ratio) yu pio etoupeia dwyeipiong ocvviaéewv
(pension fund). Mua tétota Bedtioon pmopel va 066l optopévong mapdyovs cuvta&emy
0€ OVTAYWOVIOTIKO TAEOVEKTN O, KOONDS £yovv amobnkedoel AyOTEPO KEPAANLO Y10l TIG

VTOYPEDCELS TOVC.

Q¢ mepartépo épevva, Bo pmopovoe va pelendel mo 61e£0dkd 0 OVTIKTLTTOG TNG
OTOTIOTIKNG TPO-EMEEEPYAGIOG GTIV YPNUOTOOIKOVOUIKT Emidopaon ¢ Kepatatokng
Amaitmong Depeyyvomtoag, vnd Sdeopec OOUEC VTOOELYUAT®V, OVOAOYIOTIKES
vrobéoelg kat pebddovg TpoPreymc. Omwg avagépeton oto Kepdiaio 4, 1o o ypnoipo
epyoreio ya v e&étaon g afefardtnroc wg Tpog Tov Kivovvo poakpolmiog eivar Eva
OTOYUOTIKO HOVTELO TPOPOATG Bvnoipndmrag. Aedopévou 0Tt LITAPYEL VPEin ETAOYT
TETO10V LOVTEA®VY 06T BipAoypagio, 1 ETA0YN TOL HOVTELOL UTOPEL VoL 00NV |GEL GE
ONUOVTIKES OAAAYES Y10 TIG KOADTEPEG-EKTIUNCELS amoBedTaV, KabmG oo Kot evTdg
LL0G OWKOYEVELNG HOVTEA®V, UITOPEL VO LITAPYOLY SNUOVTIKEG dtapopés. o avtd Ta
povtéha, o okomog ivar 1 LeAETN TG afePatdTNTOC GYETIKA e TO. LEAAOVTIKG TOGOCTA
OvnodTToC, oL UETPOVVTOL ®G 1 OOKVUAVOT TOV TIUOV TPOPAEYNS NG
Bvnowomroc. Me tov tpdémo avtd Bo MTov duvaTH M TOCOTIKN EKTIUNGYN OTIC
OVTIOTOYEG  OLVEICQOPEG  OTIC KEPOAOMOKEG — OMOLTHOELS — YPTOUOTOUDVTOG
vroAoyiopovg g A&iog og Kivovvo (Value at Risk). A&iler akdpa va onuetwdei 6t
OAn pebodoroyia mov avantdccetror oto Kepdhowo 4 pumopet va ypnoyomromdetl oto
UEALOV KO Y10 TNV TPOGOPLOYT TNG SLVNTIKNG emidopaong g movonuiag COVID-19

otV TpdPreyn TV tdoemv pokpolmiag.

>10 terevtaio kepdrawo (Kepdiawo 5), n mpotewvopevn peBodoroyio copPdarel ot

Bedtioon TOL TAOLGIOL TMV  OIKOVOUETPIKMOV VTOOECEDV Kol EAEYY®OV  OTN

YPTLOTOOIKOVOLLLKY], LE GTOYO TOV TPOGIOPIGUO TNG AmOPPIYNG N UN-0mdpPIYnG s

VIOOECNG TNG OAMOTELEGUATIKOTNTOG TNG OYOPAS VIO TV LOPPN asOeVoDS 1o00C. AVt
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N popen amoteiespatikotntog g ayopds (Weak-form market efficiency - WFME)
OLVOEETOL UE KOTACTAGELS OOV 01 SLUDEGIES TTANPOPOPIES APOPOVV ATOKAEIGTIKA TIC

LOTOPIKESG TIES TMV YPNHOTOOTKOVOUIKADV TEPLOVGLUKMY GTOYEIWV.

Evd n évvola g amoteAeGUATIKOTNTOS TOV ayop®V £XEL OMOTEAECEL OVTIKEIHEVO
HEAETNG Y100 OPKETEG OEKAETIES, OL EPEVVITES YPNOLUOTOLOVY EKTEVMG TIG OTOOOGELS TMV
TEPLOVOIOKMV GTOLYEIWV, 01 OTTOIEC OLGLUGTIKA EVOL O1 TPATES SAPOPES TOV PUCIKMV
AoyopiBuov tov THoV, ©¢ éva TPOTLTO UETPO, XOPIS vo eAEYYOLV €dV QVTEG Ol
YPOVOGEPES €lval OTACIUES MG TPOG TN OlaKOUOVON. Xe €va TAaiclo Omov Ogv
Aoppdvetal veoyn o kivouvog, eivatl onUavTIKO va onpelmbel 0Tt avtoi ot Edeyyot ivat
gykvupol povo Otav ot oepég Twv Aoyopifuwv tov Tuov epugovifouv otdoiun
dwkvpavon. Eqv avt n ocuvOnkn oev mAnpeitor, o €Aeyy0g CNUAVTIKOTNTOS TOV
OUVTEAECTMV  OTOGUCYETIONG  OTOVG  EVPEMG  XPNOULOTOLOVUEVOVS  EAEYYOVG
OVTOCLOYETIONG  Ogv  elvanr  €ykvpog.  Enpeldveron  Ott kobdg ot EAeyyol
OTOTELECUATIKOTNTOG TPOYLOTOTOOVVTAL GUVHOW®E YPNOILOTOIMVTAG OTOJOGELS KoL
Oyt TWéc, ypnmowomoteitan o AoyoplOuikog petacynuoticpdc. Evd  avtdg o
LETAGYNUOTIGLOS ivol 0 KATAAANAOG amd TAEVPAS (PN LOTOOUKOVOULKTG, OEV VIAPYEL

Kapia gyyomon ot avtd sivor emiong opB6 amd TAELPAS CTATIGTIKNG,.

H xotnyoplomoinon tov ypnuUoTOOIKOVOUIKOV 0yOPOV YPNCILOTOIEITAL EVPEWMS AT
TOVG EMEVOVTEC Y1a VO, AEI0A0YNCOVV KOl VO AGBOVY ETEVOLTIKEG OTOPAGELS GE SIAPOPES
ayopés. To e&etaldpevo chvoro dedopévmv amotedeiton amd €ikoot mévte OeikTeg
YPTLOTOOIKOVOULKAOV 0yOP®V, CUUTEPILAUPAVOUEVOV SEKATEVTE UETOYIKDOV OEIKTOV

OtO OVETTVUYLEVEG OYOPEG KO OEKOL LLETOYIKMV OEIKTMV Otd avaOLOUEVES QYOPEC.

I'a va dte&arydyovpe pia o Aemtopept| Epevva oYeTKA e Tov Eheyyo s WFME, tpeig
SlpopeTikég mpooeyyioelg e€etdotnray. Avtég ot puébodor mepriapBdvovv: (o) Tig
[Tpateg Atagpopég Tov puaikov AoyapiBuov (First Difference of the natural Logarithm-
FDL) 1tov nuepnowv Tydv, o KON YPNOYOTOWOVUEVT TEXVIKN OTN
YPTLOTOOIKOVOLLLKY], TOV Ypnoipevcay g onueio avaeopds, (B) Tnv mpotetvouevn
puebodoroyia M-G, 1 omoia EMTPENEL TNV EQPAPLOYT EVOAAOKTIKOV LETOCYNUOTICUOV
vl TN otabepomoinomn g dtakOpeveng dtav avtn eivor pun-ctdoun, (v) To Aoyiopikd
JDemetra+, 1o omoio mepthapPdvel ®g apykd Prua, Evav Ereyyo vy TV Un-
OTOGIHOTNTO MG TPOG T OKVUAVOT oTa. apyikd dedopéva Tymv. TTo cuykekppuéva,

10 JDemetra+ ypnowonolel tov €leyxo Yy T GTAGIHOTNTA TNG SLOKVUOVGNG OV
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nepappavetar oto TRAMO. Qotoco, kabadg 1o JDemetrat+ emtpémer udvo tov
AOYOoPOKO PETOOYNUATIONO, ¥pMoLHoToOnke 1| otatiotikn pebodoroyio M-G mov
avantoydnke oto Kepdiowo 2. EmumAiéov, o adyopiOuog M-G emréyeton emeldn £xel
amodeyfet 6Tt 10 TRAMO epgavilet pepoAnyio mpog TOV  AOYoplOUIKO

UETAGYTLOTIGHO.

SOppova pe TV TOpovca UEAETN, €lval cagég OTL M YPNON TOL AOYUPIOUKOD
HETOCYNUOTIGHOD Yot TIEG XPpNUOTIOTNPKOV AEKTOV givol avETOPKNG Yo
otafepomoinon ™ SKOUOVONG OTIC TEPICCOTEPEG MO TIG TEPUTTOCEL TOV
eEetdotnroy. Qg amotéAlecpa, 1 (PO TOV EAEYY®V AVTOGLGYETIONS, TOL GLVNOMC
YPTCULOTOLOVVTOL Y10 TOV EAEYYO TNG TOTELECUATIKOTNTAG TG AyOPAS, UTOPEl va unv
etvan  €yxvpm. Ilpdypaty, oe ovtd 10 KePdAOo KOTAYpPAENKE OTL Ol €AEYYOL
OLTOGVLGYETIONG OEV UTOPOVV VAL YPNCLUOTONOOVV EYKVPU MG CTATIOTIKO EPYALEID Yial
Tov €AEYX0 NG OmOTEAECUOTIKOTNTAG TNG oyopds oto 83.3% tov efetaldpevov

TEPUTTAOGEDV.

EmumAéov, dtomotmbnike 0TI 1 ¥p1iom TOV TPATOV S0PopdV TMV PLGIKOV Aoyopidumy
TOV  TIUOV  Umopel vo  €l0dysl  pepoAnyio ®G TPOS TNV amoppwyn NG
amotelecpaTIKOTNTAG  060evoDs 10x00G OTIG ovemTuyuéveg ayopés. Avtd  To
amotédecua vrootnpiydnke amd v mpotewvouevn pebodoroyia M-G «kai, €mg Eva
Babuo, amd to Aoywopkd JDemetra+t. Eivor onpoviikd vo onpeimBel 0t petd
OLEVEPYELDL TOV OTATICTIKMOV EAEYY®V YPNOUOToOlOVTOS T pHeBodoroyia M-G, ta
ocvunepdopato oyetikd pe mv WFEME vroBeon npbav oe avtibBeon pe ovtd mov
TPOEKLY OV HECH TG EOPALMUEVNS eBodoroYing 6T 27.7% TV TEPIMTAOCEWDV Y10 TIG

avemtvypéveg Ayopég Keparaiov.

2V TEPInTOOoN TOV OVOSVOUEVOV OyopdV, 1 XPNoN Kol TOV TPIOV HeBddmV mov
eetdotnioay, eravenifepaince TV TOALETH opo@®Via oty vIdpyovoa BiAloypagia,
OAadn, 6t ot avadvopeveg ayopég dev eivar cuvnBwg amoteleouatikés. QotOc0,
a&ilel va onuUELOGOLUE OTL GE OPKETEG MEPUTTMOELS, 1 £dpatwpévn pebodoroyia dev
UTOPOVCE VO EPOPUOCTEL €ykvpa. Ze OaVTEG TIG Oyopéc, o Pabuog g un-
OMOTEAECUATIKOTNTOG €fvol TOGO €VTOVOG (OTE Vo aviyveDeTon aveSopTHTOS NG
nebdd0v mov ypnoomoteital. AvTd emPEPALDOVEL TIC VITAPYOVCES EPEVVTIKEG EPYOUCIES
mov VrootNPilovy OTL T0 €MIMESO WPOTNTOS MG XPNLOTOOKOVOULIKNG OYOPAS

emnpedlel TV OMOTEAEGLOTIKOTNTO TNC.
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Emumiéov, n mponyovpévag avapepbeica pepoinyio tov JDemetrat ot ypnon tov
AOYOopOKOD HETOCYNUOTICHOD ETOANOVTKE Yo por akOun @eopd. Q¢ €k ToVTOV,
avt M pepoAnyio emmpedlel v aviyvevon kot tov oplud tov axpaiov Twov. H
Jpopd oTov apliUd TV oV VENSIU®V aKPAiOV TIUMV (TOV givol AYOTEPO CTULAVTIKY|
0€ OYE0N LLE TO OTOTIOTIKO EAEYYO TNG OMOTELEGUATIKOTNTOG) YIVETOL ELPAVIG OTAV O
AoyapBpKdg peTaoyNUATIoHOG E@apoleTat cuvexmg (pe ) xpron g pebddov FDL),
Kol ta amoteléopato cvykpivovion pe 1 péBodo M-G, m omoio vmodewvieLl TV

EQOPLOYT TOV AOYOPIOUIKOD LETOCYNUOTIGHOD HOVO GE AYEC TEPUTTAGELC.

Ocov agopd HEAMOVTIKEC TPOONMTIKEG TNG TAPOVGOS £PELVAS, TEPAV TOV NN
avaeepBEvimv, éva Tétoto medio etvar 1 emdimEn KaBopIGHOD KPIGIHL®Y THMV Yo TV
nopapetpo B oto mhaiclo ¢ pedodoroyioe M-G, xpNOLOTOIDVTAS TPOSOUOIDGELS
Monte Carlo. Mg ovtd Tov Tpém0, 1 TIu Tov £ B VITodeucvdEL (Kot TVTTKE) TO10G
LETAGYMNUOTIGUOS (1] KAVEVOCS) TPEMEL VO EPAPUOGTEL Y10 VO IKOVOTOLEITAL TO KPITPL0
G oTAcIUOTNTOG 0T 0evTEPN pomn. EmmAdov, o peAloviikn katevBouvon elvar m
HEAETN TNG UN-OTAGIUOTNTOS MG TPOG TN SLOKVLLOVGT| GE YPOVOGELPEG GE GUVOVOCUO LIE
povtéha tomov GARCH mov mepypdoovv v ovtomoAivopoun OeGUELUEVN
etepookedaoTikodTnTa. Etvar avnouyntikd 1o yeyovdg 0Tt ot epevvnTég TpoKpivouy TV
ypnotpomoinon GARCH vrodetypdtov yopic vo vrdpyetl empPefaimon oyetikd pe

oTOCIUOTNTO GTY| 0eVTEPT POTIY).

Télog, onpeldverar 6Tt TO. GLUTEPAGHOTA TOV GYETILOVTOL LE TN UN-OTAGIUOTNTO TNG
SLKOLLOVONG TOV TIUOV TOV HETOXIKAOV OEIKTAOV KoL, KOUTO CUVETELD, LE TOLG EAEYYOVS
OVTOGVGYETIONG OTIC OAMOOOGELS TV UETOYIKAOV OEIKTAOV, GUVIEOVTOL AVATOPEVKTO, OYL
LOVO e TO GLYKEKPEVO €100 TEPLOVCLAKAOV GTOoKElV (deiKTEG HETOYDV), OAAE KO
LE TO GLYKEKPIUEVO YPOVIKO OLAGTNUO SEYLATOANYIOG OV ypnooToonke (mévte
é¢m). Emopévoc, oev mpémer omapaitta vo Oewpeitor dgdopévo OTL ovTd TO
CLUTEPACUATO 1oYOOVV TOVOUOIOTLTTO, V1o GALQ €101 TEPLOVCIOUKMV GTOLEI®V, Kol
aKOUN ONUOVTIKOTEPO, Y0 TO. GLYKEKPIUEVO HEV TEPLOVCLOKG oTOlXEln, OAAL oF
LEYOAVTEPA XPOVIKA dlacThpaTo. Agv Vtapyel ap@iBoiio 6Tt avTd amotedel Eva axdun

TeN10 Y100 LEAAOVTIKT) EPELVOL
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