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Abstract 

Credit risk is a prominent facet of financial risk that holds paramount significance in 
determining the prosperity of financial institutions. As such, extensive research efforts 
have been dedicated to the development of various credit scoring theories and models. 
This thesis proposes a novel Neuro-Fuzzy model for effectively classifying the 
creditworthiness of clients. The research methodology encompasses two independent 
phases. In the initial phase, an Artificial Neural Network (ANN) is employed to generate 
evaluation metric scores for three distinct ANN topologies, namely those with 1, 2, and 
3 hidden layers. The ANN's performance is assessed using four different tuning 
hyperparameter techniques. Concurrently, in the second phase, a comprehensive 
evaluation metric hierarchy is constructed through the integration of experts' opinions, 
utilizing the Fuzzy Analytic Hierarchy Process (AHP) model. By amalgamating the 
outcomes of both phases, a Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) model is employed to determine the optimal neural network topology 
for the creditworthiness classification task. The distinctiveness of this proposed method 
lies in its incorporation of financial experts' insights and alignment with the institution's 
policy, within the framework of a data-driven model that avoids reliance on output 
reasoning. The overarching objective is to harness the remarkable potential exhibited 
by Neural Networks in credit risk assessment. To evaluate the efficacy of the proposed 
model, it is applied to three distinct datasets, and the resulting outcomes are 
meticulously analyzed and discussed, thereby unveiling its practical utility. The 
conclusions drawn from this research underscore the indispensability of human 
expertise, as facilitated by the Fuzzy AHP approach, particularly in situations where the 
ANN models yield comparable performance metric outputs. Consequently, this 
approach emerges as a valuable validation mechanism for decisions grounded in ANN 
outputs. 

keywords: Neural Networks, Fuzzy AHP, TOPSIS, Credit Scoring 
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Introduction 

Due to significant costs associated with inaccurate judgments, credit risk assessment 
decisions are a critical factor in determining the performance of financial institutions in 
the lending business. The US subprime mortgage crisis serves as a demonstration of how 
credit risk judgments could have a profound impact on both local and global economies. 
Owing to consumer payment failures, several financial institutions have experienced 
considerable losses. The development of credit risk decision support tools and models 
plays a crucial role in enhancing evaluation judgments by enabling faster and more 
accurate conclusions, ultimately leading to improved decision-making processes. 

The most popular method for determining whether credit applicants are 
creditworthy based on factors including their age, income, and marital status is credit 
scoring (Chen and Huang, 2003).  Its purpose is to divide credit applicants into two groups 
based on their propensity to make payments: trustworthy applicants are the ones that 
are more likely to make their payments on time and subsequently acquire credit, 
whereas non-trustworthy applicants are the ones rejected due to a high risk of missing 
payments. Financial institutions have exploited a variety of techniques, with statistical 
techniques being the most often used, to create precise credit scoring models. 

In the present day, with the continuous growth and complexity of the financial 
market, there is an increasing demand for advanced modeling techniques that could 
effectively simulate complex, non-linear Real-world applications. This necessity arises 
from the need to accurately capture and analyze the intricate dynamics and 
interdependencies within financial systems, enabling better understanding and 
management of risks in a rapidly evolving market landscape. In this situation, soft 
computing techniques have been effectively used to address non-linear issues in 
business, engineering, and medicine. These methods could be used as alternatives to 
statistical methods to find approximations of solutions to Real-world problems that 
involve a variety of errors and uncertainties. 

Neuro-Fuzzy (NF) algorithms are one of the most innovative solutions in credit 
scoring for the reason that they combine the tremendous learning force of Neural 
Networks (NN) with expert knowledge via fuzzy reasoning. Recent studies have focused 
on employing Neuro-Fuzzy (NF) approaches to enhance credit scoring models. In Akkoç’s 
study (2019), an Adaptive Neuro-fuzzy Inference System (ANFIS) had better accuracy 
than other statistical methods in credit scoring. In Pabuçcu and Ayan (2016) the ANFIS 
model made consistent, reliable, and successful credit rating forecasts compared with 
others statistical methods. Pasila (2019) described how to effectively predict the credit 
score of Indonesian Micro, Small, and Medium Enterprises (MSMEs) using a Takagi-
Sugeno (TS) type multi-input single-output (MISO) neuro-fuzzy network. The application 
of a Neuro-Fuzzy with an extra accelerated Levenberg-Marquardt algorithm was also 
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mentioned. According to Tezerjan et al. (2021), a hybrid model based on adaptive neuro-
fuzzy inference systems (ANFIS) and Recurrent Neural Networks (RNN), using historical 
data and indicators, identifies and forecasts the shocks of various stock market 
segments. By inputting the data together with other client criteria into a fuzzy rule base 
(FRB), the customer score was finally determined. 

This study investigates three research questions: 

Q1: 
How to solve credit scoring problems using efficient machine learning 
algorithms? 

Q2: 
How to address computational challenges when single or multiple machine 

learning algorithms are considered? 

Q3: How to select the most appropriate classifier for solving credit scoring problems? 

The first question focuses on searching various solving credit scoring problems 
using efficient machine learning algorithms. In other words, traditional statistical 
approaches, such as linear or logistic regression, could be characterized as high bias and 
low variance approaches. As a result, they are unable to capture relevant relations 
between dependent and independent variables (underfitting), but they provide robust 
predictions regardless of the sample. On the other hand, computational intelligence 
approaches, such as neural networks, present low bias and high variance. As a result, 
they might capture complicated patterns, but their results might be difficult to be 
generalized, due to their sensitivity to training data (overfitting). Therefore, neural 
networks have been selected to be applied in credit scoring in this study, considering the 
importance of capturing detailed patterns as well as striking a balance between variance 
and bias (Neal, 2019). 

The second query concerns the computational difficulties of using a single or 
multiple machine learning algorithm. The main drawback of neural networks is their 
computational expensiveness. To address this issue, various tuning methods are 
employed, including optimization algorithms such as Genetic Algorithms, Monte Carlo 
simulation, and Bayesian Inference. 

The third question pertains to techniques for selecting the most appropriate 
classifier to solve the credit scoring problem. Initially, the hyperparameters of the 
selected neural network topologies are optimized. In continuance, multi-criteria decision 
analysis with fuzzy logic is utilized to incorporate expert knowledge. Finally, the classifier 
selection process is completed by weighing multiple performance measures. 

Innovation of this thesis is associated with the usage of optimization techniques 
and Deep Learning in hybrid synthesis, as well as Multi-Criteria Decision Analysis 
concepts for classifier selection. More specifically, a novel solution of Neuro-Fuzzy in 
credit scoring was proposed by using optimization methods on three NN different 
topologies, as well as Fuzzy Analytic Hierarchy Process (FAHP) and Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS) methods for optimal model 
selection. The novel model contribution in the scientific community focused on the fact 
that evaluation metrics results of NN and decision maker view about metric importance 
would be able to be embedded, producing an optimal suggestion for model selection as 
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output. In this manner, employees of financial institutes would acquire a hybrid model 
selection method, and as a consequence institute’s profitability and sustainability would 
be improved. 

This thesis consists of seven chapters. Chapter 2 provides a comprehensive 
definition of risk management sources and emphasizes the significance of credit scoring. 
Chapters 3, 4, and 5 focus on elaborating the key terminology and concepts related to 
Artificial Neural Networks, Fuzzy Logic with Multi-criteria Decision Analysis, and the 
proposed Neuro-Fuzzy approach, respectively. In Chapter 6, the conducted 
computational experiments and the obtained -from implementing the Neuro-Fuzzy 
model in three datasets- results are presented. Lastly, Chapter 7 summarizes the 
conclusions drawn from the experiments, discusses the limitations of this research, and 
suggests potential perspectives for future extensions. 
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Chapter 2:        

 Risk Management  

 

 

2.1. Introduction 

From antiquity to the present day, there have been many different definitions of risk 
depending on the century and cultural changes. Some definitions emphasize the 
likelihood of an event, which contains the uncertainty of positive or negative 
consequences. Still, certain definitions distinguish risk as a subset of uncertainty that 
could be quantified or measured. 

The definition of risk in the field of finance is the unpredictability of investment 
returns, encompassing both positive and negative impacts. According to this 
perspective, a higher expected return is related to a higher level of result volatility.  In 
an effort to provide a comprehensive understanding of risk, it is formed a definition by 
the ISO 31000 Risk Management framework, an international standard from the 
International Organization for Standardization that offers businesses concepts and 
recommendations for risk management. Hence, risk management is referred to as, 
‘Coordinated activities to direct and control an organization concerning risk…’ (Te, 
2016). 

In the financial system, the uncertainty that has a negative impact on wealth or 
profits, or the uncertainty that is solely related to adverse outcomes, is a risk. For a 
company its survival and growth are vital and the only way to achieve this is to take risks. 
Understanding the portfolio of risks that the corporation is presently taking and the 
expected risks is the primary responsibility of the risk management function. In certain, 
it must assess if the risks are tolerable and the steps should be followed in the case that 
they are not (Hull, 2018). 

Risk managers and regulators share this perspective. Regulations are an essential 
component for a risk manager since they are designed to increase the financial system's 
and financial firm's resilience under pressure. Risk managers regard themselves as 
responsible for determining, evaluating, and controlling the possibility and effects of 
unfavorable occurrences for the company. According to this perspective, risk is defined 
as the likelihood of suffering a loss as a result of an interaction with uncertainty. Due to 
the financial institutions' vulnerability to such unpredictability, there is interaction. 
Exposure is the degree to which a firm could be harmed by specific events that could 
negatively impact earnings. For instance, the magnitude of foreign currency income is 
provided as a measure of exposure to foreign exchange rates, and the amount of debt 



15 
 

that is priced according to market rates operates as a measure of exposure to interest 
rates. 

While it is possible to mitigate the impact of uncertainties, the inherent nature 
of uncertainty itself cannot be eliminated. For example, with an aim to reduce the 
impact of variations in foreign exchange rates on earnings, a company with foreign 
currency revenues receives a loan using the same foreign currency. A company that 
lends at a floating rate could use borrowing at a floating rate to lessen volatility in net 
interest income, interest revenue excluding interest costs, and other related factors. 

Even if it is acceptable to hedge risks with cash instruments, derivatives are most 
frequently used. Derivative instruments acquire their value from other underlying 
assets. A contract that specifies the potential use of exchange rate in converting external 
income into local currency might be signed by the firm indicated above that is willing to 
minimize its lengthy exposure to foreign exchange. This approach is generally more 
straightforward compared to the endeavor of borrowing funds in a different currency. 
Derivatives offer a wide range of applications due to their versatility and adaptability 
(Bessis, 2015). 

This chapter aims to provide an overview of the primary sources of financial risk, 
with particular emphasis on credit risk. Credit scoring is identified as the most widely 
used method for mitigating credit risk, and its utility is discussed in detail.    

2.2. Sources of financial risks 

Financial risks arise from different sources of uncertainty and could be categorized into 
several main categories: credit risk, market risk, liquidity risk, interest rate risk, foreign 
exchange risk, solvency risk, and operational risk. Each of these categories represents a 
distinct type of risk that financial institutions face. The following paragraphs provide an 
overview of each category. 

Credit risk 

 In this assignment, a soft computing model is developed with the upper aim to 
eliminate credit risk. The hazard of losses resulting from borrowers' defaults or a decline 
in credit standing is known as credit risk. The danger that debtors would not execute 
their financial commitments is known as default risk. Losses of the amount lent to the 
counterparty in the event of default might be whole or partial. 

 Credit risk also refers to a borrower's credit standing being worse, which 
increases the possibility of default even if it does not always indicate default. The asset 
value of a mortgage does not change as the creditworthiness of the borrower drops, but 
its economic worth is lower because the chance of default increases. An unfavorable 
migration causes the stated price of a traded debt to decrease (Bessis, 2015). 
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Market risk 

 Market risk is the potential for financial loss due to unfavorable market 
movements that lower the value of market participants' positions. Any market variable 
that fluctuates unpredictably qualifies as a risk factor; examples include interest rates, 
stock indexes, and exchange rates. Market risk is influenced by how long it takes to sell 
the assets since bigger market movements often happen over longer time periods. The 
liquidation period is longer for goods that are difficult to trade in busy markets and 
shorter for exotic instruments that are traded bilaterally (over the counter). Market risk 
is the name given to price risk for traded instruments. Instruments that are not sold on 
regulated markets are marked to market because profits and losses, regardless of 
whether a transaction occurs or not, are reported as changes in value (Bessis, 2015). 

Liquidity risk 

  The risk of being unable to raise money when needed is known as liquidity risk. 
Banking companies could raise money by taking on debt or by peddling financial assets 
on the open market. Borrowing to raise money is referred to as funding liquidity. When 
borrowers are not able to borrow money or are unable to do so under ordinary 
circumstances, funding liquidity risk manifests. Asset liquidity is the term used to 
describe the money obtained from the selling of assets on the market as a backup source 
of funding, for instance during market interruptions. When the market is unable to 
absorb the transactions at the present price, asset liquidity also describes the possibility 
that prices might shift against the seller or buyer as a consequence of its trades. When 
there are too many participants making similar deals, asset liquidity risk also develops. 
For instance, under the challenging circumstances of the 2008 crisis, banks seeking to 
raise capital through the sale of assets suffered significant losses as a result of the steep 
discounts in their deals (Bessis, 2015). 

Interest rate risk 

  Interest rate risk is the threat of decreased profitability, or interest earnings 
minus interest expenses, in reaction to fluctuations in interest rates. The majority of 
loans, receivables, and term or saving deposits on a bank's balance sheet generate 
revenue and expenditures that are impacted by interest rates. The danger of interest 
rates affects all lenders and borrowers. Variable rate interest costs and income for 
lenders and borrowers are based on short-term market rates. Loans and obligations with 
fixed rates are similarly subject to interest rate risk. When interest rates fall, fixed-rate 
borrowers might benefit from lower interest rates, but fixed-rate lenders might still be 
able to lend at a higher rate if rates rise. Both are subject to interest rate variations due 
to their opportunity costs brought on by changes in the market (Bessis, 2015).  

Foreign exchange risk 

  The threat of suffering losses as a result of exchange rate fluctuations is known 
as foreign exchange risk. Changes in the values of assets and foreign currency-
denominated liabilities or the indexation of revenues and fees to exchange rates are the 
two factors that cause fluctuations in earnings (Bessis, 2015). 
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Solvency risk 

 Solvency risk is the chance that there won't be enough money on hand to pay 
for losses. A minimal capital base is required, according to the "capital adequacy" 
concept, which is backed by regulators, to resist unforeseeable losses that might be 
caused by the firm's current risks. When unforeseen losses exceed the capital level, as 
they did for many firms during the 2008 financial crisis, solvency issues arise. The 
likelihood that the bank would incur a default and that potential losses would exceed its 
capital base is determined by this capital buffer (Bessis, 2015). 

Operational risk 

Operational risks include those posed by the breakdown of the information 
system, reporting systems, internal risk monitoring policies, and procedures designed to 
swiftly take corrective actions. "The risk of direct or indirect loss due to inefficient or 
insufficient methods, people, and systems, or due to external occurrences," is how the 
regulators define operational risk. Operational risk became more important as 
regulators required that operational risks be charged against capital (Bessis, 2015). 

The effective understanding and management of different categories of financial 
risks play a crucial role in enhancing the resilience of institutions and enabling them to 
make informed decisions that mitigate potential adverse effects. Within this context, 
this study specifically focuses on the development of methodologies aimed at reducing 
the impacts of credit risk within financial institutions. By addressing this specific area of 
risk, the study aims to contribute to the overall risk management framework of financial 
institutions, ultimately promoting stability and sustainable growth in the financial 
sector. 

2.3. Credit risk 

The term "credit risk" could be defined as the possibility of an unexpected alteration in 
the creditworthiness of a counterparty resulting in an unforeseen modification in the 
market value of the associated credit exposure (Resti & Sironi, 2007). This definition 
encompasses three key concepts that are integral to understanding credit risk. 

Default and Migration risk 

The first indicates the risk of loss due to the borrower's real bankruptcy (when 
payments are terminated), whereas the second indicates the risk of loss because of a 
just deterioration of its credit rating.   

 Generally, the value of a credit exposure would be reduced more dramatically as 
a result of a decline in the borrower's credit rating the more spread variation there is 
and the longer the remaining life of the loan. For instance, given a fixed-interest loan, 
the market value of the loan, which is based on the present value of the related cash 
flows, would undoubtedly decrease as the borrower's creditworthiness declines. The 
rationale seems to be that the present value of future flows should be calculated using 
a discount rate that includes not only the risk-free rate for the corresponding maturity 
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but also a spread (risk premium) that accounts for the possibility of the borrower 
defaulting. A decline in creditworthiness raises that chance, which inevitably causes the 
spread to widen and the present value to decrease. This could also apply to a variable-
rate loan when the borrower's spread above the market rate is predetermined and 
immutable (Resti & Sironi, 2007). 

Risk of Unexpected Event 

 The actual risk is reflected by the potential for such assessments to turn out to 
be inaccurate, i.e., by a counterparty decline that the lender was not prepared for. In 
this sense, proper risk solely refers to unforeseen events that were predicted. The 
variation in the counterparty’s credit rating should be unexpected. In other words, if a 
bank has provided a loan in anticipation of the counterparty's future deterioration in 
quality, such deterioration would have been appropriately assessed and taken into 
account throughout the loan decision-making process and the definition of the interest 
rate. In actuality, fair attention has been always given to anticipated changes in the 
borrower's economic and financial situation when determining the likelihood of default 
and the related interest rate (Resti & Sironi, 2007).  

Credit Exposure 

 The concept of credit exposure indicates that credit risk includes off-balance-
sheet activities such as guarantees, derivative contracts traded over the counter, and 
transactions in securities, foreign currencies, or derivatives pending final settlement, 
and is not at all restricted to the "classic" forms of credit awarded by a bank (Te, 2016). 

 Finally, the market value of credit risks mentioned in the above definition raises 
two issues. The first one is concerned with a number of credit exposures that are 
represented at historical value rather than market value in the books of financial 
institutions. The price that an independent buyer would assign to the exposure when it 
was acquired by the bank would serve as the basis for appraisals in order to accurately 
quantify credit risk and its implications. The second issue mentions that the majority of 
a financial institution's credit exposures are made up of illiquid assets for which there is 
no established secondary market; as a result, the market value could only be 
approximated using an internal asset-pricing model. 

 All in all, credit risk assessment could be effectively carried out through the 
utilization of credit scoring techniques. These techniques enable the evaluation of 
borrower's creditworthiness and the prediction of potential defaults or credit losses. By 
employing robust credit scoring models, financial institutions could make informed 
decisions regarding lending and credit management, mitigating the risks associated with 
loan default and credit-related losses. Credit scoring serves as a valuable tool in the 
assessment of credit risk, providing a systematic and objective approach to evaluating 
the creditworthiness of borrowers and supporting sound credit decision-making 
processes. 
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2.4. Credit Scoring 

Credit risk and default probability models have evolved over the years, from the earliest 
statistical models that linked ratings or default frequencies to the financial features of 
businesses to more complex econometric methods and neural network models. 

The concept behind scoring is to adopt a measure to categorize "excellent" and 
"poor" credit scores into separate groups based on the borrowers' common 
characteristics. The method uses historical and present values of observable variables 
for corporations, including financial ratios, profitability, leverage, and size. Income, age, 
and professional activity are a few factors that affect a person's credit status. 

Such models must have their defaults properly stated in order to be used. This is 
not a simple task in retail banking. For instance, when members of the same family are 
involved, the default of one member of the group might result in the default of the entire 
group. Additionally, a single person frequently uses a variety of bank products, including 
loans and savings accounts. One option for paying a debt would be to use an additional 
overdraft from the bank account. Although it appears that the loan does not default, the 
account does. In these circumstances, the default on one product affects the borrower's 
other items as well. Contagion rules across groups of people and between goods are 
necessary for accurately characterizing a default in retail banking. These rules have a 
direct impact on the statistics of default events (Bessis, 2015).  

All phases of the credit life cycle involve the use of credit scores. Following are 
some examples: 

➢ When deciding whether to accept or refuse a loan request and how much it would 
cost, the credit score takes into consideration application scores based on a 
borrower's application data. 

➢ Collection ratings that, depending on a variety of factors, including the borrower's 
previous performance, indicate the possibility of the loan or borrower slipping 
deeper into arrears.  

➢ Behavioral ratings are based on data that is already known about a borrower's prior 
actions in various stages of the credit life cycle.  

➢ Early warning ratings that alert the credit score to a situation that might have an 
impact on the borrower's credit risk. 

➢ By verifying data and behavior, fraud detection ratings let credit scores be alerted to 
potentially fraudulent activity (Crouhy et al., 2005). 

 
 Predictive modeling techniques are employed to assess the credit risk associated 
with prospective borrowers. These models could be categorized into two main types: 
parametric and non-parametric, while the learning process could be either supervised 
or unsupervised.  
 Parametric models, such as Generalized Linear Models (GLMs), including additive 
scorecards, fall under the parametric approach. These models utilize predetermined 
mathematical functions and assume specific distributions for the variables involved. 
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They are widely used in credit scoring and could provide interpretable and transparent 
results. 
 On the other hand, non-parametric predictive models employ more complex 
black-box techniques. These models are capable of handling non-linear correlations, 
predictor interactions, unstable or poorly understood data, and pattern recognition 
challenges. They are particularly useful when dealing with intricate relationships within 
the data. Non-parametric models offer greater flexibility but might be less interpretable 
compared to parametric models. 
 The learning process for these models could be supervised or unsupervised. In 
supervised learning, the models are trained using labeled data, where the outcome 
variable (e.g., default or non-default) is known. Unsupervised learning, on the other 
hand, involves analyzing unlabeled data to identify patterns or groupings without prior 
knowledge of the outcome. Table 2.1 in the referenced source (Finlay, 2012) presents 
commonly used predictive models for credit scoring, providing an overview of the 
different techniques employed in this field. It serves as a reference to understand the 
variety of models available and their suitability for credit risk assessment. 
 

Traditional statistical 

approaches 

Computational Intelligence 

approaches 

Linear Regression Ensemble model 

Linear Discriminant Analysis Neural Networks 

Logistic Regression Genetic Algorithms 

Table 2.1. Predictive models for credit scoring. 

 In conclusion, the evaluation and management of credit risk play a pivotal role 

in the financial industry, allowing institutions to effectively assess and mitigate potential 

risks associated with lending activities. Throughout this chapter have been referred a 

range of financial risk resources, credit risk components, and models utilized in credit 

risk assessment, encompassing statistical approaches as well as the emerging field of 

neural networks. 

 However, in the transition to the subsequent chapter, the focus would shift 

toward the domain of neural networks and their applicability in credit risk analysis. 

Consequently, in the upcoming chapter, the concepts and principles underlying Neural 

Networks would be comprehensively described to elucidate their significant 

contribution to this thesis. By providing a clear understanding of Neural Networks, their 

potential applications and advantages in credit scoring would be highlighted, setting the 

stage for their subsequent implementation and evaluation in the research. 

 Neural networks offer the promise of enhancing credit risk models by capturing 

intricate patterns and nonlinear relationships within data, thereby facilitating more 

precise and robust risk assessments. By integrating neural networks into credit risk 
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frameworks, financial institutions could harness advanced computational capabilities to 

more effectively identify and mitigate credit risks. The exploration of neural networks 

within the context of credit risk presents novel avenues for advancing risk management 

practices and augmenting decision-making processes within the financial sector.  
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Chapter 3:       

 Neural Networks 

 

 

3.1. Introduction 

In the early years of humanity, there were plenty of machine inventors who had created 
machines with the aim to assist them with daily tasks. Before the creation of the first 
computer with software, there was a lot of discussion on the ability of such machines to 
become ever sentient (Lovelace, 1842). Artificial intelligence (AI) is a modern scientific 
discipline with a number of beneficial applications and ongoing research topics. 
Intelligent software is employed to help basic scientific research, automate monotonous 
processes, understand speech or visual input, and make medical diagnoses. 

It turns out that the true challenge for artificial intelligence is to solve problems 
that people instinctively and apparently easily solve, such as recognizing spoken words 
or faces in images, but which humans find difficult to define in formal terms. In this 
situation, allowing computers to learn from experience and understand the world in 
terms of a hierarchy of concepts, with each thought defined in relation to simpler 
notions, would be a solution to this issue. By using experience-based learning, this 
approach lessens the need for human operators to explicitly specify every piece of 
information that the computer needs. Computers could learn more complicated 
concepts by using fundamental ideas as a foundation (Heaton, 2018). 

The limitations encountered by hard-coded knowledge-based systems have 
highlighted the necessity for artificial intelligence (AI) systems to possess the ability to 
learn autonomously by identifying patterns in unstructured data. This capability is 
known as machine learning, and it has revolutionized the way computers tackle Real-
world problems and arrive at seemingly subjective conclusions. For instance, logistic 
regression, a straightforward machine learning technique, could determine whether a 
cesarean birth is recommended (Mor-Yosef et al., 1990), while financial institutions 
could employ the naive Bayes algorithm, another simple machine learning technique, to 
assess the likelihood of clients becoming defaulters before granting loans (Heaton, 
2018). 

In recent decades, extensive research has been conducted by scientists in 
applied sciences on neural networks, owing to their ability to mimic the distributed 
communication and information processing nodes found in biological systems. Artificial 
neural networks (ANNs) were developed as a result of this exploration. It is important 
to note that while ANNs are inspired by biological brains, they differ in several 
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fundamental aspects, with ANNs often being static and symbolic in contrast to the 
dynamic and analog nature of organic brains (Marblestone et al., 2016; Bengio et al., 
2015). 

In the context of credit scoring, neural networks have proven to be a valuable 
algorithm and have been employed by various scoring models documented in the 
literature. In the subsequent sections, this chapter would delve into the components 
and functioning of neural networks. Specifically, the concept of Perceptron and Multi-
Layer Perceptron would be presented, along with their training processes, regularization 
techniques, pruning methods to mitigate overfitting, and the use of optimization 
algorithms for hyperparameter tuning. By examining these aspects, a comprehensive 
understanding of neural networks and their application in credit scoring would be 
attained.  

3.2. Perceptron and Multi-Layer Perceptron 

All neural networks are constructed upon the foundation of artificial neurons. An 
artificial neuron consists of two essential components: an adder that calculates the 
weighted sum of all inputs received by the neuron, and a processing unit that utilizes 
this weighted sum to generate an output, employing a predefined function called the 
activation function. It is worth noting that each artificial neuron possesses a distinct set 
of weights and thresholds (biases), which are acquired through the utilization of various 
learning algorithms. These learning algorithms play a crucial role in adjusting the weights 
and biases to enable the neural network to learn and make accurate predictions. Some 
commonly employed learning algorithms include: 

 

Figure 3.1. An artificial neuron is graphically illustrated (Patterson & Gibson, 2017). 

It is referred to as a perceptron if there is only one layer of these neurons. Since 
it only buffers the input, the input layer is referred to as the zeroth layer. The output 
layer is the single layer with neurons. Each one of the output layer's neurons has unique 
weights and thresholds. The network is referred to as Multi-Layered Perceptron (MLP) 
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when there are presented several layers. One or more layers are concealed in an MLP. 
There are various numbers of hidden neurons in these layers. Each buried layer's 
neurons perform the same activation function: 

 

Figure 3.2. The architecture of Multi-Layer Perceptron (Patterson & Gibson, 2017). 

An MLP with three inputs, and three hidden layers, each having four, five, three, 
and two neurons in the output layer are shown in the above Figure. In MLP, every 
neuron in the layer above is coupled to every other neuron in the layer below. MLPs are 
also known as fully connected layers since there is no feedback in the information flow 
in MLPs, and for this reason, these networks were often referred to as feedforward 
networks. 

Gradient descent techniques are used to train perceptron and learn using 
supervised learning algorithms, in which the network is given the intended output for 
each input contained in the training dataset. For the objective function to be minimal, 
once the network has entirely learned all of the training data, an error or objective or 
loss function J(W) at the output was defined. A few loss functions are displayed in Table 
3.1. As the gradient of the objectives function reduces, the weights of the output layer 
and the hidden layers are updated.  

The purpose is to define the objective function's global minima. Gradient descent 
appears to have a vulnerability when approaching a local minimum, since the gradient 
would grow if it is attempted to move the network to a different location on either side, 
compelling it to remain there. There are several gradient descent variations designed to 
increase convergence and prevent becoming trapped at local minima that might be used 
to address this issue (adding momentum, and variable learning rate). 

One of the primary methods used in perceptron for gradient descent is defining 
the objective function for the output layer, which also determines how the weights of 
neurons in the hidden layers are adjusted. The backpropagation (BPN) method is 
employed for this purpose, wherein the weight adjustments are computed by 
propagating the output error backward through the network to the hidden layers. 
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To sum up, a perceptron consists of: 

➢ Inputs, X1, X2, …, Xn  

➢ Weights, W1J, W2J, …, WnJ 

➢ The sum of product between inputs and weights, ∑ 𝑋𝑖𝑊𝑖𝐽
𝑛
𝑖=1  

➢ The activation function, the more representative is illustrated in Table 3.2. 

➢ Threshold or Bias, θJ 

➢ Output, YJ 

A feedforward technique known as a multilayer perceptron combines inputs and 
initial weights to determine a weighted total, and both are affected by the activation 
function. The main distinction from a straightforward perceptron is the passing of each 
linear combination to the layer underneath. The method would be impossible to 
determine the weights that minimize the loss function if it merely computed the 
weighted sums in each neuron, sent the results to the output layer, and stopped there. 
Similarly, to this, no real learning would occur if the algorithm simply ran one 
computation iteration. 

Backpropagation, a learning method used by the multilayer perceptron, enables 
gradual adjustment of the network's weights to minimize the loss function. As multilayer 
perceptron often employs gradient descent as the optimization function, these 
functions must have a differentiable derivative. The most commonly used optimizers are 
listed in Table 3.3. In each iteration, the weighted sums are propagated through all 
layers, and the gradient of the mean squared error is calculated over all input and output 
pairs. The gradient value is then used to update the weights starting from the first 
hidden layer, propagating the changes backward through the network. This process is 
repeated until the gradient for each input-output pair converges, which occurs when 
the recently computed gradient does not differ from the previous iteration by more than 
a predefined convergence threshold. The value of gradient descent in each iteration is 
calculated using the equation provided (Patterson & Gibson, 2017). 

𝛥𝑤(𝑡)  =  −𝜀
𝑑𝐸

𝑑𝑤(𝑡)
 +  𝛼𝛥𝑤(𝑡 − 1) 

where, 

𝛥𝑤(𝑡) : Gradient current iteration 

ε: Bias 

dE: error 

𝑑𝑤(𝑡): weight vector 

α: learning rate, that increases the amount of the updates (steps) a neural network 
makes to its parameter vector x as it moves across the loss function space. 
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 However, to enhance the overall performance of a Multi-Layer Perceptron 
(MLP), it is necessary to apply a training process. Training involves adjusting the weights 
and biases of the MLP based on a set of training data, allowing it to learn patterns and 
relationships within the data. This iterative process helps the MLP improve its predictive 
capabilities and increase its accuracy in credit risk assessment. Through training, the 
MLP could optimize its parameters and adapt to different credit risk scenarios, leading 
to more reliable and robust predictions. By investing time and resources into the training 
process, financial institutions could maximize the performance of MLP models and 
improve their ability to effectively assess and manage credit risk. 

3.3. Training Neural Networks 

Transforming a dataset into a suitable input for a neural network is often a challenging 
aspect of network training. Selecting the appropriate neural network architecture could 
also be a complex decision, given the numerous approaches found in the literature for 
each problem category. In practice, the benefits of a new architecture over an older one 
could be diminished by data preprocessing, cleansing, normalization, and the 
construction of a larger training set. Modern neural network designs emerge from 
extensive scientific research and collaborations among various entities, making them 
difficult to create individually. Furthermore, training such models often requires 
substantial processing capacity. Instead of attempting to replicate the findings of recent 
publications, it is often more worthwhile to invest time in gathering more training data 
and developing a solution around a reliable but less advanced model. 

 The architecture of a neural network encompasses the number, type, and size of 
layers, and making decisions in this regard could be highly intricate. It is recommended 
to begin with one or two layers, train a model, and assess whether it adequately fits the 
training data, indicating low bias. If the model does not fit well, an alternative is to 
progressively increase the number of layers and the size of each layer until the model 
precisely matches the training set. Once this is achieved, regularization techniques could 
be applied if the model exhibits poor performance on the validation data, indicating high 
variance. If, even after regularization, the model fails to fit the training data, it might be 
necessary to significantly increase the network's size. The iterative process continues 
until the model adequately fits the chosen metrics for both the training and validation 
datasets (Burkov, 2019). 

3.4. Regularization 

During the training process, neural networks are susceptible to overfitting, where the 
model becomes overly complex and starts to memorize the training data instead of 
learning general patterns. Overfitting could lead to poor performance on unseen data 
and reduced generalization ability. To address this issue, the usage of regularization 
techniques is an effective approach. 
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 In addition to the well-known L1 and L2 regularization techniques, neural 
networks offer a range of regularization methods, including dropout, early stopping, and 
batch normalization. While batch normalization does not strictly fall under the category 
of regularization, it often results in a more regularized model due to its normalization 
effect on the layer outputs. These regularization techniques play a vital role in mitigating 
overfitting and enhancing the generalization capability of neural networks. 

Dropout, a conceptually simple regularization technique, involves randomly 
excluding a subset of units from the computation during each iteration of the training 
process in the network. The regularization effect becomes more pronounced as the 
proportion of omitted units increases, necessitating the definition of the dropout 
parameter for each layer. Empirical determination of the dropout parameter, which 
typically ranges from 0 to 1, is performed by tuning it using validation data (Chollet, 
2021). In practice, regularization techniques such as L2 regularization and dropout are 
often combined to further enhance model performance. However, it is generally advised 
to avoid applying dropout to the first layer of the network to prevent the loss of crucial 
information from the input dataset. These regularization techniques contribute to the 
overall stability and robustness of neural network models by mitigating the risk of 
overfitting and improving their generalization performance. By carefully selecting and 
combining appropriate regularization methods, neural networks could achieve superior 
performance on unseen data and effectively address complex Real-world problems 
(Chollet, 2021). 

Early stopping is a widely employed technique in neural network training, which 
involves storing the intermediate model after each epoch and evaluating its 
performance on a separate validation set. As the number of epochs increases, the cost 
function typically decreases due to the iterative nature of the gradient descent 
algorithm. The decreasing cost signifies that the model is effectively fitting the training 
data. However, there comes a point where the model might start to overfit: the cost 
continues to decrease, but its performance on the validation data deteriorates. At this 
stage, it is crucial to identify the decline in performance on the validation set, which 
serves as an indicator of overfitting, and terminate the training process accordingly. 

Alternatively, a predetermined number of epochs could be allowed to pass 
before selecting the best model, rather than terminating the training immediately upon 
observing a decline in validation performance. These intermediate models stored at 
different epochs are known as checkpoints. While early stopping provides a means to 
prevent overfitting and select the optimal model, it should be noted that its 
effectiveness depends on appropriately regularizing the model. Some machine learning 
experts commonly employ early stopping as a regularization technique, while others 
face challenges in effectively applying regularization to avoid undesired behaviors 
(Chollet, 2021). 

The technique known as batch normalization, which could be more accurately 
termed batch standardization, plays a crucial role in neural network architectures by 
normalizing the output of each layer before it is passed as input to the subsequent layer. 
In addition to its primary purpose of normalization, batch normalization exhibits 
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regularization effects and contributes to faster and more stable training of neural 
networks. Therefore, the inclusion of batch normalization is considered advantageous, 
and it is recommended to incorporate a batch normalization layer between two 
consecutive layers in neural network libraries (Géron, 2022). 

In practical terms, regularization methods such as L1 and L2 (also known as Lasso 
and Ridge regression, respectively) typically result in a slight increase in bias while 
effectively reducing variance. These regularization techniques aim to modify the 
objective function by introducing a penalty component that increases with the 
complexity of the model. Specifically, L1 regularization applies an L1 penalty equal to 
the absolute value of the coefficient's magnitude, whereas L2 regularization imposes an 
L2 penalty equal to the square of the coefficient's magnitude. Given a loss function L(W), 
the L1 regularization term is weighted by the scalar alpha divided by two and added to 
the regular loss function selected for the task at hand (Chollet, 2021). The formulation 
could be expressed as follows: 

𝐿̂(𝑊) = 𝐿(𝑊) + 𝛼‖𝑊‖1 

while, regularization L2 is represented as: 

𝐿̂(𝑊) = 𝐿(𝑊) +
𝛼

2
‖𝑊‖2

2 

The α is called the regularization rate and is an additional hyperparameter, which 
determines the model’s regularization degree. The higher value of α, the higher risk of 
underfitting, whereas the lower one, the higher risk of overfitting to data. The 
summarized differences between L1 and L2 regularization are presented in Table 3.4 
(Heaton, 2018). 

3.5. Pruning 

In addition to regularization techniques that mitigate overfitting, there are other 
methods that could enhance the performance of neural network models, including 
pruning techniques. The method of neural network pruning is based on the logical idea 
of eliminating redundant components from a well-performing network that consumes 
excessive resources. Although large neural networks have demonstrated their ability to 
learn, it has been observed that not all parts of the network remain useful after training. 
The objective of pruning is to remove these unnecessary elements while maintaining 
the network's performance. 

There are several techniques available for pruning neural networks, with weight 
pruning being one of the primary approaches. In weight pruning, the network is made 
sparse by setting certain parameters to zero, while keeping the overall architecture 
intact. This results in a reduced parameter count without altering the network structure. 
Another approach involves removing individual nodes from the network, leading to a 
smaller network design while striving to preserve the accuracy achieved by the larger 
original network. 
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The process of pruning is often guided by three main factors. Weight magnitude 
criteria involves pruning weights with the least absolute value. Gradient magnitude 
pruning takes into account the gradients computed over a small sample of training data, 
and pruning decisions are made based on the product of the gradient and the associated 
weight for each parameter. The choice of whether the pruning criterion is applied 
globally to all network parameters or filters, or if it is computed separately for each layer, 
depends on whether global or local pruning is employed. 

By employing pruning techniques, neural networks could be made more efficient 
by reducing their size and computational requirements, while aiming to retain their 
performance and accuracy. Pruning provides a valuable approach for optimizing and 
streamlining neural network architectures in practical applications. To conclude, in Table 
3.6 referred the most noticeable benefits and drawbacks of pruning a neural network 
(Blalock et al., 2020). 

In conclusion, pruning and regularization techniques play vital roles in optimizing 
neural network models. Pruning aids in reducing model complexity by eliminating 
unnecessary connections and weights, thereby improving the network's efficiency and 
interpretability without significant loss of performance. Regularization, on the other 
hand, addresses the issue of overfitting by adding a penalty term to the loss function, 
promoting generalization, and preventing the model from memorizing the training data.  

3.6. Hyperparameter tuning 

In the pursuit of enhancing the performance of neural network models, considerations 
extend beyond regularization and pruning techniques. An integral aspect of model 
optimization involves determining the appropriate values for hyperparameters. 

 First of all, the term Hyperparameter is referred to every configuration option 
that allows users to choose and that might have an effect on performance. Neural 
networks have several categories of hyperparameters, such as: 

➢ Layer size, the number of neurons into each layer,  
➢ Magnitude, that is the momentum and learning rate, 
➢ Regularization, like dropout, drop connect, L1 and L2,  
➢ Activation functions, as they are represented in Table 3.2,  
➢ Weight initialization strategy, as Geron (2022) refers.   
➢ Loss functions, as they are represented in Table 3.1, 
➢ Settings for epochs during training, mini-batch size, that is the number of vectors 

that passed into the learning algorithm simultaneously, 
➢ Normalization scheme for input data. 

 
The selection of hyperparameters in neural networks is typically influenced by 

the type of problem being addressed, including choices such as activation functions, loss 
functions, and layer sizes. Table 3.5 describes the most commonly used combinations of 
these hyperparameters. It is important to note that excessively large numbers of 
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neurons in a layer should be avoided as it could lead to overfitting. Regularization 
techniques are employed to mitigate this risk. 

The initialization of weights is a crucial aspect of the learning process, and the 
choice of activation function determines the appropriate strategy. For activation 
functions belonging to the ReLU family, the He initialization strategy is recommended, 
whereas other activation functions like tanh or identity typically use the Xavier strategy. 
The selection of weight initialization plays a significant role in ensuring stability and 
effectiveness during training. 

The learning rate hyperparameter is one of the most critical factors affecting the 
training process in neural networks. A high learning rate could lead to unstable training, 
while a low learning rate might result in ineffective training. Ideally, a higher learning 
rate is initially set and gradually decreased as convergence is approached. Empirically, 
learning rate values in the range of [0.1, 0.01, 0.001] are often reliable and 
recommended for starting, with 0.001 being a commonly used initial value. 

The choice of batch size affects the training speed of the neural network. 
Increasing the batch size initially leads to a decrease in training time. It is common 
practice to use batch sizes that are powers of two. For small networks, batch sizes 
ranging from 32 to 256 are commonly used for CPU training, while 32 to 1024 are typical 
for GPU training. When the mini-batch size is doubled, the number of epochs must be 
doubled as well to maintain the same number of parameter updates (Patterson & 
Gibson, 2017).  

To conclude, the recommendations discussed above provide a framework for 
discovering the optimal values of these hyperparameters. This tuning process, also 
known as hyperparameter optimization, has garnered significant attention in the 
literature, leading to the development of numerous optimization algorithms. 

3.7. Optimization algorithms for tuning 

As mentioned in the above section, there are numerous optimization algorithms for 
hyperparameter tuning. These algorithms provide efficient and automated ways to 
explore the hyperparameter space and find the optimal configurations. The choice of 
the specific optimization algorithm depends on factors such as the size of the search 
space, computational resources, and time constraints. The proposed model in this thesis 
employed a limited set of hyperparameter tuning techniques, including Bayesian 
optimization, random search, quasi-Monte Carlo, and genetic algorithms. 

Bayesian optimization  

 The Bayes theorem and its approach to stochastic processes for measuring 
variables counting their event probability and event of uncertainty are the foundations 
of the Bayesian optimization strategy. This method might be thought of as a substitute 
for the Gaussian process. A complicated prediction model with several hyper-
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parameters might also be quickly searched for using Bayesian optimization while 
retaining the model's accuracy.  

 The Bayes theorem, in a few words, states that the posterior probability of a 
model M gave evidence E is proportional to the likelihood of E given M multiplied by the 
prior probability of M: 

𝑃(𝑀|𝐸)  ∝  𝑃(𝐸|𝑀)𝑃(𝑀) 

 Bayesian optimization considers the f(x) function as a "black box" when dealing 
with an optimization problem in machine learning. The phrase "black box" refers to an 
item that could only be understood in terms of its inputs and outputs, without any 
understanding of its underlying workings, according to the definition of computing 
science. The only way to evaluate the f(x) function is to sample at a point x and obtain a 
potential response because it lacks an analytical formulation (Theodoridis, 2015). 

 The Tree-structured Parzen estimator (TPE), a Bayesian optimization variation 
that divides data into good and poor groups and uses the density ratio of those groups 
as an acquisition function, is a popular and adaptable HPO technique (AF). However, 
there are frequently certain limitations in Real-world applications, such as latency or 
memory needs (Watanabe & Hutter, 2022). The TPE technique is made to optimize 
quantization hyperparameters to obtain the highest potential latency improvement and 
an estimated accuracy objective. TPE is an iterative procedure that builds a probabilistic 
model from the history of evaluated hyperparameters and utilizes it to recommend the 
next set of hyperparameters to assess. 

  Sequential Model-Based Optimization (SMBO) is a method used by the Tree-
structured Parzen Estimator (TPE). Based on prior measurements, SMBO approaches 
successively build models to approximate the performance of hyperparameters, and 
then pick new hyperparameters to test based on this model. The TPE technique models 
P(x|y) and P(y), where x is the related quality score and y, is the hyperparameters. By 
altering the generating process of hyperparameters and substituting non-parametric 
densities for the configuration prior's distributions, P(x|y) is modeled. 

 It is advised to run TPE for at least 200 iterations in order for it to get an ideal 
solution, which takes many iterations. This method might take anywhere from 24 hours 
to a few days to finish depending on the model because every iteration involves an 
assessment of a created model, which includes accuracy measurements on a dataset 
and latency measurements using a benchmark. 

 There are many benefits since TPE allows for the definition of the tuning time of 
quantization, the error tolerance, and the target latency improvement. It also enables a 
large variety of variables in the parameter search space. This method ensures that the 
greatest possible accuracy and latency are obtained from the combination of ideal 
parameters. However, the main drawback is that TPE does not model interactions 
between hyperparameters (Bergstra et al., 2013). 
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Grid Search 

The most popular method for hyperparameter tuning is the grid search because 
of its easy-to-understand process. Being an ignorant search strategy, it does not take 
into account the results of earlier iterations. In order to find the hyperparameter 
combination that produces the highest performance, this approach involves evaluating 
each distinct combination of hyperparameters in the search space. Unfortunately, this 
method does not scale well; as the size of the hyperparameter search space grows, run 
time and computation would increase exponentially (Syarif et al., 2016). As a result, this 
particular hyperparameter tuning algorithm was not utilized in this study. 

Random Search 

 Another ignorant search technique that treats iterations separately is the 
random search. But it just examines a predetermined amount of hyperparameter sets 
randomly, rather than looking for all of them in the search space. The user chooses this 
quantity. In comparison to grid search, the approach uses less computation and run time 
since it executes fewer trials for hyperparameter tuning. Unfortunately, the random 
search presents the risk of omitting the optimal collection of hyperparameters and 
skipping the peak model performance since it tries hyperparameter sets at random 
(Romeijn, 2008). 

NSGA-II: Non-dominated Sorting Genetic Algorithm 

 A modified mating and survival selection is used, and the algorithm generally 
follows the structure of a genetic algorithm. First, individuals are chosen frontally in the 
NSGA-II. As a result, a front would need to be divided since not every person would be 
permitted to live. Based on crowding distance, solutions are chosen in this dividing front. 
The Manhattan Distance, or "crowding distance," exists in the objective space. The 
crowding distance of infinity is given to the extreme points since they are wanted to be 
preserved during each generation. Additionally, the NSGA-II employs a binary 
tournament mating selection to exert some additional selection pressure. Prior to 
crowding distance, each individual is first evaluated according to rank. In the original C 
code, there is also an alternative that uses the dominance criterion between two 
solutions in place of the rank (Deb et al., 2002). 

Quasi Monte Carlo Sampler 

In comparison to conventional random sequences, Quasi-Monte Carlo (QMC) 
sequences are designed to exhibit fewer discrepancies. They have been found to 
outperform random sequences in hyperparameter optimization tasks. Monte Carlo 
(MC) sampling is a technique used to estimate expectations by taking sample averages 
of random values. The law of large numbers provides the theoretical basis for this 
approach. Quasi-Monte Carlo (QMC) sampling, on the other hand, employs 
deterministic sequences instead of random ones, allowing us to leverage the law of large 
numbers. Similar principles apply to both Monte Carlo and quasi-Monte Carlo 
techniques. The main challenge lies in computing the average value of a function, 
denoted as f, when it is evaluated at a series of locations, x1, ..., xN. 
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∫ 𝑓(𝑢)𝑑𝑢
[0,1]

 ≈  
1

𝑁
∑𝑓(𝑥𝑖)

𝑁

𝑖=1

 

Each xi is a vector with s elements since the unit cube with s dimensions is 
integrated. The method used to choose the xi distinguishes Quasi-Monte Carlo from 
Monte Carlo. MC adopts a pseudorandom sequence, whereas QMC uses a low-
discrepancy sequence and as a result converges quicker than MC (Owen, 2003). 

In conclusion, this chapter has provided a comprehensive overview of various 
aspects related to neural network training, architecture, regularization, and 
hyperparameter optimization. Looking ahead, the next chapter would shift focus to 
multi-criteria decision analysis with fuzzy logic. This methodology introduces a different 
perspective by incorporating fuzzy sets and fuzzy logic to handle decision-making 
problems involving uncertainty and imprecision. Complex decision issues involving the 
examination of numerous competing criteria might be efficiently solved by merging 
fuzzy logic with multi-criteria decision analysis. 

The transition to multi-criteria decision analysis with fuzzy logic reflects the 
broader scope of this thesis, which aims to explore various computational intelligence 
techniques and their applications in decision support systems. By combining the 
knowledge and insights gained from the neural network chapter with the fuzzy logic 
approach in the upcoming chapter, could be developed a comprehensive framework for 
tackling Real-world decision problems with enhanced accuracy and robustness. 

In summary, the neural network chapter has laid the foundation for 
understanding the principles, methodologies, and practical considerations in neural 
network training and optimization. The integration of multi-criteria decision analysis 
with fuzzy logic in the subsequent chapter would further broaden our understanding 
and provide valuable insights into the application of computational intelligence 
techniques for decision support.  
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Chapter 4:        
 Multi-criteria Decision Analysis with Fuzzy Logic 

 

 

4.1. Introduction  

This chapter examines the fundamental principles of Fuzzy Logic and its integration with 
Multi-criteria Decision Analysis (MCDA) methodologies within the proposed Neuro-Fuzzy 
model presented in this thesis. 

Fuzzy logic, introduced by Lot Zadeh in 1965, is grounded in the mathematical 
theory of fuzzy sets. It addresses the relationship between precision and uncertainty, 
recognizing that problems in the Real-world often possess degrees of truth or falsehood, 
goodness or badness, rather than being strictly binary. The fuzzy theory seeks to bridge 
this linguistic gap by providing a means to handle imprecise and uncertain information 
within mathematical models, ultimately enhancing the decision-making process. An 
additional advantage of fuzzy logic is its capacity to incorporate human reasoning 
through the use of fuzzy rules, which are expressed in natural language. For instance, in 
the context of a driver approaching a traffic light, a few illustrative If-Then rules could be 
formulated as follows: 

➢ If the light is red, the driver's speed is high, and the distance between them is 
close, then the driver should brake hard. 

➢ If the light is red, the driver's speed is low, and the distance between them is long, 
then the driver should maintain their speed. 

➢ If the light is orange, the driver's speed is moderate, and the distance between 
them is long, then the driver should brake gently. 

➢ If the light is green, the driver's speed is low, and the distance between them is 
close, then the driver should accelerate. 

The aforementioned example highlights the approximate estimation of input 
variables by the human brain, which aligns with the notion of precision degrees in fuzzy 
logic. 

This chapter aims to provide a comprehensive overview of the components 
comprising a Fuzzy Inference System, namely fuzzification, operators on fuzzy sets, the 
knowledge base, Fuzzy Inference Mechanism, and defuzzification. Additionally, the 
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chapter explores the integration of the Fuzzy Analytic Hierarchy Process (FAHP) and the 
Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) within the 
proposed Neuro-Fuzzy model. 

However, in order to foster a deep understanding of fuzzy logic, it is imperative 
to examine its historical development. By delving into the historical perspective, we 
could enhance our comprehension of the foundations of fuzzy set theory and fuzzy logic. 
Accordingly, this chapter references the contributions made by eminent scientists who 
have played significant roles in the advancement of fuzzy logic. Furthermore, it 
acknowledges the influence of Greek philosophers, particularly Aristotle, who holds a 
prominent position in the realm of fuzzy logic. By exploring the historical trajectory, the 
ability to grasp the fundamental principles and historical evolution of fuzzy set theory 
and fuzzy logic could be augmented.  

4.2. Historical review  

Fuzziness was mentioned many years ago, as the famous ancient Greek philosopher 
Aristotle supports that “A well-trained mind would be content with the level of precision 
that the subject's nature permits rather than pursuing accuracy when just a rough 
approximation of the truth could be achieved.” (Carter et al., 2021; Aristotle, 3rd BCE).  

 Eubulides of Miletus in the 4th century BCE studied the impression through the 
“Sorites” paradox, which did not have an obvious answer, since it was wondered “When 
does a collection of grains of sand become a heap?” (Moline, 1969). Specifically, “If 
1.000.000 grains of sand are a heap of sand, then a heap of sand minus one grain is still 
a heap? What happened if they are reduced by another one or two or three grains?” 
(Sorensen & Roy, 2009). The whole problem was the difficulty of correctly assigning a 
threshold of “truth” to a proposition. 

 All classical logic "habitually assumes that precise symbols are being used," 
according to Bertrand Russell (1923). Therefore, it only applies to a hypothetical 
heavenly existence and not to our life on Earth. (Bertrand Russell, 1923; Carter et al., 
2021). Every set theory with an unlimited comprehension principle results in 
contradictions, as demonstrated by Russell's dilemma (Irvine & Deutsch, 2021). Bertrand 
Russell (19th century), a British philosopher and mathematician who lived in the 19th 
century, and in his book with the title “Principia Mathematica” refers to the constructed 
mathematical logic, which is consisted of three aims. Firstly, there is a need to minimize 
the number of primitive notions, axioms, and inference rules. Secondly, mathematical 
propositions should be expressed precisely in symbolic logic by using the most 
convenient notation. Thirdly, it is necessary to resolve the paradoxes of symbolic logic 
and set theory (Whitehead & Russell, 1962). 

 Friedrich Waismann (19th century) was an Austrian mathematician, physicist, 
philosopher, and member of the Vienna Circle. He introduced the meaning of open 
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texture or porosity intending to describe the global possibility of vagueness in real 
situations (Audi & Robert, 1999). To be more specific, even if scientists try to precisely 
determine a statement, vagueness would remain, due to an indefinite number of 
possibilities (Freeman et al., 2013). Jan Łukasiewicz (1951) introduced philosophical logic, 
mathematical logic, and the history of logic and his scientific research expanded the 
methods of Aristotelian logic (Łukasiewicz, 1951).  

Last but not least, Lotfi Zadeh (1975) was a professor of computer science at the 
University of California, Berkeley, as well as a mathematician, computer scientist, 
electrical engineer, and researcher in artificial intelligence. The contribution made by 
Zadeh to the field of fuzzy logic science is significant. Several well-known terminologies 
are introduced by him, including fuzzy sets, fuzzy logic, fuzzy algorithms, fuzzy semantics, 
fuzzy languages, fuzzy control, fuzzy systems, fuzzy probabilities, fuzzy events, and fuzzy 
information (Zadeh, 1975).  

4.3. Fuzzy Inference System 

Fuzzy Inference System (FIS) is the most essential part of fuzzy logic systems. It uses fuzzy 
set theory, fuzzy rules, and approximate reasoning intending to discover the output 
which corresponds to crisp inputs. This system tries to imitate the human’s thinking 
process using reasoning and this is achieved by Fuzzy If-Then rules. Figure 4.1 represents 
the Fuzzy Inference System structure (Singh & Lone, 2020). 

 

Figure 4.1. Fuzzy Inference System (Singh & Lone, 2020). 

Figure 4.1 presents a diagram illustrating the process of a Fuzzy Inference System 
(FIS). This system encompasses various stages, beginning with the provision of crisp input 
values to the fuzzifier. The fuzzifier applies fuzzy membership functions, resulting in the 
generation of fuzzy sets. Subsequently, the Inference mechanism applies fuzzy rules 
sourced from the knowledge base, leading to the production of fuzzy outputs. Finally, 
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the defuzzifier transforms the fuzzy outputs back into the original domain (Singh & Lone, 
2020). 

In the forthcoming chapters, each essential component of the FIS would be 
comprehensively explored to provide a comprehensive understanding of the entire 
process. Consequently, the initial phase of fuzzification would be introduced. 

4.4. Fuzzification 

Decision-making processes that involve non-random uncertainty, characterized by 
imprecise natural language expressions, have demonstrated inherent limitations. Lotfi 
Zadeh (1965) proposed that the concept of set membership is crucial in addressing 
uncertainty and introduced a set theory that operates within the range of [0, 1]. Zadeh 
asserted that a fuzzy set consists of objects whose membership values are determined 
by a membership function, which serves as a characteristic function assigning a degree 
of membership to each object within the set. These membership values are typically 
represented by numerical values within the interval [0, 1] (Zadeh, 1965). During the 
fuzzification process, crisp inputs are transformed into fuzzy sets through the utilization 
of the membership function. 

Fuzzy set 

Definition 4.1 Let X be a space of points (objects), with a generic element of X denoted 
by x. A fuzzy set A in X is characterized by a membership function μA(X) which associates 
with each point x a real number in the interval [0,1] representing the grade of 
membership of x in A (Rutkowska, 2001). 

𝐴 =  {(𝑥, 𝜇𝛢(𝑥)), ∀ 𝑥 ∈  X} 

where 

𝜇𝛢(𝑥): 𝑋 → [0,1] 

The nearer the value of μA(X) to unity, the higher the grade of membership of x in 
A. If μA (X) = 1, then x fully belongs to A. If μA(X) = 0, then x does not belong to A. Space X 
is called the universe of discourse. 

When the universe of discourse (Χ) is a finite set, a fuzzy set A could be 
represented as: 

𝛢 =  ∑
𝜇𝛢(𝑥𝜄)

𝑥𝜄

𝑛

𝜄=1
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 In case the universe of discourse is not a finite set, fuzzy set A could be 
represented as: 

𝐴 =  ∫
μ𝛢(𝑥)

xX

 

Figure 4.2 shows examples of Gaussian and triangular membership functions 
which characterize fuzzy sets A and B, respectively, in the universe of discourse X = ℝ. 

 

Figure 4.2. Graph of membership functions (Rutkowska, 2001). 

 It is worth mentioning that there are various shapes of membership functions 
besides the above-mentioned, Gaussian and triangular, as well as the trapezoidal 
membership functions are the most widely applied in fuzzy systems. Other definitions 
concerning fuzzy sets, such as fuzzy singleton, support, core, height, equality of a fuzzy 
set, normal, empty, convex, type two fuzzy set, fuzzy number, and interval, a-level set, 
are presented in Table 4.1. 

Fuzzy membership functions 

 A membership function (MF) represents the degree of truth in fuzzy logic and a 

degree of membership function could be a continuous number over the interval [0,1]. 

For instance, in the case that we must brake our car before a traffic light there is not 

an assigned discrete value 0 or 1 to this behavior, but brake usually takes a low value 

for a gentle brake instead of a rough brake. 

Definition 4.2 A membership function on a set A is a characteristic function that 
transforms a classic value (crisp value) to a fuzzy one, thus fuzzy set is created. The 
membership function of a fuzzy set is donated μΑ  (Rutkowska, 2001). 
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This concept in a fuzzy set is represented by the membership functions and in this 
section, various types of membership functions, such as triangular, trapezoidal, 
Gaussian, Generalized Bell, and sigmoidal, are explained in Table 4.2. 

4.5. Operators on fuzzy sets 

The process of fuzzification plays a crucial role in the application of fuzzy logic. It involves 
converting crisp input values into fuzzy sets through the use of membership functions. 
Once the input values are fuzzified, various fuzzy operators could be applied to 
manipulate and reason with the fuzzy sets. These fuzzy operators provide the necessary 
tools to handle the linguistic gap and capture the complexity of Real-world problems, 
enabling more flexible and nuanced reasoning in the decision-making process. 

 In this section, the classical set-theoretic operations commonly employed in 
ordinary set theory were extended to accommodate fuzzy sets. To maintain consistency, 
the same symbols as those used in set theory are utilized when extending these 
operations to fuzzy sets. Table 4.3 provides an illustration of various operators, including 
complement, union, intersection, containment, T-norm, and S-norm. 

 Regarding the complement operation, the assigned value is interpreted as the 
membership grade of an element x belonging to the negation of the fuzzy set A. For 
example, if A represents a fuzzy set denoting high atmospheric humidity, the 
complement fuzzy set comprises weather conditions characterized by moderate, low or 
the absence of humidity in the atmosphere. In order to properly represent the 
complement operation, function c must satisfy at least the following two criteria, as 
outlined by Zadeh (1965). 

➢ c (0) = 1 and c (1) = 0, which means that c behaves as the classical complement for 

crisp sets (boundary conditions). 

➢ For all 𝑎, 𝑏 ∈  [0, 1], if a < b, then c(a) ≥ c(b), where a and b represent degrees of 

membership. This means that c is a monotonic non-increasing function. 

Figure 4.3 portrays the operation of complement, supposing that A is a normally 
distributed fuzzy set. 
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Figure 4.3. Complement operation of a normal fuzzy set (Rutkowska, 2001).  

In fuzzy sets the classical union and intersection operations of ordinary subsets 
of X are valid. The union and intersection operations have the associative property, which 
means that A U (B U C) = (A U B) U C and A ∩ (B ∩ C) = (A ∩ B) ∩ C for fuzzy sets A, B, C in 
X. Generally, the union for N fuzzy sets A, B, C, … N is given by 

𝜇𝐴 ∪ 𝐵 ∪ 𝐶...∪ 𝑁 =  𝑚𝑎𝑥[𝜇𝛢(𝑥), 𝜇𝐵(𝑥), 𝜇𝐶(𝑥), . . . , 𝜇𝑁(𝑥)]                 ∀ 𝑥 ∈ 𝑋 

Whereas, in a similar manner the intersection for N fuzzy sets A, B, C, … N is 
given by 

𝜇𝐴 ∩ 𝐵 ∩ 𝐶...∩ 𝑁 =  𝑚𝑖𝑛[𝜇𝛢(𝑥), 𝜇𝐵(𝑥), 𝜇𝐶(𝑥), . . . , 𝜇𝑁(𝑥)]                 ∀ 𝑥 ∈ 𝑋 

In addition to the standard operations of union, intersection, and complement, it 
is important to note that these are not the sole feasible extensions of classical set theory 
to fuzzy set theory. Table 4.3 provides additional definitions of fuzzy set operations as 
suggested by Zadeh. 

One such extension involves the formulation of a general class of intersection 
operators for fuzzy sets using triangular norms, also known as T-norms. These T-norms 
serve as a means to determine the degree of intersection between fuzzy sets. On the 
other hand, a general class of union operators is defined by S-norms, which are also 
referred to as T-conorms. S-norms facilitate the determination of the degree of union 
between fuzzy sets. 

By introducing these additional definitions of operations, Zadeh aimed to provide 
a broader range of tools and methods for manipulating and analyzing fuzzy sets within 
fuzzy set theory.  
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4.6. Knowledge Base  

Once the fuzzy sets have been manipulated using fuzzy operators, the resulting fuzzy 
outputs serve as the foundation for the knowledge base. By incorporating human 
reasoning into the model, fuzzy logic provides a powerful mechanism for handling 
complex and uncertain decision-making scenarios. The knowledge base serves as a vital 
component in the overall fuzzy inference system, bridging the gap between fuzzy inputs 
and fuzzy outputs, and enabling the system to make informed and contextually 
appropriate decisions. 

 Reasoning with fuzzy logic theory is approximate since it is based on fuzzy 
premises and implications, which lead to fuzzy conclusions. Approximate reasoning is 
applied by intelligent systems thanks to human thinking imitation. In this way, all fuzzy 
systems perform approximate reasoning processes through fuzzy inference. The most 
crucial component of approximate reasoning is the compositional rule of inference. 
Below some translation rules introduced by Zadeh are represented in Table 4.4 and 
provide the possibility of representing common linguistic statements in terms of 
propositions in human language (Zadeh, 1979).  

According to Greek philosopher Theophrastus or Tyrtamus, the combination of a 
premise A’ and an implication A ⇒ B, leads to a conclusion B’ (Bobzien, 2002). This 
syllogistic introduces the modus tollens argument, and in its generalized form, it is 
considered a fuzzy relation assuming that a fuzzy condition, if A then B, as implication A    
B, with the complement fuzzy sets A’ (antecedent) and infer a complement fuzzy set B’ 
(consequent) (Zadeh, 1973). In a similar manner, under some properties which are 
presented in Table 4.5 the argument of generalized modus ponens has been introduced, 
which supports that given as premises: 

I. if x is A then y is B and 

II. x is a complement of A,  

then, as a consequence, y is a complement of B (Fuller, 2000). 

 Below presented the definition of an implication function (Trillas & Valverde, 
1985).  

Definition 4.3 A continuous function 

𝐼 ∶   [0,1]  ×  [0,1]  →  [0,1] 

is an implication function if and only if every a, a’, b, b’, c  ∈ [0,1] satisfy the 
properties (Rutkowska, 2001): 

𝐼𝑓 𝑎 ≤  𝑎′  𝑡ℎ𝑒𝑛 𝐼(𝑎, 𝑏)  ≥  𝐼(𝑎′, 𝑏) 
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𝐼𝑓 𝑏 ≤  𝑏′  𝑡ℎ𝑒𝑛 𝐼(𝑎, 𝑏)  ≤  𝐼(𝑎, 𝑏′) 

Falsity     𝐼(0, 𝑎) = 1 

Neutrality    𝐼(1, 𝑎) = 𝑎 

Exchangeability    𝐼(𝑎, 𝐼(𝑏, 𝑐)) = 𝐼(𝑏, 𝐼(𝑎, 𝑐)) 

Fuzzy sets serve as a powerful tool for handling vagueness within various financial 
models. In particular, fuzzy sets could be effectively represented as linguistic variables, 
where the value of a linguistic variable typically corresponds to a fuzzy number or a 
linguistic term. 

To illustrate, consider the example of speed levels, where three membership 
functions are employed to define the spaces of discourse. Linguistic variables associated 
with this scenario consist of three distinct values, namely "slow," "medium," and "fast," 
which map to their respective speed levels. Figure 4.4, as presented by Fuller (2000), 
visually represents these linguistic variables and their corresponding membership 
functions. 

By incorporating linguistic variables and fuzzy sets into financial models, the 
ability to capture and analyze imprecise or uncertain information is significantly 
enhanced. This, in turn, contributes to more robust and flexible decision-making 
processes within the financial domain.   

 

Figure 4.4. Values of linguistic variable speed (Author, 2023). 

In the fuzzy inference process, firstly the crisp values are transformed into fuzzy 
values, and a fuzzy set is created. In continuance, rules based on knowledge are 



43 
 

constructed and aggregated. In the aggregation of rules, all the rules are combined by 
an aggregation operator (Agg) into one rule which is used to obtain C from A. 

𝑅 =  𝐴𝑔𝑔(𝑅1, 𝑅2, . . .  , 𝑅𝑛) 

For aggregation operations, three conditions should be verified. The first 
condition is commutativity, which means that all objects on which the aggregation 
operation would be applied could be unordered and could contain duplicate values. The 
second one is monotonicity, for each xi ≥ yi in fuzzy sets Y and X, respectively, 
membership values of x are greater than or equal to the membership values of y, R(xi) ≥ 
R(yi). The last condition is fixed identity, supposing that if a few rules don’t satisfy an 
output, these rules would not impact the output of other rules (Singh & Lone, 2020).  

The combination of the above three conditions is called Monotonic, Identity, 
Commutative, Aggregation (MICA), and its main operators, which depend on the rule’s 
sentence connective, are presented below (Fuller, 2000). 

If the sentence connective in a rule could be interpreted as AND, then:  

𝑅 =  ⋂𝑅𝑖

𝑛

𝑖=1

 

or 

𝑅(𝑢,𝑤)  =  ⋂𝑅𝑖

𝑛

𝑖=1

(𝑢, 𝑣, 𝑤)  =  𝑚𝑖𝑛(𝐴𝑖(𝑢) →  𝐶𝑖(𝑤)) 

or, by using a t-norm T, 

𝑅(𝑢,𝑤)  =  𝑇(𝑅1(𝑢, 𝑤), . . . , 𝑅𝑛(𝑢, 𝑤)) 

 In the other case, if the sentence connective is OR, then: 

𝑅 =  ⋃𝑅𝑖

𝑛

𝑖=1

 

or 

𝑅(𝑢,𝑤)  =⋃𝑅𝑖

𝑛

𝑖=1

(𝑢, 𝑣, 𝑤)  =  𝑚𝑎𝑥(𝐴𝑖(𝑢) →  𝐶𝑖(𝑤)) 

or, by using a t-conorm S, 
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𝑅(𝑢, 𝑤)  =  𝑆(𝑅1(𝑢, 𝑤), . . . , 𝑅𝑛(𝑢, 𝑤)) 

 Then C from A is computed by the compositional rule of inference as 

𝐶 =  𝐴 ° 𝑅 =  𝐴 ° 𝐴𝑔𝑔(𝑅1, . . . , 𝑅𝑛) 

4.7. Fuzzy Inference Mechanism 

Once the knowledge base, or rules base, has been established, it serves as the guiding 
framework for the fuzzy inference mechanism. The fuzzy inference mechanism is 
responsible for interpreting and applying the fuzzy rules to the current input values in 
order to generate appropriate output fuzzy sets. This mechanism follows a set of 
predefined inference methods, such as Mamdani or Takagi-Sugeno, which determine 
how the fuzzy rules are combined and how the output fuzzy sets are calculated. In the 
inference process, the mechanism evaluates the degree of membership of the input 
values in the fuzzy sets defined by the rules. It then applies fuzzy logic operations, such 
as implication and aggregation, to determine the overall degree of membership for each 
output fuzzy set. The fuzzy inference mechanism utilizes the knowledge base and 
leverages the fuzzy rules to make informed decisions and draw conclusions based on the 
given inputs. By incorporating human expertise and linguistic reasoning, the fuzzy 
inference mechanism enables the system to effectively handle uncertainty and 
imprecision, providing valuable insights and solutions in complex decision-making 
scenarios. 

 The most often used Fuzzy Inference mechanisms were derived from Mamdani, 
Takagi-Sugeno, Larsen, and Tsukamoto (Singh & Lone, 2020). Mamdani’s fuzzy inference 
operator is described below in more detail and other fuzzy inference operators are in 
Table 4.6.  

For simplicity, two fuzzy control rules are assuming, that is: 

R1: if x is A1 and y is B1 then z is C1 

R2: if x is A2 and y is B2 then z is C2 

Fact: x is x0 and y is y0 

Consequence: z in C 
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Mamdani 

The fuzzy implication is expressed by Mamdani's minimum operator and the 
sentence connective is defined by the max operator. The firing levels of the rules αi , i = 
1,2. 

  𝛼𝑖  =  𝐴𝑖(𝑥0)  ∧  𝛣𝜄(𝑦0)  

For individual rule output, 

𝐶′𝑖(𝑤)  =  (𝛼𝑖  ∧  𝐶𝑖(𝑤)) 

Then the global system output is calculated, 

𝐶(𝑤)  =  𝐶′1(𝑤) 𝑉 𝐶′2(𝑤)  

At last, one of the defuzzification methods described above would be applied in 
order to determine the output. Graphically Mamdani’s implication operator is 
portrayed in Figure 4.5. 

 

Figure 4.5. Mamdani’s implication operator (Fuller, 2000). 

4.8. Defuzzification 

After the fuzzy inference mechanism has generated the output fuzzy sets based on the 

input values and fuzzy rules, the next step in the fuzzy logic process is defuzzification. 

Defuzzification is the process of converting the fuzzy output sets into crisp values that 

could be easily understood and utilized. This step involves mapping the fuzzy sets to a 
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crisp output value or a set of crisp values that represent the final decision or action and 

its definition could be the following: 

Definition 4.4. Defuzzification is a selection process of a representative object from the 

fuzzy output C which is inferred by the fuzzy system algorithm (fuller, 2000). 

 Various defuzzification methods could be employed, such as centroid, maxima 

methods, and the most popular defuzzification operators are displayed in Figure 4.6 and 

their definitions in Table 4.7.  

 

Figure 4.6. Popular defuzzification operators (Author, 2023). 

 These methods take into account the shape and distribution of the fuzzy output 
sets to determine the most appropriate crisp value or values. Defuzzification plays a 
crucial role in making the fuzzy logic results interpretable and actionable. By converting 
the fuzzy outputs into crisp values, the information obtained from the fuzzy inference 
mechanism could be effectively utilized in practical applications and decision-making 
processes. 

 In conclusion, the fuzzy inference system (FIS) serves as a powerful tool for 
handling uncertainty and making decisions in complex and ambiguous domains. By 
utilizing fuzzy sets, fuzzy rules, and the fuzzy inference mechanism, FIS could effectively 
capture and represent the imprecise and uncertain nature of Real-world problems. The 
process of fuzzification allows for the conversion of crisp inputs into fuzzy sets, enabling 
the incorporation of linguistic variables and human reasoning into the system. The fuzzy 
rules, derived from expert knowledge or data-driven approaches, provide a framework 
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for making informed decisions based on the defined relationships between inputs and 
outputs. The fuzzy inference mechanism combines the fuzzy inputs and rules to generate 
fuzzy outputs, which are then defuzzified to obtain crisp results. This process facilitates 
the modeling of complex decision-making processes and enhances our ability to handle 
subjective and uncertain information. The flexibility and interpretability of FIS make it a 
valuable approach in finance. By leveraging the strengths of fuzzy logic, FIS offers a 
robust framework for addressing Real-world problems and improving decision-making 
processes in the face of uncertainty. 

4.9. Fuzzy Analytic Hierarchy Process (FAHP) 

Moving forward from the fuzzy inference system (FIS), another powerful methodology 
in the realm of decision-making is the Fuzzy Analytic Hierarchy Process (FAHP). While FIS 
focuses on capturing and processing imprecise information through fuzzy logic, FAHP 
aims to incorporate human expertise and preferences into the decision-making process.  
 In recent years, the field of multi-criteria decision-making (MCDM) has been 
expanded quite quickly. In MCDM, a decision-maker could rank options according to a 
finite number of criteria that are weighted by the decision-maker according to the 
significance of each criterion. Hence, MCDM is a cutting-edge field that might be used 
to solve complicated decision-making issues by offering a practical method for 
evaluating options. If the relevant decision-making problem's proper criteria are 
followed, the intended outcome could be obtained. 
 Thomas Saaty (1980) initially created the analytical hierarchy process (AHP), a 
commonly used MCDM approach. AHP employs hierarchical dependencies between 
criteria, starting weights for criterion and sub-criteria, and both (Ziemba, 2019). When 
the options in an issue are hard to be quantified and compare with each other, AHP is a 
potent organized strategy used to organize and evaluate complicated judgments. If the 
uncertainty in comparison judgment is not taken into account, AHP yields suitable 
conclusions. On the other hand, decision-makers preferences or judgments are 
inevitably riddled with contradictions and confusing language. The priority derivations 
technique, the comparison scale, and the decision maker's preference aggregation from 
pairwise comparison matrices in the setting of erroneous assessments for identifying a 
suitable solution for decision-making problems are further issues that the AHP method 
might create. 

As a result, AHP is not regarded as a practical strategy for making decisions under 
ambiguity. Thus, it is required to use the fuzzy analytic hierarchy process extension of 
AHP to achieve better results. Fuzzy sets could be used in pairwise comparisons to deal 
with uncertainty and ambiguity in situations, even though doing so might occasionally 
cause the eigenvector of the matrix of pairwise comparisons to become disoriented 
when perturbing the elements of the matrix (Saaty, 2008). In the fuzzy concept, the 
FAHP model enables decision-makers to more precisely describe their preferences, and 
its methodology is described in Table 4.8. 

Fuzzy utilities or weighted sums are two ways that fuzzy or uncertain preferences 
might be expressed in MCDM. Fuzzy numbers include these fuzzy utilities and fuzzy 



48 
 

weighted sums. When there exist confidence and uncertainty preferences, a fuzzy 
preference is used to create the degree of preference between two options. It is an 
important sort of fuzzy binary relation. 

Let A represent a set of alternatives A1, A2, …, An and n > 1. A fuzzy preference 
for the set of alternatives A is a fuzzy relation on A which is denoted by 𝑅 =

 (𝑟𝑖𝑗)𝑛×𝑛which has a membership function denoted by 𝑢𝑅 ∶  𝐴 ×  𝐴 [0,1]. Here, 

𝑢𝑅 (𝐴𝑖 , 𝐴𝑗)  =  𝑟𝑖𝑗 represents the degree of preference for alternative Ai over Aj (Aliyev 

& Temizkan, 2020). 
To conclude, in FAHP, the pairwise comparisons are conducted in a fuzzy 

environment, where linguistic terms and fuzzy sets are used to represent subjective 
opinions and uncertainties. The use of FAHP enables the integration of both quantitative 
and qualitative factors in decision-making, providing a comprehensive and flexible 
approach to handle complex and uncertain decision problems. By combining the 
strengths of fuzzy logic and the AHP, FAHP offers a valuable framework for decision-
makers to assess and prioritize alternatives, taking into account both objective and 
subjective criteria. 

4.10. Technique for Order Preference by Similarity to Ideal Solution  

After applying the Fuzzy Analytic Hierarchy Process (FAHP) to determine the relative 
weights of criteria in a decision-making process, the next step involves utilizing the 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. 
While FAHP provides a structured approach to capturing the preferences and priorities 
of decision-makers, TOPSIS offers a systematic way to rank and select the best 
alternative among a set of options. 

 The proposed Neuro-Fuzzy model, discussed in the subsequent chapter, 
incorporates the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 
as an additional Multi-Criteria Decision Making (MCDM) method. TOPSIS is utilized 
within the Neuro-Fuzzy framework to aid in the decision-making process. 

One of the various criteria decision-making techniques, TOPSIS was first 
developed by Yoon and Hwang in 1981. According to the rule that the chosen 
alternatives must be the closest to the positive ideal solution and the farthest from the 
negative ideal solution from a geometrical point, TOPSIS uses the Euclidean distance to 
estimate how close an option is to the ideal solution (Łatuszyńska, 2014). The sum of all 
potential values for each attribute makes up the positive-ideal solution, whereas the 
sum of all possible values for each attribute makes up the negative-ideal solution. By 
considering the relative proximity to the positive ideal solution and the negative ideal 
solution, TOPSIS takes both of these distances into consideration (Zanakis, et al., 1998). 
Multiple priority orders could be obtained relying on the comparison of the relative 
distance (Rahim et al., 2017).  

This technique is commonly used to conclude the decision-making process. This 
is because the idea is straightforward, understandable, and capable of performing 
efficient calculations and measuring the relative effectiveness of different decisions 
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(Ding & Schmidt, 2005; Kabir & Hasin, 2012). The methodology for TOPSIS calculation is 
described in Table 4.9. (Opricovic & Tzeng, 2004). 

In conclusion, the chapter on Fuzzy Logic and Multi-Criteria Decision Making 
(MCDM) has shed light on the foundations and principles of fuzzy logic, emphasizing its 
significance in handling imprecise and uncertain information within decision-making 
processes. Fuzzy logic, with its ability to capture vagueness and incorporate human 
reasoning through fuzzy rules, offers a flexible and powerful approach to modeling 
complex systems. 

Furthermore, the chapter explored the integration of MCDM methodologies, 
such as the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 
within the context of fuzzy logic. These methodologies provide a structured framework 
for evaluating and ranking alternatives based on multiple criteria, enhancing the 
decision-making process in complex scenarios. 

Building upon the insights gained from the fuzzy logic and MCDM foundations, 
the next chapter would delve into the Neuro-Fuzzy model proposed in this thesis. The 
Neuro-Fuzzy model represents an innovative approach that combines the adaptive and 
learning capabilities of neural networks with the interpretability and linguistic modeling 
of fuzzy logic. Through the integration of these two methodologies, the Neuro-Fuzzy 
model aims to enhance decision-making and improve the understanding of complex 
systems. 

The subsequent chapter would delve into the development, architecture, and 
application of the Neuro-Fuzzy model, providing a detailed analysis of its 
implementation and its potential to address Real-world challenges. By leveraging the 
synergies between fuzzy logic, MCDM, and neural networks, the Neuro-Fuzzy model 
seeks to contribute to the advancement of intelligent decision support systems and pave 
the way for more effective and informed decision-making processes in various domains. 
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Chapter 5:          

 Proposed Neuro-Fuzzy Approach for Classifier Selection 

 

 

5.1. Introduction 

Considering the computational speed, accuracy, and complexity of nowadays 
models, a great number of researchers develop soft computing techniques for predictive 
or control applications models. Artificial Neural Networks (ANN) and fuzzy logic systems 
commonly use soft computation techniques, due to the combination of their advantages 
(Shihabudheen & Pillai, 2018). On the one side, fuzzy logic could increase the 
interpretability, reasoning, and inference in a machine learning model, since expert 
knowledge and linguistic terms are embedded. On the other side, neural networks 
provide the learning capability via the training process. Hence, the combination of them 
introduces a Neuro-Fuzzy system, which is a powerful methodology for machine 
learning problems (Mitra & Hayashi, 2000). Nowadays, the most upcoming hybrid type 
of Neuro-Fuzzy model in literature is the Deep Neuro-Fuzzy System (DNFS) as it was 
illustrated in Talpur et al. (2022) since it combines the tremendous learning force of 
Deep Learning with fuzzy reasoning. 

In continuance of chapter 4 in which Fuzzy Inference Systems (FIS) are analyzed, 
it was notable that the FIS outputs depended on the membership function with its 
parameters, rules, and defuzzification method which would be applied (Nauck & Kruse 
1993). The membership functions chosen have a substantial impact on an application's 
success. There is, however, no automated way to develop membership features. They 
are mostly accomplished through trial and error or by human expertise. It is well known 
that rule acquisition has been seen as a bottleneck for the adoption of rule-based 
systems and continues to be so today. In the majority of currently used applications, 
fuzzy rules are frequently created by a subject-matter expert for systems with limited 
inputs. Because the number of feasible rules for the system exponentially rises with an 
increase in inputs, outputs, and linguistic factors, experts find it difficult to specify a full 
set of rules and related membership functions for acceptable system performance. 

Plentiful researchers have tried to address this issue, using various 
methodologies, such as the evolutionary approach. Evolutionary learning algorithms are 
a quite promising solution in terms of parameter optimization, in case there is no a priori 
information about the membership function and the rule base is available. However, the 
main disadvantage of evolutionary algorithms in an evolutionary fuzzy system is the 
time-consuming process and its performance is essentially dependent on the population 
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size and the number of generations necessary for a solution to be robust for certain 
issues. (Siddique, 2013).  

In the literature, there are various available Neuro-Fuzzy models applied to 
different industries. For example, Bendre et al. (2020) used fuzzy logic rules with the 
neural-based action recognition model to rate the intensity of human action as intense 
or mild.  In Ozkan (2020), a concurrent neuro-fuzzy system (CNFS) was coupled with 
Fuzzy logic to evaluate whether a basketball team was the favorite, with an upper aim 
to predict basketball game results. Furthermore, Fuzzy Inductive Reasoning (FIR) and the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) were applied for modeling burned areas 
of forests in Portugal by Nebot and Mugica (2021). 

This chapter offers a concise exploration of the relationship between Neural 
Networks and fuzziness through fuzzy neurons. It introduces popular types of Neuro-
Fuzzy models and provides a detailed description of a proposed Neuro-Fuzzy model. By 
combining the strengths of fuzzy logic and neural networks, these models present 
promising opportunities for addressing complex problems and making accurate 
predictions. This chapter sets the stage for further advancements in the field of hybrid 
intelligent systems. 

5.2. Fuzzy Neurons 

Neurons in Neural Networks were addressed in Chapter 3, comprised of processing units 
that handle numeric inputs and outputs. There are several instances in real-world 
applications where such numerical measures are either not accessible or are imprecise 
and noisy. As a result, some scientists concluded that neurons ought to be able to handle 
these real-world occurrences and tried to include them in a fuzzy neuron. A fuzzy neuron 
has a similar fundamental structure to an artificial neuron, with the exception that 
inputs, processing, and outputs are determined using fuzzy logic. As a result, several 
fuzzy neurons have been created and may be read about in the literature. 

           In a simple Fuzzy-Neuro, there are two inputs, and its output is calculated as a 
weighted sum of them, 

𝑦 =  𝑓(𝑤1𝑥1  +  𝑤2𝑥2) 

where y, x, and w are the output, inputs, and weights, respectively, whereas the 
function f could be of any activation function type as Linear, Sigmoid, or other. Notably, 
regular neural networks apply mathematical operations as addition, subtraction, or 
activation functions like Sigmoid or ReLu. However, hybrid neural networks are defined 
by fuzzy operators as T-Norm or S-Norm are applied. Specifically, a fuzzy neuron with T-
Norm fuzzy operator which represents an AND Fuzzy-Neuron is defined by (Singh & 
Lone, 2020), 

𝑦 =  𝑇(𝑆(𝑤1𝑥1)  +  𝑆(𝑤2𝑥2) + . . . + 𝑆(𝑤𝑛𝑥𝑛)) 

whereas, T-Co-Norm operation which implies OR Fuzzy-Neuron is defined as, 

𝑦 =  𝑆(𝑇(𝑤1𝑥1)  +  𝑇(𝑤2𝑥2) + . . . + 𝑇(𝑤𝑛𝑥𝑛)) 
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Implication-OR Neuron.  

In this type of neuron an implication operator between the input x and the 
weight w and the Triangular Co-norm operator on the output are applied. That is, 

𝑦 =  𝑆(𝑤1 ← 𝑥1)  +  (𝑤2 ← 𝑥2) + . . . + (𝑤𝑛 ← 𝑥𝑛)) 

Kwan and Cai’s Fuzzy Neurons.  

It has a complex structure because all products of each input value and weight 
are aggregated to a single input. That means the equation, 

𝑠 =  𝑓(𝑧 −  𝜃) 

where f is a selected activation function, θ is an activation threshold and z in 
K&C Max neurons is represented by, 

𝑧 =  𝑚𝑎𝑥(𝑤1𝑥1 + . . . +𝑤𝑛𝑥𝑛) 

 or z in K&C Min neurons represented by, 

𝑧 =  𝑚𝑖𝑛(𝑤1𝑥1 + . . . +𝑤𝑛𝑥𝑛) 

 Figure 5.1 displayed a graphical representation of the K&C neuron. 

 

Figure 5.1. K&C Neuron (Singh & Lone, 2020). 

 

5.3. Combinations of Neural Networks and Fuzzy Logic 

Cooperative, concurrent, and hybrid Neuro-Fuzzy models are three different types of 
neural network and fuzzy system combinations that might be used to tune or train a 
fuzzy system.  

In cooperative neuro-fuzzy systems, fuzzy systems and neural networks operate 
independently, since they use a neural network to determine specific fuzzy system 
parameters while the fuzzy system is operating. A cooperative model could be thought 
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of as a preprocessor in which the artificial learning mechanism extracts the membership 
functions or fuzzy rules from the training data for the Fuzzy Inference System (FIS). 
When the FIS has been determined, ANN has no function. Algorithms for fuzzy clustering 
often establish the rules. The fuzzy membership functions from the training data are 
approximated using ANN. Figure 5.2 visualized the cooperative concept (Rana & Prasad, 
2010). 

 

Figure 5.2. Cooperative Neuro-Fuzzy model (Rana & Prasad, 2010). 

In case of unmeasured input variables are introduced, a Concurrent Neuro-Fuzzy 
system would be applied. In the concurrent model, the neural network and the fuzzy 
systems continually collaborate to identify the necessary parameters, particularly when 
the controller's input variables could not be monitored directly. This combination merely 
helps to increase the system's overall performance rather than optimizing the fuzzy 
system. The fuzzy system is unaffected throughout the period when the neural network 
is learning. In Figure 5.3 a graphical representation of a concurrent Neuro-Fuzzy model 
is depicted. 

 

Figure 5.3. Concurrent Neuro-Fuzzy model (Rana & Prasad, 2010). 

According to Nauck (1997), a hybrid Neuro-fuzzy system is a fuzzy system that 
processes input and output patterns to learn its parameters (fuzzy sets and fuzzy rules) 
using a gradient-based learning algorithm or a system that's motivated by the theory of 
neural networks. These systems have a common knowledge representation and data 
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structure. Due to the fact that hybrid Neuro-fuzzy systems might be developed in various 
methods and consist of a relatively new study topic, each researcher has established his 
unique models. Although there are fundamental distinctions between these models, 
they are fundamentally similar. With successful applications in a variety of fields such as 
process control, engineering design, financial trading, credit evaluation, medical 
diagnosis, and cognitive simulation, the usage of intelligent hybrid systems is expanding 
quickly. The development of a fuzzy neuron, inspired by biological neurons, is the first 
step in the computational process for fuzzy neural systems. Next, models of synaptic 
connections were constructed that incorporate fuzziness into neural networks, and 
eventually, the method of adjusting the synaptic weights led to the creation of learning 
algorithms. Well-known hybrid NF models are FALCON (Lin & Lee,1991), ANFIS (Jang, 
1992), GARIC (Bherenji & Khedkar, 1992), NEFCON (Nauck & Kruse, 1997), FUN 
(Sulzberger et al., 1993), SONFIN (Juang & Lin, 1998), FINEST (Tano et al., 1996), EFuNN, 
etc.  

With a target for the function of hybrid NF models to be more comprehensive, 
Adaptive Neuro-Fuzzy Inference System (ANFIS) would be analyzed since it is the most 
commonly represented and used Neuro-Fuzzy model. An artificial neural network that 
is based on the Takagi-Sugeno fuzzy inference system is known as an adaptive neuro-
fuzzy inference system (ANFIS). It appears the ability to combine the advantages of 
neural networks and fuzzy logic in a single framework since it incorporates both of these 
concepts. Its inference mechanism resembles a collection of IF-THEN fuzzy rules with 
the capacity to learn and approximate nonlinear functions. As a result, ANFIS is regarded 
as a global estimator. The ANFIS architecture of the Takagi-Sugeno Fuzzy model, 
Tsukamoto Fuzzy model, and Mamdani Fuzzy model are described in Appendix C. 

5.4. Neuro-Fuzzy proposed model 

Within this thesis, an innovative Neuro-Fuzzy model is introduced with the objective of 
effectively selecting the optimal neural network for credit risk assessment. The 
proposed optimization method, devised to integrate expert knowledge with neural 
network predictions in the context of credit risk assessment, comprises two concurrent 
stages, followed by a third step that combines and consolidates the outcomes. The 
fundamental inputs of this algorithm encompass the credit datasets (refer to Section 
6.2), the tuning techniques (see Section 6.4), and expert knowledge. The resulting 
output of the algorithm is the identification of the most recommended model based on 
the insights and perspectives provided by domain experts. The visual representation in 
Figure 5.4 elucidates the parallel phases, the aggregation phase, and the intermediary 
stages encompassing this comprehensive process. 

The initial phase of this process involves the creation of three artificial neural 
networks with varying topologies, specifically employing 1, 2, and 3 layers. To 
commence, the datasets undergo a comprehensive cleaning and preparation procedure, 
which includes eliminating duplicate rows and columns, handling missing values and 
outliers, ensuring a balanced quantity for the target variable, and encoding categorical 
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variables. In the subsequent stage, four tuning techniques are applied to each of these 
three models, and the model that demonstrates superior performance across multiple 
evaluation metrics is identified as the optimal choice. The outcome of this phase is a 
tabulated representation of the performance metrics for the three neural network 
models, serving as input for the subsequent phase. 

In the second phase, the human aspect is incorporated through the integration 
of expert knowledge. The Fuzzy Analytic Hierarchy Process (FAHP) is employed to 
capture the preferences of four distinct experts, each assigning varying levels of 
significance to the evaluation metrics for model selection. The result of this phase 
involves the generation of normalized non-fuzzy scores for each metric, which would 
subsequently be utilized as inputs in the subsequent phase. 

In the final phase, the performance metrics of the three neural networks and the 
weights derived from the FAHP process are combined as inputs in a selection model 
employing the Technique for Order of Preference by Similarity to the Ideal Solution 
(TOPSIS) approach. The ultimate outcome of this comprehensive process is the 
identification of the most robust model for credit risk assessment based on expert 
viewpoints and preferences. 
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Figure 5.4. Flowchart of the recommended model (Author, 2023). 

 In conclusion, this chapter initially presented the fundamental Neuro-Fuzzy 

concepts and then introduced a comprehensive methodology for selecting the optimal 
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neural network model for credit risk assessment. The multi-phase approach involved the 

creation of three neural network models with different topologies, followed by the 

application of tuning techniques to evaluate their performance across various metrics. 

The integration of expert knowledge through the Fuzzy Analytic Hierarchy Process 

(FAHP) further enhanced the decision-making process by considering diverse 

perspectives and ranking preferences. The Technique for Order of Preference by 

Similarity to the Ideal Solution (TOPSIS) was then employed to synthesize the 

performance metrics and expert weights, resulting in the identification of the most 

robust model for credit risk assessment. The methodology presented in this chapter 

provides a systematic and comprehensive framework for model selection, incorporating 

both technical evaluations and expert insights. The next chapter would present the 

computational experiments conducted to validate the effectiveness of the proposed 

methodology and discuss the results obtained. 
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Chapter 6:     

 Computational Experiments and Results 

 

 

This chapter focuses on the implementation of the proposed Neuro-Fuzzy model across 
three different datasets. It provides a detailed description of each stage involved in the 
implementation process. Subsequently, the results obtained from the conducted 
experiments are presented. The chapter then proceeds to discuss and analyze these 
results in order to gain insights into the performance and effectiveness of the Neuro-
Fuzzy model. By examining the outcomes and engaging in a comprehensive discussion, 
the chapter aims to evaluate the model's capabilities and its applicability to the given 
datasets.  

6.1. Experimental setup 

The proposed model -in Chapter 5- was developed in the Python programming language 
(3.9.12) and executed on a HP personal computer with an Intel(R) CoreTM i5-7200U 
CPU, clocked at 2.5 GHz, a microprocessor with 8 GB of RAM memory under the 
operating system Microsoft Windows 10 professional. 

6.2. Datasets 

It is worth mentioning that this thesis aims to describe a framework developed using 
machine learning and fuzzy logic approaches, emphasizing its methodological 
components. Despite the possibility of selecting from a variety of datasets in the 
literature, it is notable that for the scope of this study, three datasets derived from 
different fields are used, such as academic (Australian credit approval), competitional 
(Credit risk dataset of Kaggle), and Real-world (Real-world).  

   The evaluation of the proposed algorithms involved the utilization of three 
distinct datasets: the Australian (AUS) credit approval dataset obtained from the UCI 
Machine Learning Repository, the Credit risk dataset acquired from the Kaggle website, 
and a Real-world dataset sourced from an anonymous financial institute, as provided by 
the supervisor professor. These datasets were employed to assess the performance of 
the proposed algorithms in the context of credit risk analysis. The features of the three 
datasets are presented in Table 6.1, Table 6.2, and Table 6.3, respectively. 

  The first dataset contains instances for 690 past credit applicants on six 
numerical and eight categorical features. The desirable class (i.e., the value of the 
dependent variable is equal to 0) comprises 383 instances, whereas 307 are associated 
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with the undesirable (i.e., the value of the dependent variable is equal to 1). The second 
dataset consists of 32.581 instances, seven numerical and four categorical features. 
Well-payers are 25.327 instances (i.e., the value of the dependent variable is equal to 
0), whereas 7.089 are associated with defaulters (i.e., the value of the dependent 
variable is equal to 1). The third dataset contains 50.000 instances with 55 numerical 
features. The target variable is equally divided into 25.000 per category.   

6.3. Data Preprocessing 

Regarding the first stage of the proposed model, initially the datasets underwent 
extensive cleaning and correction, considering their unique characteristics and 
requirements. To ensure data integrity, duplicate rows, and columns, constant and 
quasi-constant variables, were eliminated from the datasets. A random selection 
approach was employed for imputation to address missing values, ensuring that every 
variable within the dataset would preserve its previous distribution. 1st-dimensional 
outliers were detected by Tukey’s fence technique (Tukey, 1977) and handled by 
winsorize method using as the upper value the 99th quantile of variable’s values (Horn 
& Kafadar, 2006). To identify multi-dimensional outliers, a one-class SVM (Support 
Vector Machine) was utilized. Subsequently, 10% of these outliers were removed from 
the datasets (Manevitz & Yousef, 2001).  

 A label encoder was applied, assigning ascending numerical values to each 
category (e.g., 1, 2, etc.) to handle categorical variables. This encoding scheme 
facilitated the representation of categorical variables in a numerical format within the 
dataset. In classification problems, it is essential to ensure that the classes of the target 
variable are balanced. This balance is crucial for generating robust assessments and 
reliable model performance evaluations. In this manner, if there were a different count 
of instances per class, Synthetic Minority Over-sampling Technique (SMOTE) would be 
used (Chawla et al., 2002).  

 In the final stage, each dataset was partitioned into training, validation, and 
testing sets, utilizing proportions of 64%, 16%, and 20% of instances, respectively. This 
division of the data enabled the implementation of effective training, validation, and 
evaluation procedures for the proposed models. Training data would be used to train 
the model, validation data would enhance the training process, whereas testing data 
would assess the final model with respect to its consistency.   

6.4. Neural Networks parameter selection 

In continuance of the first stage, Artificial Neural Networks (ANN) for clients' credit risk 
evaluation, as described in Chapter 3, were used. This study examined three distinct 
topologies of Artificial Neural Networks (ANNs) characterized by different layer 
configurations. These topologies were evaluated using a consistent methodological 
approach.  
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  To be more specific, ANN was constructed using Keras.TensorFlow python library 
and the best hyperparameter of each model were retrieved from four different tuning 
techniques using the Optuna library. As the loss function was concerned, binary cross 
entropy with evaluation metric AUC was selected, and the number of units, alpha of 
LeakyReLU, dropout, learning rate, batch size, kernel regularizer, and bias regularizer 
were tuned. A pipeline consisted of an ANN model and normalization scaler via the z-
score method, in which values of dataset columns were standardized using mean 0 and 
standard deviation 1.  

 The aforementioned hyperparameters, including the validation data and early 
stopping mechanism, were incorporated into the pipeline to mitigate the risk of model 
overfitting. The training set was divided into three equal portions to produce an average 
result using a stratified k-fold cross-validation with k = 3, one subset used as a validation 
set and the other two as training sets. When the training data is divided into folds, cross-
validation is referred to as stratified since this ensures that each fold contains an equal 
amount of the two types of class labels (i.e., well-payers/defaulters). Furthermore, a 
pruner for every trial is used because it allows Optuna to quickly identify and eliminate 
configurations that are unlikely to improve performance, allowing it to allocate more 
computational resources to more promising configurations. 

 Tuning techniques of Bayesian optimization (Tree-structured Parzen Estimator), 
Random Sampling, Genetic Algorithm, and Quasi-Monte Carlo (see section 3.7) were 
applied independently for 100 trials. These trials aimed to optimize the model's 
performance based on the pre-defined objective function and initial model. In addition, 
this process is aided by the Median Pruner, which serves as an "early stopping" 
algorithm. The Median Pruner terminates unfavorable trials based on the comparison 
of their intermediate outcomes with the median value. This approach efficiently 
identifies and terminates trials that were unlikely to yield satisfactory results, 
contributing to the overall efficiency of the tuning process. During the trials, if the best 
intermediate outcome of a particular trial is lower than the median of the intermediate 
results obtained from previous trials at the same phase, the trial was pruned. As a result, 
after 100 trials the best hyperparameters were produced and used for the best ANN 
model. The outcome of this phase retrieved evaluation metrics of Accuracy, AUC, 
Precision, Recall, f1-score, and H-measure for every tuning method. 

6.5. Fuzzy - AHP 

According to the second stage of the proposed model, the Fuzzy-AHP method applied 
to model decision makers’ pair-wise comparison judgments depends on the importance 
of evaluation metrics. For the scope of this study, four random decision makers support 
that four different metrics each time were the most important in the model selection 
decision. The decision-makers inserted their preferences with respect to evaluation 
metrics comparison in a quadratic matrix with a scale of 1 to 9. 

 Furthermore, the triangular membership function used with intervals and 
linguistic variables is represented in Table 6.4. The primary objective of this process was 
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to compute non-fuzzy normalized values for the metrics based on experts' opinions. 
These normalized values would then be utilized as weights in the TOPSIS algorithm. By 
incorporating experts' judgments, the process aimed to assign appropriate weights to 
the metrics, enabling an effective assessment and ranking of alternatives using the 
TOPSIS technique. 

 The Fuzzy Analytic Hierarchy Process (AHP) algorithm described in section 4.9 
was implemented using Python programming language to generate non-fuzzy 
normalized values. This implementation allowed for the practical application of the 
algorithm, enabling consistent and interpretable decision-making based on reliable 
results. Tables 6.5 to 6.8 present the pair-wise comparison matrices related to four 
decision makers. Consistency Indices (CI) and Ratios (CR) were calculated to assess the 
validation models and verify that the consistency ratios remained below 10%. The 
objective of this analysis was to ensure that the pair-wise comparison matrices were 
considered consistent. By examining the CR values, it was possible to evaluate the level 
of consistency and determine if the matrices met the desired criterion for reliability and 
coherence in the decision-making process. 

6.6. TOPSIS  

The outputs of the evaluation metrics from the three Artificial Neural Network (ANN) 
models were obtained in the initial phase. Additionally, non-fuzzy normalized weight 
values derived from the sequent one using Fuzzy AHP were retrieved. These outputs and 
weight values are utilized as inputs to the TOPSIS (Technique for Order Preference by 
Similarity to Ideal Solution) algorithm.  

 The TOPSIS algorithm, incorporating both the evaluation metrics and weight 
values, facilitated the selection of the most suitable model based on the expert's 
knowledge and preferences. By combining the results from both phases, the decision-
making process was enhanced, allowing for an informed model selection based on the 
expertise of the domain experts.  

 To streamline the analysis, it was essential to identify the dominant metrics 
obtained from the tuning methods applied to the ANN model. These dominant metrics 
were selected for each dataset individually and subsequently merged into the respective 
datasets. By incorporating the most influential metrics, the datasets were tailored to 
include the crucial performance indicators, facilitating further analysis and decision-
making processes. Following the methodology of Table 4.9 would be proposed as an 
ANN model depending on the decision-makers’ aspect.   

6.7. Results 

Following the implementation of the aforementioned sections, section 6.4 provides a 
comprehensive analysis of various neural network topologies in conjunction with the 
evaluation metric outcomes obtained from four distinct tuning methods. Within this 
section, tabular representations are employed to illustrate the performance of each 
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approach, with the tuning methods (T-str Parzen Est., Random Sampler, Genetic 
Algorithm, Quasi-Monte Carlo) delineated as columns and the evaluation metrics 
(Accuracy, Precision, Recall, F1-score, AUC, H-measure) delineated as rows. These tables 
serve as a valuable resource for evaluating the effectiveness of each neural network 
topology in relation to the employed tuning methodologies and the associated 
evaluation criteria 

 Results from the Australian credit approval dataset are shown in Tables 6.9 to 
6.11, revealing the superior performance of Quasi-Monte Carlo, Tree-structured Parzen 
Estimator, and Genetic Algorithm for 1 Hidden Layer Neural Network (HL NN), 2 HL NN, 
and 3 HL NN, respectively. Similarly, Tables 6.15 to 6.17 display results from the Credit 
risk dataset of Kaggle, indicating the dominance of Genetic Algorithm, Quasi-Monte 
Carlo, and Tree-structured Parzen Estimator for 1 HL NN, 2 HL NN, and 3 HL NN, 
respectively. Furthermore, Tables 6.21 to 6.23 describe the outcomes of the Real-world 
dataset, highlighting the higher metric values achieved by the Tree-structured Parzen 
Estimator in each NN model. 

  To construct tables containing the best hyperparameters for each neural 
network topology, the optimal hyperparameter settings were identified for every NN 
model in the three datasets. These tables present the tuned hyperparameters (Units, 
Alpha of LeakyRelu, Dropout, Learning Rate, Batch Size, Kernel Regularizers, Bias 
Regularizers, and Time) as indices and the aforementioned tuning methods as columns. 
Specifically, Tables 6.12 to 6.14, 6.18 to 6.20, and 6.24 to 6.26 showcase the 
hyperparameters of NN models in the Australian credit approval, the Credit risk of 
Kaggle, and Real-world datasets, respectively. Importantly, the tuning process 
successfully prevented model overfitting by imposing value intervals for each 
hyperparameter, as evidenced by the absence of suspicious hyperparameter values in 
the tables  

 During the second phase of the investigation, input and opinions were solicited 
from four decision-makers. Each decision-maker independently advocated for AUC, 
Accuracy, F1 score, or H-measure as the most appropriate evaluation metric for model 
selection. Consequently, the combined approach outlined in Section 6.5, which 
incorporates Section 4.9 (Fuzzy AHP), resulted in the generation of four FAHP models. 
The outputs of these models are presented in Tables 6.27 to 6.30 and visually 
represented in Figure 6.1. Figure 6.1 illustrates the fuzzy scores assigned to each metric, 
while Tables 6.27 to 6.30 display the FAHP process outputs (Lower, Medium, Upper, 
Expected Value, Standard Deviation) in columns and the evaluation metrics (AUC, 
Accuracy, F1 score, H-measure) in rows. It is noteworthy that the Consistency Ratios (CR) 
for the four pairwise matrices were calculated to be 0.0853, 0.0975, 0.097, and 0.0997, 
respectively. These CR values indicate a high degree of consistency among the pairwise 
matrices utilized in the decision-making process. The low CR values imply that the 
judgments and comparisons made by the decision-makers were consistent and reliable. 
This validation serves to bolster the credibility and robustness of the decision-making 
process grounded in the pairwise matrices.  
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           (a)             (b)  

 

           (c)           (d) 

Figure 6.1. Fuzzy AHP results of 4 (a-d) decision-makers. 

 In the final phase of the study, the TOPSIS method, as detailed in sections 4.10 
and 6.6, was employed to derive results based on datasets and expert opinions. 
Furthermore, a sensitivity analysis of metric weights was performed. To provide more 
granular information, Tables 6.31 to 6.34 present the TOPSIS results specifically for the 
Australian credit approval dataset, utilizing the weights obtained from the FAHP models 
in conjunction with the evaluation metrics from the NN models. Additionally, Figures 6.2 
visually represent the TOPSIS results. The findings indicate that the 3 Hidden Layer NN 
model consistently emerged as the most favorable choice across all scenarios, while the 
2 Hidden Layer NN model should be disregarded. 
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            (a)                                                                        (b) 

 

           (c)                  (d)  

Figure 6.2. TOPSIS results of 4 (a-d) decision-makers in the Australian credit approval 

dataset. 

 Concerning the experts' perspective, Figures 6.3 to 6.6 provide a sensitivity 
analysis of the evaluation metrics. These figures effectively illustrate that the 3 Hidden 
Layer NN model consistently outperforms the other models across various weight values 
within a specific interval. The 1 Hidden Layer NN model follows suit, albeit with 
significantly lower scores in comparison to the top-performing model. Conversely, there 
is no justification to select the 2 Hidden Layer NN model, as its scores converge towards 
zero, indicating its inferior performance. 

  

   (a)                (b) 
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   (c)              (d) 

Figure 6.3. First expert’s opinion sensitivity analysis of metric (a-d) in Australian credit 

approval dataset. 

 

   (a)                (b) 

  

   (c)              (d) 

Figure 6.4. Second expert’s opinion sensitivity analysis of metric (a-d) in Australian 
credit approval dataset. 
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   (a)                (b) 

 

   (c)              (d) 

Figure 6.5. Third expert’s opinion sensitivity analysis of metric (a-d) in Australian credit 
approval dataset. 

  

 

   (a)                (b) 
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   (c)              (d) 

Figure 6.6. Fourth expert’s opinion sensitivity analysis of metric (a-d) in Australian 
credit approval dataset. 

 Similarly, Tables 6.35 to 6.38 showcase the TOPSIS results of the Credit risk 
dataset of Kaggle for each scenario, while Figure 6.7 visually presents the TOPSIS results. 
The figures indicate that the 3 Hidden Layer NN model is the optimal choice, although 
the margin between the 3 Hidden Layer NN model and the 2 Hidden Layer NN model is 
relatively small. 

 

            (a)             (b) 
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   (c)              (d) 

Figure 6.7. TOPSIS results of four (a-d) decision-makers in the Credit risk dataset of 
Kaggle. 

 In addition, Figures 6.8 to 6.11 display the results of the sensitivity analysis of 
evaluation metrics for the Credit risk dataset of Kaggle. It is worth highlighting that the 
3 Hidden Layer NN model consistently emerges as the dominant choice across the entire 
range of weight values within the analysis interval. The 2 Hidden Layer NN model closely 
follows as the second option, with its scores being close to those of the dominant model. 
In contrast, the 1 Hidden Layer NN model performs as a subordinate option, with its 
scores approaching zero. 

 

   (a)                (b) 
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   (c)              (d) 

Figure 6.8. First expert’s opinion sensitivity analysis of metric (a-d) in the Credit risk 
dataset of Kaggle. 

 

   (a)                (b) 

 

   (c)              (d) 

Figure 6.9. Second expert’s opinion sensitivity analysis of metric (a-d) in Credit risk 
dataset of Kaggle. 
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   (a)                (b) 

 

   (c)              (d) 

Figure 6.10. Third expert’s opinion sensitivity analysis of metric (a-d) in Credit risk 
dataset of Kaggle. 

 

   (a)                (b) 
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   (c)              (d) 

Figure 6.11. Fourth expert’s opinion sensitivity analysis of metric (a-d) in Credit risk 
dataset of Kaggle. 

 In a similar manner, Tables 6.39 to 6.42 present the TOPSIS results of the Real-
world dataset for each scenario, while Figure 6.12 provides a visual representation of 
the TOPSIS results. These results indicate that in all scenarios, the 2 Hidden Layer NN 
model and the 3 Hidden Layer NN model yield similar scores. Specifically, the 2 Hidden 
Layer NN model performs best in cases (a), (b), and (d). However, in case (c), the 3 
Hidden Layer NN model exhibits a slightly higher score compared to the 2 Hidden Layer 
NN model.  

 

           (a)             (b) 
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          (c)           (d)  

Figure 6.12. TOPSIS results of four (a-d) decision makers in Real-world dataset. 

 Furthermore, Figures 6.13 to 6.16 provide visual representations of the 
sensitivity analysis conducted on the evaluation metrics for the Real-world dataset. 
These figures showcase the variations in the optimal model selection based on different 
evaluation criteria. The results of the sensitivity analysis highlight the importance of 
considering multiple evaluation metrics and their respective weights in order to identify 
the most suitable model for each specific case. These findings emphasize the need for a 
comprehensive and multidimensional approach when making informed decisions 
regarding model selection in the context of the Real-world dataset.  

 Specifically, for the first and second experts, it is important to highlight that the 
2 Hidden Layer NN model consistently emerges as the dominant choice for all weight 
values within the analysis interval, except for scenario (c) where the F1 score dominates. 
In scenario (c), the 3 Hidden Layer NN model becomes the dominant choice for weight 
values of F1 score higher than 0.5054 and 0.4809 according to the first and second 
experts, respectively. In other scenarios, the 3 Hidden Layer NN model becomes the 
second option, with its scores being in close proximity to those of the dominant model. 
Conversely, the 1 Hidden Layer NN model performs as the most subordinate option, 
with its scores approaching zero. 

 

   (a)                (b) 
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   (c)              (d) 

Figure 6.13. First expert’s opinion sensitivity analysis of metric (a-d) in Real-world 
dataset. 

 

   (a)                (b) 

 

   (c)              (d) 

Figure 6.14. Second expert’s opinion sensitivity analysis of metric (a-d) in Real-world 
dataset. 

 Regarding the perspective of the third expert, it is important to note that in 
scenarios (a) and (b), both the 2 Hidden Layer NN model and the 3 Hidden Layer NN 
model receive approximately equal scores for every weight value within the analysis 
interval. Typically, for weight values of AUC and Accuracy scores higher than 0.2565 and 
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0.3597, respectively, the 2 Hidden Layer NN model emerges as the dominant option. In 
scenario (c), the 3 Hidden Layer NN model becomes the dominant choice for weight 
values of F1 score higher than 0.4241. However, in scenario (d), for weight values of H-
measure score higher than 0.087, the 2 Hidden Layer NN model emerges as the 
dominant option. Similar to the previous analyses, the 1 Hidden Layer NN model remains 
the most subordinate, with its scores approximating zero. 

 

   (a)                (b) 

 

   (c)              (d) 

Figure 6.15. Third expert’s opinion sensitivity analysis of metric (a-d) in Real-world 
dataset. 

 Taking into consideration the perspective of the fourth expert, it is noteworthy 
that in scenarios (a), (b), and (c), the 2 Hidden Layer NN model emerges as the dominant 
choice, although its scores closely resemble those of the 3 Hidden Layer NN model. 
However, in scenario (d), for weight values of H-measure score higher than 0.0203, the 
2 Hidden Layer NN model becomes the dominant option. As observed in previous 
analyses, the 1 Hidden Layer NN model remains the most subordinate, with its scores 
approximating zero. 
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   (a)                (b) 

 

   (c)              (d) 

Figure 6.16. Fourth expert’s opinion sensitivity analysis of metric (a-d) in Real-world 
dataset. 

6.8. Discussion  

The results are presented in section 6.7 indicate that there is no significant difference in 
the value of metrics among the four hyperparameter tuning methods. As a 
consequence, there is no dominant method among the three NN models in every 
dataset. For example, in the Australian credit approval dataset, the Quasi-Monte Carlo 
method was the best tuning technique for the 1 Hidden Layer (HL) NN, the Bayesian 
method of Tree-structured Parzen Estimator was the best for the 2 HL NN, and the 
genetic algorithm was the best for the 3 HL NN. Therefore, it could be concluded that a 
robust implementation of every hyperparameter tuning method would be able to 
generate similar evaluation metric scores. 

           Regarding Fuzzy AHP models, it has been demonstrated that the use of a pairwise 
comparison matrix (an Excel file in this study) with crisp values representing an expert's 
view about performance metric comparisons could return imprecise values with an 
order, reflecting the expert's preferences via FAHP. 

 The TOPSIS results provide insights into the optimal neural network (NN) models, 
and their stability is demonstrated through a sensitivity analysis of the weight assigned 
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to the evaluation metrics. In the Australian credit approval dataset and Credit risk 
dataset of Kaggle, the 3 HL NN model consistently emerged as the best choice across all 
scenarios. In contrast, for the Real-world dataset, the 2 HL NN model was optimal in 
three out of four cases, while the remaining case favored the 3 HL NN model. Notably, 
in the credit risk and Real-world datasets, the 2 HL NN model and the 3 HL NN model 
exhibited only marginal differences in their TOPSIS scores. 

 In terms of the sensitivity analysis of the weight assigned to the evaluation 
metrics, it is crucial to note that for the Credit risk dataset from Kaggle and the Australian 
credit approval dataset from UCI, there were no changes in the dominant model as the 
weight values varied. However, in the Real-world dataset, the preference for the 
dominant model varied in a few cases. Specifically, in scenario (c) of the Real-world 
dataset, the 3 Hidden Layer NN model became the dominant choice for weight values 
of the F1 score higher than 0.5054 and 0.4809, according to the first and second experts, 
respectively. Additionally, in scenario (c) according to the third expert, the 3 Hidden 
Layer NN model became the dominant choice for weight values of the F1 score higher 
than 0.4241. Furthermore, in scenario (d) according to the third expert, for weight values 
of the H-measure score higher than 0.087, the 2 Hidden Layer NN model emerged as the 
dominant option. Similarly, in scenario (d) according to the fourth expert, for weight 
values of the H-measure score higher than 0.0203, the 2 Hidden Layer NN model became 
the dominant choice. These variations in model preference based on the weight 
assigned to evaluation metrics highlight the sensitivity of the decision-making process 
and the importance of considering different weighting schemes to ensure robust and 
informed model selection. 

 In summary, the aggregated TOPSIS ranking results are consolidated in Table 
6.43. These results highlight that the 3 HL MLP (Multi-Layer Perceptron) model is the 
most preferred choice in both the Australian credit approval and Credit risk dataset of 
Kaggle. However, in the Real-world dataset, there is a contention between the 2 HL MLP 
model and the 3 HL MLP model, as they have comparable rankings. Furthermore, based 
on these datasets, it could be inferred that the 1 HL NN model consistently performs as 
the most subordinate model, regardless of the opinions provided by the experts.  

Table 6.43. Best MPL models based on TOPSIS. 

Fuzzy AHP Datasets 

 Australian credit approval Credit risk Real-world 

1st expert 3 HL MLP model 3 HL MLP model 2 HL MLP model 

2nd expert 3 HL MLP model 3 HL MLP model 2 HL MLP model 

3rd expert 3 HL MLP model 3 HL MLP model 3 HL MLP model 

4th expert 3 HL MLP model 3 HL MLP model 2 HL MLP model 

Note: HL := Hidden Layer           MLP := Multi-Layer Perceptron 
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Chapter 7:        
 Conclusions and Future Work 
 

 

To conclude, in artificial neural network topology, one of the most complex decisions is 
the determination of selecting an optimal number of hidden layers. In recent decades, 
plenty of scientists have introduced novel theories and techniques for neural network 
structure determination. In the finance industry, human thinking has a vital role, thus it 
is necessary to be comprehended by neural networks. This difficulty could be overcome 
by fuzzy logic and in this study considering this, proposed a novel Neuro-Fuzzy model.  

           For the purpose of this thesis, the proposed Neuro-Fuzzy model was applied to 
three datasets and it takes into account the opinions of four decision-makers. Hence, 
experimental results could not be generalized and representative of all types of datasets 
and decision-makers. Contribution to the scientific community lies in the fact that every 
finance institute has its own loan policy and as a result, they determine the weights of 
evaluation metrics. For instance, in the case of an institute that considers the most 
significant factor is the prediction of solvent percentage then accuracy would be the 
main evaluation metric. 

           Limitations in this thesis consist of datasets and experts’ views of diversity since 
there are abundant cases in reality. Another crucial restriction is the limited 
computational sources in terms of time-consuming training processes. Of course, it 
should be mentioned that datasets are time-limited, and future clients' behaviors would 
produce different results. 

 In future expansions of this study, experiments with different neural network 
topologies could be conducted, due to the plentiful potential architectures and types of 
neural networks that could be explored, such as convolutional neural networks or 
recurrent neural networks. Future studies could test additional topologies and compare 
their performance. Additionally, as far as tuning techniques are concerned, the current 
model description applied four tuning techniques to each neural network model, but 
many other possible techniques could be tested, such as grid search. Future studies 
could compare the performance of different tuning techniques. Furthermore, the 
current model description tested the model on specific three datasets for credit risk 
assessment, but future studies could test the model on more different datasets and in 
different domains to reveal whether it could be generalized. As well, future studies could 
investigate other methods for incorporating expert knowledge, such as fuzzy logic with 
Mamdani, Takagi-Sugeno, Larsen, or Tsukamoto Fuzzy Inference System mechanism 
implementation. Moreover, different methods for selecting the most robust model 
could be used instead of TOPSIS, such as VIKOR, Weighted Sum Models (WSM), 
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PROMETHEE, etc. Finally, more evaluation metrics except for the four metrics of this 
study could be used.  
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Appendix 

A. In Chapter 3, Neural Networks were described. However, it is essential to have an extended 
description of a few fundamental terminology. For this reason, the below tables are provided 
more information about the most popular loss functions (Table 3.1), activation functions (Table 
3.2), neural network optimizers (Table 3.3), differences between L1 and L2 regularization 
noticed (Table 3.4), the combination of activation and loss functions (Table 3.5), and advantages 
and disadvantages of neural network pruning (Table 3.6). 

Table 3.1. Loss Functions (LF). 

Problem 

type 

Name LF Equation Advantages Disadvantages 

 

 

 

Classification 

Binary 

Cross-

Entropy/Lo

g Loss 

1

𝑛
∑−(𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)

𝑛

𝑖=1

 
This is used 

in binary 

classification 

models 

 

Hinge loss 1

𝑛
∑𝑚𝑎𝑥(0,1 − 𝑦𝑖𝑗 × 𝑦̂𝑖𝑗)

𝑛

𝑖=1

 
It is used 

when the 

network 

must be 

optimized 

for a hard 

binary 

classification. 

 

Categorical 

Cross-

Entropy 

Loss 

−
1

𝑛
∑∑𝑦𝑖𝑗𝑙𝑜𝑔(𝑝𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 
The number 

of classes is 

greater than 

two 

 

 

 

 

 

 

 

 

 

 

Regression 

Mean 

Squared 

Error (MSE) 

 
1

𝑛
∑(𝑦(𝑖)  −  𝑦̂(𝑖))2
𝑛

𝑖=1

 
Utilize 

gradient 

descent 

optimization 

to set the 

weight 

values. 

it is very 

sensitive to 

outliers 

Mean 

Absolute 

Error (MAE) 

 
1

𝑛
∑| (𝑦(𝑖) − 𝑦̂(𝑖)|

𝑛

𝑖=1

 
It is used for 

a large 

number of 

outliers 

gradient 

descent 

optimization 

could not 

apply 
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Huber Loss 

 

{
 
 

 
 1

𝑛
∑(𝑦(𝑖)  −  𝑦̂(𝑖))2
𝑛

𝑖=1

,            | (𝑦(𝑖) − 𝑦̂(𝑖)|  ≤ 𝛿

1

𝑛
∑𝛿(|(𝑦(𝑖) − 𝑦̂(𝑖)|  −  

1

2
𝛿)

𝑛

𝑖=1

, |(𝑦(𝑖) − 𝑦̂(𝑖)| > 𝛿

 

It has the 

advantages 

of both MSE 

and MAE 

 

 

Table 3.2. A few activation functions are portrayed.  

Function Equation Graph 

 

Sigmoid 

 
1

1 + 𝑒−𝑥
 

 
 

Tanh 

 
2

1 + 𝑒−2𝑥
 

 

 
 

Softmax 

 

𝑒𝑖

∑𝑒𝑖
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Rectified 

Linear 

Unit 

(ReLU) 

 

𝑚𝑎𝑥(0, 𝑥) 

 
Leaky 

ReLU 

{x, if x>0} 

{ax, otherwise} 

 
 

Table 3.3. Neural network optimizers 

 Advantages Disadvantages 

Gradient Descent Easy computation, 

implementation and 

understanding. 

Local minima might trap. 

After computing the 

gradient on the entire 

dataset, weights are 

modified. Therefore, it 

might take years for this to 

converge to the minimum if 

the dataset is too vast. 

considerable memory is 

needed to compute the 

gradient throughout the 

whole dataset. 

Stochastic Gradient Descent Model parameters are often 

updated; as a result, 

convergence occurs faster. 

Less memory is used since 

loss function values don't 

need to be stored. 

Perhaps new minimas 

High variation in the 

model's inputs. 

Even after reaching the 

global minimum, might 

shoot. 

The value of the learning 

rate must be gradually 

decreased to get the same 

convergence as gradient 

descent. 
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Mini-Batch Gradient 

Descent 

Adjusts the model's 

parameters often and has a 

lower variance. medium 

quantity of RAM is needed. 

Choosing the best learning 

rate value. Gradient descent 

could take a very long time 

to converge if the learning 

rate is too slow. 

Have all the parameters 

learn at the same rate. We 

might not wish to modify 

some factors at the same 

rate. 

Maybe stuck at a nearby 

minima. 

Momentum Lowers the parameters' 

large variance and 

oscillations. 

quicker than gradient 

descent converges. 

There is now an additional 

hyper-parameter that must 

be carefully and manually 

chosen. 

Nesterov Accelerated 

Gradient 

Avoid skipping the nearby 

minimum. 

if minima are present, slows 

down. 

Hyperparameter needs to 

be selected manually. 

Adagrad For each training 

parameter, the learning rate 

varies. 

does not require manual 

adjustment of learning rate. 

capable of sparse data 

training. 

Costly computationally 

since the second order 

derivative must be 

calculated. 

Slow training is caused by 

the constant decline in 

learning rate. 

AdaDelta The training is still ongoing 

and the learning rate is no 

longer declining. 

Computationally expensive. 

Adam The approach converges too 

quickly and moves too 

quickly. 

Corrects large variance and 

vanishing learning rate. 

Computationally costly. 

RMS-Prop For each parameter, RMS-

Prop selects a different 

learning rate that is 

automatically adjusted. 

Slow Learning 
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Table 3.4. Differences between L1 and L2 regularization 

L1 Regularization L2 Regularization 

Panelizes the sum of absolute value of 

weights 

penalizes the sum of square weights. 

It has a sparse solution. It has a non-sparse solution. 

It gives multiple solutions It has only one solution. 

Constructed in feature selection. No feature selection. 

Robust to outliers Not robust to outliers 

It generates simple and interpretable 

models 

It gives more accurate predictions when the 

output variable is the function of whole 

input variables 

Unable to learn complex data patterns Able to learn complex data patterns 

Computationally inefficient over non-sparse 

conditions. 

Computationally efficient because of having 

analytical solutions 

 

Table 3.5. Combination of activation and loss functions. 

Problem type Last-layer activation Loss function 

Binary classification Sigmoid binary_crossentropy 

Multiclass, single-label 

classification 

Softmax categorical_crossentropy 

Multiclass, multilabel 

classification 

Sigmoid binary_crossentropy 

Regression to arbitrary 

values 

None Mse 

Regression to values 

between 0 and 1 

Sigmoid mse or binary_crossentropy 

 

Table 3.6. Advantages and disadvantages of neural network pruning 

Advantages Disadvantages 

Relies on the hardware and compression 

strategy to reduce the inference and 

training times. 

There are fewer versions and pre-trained 

models available. 

Storage needs decrease as the number of 

neurons, connections between layers, and 

weights decrease. 

Selection compression is challenging 

because it requires knowledge of the 

hardware architecture of the target. 

Reduces the heat generated by installed 

devices, such mobile phones. 

Beyond initial accuracy, hardly much could 

be quantified. 

Saving energy.  

 

A.1. Evaluation metrics. In machine learning (ML), there are plenty of metrics to evaluate ML 
models. The choice of evaluation metric completely depends on the type of model, that is 
classification or regression model, and the implementation plan of the model. In credit scoring, 
classification models are used to predict if a client is well-payer or not, whereas in regression 
models a credit score for every client is calculated. In this thesis classification models are created 
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and for this reason evaluation metrics, accuracy, f1-score, Area Under Curve (AUC), and H-
measure would be described. It is notable that plenty of data scientists raised disagreements 
related to the significance of each metric. A part of them supports that AUC is the best metric 
to indicate the optimal model whereas other scientists believe that other metrics are better. 

The fundamental concept of metrics relies on the confusion matrix in Table 3.7.    

3.7. Confusion matrix of classification models 

 Actually 

 Positive Negative 
Predicted Positive True Positive (tp) False Negative (fn) 

Negative False Positive (fp) True Negative (tn) 

 

Accuracy represents the percentage of correct predictions and is defined by the 
equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

 F1 score represents is the harmonic mean of precision and recall values for a 
classification problem. Precision is the proportion of positive identifications was actually correct 
and is formulated by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑐) ≔  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

whereas Recall is the proportion of actual positives was identified correctly and is defined by: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐) ≔  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

Therefore, F1-score is defined by, 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 ∶  𝐹1 = 2 ∗ 
𝑃 ∗ 𝑅

𝑃 + 𝑅
 

 An area under the Receiver Operating Characteristic (ROC) curve is represented by the 
Area Under Curve (AUC). The receiver operating characteristic curve displays the true positive 
(TP) rate vs the false positive (FP) rate at various categorization levels. The thresholds in binary 
classification are distinct probability cutoffs that separate the two classes. It informs us of a 
model's ability to discriminate between classes using probability (Müller & Guido, 2016). 

The H-measure is a classifier performance metric that considers the application 
environment without needing a fixed value to be established for relative misclassification costs. 
The issue of collecting performance across several prospective scenarios is effectively solved. 
Furthermore, it is significant because it puts forth a reasonable standard for the coherence of 
performance metrics, which the H-measure meets but which, surprisingly, is not met by a 
number of widely used alternatives, most notably the Area Under the Curve (AUC) and its 
variations, such as the Gini coefficient (Hand & Anagnostopoulos, 2022). 

B. Fuzzy logic and Multicriteria decision analysis were discussed in Chapter 4. With an aim to be 
addressed a few concepts, the following tables explain basic terms of fuzzy theory (Table 4.1), 
the most popular Membership Functions (MF) (Table 4.2), operators of fuzzy sets (Table 4.3), 
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compositional rule of inference (Table 4.4), properties that generalized Modus Ponens should 
satisfy (Table 4.5), description of fuzzy inference operators (Table 4.6), the most famous 
defuzzification operators (Table 4.7), the steps of fuzzy AHP (Table 4.8) and TOPSIS (Table 4.9) 
methods. 

Table 4.1.  Terminology of Fuzzy Theory (Rutkowska, 2001). 

Definitions 

Equations 

(where μΑ(x) is the membership function of x 

in X) 

The support of a fuzzy set A, denoted by 

supp A, is the set of points in X at which the 

membership function μA(X) is positive. 

𝑠𝑢𝑝𝑝 𝐴 = {𝑥 ∈ 𝑋 ; 𝜇𝛢(𝑥) > 0} 

 

A fuzzy singleton is a fuzzy set A whose 

support is a single point x in the universe of 

discourse Χ. 

𝐴 =
𝜇𝐴(𝑥)

𝑥
 

 

The core of a fuzzy set A defined in the 

universe of discourse X, denoted by core(A), 

also referred to as kernel or nucleus, is the 

set of points in X at which the membership 

function 𝜇𝐴(𝑥) equals 1, that is 

 

 

𝑐𝑜𝑟𝑟(𝐴) = {𝑥 ∈ 𝑋 ; 𝜇𝛢(𝑥) = 1} 

 

The height of a fuzzy set A defined in the 

universe of discourse X, denoted by hgt(A), 

is the maximal value of its membership 

function 𝜇𝐴(𝑥), that is 

 

ℎ𝑔𝑡(𝐴) =  sup 𝜇𝐴(𝑥)  
𝑥∈𝑋                    

 

A fuzzy set A is called a normal fuzzy set if 

and only if the maximal value of its 

membership function equals 1, which 

means that hgt (A) = 1. 

 

A fuzzy set A defined in the universe of 

discourse X is an empty set, denoted A = 0, 

if and only if its membership function 𝜇𝐴(𝑥) 

= 0 for all x ∈ X. 

 

A fuzzy set A defined in the universe of 

discourse X, which we shall assume to be a 

real Euclidean N-dimensional space, is 

convex if and only if  

𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ mi n[𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2)] 

 

for all x1 and x2 in X and all λ in [0, 1]. 
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A fuzzy set A is a fuzzy number if the 

universe of discourse X is ℝ and the 

following criteria are fulfilled: the fuzzy set 

A is convex, normal, the membership 

function of the fuzzy set 𝜇𝐴(x) is piecewise 

continuous, and the core of the fuzzy set 

consists of one value only. 

 

A fuzzy set A is a fuzzy interval if the 

universe of discourse X is ℝ and the 

following criteria are fulfilled: the fuzzy set 

A is convex, normal, and the membership 

function of the fuzzy set 𝜇𝐴(x) is piecewise 

continuous. 

 

Two fuzzy sets A and B are equal, written 

as A = B, if and only if their membership 

functions are equal, that is 𝜇𝐴(x) = 𝜇𝛣(x) for 

all x in the universe of discourse X. 

 

The crisp (non-fuzzy) set of elements that 

belong to the fuzzy set A in X at least to the 

degree of a is called an a-level set (or a-cut) 

and defined by 

 

𝛢𝛼 = {𝑥 ∈ 𝑋 ; 𝜇𝛢(𝑥) ≥ 𝛼}            ∀𝛼 ∈ [0,1] 

 

A fuzzy set of type 2 is defined by a fuzzy 

membership function, the grade (that is, 

fuzzy grade) of which is a fuzzy set in the 

unit interval [0,1], rather than a point in 

[0,1]. 

 

This definition implies that the membership 

function of a fuzzy set of type 1 ranges over 

the interval [0, 1], the membership function 

of a fuzzy set of type 2 ranges over fuzzy 

sets of type 1, the membership function of a 

fuzzy set of type 3 ranges over fuzzy sets of 

type 2, etc. (Zadeh, 1975).  
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Table 4.2. The most popular Membership Functions (MF) (Singh & Lone, 2020). 

Type Definition Equation Figure 

Triangular Supposing a 

set X, ∀ x ∈

 𝑋, α, b, c ∈

 ℝ 

triangular 

MF is 

created by 

following 

equation: 

𝑓(𝑥; 𝛼, 𝑏, 𝑐)

= 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 −  𝛼

𝑏 −  𝛼
,
𝑐 −  𝑥

𝑐 −  𝑏
 ) , 0), 

 

 

Trapezoidal  Supposing a 

set X, ∀ x ∈

 𝑋, α, b, c, d 

∈  ℝ, which 

are α < b < c 

< d, 

trapezoidal 

MF is 

created by 

following 

equation: 

𝑓(𝑥; 𝛼, 𝑏, 𝑐)

= 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 −  𝛼

𝑏 −  𝛼
, 1,
𝑑 −  𝑥

𝑑 −  𝑐
 ) , 0), 

 

 

Gaussian Supposing a 

set X, ∀ x ∈

 𝑋, with c, s, 

m mean, 

standard 

deviation 

and 

Fuzzification 

Factor, 

respectively, 

gaussian MF 

is created 

by following 

equation:  

 

 

 

 

 

𝜇𝛢(𝑥, 𝑐, 𝑠,𝑚) = 𝑒
−
1
2
|
𝑥 − 𝑐
𝑠

|
𝑚

, 
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Generalized 

Bell 

Supposing a 

set X, ∀ x ∈

 𝑋, with α, 

b, c to be 

slope, 

center, 

width of 

curve, 

respectively, 

generalized 

bell MF is 

constructed 

by following 

equation:  

 

 

 

𝜇𝛢(𝑥, 𝛼, 𝑏, 𝑐) =
1

1 + |
𝑥 − 𝑐
𝑏

|
2𝑏 , 

 

 

Sigmoidal Supposing a 

set X, ∀ x ∈

 𝑋, with α, c 

to be slope 

and 

crossover 

point, 

respectively, 

sigmoidal 

MF is 

constructed 

by following 

equation:  

 

 

 

 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥; 𝛼, 𝑐) =
1

1 + 𝑒−𝛼(𝑥 − 𝑐)
, 

 

 

 

Table 4.3. Operators of fuzzy sets (Rutkowska, 2001). 

Operators Definition 

 

Complement 

The complement of a fuzzy set A, denoted by 𝐴̃, is defined by 

𝜇𝐴̃(𝑥)  =  1 − 𝜇𝛢(𝑥)        ∀ 𝑥 ∈ 𝑋   

The complement of the fuzzy set A is specified by a function 

𝑐: [0,1]  →  [0,1] 
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for each membership grade μΑ (x) a value c (μΑ (x)) is assigned by the above 

equation 

 

Union 

The union of two fuzzy sets A and B with respective membership functions 

μΑ (x) and μΑ (x) is a fuzzy set denoted by A ∪ B whose membership 

function is given by, 

𝜇𝐴 ∪ 𝐵 = 𝑚𝑎𝑥[𝜇𝛢(𝑥), 𝜇𝐵(𝑥)]        ∀ 𝑥 ∈ 𝑋      

Intersection The intersection of two fuzzy sets A and B with respective membership 

functions 𝜇𝛢 (x) and 𝜇𝐵 (x) is a fuzzy set denoted by A ∩ B whose 

membership function is given by, 

𝜇𝐴 ∩ 𝐵  =  𝑚𝑖𝑛[𝜇𝛢(𝑥), 𝜇𝐵(𝑥)]                 ∀ 𝑥 ∈ 𝑋       

Triangular- 

norm 

A triangular norm T is a function of two arguments 

𝑇: [0,1] 𝑥 [0,1]  →  [0,1] 

which satisfies the following conditions for a, b, c, d ∈ [0,1] 

➢ Monotonicity: T (a, b) ≤ T (c, d); a ≤ c; b ≤ d 

➢ Commutativity: T (a, b) = T (b, a) 

➢ Associativity: T (T (a, b), c) = T (a, T (b, c)) 

➢ Boundary conditions: T(a,0) = 0; T(a, 1) = a 

Moreover, every triangular norm fulfils the following inequality 

Tw (a, b) ≤ T (a, b) ≤ min (a, b) 

where  

𝑇𝑤(𝑎, 𝑏)  =  {

  𝑎      𝑖𝑓   𝑏 = 1
𝑏     𝑖𝑓  𝑎 = 1

     0    𝑖𝑓 𝑎, 𝑏 ≠  1
 

The T-norm would also be denoted as, 

T(a, b)  = a    𝑏∗
𝑇  

 

S-norm 

An S-norm is a function of two arguments 

𝑆: [0,1] 𝑥 [0,1]  →  [0,1] 

which satisfies the following conditions for a, b, c, d ∈ [0,1] 

➢ Monotonicity: S (a, b) ≤ S (c, d); a ≤ c; b ≤ d 

➢ Commutativity: S (a, b) = S (b, a) 

➢ Associativity: S (S (a, b), c) = S (a, S (b, c)) 
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Moreover, every S-norm fulfils the following in equality. Moreover, every 

S-norm fulfils the following inequality 

Sw (a, b) ≤ S (a, b) ≤ max (a, b) 

where  

𝑆𝑤(𝑎, 𝑏)  =  {

  𝑎      𝑖𝑓    𝑏 = 0
 𝑏       𝑖𝑓   𝑎 = 0
     0    𝑖𝑓 𝑎, 𝑏 ≠  0

 

The S-norm, depicted in Definition 18, would also be denoted as, 

S(a, b)  = a    𝑏∗
𝑆  

 

Containment 

A fuzzy set A is contained in a fuzzy set B (or, equivalently, A is a subset of 

B, or A is smaller than or equal to B) if and only if 𝜇𝛢(𝑥); 𝜇𝐵(𝑥). Formally, 

𝐴 ⊂  𝐵 ⇔  𝜇𝛢(𝑥) ≤  𝜇𝐵(𝑥)         ∀ 𝑥 ∈  𝑋 

 

Table 4.4. Compositional rule of inference (Fuller, 2000). 

Rules Conditions 

Entailment if x is A and A ⊂ B, then x is B 

Conjuction if x is A and x is B, then x is A ∩ B 

Disjunction if x is A or x is B, then x is A ∪ B 

Projection if two members of Fuzzy Set X ∧ Y: x, y respectively, and between them there 

are a relation R, then you could define a projection rule on them. For 

example, If (x, y) is close to (4, 5), then x is close to 4 and y is close to 5. 

Negation if not (x is A), then x is ¬A 

 

Table 4.5. Properties that generalized Modus Ponens should satisfy (Fuller, 2000). 

Basic property: If x is A, then y is B (Premise) 

 x is A  (Fact) 

 y is B (Consequence) 

Total Indeterminacy property: If x is A, then y is B (Premise) 

 x is¬A  (Fact) 

 y is Unknown (Consequence) 

Subset property: If x is A, then y is B (Premise) 
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 x is A’ ⊂ A  (Fact) 

 y is B (Consequence) 

Superset property: If x is A, then y is B (Premise) 

 x is A’  (Fact) 

 y is B’ ⊃  𝐵 (Consequence) 

 

Table 4.6. Fuzzy inference operators (Fuller, 2000). 

Operators Definitions Figures 

 

Tsukamoto 

Supposing that all linguistic terms 

characterized by a monotonic 

membership function. The firing levels of 

the rules, ai, with i = 1,2,  

𝛼𝑖  =  𝐴𝑖(𝑥0)  ∧  𝛣𝜄(𝑦0)  

For individual control actions z1, z2 the 

global crisp control action is,  

𝑧0  =  
𝛼1𝑧1  +  𝛼2𝑧2
𝛼1  +  𝛼2

 

If there are n rules in rule-base then 

crisp control action is, 

𝑧0  =  
∑ 𝛼𝑖𝑧𝑖
𝑛
𝑖=1

∑ 𝛼𝑖
𝑛
𝑖=1

 
 



92 
 

Sugeno 

 

Sugeno and Takagi use the following 

architecture: 

R1: if x is A1 and y is B1 then z1 = 

α1x + b1y 

R2: if x is A2 and y is B2 then z2 = 

α2x + b2y 

Fact: x is x0 and y is y0 

Cons: z0 

The firing levels of the rules, ai, with i = 

1,2,  

𝛼𝑖  =  𝐴𝑖(𝑥0)  ∧  𝛣𝜄(𝑦0)  

 As a result, the individual rule 

outputs, 

𝑧𝑖
∗ = 𝛼𝜄𝑥0 + 𝑏𝑖𝑦0 

For individual control actions z1, z2 …, zn 

if there are n rules, the global crisp 

control action is, 

𝑧0  =  
∑ 𝛼𝑖𝑧𝑖
𝑛
𝑖=1

∑ 𝛼𝑖
𝑛
𝑖=1

 

 

 

Larsen  

 

Larsen's product operator is one of the 

most well-known fuzzy implications and 

defined by max operator. The firing level 

of n rules is donated as αi , with i = 1,2, … 

, n 

𝛼𝑖  =  𝐴𝑖(𝑥0)  ∧  𝛣𝜄(𝑦0)  

The membership function of the 

inference consequence C when there are 

n rules with firing level, αi is computing 

by, 

𝐶(𝑤)  =  ⋁(𝛼𝑖

𝑛

𝑖=1

𝐶𝑖(𝑤)) 
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Table 4.7. Defuzzification operators (Fuller, 2000). 

Center of Gravity. The defuzzified value of 

a fuzzy set A is defined as its fuzzy centroid 

for continuous membership function (μΑ): 

𝑧∗  =  
∫ 𝑧𝜇𝛢(𝑧)𝑑𝑧

 ∫ 𝜇𝛢(𝑧)𝑑𝑧
  

Center of Area. The center of gravity of the 

sub region with the largest area could be 

used to calculate the defuzzified value. 

Therefore, the defuzzified value is 

calculated, as: 

𝑧∗  =  
∫ 𝑧′𝜇𝛢𝑚(𝑧)𝑑𝑧

 ∫ 𝜇𝛢𝑚(𝑧)𝑑𝑧
 

where Am is the universe of discourse with 

the largest area, z’ is the center gravity of 

this area.  

Center of Sum Method. The main 

advantages of methods are the high speed 

and the lack of symmetric membership 

values constrains. This method could be 

represented as: 

𝑧∗  =  
∫ 𝑧 ∑ 𝐶(𝑧)𝑑𝑧𝑛

𝑘=1

∫∑ 𝐶(𝑧)𝑑𝑧𝑛
𝑘=1

 

where 𝑧 is the distance of the centroid from 

each membership function. 

Height method. The objects with 

membership grades lower than a threshold 

α, in the universe of discourse A, are 

discounted.  The application of the Center 

of Area method for remaining objects 

computes the defuzzified value z* 

 

𝑧∗  =  
∫ 𝑧𝜇𝛢(𝑧)𝑑𝑧

 ∫ 𝜇𝛢(𝑧)𝑑𝑧
  

 

First of Maxima. The smallest value of the 

object with maximized membership degree 

formed as: 

 

𝑧 ∗ =  𝑚𝑖𝑛(𝑧 | 𝜇𝛢(𝑧)  = 𝑚𝑎𝑥(𝜇𝛢(𝑋)))  

Middle of Maxima. In a similar manner, the 

mean value of the objects with maximized 

membership degree in case of discrete 

fuzzy set A, is formed as: 

𝑧∗  =  
∫ 𝑧𝑑𝑧
𝐺

 ∫ 𝑑𝑧
G

 

where z is a set of objects in the universe of 

discourse W, where maximum value of 

𝜇𝛢(𝑧) is placed and G is a set that 

maximum object of A is located. 

Last of Maxima. This concept is opposite to 

first of Maxima in terms of determining the 

higher value of the universe of discourse 

with maximized membership degree 

 

𝑧∗  =  {𝑧 | 𝜇𝛢(𝑧)  = 𝑚𝑎𝑥(𝜇𝛢(𝑋))  
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Table 4.8. The steps of fuzzy AHP method (Aliyev & Temizkan, 2020). 

Step 1. The fuzzy matrix 𝐶̃ should be constructed and decomposed into three matrices Cl, 

Cm, Cu which means matrices of lower, medium and upper values of triangular fuzzy 

numbers. These fuzzy matrices consist of triangular fuzzy numbers and the pairwise 

comparisons of the criteria or alternatives with respect to each other are illustrated. 

Step 2. The three matrices from the previous step would be used to calculate the system of 

fuzzy linear homogeneous equations. 

𝐶̃𝑙𝑤𝑙  +  𝐶̃𝑚𝑤𝑚  +  𝐶̃𝑢𝑤𝑢  −  𝜆̃𝑙𝑤𝑙  −  𝜆̃𝑚𝑤𝑚  −  𝜆̃𝑢𝑤𝑢  =  0 

where   

𝐶̃𝑙  =  2𝐶𝑙  +  𝐶𝑚,  𝐶̃𝑚  =  𝐶𝑙  +  4𝐶𝑚  +  𝐶𝑢, 𝐶̃𝑢  =  𝐶𝑚  +  2𝐶𝑢 

Step 3. The eigenvalues 𝜆̃𝑙, 𝜆̃𝑚, 𝜆̃𝑢 of matrices 𝐶̃l, 𝐶̃m, 𝐶̃u and eigenvalues 𝜆𝑙, 𝜆𝑚, 𝜆𝑢 of 

matrices Cl, Cm, Cu are calculated by using these equations: 

𝜆̃𝑙  =  2𝜆𝑙  +  𝜆𝑚,  𝜆̃𝑚  =  𝜆𝑙  +  4𝜆𝑚  +  𝜆𝑢 , 𝜆̃𝑢  =  𝜆𝑚  +  2𝜆𝑢 

Step 4. The eigenvectors wl, wm, wu of matrices 𝐶̃𝑙, 𝐶̃𝑚, 𝐶̃𝑢 and 𝑤̅𝑙, 𝑤̅𝑚, 𝑤̅𝑢 by using the 

formulas: 

      𝑤̅𝑙  =  
𝑤𝑙𝜆𝑙

𝑠𝑙𝜆𝑚
, 𝑤̅𝑚  =  

𝑤𝑚

𝑠𝑚
,  𝑤̅𝑢  =  

𝑤𝑢𝜆𝑢

𝑠𝑢𝜆𝑚
, 

𝑠𝑙  =  ∑𝑤𝑖,𝑙

𝑛

𝑖=1

, 𝑠𝑚  =  ∑𝑤𝑖,𝑚

𝑛

𝑖=1

, 𝑠𝑢  =  ∑𝑤𝑖,𝑢

𝑛

𝑖=1

 

Step 5. The consistency index (CI) and consistency ratio (CR) of the matrix Cm are calculated. 

CR should be lower than 0.1 to claim that the comparison matrix is consistent and RI is the 

random index and depends on the size of the matrix. 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
,   𝐶𝑅 =  

𝐶𝐼

𝑅𝐼
 

Step 6. The priority fuzzy matrices Pl, Pm, Pu that contain normalized eigenvectors 

𝑤̅𝑙 , 𝑤̅𝑚, 𝑤̅𝑢 of the alternatives with respect to each criterion are calculated. 

Step 7. Vectors of global priorities gl, gm, gu are calculated according to the following 

formulas 

 

𝑤̅𝑙
𝛵  =  [𝑤̅1,𝑙 , 𝑤̅2,𝑙  . . . 𝑤̅𝑛,𝑙]

𝑇
 

𝑤̅𝑚
𝛵  =  [𝑤̅1,𝑚, 𝑤̅2,𝑚 . . . 𝑤̅𝑛,𝑚]

𝑇
 

𝑤̅𝑢
𝛵  =  [𝑤̅1,𝑢, 𝑤̅2,𝑢 . . . 𝑤̅𝑛,𝑢]

𝑇
 

𝑔𝑙  =  𝑃̅𝑙𝑤̅𝑙  =  [𝑔1,𝑙 , 𝑔2,𝑙  . . . 𝑔𝑚,𝑙]
𝑇
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𝑔𝑚  =  𝑃̅1𝑚𝑤̅𝑚  =  [𝑔1,𝑚, 𝑔2,𝑚 . . . 𝑔𝑚,𝑚]
𝑇

 

𝑔𝑢  =  𝑃̅𝑢𝑤̅𝑢  =  [𝑔1,𝑢, 𝑔2,𝑢 . . . 𝑔𝑚,𝑢]
𝑇

 

Step 8. In the last step, the expected value and standard deviation are calculated by the 

formulas: 

𝑔𝑖,𝑒  =  
𝑔𝑖,𝑙  +  2𝑔𝑖,𝑚  +  𝑔𝑖,𝑢

4
 

𝜎𝜄  =  (
1

80
(3𝑔𝑖,𝑙

2  +  4𝑔𝑖,𝑚
2  +  3𝑔𝑖,𝑢

2  −  4𝑔𝑖,𝑙𝑔𝑖,𝑚  −  2𝑔𝑖,𝑢𝑔𝑖,𝑙  −  4𝑔𝑖,𝑚𝑔𝑖,𝑢))

1/2

 

 

Table 4.9. The steps in calculating the TOPSIS method (Opricovic & Tzeng, 2004) 

Step 1. An evaluation matrix with m choices and n criteria is constructed, where the 

intersection of each choice and criteria is denoted by xij. This results in the matrix (𝑥𝑖𝑗)𝑛×𝑚
. 

Decision matrix should be normalized by the following formula: 

𝑟𝑖,𝑗 = 
𝑥𝑖,𝑗

√∑ 𝑥𝑖,𝑗
2𝑚

𝑖=1

, 𝑖 =  1, 2, . . . , 𝑚, 𝑗 =  1, 2, . . . , 𝑛  

Step 2. Weighted normalized decision matrix should be calculated. With the weight wj = (w1, 

w2, w3,..., wn), where wj is the weight of the criteria for all j, 𝑤𝑗  =  
𝑊𝑗

∑ 𝑊𝑘
𝑛
𝑘=1

, 𝑗 =  1, 2, . . . , 𝑛 

and ∑ 𝑤𝑖
𝑛
𝑖=1  =  1,  wj =1, The normalization of weight matrix V, is vij = wj * rij i = 1, 2,…., m, j 

= 1, 2, …., n. 

Step 3. Best (A+) and worst (A-) matrices of ideal solutions are determined by this formula:  

       𝐴+ = {(𝑚𝑎𝑥 𝑣𝑖𝑗  | 𝑗 ∈  𝐽), (𝑚𝑖𝑛 𝑣𝑖𝑗  | 𝑗 ∈  𝐽′)} , 𝑖 =  1,2, . . , 𝑚 = {𝑉1
+, 𝑉2

+, . . . , 𝑉𝑛
+}   

𝐴− = {(𝑚𝑖𝑛 𝑣𝑖𝑗  | 𝑗 ∈  𝐽), (𝑚𝑎𝑥 𝑣𝑖𝑗  | 𝑗 ∈  𝐽′)} , 𝑖 =  1,2, . . , 𝑚 =  {𝑉1
−, 𝑉2

−, . . . , 𝑉𝑛
−} 

Step 4. Distance between the target alternative i and the best condition A+ is represented 

by symbol (S+) and formed by the following equation: 
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𝑆𝑖
+  =  √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑚

𝑗=1

, 𝑖 =  1, 2, … ,𝑚  

Contrary to above, (S-) is the distance between the alternative i from the worst ideal solution 

and formed as: 

  

𝑆𝑖
−  =  √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑚

𝑗=1

, 𝑖 =  1, 2, … ,𝑚  

 Step 5. Similarity to the best condition should be calculated, as: 

𝐶𝑖
+  =  

𝑆𝑖
−

(𝑆𝑖
−  +  𝑆𝑖

+)
, 0 ≤ 𝐶𝑖

−  ≤ 1, 𝑖 =  1, 2, . . . , 𝑚 

Remark. 𝐶𝑖
+ = 1, if and only if the alternative ideal solution is the best and 𝐶𝑖

+ = 0, the worst 

one. 

Step 6. Alternative 𝐶+should be sorted descended and its largest value is the best ideal 

solution. 

 

C. The most representative Neuro-Fuzzy model in literature is the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and its architecture in Takagi-Sugeno, Tsukamoto, and Mamdani Fuzzy 
model is described in more detail. 

 According to ANFIS architecture, the Takagi-Sugeno Fuzzy Model is represented, while 
for the purpose of simplicity, it is assumed that the under-examined fuzzy inference system has 
two inputs, x and y, and one output, z. A typical rule set with two fuzzy if-then rules for a first-
order Takagi-Sugeno fuzzy model is as follows: 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1; 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2; 

The Takagi-Sugeno model's reasoning process is depicted in Figure 5.5, and the 
equivalent ANFIS architecture is presented in Figure 5.6, where nodes of the same layer have 
comparable roles as would be discussed later. 
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Figure 5.5. Two inputs first order Takagi-Sugeno fuzzy model with two rules is illustrated. 

 

 

Figure 5.6. The ANFIS architecture is depicted. 

Layer 1: Every node I in layer one has a node function and is an adaptive node. 

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥),      𝑓𝑜𝑟  𝑖 = 1,2, 

𝑜𝑟 

𝑂1,𝑖 = 𝜇𝐵𝑖 − 2(𝑦),   𝑓𝑜𝑟 𝑖 = 3,4, 

where Ai (or Bi-2) is a linguistic label (such as "little" or "big") associated with this node 
and x (or y) is the input to node i. In other words, O1,i is the degree to which the input x (or y) 
satisfies the quantifier A and is the membership grade of a fuzzy set A (=A1, A2, B1 or B2). 
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𝜇𝐴(𝑥) =
1

1 + |
𝑥 − 𝑐𝑖
𝛼𝑖

|
2𝑏 , 

the parameter set being "ai, bi, ci." These parameters' values affect how the bell-shaped 
function behaves, which displays different membership functions for fuzzy set A. Premise 
parameters are what are included in this layer. 

Layer 2: This layer's nodes are all fixed nodes with the label "anfis," and its output is the sum of 
all incoming signals: 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦),     𝑖 = 1,2. 

The strength of a rule's firing is represented by each node output. In general, the node 
function in this layer could be any other T-norm operator that does fuzzy AND. 

Layer 3: This layer's nodes are all fixed nodes with the designation N. The ith node determines 
the ratio of the firing strength of the ith rule to the total firing strength of all rules: 

𝑂3,𝑖 = 𝑤̅𝑖 =
𝑤𝑖

𝑤1 +𝑤2
, 𝑖 = 1,2. 

The outputs of this layer are referred to as normalized firing strengths for convenience. 

Layer 4: Each node I in this layer has a node function and is adaptive: 

𝑂4,𝑖 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)  

where pi, qi, and ri represent this node's parameter set and anfis is a normalized firing 
strength from layer 3. Consequential parameters are the name given to the parameters in this 
layer. 

Layer 5 A fixed node with the name "anfis" is the only node in this layer, and it computes the 
output as the sum of all input signals: 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑂5,1  =  ∑𝑤̅𝑖
𝑖

𝑓𝑖 = 
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
 

As a result, an adaptive network that is functionally comparable to a Sugeno fuzzy model 
has been created (Jang, 1993). 

Regarding ANFIS architecture of the Tsukamoto Fuzzy Model, in Figures 5.7 and 5.8 the 
defuzzification process for the Tsukamoto FIS is represented. 
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Figure 5.7. Tsukamoto defuzzification. 

 

Figure 5.8. ANFIS based on Tsukamoto. 

 As shown in Figure 5.8, the system is comparable to a Sugeno-based ANFIS, with the 

exception that a weighted membership function is utilized rather than a linear membership 

function. As a result, all the layers are identical to those in the Sugeno-based example, with the 

exception of the last layer, where the defuzzification equation is changed (Singh & Lone, 2020). 

 As ANFIS architecture of the Mamdani Fuzzy Model is concerned, should be noticed that 

if the integrals in the centroid defuzzification approach shown here are replaced with discrete 

approximations, a corresponding ANFIS for the Mamdani fuzzy inference system with max-min 

composition might be built. The resultant ANFIS, however, is a lot more intricate than either the 

TS or Tsukamoto ANFIS. Mamdani ANFIS with max-min composition has a more complicated 

structure and processing, but this does not always translate to superior learning ability or 

approximation capacity. A Mamdani fuzzy model could be readily defuzzed using sum-product 

composition and centroid defuzzification, and the associated ANFIS could be created straight 

from the theorem without any approximation at all (Jang, 1993). 
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D. Computational experiment and results of the proposed Neuro-Fuzzy model are illustrated in 

the following tables. As a consequence, tables contain variables of datasets, fuzzy scale, pairwise 

comparison matrices, fuzzy weights, metrics output, and structures of Neural Network models 

in three datasets, and finally TOPSIS results for model selection based on fuzzy weights in three 

datasets. 

Table 6.1. Australian credit approval dataset. 
(All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data). 

Features Comments 

A1 Categorical (0,1) 
A2 Continuous 
A3 Continuous 
A4 Categorical (1,2,3) 
A5 Categorical (1 to 14) 
A6 Categorical (1, 2,3, 4,5,6,7,8,9) 
A7 continuous. 
A8 Categorical (1, 0) 
A9 Categorical (1, 0) 

A10 Continuous 
A11 Categorical (1, 0) 
A12 Categorical (1, 2, 3) 
A13 Continuous 
A14 Continuous 
A15 Categorical (1,2) 

 

Table 6.2. Real-world dataset 

Features Type 

actv_days_sinc_lst_momo_acvty Continuous 
actv_mnths_sinc_lst_momo_acvty Continuous 

momo_cnt_cashout_p2p_1m Continuous 
momo_cnt_cashout_p2p_3m Continuous 
momo_cnt_cashout_p2p_6m Continuous 

momo_cnt_airtime_1m Continuous 
momo_cnt_cashin_deposit_1m Continuous 

momo_cnt_cashin_p2p_1m Continuous 
momo_cnt_cashout_widthrw_1m Continuous 

momo_amt_bundle_1m Continuous 
momo_amt_cashout_p2p_1m Continuous 
momo_amt_cashout_p2p_3m Continuous 
momo_amt_cashout_p2p_6m Continuous 

momo_amt_airtime_1m Continuous 
momo_amt_cashin_b2p_1m Continuous 

momo_amt_cashin_deposit_1m Continuous 
momo_amt_cashin_deposit_3m Continuous 
momo_amt_cashin_deposit_6m Continuous 

momo_amt_cashin_p2p_1m Continuous 
momo_amt_cashin_p2p_3m Continuous 

momo_amt_cashout_widthrw_1m Continuous 
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momo_amt_cashout_widthrw_3m Continuous 
momo_amt_cashout_p2b_1m Continuous 
momo_amt_cashout_p2b_3m Continuous 
momo_amt_cashout_p2b_6m Continuous 
momo_fee_cashout_p2p_1m Continuous 
momo_fee_cashout_p2p_3m Continuous 
momo_fee_cashout_p2p_6m Continuous 

momo_fee_cashout_widthrw_1m Continuous 
momo_fee_cashout_p2b_1m Continuous 
momo_fee_cashout_p2b_3m Continuous 
momo_acc_bal_bundle_1m Continuous 
momo_acc_bal_bundle_3m Continuous 
momo_acc_bal_bundle_6m Continuous 

momo_acc_bal_cashout_p2p_1m Continuous 
momo_acc_bal_cashout_p2p_3m Continuous 

momo_acc_bal_airtime_1m Continuous 
momo_acc_bal_cashin_deposit_1m Continuous 
momo_acc_bal_cashin_deposit_3m Continuous 

momo_acc_bal_cashin_p2p_1m Continuous 
momo_acc_bal_cashin_p2p_3m Continuous 
momo_acc_bal_cashin_p2p_6m Continuous 

momo_acc_bal_cashout_widthrw_1m Continuous 
momo_acc_bal_cashout_widthrw_3m Continuous 

momo_acc_bal_cashout_p2b_1m Continuous 
momo_acc_bal_cashout_p2b_3m Continuous 

momo_cnt_tot_1m Continuous 
momo_cnt_tot_3m Continuous 
momo_cnt_tot_6m Continuous 
momo_amt_tot_1m Continuous 
momo_amt_tot_3m Continuous 
momo_amt_tot_6m Continuous 
momo_fee_tot_1m Continuous 
momo_fee_tot_3m Continuous 
momo_fee_tot_6m Continuous 

default_flag Categorical 

 

Table 6.3. Credit risk dataset of Kaggle. 

Features names Description Type 

person_age Age Continuous 
person_income Annual Income Continuous 

person_home_ownership Home ownership Categorical (0,1,2,3) 
person_emp_length Employment length (in years) Continuous 

loan_intent Loan intent Categorical (0,1,2,3,4,5) 
loan_grade Loan grade Categorical (0,1,2,3,4,5,6) 
loan_amnt Loan amount Continuous 

loan_int_rate Interest rate Continuous 
loan_percent_income Percent income Continuous 

cb_person_default_on_file Historical default Categorical (0,1) 
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cb_preson_cred_hist_length Credit history length Continuous 
loan_status Loan status Categorical (0,1) 

 

Table 6.4. Linguistic terms and the corresponding triangular fuzzy numbers (Harker & 
Vargas, 1987; Ayhan, 2013). 

Saaty scale Definition Fuzzy Triangular Scale 

1 Equally important (Eq. Imp.) (1,1,1) 

3 Weakly important (W. Imp.) (2,3,4) 

5 Fairly important (F. Imp.) (4,5,6) 

7 Strongly important (S. Imp.) (6,7,8) 

9 Absolutely important (A. 
Imp.) 

(9,9,9) 

2  
The intermittent values 
between two adjacent 

scales 

(1,2,3) 

4 (3,4,5) 

6 (5,6,7) 

8 (7,8,9) 

 

6.5. Pair-wise comparison matrix of AUC decision maker supporter. 

Evaluation 
metrics 

AUC Accuracy F1-score H-measure 

AUC [1, 1, 1] [1, 2, 3] [2, 3, 4] [3, 4, 5] 
Accuracy [0.33, 0.5, 1.0] [1, 1, 1] [1, 2, 3] [3, 4, 5] 
F1-score [0.25, 0.33, 0.5] [0.33, 0.5, 1.0] [1, 1, 1] [1, 2, 3] 

H-measure [0.2, 0.25, 0.33] [0.2, 0.25, 0.33] [0.33, 0.5, 1.0] [1, 1, 1] 

  

6.6. Pair-wise comparison matrix of Accuracy decision maker supporter. 

Evaluation 
metrics 

AUC Accuracy F1-score H-measure 

AUC [1, 1, 1] [0.2, 0.25, 0.33] [1, 2, 3] [2, 3, 4] 
Accuracy [3, 4, 5] [1, 1, 1] [2, 3, 4] [4, 5, 6] 
F1-score [0.33, 0.5, 1.0] [0.25, 0.33, 0.5] [1, 1, 1] [1, 2, 3] 

H-measure [0.25, 0.33, 0.5] [0.17, 0.2, 0.25] [0.33, 0.5, 1.0] [1, 1, 1] 

 

6.7. Pair-wise comparison matrix of F1-score decision maker supporter. 

Evaluation 
metrics 

AUC Accuracy F1-score H-measure 

AUC [1, 1, 1] [0.33, 0.5, 1.0] [0.33, 0.5, 1.0] [2, 3, 4] 
Accuracy [1, 2, 3] [1, 1, 1] [0.33, 0.5, 1.0] [3, 4, 5] 
F1-score [1, 2, 3] [1, 2, 3] [1, 1, 1] [3, 4, 5] 

H-measure [0.25, 0.33, 0.5] [0.2, 0.25, 0.33] [0.2, 0.25, 0.33] [1, 1, 1] 
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6.8. Pair-wise comparison matrix of H-measure decision maker supporter. 

Evaluation 
metrics 

AUC Accuracy F1-score H-measure 

AUC [1, 1, 1] [1, 2, 3] [1, 2, 3] [0.2, 0.25, 0.33] 
Accuracy [0.33, 0.5, 1.0] [1, 1, 1] [0.33, 0.5, 1.0] [0.17, 0.2, 0.25] 
F1-score [0.33, 0.5, 1.0] [1, 2, 3] [1, 1, 1] [0.17, 0.2, 0.25] 

H-measure [3, 4, 5] [4, 5, 6] [4, 5, 6] [1, 1, 1] 

 

Table 6.9.  Evaluation metrics of 1-layer NN in Australian credit approval. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.901515 0.909091 0.901515 0.909091 
Precision 0.823529 0.894737 0.879310 0.857143 

Recall 0.982456 0.894737 0.894737 0.947368 
F1-score 0.896000 0.894737 0.886957 0.900000 

AUC 0.911228 0.907368 0.900702 0.913684 
H-measure 0.714584 0.713569 0.692092 0.725220 

 

Table 6.10.   Evaluation metrics of 2-layer NN in Australian credit approval. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.901515 0.901515 0.893939 0.901515 
Precision 0.879310 0.879310 0.877193 0.866667 

Recall 0.894737 0.894737 0.877193 0.912281 
F1-score 0.886957 0.886957 0.877193 0.888889 

AUC 0.900702 0.900702 0.891930 0.902807 
H-measure 0.692092 0.692092 0.667468 0.695758 

 

Table 6.11.   Evaluation metrics of 3-layer NN in Australian credit approval. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.568182 0.568182 0.916667 0.909091 
Precision 0.000000 0.000000 0.859375 0.881356 

Recall 0.000000 0.000000 0.964912 0.912281 
F1-score 0.000000 0.000000 0.909091 0.896552 

AUC 0.500000 0.500000 0.922456 0.909474 
H-measure 0.000000 0.000000 0.750781 0.717028 

 

Table 6.12. The best hyperparameters of 1-Layer NN in Australian credit approval dataset. 

Hyperparameters Tree-str Parzen 
Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units 39 40 30 39 
Alpha of 

LeakyRelu 
0.023783 0.056486 0.069636 0.087344 

Dropout 0.465079 0.321456 0.418900 0.476562 
Learning Rate 0.000291 0.000326 0.001384 0.000204 
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Batch Size 16 16 16 16 
Kernel 

Regularizers 
0.000160 0.000178 0.001046 0.000437 

Bias Regularizers 0.007385 0.001872 0.000015 0.001286 
Time (seconds) 35.12 1209.99 1342.69 1078.418 

 

Table 6.13. The best hyperparameters of 2-Layer NN in Australian credit approval dataset. 

Hyperparameters Tree-str 
Parzen Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units (1st layer) 27 7 31 23 
Units (2nd layer) 33 28 34 18 
Alpha of LeakyRelu 
(1st layer) 

0.085426 0.071215 0.063457 0.075391 

Alpha of LeakyRelu 
(2nd layer) 

0.085948 0.066952 0.080776 0.071172 

Dropout (1st layer) 0.20192 0.495251 0.316344 0.460156 
Dropout (2nd layer) 0.219817 0.472364 0.489855 0.267969 
Kernel Regularizers 
(1st layer)  

0.001011 0.007377 0.000129 0.000217 

Kernel Regularizers 
(2nd layer) 

0.000001 0.000432 0.001115 0.000053 

Bias Regularizers 
(1st layer) 

0.000331 0.000082 0.000015 0.000018 

Bias Regularizers 
(2nd layer) 

0.001770 0.000026 0.000927 0.000012 

Learning Rate 0.000189 0.001613 0.000212 0.000625 
Batch Size 16 256 32 16 
Time (seconds) 26.77 1314.15 1148.92 4589.11 

 

Table 6.14. The best hyperparameters of 3-Layer NN in Australian credit approval dataset. 

Hyperparameters Tree-str 
Parzen Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units (1st layer) 9 33 27 11 
Units (2nd layer) 29 11 31 31 
Units (3rd layer) 35 36 30 31 
Alpha of LeakyRelu 
(1st layer) 

0.057629 0.077506 0.088733 0.077500 

Alpha of LeakyRelu 
(2nd layer) 

0.071648 0.050823 0.030004 0.032500 

Alpha of LeakyRelu 
(3rd layer) 

0.070544 0.017658 0.024256 0.032500 

Dropout (1st layer) 0.487013 0.379613 0.406850 0.425000 
Dropout (2nd layer) 0.407752 0.226256 0.295919 0.275000 
Dropout (3rd layer) 0.371759 0.426354 0.393775 0.275000 
Kernel Regularizers 
(1st layer)  

0.006568 0.000027 0.001351 0.000056 
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Kernel Regularizers 
(2nd layer) 

0.000489 0.000031 0.002079 0.000056 

Kernel Regularizers 
(3rd layer) 

0.000010 0.002230 0.000012 0.000056 

Bias Regularizers 
(1st layer) 

0.000039 0.000047 0.002242 0.001778 

Bias Regularizers 
(2nd layer) 

0.000778 0.000160 0.000020 0.001778 

Bias Regularizers 
(3rd layer) 

0.003376 0.000321 0.005832 0.000056 

Learning Rate 0.000058 0.000316 0.000272 0.002659 
Batch Size 64 32 32 256 
Time (seconds) 28.85 1531.23 4568.51 1553.07 

 

Table 6.15.   Evaluation metrics of 1-layer NN in Credit risk dataset of Kaggle. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0. 864930 0.864415 0.866472 0.864415 
Precision 0.774862 0.764391 0.767411 0.775453 

Recall 0.473019 0.481450 0.492411 0.468803 
F1-score 0.587435 0.590792 0.599897 0.584341 

AUC 0.718975 0.721792 0.727165 0.717082 
H-measure 0.334284 0.337359 0.347785 0.330960 

    

Table 6.16.   Evaluation metrics of 2-layer NN in Credit risk dataset of Kaggle. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.895955 0.900583 0.904354 0.907439 
Precision 0.826381 0.915068 0.931319 0.887290 

Recall 0.618044 0.563238 0.571669 0.623946 
F1-score 0.707188 0.697286 0.708464 0.732673 

AUC 0.792456 0.774949 0.780456 0.801861 
H-measure 0.487065 0.466846 0.480633 0.518255 

 

Table 6.17.   Evaluation metrics of 3-layer NN in Credit risk dataset of Kaggle. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.912239 0.903668 0.906754 0.904011 
Precision 0.907005 0.896947 0.873256 0.938375 

Recall 0.633221 0.594435 0.633221 0.564924 
F1-score 0.745780 0.715010 0.734115 0.705263 

AUC 0.808327 0.788504 0.804885 0.777729 
H-measure 0.535375 0.491948 0.522100 0.476017 
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Table 6.18. The best hyperparameters of 1-Layer NN in Credit risk dataset of Kaggle. 

Hyperparameters Tree-str Parzen 
Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units 30 1213 10 14 
Alpha of 

LeakyRelu 
0.021675 0.026858 0.036926 0.026875 

Dropout 0.436936 0.277678 0.224593 0.293750 
Learning Rate 0.000143 0.000281 0.000414 0.000985 

Batch Size 256 256 256 512 
Kernel 

Regularizers 
0.006809 0.000802 0.000743 0.006494 

Bias Regularizers 0.000258 0.000777 0.002538 0.000205 

 

Table 6.19. The best hyperparameters of 2-Layer NN in Credit risk dataset of Kaggle. 

Hyperparameters Tree-str 
Parzen Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units (1st layer) 37 37 34 40 
Units (2nd layer) 25 23 21 40 
Alpha of LeakyRelu 
(1st layer) 

0.052106 0.033495 0.040039 0.058516 

Alpha of LeakyRelu 
(2nd layer) 

0.021953 0.011575 0.062107 0.020547 

Dropout (1st layer) 0.407296 0.211454 0.293840 0.216406 
Dropout (2nd layer) 0.253895 0.454297 0.215003 0.249219 
Kernel Regularizers 
(1st layer)  

0.000093 0.000012 0.000144 0.001877 

Kernel Regularizers 
(2nd layer) 

0.000333 0.000534 0.000030 0.000461 

Bias Regularizers 
(1st layer) 

0.000018 0.000418 0.000067 0.000882 

Bias Regularizers 
(2nd layer) 

0.000404 0.003113 0.005658 0.000018 

Learning Rate 0.001683 0.004086 0.006154 0.000870 
Batch Size 32 512 32 32 

     

Table 6.20. The best hyperparameters of 3-Layer NN in Credit risk dataset of Kaggle. 

Hyperparameters Tree-str 
Parzen Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units (1st layer) 39 39 24 32 
Units (2nd layer) 27 37 24 32 
Units (3rd layer) 21 36 22 27 
Alpha of LeakyRelu 
(1st layer) 

0.034490 0.024722 0.046519 0.074688 

Alpha of LeakyRelu 
(2nd layer) 

0.060273 0.042851 0.044781 0.029688 

Alpha of LeakyRelu 
(3rd layer) 

0.031091 0.041160 0.092553 0.012813 
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Dropout (1st layer) 0.232611 0.234990 0.252576 0.228125 
Dropout (2nd layer) 0.295774 0.306068 0.257878 0.284375 
Dropout (3rd layer) 0.341761 0.309852 0.332012 0.471875 
Kernel Regularizers 
(1st layer)  

0.001831 0.000405 0.000021 0.000107 

Kernel Regularizers 
(2nd layer) 

0.000027 0.000023 0.000048 0.002207 

Kernel Regularizers 
(3rd layer) 

0.000460 0.005663 0.002540 0.000604 

Bias Regularizers 
(1st layer) 

0.000268 0.000070 0.000027 0.001433 

Bias Regularizers 
(2nd layer) 

0.000017 0.002519 0.000186 0.000255 

Bias Regularizers 
(3rd layer) 

0.000136 0.000123 0.001747 0.000165 

Learning Rate 0.002194 0.001205 0.006756 0.001162 
Batch Size 128 256 256 16 
Time (seconds) 83.18 101.11 108.67 99.1 

  

Table 6.21.   Evaluation metrics of 1-layer NN in Real-world dataset. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.618030 0.611686 0.607346 0.614802 
Precision 0.610110 0.599228 0.588026 0.603204 

Recall 0.689429 0.713723 0.760998 0.708689 
F1-score 0.647349 0.651483 0.663423 0.651706 

AUC 0.616793 0.609919 0.604684 0.613176 
H-measure 0.066120 0.059947 0.057617 0.063094 

  

Table 6.22.   Evaluation metrics of 2-layer NN in Real-world dataset. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.683695 0.679688 0.673344 0.680690 
Precision 0.726462 0.723382 0.693878 0.753883 

Recall 0.606260 0.599256 0.639965 0.552418 
F1-score 0.660940 0.655494 0.665832 0.637615 

AUC 0.685036 0.681082 0.673923 0.682912 
H-measure 0.163509 0.157039 0.142419 0.166114 

 

Table 6.23.   Evaluation metrics of 3-layer NN in Real-world dataset. 

Metric T-str Parzen Est. Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Accuracy 0.680022 0.678019 0.671675 0.668447 
Precision 0.702052 0.714542 0.744932 0.771516 

Recall 0.644123 0.610856 0.538849 0.494419 
F1-score 0.671841 0.658643 0.625349 0.602641 
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AUC 0.680644 0.679182 0.673976 0.671462 
H-measure 0.153476 0.152768 0.151431 0.154668 

 

Table 6.24. The best hyperparameters of 1-Layer NN in Real-world dataset. 

Hyperparameters Tree-str Parzen 
Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units 38 40 4 19 
Alpha of 

LeakyRelu 
0.095879 0.086744 0.091024 0.096484 

Dropout 0.364806 0.366596 0.221464 0.464844 
Learning Rate 0.001949 0.000072 0.002296 0.000413 

Batch Size 128 1024 32 256 
Kernel 

Regularizers 
0.000030 0.009885 0.000202 0.000241 

Bias Regularizers 0.000102 0.000389 0.000038 0.000141 

 

Table 6.25. The best hyperparameters of 2-Layer NN in Real-world dataset. 

Hyperparameters Tree-str 
Parzen Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units (1st layer) 40.000000 39.000000 36.000000 35.000000 
Units (2nd layer) 40.000000 36.000000 27.000000 39.000000 
Alpha of LeakyRelu 
(1st layer) 

0.070235 0.010615 0.049384 0.045156 

Alpha of LeakyRelu 
(2nd layer) 

0.054595 0.076800 0.027080 0.064844 

Dropout (1st layer) 0.200386 0.252838 0.281791 0.298438 
Dropout (2nd layer) 0.460749 0.486565 0.352922 0.232813 
Kernel Regularizers 
(1st layer)  

0.000279 0.000026 0.000105 0.000120 

Kernel Regularizers 
(2nd layer) 

0.000017 0.000831 0.000174 0.000050 

Bias Regularizers 
(1st layer) 

0.000184 0.000233 0.003863 0.000184 

Bias Regularizers 
(2nd layer) 

0.000457 0.007148 0.000104 0.000284 

Learning Rate 0.000733 0.002072 0.000580 0.002074 
Batch Size 256.000000 32.000000 64.000000 1024.000000 
Time (sec.) 123.000000 145.820000 156.160000 119.370000 

 

Table 6.26. The best hyperparameters of 3-Layer NN in Real-world dataset. 

Hyperparameters Tree-str 
Parzen Est. 

Random 
Sampler 

Genetic 
Algorithm 

Quasi Monte 
Carlo 

Units (1st layer) 35 27 26 39 
Units (2nd layer) 40 28 17 35 
Units (3rd layer) 26 14 16 37 
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Alpha of LeakyRelu 
(1st layer) 

0.016079 0.013365 0.057078 0.033906 

Alpha of LeakyRelu 
(2nd layer) 

0.085886 0.095177 0.096936 0.059219 

Alpha of LeakyRelu 
(3rd layer) 

0.053844 0.042875 0.015241 0.073281 

Dropout (1st layer) 0.207566 0.293543 0.444847 0.392188 
Dropout (2nd layer) 0.344614 0.319715 0.202576 0.223438 
Dropout (3rd layer) 0.431114 0.237113 0.216964 0.467187 
Kernel Regularizers 
(1st layer)  

0.000015 0.000038 0.000011 0.000011 

Kernel Regularizers 
(2nd layer) 

0.000191 0.000047 0.000030 0.000021 

Kernel Regularizers 
(3rd layer) 

0.000104 0.000409 0.007039 0.000284 

Bias Regularizers 
(1st layer) 

0.000198 0.000648 0.000017 0.000050 

Bias Regularizers 
(2nd layer) 

0.000014 0.000460 0.000133 0.000229 

Bias Regularizers 
(3rd layer) 

0.006699 0. 007598 0.000090 0.000063 

Learning Rate 0.000566 0.001790 0.001566 0.000552 
Batch Size 32 512 128 32 

 

6.27. Results of FAHP based on 1st expert (AUC). 

 Lower 
Bound 

Medium 
Bound 

Upper 
Bound 

Expected 
Value 

Standard 
Deviation 

AUC 0.338767 0.455194 0.619706 0.467216 0.044744 
Accuracy 0.220523 0.296097 0.417592 0.307577 0.031579 
F1 score 0.115728 0.159414 0.232229 0.166696 0.018706 

H-measure 0.070381 0.089295 0.123837 0.093202 0.008631 

 

6.28. Results of FAHP based on 2nd expert (Accuracy). 

 Lower 
Bound 

Medium 
Bound 

Upper 
Bound 

Expected 
Value 

Standard 
Deviation 

AUC 0.159202 0.217721 0.302435 0. 224270 0.022836 
Accuracy 0.433319 0.547381 0.708841 0.559231 0.043885 
F1 score 0.109038 0.150256 0.217175 0.156681 0.017338 

H-measure 0.066339 0.084641 0.118327 0.088487 0.008398 

  

6.29. Results of FAHP based on 3rd expert (F1-score). 

 Lower 
Bound 

Medium 
Bound 

Upper 
Bound 

Expected 
Value 

Standard 
Deviation 

AUC 0.149870 0.201420 0.292367 0.211269 0.022957 
Accuracy 0.224864 0.301002 0.420900 0.311942 0.031380 
F1 score 0.301868 0.417805 0. 575832 0.428327 0.043572 
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H-measure 0.065436 0.079773 0.104156 0.082285 0.006224 

  

6.30. Results of FAHP based on 4th expert (H-measure). 

 Lower 
Bound 

Medium 
Bound 

Upper 
Bound 

Expected 
Value 

Standard 
Deviation 

AUC 0.130892 0.188050 0.271122 0.194528 0.022361 
Accuracy 0.070076 0.093385 0.137957 0.098701 0.010993 
F1 score 0.093523 0.129608 0.189467 0.135551 0.015401 

H-measure 0.468858 0.588958 0.765456 0.603058 0.047318 

  

Table 6.31. Australian credit approval results of TOPSIS with priority in 
AUC. 

 C* S- S* 

1 Hidden Layer MPL 0. 576346 0. 004995   0. 003672   
2 Hidden Layer MPL 0.000000 0.000000 0. 008650   
3 Hidden Layer MPL 1.000000 0. 008650   0.000000 

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

 

Table 6.32. Australian credit approval results of TOPSIS with priority in 
Accuracy. 

 C* S- S* 

1 Hidden Layer MPL 0.540528 0.004223 0.003590 
2 Hidden Layer MPL 0.000000 0.000000 0.007788 
3 Hidden Layer MPL 1.000000 0.007788 0.000000 

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.33. Australian credit approval results of TOPSIS with priority in 
F1-score. 

 C* S- S* 

1 Hidden Layer MPL 0. 573024 0. 004784   0. 003564   
2 Hidden Layer MPL 0.000000 0.000000 0. 008333   
3 Hidden Layer MPL 1.000000 0. 008333   0.000000 

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

 

Table 6.34. Australian credit approval results of TOPSIS with priority in 
H-measure. 

 C* S- S* 

1 Hidden Layer MPL 0.56479 0.016078   0.012390   
2 Hidden Layer MPL 0.00000 0.000000 0.028467   
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3 Hidden Layer MPL 1.00000 0.028467   0.000000 

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

 

Table 6.35. Credit risk of Kaggle results of TOPSIS with priority in AUC. 

 C* S- S* 

1 Hidden Layer MPL 0.000000 0.000000   0.041585   
2 Hidden Layer MPL 0.913466 0.037997   0.003600   
3 Hidden Layer MPL 1.000000 0.041585   0.000000   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.36. Credit risk of Kaggle results of TOPSIS with priority in 
Accuracy. 

 C* S- S* 

1 Hidden Layer MPL 0.00000 0.000000   0.034940   
2 Hidden Layer MPL 0.90755 0.031722   0.003231   
3 Hidden Layer MPL 1.00000 0.034940   0.000000   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.37. Credit risk of Kaggle results of TOPSIS with priority in F1-
score. 

 C* S- S* 

1 Hidden Layer MPL 0.000000 0.000000   0.057320   
2 Hidden Layer MPL 0.910062 0.052168   0.005156   
3 Hidden Layer MPL 1.000000 0.057320   0.000000   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.38. Credit risk of Kaggle results of TOPSIS with priority in H-
measure. 

 C* S- S* 

1 Hidden Layer MPL 0.00000 0.000000   0.139072   
2 Hidden Layer MPL 0.90883 0.126394   0.012679   
3 Hidden Layer MPL 1.00000 0.139072   0.000000   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

 



112 
 

Table 6.39. Real-world results of TOPSIS with priority in AUC. 

 C* S- S* 

1 Hidden Layer MPL 0.000000 0.000000   0.051041   
2 Hidden Layer MPL 0.969753 0.050955   0.001589   
3 Hidden Layer MPL 0.912240 0.046695   0.004492   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.40. Real-world results of TOPSIS with priority in Accuracy. 

 C* S- S* 

1 Hidden Layer MPL 0.000000 0.000000   0.050757   
2 Hidden Layer MPL 0.971368 0.050680   0.001494   
3 Hidden Layer MPL 0.915850 0.046655   0.004287   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.41. Real-world results of TOPSIS with priority in F1-score. 

 C* S- S* 

1 Hidden Layer MPL 0.000000 0.000000   0.041679   
2 Hidden Layer MPL 0.909367 0.040974   0.004084   
3 Hidden Layer MPL 0.910248 0.038119   0.003759   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  

  

Table 6.42. Real-world results of TOPSIS with priority in H-measure. 

 C* S- S* 

1 Hidden Layer MPL 0.000000 0.000000   0.251551   
2 Hidden Layer MPL 0.994888 0.251540   0.001292   
3 Hidden Layer MPL 0.897067 0.225665   0.025894   

Where C*: Similarity to the best condition, S*: Distance between the 
target alternative i and the best condition and S-: Distance between the 
alternative i from the worst ideal solution  
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