
 

 

  UNIVERSITY OF THE AEGEAN 

DEPARTMENT OF STATISTICS AND ACTUARIAL – FINANCIAL 

MATHEMATICS 

 

 

 

«Lévy Processes and Applications in Finance» 

 

Master Thesis 

This thesis has been prepared in partial fulfilment of the requirements for the master’s degree in 

Statistics and Actuarial - Financial Mathematics 

 

Andreadi Eirini Paraskevi 

 

 

 

 

 

February 2024 

 

 

SAMOS  



 2 

Andreadi Eirini Paraskevi 

 

 

«Lévy Processes and Applications in Finance» 

 

February 2024 

 

 

Master Thesis  

Department of Statistics and Actuarial – Financial Mathematics 

 

 

 

 

 

 

Author: Andreadi Eirini Paraskevi  

 

Supervisor:  

Vakeroudis Stavros  

Member of committee: 

Xanthopoulos Stelios  

Member of committee:  

Saplaouras Alexandros  

 

SAMOS 



 3 

Table of Contents 

 

Acknowledgements ...................................................................................................................... 5 

Περίληψη ..................................................................................................................................... 6 

Abstract ........................................................................................................................................ 8 

List of charts ................................................................................................................................ 9 

Chapter 1: Introduction ............................................................................................................ 10 

Chapter 2: Lévy Processes ........................................................................................................ 12 

2.1 Definition of Lévy Processes ............................................................................................... 12 

2.2 Characteristics and Properties of Lévy Processes ............................................................ 13 

2.3 A ‘Toy’ Example of Jump-diffusion Lévy Processes ......................................................... 14 

2.4 Infinitely Divisible Distributions and the Lévy Processes ................................................ 16 

2.5 The Lévy – Khintchine Formula ........................................................................................ 18 

2.6 The Lévy  - Itô Decomposition ........................................................................................... 21 

2.7 Subclasses of Lévy Processes .............................................................................................. 22 

2.7.1 Subordinator ................................................................................................................. 22 

2.7.2 Jumps of finite variation .............................................................................................. 23 

2.7.3 Spectrally one-sided ..................................................................................................... 24 

2.7.4 Finite first moment ....................................................................................................... 24 

2.8 Examples of Lévy Processes ............................................................................................... 25 

2.8.1 Poison Processes ........................................................................................................... 25 

2.8.2 Compound Poison Processes ....................................................................................... 26 

2.8.3 Linear Brownian Motion ............................................................................................. 27 

2.8.4 Stable Processes ............................................................................................................ 27 

Chapter 3: Applications of Lévy Processes in Finance .......................................................... 29 

3.1 Pricing rules and equivalent martingale measures .................................................... 29 

3.2 Risk-neutral measure .................................................................................................... 30 



 4 

3.3 Equivalence of martingale measure ............................................................................. 32 

3.4 On market incompleteness ........................................................................................... 33 

3.5 Equivalence of measures in the context of Lévy Processes ........................................ 35 

Chapter 4: Popular Pricing Models ......................................................................................... 39 

4.1 Black – Scholes Model................................................................................................... 39 

4.2 Merton Jump-Diffusion Model .................................................................................... 41 

4.3 Heston Stochastic Volatility Model .............................................................................. 42 

4.4 Kou Double Exponential Jump-Diffusion Model ....................................................... 46 

4.5 Generalized Hyperbolic Model .................................................................................... 48 

Chapter 5: Conclusions ............................................................................................................. 51 

References .................................................................................................................................. 53 

 

  



 5 

Acknowledgements 

 

I would like to express my gratitude and appreciation to the people who helped me to 

complete this master’s thesis. 

First of all, I would like to express my deepest gratitude to my supervisor, Vakeroudis 

Stavros, for his patient guidance, his support and consistent advice, which helped me to 

make this thesis a success. I would also like to thank my committee members, 

Xanthopoulos Stelios and Alexandros Saplaouras, thanks to you.  

Last but not least, I would like to thank my family and friends from the bottom of my 

heart. 

  



 6 

Περίληψη 

Η παρούσα διπλωματική εργασία πραγματεύεται τις διαδικασίες Lévy για τιμολόγηση 

δικαιωμάτων προαίρεσης, καθώς αποτελεί πεδίο έντονου ερευνητικού ενδιαφέροντος 

σχετικά με την εφαρμογή των εμπλεκόμενων μοντέλων στα χρηματοοικονομικά, 

ιδιαίτερα κατά την τελευταία δεκαετία. Στόχος μας ήταν να αποσαφηνίσουμε τα κύρια 

μαθηματικά χαρακτηριστικά πέντε διάσημων μοντέλων (Black – Scholes, Merton, 

Heston, Kou και Generalized Hyperbolic) και να παρέχουμε εργαλεία μοντελοποίησης, 

και όχι να παρουσιάσουμε μια συστηματική ανασκόπηση της βιβλιογραφίας αναφορικά 

με όλα τα μοντέλα στοχαστικών διαδικασιών Lévy που έχουν περιγραφεί από ερευνητές. 

Πιο συγκεκριμένα, στο πρώτο κεφάλαιο ξεκινά μια σύντομη εισαγωγή, στην οποία 

περιγράφονται βασικές έννοιες των διαδικασιών Lévy ούτως ώστε να παρέχουμε μια 

ολοκληρωμένη εικόνα του ορισμού, των χαρακτηριστικών και των ιδιοτήτων τους, που 

θα βοηθήσει τον αναγνώστη στην κατανόηση του περιεχομένου της διπλωματικής. 

Στο επόμενο κεφάλαιο, εμβαθύνουμε στις περιπλοκές των διαδικασιών Lévy με άλματα, 

εξετάζοντας το υπόδειγμα «toy» και διευκρινίζοντας τις απείρως διαιρετές κατανομές 

τους. Παρουσιάζονται οι τύποι Lévy – Khintchine και Lévy – Itô και ακολούθως, 

αναλύονται διάφορες υποκατηγορίες των διαδικασιών Lévy, συμπεριλαμβανομένων των 

διεργασιών με άλματα πεπερασμένης μεταβολής, των φασματικών μονόπλευρων 

διεργασιών και εκείνων με πεπερασμένες πρώτες ροπές. Τέλος, διερευνούμε 

υποδειγματικές διεργασίες Lévy όπως διαδικασίες Poisson, σύνθετες διαδικασίες 

Poisson, γραμμική κίνηση Brown και σταθερές διεργασίες. 

Στο Κεφάλαιο 3, εστιάζουμε στις εφαρμογές των διαδικασιών Lévy στον 

χρηματοοικονομικό κλάδο. Συζητούνται κανόνες τιμολόγησης, ισοδύναμα μέτρα 

martingale, μέτρα ουδέτερου κινδύνου και η έννοια της μη πληρότητας της αγοράς. 

Γίνεται μια σχολαστική διερεύνηση της ισοδυναμίας των μέτρων στο πλαίσιο των 

διαδικασιών Lévy. 

Τέλος, στο Κεφάλαιο 4 περιγράφονται πέντε δημοφιλή μοντέλα τιμολόγησης στη 

βιβλιογραφία των μαθηματικών χρηματοοικονομικών. Εξετάζεται το θεμελιώδες 

μοντέλο Black – Scholes και ακολουθεί μια εις βάθος ανάλυση του μοντέλου Merton 

Jump-Diffusion Model, Heston Stochastic Volatility Model, Kou Double Exponential 



 7 

Jump-Diffusion Model και του Generalized Hyperbolic Model. Τα μαθηματικά 

χαρακτηριστικά, οι εφαρμογές και οι επιπτώσεις του καθενός διευκρινίζονται διεξοδικά. 

Λέξεις-κλειδιά: Bασικές έννοιες των διαδικασιών Lévy, Διαδικασιές Lévy με άλματα, 

υποδειγματικές διεργασίες Lévy, Διαδικασιές Lévy στον χρηματοοικονομικό κλάδο, 

μοντέλα τιμολόγησης.   
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Abstract 

The present thesis deals with the study of Lévy processes for option pricing, since it is a 

field of intense research interest regarding the application in finance, especially over the 

last decade. Our aim was to elucidate the primary mathematical characteristics of five 

renowned models (Black – Scholes, Merton, Heston, Kou and Generalized Hyperbolic) 

and provide modelling tools, rather than displaying an exhaustive overview of all Lévy 

models described in the literature or delving into their intricate mathematical properties. 

More specifically, the first chapter embarks on a brief description of Lévy processes, 

providing a comprehensive understanding of their definition, characteristics, and 

properties. 

In the next chapter, we delve into the intricacies of Lévy processes, examining a 'toy' 

example of jump-diffusion Lévy processes and elucidating their infinitely divisible 

distributions. The Lévy – Khintchine formula and the Lévy – Itô decomposition are 

presented, followed by an exploration of various subclasses of Lévy processes, including 

subordinators, jumps of finite variation, spectrally one-sided processes, and those with 

finite first moments. Finally, we investigate exemplary Lévy processes such as Poisson 

processes, compound Poisson processes, linear Brownian motion, and stable processes. 

In Chapter 3, we shift our focus to the applications of Lévy processes in finance. Pricing 

rules, equivalent martingale measures, risk-neutral measures, and the concept of market 

incompleteness are discussed. A meticulous exploration of the equivalence of measures 

within the context of Lévy processes is undertaken. 

Chapter 4 navigates through popular pricing models in the mathematical finance 

literature. The foundational Black – Scholes model is examined, followed by an in-depth 

analysis of the Merton Jump-Diffusion Model, Heston Stochastic Volatility Model, Kou 

Double Exponential Jump-Diffusion Model, and the Generalized Hyperbolic Model. 

Each model's mathematical characteristics, applications, and implications are thoroughly 

elucidated. 

Keyword: Description of Lévy processes, the intricacies of Lévy processes, exemplary 

Lévy processes, Lévy processes in finance, pricing models. 
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Chapter 1: Introduction 

Lévy processes is a remarkable class of stochastic processes that have gained substantial 

prominence in the field of finance and beyond. Their unique characteristics and properties 

make them a powerful tool for modelling complex phenomena. 

The history of Lévy processes can be traced back to the early 20th century. The concept 

was introduced by the French mathematician Paul Lévy in his groundbreaking work, 

"Théorie de l’ Addition des Variables Aléatoires", published in 1937 [1]. Lévy's 

exploration of these processes marked a significant departure from traditional stochastic 

modelling. He laid the foundation for understanding random phenomena characterized by 

sudden and discontinuous changes, which had profound implications in various domains, 

especially in finance. The evolution of Lévy processes continued with the contributions 

of other notable mathematicians. For instance, Andrey Kolmogorov and Bruno de Finetti 

played key roles in the development of the theory. Their work expanded the understanding 

of Lévy processes and their applications, particularly in probability and statistical theory 

[2, 3]. This rich history underscores the enduring significance of Lévy processes in 

modern mathematics and finance. 

The application of Lévy processes in finance is multifaceted and has yielded invaluable 

insights and tools for financial modelling and risk management. Lévy processes can 

effectively capture both continuous and discontinuous movements in financial time series, 

making them highly suitable for modelling asset returns and price dynamics. Lévy-driven 

models, such as the Merton jump-diffusion model and the Variance Gamma model, have 

been instrumental in improving the accuracy of financial pricing and risk assessment. 

These models incorporate jumps, which represent sudden market events, making them 

essential for capturing the unpredictability of financial markets [4]. 

Furthermore, Lévy processes have found applications in risk management, including the 

calculation of value-at-risk (VaR) and conditional value-at-risk (CVaR). Their ability to 

model extreme events and discontinuities in financial time series is essential for 

estimating tail risk, which is crucial for risk mitigation and regulatory compliance. In 

addition, Lévy processes are extensively used in derivative pricing, where complex 
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financial instruments such as options and structured products can be valued with greater 

accuracy, considering the impact of jumps and other stochastic elements [5]. 

The growing significance of Lévy processes in finance continues to influence how we 

perceive and manage risk in the ever-evolving landscape of global financial markets. 

Their flexibility and adaptability provide financial practitioners with valuable tools to 

navigate the complexities of modern finance. Lévy processes represent a fascinating and 

indispensable topic in the realms of probability theory and finance. Their historical 

development and subsequent applications in financial modelling and risk management 

have transformed the way we understand and approach randomness in the financial world. 

This thesis will delve into the intricacies of Lévy processes and their far-reaching 

implications in the field of finance, exploring various models, characteristics, and 

applications.  
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Chapter 2: Lévy Processes 

 

2.1 Definition of Lévy Processes 

Lévy processes, named after the eminent French mathematician Paul Lévy, constitute a 

class of stochastic processes with distinctive features that render them indispensable in 

diverse fields, particularly in finance. A Lévy process is defined as a continuous-time 

stochastic process {X(t), t ≥ 0} with 𝑋 0 = 0 a.s., characterized by three core properties 

[6]: 

➢ Independent increments: Lévy processes boast the property of independent 

increments. This signifies that the increments of the process over non-overlapping 

time intervals are statistically independent. Consequently, Lévy processes do not 

display any form of memory, a trait that is particularly advantageous in modelling 

random jumps.  

i.e., 𝑋𝑡 − 𝑋𝑠 is independent of ℱ𝒔 for any 0 ≤ 𝑠 < 𝑡 ≤ 𝑇. 

➢ Stationarity of Increments: Lévy processes exhibit stationarity, meaning their 

statistical characteristics remain invariant over time. This property implies that the 

distribution of increments remains consistent irrespective of when the observation 

takes place. 

i.e., for any 0 ≤ 𝑠,𝑡 ≤ 𝑇 the distribution of 𝑋𝑡+𝑠 − 𝑋𝑡 does not depend on t. 

➢ Stochastically continuous: The distribution of increments in a Lévy process is solely 

determined by the length of the time interval and is independent of the starting 

point. This attribute is often expressed through the characteristic function, a crucial 

component of Lévy processes. 

i.e., for any 0 ≤ 𝑡 ≤ 𝑇 and 𝜀 > 0:  lim𝑠→𝑡 𝑃(|𝑋𝑡 − 𝑋𝑠| > 𝜀) = 0. 
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2.2 Characteristics and Properties of Lévy Processes 

Lévy processes possess a set of defining characteristics and properties that set them apart 

from other stochastic processes [5, 6]: 

➢ Jump Components: A hallmark of Lévy processes is their capacity to exhibit jumps, 

abrupt and discontinuous changes in their values. These jumps play a fundamental 

role in modelling unexpected events across various domains, including financial 

markets. 

➢ Drift and Diffusion: Lévy processes can encompass both jump components and drift 

and diffusion components, similar to traditional continuous-time stochastic 

processes like Brownian motion. This feature enables the modelling of gradual 

changes over time. 

➢ Stability: Lévy processes are stable, signifying that the summation of independent 

Lévy-distributed random variables remains Lévy-distributed. This stability 

property is especially relevant in finance, where stable distributions are frequently 

observed in asset returns. 

➢ Infinite Divisibility: The distribution of a Lévy process at any fixed time is infinitely 

divisible, meaning it can be expressed as the sum of a large number of independent 

and identically distributed (i.i.d.) random variables. This property proves invaluable 

in modelling aggregated data and complex systems. 

➢ Self-Similarity: Lévy processes often exhibit self-similarity, implying that they 

manifest similarities at different time scales. This characteristic makes them well-

suited for modelling phenomena displaying fractal-like behaviour. 

The simplest Lévy process is the deterministic process of a linear drift while Brownian 

motion (which describes random movements of particles) is the only non-deterministic 

model with continuous sample paths (Figure 1). Other examples of Lévy processes are 

the Poisson and compound Poisson distributions. A mixture of a linear drift, Brownian 

motion and compound Poisson processes is again a Lévy process, which is often called a 

jump-diffusion process even though not all jump-diffusion processes are Lévy ones [7]. 
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Figure 1: Examples of Lévy processes: (A) Linear drift, (B) Brownian motion, (C) 

Compound Poisson process, (D) Lévy jump-diffusion. Source: Papapantoleon, Antonis. 

(2008). An introduction to Lévy processes with applications in finance. 

 

 

2.3 A ‘Toy’ Example of Jump-diffusion Lévy Processes 

To grasp the essence of Lévy jump-diffusion processes, we turn to a simplified illustrative 

example, often referred to as the ‘Toy’ model. This example helps us understand the 

interplay between continuous diffusion and discrete jump components within Lévy 

processes. While the ‘Toy’ model is deliberately simplistic, it captures the fundamental 

characteristics and properties of Lévy jump-diffusion processes, making it an ideal 

starting point for in-depth comprehension [8, 9]. 

In the ‘Toy’ model, we consider a stochastic process {X(t), t ≥ 0} that evolves over time. 

This process incorporates two fundamental components, each contributing to its overall 

behaviour. The continuous diffusion component (dB(t)) resembles the smooth, continuous 

paths of traditional Brownian motion. This component follows a stochastic differential 

equation of the form: 

dB(t) = μdt + σdW(t), 
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where: 

μ represents the drift, indicating the expected change in X over time. It accounts for the 

tendency of X to move in a particular direction, such as an expected rate of return. 

σ denotes the volatility, measuring the randomness or dispersion of the process. It 

quantifies the degree of uncertainty or fluctuations. 

dW(t) is the increment of a Wiener process, representing the continuous stochastic 

behaviour. It accounts for the continuous, random movements in the process. 

In contrast to the smooth dynamics of the continuous diffusion, the 'Toy' model introduces 

jump events at random time intervals. These jump events can be modelled using a Poisson 

process and typically follow a distribution characterized by two main parameters, size (J) 

and frequency (λ). The former represents the magnitude of the jump, and the latter 

represents the average number of jump events occurring in a given time interval. The 

increments dN(t) represent the impact of these jumps on the overall process X(t), which 

can be described as: 

dX(t) = μdt + σdW(t) + dN(t). 

Based on the above, and given that all sources of randomness are independent, the 

characteristic function of X(t) is [5, 6]: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = 𝐸[exp(𝑖𝑢(𝑏𝑡 + 𝜎𝑊𝑡 +∑
𝑁𝑡
𝑘 = 1

𝐽𝑘 − 𝑡𝜆𝛽))] 

whereas, recalling that the characteristic functions of the normal and compound Poisson 

distributions are: 

𝐸[𝑒𝑖𝑢𝜎𝑊𝑡] = 𝑒−
1
2
𝜎2𝑢2𝑡, 𝑊𝑡 ~ 𝑁(0, 𝑡) 

𝐸 [𝑒
𝑖𝑢∑

𝑁𝑡
𝑘=1

𝐽𝑘 ] = 𝑒𝜆𝑡(𝐸[𝑒
𝑖𝑢𝐽𝑘−1]), 𝑁𝑡 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡) 

as well as the fact that the distribution of Jk is F, and t is a common factor, the Lévy jump-

diffusion equation can be rewritten as: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = exp [𝑡(𝑖𝑢𝑏 −
𝑢2𝜎2

2
+ ∫(𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥)𝜆𝐹(𝑑𝑥)]

𝑅

 

The ‘Toy’ model is a foundational representation of Lévy jump-diffusion processes that 

are frequently utilized in the realm of finance to model asset prices and returns. The jumps 



 16 

in the model can be interpreted as sudden, real-word market events, such as earnings 

announcements, economic news, or geopolitical shocks, which can lead to significant 

price movements. This example serves as a stepping stone for financial practitioners to 

grasp the nuanced interplay between continuous and discontinuous price changes, 

providing insights that are pivotal for pricing complex financial derivatives and managing 

risk in volatile markets. Thus, the ‘Toy’ model turns out to be a valuable tool for risk 

assessment, option pricing, and understanding the dynamics of financial markets [8]. 

 

 

2.4 Infinitely Divisible Distributions and the Lévy Processes 

Lévy processes are closely related to the infinite divisible distributions, which are 

probability distributions that can be obtained by infinite convolutions of simpler 

probability distributions. The infinite divisible distributions are a broad class of 

probability distributions that exhibit the property that if you sum any number of 

independent random variables with the same distribution, the resulting distribution is of 

the same type. This property is known as stability, and it is a defining characteristic of the 

infinite divisible distributions [10, 11]. 

De Finetti (1929) was a pioneer in introducing the concept of infinitely divisible 

distributions and illuminating their profound connection to Lévy processes, shedding 

light on the vast diversity within the realm of Lévy processes [12]. This linkage not only 

underlines the versatility of Lévy processes but also underscores their rich mathematical 

and stochastic properties, making them a powerful tool for modelling various phenomena, 

particularly in the field of finance. 

According to the definition of infinite divisibility, a random variable X is infinitely 

divisible only if for all 𝑛 ∈  ℕ, there are i.i.d. random variables 𝑋1
(𝑛)
, … , 𝑋𝑛

(𝑛)
 such that: 

𝑋 =
(𝑙𝑎𝑤)

𝑋1
(𝑛)
+ 𝑋2

(𝑛)
 + …+ 𝑋𝑛

(𝑛)
. 

Equivalently, a probability measure 𝜌 is considered infinitely divisible only if for all 𝑛 ∈

 ℕ, there is another probability measure 𝜌n such that: 



 17 

𝜌 = 𝜌𝑛 ∗ 𝜌𝑛…∗ 𝜌𝑛⏟        
𝑛−𝑡𝑖𝑚𝑒𝑠

 

Alternatively, the characteristic function of the infinitely divisible random variable could 

be used. Consequently, a probability measure 𝜌 is considered infinitely divisible only if 

for all 𝑛 ∈  ℕ, there is another probability measure 𝜌n such that: 

𝜌̂(𝑢) = (𝜌𝑛̂(𝑢))
𝑛
 

The following theorem gives a complete characterization of random variables with 

infinitely divisible distributions via their characteristic functions. Τhis is the celebrated 

Lévy – Khintchine formula which will be described in detail in the next section. For now, 

we will use the preparatory result below (Sato 1999, Lemma 7.8): 

If (𝜌𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 0 is a sequence of infinitely divisible distributions and 𝜌𝑘
𝑤
→ 𝜌, then ρ 

is also infinitely divisible. 

Let 𝑋 = (𝑋𝑡) 𝑤ℎ𝑒𝑟𝑒 𝑡 ≥ 0 be a Lévy process. Then, for 𝑛 ∈ ℕ and Xt, t ˃  0, the following 

will apply: 

𝑋𝑡 = 𝑋𝑡/𝑛 + (𝑋2𝑡/𝑛 − 𝑋𝑡
𝑛
) + ⋯+ (𝑋𝑡 − 𝑋(𝑛−1)𝑡

𝑛

) 

And if it is assumed that each increment in a Lévy process follows a stationary 

distribution, 

𝑋𝑡𝑘
𝑛
− 𝑋𝑡(𝑘−1)

𝑛

≜ 𝑋𝑡
𝑛
 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ≥ 1,𝑤ℎ𝑒𝑟𝑒 ≜ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 

Considering the independence of the increments, the random variables are independent 

of each other as well; therefore, (𝑋𝑡𝑘
𝑛

− 𝑋𝑡(𝑘−1)
𝑛

) for k ≥ 1 is an i.i.d. sequence of random 

variables. In this case and based on the definition, the random variable Xt must be 

infinitely divisible. 

Infinitely divisible distributions include the Normal, Poisson, Exponential, Geometric, 

Negative Binomial, Cauchy as well as the strictly stable distributions. All these are in 

contrast to the Uniform Distribution and Binomial distribution which are not infinitely 

divisible [5, 10]. 
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2.5 The Lévy – Khintchine Formula 

As already mentioned, the celebrated Lévy – Khintchine formula offers a comprehensive 

characterization of infinitely divisible distributions, primarily expressed in terms of their 

characteristic functions. It is a fundamental result in probability theory and stochastic 

processes [13,14]. Early contributions in proving versions of this representation came 

from renowned mathematicians B. de Finetti and A. Kolmogorov, who established it 

under specific assumptions [15]. Subsequently, P. Lévy and A. Khintchine independently 

demonstrated the formula in its general form. Lévy approached the proof by analyzing 

the sample paths of the stochastic process, while Khintchine employed direct analytic 

methods to establish the result [1, 16]. 

To validate the Lévy – Khintchine Formula, the stochastic process must meet the Lévy 

condition, which is expressed as follows: 

For every Lévy process 𝑋 = 𝑋(1) + 𝑋(2) + 𝑋(3), the characteristic exponent must be of 

the form: 𝜓(𝑢) = exp (𝑖𝑢𝜇 −
𝜎2𝑢2

2
+ 𝑖𝑢 ∫ (𝑒𝑖𝑥 − 1 − 𝑖𝑥)

{|𝑥|<1}
𝑣(𝑑𝑥)) 

where: 

• 𝛹(𝑢) is the characteristic function of the Lévy process. 

• 𝜇 is the mean of the process (drift term). 

• 𝜎2 is the variance of the diffusion term. 

• 𝑣 is the measure of the jumps of the process in the interval [-1,1]. 

This condition incorporating the drift term, diffusion term and the jump component 

ensures that the characteristic function has the specific form required for the use of the 

Lévy – Khintchine Formula. The Lévy – Khintchine theorem establishes that a probability 

measure 𝜌 is infinitely divisible if and only if it can be expressed in terms of a triplet (𝑏, 

𝑐, 𝑣), called as the Lévy or characteristic triplet, where: 

• 𝑏 ∈ ℝ and it is called the drift term. 

• 𝑐 ∈ ℝ ≥ 0 and it is the Gaussian or diffusion coefficient (symmetric, non-negative 

definite d×d matrix). 
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• 𝑣 represents the Lévy measure. 

The probability measure ρ(𝑢) is characterized by the following expression: 

𝜌̂(𝑢) = exp (𝑖〈𝑢, 𝑏〉 −
〈𝑢, 𝑐𝑢〉

2
+∫ (𝑒𝑖〈𝑢,𝑥〉 − 1 − 𝑖〈𝑢, 𝑥〉1𝐷))𝑣 (𝑑𝑥)

𝑅𝑑
 

where D refers to a closed ball in d-dimensional real space, denoted as 𝑅d⊃, 

i.e., 𝐷 ∶= {|𝑥 ≤ 1|}. 

This theorem provides a fundamental connection between infinitely divisible measures 

and the components of the triplet (𝑏, 𝑐, 𝑣), enabling the representation of such measures 

in a specific mathematical form. The truncation functions as well as the uniqueness of 

this representation is extensively discussed below. 

A truncation function ℎ: 𝑅𝑑 → 𝑅𝑑 is defined by a bounded function satisfying ℎ(𝑥) = 𝑥 

in a neighbourhood of zero. 

Alternatively, a truncation function ℎ′: ℝ𝑑 → ℝ refers to a bounded and measurable 

function that satisfies the following: 

ℎ′(𝑥) = 1 + 𝑜(|𝑥|), 𝑎𝑠 |𝑥| → 0 

ℎ′(𝑥) = 𝑂(1/|𝑥|), 𝑎𝑠 |𝑥| → ∞ 

The above two definitions are linked through ℎ(𝑥) = 𝑥 × ℎ′(𝑥). 

Some well-known examples of the truncation functions are given below: 

i. ℎ(𝑥) = 𝑥1𝐷(𝑥), also called as the canonical truncation function (Figure 2). 

ii. ℎ(𝑥) =
𝑥

1+|𝑥|2
, also called as the continuous truncation function (Figure 2). 

iii. ℎ(𝑥) ≡ 0 and ℎ(𝑥) ≡ 𝑥; despite being commonly used, they are not always 

permissible choices. 
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Figure 2: Illustration of the canonical and the continuous truncation functions. Source: 

Tsitisvili, Μ. (2020). Lévy processes and applications. 

 

In fact, the Lévy – Khintchine representation of 𝜌  depends on the choice of truncation 

function, which means that in case of another truncation function ℎ rather than the 

canonical one, the equation becomes: 

𝜌̂(𝑢) = 𝑒𝑥𝑝 (𝑖〈𝑢, 𝑏ℎ〉 −
〈𝑢, 𝑐𝑢〉

2
+ ∫ (𝑒𝑖〈𝑢,𝑥〉 − 1 − 𝑖〈𝑢, ℎ(𝑥)〉)𝑣(𝑑𝑥)

ℝ𝑑
) 

where: 𝑏ℎ = 𝑏 + ∫ (ℎ(𝑥) − 𝑥1𝐷(𝑥))𝑣(𝑑𝑥)ℝ𝑑
 

If we aim to emphasize the influence of the truncation function on the Lévy triplet, we 

will represent it as (𝑏ℎ, 𝑐, 𝑣) or (𝑏, 𝑐, 𝑣)ℎ. It's important to note, though, that the diffusion 

characteristic 𝑐 and the Lévy measure 𝑣 remain consistent, regardless of the selected 

truncation function. 

One approach to determine if a given random variable follows an infinitely divisible 

distribution is by examining its characteristic exponent. Let's denote this characteristic 

exponent as 𝛩, given by 𝜓(𝑢) ∶= −𝑙𝑜𝑔𝔼(𝑒𝑖𝑢𝛩) for all 𝑢 ∈ ℝ. Then, 𝛩 exhibits an 

infinitely divisible distribution if for all 𝑛 ≥ 1, there exists a characteristic exponent of a 

probability distribution, denoted as 𝜓𝑛, satisfying the relationship 𝜓(𝑢)  =

 𝑛𝜓𝑛(𝑢) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ ℝ [15]. The complete characterization of infinitely divisible 
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distributions is achieved through the characteristic exponent 𝜓 and the utilization of the 

Lévy-Khintchine formula. Then, the Lévy exponent 𝜓 of 𝑋 is defined as: 

𝜓(𝑢) = 𝑖〈𝑢, 𝑏〉 −
〈𝑢,𝑐𝑢〉

2
+ ∫ (𝑒𝑖〈𝑢,𝑥〉 − 1 − 𝑖〈𝑢, 𝑥〉1𝐷(𝑥)𝑣(𝑑𝑥))𝑅

, where: [𝑒𝑖〈𝑢,𝑥1〉] =

𝑒𝜓(𝑢). 

 

 

2.6 The Lévy  - Itô Decomposition 

In the previous section, it was established that for any Lévy process denoted as 𝑋 =

(𝑋𝑡)𝑡≥0, the random variables 𝑋𝑡, 𝑡 ≥ 0 exhibit an infinitely divisible distribution, which 

we characterized using the Lévy – Khintchine representation. In this section, we aim to 

demonstrate an ‘inverse’ result. Starting from an infinitely divisible distribution 𝜌 or 

equivalently from a Lévy triplet (𝑏, 𝑐, 𝑣), our objective is to construct a Lévy process, 

denoted as 𝑋 = (𝑋𝑡)𝑡≥0 in such a way that 𝑃(𝑋1) = 𝜌. This process will establish a 

connection between the distribution and the Lévy triplet, demonstrating their 

interdependence [17, 18]. 

In the context of the Lévy – Itô decomposition, the Lévy measure must satisfies the 

condition: lim
‖𝑢‖→0

𝑣(|𝑢|) = 0, which guarantees the continuity of the Lévy measure as well 

as the condition: ∫ (|𝑥|2˄1)𝑣(𝑑𝑥) < ∞
ℝ𝑑

, ensuring exponential boundedness. 

Theorem: Let 𝜌 be an infinitely divisible distribution with Lévy triplet (𝑏, 𝑐, 𝑣), where 

𝑏 ∈ ℝ𝑑 , 𝑐 ∈ 𝕊𝑑 ≥ 0  and 𝑣 is a Lévy measure. Then, there exists a probability space 

(𝛺, ℱ, ℙ) on which four independent Lévy processes exist, 𝑋(1), 𝑋(2), 𝑋(3), 𝑋(4), where: 

𝑋(1) is a constant drift, 𝑋(2) is a Brownian motion, 𝑋(3) is a compound Poisson process 

and 𝑋(4) is a square integrable, pure jump martingale with a.s. countable number of jumps 

of magnitude less than 1 in each finite time interval.  Setting 𝑋 = 𝑋(1) +⋯+ 𝑋(4), we 

have that there exists a probability space on which a Lévy process 𝑋 = (𝑋𝑡)𝑡≥0 is defined, 

with Lévy exponent: 

𝜓(𝑢) = 𝑖〈𝑢, 𝑏〉 −
〈𝑢,𝑐𝑢〉

2
 + ∫ (𝑒𝑖〈𝑢,𝑥〉

ℝ𝑑
− 1 − 𝑖〈𝑢, 𝑥〉1𝐷(𝑥))𝑣(𝑑𝑥), for all 𝑢 ∈ ℝ𝑑 , 
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and path or Lévy – Itô decomposition: 

𝑋𝑡 = 𝑏𝑡 + √𝑐𝑊𝑡 + ∫ ∫ 𝑥𝜇𝑋(𝑑𝑠, 𝑑𝑥)
𝐷𝑐

+ ∫ ∫ 𝑥(𝜇𝑋 − 𝑣𝑋)(𝑑𝑠, 𝑑𝑥)
𝐷

𝑡

0

𝑡

0
, where 𝑣𝑋 =

𝐿𝑒𝑏 ⊗ 𝑣. 

As shown, the Lévy – Itô decomposition provides an insightful framework for elucidating 

the composition of a generic Lévy process by breaking it down into three independent 

auxiliary Lévy processes, each exhibiting distinct path characteristics. Proficiency in 

comprehending the Lévy – Itô decomposition empowers us to differentiate various 

essential subclasses of Lévy processes based on their path behaviours. To delve into this 

subject, we will briefly explore the theory of Poisson random measures and the associated 

square-integrable martingales. This background is necessary for a more thorough 

understanding of Lévy processes and their diverse attributes. 

 

 

2.7 Subclasses of Lévy Processes 

We are already familiar with the fact that Brownian motion, compound Poisson processes, 

and Lévy jump-diffusion processes fall under the category of Lévy processes. We've 

explored their Lévy-Itô decomposition and characteristic functions. In this section, we 

will introduce additional subclasses of Lévy processes that hold particular significance. 

 

2.7.1 Subordinator 

A ‘subordinator’ is an a.s. increasing in t Lévy process. For 𝑋 to be a subordinator, the 

triplet must satisfy the following: 

• 𝑣(−∞, 0) = 0. 

• 𝑐 = 0. 

• ∫ 𝑥𝑣(𝑑𝑥) < ∞
(0,1)

. 

• 𝛾 = 𝑏 − ∫ 𝑥𝑣(𝑑𝑥) > 0
(0,1)

. 

The Lévy – Itô decomposition of a subordinator is: 
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𝑋𝑡 = 𝛾𝑡 + ∫ ∫ 𝑥𝜇𝐿(𝑑𝑠, 𝑑𝑥)
(0,∞)

𝑡

0

 

while the Lévy – Khintchine formula takes the form: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = 𝑒𝑥𝑝 [𝑡 (𝑖𝑢𝛾 + ∫ (𝑒𝑖𝑢𝑥 − 1)𝑣(𝑑𝑥)
(0,∞)

)]. 

Two characteristic examples of this subclass are the Poisson and the inverse Gaussian 

processes (Figure 3). 

 

Figure 3: Simulated paths of (A) a finite activity, (B) an infinite activity subordinator, 

(C) a normal inverse Gaussian and (D) an inverse Gaussian process. Modified image 

from: Papapantoleon, Antonis. (2008). An introduction to Lévy processes with 

applications in finance. 

 

2.7.2 Jumps of finite variation 

A Lévy process has jumps of finite variation if and only if: 

∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≤1

 

In this case, the Lévy – Itô decomposition of 𝑋 resumes the form: 



 24 

𝑋𝑡 = 𝛾𝑡 + √𝑐𝑊𝑡 +∫ ∫𝑥𝜇𝑋(𝑑𝑠, 𝑑𝑥)
ℝ

𝑡

0

 

while the Lévy – Khintchine formula takes the form: 

𝐸[𝑒𝑖𝑢𝑋] = 𝑒𝑥𝑝 [𝑡 (𝑖𝑢𝛾 −
𝑢2𝑐

2
+ ∫(𝑒𝑖𝑢𝑥 − 1)𝑣(𝑑𝑥)

ℝ

)] 

where 𝛾 is defined as in the ‘Subordinator’ section. 

Moreover, if 𝑣(|−1,1|) < ∞, which means that 𝑣(ℝ) < ∞, then the jumps of 𝑋 

correspond to a compound Poisson process. 

 

2.7.3 Spectrally one-sided 

A Lévy process is called ‘spectrally negative’ if 𝑣(0,∞) = 0, which means it has only 

negative jumps. The Lévy – Itô decomposition of a spectrally negative Lévy process has 

the form: 

𝑋𝑡 = 𝑏𝑡 + √𝑐𝑊𝑡 +∫ ∫ 𝑥𝜇𝑋(𝑑𝑠, 𝑑𝑥) + ∫ ∫ 𝑥(𝜇𝑋 − 𝑣𝑋)(𝑑𝑠, 𝑑𝑥)
−1<𝑥<0

𝑡

0𝑥<−1

𝑡

0

 

Accordingly, the Lévy – Khintchine formula takes the form: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = 𝑒𝑥𝑝 [𝑡 (𝑖𝑢𝑏 −
𝑢2𝑐

2
+ ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢1{𝑥.−1})𝑣(𝑑𝑥)

(−∞,0)

)] 

Similarly, a Lévy process is called ‘spectrally positive’ if −𝑋 is spectrally negative. 

 

2.7.4 Finite first moment 

As we have seen already, a Lévy process has a finite first moment, if and only if: 

∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≥1

 

Therefore, we can also compensate the big jumps to form a martingale hence the Lévy – 

Itô decomposition of 𝑋 resumes the form: 
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𝑋𝑡 = 𝑏
′𝑡 + √𝑐𝑊𝑡 +∫ ∫𝑥(𝜇𝑋 − 𝑣𝑋)(𝑑𝑠, 𝑑𝑥)

ℝ

𝑡

0

 

Accordingly, the Lévy – Khintchine formula takes the form: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = 𝑒𝑥𝑝 [𝑡 (𝑖𝑢𝑏′ −
𝑢2𝑐

2
+ ∫(𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥)𝑣(𝑑𝑥)

ℝ

)] 

where 𝑏′ = 𝑏 + ∫ 𝑥𝑣(𝑑𝑥)
|𝑥|≥1

. 

 

 

2.8 Examples of Lévy Processes 

Some profound examples of Lévy Processes are given below for a better comprehension. 

 

2.8.1 Poison Processes 

For each 𝜆 > 0 consider a probability distribution 𝜇𝜆 which is concentrated on 𝑘 =

0,1,2, … such that: 𝜇𝜆 = ({𝑘}) = 𝑒
−𝜆 𝜆𝑘

𝑘!⁄  . After appropriate calculations with regards 

to the Poisson distribution, its characteristic function has the form: 

∑ 𝑒𝑖𝜃𝑘𝜇𝜆({𝑘}) = 𝑒
−𝜆(1−𝑒𝑖𝜃) = [𝑒−

𝜆(1−𝑒𝑖𝜃)

𝑛 ]𝑘≥0

𝑛

. 

The right side is the characteristic function of the sum of 𝑛 independent Poisson 

processes, each of which with parameter 𝜆/𝑛. In the Lévy – Khintchine decomposition 

we see that 𝑏 = 𝑐 = 0  and 𝑣 = 𝜆𝛿1, the Dirac measure supported on {1}. Also recall that 

a Poisson process {𝑁𝑡: 𝑡 ≥ 0} is a Lévy process with distribution at time 𝑡 > 0, which is 

Poisson wit parameter 𝜆𝑡. 

From the above calculations we have: 𝐸(𝑒𝑖𝜃𝑁𝑡) = 𝑒−𝜆𝑡(1−𝑒
𝑖𝜃) and thus, its characteristic 

exponent is given by 𝜓(𝜃) = 𝜆(1 − 𝑒𝑖𝜃) for 𝜃 ∈ ℝ. 
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2.8.2 Compound Poison Processes 

Let’s suppose that N is a Poisson random variable with parameter 𝜆 > 0 and that {𝜉𝑖: 𝑖 ≥

 1} is an i.i.d. sequence of random variables with common law F having no atom at zero. 

Then, by first conditioning on 𝑁 ∈ ℝ , we have: 

𝐸 (𝑒𝑖𝜃∑ 𝜉𝜄
𝑁

𝑖=1
) =∑𝐸(𝑒𝑖𝜃 ∑ 𝜉𝑖

𝛮
𝑖=1

𝑛≥0

)𝑒−𝜆
𝜆𝑛

𝑛!

=∑(∫𝑒𝑖𝜃𝑥𝐹(𝑑𝑥)
ℝ

)

𝑛

𝑒−𝜆
𝜆𝑛

𝑛! = 𝑒−𝜆∫ (1−𝑒
𝑖𝜃𝑥)𝐹(𝑑𝑥)ℝ

𝑛≥0

 

We notice that the distributions of the form ∑ 𝜉𝜄
𝑁
𝑖=1  are infinitely divisible with the triplet 

components: 

• 𝑏 = −𝜆∫ 𝑥𝐹(𝑑𝑥)
0<|𝜒|<1

. 

• 𝑐 = 0. 

• 𝑣(𝑑𝑥) = 𝜆𝐹(𝑑𝑥). 

When 𝐹 has an atom of unit mass at 1, a simple Poisson distribution occurs. 

Now, suppose that {𝑁𝑡: 𝑡 ≥  0} is a Poisson process with parameter 𝜆 and consider a 

compound Poisson process {𝑋𝑡: 𝑡 ≥  0} defined by 𝑋𝑡 = ∑ 𝜉𝜄, 𝑡 ≥ 0
𝑁𝑖
𝑖=0 . Using the fact 

that 𝑁 has stationary independent increments together with the mutual independence of 

random variables {𝜉𝑖: 𝑖 ≥ 1} for 0 ≤ 𝑠 < 𝑡 < ∞, it is clear that by writing: 𝑋𝑡 = 𝑋𝑠 +

∑ 𝜉𝑖
𝑁𝑡
𝑖=𝑁𝑠+1

, 𝑋𝑡 refers to the sum of 𝑋𝑠 and to an independent copy of 𝑋𝑡−𝑠. The right 

continuity and left limits of the process 𝑁 ensure the right continuity and left limits of 𝑋, 

thus establishing that compound Poisson processes belong to the category of Lévy 

Processes. Building upon the calculations from the preceding section, for each 𝑡 ≥ 0, we 

can replace 𝑁𝑡 with the variable 𝑁 to derive the Lévy – Khintchine formula for a 

compound Poisson process, which takes the form: 

𝛹(𝜃) = 𝜆(1 − 𝑒𝑖𝜃𝑥)𝐹(𝑑𝑥) 
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Notably, it's worth mentioning that the Lévy measure of a compound Poisson process is 

consistently finite, and its total mass corresponds to the rate 𝜆 of the underlying process 

𝑁. 

Compound Poisson processes establish a direct connection between Lévy processes and 

random walks. In essence, they are discrete-time processes represented as 𝑆 = {𝑆𝑛: 𝑛 ≥

0}, where 𝑆0 = 0, and 𝑆𝑛 is calculated as the sum of independent random variables 𝜉𝑖, for 

𝑛 ≥ 1, with 𝑖 ranging from 1 to 𝑛. Essentially, a compound Poisson process can be viewed 

as a variation of a random walk, where the jumps between points are spaced out by 

independent and exponentially distributed time intervals. 

 

2.8.3 Linear Brownian Motion 

Based on the probability law: 

𝜇𝑠,𝛾 ∶=
1

√2𝜋𝑠2
𝑒
−(𝑥−𝛾)2

2𝑠2 𝑑𝑥 

where 𝛾 ∈ ℝ and 𝑠 > 0, we reconstruct the equation: 

∫𝑒𝑖𝜃𝑥

ℝ

𝜇𝑠,𝛾(𝑑𝑥) = 𝑒
−
𝑠2𝜃2+𝑖𝜃𝛾

2 = [𝑒
−
1
2
(
𝑠

√𝑛
)
2

𝜃2+𝑖𝜃
𝛾
𝑛
 
]

𝑛

 

with 𝑏 = −𝛾, 𝑐 = 𝑠, 𝑣 = 0. 

Furthermore, the characteristic exponent: 𝜓(𝜃) =
𝑠2𝜃2

2
− 𝑖𝜃𝛾 is immediately 

recognizable as that of the scale Brownian motion with linear drift, 𝑋𝑡: = 𝑠𝐵𝑡 + 𝛾𝑡, 𝑡 ≥

0, where 𝐵 = {𝐵𝑡: 𝑡 ≥ 0} is a Standard Brownian motion; therefore, it’s about a linear 

Brownian motion with parameters 𝑐 = 1, 𝛾 = 0. 

 

2.8.4 Stable Processes 

Stable processes constitute a category of Lévy processes characterized by their 

characteristic exponent, which aligns with the properties of stable distributions. Stable 
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distributions were initially introduced by Lévy in 1924 and 1925 as a significant addition 

to the realm of infinitely divisible distributions, joining the ranks of Gaussian and Poisson 

distributions [19, 20]. 

A random variable, denoted as Y, is considered to have a stable distribution when it 

adheres to a distributional equality for all 𝑛 ≥ 1: 𝑌₁ + ⋯ + 𝑌𝑛 ≜ 𝑎𝑛𝑌 + 𝑏𝑛, where 𝑌₁, 

𝑌₂, …, 𝑌𝑛 are independent replicas of Y, with 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ. This definition implies 

that any stable random variable is inherently infinitely divisible. Notably, it is essential to 

acknowledge that 𝑎𝑛 must satisfy the following: 𝑎𝑛 = 𝑛
1/𝑎 for 𝑎 ∈ (0,2], where the 

parameter 𝛼 indicates an index. 

In specific instances where 𝑏𝑛 = 0, the distribution falls into the category of strictly stable 

distributions. Then, we necessarily have: 𝑌₁ + ⋯ + 𝑌𝑛 ≜ 𝑛
1/𝑎𝑌, while the case 𝛼 = 2 

strictly corresponds to zero mean Gaussian random variables. 

Stable random variables for 𝛼 ∈ (0,1) ∪ (1,2), have characteristic exponents of the form: 

𝜓(𝜃) = 𝑐|𝜃|𝛼 (1 − 𝑖𝛽𝑡𝛼𝑛
𝜋𝛼

2
𝑠𝑔𝑛𝜃) + 𝑖𝜃𝜂 

where 𝛽 ∈ [−1,1], 𝜂 ∈ ℝ, 𝑐 > 0. 

Accordingly, stable random variables for 𝛼 = 1, have characteristic exponents of the 

form:  

𝜓(𝜃) = 𝑐|𝜃| (1 − 𝑖𝛽
2

𝜋
𝑠𝑔𝑛𝜃 log|𝜃|) + 𝑖𝜃𝜂 

where 𝛽 ∈ [−1,1], 𝜂 ∈ ℝ, 𝑐 > 0. 

In contrast to the previous illustrations, the distributions associated with these 

characteristic exponents exhibit heavy tails. This implies that the tails of their 

distributions decay at a rate slow enough that they possess moments strictly less than 𝛼. 

The parameter 𝛽 plays a crucial role in quantifying the asymmetry within the Lévy 

measure and, by extension, the distribution's asymmetry. Notably, the probability density 

functions of stable processes are explicitly known and can be expressed as convergent 

power series. 
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Chapter 3: Applications of Lévy Processes in Finance 

 

3.1 Pricing rules and equivalent martingale measures 

In this Chapter, we follow the presentation of Ole E. Barndorff-Nielsen, Thomas Mikosch 

& Sidney Resnick (2001) combined with the doctoral dissertation of Antonis 

Papapantoleon (2006) [21, 22]. The current brief subsection summarizes the arbitrage 

theory for semi-martingale models. Consider a market composed of underlying assets 

described by an adapted semi-martingale: 

𝑆𝑡 = (𝑆𝑡
0, 𝑆𝑡

1, . . . , 𝑆𝑡
𝑑),  𝑡 ∈ [0, 𝑇], where 𝑆0 serves as the numeraire (e.g., 𝑆𝑡

0 = 𝑒𝑥𝑝(𝑟𝑡)), 

and a discount factor is represented by 𝐵(𝑡, 𝑇) = 𝑆𝑡
0/𝑆𝑇

0. A contingent claim, denoted by 

its terminal payoff 𝐻, is an ℱ𝑇-measurable random variable and the set of relevant 

contingent claims is denoted as ℋ. A pricing rule is a method assigning a value 𝛱𝑡(𝐻) to 

each 𝐻 ∈ ℋ at each time, subject to the following conditions: 

• Adaptivity: 𝛱𝑡(𝐻) is an adapted process and a semi-martingale. 

• Positiveness: 𝐻 ≥ 0 ⇒ 𝛱𝑡(𝐻) ≥ 0. 

• Linearity: not valid for large portfolios in practice. 

For any event 𝐴 ∈ ℱ, the random variable 1𝐴 represents the payoff of a contingent claim 

paying 1 at 𝑇 if 𝐴 occurs and zero otherwise, essentially a bet on 𝐴 (also known as a 

lottery). We assume that 1𝐴 ∈ ℋ, indicating that such contingent claims are priced in the 

market. Notably, 1Ω = 1 is equivalent to a zero-coupon bond paying 1 at 𝑇. Its value, 

𝛱𝑡(1), signifies the present value of 1 unit of currency paid at 𝑇, i.e., the discount factor: 

𝛱𝑡(1) = 𝑒
−𝑟(𝑇−𝑡). 

Now, let's define ℚ: ℱ → ℝ as ℚ(𝐴)  =  
𝛱0(1𝐴)

𝛱0(1)
 =  𝑒𝑟𝑇𝛱₀(1𝐴). In other words, ℚ(𝐴) will 

represent the value of a bet with a nominal amount of 𝑒𝑥𝑝(𝑟𝑇) on the occurrence of event 

𝐴. The linearity and positiveness of 𝛱 entail the following properties for ℚ: 

• 1 ≥ ℚ(𝐴) ≥ 0: This is evident since 1 ≥ 1𝐴 ≥ 0. 
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• If 𝐴, 𝐵 are disjoint events expressed as 1𝐴∪𝐵 = 1𝐴 + 1𝐵, the linearity of the 

valuation operator implies that ℚ(𝐴 ∪ 𝐵) = ℚ(𝐴) + ℚ(𝐵). 

If we expand the linearity condition to encompass infinite sums, the measure ℚ is a 

probability measure on a family of events ℱ in an event space (Ω,ℱ). Therefore, by 

initiating from a valuation rule 𝛱, we have effectively established a probability measure 

ℚ across scenarios space. Conversely, 𝛱 can be recovered from ℚ through the following 

process: 

For random payoffs in the form of 𝐻 =  ∑ 𝑐𝑖1𝐴𝑖𝑖 , indicating portfolios of cash-or-nothing 

options in financial terms, while the linearity of 𝛱 implies 𝛱₀(𝐻)  =  𝔼ℚ[𝐻]. 

Now, if 𝛱 adheres to an additional continuity property (i.e., if a dominated convergence 

theorem applies to ℋ), we can deduce that for any random payoff 𝐻 ∈ ℋ: 𝛱₀(𝐻)  =

 𝑒−𝑟𝑇𝔼ℚ[𝐻]. Hence, there exists a one-to-one correspondence between linear valuation 

rules 𝛱 that satisfy the aforementioned properties and probability measures ℚ on event 

scenarios: 

𝛱₀(𝐻)  =  𝑒−𝑟𝑇𝔼ℚ[𝐻] 

and 

ℚ(𝐴)  =  𝑒𝑟𝑇𝛱₀(1𝐴). 

The above relation is often called as ‘risk-neutral pricing formula’ where the discounted 

expectation under ℚ determines the value of a random payoff. 

 

 

3.2 Risk-neutral measure 

As demonstrated earlier, any linear valuation rule 𝛱 adhering to the specified properties 

is essentially a ‘risk-neutral’ pricing rule – there are no other alternatives! It's crucial to 

recognize that ℚ is not linked to the actual/objective probabilities of scenario occurrences. 

In fact, no objective probability measures on scenarios have been defined yet. In terms of 

mathematics, ℚ, referred as a risk-neutral measure or pricing measure, is a probability 

measure on the set of scenarios and ℚ(𝐴) should not be interpreted as the probability of 
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𝐴 happening in the real world, since it represents the value of a bet on 𝐴. A risk-neutral 

measure serves as a convenient representation of the pricing rule 𝛱 and is derived by 

examining contingent claim prices at 𝑡 = 0, rather than through an econometric analysis 

of time series or similar methods. 

Similarly, for each 𝑡, the mapping 𝐴 ↦ 𝐴 = 𝑒𝑟𝑡𝛱𝑡(1𝐴) defines a probability measure over 

scenarios between 0 and 𝑡, denoted as ℚ𝑡 on (Ω, ℱ𝑡). Assuming that the pricing rule 𝛱 is 

time-consistent (i.e., the value at 0 of the payoff 𝐻 at 𝑇 is the same as the value at 0 of 

the payoff 𝛱𝑡(𝐻) at 𝑡), then ℚ𝑡 is the restriction of 𝑄, defined above, to ℱ𝑡. Additionally, 

𝛱𝑡(𝐻) is determined by the discounted conditional expectation with respect to ℚ: 

𝛱𝑡(𝐻)  =  𝑒
−𝑟(𝑇−𝑡)𝔼ℚ[𝐻|ℱ𝑡]. 

Consequently, any time-consistent linear pricing rule 𝛱, satisfying certain continuity 

properties, will be expressed as a discounted conditional expectation with respect to some 

probability measure ℚ. In the subsequent analysis, the implications and restrictions 

imposed on ℚ by the absence of arbitrage will be further explored. 

Now, let's consider that, apart from the market scenarios (Ω,ℱ) and the information flow 

ℱ𝑡, we possess additional information about the probability of these scenarios occurring, 

denoted by a probability measure ℙ. In this context, ℙ can signify either the objective 

probability of future scenarios or an investor's subjective viewpoint. In any of the cases, 

the pricing rule must adhere to specific constraints in order to align with this statistical 

perspective on the market's future evolution. A pivotal condition for a pricing rule is its 

ability to prevent the emergence of arbitrage opportunities. An arbitrage opportunity 

refers to a self-financing strategy 𝜑 that can yield a positive terminal gain without any 

probability of an intermediate loss: 

ℙ(∀𝑡 ∈ [0, 𝑇], 𝑉𝑡(𝜑) ≥ 0) = 1 

ℙ(𝑉𝑇(𝜑) > 𝑉0(𝜑)) ≠ 0. 

Certainly, such strategies must align with reality, taking the form of simple processes to 

be practically applicable. It's noteworthy that the definition of an arbitrage opportunity 

involves the probability measure ℙ, yet ℙ is solely utilized to determine whether the profit 

is feasible or unattainable, not to calculate the probability of its occurrence. This 

definition only involves events with probabilities of 0 or 1, so the subsequent reasoning 
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does not necessitate precise knowledge of scenario probabilities. The self-financing 

property is crucial. It's easy to showcase non-self-financing strategies that satisfy the 

aforementioned property by infusing cash into the portfolio just before maturity. An 

implication of the absence of arbitrage is ‘the law of one price’: two self-financing 

strategies with identical terminal payoffs must always have the same value; otherwise, 

the disparity would create an arbitrage opportunity. 

We will now consider a market where prices are determined by a pricing rule represented 

by a probability measure ℚ, as mentioned above. Let’s take an event 𝐴 with ℙ(𝐴) = 0 

and an option that pays the holder 1 (unit of currency) if event 𝐴 occurs. Given that the 

event 𝐴 is deemed impossible, this option holds no value for the investor. However, the 

pricing rule defined by ℚ assigns to this option a value at 𝑡 = 0 equal to: 

𝛱₀(1𝐴) = 𝑒
−𝑟𝑇𝔼ℚ[1𝐴] = 𝑒

−𝑟𝑇ℚ(𝐴). 

Therefore, the pricing rule ℚ aligns with the investor's perspectives only when ℚ(𝐴) =

0. Conversely, if ℚ(𝐴) = 0, then the option with a payoff of 1𝐴 ≥ 0 is considered 

worthless; if 𝑃(𝐴) ≠ 0, acquiring this option (for free) would result in an arbitrage 

opportunity. The harmony between the pricing rule ℚ and the stochastic model ℙ implies 

that ℚ and ℙ are equivalent probability measures, defining the same set of (im)possible 

events: 

ℙ ∼ ℚ: ∀𝐴 ∈ ℱ,ℙ(𝐴) = 0 ⇔ ℚ(𝐴) = 0. 

 

3.3 Equivalence of martingale measure 

Now, let's contemplate an asset 𝑆𝑖 traded at price 𝑆𝑡
𝑖. This asset can either be retained until 

𝑇, yielding a terminal payoff of 𝑆𝑇
𝑖 , or be sold for 𝑆𝑡

𝑖, where the resulting sum invested at 

the interest rate 𝑟 would generate a terminal wealth of 𝑒𝑟(𝑇−𝑡)𝑆𝑡
𝑖. Both of these buy-and-

hold strategies are self-financing and share the same terminal payoff. Therefore, they 

should hold the same value at time t as following: 

𝔼ℚ(𝑆𝑇
𝑖 |ℱ𝑡) = 𝔼

ℚ(𝑒𝑟(𝑇−𝑡)𝑆𝑡
𝑖|ℱ𝑡) = 𝑒

𝑟(𝑇−𝑡)𝑆𝑡
𝑖. 

Then, dividing by 𝑆𝑇
0 = 𝑒𝑟𝑇, the equitation is turned into: 
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𝔼ℚ (
𝑆𝑇
𝑖

𝑆𝑇
0 |ℱ𝑡) =

𝑆𝑡
𝑖

𝑆𝑡
0 ⇔ 𝔼ℚ(𝑆̃𝑇

𝑖 |ℱ𝑡) = 𝑆̃𝑡
𝑖 

Hence, the absence of arbitrage indicates that the discounted values 𝑆̃𝑡
𝑖 = 𝑒−𝑟𝑡𝑆𝑡

𝑖 of all 

traded assets serve as martingales under the probability measure ℚ. A probability measure 

satisfying the aforementioned conditions is termed an ‘equivalent martingale measure’. 

Therefore, it has been demonstrated that any pricing rule free from arbitrage is 

characterized by an equivalent martingale measure. Conversely, it is evident that any 

equivalent martingale measure ℚ defines a pricing rule free from arbitrage through 

𝛱𝑡(𝐻)  =  𝑒
−𝑟(𝑇−𝑡)𝔼ℚ[𝐻|ℱ𝑡]. 

Consider a self-financing strategy 𝜑. Naturally, a practical strategy must be represented 

by a simple (piecewise constant) predictable process. As ℚ is a martingale measure, 𝑆̃ 

becomes a martingale under ℚ. Therefore, the value of the portfolio 𝑉𝑡(𝜑) = 𝑉₀ +

∫ 𝜑𝑢𝑑𝑆̃𝑢
𝑡

0
 is a martingale, and more specifically, 𝔼ℚ [∫ 𝜑𝑢𝑑𝑆̃𝑢

𝑡

0
] = 0. Subsequently, the 

random variable ∫𝜑𝑑𝑆̃ may take both positive and negative values: 

ℚ(𝑉𝑇(𝜑) − 𝑉₀ ≥ 0) ≠ 1. 

Since ℙ ∼ ℚ, this implies ℙ(∫𝜑𝑡𝑑𝑆̃𝑡 ≥ 0) ≠ 1: 𝜑 cannot be an arbitrage strategy. Thus, 

there exists a direct correspondence between arbitrage-free pricing rules and equivalent 

martingale measures. 

Proposition: In a market described by a probability measure ℙ on scenarios, any 

arbitrage-free linear pricing rule 𝛱 can be represented as 𝛱𝑡(𝐻) = 𝑒
−𝑟(𝑇−𝑡)𝔼ℚ[𝐻|ℱ𝑡], 

where ℚ is an equivalent martingale measure, meaning a probability measure on the 

market scenarios such that: ℚ ∼ ℙ, 𝔼ℚ(𝑆̃𝑇
𝑖 |ℱ𝑡) = 𝑆̃𝑡

𝑖. 

 

3.4 On market incompleteness 

So far, our assumption has been the existence of an arbitrage-free pricing rule or 

equivalent martingale measures, which may not be evident in a given model. The 

preceding arguments establish that if there exists an equivalent martingale measure, the 

market is free from arbitrage. Demonstrating the converse, a more intricate task, is at 
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times referred to as the ‘Fundamental Theorem of Asset Pricing’: The market model 

defined by (Ω,ℱ, (ℱ𝑡), ℙ) and asset prices (𝑆𝑡)𝑡∈[0,𝑇] is arbitrage-free if and only if there 

exists a probability measure ℚ ∼ ℙ such that the discounted assets (𝑆̃𝑡)𝑡∈[0,𝑇] are 

martingales with respect to ℚ. 

To this end, it can be specified that: The market model is complete if and only if there 

exists a unique martingale measure ℚ ∼ ℙ. 

This theorem establishes the link between the financial concept of market completeness 

which involves the perfect hedging of any contingent claim, and the unique equivalent 

martingale measure, which is a mathematical attribute of the underlying stochastic model. 

In discrete time models, the theorem stands as outlined. However, in continuous time 

models, defining admissible strategies, contingent claims, and the concept of a 

‘martingale measure’ requires careful consideration. Especially when dealing with 

unbounded jumps in 𝑆, common in exponential-Lévy models, formulating a rigorous 

representation becomes challenging. While many stochastic models used in option 

pricing are arbitrage-free, only a select few, such as stochastic volatility models, 

exponential-Lévy models and jump-diffusion models, fall into the category of complete 

models. 

Completeness in this context implies that any random variable 𝐻 ∈ ℋ, contingent on the 

history of 𝑆 between 0 and 𝑇, can be expressed as the sum of a constant and a stochastic 

integral of a predictable process with respect to 𝑆̃. If this holds for all terminal payoffs 

with finite variance, i.e., any 𝐻 ∈ 𝐿2(ℱ𝑇 , ℚ) can be represented as 𝐻 = 𝔼[𝐻] + ∫ 𝜑𝑠𝑑𝑆𝑡̃
𝑇

0
 

for some predictable process 𝜑, the martingale (𝑆̃𝑡)𝑡∈[0,𝑇] is said to have the predictable 

representation property. Thus, market completeness is often equated with the predictable 

representation property, extensively studied for many classical martingales. 

The predictable representation property is demonstrated for (geometric) Brownian motion 

or a Brownian stochastic integral but fails for most discontinuous models used in finance. 

For instance, it is known to fail for all non-Gaussian Lévy processes except the 

(compensated) Poisson process. Even when the predictable representation property holds, 

it does not guarantee market completeness. The interpretation of predictable processes 

like 𝜑 as trading strategies requires the ability to approximate their value processes using 
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implementable (piecewise constant in time) portfolios. Predictable processes that can be 

reasonably interpreted as ‘trading strategies’ usually fall into the categories of simple 

predictable processes or caglad processes. 

Lastly, it's noteworthy that we seek a representation of 𝐻 in terms of a stochastic integral 

with respect to 𝑆̃. Another theorem reveals that when randomness stems from a Brownian 

motion 𝑊 and a Poisson random measure 𝑀, a random variable with finite variance can 

be represented as a stochastic integral: 

𝐻 = 𝔼[𝐻] + ∫ 𝜑𝑠𝑑𝑊𝑠

𝑡

0

+ ∫ ∫ 𝜓
ℝ𝑑

𝑡

0

(𝑠, 𝑦) 𝑀̃(𝑑𝑠𝑑𝑦) 

Although often termed a predictable representation property by many authors, this 

property has no correlation with market completeness. Even when S is driven by the same 

sources of randomness 𝑊 and 𝑀, and 𝑀 = 𝐽𝑠 represents the jump measure of the process 

𝑆, the mentioned expression cannot be represented as a stochastic integral with respect to 

𝑆. Nonetheless, such representations prove useful for discussions on hedging strategies. 

 

 

3.5 Equivalence of measures in the context of Lévy Processes 

The previous subsection illustrates that when employing jump-diffusion processes to 

model market prices, it is imperative to understand the process of changing the probability 

measure. In order for the measures to be equivalent in the context of a compound Poisson 

process, let’s assume that: 

• 𝑁 is a Poisson process on a probability space (Ω,ℱ, ℙ) relative to a filtration {ℱ𝑡}. 

• 𝜆 represents its intensity. 

• The process 𝑀𝑡, defined as 𝑁𝑡 − 𝜆𝑡, represents the associated compensated 

Poisson process, while it is essential to also note that under the probability 

measure ℙ, 𝑀𝑡 is a martingale. 

• 𝜆̃ represents any positive real number. 

The process 𝑍 defined by 𝑍(𝑡) = 𝑒𝑥𝑝 ((𝜆 − 𝜆̃)𝑡) (
𝜆̃

𝜆
)
𝑁𝑡

 satisfies: 
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𝑑𝑍(𝑡) =
𝜆̃ − 𝜆

𝜆
𝑍(𝑡−)𝑑𝑀𝑡 

Hence, 𝑍 is a martingale under the probability measure ℙ, and for all 𝑡 ≥ 0, the expected 

value 𝔼(𝑍(𝑡)) equals 1. 

Proof.: Let 𝑋𝑡 =
𝜆̃−𝜆

𝜆
𝑀𝑡. 

The continuous part of 𝑋 is: 𝑋𝑡
𝑐 = (𝜆 − 𝜆̃)𝑡 ⇒ [𝑋]𝑡

𝑐 = 0. 

The jump part is: 𝐽𝑡 =
𝜆̃−𝜆

𝜆
𝑁𝑡. 

Therefore, 1 + ∆𝑋𝑡 = (
𝜆̃

𝜆
)
Δ𝑁𝑡

. 

By using a Lévy process 𝑋 of finite variations, we obtain: 

𝑍𝑡 = ℇ(𝑋)𝑡 = 𝑒𝑥𝑝 ((𝜆 − 𝜆̃)𝑡) ∏ (1 + ∆𝑋𝑠)

0<𝑠≤𝑡

= 𝑒𝑥𝑝 ((𝜆 − 𝜆̃)𝑡) (
𝜆̃

𝜆
)

𝑁𝑡

 

Since 𝑀 is a martingale, 𝑍 is also a martingale. 

Furthermore, for 𝑇 > 0: ℙ(𝐴) = 𝔼(1𝐴𝑍(𝑇)) 𝑤ℎ𝑒𝑟𝑒 𝐴 ∈ ℱ𝑇. 

Then, the process 𝑁 is a Poisson process with intensity 𝜆̃, under the probability ℙ. 

Proof.: The Laplace transform of 𝑁 under ℙ is applied, ∀𝐴 ∈ ℱ𝑇: 

𝔼ℙ(𝑒𝑢𝑁𝑡) = 𝔼(𝑒𝑢𝑁𝑡𝑍𝑡) = 𝑒
(𝜆−𝜆̃)𝑡𝔼 [𝑒𝑢𝑁𝑡 (

𝜆̃

𝜆
)

𝑁𝑡

] = 𝑒(𝜆−𝜆̃)𝑡𝔼 [𝑒𝑥𝑝 [(𝑢 + ln(
𝜆̃

𝜆
))𝑁𝑡]]

= 𝑒(𝜆−𝜆̃)𝑡𝑒𝑥𝑝 [𝜆𝑡 (𝑒
𝑢+ln(

𝜆̃
𝜆
)
− 1)] = 𝑒𝑥𝑝 (𝜆̃(𝑒𝑢 − 1)). 

Then, the process 𝑁 is a Poisson process with intensity 𝜆̃, under the probability ℙ. 

If: 𝜆 > 0, 𝜎 > −1, 𝜎 ≠ 0, 𝛼 ∈ ℝ, and the process 𝑆, defined as: 

𝑆𝑡 = 𝑆0𝑒𝑥𝑝[𝛼𝑡 + 𝑁𝑡𝑙𝑛(1 + 𝜎) − 𝜆𝜎𝑡] = 𝑆0𝑒
(𝛼−𝜎𝜆)𝑡(𝜎 + 1)𝑁𝑡, 

represents the price of an asset, then 𝑆 satisfies the following: 

𝑑𝑆𝑡 = 𝛼𝑆𝑡𝑑𝑡 + 𝜎𝑆(𝑡
−)𝑑𝑀𝑡 = 𝛼𝑆𝑡𝑑𝑡 + 𝜎𝑆(𝑡

−)𝑑(𝑁𝑡 − 𝜆𝑡). 
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The above can be derived using the Itô formula. 𝑆 is referred to as a ‘geometric Poisson 

process’. 

Now, let's assume that under a probability measure ℙ, 𝑁 is a Poisson process with 

intensity 𝜆̃ > 0. This probability measure is risk-neutral if, under ℙ, 𝑆 satisfies: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆(𝑡
−)𝑑(𝑁𝑡 − 𝜆̃𝑡) 

where 𝑟 is the riskless interest rate. 

Therefore, 𝑑𝑆𝑡 = 𝑎𝑆𝑡𝑑𝑡 + 𝜎𝑆(𝑡
−)𝑑(𝑁𝑡 − 𝜆𝑡) = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆(𝑡

−)𝑑(𝑁𝑡 − 𝜆̃𝑡), 

which is possible if and only if 𝛼 − 𝜎𝜆 = 𝑟 − 𝜎𝜆̃ ⟺ 𝜆̃ = 𝜆 −
𝛼−𝑟

𝜎
. 

When a Brownian component is included to the compound Poisson process, we recall the 

Girsanov theorem: Let (𝑋, ℙ) and (𝑋, ℚ) be Brownian motions on (Ω,ℱ𝑇) with 

volatilities 𝜎ℙ > 0 and 𝜎ℚ > 0, and drifts 𝜇ℙ and 𝜇ℚ. ℙ and ℚ are equivalent if and only 

if 𝜎ℙ = 𝜎ℚ. 

In this case, the density is: 

𝑒𝑥𝑝 [
𝜇ℙ − 𝜇ℚ

𝜎2
𝑋𝑇 −

1

2

(𝜇ℚ)2 − (𝜇ℙ)2

𝜎2
𝑇]. 

Now, we assume that on the same space (Ω,ℱ, ℙ): 

• 𝑊 represents a Brownian motion. 

• 𝑄𝑡 = ∑ 𝑌𝑖
𝑁𝑡
𝑖=1  represents a compound Poisson process with 𝑁 as a Poisson process 

with intensity 𝜆. 

• 𝜆̃ > 0. 

• 𝑌𝑖 , 𝑖 ∈ ℕ are i.i.d. random variables with density 𝑓. 

• 𝑓 is defined as 𝑓(𝑦) = 0 ⇒ 𝑓(𝑦) = 0. 

• Θ represents an adapted process. 

Then, 

𝑍𝑡
1 = 𝑒𝑥𝑝 (−∫ Θ𝑢

𝑡

0

𝑑𝑊𝑢 −
1

2
∫ Θ𝑢

2𝑑𝑢
𝑡

0

) 
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𝑍𝑡
2 = 𝑒(𝜆−𝜆̃)𝑡∏

𝜆̃𝑓(𝑌𝑖)

𝜆𝑓(𝑌𝑖)

𝑁(𝑡)

𝑖=1

 

𝑍𝑡 = 𝑍𝑡
1𝑍𝑡

2, 

where 𝑍 is a martingale under ℙ; in particular, 𝔼(𝑍𝑡) = 1, for all 𝑡 ≥ 0. 

Proof.: The proof of the above is straightforward when 𝛩 depends solely on 𝑊. Given 

that the processes 𝑊 and 𝑄 are independent, 𝑍1 and 𝑍2 are two independent martingales 

and subsequently, 𝑍 itself is a martingale. Thus, based on the Itô formula, the equation 

has the following form: 

𝑍𝑡 = 1 +∫ 𝑍𝑠
2 − 𝑑𝑍𝑠

1
𝑡

0

+∫ 𝑍𝑠
1 − 𝑑𝑍𝑠

2
𝑡

0

+ [𝑍1, 𝑍2]𝑡. 

So, since 𝑍1 is continuous and  𝑍2 is a pure jump quadratic martingale, we have 

[𝑍1, 𝑍2]𝑡 = 0. 
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Chapter 4: Popular Pricing Models 

4.1 Black – Scholes Model 

There are plenty of models that showcase the versality of Lévy processes in capturing 

complex dynamics observed in financial markets, including both continuous and 

discontinuous movements. Overall, they play a crucial role in option pricing, risk 

management as well as understanding of the market behaviour. In this chapter we review 

some of the most popular models in mathematical finance literature, focusing on their 

connection to Lévy processes. 

Although it is not explicitly based on Lévy processes, the most famous asset price model 

is that of Samuelson (1965), Black and Scholes (1973) and Merton (1973) [23-25]. The 

Black – Scholes model can be seen as a special case where the underlying process has 

continuous paths. It corresponds to a geometric Brownian motion without jumps for the 

underlying asset’s price, assuming that financial markets are efficient and there are no 

arbitrage opportunities. The log-returns exhibit a normal distribution characterized by a 

mean (𝜇) and variance (𝜎2). In other words, 𝐿1 follows a normal distribution with 

parameters μ and σ2, denoted as 𝐿1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎
2). The probability density function 

of the long returns is subsequently expressed as: 

𝑓𝐿1(𝑥) =
1

𝜎√2𝜋
 𝑒𝑥𝑝 [−

(𝑥 − 𝜇)2

2𝜎2
] 

The characteristic function is given by: 

𝜑𝐿1(𝑢) =  𝑒𝑥𝑝 [𝑖𝜇𝑢 − 
𝜎2𝑢2

2
]. 

The first and second moments are 𝐸[𝐿1]  =  𝜇 and 𝑉𝑎𝑟[𝐿1]  =  𝜎
2, respectively. 

Accordingly, the skewness and kurtosis are 𝑠𝑘𝑒𝑤[𝐿1]  =  0 and 𝑘𝑢𝑟𝑡[𝐿1]  =  3. 

Then, the canonical decomposition of 𝐿 is 𝐿𝑡  =  𝜇𝑡 +  𝜎𝑊𝑡, and the Lévy triplet is 

represented as (𝜇, 𝜎2, 0). 
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Traders often use the Black – Scholes formula to calculate the implied volatility, which is 

the one that makes the theoretical option price equal to the market price. The primary use, 

though, is to determine the theoretical fair value of European call and put options. 

Regarding a European call option, the Black – Scholes formula is given by: 

𝐶 = 𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) 

where: 

𝐶 represents the call option price, 

𝑆0 refers to the current price of the underlying asset, 

𝑁(∙) is the cumulative distribution function of the standard normal distribution, 

𝐾 is the strike price of the option, 

𝑟 is a risk-free interest rate, 

𝑇 represents the time to expiration of the option (in years), 

𝑑1, 𝑑2 are used to adjust the formula based on the current state of the market, and 

𝑑1 =
ln(𝑆0 𝐾⁄ )+(𝑟+

𝜎2

2
)𝑇

𝜎√𝑇
  while 𝑑2 = 𝑑1 − 𝜎√𝑇. 

On the other hand, for a European put option, is given by: 

𝑃 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1), 

where 𝑃 represents the put option price. 

The Black – Scholes model is characterised by three main limitations. It assumes constant 

volatility that may not hold in reality, as well as continuous price movements, ignoring 

jumps. Finally, the European options which the model is designed for, can only be 

exercised at expiration. Despite its limitations, however, it laid the foundation for the field 

of financial derivatives pricing and remains a valuable tool in option pricing and risk 

management. 
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4.2 Merton Jump-Diffusion Model 

An extension of the Black-Scholes model that incorporates jumps in asset prices is the 

Merton model named by Robert Merton who introduced it in 1976 to account for sudden, 

discontinuous movements [26]. This model explicitly uses a Levy process, combining a 

geometric Brownian motion for continuous movements similar to the Black – Scholes 

model, with a jump component represented by a compound Poisson process. 

The dynamics of the asset price (𝑆𝑡) are given by the following stochastic differential 

equation: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 + 𝑆𝑡𝑑𝐽𝑡, 

where: 

𝜇 is the expected continuous return, 

𝜎 is the volatility of continuous returns, 

𝑊𝑡 is a Wiener process (Brownian motion), and 

𝐽𝑡 is a jump process with independent and identically distributed jumps. 

To this end, the standard decomposition of the underlying process is: 

𝐿𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 +∑𝐽𝑘

𝑁𝑡

𝑘=1

 

where 𝐽𝑘 follows a normal distribution (𝐽𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝐽, 𝜎𝐽
2)) for 𝑘 = 1,… ,𝑁𝑡. As a 

result, the jump size exhibits a probability density function of: 

𝑓𝐽(𝑥) =
1

𝜎𝐽√2𝜋
𝑒𝑥𝑝 [−

(𝑥 − 𝜇𝐽)
2

2𝜎𝐽
2 ]. 

The characteristic function of 𝐿1 is: 

𝜑𝐿1(𝑢) = 𝑒𝑥𝑝 [𝑖𝜇𝑢 −
𝜎2𝑢2

2
+ 𝜆 (𝑒𝑖𝜇𝐽𝑢−𝜎𝐽

2𝑢2 2⁄ − 1)] 

where the Lévy triplet is (𝜇, 𝜎2, 𝜆 × 𝑓𝐽) and the intensity of jumps (𝜆) represents the 

average number of jumps per unit time. 
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Similar to the Black-Scholes model, the Merton model can be used for option pricing and 

risk management under the risk-neutral measure. It allows for a more realistic 

representation of market behaviour by capturing sudden, unexpected events that can 

significantly impact asset prices. The introduction of jumps results in a broader range of 

possible price movements, making the model more flexible and suitable for describing 

certain market phenomena. 

However, the Merton model assumes constant parameters over time, which may not hold 

in real-world scenarios, while another significant limitation is the fact that even if the 

model captures jumps, the distributional assumption for jump sizes might not perfectly 

represent extreme events. 

 

 

4.3 Heston Stochastic Volatility Model 

Another fundamental option pricing model is the Heston stochastic volatility model, 

proposed by Steven Heston in 1993 to derive a closed-form solution for the price of a 

European call option on an asset with stochastic volatility [27]. This model is considered 

an extension of the Black – Scholes model that encompasses and treats it as a special case. 

Heston’s framework incorporates features such as a non-lognormal distribution of asset 

returns, the leverage effect, and a significant mean-reverting property of volatility while 

maintaining analytical tractability. The volatility surfaces generated by Heston's model 

exhibit a resemblance to empirical implied volatility surfaces from the Black – Scholes 

model. However, the complication arises from the risk-neutral valuation concept. It 

becomes challenging to construct a riskless portfolio when asserting that the asset's 

volatility undergoes stochastic variations, primarily due to the fact that volatility is not a 

tradable security [28]. 

Here, we outline Heston's stochastic volatility model and provide some details on 

computing option prices. The following notations are used: 

• 𝑆(𝑡): equity spot price or financial index. 

• 𝑉(𝑡): variance. 
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• 𝐶: European call option price. 

• 𝐾: strike price. 

• 𝑊1,2: standard Brownian movements. 

• 𝑟: interest rate. 

• 𝑞: dividend yield. 

• 𝜅: mean reversion rate. 

• 𝜃: long-run variance. 

• 𝑉0: initial variance. 

• 𝜎: the volatility of variance. 

• 𝜌: the correlation parameter. 

• 𝑡0: the current date. 

• 𝑇: the maturity date. 

The Heston stochastic volatility model is specified as follows: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑑𝑡 + √𝑉(𝑡)𝑑𝑊1 

𝑑𝑉(𝑡) = 𝜅(𝜗 − 𝑉(𝑡))𝑑𝑡 + 𝜎√𝑉(𝑡)𝑑𝑊2. 

 

In order to incorporate the leverage effect, the Wiener stochastic processes 𝑊1 and 𝑊2 

should exhibit correlation, expressed as 𝑑𝑊1 · 𝑑𝑊2  =  𝜌𝑑𝑡. The stochastic model 

governing the variance is associated with the square-root process introduced by Feller 

(1951) and Cox, Ingersoll, and Ross (1985) [29, 30].In this square-root process, the 

variance is always positive, and if 2𝜅𝜃 > 𝜎2, then it can only approach zero but never 

reach it. Furthermore, it is worth noting that the deterministic part of the above process is 

asymptotically stable when 𝜅 >  0. The equilibrium point is clearly 𝑉𝑡  =  𝜃. 

Utilizing Itô's lemma and employing standard arbitrage arguments, we reach the partial 

differential equation formulated by Garman: 
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𝜕𝐶

𝜕𝑡
+
𝑆2𝑉

2

𝜕2𝐶

𝜕𝑆2
+ (𝑟 − 𝑞)𝑆

𝜕𝐶

𝜕𝑆
 − (𝑟 − 𝑞)𝐶 + [𝜅(𝜃 − 𝑉) − 𝜆𝑉]

𝜕𝐶

𝜕𝑉
+
𝜎2𝑉

2

𝜕2𝐶

𝜕𝑉2

+ 𝜌𝜎𝑆𝑉
𝜕2𝐶

𝜕𝑆𝜕𝑉
= 0 

where λ refers to the market price of volatility risk. 

Heston constructs this solution to the partial differential equation not through direct 

methods but by employing the characteristic functions, seeking the solution in such a 

form that corresponds to the Black – Scholes model. Therefore, we have: 

𝐶(𝑆0, 𝐾, 𝑉0, 𝑡, 𝑇) = 𝑆𝑃1 − 𝐾𝑒
−(𝑟−𝑞)(𝑇−𝑡)𝑃2, 

where 𝑃1 represents the delta of the European call option, while 𝑃2 denotes the conditional 

risk-neutral probability of the asset price exceeding 𝐾 at maturity. Both probabilities, 𝑃1 

and 𝑃2, also adhere to the partial differential equation mentioned above. Heston also 

employs the characteristic functions 𝜑1(𝑢) and 𝜑2(𝑢) to describe the risk-neutral 

probabilities associated with the asset price and the variance. Assuming that they are 

known, the terms 𝑃1 and 𝑃2 are determined through the inverse Fourier transformation as 

follows: 

𝑃𝑗 = 
1

2
 + 

1

𝜋
 ∫ 𝑅𝑒 [

𝑒−𝑖𝑢 ln𝐾𝜑𝑗(𝑆0, 𝑉0, 𝑡, 𝑇, 𝑢)

𝑖𝑢
] 𝑑𝑢,

∞

0

 

where 𝑗 = 1, 2. 

Subsequently, Heston postulates that the characteristic functions 𝜑1 and 𝜑2 take on the 

following structure: 

𝜑𝑗(𝑆0, 𝑉0, 𝜏;  𝜙) = 𝑒𝑥𝑝{𝐶𝑗(𝜏;  𝜙) + 𝐷𝑗(𝜏;  𝜙)𝑉0 + 𝑖𝜙𝑆0}, 

where 𝜏 = 𝑇 − 𝑡. 

Upon substituting 𝜑1 and 𝜑2 into the aforementioned Garman equation, we obtain the 

subsequent ordinary differential equations for the unknown functions 𝐶𝑗(𝜏; 𝜙) and 

𝐷𝑗(𝜏; 𝜙), accordingly: 

𝑑𝐶𝑗(𝜏; 𝜙)

𝑑𝜏
−  𝜅𝜃𝐷𝑗(𝜏; 𝜙) − (𝑟 − 𝑞)𝜙𝑖 = 0, 
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𝑑𝐷𝑗(𝜏; 𝜙)

𝑑𝜏
− 
𝜎2𝐷𝑗

2(𝜏; 𝜙)

2
+ (𝑏𝑗 −  𝜌𝜎𝜙𝑖)𝐷𝑗(𝜏; 𝜙) − 𝑢𝑗𝜙𝑖 + 

𝜙2

2
= 0 

and in case of zero initial conditions, then we have: 

𝐶𝑗(0, 𝜙) =  𝐷𝑗(0, 𝜙) = 0. 

Finally, the solution that arises from this system is the following: 

𝐶(𝜏; 𝜙) = (𝑟 − 𝑞)𝜙𝑖𝜏 + 
𝜅𝜃

𝜎2
{(𝑏𝑗 −  𝜌𝜎𝜙𝑖 + 𝑑)𝜏 − 2 ln [

1 − 𝑔𝑒𝑑𝜏

1 − 𝑔
]} 

and 

𝐷(𝜏; 𝜙) =  
𝑏𝑗 −  𝜌𝜎𝜙𝑖 + 𝑑

𝜎2
 [
1 − 𝑒𝑑𝜏

1 − 𝑔𝑒𝑑𝜏
] 

for 𝐶(𝜏; 𝜙) and 𝐷(𝜏; 𝜙), accordingly. 

To the aforementioned equations the following apply: 

𝑔 =
𝑏𝑗 −  𝜌𝜎𝜙𝑖 + 𝑑

𝑏𝑗 −  𝜌𝜎𝜙𝑖 − 𝑑
 

𝑑 = √(𝜌𝜎𝜙𝑖 − 𝑏𝑗)
2
− 𝜎2(2𝑢𝑗𝜙𝑖 − 𝜙2) 

𝑢1 = 0.5 

𝑢2 = −0.5 

𝛼 = 𝜅𝜃 

𝑏1 = 𝜅 + 𝜆 − 𝜌𝜎 

𝑏2 = 𝜅 + 𝜆. 

To sum up, the Heston model allows for stochastic volatility, addressing one of the 

limitations of the Black – Scholes model, which assumes constant volatility. The 

correlation term 𝜌 introduces the leverage effect, capturing the phenomenon where 

volatility tends to increase when asset prices decrease. While Heston model does not 
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provide closed-form solutions for option prices, it allows for efficient numerical methods 

for pricing and risk management. Since it involves multiple parameters and stochastic 

processes, it is of course more complex and the calibration to market data can be very 

challenging. 

 

 

4.4 Kou Double Exponential Jump-Diffusion Model 

The Kou double exponential jump-diffusion model is a mathematical model similar to 

Merton’s that incorporates a double exponential distribution for jump sizes, allowing for 

both upward and downward jumps. It was primarily introduced by Yi-Kang Kou (2002) 

while more recently, it was expanded by Ren-Raw Chen [31, 32]. Its use in finance aims 

to describe the dynamics of asset prices from the aspect of both stochastic volatility and 

jumps. 

Therefore, the Kou model extends the geometric Brownian motion and the stochastic 

differential equation for the asset price 𝑆(𝑡) is given by: 

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + √𝑉(𝑡)𝑆(𝑡)𝑑𝑊1(𝑡) + 𝑆(𝑡)𝑑𝐽(𝑡), 

where: 

• 𝑟 is the risk-free interest rate. 

• 𝑉(𝑡) is the instantaneous variance, modelled as a Cox-Ingersoll-Ross (CIR)1 process 

[33]. 

• 𝑊1(𝑡) is a standard Brownian motion representing stochastic volatility. 

• 𝐽(𝑡) is a jump process. 

Now, being more specific about the variance 𝑉(𝑡) which follows a CIR process, the 

following equation applies: 

 
1 The Cox-Ingersoll-Ross (CIR) mathematical process was developed by John C. Cox, Jonathan E. Ingersoll 
and Stephen A. Ross (1985) as an offshoot of the interest rate model and is based on a stochastic 
differential equation. It describes the interest rate movements driven by a sole source of market risk. 
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𝑑𝑉(𝑡) =  𝜅(𝜃 − 𝑉(𝑡))𝑑𝑡 +  𝜎√𝑉(𝑡)𝑑𝑊2(𝑡) 

where: 

• 𝜅 is the mean reversion rate. 

• 𝜃 is the long-term variance. 

• 𝜎 is the volatility. 

• 𝑊2(𝑡) is another standard Brownian motion independent of 𝑊1(𝑡). 

Accordingly, the jump process 𝐽(𝑡) is modeled as a compound Poisson process with 

double-exponential jump sizes. The probability density function of the jump sizes is given 

by: 

𝑓𝐽(𝑥) = 𝑝1𝜆1𝑒
−𝜆1|𝑥| + 𝑝2𝜆2𝑒

−𝜆2|𝑥| 

where: 

• 𝑝1 and 𝑝2 are probabilities of small and large jumps, respectively, and 

• 𝜆1 and 𝜆2 are jump intensities. 

In the field of finance, the standard decomposition of the above process in the context of 

Kou model, is expressed as follows: 

𝐿𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 +∑𝐽𝑘

𝑁𝑡

𝑘=1

,  

where each 𝐽𝑘 follows a double-exponential distribution with parameters 𝑝, 𝜆1, 𝜆2. 

The characteristic function of 𝐿1 is denoted then as: 

𝜑𝐿1(𝑢) = 𝑒𝑥𝑝 [𝑖𝜇𝑢 −
𝜎2𝑢2

2
+ 𝜆 (

𝑝𝜃1
𝜃1 − 𝑖𝑢

−
(1 − 𝑝)𝜃2
𝜃2 + 𝑖𝑢

− 1)], 

and the associated Lévy triplet is represented by (𝜇, 𝜎2, 𝜆 × 𝑓𝐽). 

The probability density function of 𝐿1 does not have a closed-form expression, but the 

first two moments are given by: 

Ε[𝐿1] =  𝜇 +
𝜆𝑝

𝜃1
− 
𝜆(1 − 𝑝)

𝜃2
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and 

Var[𝐿1] = 𝜎
2 +

𝜆𝑝

𝜃1
2 +

𝜆(1 − 𝑝)

𝜃2
2 . 

As we observe, the Kou double exponential jump-diffusion model is more complicated 

than basic diffusion models like Black – Scholes due to the introduction of jumps and 

stochastic volatility, and calibration to market data may require sophisticated numerical 

techniques. However, it is proven a valuable tool for capturing the complex dynamics of 

financial markets. Providing a more realistic representation of market behaviour, the Kou 

model is often used in the pricing of financial derivatives, especially options, where the 

impact of jumps on option prices is significant. 

 

 

4.5 Generalized Hyperbolic Model 

In this subsection, we provide a brief description of the generalized hyperbolic model, 

which was introduced by Eberlein and Keller in 1995 but eventually refined by Eberlein 

and Prause in 2002 [34, 35]. The hyperbolic distributions were pioneered by O. E. 

Barndor-Nielsen (1977) in relation to the ‘sand project’ and is constituted by a five-

parameter (𝛼, 𝛽, 𝛿, 𝜆, 𝜇) class of Lebesgue-continuous, infinitely divisible distributions 

𝐺𝐻, i.e. 𝑋~𝐺𝐻(𝛼, 𝛽, 𝛿, 𝜆, 𝜇) [36]. The Lebesgue density is given by 𝑓𝐺𝐻(𝛼,𝛽,𝛿,𝜆,𝜇) where: 

𝑓𝐺𝐻(𝛼,𝛽,𝛿,𝜆,𝜇)(𝑥 + 𝜇)

= (2𝜋)−1 2⁄ 𝛿−1 2⁄ 𝛼−𝜆+1 2⁄ (𝛼2 − 𝛽2)𝜆 2⁄ 𝐾𝜆 (𝛿√𝛼2 − 𝛽2)
−1

× √1 +
𝑥2

𝛿2

𝜆−1 2⁄

𝐾𝜆−1 2⁄ (𝛿𝛼√1 +
𝑥2

𝛿2
)exp(𝛽𝑥)

=
𝑒𝛽𝑥

√2𝜋𝛼2𝜆−1𝛿2𝜆
×
(𝛿√𝛼2 − 𝛽2)

𝜆

𝐾𝜆(𝛿√𝛼2 − 𝛽2)

× (𝛼√𝛿2 + 𝑥2)
𝜆−1 2⁄

𝐾𝜆−1 2⁄ (𝛼√𝛿2 + 𝑥2). 
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The parameter domain is defined as follows: 

• 𝜆 ∈ ℝ affects the heaviness of the tails and allows the navigation through different 

subclasses [e.g., if 𝜆 = 1, we get the hyperbolic distribution whereas if 𝜆 = −
1

2
, we 

get the normal inverse Gaussian (NIG) distribution]. 

• 𝛼 > 0 determines the shape. 

• 𝛽 ∈ (−𝛼, 𝛼) determines the skewness. 

• 𝛿 > 0 represents a scaling parameter. 

• 𝜇 ∈ ℝ determines the location. 

The functions 𝐾𝜆, 𝐾𝜆−1 2⁄  refer to the modified Bessel functions of the third kind with 

index 𝜆 and 𝜆 − 1 2⁄ , respectively [37]. 

The characteristic function of 𝐺𝐻(𝛼, 𝛽, 𝛿, 𝜆, 𝜇) is the following: 

𝑋𝐺𝐻(𝑢) = 𝑒
𝑖𝑢𝜇

(𝛿√𝛼2 − 𝛽2)
𝜆

𝐾𝜆(𝛿√𝛼2 − 𝛽2)
×
𝐾𝜆(𝛿√𝛼2 − (𝛽 + 𝑖𝑢)2)

(𝛿√𝛼2 − (𝛽 + 𝑖𝑢)2)
𝜆
. 

This is a real-analytic one and can be expanded to a holomorphic function on the strip: 

𝑆 ∶= {𝒵:−𝛼 < 𝛽 − Im(𝒵) < 𝛼}. 

The structure of the characteristic function expression remains unchanged during the 

extension, as all involved functions are constrained by analytic extensions. Consequently, 

computing the extended characteristic function at a point in 𝑆 involves substituting 𝒵 

instead of 𝑢 in the aforementioned expression. More specifically, this yields the moment-

generating function 𝑢 ⟼ 𝑋(𝛼,𝛽,𝛿,𝜆,𝜇)(−𝑖𝑢). Then, taking derivatives at 𝑢 = 0, the first 

and second algebraic moments of a random variable 𝑋~𝐺𝐻(𝛼, 𝛽, 𝛿, 𝜆, 𝜇) are as follows: 

𝐸[𝑋] = 𝜇 +
𝛽𝛿2

𝜁

𝛫𝜆+1(𝜁)

𝛫𝜆(𝜁)
 

and 

𝑉𝑎𝑟[𝑋] =
𝛿2

𝜁

𝛫𝜆+1(𝜁)

𝛫𝜆(𝜁)
+
𝛽2𝛿4

𝜁2
(
𝛫𝜆+2(𝜁)

𝛫𝜆(𝜁)
−
𝛫𝜆+1
2 (𝜁)

𝛫𝜆
2(𝜁)

), 

where the new parameter 𝜁 ∶= 𝛿√𝛼2 − 𝛽2 has been used. 
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The canonical decomposition of a Lévy process governed by a generalized hyperbolic 

distribution (i.e., 𝑋~𝐺𝐻) is: 

𝑋 = 𝑡E[𝑋] + ∫∫𝑥(𝜇𝐿 − 𝑣𝐺𝐻)(d𝑠, d𝑥)

ℝ

𝑡

0

 

and the Lévy triplet is (E[𝑋], 0, 𝑣𝐺𝐻). To this end, the Lévy measure of the GH distribution 

takes the following form: 

𝑣𝐺𝐻(𝑑𝑥) =
𝑒𝛽𝑥

|𝑥|
(∫

𝑒𝑥𝑝(−√2𝑦 + 𝛼2|𝑥|)

𝜋2𝑦 (𝐽|𝜆|
2 (𝛿√2𝑦) + 𝑌|𝜆|

2 (𝛿√2𝑦))
𝑑𝑦 + 𝜆𝑒−𝛼|𝑥|1{𝜆≥0}

∞

0

), 

where 𝐽λ  and 𝑌λ denote the Bessel functions of the first and second kind with index 𝜆. 

A more detailed analysis of this Lévy measure is provided in Raible (2000) [38]. In 

general, the described GH distribution encompasses various well-known distributions as 

special or limiting cases, including the normal, exponential, gamma, variance gamma, 

hyperbolic, and normal inverse Gaussian distributions [39]. 
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Chapter 5: Conclusions 

 

Since the publication of Black and Scholes' article on option pricing in 1973, there has 

been an intense interest of theoretical and empirical research on the topic. Over the past 

three decades, numerous pricing models have emerged as alternatives to the classical 

Black – Scholes approach. The Black – Scholes model, relying on lognormal stock 

diffusion with constant volatility, has faced growing criticism for its limitations. 

A significant factor contributing to this criticism is the extraordinary deviations of stock 

index option prices from the benchmark Black – Scholes model since the market crash 

on October 19, 1987. In practice, to reconcile the Black – Scholes formula with quoted 

prices of European calls and puts, it is often necessary to use varying volatilities, known 

as implied volatilities, for different option strikes and maturities. This is in contrast to the 

Black – Scholes model, which assumed a constant volatility based on historical volatility 

of the underlying asset. The need for different implied volatilities implies a substantially 

negatively skewed distribution, indicating leptokurtic behaviour with a fat tail on the 

negative side. The observed pattern of implied volatilities across strikes is commonly 

referred to as a ‘volatility smile’ or ‘skew’. This term is used because the implied volatility 

of in-the-money call options tends to be significantly higher than that of out-of-the-money 

options. Typically, the skew's steepness diminishes with increasing option maturities. The 

presence of the skew is often attributed to the market participants' fear of significant 

downward market movements. The quest for new models capable of incorporating the 

volatility smile has become one of the most active areas of study in modern quantitative 

finance. 

To price derivatives using the Black – Scholes model, two essential assumptions are 

considered. Firstly, returns are influenced by a single source of uncertainty, and secondly, 

asset prices adhere to continuous sample paths resembling a Brownian motion. With these 

two assumptions in place, a continuously rebalanced portfolio becomes instrumental in 

perfectly hedging an options position. Consequently, this process establishes a singular 

price for the option. Extensions of the Black – Scholes model aiming to capture the 

volatility smile phenomenon can be broadly categorized into two groups, based on each 
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one of the two fundamental assumptions. When the assumption of a unique source of 

uncertainty is relaxed, the result is the stochastic volatility family of models. In these 

models, the volatility parameter follows a distinct diffusion process, as introduced by 

Heston model. On the other hand, relaxing the assumption of continuous sample paths 

leads to jump models. In jump models, stock prices follow an exponential Lévy process 

of jump-diffusion type, where the evolution involves a diffusion process interspersed with 

jumps at random intervals, or pure jumps type. These jump models attribute deviations 

from the Black – Scholes model to concerns about potential stock market crashes. They 

interpret crashes as evidence that jumps can indeed occur, contrary to the continuous 

diffusion assumption. Upon examining a plot of a stock index time-series, it becomes 

evident that prices do not adhere strictly to a diffusion process and do exhibit jumps.  
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