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Iepiinyn

H mapovoa simhopotikn epyacio mpoaypatedeton Tig ddikacieg Lévy yia tpoAdynon
dkaopdtov Tpoaipeons, kabmg amotelel medlo EVIOVOL £PEVVNITIKOD EVIUPEPOVTOC
OYETIKO UE TNV EPOPUOYN TOV EUTAEKOUEVOV HOVIEAW®V GTO YPTHUATOOIKOVOUIKA,
wloitepa Katd TNV TeEAeuTOiN dEKOETIO. XTOYOG OGS NTAV VO OTOGOPTVIGOVIE TO KOPLOL
poOnpotikd yopoktnplotikd mévie dionuov poviédmv (Black — Scholes, Merton,
Heston, Kou ka1 Generalized Hyperbolic) kot va mapéyovpe epyoieio povielomoinong,
Kot Oyl VO TOPOVGIAGOVLE L0 GUGTNHOTIKY avackonmnon s Biproypagiog avoapopucd

pe OAa Ta LOVTELD GTOYOCTIKMV dtodtkacldv Lévy mov €xovv meptypaeel amd epeuvntés.

[T ovykekppéva, 610 TPAOTO KEPAANIO EEKIVA o GOVTOUN E100Y®YN, OTNV OToin
TEPLYPAPoOVTAL Pacikég £vvoleg TV dadikacldv Lévy ovtmg mate vo TapEYOLUE Hia
OAOKANPOLEVT] EIKOVOL TOV OPLGHOV, TOV YOPUKTNPIOTIKOV Kol TV O10THTM®V TOVG, TOV

Bo BonOnoet Tov avayvdGTN TNV KATAVONGT TOV TEPLEYOUEVOL TNG OUTAM LOTIKTG.

270 EMOUEVO KEQAALO, epPadivovpe 0TI TEPMAOKES TV dladikactdv Lévy pe dipota,
e€etdlovtag to VIAdEIYa «toy» Kol SeEvKPvilovTag TIG OmEIPOC SIUPETES KOTAVOUES
toug. [Tapovoidlovtar ot tomor Lévy — Khintchine xor Lévy — Itd xor akoloOOwc,
avaAvovTon d1dpopeg vrrokatnyopieg TV dadikacidv Lévy, copnepthappfavopévov tmv
Olepyastdv He GALOTO TEMEPAGUEVIG UETAPOANG, TOV (QUCUOTIKOV HOVOTAELP®V
Olepyacidv Kol ekelvav pe TEMEPOCUEVES TPMTEG poméc. Téhog, diepevvolpe
vrodetypatikég olepyaciec Lévy oOmmg dwdwooieg Poisson, ocOvOeteg oSwodikaocieg

Poisson, ypappukn kivnon Brown kot otafBepéc diepyaociec.

2to Keopdhowo 3, eotnidlovpe otg epoppoyés tov  Oowdwkaciodv Lévy otov
YPNUOTOOIKOVOUIKO  KAGSO0. Xv{ntovvior Kavoves TILOAOYNONG, 1GOOVVOUO HETPO
martingale, pétpa ovdETEPOL KIVOHVOL KOl 1 £VvOll TNG KN TANPOTNTAG TNG AYOPdc.
[vetor por oxoAaoTiky] O1epedvi|orn NG 1GOSVVOLING TOV UETPMOV GTO TANIGLO T®V

dwdkaciov Lévy.

Téloc, oto Kepdhowo 4 meprypdeovtal mévie OMUOPIA HOVTEAQ TIHOAOYNONG OTN
BipAoypapio Tov podnuatikov ypnpatoowovopuk®v. E&etaleton 1o Oepeiddeg
povtédo Black — Scholes kot axoAovBel pia g fdbog avédivon tov poviélov Merton

Jump-Diffusion Model, Heston Stochastic Volatility Model, Kou Double Exponential




Jump-Diffusion Model ko1 tov Generalized Hyperbolic Model. Toa poOnuatikd

YOPOKTNPLOTIKA, Ol EPOPLOYEG KOl O1 EMTTOCELS TOL KaBevdg dtevkpvilovrat 01e£0dtKa.

AéEgic-khednd: Baowkég évvoleg tov dadikaoiov Lévy, Awadikaciég Lévy pe daparta,
VIOOEYUOTIKEG Otepyaoieg Lévy, Awadikactég Lévy otov ypnuotootkovoukd kAo,

HOVTELD TILOAOYNONG.




Abstract

The present thesis deals with the study of Lévy processes for option pricing, since it is a
field of intense research interest regarding the application in finance, especially over the
last decade. Our aim was to elucidate the primary mathematical characteristics of five
renowned models (Black — Scholes, Merton, Heston, Kou and Generalized Hyperbolic)
and provide modelling tools, rather than displaying an exhaustive overview of all Lévy

models described in the literature or delving into their intricate mathematical properties.

More specifically, the first chapter embarks on a brief description of Lévy processes,
providing a comprehensive understanding of their definition, characteristics, and

properties.

In the next chapter, we delve into the intricacies of Lévy processes, examining a 'toy'
example of jump-diffusion Lévy processes and elucidating their infinitely divisible
distributions. The Lévy — Khintchine formula and the Lévy — It6 decomposition are
presented, followed by an exploration of various subclasses of Lévy processes, including
subordinators, jumps of finite variation, spectrally one-sided processes, and those with
finite first moments. Finally, we investigate exemplary Lévy processes such as Poisson

processes, compound Poisson processes, linear Brownian motion, and stable processes.

In Chapter 3, we shift our focus to the applications of Lévy processes in finance. Pricing
rules, equivalent martingale measures, risk-neutral measures, and the concept of market
incompleteness are discussed. A meticulous exploration of the equivalence of measures

within the context of Lévy processes is undertaken.

Chapter 4 navigates through popular pricing models in the mathematical finance
literature. The foundational Black — Scholes model is examined, followed by an in-depth
analysis of the Merton Jump-Diffusion Model, Heston Stochastic Volatility Model, Kou
Double Exponential Jump-Diffusion Model, and the Generalized Hyperbolic Model.
Each model's mathematical characteristics, applications, and implications are thoroughly

elucidated.

Keyword: Description of Lévy processes, the intricacies of Lévy processes, exemplary

Lévy processes, Lévy processes in finance, pricing models.
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Chapter 1: Introduction

Lévy processes is a remarkable class of stochastic processes that have gained substantial
prominence in the field of finance and beyond. Their unique characteristics and properties

make them a powerful tool for modelling complex phenomena.

The history of Lévy processes can be traced back to the early 20" century. The concept
was introduced by the French mathematician Paul Lévy in his groundbreaking work,
"Théorie de I’ Addition des Variables Aléatoires", published in 1937 [1]. Lévy's
exploration of these processes marked a significant departure from traditional stochastic
modelling. He laid the foundation for understanding random phenomena characterized by
sudden and discontinuous changes, which had profound implications in various domains,
especially in finance. The evolution of Lévy processes continued with the contributions
of other notable mathematicians. For instance, Andrey Kolmogorov and Bruno de Finetti
played key roles in the development of the theory. Their work expanded the understanding
of Lévy processes and their applications, particularly in probability and statistical theory
[2, 3]. This rich history underscores the enduring significance of Lévy processes in

modern mathematics and finance.

The application of Lévy processes in finance is multifaceted and has yielded invaluable
insights and tools for financial modelling and risk management. Lévy processes can
effectively capture both continuous and discontinuous movements in financial time series,
making them highly suitable for modelling asset returns and price dynamics. Lévy-driven
models, such as the Merton jump-diffusion model and the Variance Gamma model, have
been instrumental in improving the accuracy of financial pricing and risk assessment.
These models incorporate jumps, which represent sudden market events, making them

essential for capturing the unpredictability of financial markets [4].

Furthermore, Lévy processes have found applications in risk management, including the
calculation of value-at-risk (VaR) and conditional value-at-risk (CVaR). Their ability to
model extreme events and discontinuities in financial time series is essential for
estimating tail risk, which is crucial for risk mitigation and regulatory compliance. In

addition, Lévy processes are extensively used in derivative pricing, where complex
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financial instruments such as options and structured products can be valued with greater

accuracy, considering the impact of jumps and other stochastic elements [5].

The growing significance of Lévy processes in finance continues to influence how we
perceive and manage risk in the ever-evolving landscape of global financial markets.
Their flexibility and adaptability provide financial practitioners with valuable tools to
navigate the complexities of modern finance. Lévy processes represent a fascinating and
indispensable topic in the realms of probability theory and finance. Their historical
development and subsequent applications in financial modelling and risk management
have transformed the way we understand and approach randomness in the financial world.
This thesis will delve into the intricacies of Lévy processes and their far-reaching
implications in the field of finance, exploring various models, characteristics, and

applications.
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Chapter 2: Lévy Processes

2.1 Definition of Lévy Processes

Lévy processes, named after the eminent French mathematician Paul Lévy, constitute a
class of stochastic processes with distinctive features that render them indispensable in
diverse fields, particularly in finance. A Lévy process is defined as a continuous-time

stochastic process {X), t > 0} with X ; = 0 a.s., characterized by three core properties
[6]:

» Independent increments: Lévy processes boast the property of independent
increments. This signifies that the increments of the process over non-overlapping
time intervals are statistically independent. Consequently, Lévy processes do not
display any form of memory, a trait that is particularly advantageous in modelling
random jumps.

1.e., Xt— Xs is independent of Zs forany 0 <s <t <T.

» Stationarity of Increments: Lévy processes exhibit stationarity, meaning their
statistical characteristics remain invariant over time. This property implies that the
distribution of increments remains consistent irrespective of when the observation
takes place.

i.e., for any 0 < s,t <T the distribution of X¢+s — Xt does not depend on t.

» Stochastically continuous: The distribution of increments in a Lévy process is solely
determined by the length of the time interval and is independent of the starting
point. This attribute is often expressed through the characteristic function, a crucial
component of Lévy processes.

ie., forany 0 <t <T and € > 0: lims_t P(|X:t — Xs|>¢€)=0.

12



2.2 Characteristics and Properties of Lévy Processes

Lévy processes possess a set of defining characteristics and properties that set them apart

from other stochastic processes [5, 6]:

» Jump Components: A hallmark of Lévy processes is their capacity to exhibit jumps,
abrupt and discontinuous changes in their values. These jumps play a fundamental
role in modelling unexpected events across various domains, including financial

markets.

» Drift and Diffusion: Lévy processes can encompass both jump components and drift
and diffusion components, similar to traditional continuous-time stochastic
processes like Brownian motion. This feature enables the modelling of gradual

changes over time.

» Stability: Lévy processes are stable, signifying that the summation of independent
Lévy-distributed random variables remains Lévy-distributed. This stability
property is especially relevant in finance, where stable distributions are frequently

observed in asset returns.

» Infinite Divisibility: The distribution of a Lévy process at any fixed time is infinitely
divisible, meaning it can be expressed as the sum of a large number of independent
and identically distributed (i.i.d.) random variables. This property proves invaluable

in modelling aggregated data and complex systems.

» Self-Similarity: Lévy processes often exhibit self-similarity, implying that they
manifest similarities at different time scales. This characteristic makes them well-

suited for modelling phenomena displaying fractal-like behaviour.

The simplest Lévy process is the deterministic process of a linear drift while Brownian
motion (which describes random movements of particles) is the only non-deterministic
model with continuous sample paths (Figure 1). Other examples of Lévy processes are
the Poisson and compound Poisson distributions. A mixture of a linear drift, Brownian
motion and compound Poisson processes is again a Lévy process, which is often called a

jump-diffusion process even though not all jump-diffusion processes are Lévy ones [7].

13
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Figure 1: Examples of Lévy processes: (A) Linear drift, (B) Brownian motion, (C)
Compound Poisson process, (D) Lévy jump-diffusion. Source: Papapantoleon, Antonis.
(2008). An introduction to Lévy processes with applications in finance.

2.3 A ‘Toy’ Example of Jump-diffusion Lévy Processes

To grasp the essence of Lévy jump-diffusion processes, we turn to a simplified illustrative
example, often referred to as the ‘Toy’ model. This example helps us understand the
interplay between continuous diffusion and discrete jump components within Lévy
processes. While the ‘Toy’ model is deliberately simplistic, it captures the fundamental
characteristics and properties of Lévy jump-diffusion processes, making it an ideal

starting point for in-depth comprehension [8, 9].

In the ‘Toy’ model, we consider a stochastic process {X(), t > 0} that evolves over time.
This process incorporates two fundamental components, each contributing to its overall
behaviour. The continuous diffusion component (dB()) resembles the smooth, continuous
paths of traditional Brownian motion. This component follows a stochastic differential
equation of the form:

dB(t) = ,Ltd[ + O'dW(t),

14



where:

p represents the drift, indicating the expected change in X over time. It accounts for the
tendency of X to move in a particular direction, such as an expected rate of return.

o denotes the volatility, measuring the randomness or dispersion of the process. It
quantifies the degree of uncertainty or fluctuations.

dW( is the increment of a Wiener process, representing the continuous stochastic

behaviour. It accounts for the continuous, random movements in the process.

In contrast to the smooth dynamics of the continuous diffusion, the '"Toy' model introduces
jump events at random time intervals. These jump events can be modelled using a Poisson
process and typically follow a distribution characterized by two main parameters, size (J)
and frequency (A). The former represents the magnitude of the jump, and the latter
represents the average number of jump events occurring in a given time interval. The
increments dN() represent the impact of these jumps on the overall process X(t), which
can be described as:

dXp = pud; + adWy) + dNg.

Based on the above, and given that all sources of randomness are independent, the

characteristic function of X is [5, 6]:

B[] = E[exp(iu(b, + oW, + Y V' J — t48))]

whereas, recalling that the characteristic functions of the normal and compound Poisson

distributions are:
iuocwW, —102u2t
E[e™oW] = 727", W, ~ N(0,¢)
o N )
E [elu2k=t1]k] = eM(Ele™k-1]D N, ~poisson(At)

as well as the fact that the distribution of Jx is F, and t is a common factor, the Lévy jump-
diffusion equation can be rewritten as:

u?g?

E[e™Xt] = exp [t(iub — 5

+ f (ei“x -1- iux)/lF(dx)]
R

The ‘Toy’ model is a foundational representation of Lévy jump-diffusion processes that

are frequently utilized in the realm of finance to model asset prices and returns. The jumps

15



in the model can be interpreted as sudden, real-word market events, such as earnings
announcements, economic news, or geopolitical shocks, which can lead to significant
price movements. This example serves as a stepping stone for financial practitioners to
grasp the nuanced interplay between continuous and discontinuous price changes,
providing insights that are pivotal for pricing complex financial derivatives and managing
risk in volatile markets. Thus, the ‘“Toy’ model turns out to be a valuable tool for risk

assessment, option pricing, and understanding the dynamics of financial markets [8].

2.4 Infinitely Divisible Distributions and the Lévy Processes

Lévy processes are closely related to the infinite divisible distributions, which are
probability distributions that can be obtained by infinite convolutions of simpler
probability distributions. The infinite divisible distributions are a broad class of
probability distributions that exhibit the property that if you sum any number of
independent random variables with the same distribution, the resulting distribution is of
the same type. This property is known as stability, and it is a defining characteristic of the

infinite divisible distributions [10, 11].

De Finetti (1929) was a pioneer in introducing the concept of infinitely divisible
distributions and illuminating their profound connection to Lévy processes, shedding
light on the vast diversity within the realm of Lévy processes [12]. This linkage not only
underlines the versatility of Lévy processes but also underscores their rich mathematical
and stochastic properties, making them a powerful tool for modelling various phenomena,

particularly in the field of finance.
According to the definition of infinite divisibility, a random variable X is infinitely
divisible only if for all n € N, there are i.i.d. random variables X fn), . X,(ln) such that:

(law)

= X 4 x™M L x™

Equivalently, a probability measure p is considered infinitely divisible only if foralln €

N, there is another probability measure pn such that:

16



P = Pn*Pn--*Pn

n—times
Alternatively, the characteristic function of the infinitely divisible random variable could

be used. Consequently, a probability measure p is considered infinitely divisible only if

forall n € N, there is another probability measure p, such that:

pw) = (Fa)"

The following theorem gives a complete characterization of random variables with
infinitely divisible distributions via their characteristic functions. This is the celebrated
Lévy — Khintchine formula which will be described in detail in the next section. For now,

we will use the preparatory result below (Sato 1999, Lemma 7.8):

If (pr) where k > 0 is a sequence of infinitely divisible distributions and p; 5 p, then p

is also infinitely divisible.

Let X = (X;) where t = 0 be a Lévy process. Then, forn € N and X, t > 0, the following
will apply:

Xe = Xem + Kogn — Xt) + -+ (X — X(n-1)t)
n n

And if it is assumed that each increment in a Lévy process follows a stationary

distribution,

Xtk — Xe@e-1) £ Xt for any k = 1,where £ implies distribution equality
n n n

Considering the independence of the increments, the random variables are independent

of each other as well; therefore, (X tk — X t(k—1)) for k > 1 is an i.i.d. sequence of random

n

variables. In this case and based on the definition, the random variable X; must be

infinitely divisible.

Infinitely divisible distributions include the Normal, Poisson, Exponential, Geometric,
Negative Binomial, Cauchy as well as the strictly stable distributions. All these are in
contrast to the Uniform Distribution and Binomial distribution which are not infinitely

divisible [5, 10].
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2.5 The Lévy — Khintchine Formula

As already mentioned, the celebrated Lévy — Khintchine formula offers a comprehensive
characterization of infinitely divisible distributions, primarily expressed in terms of their
characteristic functions. It is a fundamental result in probability theory and stochastic
processes [13,14]. Early contributions in proving versions of this representation came
from renowned mathematicians B. de Finetti and A. Kolmogorov, who established it
under specific assumptions [15]. Subsequently, P. Lévy and A. Khintchine independently
demonstrated the formula in its general form. Lévy approached the proof by analyzing
the sample paths of the stochastic process, while Khintchine employed direct analytic

methods to establish the result [1, 16].

To validate the Lévy — Khintchine Formula, the stochastic process must meet the Lévy

condition, which is expressed as follows:
For every Lévy process X = X + X + X3 the characteristic exponent must be of
the form: ¥ (u) = exp (iup — # + iu f{|x|<1}(ei" — 1 —ix) v(dx))
where:
e W(u) is the characteristic function of the Lévy process.
e u is the mean of the process (drift term).
e ¢ is the variance of the diffusion term.
¢ v is the measure of the jumps of the process in the interval [-1,1].

This condition incorporating the drift term, diffusion term and the jump component
ensures that the characteristic function has the specific form required for the use of the
Lévy —Khintchine Formula. The Lévy — Khintchine theorem establishes that a probability
measure p is infinitely divisible if and only if it can be expressed in terms of a triplet (b,

c, V), called as the Lévy or characteristic triplet, where:
e b € R and it is called the drift term.

e ¢ € R >0 and it is the Gaussian or diffusion coefficient (symmetric, non-negative

definite dxd matrix).

18



e v represents the Lévy measure.

The probability measure p(z) is characterized by the following expression:

(u, cu) () .
> + (e"™* —1 —i{u,x)1p))v (dx)
Rd

p(u) = exp (i{u, b) —

where D refers to a closed ball in d-dimensional real space, denoted as R9YD,

ie,D:={lx <1|}.

This theorem provides a fundamental connection between infinitely divisible measures
and the components of the triplet (b, ¢, v), enabling the representation of such measures
in a specific mathematical form. The truncation functions as well as the uniqueness of

this representation is extensively discussed below.

A truncation function h: R —» R? is defined by a bounded function satisfying h(x) = x

in a neighbourhood of zero.

Alternatively, a truncation function h’: R% - R refers to a bounded and measurable
function that satisfies the following:

h'(x) =1+ o(|x|),as |x| = 0

h'(x) = 0(1/lx), as x| = oo
The above two definitions are linked through h(x) = x X h'(x).

Some well-known examples of the truncation functions are given below:

i.  h(x) =x1p(x), also called as the canonical truncation function (Figure 2).

x
1+|x|?’

i, h(x) =

also called as the continuous truncation function (Figure 2).

iii.  h(x) =0 and h(x) = x; despite being commonly used, they are not always

permissible choices.
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Figure 2: lllustration of the canonical and the continuous truncation functions. Source:
Tsitisvili, M. (2020). Lévy processes and applications.

In fact, the Lévy — Khintchine representation of p depends on the choice of truncation
function, which means that in case of another truncation function h rather than the
canonical one, the equation becomes:

(u, cu)
2

p(u) = exp (i(u, by) — + | (efw® —1—iu, h(x)))v(dx))
Rd

where: by, = b + [p4(h(x) — x1p(x))v(dx)

If we aim to emphasize the influence of the truncation function on the Lévy triplet, we
will represent it as (b, ¢, v) or (b, ¢, V). It's important to note, though, that the diffusion
characteristic ¢ and the Lévy measure v remain consistent, regardless of the selected

truncation function.

One approach to determine if a given random variable follows an infinitely divisible
distribution is by examining its characteristic exponent. Let's denote this characteristic
exponent as @, given by P (u) := —logE(e™®) for all u € R. Then, @ exhibits an
infinitely divisible distribution if for all n > 1, there exists a characteristic exponent of a
probability distribution, denoted as 1,, satisfying the relationship Y(u) =

ny, (w) forallu € R [15]. The complete characterization of infinitely divisible
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distributions is achieved through the characteristic exponent 1 and the utilization of the

Lévy-Khintchine formula. Then, the Lévy exponent Y of X is defined as:

Y(u) = i{u, b) — @ + fR(ei<”’x) — 1 — iy, x)1p(x)v(dx)), where: [eXw )] =
o)

2.6 The Lévy - Ito Decomposition

In the previous section, it was established that for any Lévy process denoted as X =
(X¢)¢=0, the random variables X;, t = 0 exhibit an infinitely divisible distribution, which
we characterized using the Lévy — Khintchine representation. In this section, we aim to
demonstrate an ‘inverse’ result. Starting from an infinitely divisible distribution p or
equivalently from a Lévy triplet (b, c, v), our objective is to construct a Lévy process,
denoted as X = (X;)t»o in such a way that P(X;) = p. This process will establish a
connection between the distribution and the Lévy triplet, demonstrating their

interdependence [17, 18].

In the context of the Lévy — Itd decomposition, the Lévy measure must satisfies the

condition: ||li”rn0 v(Jul) = 0, which guarantees the continuity of the Lévy measure as well
ull—

as the condition: fRd(lxlel)v(dx) < oo, ensuring exponential boundedness.

Theorem: Let p be an infinitely divisible distribution with Lévy triplet (b, ¢, v), where
beRYceS* >0 and v is a Lévy measure. Then, there exists a probability space
(2, F,P) on which four independent Lévy processes exist, X1, X, X3 x @ where:
X is a constant drift, X® is a Brownian motion, X is a compound Poisson process
and X™® is a square integrable, pure jump martingale with a.s. countable number of jumps
of magnitude less than 1 in each finite time interval. Setting X = XM + ... + X®)_ we
have that there exists a probability space on which a Lévy process X = (X;)¢s0 1s defined,

with Lévy exponent:

(u,cu)

Y@ = i{u, by ——— + Jpa(€"** =1 — i{u, x)1p (x))v(dx), for all u € R?,
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and path or Lévy — [t6 decomposition:

X = bt +cW, + fot Jpexu*(ds, dx) + fot J, x(u* = v¥)(ds, dx), where v¥ =
Leb ® v.

As shown, the Lévy — Itd6 decomposition provides an insightful framework for elucidating
the composition of a generic Lévy process by breaking it down into three independent
auxiliary Lévy processes, each exhibiting distinct path characteristics. Proficiency in
comprehending the Lévy — Itd decomposition empowers us to differentiate various
essential subclasses of Lévy processes based on their path behaviours. To delve into this
subject, we will briefly explore the theory of Poisson random measures and the associated
square-integrable martingales. This background is necessary for a more thorough

understanding of Lévy processes and their diverse attributes.

2.7 Subclasses of Lévy Processes

We are already familiar with the fact that Brownian motion, compound Poisson processes,
and Lévy jump-diffusion processes fall under the category of Lévy processes. We've
explored their Lévy-Itd6 decomposition and characteristic functions. In this section, we

will introduce additional subclasses of Lévy processes that hold particular significance.

2.7.1 Subordinator

A ‘subordinator’ is an a.s. increasing in t Lévy process. For X to be a subordinator, the

triplet must satisfy the following:

o v(—,0)=0.
e ¢c=0.

f(o,1) xv(dx) < oo.

o y=b-— f(0,1) xv(dx) > 0.

The Lévy — Itd6 decomposition of a subordinator is:
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t
X, =yt+ f f xut(ds, dx)
0 Y/(0,00)
while the Lévy — Khintchine formula takes the form:

E[e™X] = exp [t (iuy t Jo,y (€™ = 1)v(dx))].

Two characteristic examples of this subclass are the Poisson and the inverse Gaussian

processes (Figure 3).

A B

A, —

Figure 3: Simulated paths of (4) a finite activity, (B) an infinite activity subordinator,
(C) a normal inverse Gaussian and (D) an inverse Gaussian process. Modified image
from: Papapantoleon, Antonis. (2008). An introduction to Lévy processes with
applications in finance.

2.7.2 Jumps of finite variation

A Lévy process has jumps of finite variation if and only if:
J |x|v(dx) < o
|x|=1

In this case, the Lévy — [t decomposition of X resumes the form:
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t
X, = yt+\/EWt+f fx,ux(ds,dx)
0 Jr

while the Lévy — Khintchine formula takes the form:

. u?c .
E[eluX] = exp [t (iuy Y + f (elux _ Dv(dx))l
R
where y is defined as in the ‘Subordinator’ section.

Moreover, if v(|—1,1]) < o, which means that v(R) < oo, then the jumps of X

correspond to a compound Poisson process.

2.7.3 Spectrally one-sided

A Lévy process is called ‘spectrally negative’ if v(0, c0) = 0, which means it has only
negative jumps. The Lévy — [t6 decomposition of a spectrally negative Lévy process has

the form:

X}:= bt'+'JEVVi'F.f
0

t t
j xpuX(ds, dx) + j j x(u* —v¥)(ds, dx)
x<-1 0 Y—-1<x<0
Accordingly, the Lévy — Khintchine formula takes the form:

. u’c .
E[eluXt] = exp It <iub — T + j; (elux —-1- iul{x__l})v(dx)>l

_00'0)

Similarly, a Lévy process is called ‘spectrally positive’ if —X is spectrally negative.

2.7.4 Finite first moment
As we have seen already, a Lévy process has a finite first moment, if and only if:

J |x|v(dx) < o
|x|=z1

Therefore, we can also compensate the big jumps to form a martingale hence the Lévy —

It6 decomposition of X resumes the form:
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t
X, =b't+VcW, + f fx(uX —v¥)(ds, dx)
0o /R
Accordingly, the Lévy — Khintchine formula takes the form:
. ., ufc . _
Ele®™Xt] = exp [¢ | iub' — -+ f (e — 1 — iux)v(dx)
R

where b’ = b + flxlzl xv(dx).

2.8 Examples of Lévy Processes

Some profound examples of Lévy Processes are given below for a better comprehension.

2.8.1 Poison Processes

For each 1 > 0 consider a probability distribution p; which is concentrated on k =

k
0,1,2, ... such that: u; = ({k}) = e~ A / )1 - After appropriate calculations with regards

to the Poisson distribution, its characteristic function has the form:

| . A=)
Fcso €% (k) = e 40=¢'") = [e‘ : l |
The right side is the characteristic function of the sum of n independent Poisson
processes, each of which with parameter A/n. In the Lévy — Khintchine decomposition
we see that b = ¢ = 0 and v = A8, the Dirac measure supported on {1}. Also recall that
a Poisson process {N;:t > 0} is a Lévy process with distribution at time t > 0, which is

Poisson wit parameter At.

) ; i0 ) .
From the above calculations we have: E (eleNt) = e~ M(1-¢") and thus, its characteristic

exponent is given by ¥(8) = A(1 — e%) for § € R.
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2.8.2 Compound Poison Processes

Let’s suppose that N is a Poisson random variable with parameter A > 0 and that {&;: i >
1} is an i.i.d. sequence of random variables with common law F having no atom at zero.

Then, by first conditioning on N € R, we have:

. N ) AN
1=

n=0

= Z (f eiexF(dx)> e_AA_T —e 4 fm{(l_eiex)F(dx)
R

n=0

We notice that the distributions of the form Y.V, &, are infinitely divisible with the triplet

components:
e b= —Af0<|xl<1xF(dx).
e ¢c=0.

e v(dx) = AF(dx).
When F has an atom of unit mass at 1, a simple Poisson distribution occurs.

Now, suppose that {N;:t = 0} is a Poisson process with parameter A and consider a

N;
i=0 Sv

compound Poisson process {X;:t = 0} defined by X, = ), t > 0. Using the fact
that N has stationary independent increments together with the mutual independence of
random variables {{;:i > 1} for 0 < s <t < oo, it is clear that by writing: X; = X, +
Z?’;NSH &, X; refers to the sum of X and to an independent copy of X;_;. The right
continuity and left limits of the process N ensure the right continuity and left limits of X,
thus establishing that compound Poisson processes belong to the category of Lévy
Processes. Building upon the calculations from the preceding section, for each t > 0, we
can replace N; with the variable N to derive the Lévy — Khintchine formula for a

compound Poisson process, which takes the form:

Y(0) = A(1 — e¥*)F(dx)
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Notably, it's worth mentioning that the Lévy measure of a compound Poisson process is
consistently finite, and its total mass corresponds to the rate A of the underlying process

N.

Compound Poisson processes establish a direct connection between Lévy processes and
random walks. In essence, they are discrete-time processes represented as S = {S,;:n =
0}, where S, = 0, and S,, is calculated as the sum of independent random variables i, for
n = 1, with i ranging from 1 to n. Essentially, a compound Poisson process can be viewed
as a variation of a random walk, where the jumps between points are spaced out by

independent and exponentially distributed time intervals.

2.8.3 Linear Brownian Motion

Based on the probability law:

1 —(x—y)?
e 252 dx

Usy =
2ms?

where y € R and s > 0, we reconstruct the equation:
n
, s262%+i0y _i(s 262+i9K
]elex 'us’y(dx) =e 2 = [e 2(\/%) n
R

withb = —y,c =s,v = 0.

. 292 . L :
Furthermore, the characteristic exponent: ¥W(8) = ST — 0y is immediately

recognizable as that of the scale Brownian motion with linear drift, X;: = sB; + yt,t =
0, where B = {B;:t > 0} is a Standard Brownian motion; therefore, it’s about a linear

Brownian motion with parameters ¢ = 1,y = 0.

2.8.4 Stable Processes

Stable processes constitute a category of Lévy processes characterized by their

characteristic exponent, which aligns with the properties of stable distributions. Stable
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distributions were initially introduced by Lévy in 1924 and 1925 as a significant addition
to the realm of infinitely divisible distributions, joining the ranks of Gaussian and Poisson

distributions [19, 20].

A random variable, denoted as Y, is considered to have a stable distribution when it
adheres to a distributional equality foralln > 1: Y, + - + ¥, 2 a,,Y + b,, where Y,
Y2, ..., Yn are independent replicas of Y, with a,, > 0 and b,, € R. This definition implies
that any stable random variable is inherently infinitely divisible. Notably, it is essential to
acknowledge that a,, must satisfy the following: a,, = n'/¢ for a € (0,2], where the

parameter « indicates an index.

In specific instances where b,, = 0, the distribution falls into the category of strictly stable
distributions. Then, we necessarily have: Y; + -+ + YV, £ n'/2y while the case a = 2

strictly corresponds to zero mean Gaussian random variables.

Stable random variables for a € (0,1) U (1,2), have characteristic exponents of the form:

na

> sgne) + i6n

Y(6) = cl6]% (1 - iftan

where g € [-1,1],n € R,c > 0.

Accordingly, stable random variables for ¢ = 1, have characteristic exponents of the

form:
2
»(0) = clo] (1 — B~ sgné 1og|9|) + ion

where § € [-1,1],n € R,c > 0.

In contrast to the previous illustrations, the distributions associated with these
characteristic exponents exhibit heavy tails. This implies that the tails of their
distributions decay at a rate slow enough that they possess moments strictly less than a.
The parameter  plays a crucial role in quantifying the asymmetry within the Lévy
measure and, by extension, the distribution's asymmetry. Notably, the probability density
functions of stable processes are explicitly known and can be expressed as convergent

power series.
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Chapter 3: Applications of Lévy Processes in Finance

3.1 Pricing rules and equivalent martingale measures

In this Chapter, we follow the presentation of Ole E. Barndorft-Nielsen, Thomas Mikosch
& Sidney Resnick (2001) combined with the doctoral dissertation of Antonis
Papapantoleon (2006) [21, 22]. The current brief subsection summarizes the arbitrage
theory for semi-martingale models. Consider a market composed of underlying assets

described by an adapted semi-martingale:

Sy = (S2,SE,...,58), t € [0,T], where S° serves as the numeraire (e.g., S = exp(rt)),
and a discount factor is represented by B(t, T) = S?/S2. A contingent claim, denoted by
its terminal payoff H, is an Fr-measurable random variable and the set of relevant
contingent claims is denoted as H'. A pricing rule is a method assigning a value I1;(H) to

each H € H at each time, subject to the following conditions:

e Adaptivity: II;(H) is an adapted process and a semi-martingale.
e Positiveness: H > 0 = [I;(H) = 0.

e Linearity: not valid for large portfolios in practice.

For any event A € F, the random variable 1, represents the payoff of a contingent claim
paying 1 at T if A occurs and zero otherwise, essentially a bet on A (also known as a
lottery). We assume that 1, € #, indicating that such contingent claims are priced in the
market. Notably, 1o = 1 is equivalent to a zero-coupon bond paying 1 at T. Its value,
11, (1), signifies the present value of 1 unit of currency paid at T, i.e., the discount factor:

(1) = e 770,

0
Now, let's define Q: F - Ras Q(4) = 1;0((11“)) = e"TI14(1,). In other words, Q(A) will

represent the value of a bet with a nominal amount of exp(rT) on the occurrence of event

A. The linearity and positiveness of I entail the following properties for Q:

e 1>Q(A) = 0: Thisis evidentsince 1 > 14, > 0.
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o If A B are disjoint events expressed as 1y, = 14 + 1, the linearity of the

valuation operator implies that Q(A U B) = Q(4) + Q(B).

If we expand the linearity condition to encompass infinite sums, the measure Q is a
probability measure on a family of events F in an event space ({,F). Therefore, by
initiating from a valuation rule 1, we have effectively established a probability measure
Q across scenarios space. Conversely, 1 can be recovered from Q through the following
process:

For random payoffs in the form of H = Y;; ¢;1,,, indicating portfolios of cash-or-nothing

options in financial terms, while the linearity of IT implies IT,(H) = EQ[H].

Now, if IT adheres to an additional continuity property (i.e., if a dominated convergence
theorem applies to H'), we can deduce that for any random payoft H € H: [I,(H) =
e "TEQ[H]. Hence, there exists a one-to-one correspondence between linear valuation
rules II that satisfy the aforementioned properties and probability measures Q on event

scenarios:
o(H) = e "TEQ[H]
and

Q(A) = e o(1a).

The above relation is often called as ‘7isk-neutral pricing formula’ where the discounted

expectation under Q determines the value of a random payoff.

3.2 Risk-neutral measure

As demonstrated earlier, any linear valuation rule IT adhering to the specified properties
is essentially a ‘risk-neutral’ pricing rule — there are no other alternatives! It's crucial to
recognize that Q is not linked to the actual/objective probabilities of scenario occurrences.
In fact, no objective probability measures on scenarios have been defined yet. In terms of
mathematics, Q, referred as a risk-neutral measure or pricing measure, is a probability

measure on the set of scenarios and Q(A) should not be interpreted as the probability of
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A happening in the real world, since it represents the value of a bet on A. A risk-neutral
measure serves as a convenient representation of the pricing rule I and is derived by
examining contingent claim prices at t = 0, rather than through an econometric analysis

of time series or similar methods.

Similarly, for each t, the mapping A — A = e"*I1,(1,) defines a probability measure over
scenarios between 0 and t, denoted as Q; on (Q, F;). Assuming that the pricing rule [T is
time-consistent (i.e., the value at 0 of the payoff H at T is the same as the value at 0 of
the payoft I1,(H) at t), then Q; is the restriction of Q, defined above, to F;. Additionally,
II;(H) is determined by the discounted conditional expectation with respect to Q:

n.(H) = e "T-OEQ[H|Ft].

Consequently, any time-consistent linear pricing rule I1, satisfying certain continuity
properties, will be expressed as a discounted conditional expectation with respect to some
probability measure Q. In the subsequent analysis, the implications and restrictions

imposed on Q by the absence of arbitrage will be further explored.

Now, let's consider that, apart from the market scenarios ({2, F) and the information flow
F., we possess additional information about the probability of these scenarios occurring,
denoted by a probability measure P. In this context, P can signify either the objective
probability of future scenarios or an investor's subjective viewpoint. In any of the cases,
the pricing rule must adhere to specific constraints in order to align with this statistical
perspective on the market's future evolution. A pivotal condition for a pricing rule is its
ability to prevent the emergence of arbitrage opportunities. An arbitrage opportunity
refers to a self-financing strategy ¢ that can yield a positive terminal gain without any

probability of an intermediate loss:
P(vt e [0,T],Vi(p) =0)=1

P(Vr (@) > Vo(9)) # 0.

Certainly, such strategies must align with reality, taking the form of simple processes to
be practically applicable. It's noteworthy that the definition of an arbitrage opportunity
involves the probability measure P, yet P is solely utilized to determine whether the profit
is feasible or unattainable, not to calculate the probability of its occurrence. This

definition only involves events with probabilities of 0 or 1, so the subsequent reasoning
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does not necessitate precise knowledge of scenario probabilities. The self-financing
property is crucial. It's easy to showcase non-self-financing strategies that satisfy the
aforementioned property by infusing cash into the portfolio just before maturity. An
implication of the absence of arbitrage is ‘the law of one price’: two self-financing
strategies with identical terminal payoffs must always have the same value; otherwise,

the disparity would create an arbitrage opportunity.

We will now consider a market where prices are determined by a pricing rule represented
by a probability measure Q, as mentioned above. Let’s take an event A with P(A) = 0
and an option that pays the holder 1 (unit of currency) if event A occurs. Given that the
event A is deemed impossible, this option holds no value for the investor. However, the

pricing rule defined by Q assigns to this option a value at ¢ = 0 equal to:
o(1,4) = eTE?[1,] = e 77T Q(A).

Therefore, the pricing rule Q aligns with the investor's perspectives only when Q(A) =
0. Conversely, if Q(A) = 0, then the option with a payoff of 1, = 0 is considered
worthless; if P(A) # 0, acquiring this option (for free) would result in an arbitrage
opportunity. The harmony between the pricing rule Q and the stochastic model P implies
that Q and P are equivalent probability measures, defining the same set of (im)possible

events:

P~Q:VAETF,PA) =0 Q(4) =0.

3.3 Equivalence of martingale measure

Now, let's contemplate an asset S* traded at price S{. This asset can either be retained until
T, yielding a terminal payoff of Sk, or be sold for Sf, where the resulting sum invested at
the interest rate r would generate a terminal wealth of e™"~9S!. Both of these buy-and-
hold strategies are self-financing and share the same terminal payoff. Therefore, they

should hold the same value at time t as following:
EQ(SH|F,) = EX(e" TS F,) = e 70

Then, dividing by S? = e7, the equitation is turned into:
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Q S% Sfi Q(¢&i i
E Fm =F<:>IE (S%|F,) = St
T t

Hence, the absence of arbitrage indicates that the discounted values S} = e "tS} of all
traded assets serve as martingales under the probability measure Q. A probability measure
satisfying the aforementioned conditions is termed an ‘equivalent martingale measure’.
Therefore, it has been demonstrated that any pricing rule free from arbitrage is
characterized by an equivalent martingale measure. Conversely, it is evident that any
equivalent martingale measure Q defines a pricing rule free from arbitrage through

n,(H) = e "T-OEQH|Ft].

Consider a self-financing strategy ¢. Naturally, a practical strategy must be represented
by a simple (piecewise constant) predictable process. As Q is a martingale measure, S

becomes a martingale under Q. Therefore, the value of the portfolio Vi(¢) =V, +
) Ot ¢, dS,, is a martingale, and more specifically, EQ [ fot ¢ud§u] = 0. Subsequently, the

random variable [ ¢dS may take both positive and negative values:

QVr(p) =Vo20) # 1.

Since P ~ Q, this implies P([ ¢,dS; = 0) # 1: ¢ cannot be an arbitrage strategy. Thus,
there exists a direct correspondence between arbitrage-free pricing rules and equivalent

martingale measures.

Proposition: In a market described by a probability measure P on scenarios, any
arbitrage-free linear pricing rule IT can be represented as I1,(H) = e "T"DEQ[H|F,],
where Q is an equivalent martingale measure, meaning a probability measure on the

market scenarios such that: Q ~ P, EQ(SL|F,) = St.

3.4 On market incompleteness

So far, our assumption has been the existence of an arbitrage-free pricing rule or
equivalent martingale measures, which may not be evident in a given model. The
preceding arguments establish that if there exists an equivalent martingale measure, the

market is free from arbitrage. Demonstrating the converse, a more intricate task, is at
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times referred to as the ‘Fundamental Theorem of Asset Pricing’: The market model
defined by (, F, (F;), P) and asset prices (St)te[o,r) is arbitrage-free if and only if there
exists a probability measure Q ~ P such that the discounted assets (gt)tE[O,T] are

martingales with respect to Q.

To this end, it can be specified that: The market model is complete if and only if there

exists a unique martingale measure Q ~ IP.

This theorem establishes the link between the financial concept of market completeness
which involves the perfect hedging of any contingent claim, and the unique equivalent
martingale measure, which is a mathematical attribute of the underlying stochastic model.
In discrete time models, the theorem stands as outlined. However, in continuous time
models, defining admissible strategies, contingent claims, and the concept of a
‘martingale measure’ requires careful consideration. Especially when dealing with
unbounded jumps in S, common in exponential-Lévy models, formulating a rigorous
representation becomes challenging. While many stochastic models used in option
pricing are arbitrage-free, only a select few, such as stochastic volatility models,
exponential-Lévy models and jump-diffusion models, fall into the category of complete

models.

Completeness in this context implies that any random variable H € H, contingent on the
history of S between 0 and T, can be expressed as the sum of a constant and a stochastic

integral of a predictable process with respect to S. If this holds for all terminal payoffs
with finite variance, i.e., any H € L?(Fr, Q) can be represented as H = E[H] + | OT @.dS,
for some predictable process ¢, the martingale (§t)te[0_T] is said to have the predictable

representation property. Thus, market completeness is often equated with the predictable

representation property, extensively studied for many classical martingales.

The predictable representation property is demonstrated for (geometric) Brownian motion
or a Brownian stochastic integral but fails for most discontinuous models used in finance.
For instance, it is known to fail for all non-Gaussian Lévy processes except the
(compensated) Poisson process. Even when the predictable representation property holds,
it does not guarantee market completeness. The interpretation of predictable processes

like ¢ as trading strategies requires the ability to approximate their value processes using
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implementable (piecewise constant in time) portfolios. Predictable processes that can be
reasonably interpreted as ‘trading strategies’ usually fall into the categories of simple

predictable processes or caglad processes.

Lastly, it's noteworthy that we seek a representation of H in terms of a stochastic integral
with respect to S. Another theorem reveals that when randomness stems from a Brownian
motion W and a Poisson random measure M, a random variable with finite variance can

be represented as a stochastic integral:
t

H = E[H] + fo podW, + fo t fRdw (5,) Fi(dsdy)

Although often termed a predictable representation property by many authors, this
property has no correlation with market completeness. Even when S is driven by the same
sources of randomness W and M, and M = ] represents the jump measure of the process
S, the mentioned expression cannot be represented as a stochastic integral with respect to

S. Nonetheless, such representations prove useful for discussions on hedging strategies.

3.5 Equivalence of measures in the context of Lévy Processes

The previous subsection illustrates that when employing jump-diffusion processes to
model market prices, it is imperative to understand the process of changing the probability
measure. In order for the measures to be equivalent in the context of a compound Poisson

process, let’s assume that:
e N is aPoisson process on a probability space (Q, F, IP) relative to a filtration {F,}.
e A represents its intensity.

e The process M;, defined as N; — At, represents the associated compensated
Poisson process, while it is essential to also note that under the probability

measure P, M, is a martingale.

e A represents any positive real number.

~ N
The process Z defined by Z(t) = exp (()1 - Z)t) (%) t satisfies:
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A—-2
dZ(t) = TZ(t—)th

Hence, Z is a martingale under the probability measure P, and for all ¢ > 0, the expected

value [E(Z (t)) equals 1.
A-2
Proof.: Let X; = TMt.

The continuous part of X is: X{ = (/1 — i)t = [X] = 0.

The jump part is: J;, = %Nt.

~ ANg
Therefore, 1 + AX; = (%)

By using a Lévy process X of finite variations, we obtain:

Ze = €000, = exp (1~ 1)) 1_[ (1+4%,) = exp (2 - )e) G)m

0<s<t

Since M is a martingale, Z is also a martingale.
Furthermore, for T > 0: P(A) = E(1,Z(T)) where A € Fr.
Then, the process N is a Poisson process with intensity A, under the probability PP.

Proof.: The Laplace transform of N under P is applied, VA € Fr:

N
Ep(euNt) — [E(euNtZt) — e(l—z)t[E [euNt <%> ] = e(l—z)fIE exp l(u +In <%>> Ntl

= ety [At (euﬂn(%) — 1)] = exp (/T(e“ — 1)).

Then, the process N is a Poisson process with intensity A, under the probability IP.
If: 2> 0,0 >—1,0 # 0, € R, and the process S, defined as:

S, = Spexp[at + Nyn(1 + ) — Aat] = Sye @Vt (g + 1)V,
represents the price of an asset, then S satisfies the following:
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The above can be derived using the It6 formula. S is referred to as a ‘geometric Poisson

process’.

Now, let's assume that under a probability measure P, N is a Poisson process with

intensity A > 0. This probability measure is risk-neutral if, under PP, S satisfies:
dS; = rS.dt + oS(t7)d (N, — At)
where 7 is the riskless interest rate.

Therefore, dS; = aS,dt + aS(t™)d(N, — At) = rS.dt + 6S(¢7)d(N, — 1¢t),

which is possible if and only if & — oA =7 —0d & 1= 1 — =

When a Brownian component is included to the compound Poisson process, we recall the
Girsanov theorem: Let (X,P) and (X,Q) be Brownian motions on (Q,F7) with
volatilities 6¥ > 0 and 6@ > 0, and drifts u® and u@. P and Q are equivalent if and only

ifo? = 0@
In this case, the density is:

ph—pl 1 - @wh?

X T|.
K r 2 o2

exp

Now, we assume that on the same space (), F, P):

e W represents a Brownian motion.

e Q= Zlivztl Y; represents a compound Poisson process with N as a Poisson process
with intensity A.

e 1>0.

e Y, i € Narei.i.d. random variables with density f.

e fisdefinedas f(y) = 0= f(y) = 0.

e O represents an adapted process.

t 1 t
Zl =exp (—f 0, dW, — Ef @ﬁdu)
0 0

Then,
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N(t) .

7 — otin [ [0
L LAf(Y)
=1
Z, =Z;Z¢,
where Z is a martingale under IP; in particular, E(Z;) = 1, forall t > 0.

Proof.: The proof of the above is straightforward when @ depends solely on W. Given
that the processes W and Q are independent, Z* and Z? are two independent martingales
and subsequently, Z itself is a martingale. Thus, based on the It6 formula, the equation

has the following form:
t t
Z, =1+ f 72— dzl + f 71— dz? + [71,72],.
0 0

So, since Z! is continuous and Z? is a pure jump quadratic martingale, we have

[Z1,Z2], = 0.
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Chapter 4: Popular Pricing Models

4.1 Black — Scholes Model

There are plenty of models that showcase the versality of Lévy processes in capturing
complex dynamics observed in financial markets, including both continuous and
discontinuous movements. Overall, they play a crucial role in option pricing, risk
management as well as understanding of the market behaviour. In this chapter we review
some of the most popular models in mathematical finance literature, focusing on their

connection to Lévy processes.

Although it is not explicitly based on Lévy processes, the most famous asset price model
is that of Samuelson (1965), Black and Scholes (1973) and Merton (1973) [23-25]. The
Black — Scholes model can be seen as a special case where the underlying process has
continuous paths. It corresponds to a geometric Brownian motion without jumps for the
underlying asset’s price, assuming that financial markets are efficient and there are no
arbitrage opportunities. The log-returns exhibit a normal distribution characterized by a
mean () and variance (02). In other words, L; follows a normal distribution with
parameters p and o2, denoted as L; ~ Normal(u, 02). The probability density function

of the long returns is subsequently expressed as:

1 (x — w)?
fi,(x) = o exp——— 5
The characteristic function is given by:
o?u?
¢, (W) = exp Iiuu - l

The first and second moments are E[L,] = u and Var[L,] = o2, respectively.
Accordingly, the skewness and kurtosis are skew([L;] = 0 and kurt[L,] = 3.

Then, the canonical decomposition of L is Ly = ut + oW, and the Lévy triplet is

represented as (i, a2, 0).
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Traders often use the Black — Scholes formula to calculate the implied volatility, which is
the one that makes the theoretical option price equal to the market price. The primary use,

though, is to determine the theoretical fair value of European call and put options.
Regarding a European call option, the Black — Scholes formula is given by:
C =5SoN(d;) —Ke "TN(d,)
where:
C represents the call option price,
Sy refers to the current price of the underlying asset,
N (*) is the cumulative distribution function of the standard normal distribution,
K is the strike price of the option,
r is a risk-free interest rate,
T represents the time to expiration of the option (in years),

dy,d, are used to adjust the formula based on the current state of the market, and

2
ln(SO/K)+(r+%)T
d, = e

while d, = d; — o/T.

On the other hand, for a European put option, is given by:
P = Ke ""N(—d,) — SoN(—d,),
where P represents the put option price.

The Black — Scholes model is characterised by three main limitations. It assumes constant
volatility that may not hold in reality, as well as continuous price movements, ignoring
jumps. Finally, the European options which the model is designed for, can only be
exercised at expiration. Despite its limitations, however, it laid the foundation for the field
of financial derivatives pricing and remains a valuable tool in option pricing and risk

management.
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4.2 Merton Jump-Diffusion Model

An extension of the Black-Scholes model that incorporates jumps in asset prices is the
Merton model named by Robert Merton who introduced it in 1976 to account for sudden,
discontinuous movements [26]. This model explicitly uses a Levy process, combining a
geometric Brownian motion for continuous movements similar to the Black — Scholes

model, with a jump component represented by a compound Poisson process.

The dynamics of the asset price (S;) are given by the following stochastic differential

equation:
dS; = uSidt + aS;dW, + S.dJ,
where:
U is the expected continuous return,
o is the volatility of continuous returns,
W; is a Wiener process (Brownian motion), and
J¢ 1s a jump process with independent and identically distributed jumps.

To this end, the standard decomposition of the underlying process is:

N

L; =,ut+aWt+ZJk
k=1

where [, follows a normal distribution (]k ~ Normal(,u], 0']2)) fork=1,..,N;. As a

result, the jump size exhibits a probability density function of:

1 (x—n)°
fi(x) = Gjmexp —T]
The characteristic function of L, is:
2u2

— . i —o2u?/2
¢, (u) = exp [lﬂu— 5 +/1(el”1“ ojut/ —1)]

where the Lévy triplet is (,u,az,l X f]) and the intensity of jumps (A1) represents the

average number of jumps per unit time.
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Similar to the Black-Scholes model, the Merton model can be used for option pricing and
risk management under the risk-neutral measure. It allows for a more realistic
representation of market behaviour by capturing sudden, unexpected events that can
significantly impact asset prices. The introduction of jumps results in a broader range of
possible price movements, making the model more flexible and suitable for describing

certain market phenomena.

However, the Merton model assumes constant parameters over time, which may not hold
in real-world scenarios, while another significant limitation is the fact that even if the
model captures jumps, the distributional assumption for jump sizes might not perfectly

represent extreme events.

4.3 Heston Stochastic Volatility Model

Another fundamental option pricing model is the Heston stochastic volatility model,
proposed by Steven Heston in 1993 to derive a closed-form solution for the price of a
European call option on an asset with stochastic volatility [27]. This model is considered
an extension of the Black — Scholes model that encompasses and treats it as a special case.
Heston’s framework incorporates features such as a non-lognormal distribution of asset
returns, the leverage effect, and a significant mean-reverting property of volatility while
maintaining analytical tractability. The volatility surfaces generated by Heston's model
exhibit a resemblance to empirical implied volatility surfaces from the Black — Scholes
model. However, the complication arises from the risk-neutral valuation concept. It
becomes challenging to construct a riskless portfolio when asserting that the asset's
volatility undergoes stochastic variations, primarily due to the fact that volatility is not a

tradable security [28].

Here, we outline Heston's stochastic volatility model and provide some details on

computing option prices. The following notations are used:
e S(t): equity spot price or financial index.

e V(t): variance.
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C: European call option price.

K: strike price.

e W, ,: standard Brownian movements.
e 7 interest rate.

e q: dividend yield.

e K:mean reversion rate.

e 0:long-run variance.

e V,: initial variance.

e 0: the volatility of variance.
e p: the correlation parameter.
e t,: the current date.

e T': the maturity date.

The Heston stochastic volatility model is specified as follows:

ds(t)

W = udt +/V(t)dW;

dv(e) = k(9 = V(©))dt + a/V (t)dW,.

In order to incorporate the leverage effect, the Wiener stochastic processes W; and W,
should exhibit correlation, expressed as dW; - dW, = pdt. The stochastic model
governing the variance is associated with the square-root process introduced by Feller
(1951) and Cox, Ingersoll, and Ross (1985) [29, 30].In this square-root process, the
variance is always positive, and if 2k6 > o2, then it can only approach zero but never
reach it. Furthermore, it is worth noting that the deterministic part of the above process is

asymptotically stable when k > 0. The equilibrium point is clearly V, = 6.

Utilizing It6's lemma and employing standard arbitrage arguments, we reach the partial

differential equation formulated by Garman:
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aC S?Va*C oc aC a*Va*C

8t+ 3 852+( —q)S——(r—q)C+[K(0 V) — AV]aV 5 72
+ paoSV 0%C =0
P>V Gsav =

where A refers to the market price of volatility risk.

Heston constructs this solution to the partial differential equation not through direct
methods but by employing the characteristic functions, seeking the solution in such a

form that corresponds to the Black — Scholes model. Therefore, we have:
C(SO, K, Vo, t, T) = SPl — Ke_(T_CI)(T—t)PZ’

where P; represents the delta of the European call option, while P, denotes the conditional
risk-neutral probability of the asset price exceeding K at maturity. Both probabilities, P;
and P,, also adhere to the partial differential equation mentioned above. Heston also
employs the characteristic functions ¢,(u) and ¢,(u) to describe the risk-neutral
probabilities associated with the asset price and the variance. Assuming that they are
known, the terms P; and P, are determined through the inverse Fourier transformation as

follows:

l\)lr—\
=||H

- u,
u

° —iulnK

i(So, Vo, t,T,u
JRel ©;(So, Vo )
0
where j = 1, 2.

Subsequently, Heston postulates that the characteristic functions ¢, and ¢, take on the

following structure:
®;(So, Vo, T @) = exp{Ci(z; ¢) + D;j(t; $IVo + S},
wheret =T — t.

Upon substituting ¢, and ¢, into the aforementioned Garman equation, we obtain the

subsequent ordinary differential equations for the unknown functions C;(7;¢) and

D;(z; ¢), accordingly:

@ — k0D;(1;¢) — (r — )i =0,
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(T D7 (z; :
DGR TBED | (- popi)n (i) - i+ & =0

and in case of zero initial conditions, then we have:

Finally, the solution that arises from this system is the following:

0 1-— dt
C(T‘¢)::(r"Q)¢ff+'ga{(bi— pa¢i4—d)r-—21n[_zi?§r4}

and

D(t; ¢) =

b — popi+d[1—e®
p

1— gedr
for C(t; ¢) and D(t; ¢), accordingly.
To the aforementioned equations the following apply:

=bj—pa¢i+d
9= b — popi—d

d= J(ooti— ) —a2(aupi - 92)

u, = 05
uZ —_ _05
a = kb

b =k+A-po
b2:K+/1.

To sum up, the Heston model allows for stochastic volatility, addressing one of the
limitations of the Black — Scholes model, which assumes constant volatility. The
correlation term p introduces the leverage effect, capturing the phenomenon where

volatility tends to increase when asset prices decrease. While Heston model does not
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provide closed-form solutions for option prices, it allows for efficient numerical methods
for pricing and risk management. Since it involves multiple parameters and stochastic
processes, it is of course more complex and the calibration to market data can be very

challenging.

4.4 Kou Double Exponential Jump-Diffusion Model

The Kou double exponential jump-diffusion model is a mathematical model similar to
Merton’s that incorporates a double exponential distribution for jump sizes, allowing for
both upward and downward jumps. It was primarily introduced by Yi-Kang Kou (2002)
while more recently, it was expanded by Ren-Raw Chen [31, 32]. Its use in finance aims
to describe the dynamics of asset prices from the aspect of both stochastic volatility and

jumps.

Therefore, the Kou model extends the geometric Brownian motion and the stochastic

differential equation for the asset price S(t) is given by:

dS(t) =rS(t)dt +JV()St)dW,(t) + S(t)d](t),
where:

r 1s the risk-free interest rate.

V(t) is the instantaneous variance, modelled as a Cox-Ingersoll-Ross (CIR)* process

[33].

W, (t) is a standard Brownian motion representing stochastic volatility.

J(t) is a jump process.

Now, being more specific about the variance V(t) which follows a CIR process, the

following equation applies:

! The Cox-Ingersoll-Ross (CIR) mathematical process was developed by John C. Cox, Jonathan E. Ingersoll
and Stephen A. Ross (1985) as an offshoot of the interest rate model and is based on a stochastic
differential equation. It describes the interest rate movements driven by a sole source of market risk.
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dv(t) = k(6 —V())dt + a[V()dW,(t)
where:
e K is the mean reversion rate.
e 0 is the long-term variance.
e o is the volatility.
e W,(t) is another standard Brownian motion independent of W, (t).

Accordingly, the jump process J(t) is modeled as a compound Poisson process with

double-exponential jump sizes. The probability density function of the jump sizes is given
by:
fi() = prAse™ 1 4 py 2 e 2l
where:
e p; and p, are probabilities of small and large jumps, respectively, and
e 1, and A, are jump intensities.

In the field of finance, the standard decomposition of the above process in the context of

Kou model, is expressed as follows:

N¢

Ly =y + oWy +ZJk'
k=1

where each J,, follows a double-exponential distribution with parameters p, A1, 4,.

The characteristic function of L, is denoted then as:

o?u? PO, (1-p)o,
— Py — - -1
@, () = exp [L,uu > + A (91 “ 6, + i )l,

and the associated Lévy triplet is represented by (u, a2, 1 X f])

The probability density function of L; does not have a closed-form expression, but the
first two moments are given by:

Ap A1 -p)

E|[L{] =
[L1] 'u+91 0,
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and

Var[L,] = 0% + ;—? + /1(10—2;79)

As we observe, the Kou double exponential jump-diffusion model is more complicated
than basic diffusion models like Black — Scholes due to the introduction of jumps and
stochastic volatility, and calibration to market data may require sophisticated numerical
techniques. However, it is proven a valuable tool for capturing the complex dynamics of
financial markets. Providing a more realistic representation of market behaviour, the Kou
model is often used in the pricing of financial derivatives, especially options, where the

impact of jumps on option prices is significant.

4.5 Generalized Hyperbolic Model

In this subsection, we provide a brief description of the generalized hyperbolic model,
which was introduced by Eberlein and Keller in 1995 but eventually refined by Eberlein
and Prause in 2002 [34, 35]. The hyperbolic distributions were pioneered by O. E.
Barndor-Nielsen (1977) in relation to the ‘sand project’ and is constituted by a five-
parameter (a, 3,6, 4, 1) class of Lebesgue-continuous, infinitely divisible distributions

GH,ie. X~GH(a, B, 8,4, 1) [36]. The Lebesgue density is given by fep(a,p,6,1,.) Where:

fen(apsim™+ 1w

= (2m)" V2§12~ 2+1/2(g2 — g2)M2K, (6 a? — ﬁz)_l

1-1/2
x? x?
X 1+§ Ky_12| 6 1+§ exp(Bx)

e e
" VzZra#-157 ky(s/a - B7)

X (a\/dz + x2)1—1/2 Ky-1/2 (a\/(SZ + xz).
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The parameter domain is defined as follows:

e 1 € R affects the heaviness of the tails and allows the navigation through different
subclasses [e.g., if A = 1, we get the hyperbolic distribution whereas if A = — %, we
get the normal inverse Gaussian (NIG) distribution].

e a > 0 determines the shape.

e [ € (—a,a) determines the skewness.

e § > 0 represents a scaling parameter.

e u € R determines the location.

The functions Kj, K;_;/, refer to the modified Bessel functions of the third kind with
index A and A — 1/2, respectively [37].

The characteristic function of GH (a, 8, 8, A, u) is the following:

- (6y/a? - ,32)l y Ky (8a?2— (B + iu)i)_
K(8va? = B%)  (5aZ = (B + wm)?)

Xeu(u) =e

This is a real-analytic one and can be expanded to a holomorphic function on the strip:
S:={Z:—a < B —Im(2) < a}.

The structure of the characteristic function expression remains unchanged during the
extension, as all involved functions are constrained by analytic extensions. Consequently,
computing the extended characteristic function at a point in S involves substituting Z
instead of u in the aforementioned expression. More specifically, this yields the moment-
generating function u +— X4 g 5,2, (—iu). Then, taking derivatives at u = 0, the first
and second algebraic moments of a random variable X~GH (a, 3, §, A, i) are as follows:

B8 Kr1(Q)
¢ K

EX]=u+

and

Var[X] = 5 Ka(O) | pE6 <K/1+2(O _ KA+1(O>'

TTKRO T2 \KO KO

where the new parameter { := §/a@? — 2 has been used.
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The canonical decomposition of a Lévy process governed by a generalized hyperbolic

distribution (i.e., X~GH) is:

X = tE[X] +ffx(uL — v (ds, dx)
0 R

and the Lévy triplet is (E[X], 0, v¢#). To this end, the Lévy measure of the GH distribution

takes the following form:

[0e]

vt (dx) = - j e
KT\ J 72y (12, (642) + V2, (642))

where /, and Y, denote the Bessel functions of the first and second kind with index A.

dy + /16‘“'”1{,120} ,

A more detailed analysis of this Lévy measure is provided in Raible (2000) [38]. In
general, the described GH distribution encompasses various well-known distributions as
special or limiting cases, including the normal, exponential, gamma, variance gamma,

hyperbolic, and normal inverse Gaussian distributions [39].
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Chapter 5: Conclusions

Since the publication of Black and Scholes' article on option pricing in 1973, there has
been an intense interest of theoretical and empirical research on the topic. Over the past
three decades, numerous pricing models have emerged as alternatives to the classical
Black — Scholes approach. The Black — Scholes model, relying on lognormal stock

diffusion with constant volatility, has faced growing criticism for its limitations.

A significant factor contributing to this criticism is the extraordinary deviations of stock
index option prices from the benchmark Black — Scholes model since the market crash
on October 19, 1987. In practice, to reconcile the Black — Scholes formula with quoted
prices of European calls and puts, it is often necessary to use varying volatilities, known
as implied volatilities, for different option strikes and maturities. This is in contrast to the
Black — Scholes model, which assumed a constant volatility based on historical volatility
of the underlying asset. The need for different implied volatilities implies a substantially
negatively skewed distribution, indicating leptokurtic behaviour with a fat tail on the
negative side. The observed pattern of implied volatilities across strikes is commonly
referred to as a “volatility smile’ or ‘skew’. This term is used because the implied volatility
of in-the-money call options tends to be significantly higher than that of out-of-the-money
options. Typically, the skew's steepness diminishes with increasing option maturities. The
presence of the skew is often attributed to the market participants' fear of significant
downward market movements. The quest for new models capable of incorporating the
volatility smile has become one of the most active areas of study in modern quantitative

finance.

To price derivatives using the Black — Scholes model, two essential assumptions are
considered. Firstly, returns are influenced by a single source of uncertainty, and secondly,
asset prices adhere to continuous sample paths resembling a Brownian motion. With these
two assumptions in place, a continuously rebalanced portfolio becomes instrumental in
perfectly hedging an options position. Consequently, this process establishes a singular
price for the option. Extensions of the Black — Scholes model aiming to capture the

volatility smile phenomenon can be broadly categorized into two groups, based on each
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one of the two fundamental assumptions. When the assumption of a unique source of
uncertainty is relaxed, the result is the stochastic volatility family of models. In these
models, the volatility parameter follows a distinct diffusion process, as introduced by
Heston model. On the other hand, relaxing the assumption of continuous sample paths
leads to jump models. In jump models, stock prices follow an exponential Lévy process
of jump-diffusion type, where the evolution involves a diffusion process interspersed with
jumps at random intervals, or pure jumps type. These jump models attribute deviations
from the Black — Scholes model to concerns about potential stock market crashes. They
interpret crashes as evidence that jumps can indeed occur, contrary to the continuous
diffusion assumption. Upon examining a plot of a stock index time-series, it becomes

evident that prices do not adhere strictly to a diffusion process and do exhibit jumps.
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