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ΠΕΡΊΛΗΨΗ (IN GREEK) 

Σε παρούσα την διπλωματική εργασία παρουσιάζεται η δημιουργία 
προγραμματιστικών εργαλείων για την επίλυση του προβλήματος δρομολόγησης 
οχημάτων με χρονικά παράθυρα (Vehicle Routing Problem with Time Windows - 
VRPTW). Τα εργαλεία αυτά βασίστηκαν στην μέθοδο γραμμικού προγραμματισμού 
Column Generation για την εύρεση του κατώτερου ορίου (lower bound) του 
χαλαρωμένου (relaxed) προβλήματος και στον αλγόριθμο Branch and Bound για την 
επίτευξη της βέλτιστης ακεραία λύσης του προβλήματος. Η ανάπτυξη της μεθόδου 
έχει βασιστεί στην διδακτορική εργασία του Larsen (2001) και τις εργασίες άλλων 
ερευνητών οι οποίοι έχουν ασχοληθεί με το VRPTW. Το συγκεκριμένο εργαλείο θα 
χρησιμοποιηθεί από το εργαστήριο Συστημάτων Σχεδιασμού Παραγωγής και 
Λειτουργιών του τμήματος Μηχανικών Οικονομίας και Διοίκησης (ΤΜΟΔ), του 
Πανεπιστημίου Αιγαίου, στα πλαίσια του ερευνητικού του αντικειμένου που 
σχετίζεται με διάφορες παραλλαγές των προβλημάτων δρομολόγησης οχημάτων.  Η 
μέθοδος Column Generation αποτελεί μια ευρέως χρησιμοποιούμενη μέθοδο τα 
τελευταία χρόνια και θα μπορούσε να εφαρμοστεί σε πολλά και διαφορετικά 
προβλήματα του πεδίου της Επιχειρησιακής Έρευνας που μελετούνται στον χώρο του 
ΤΜΟΔ και του Πανεπιστημίου Αιγαίου. 

Το πρόβλημα VRPTW αφόρα την εύρεση των δρομολογίων ελάχιστου κόστους για 
ένα στόλο οχημάτων που ξεκινούν και επιστρέφουν σε μία κοινή αποθήκη, με σκοπό 
να εξυπηρετήσουν ακριβώς μία φορά κάθε πελάτη από ένα σύνολο πελατών. Οι 
πελάτες χαρακτηρίζονται από την ζήτηση, τον χρόνο εξυπηρέτησης και το χρονικό 
παράθυρο εξυπηρέτησης τους (time windows). Το κάθε όχημα έχει συγκεκριμένη 
χωρητικότητα (περιορίζοντας τον αριθμό των πελατών οι οποίοι μπορούν να 
εξυπηρετηθούν από ένα όχημα) και χαρακτηρίζεται από ένα μέγιστο χρόνο 
διαδρομής. Τα χρονικά παράθυρα και η ζήτηση του κάθε πελάτη θεωρούνται γνωστά 
εκ των προτέρων. 

Η μέθοδος Column  Generation εκμεταλλεύεται την ιδιαίτερη δομή των περιορισμών 
του προβλήματος (η οποία μπορεί να αποσυντεθεί σε μικρότερα προβλήματα)   και 
είναι ιδιαιτέρα αποτελεσματική σε προβλήματα, όπου ο αριθμός των μεταβλητών 
ξεπερνάει κατά πολύ τον αριθμό τον περιορισμών (όπως στην περίπτωση του 
VRPTW). Βασικό χαρακτηριστικό της μεθόδου είναι ότι, σε αντίθεση με τις κοινές 
μεθόδους γραμμικού προγραμματισμού,  αρχικά μόνο μια μικρή ομάδα μεταβλητών 
συμμετέχει στο πρόβλημα και σταδιακά προστίθενται νέες μεταβλητές. Η μέθοδος 
διαχωρίζεται σε δύο προβλήματα τα οποία συνδέονται μεταξύ τους, το Κυρίως 
Πρόβλημα (Master Problem) και το Υπό-Πρόβλημα (Sub-Problem). 

Στην περίπτωση μας, το  Κυρίως Πρόβλημα μοντελοποιήθηκε ως ένα πρόβλημα 
Κατάτμησης Συνόλου (Set Partitioning Problem) του οποίου έχουν χαλαρωθεί 
(relaxed) οι περιορισμοί ακεραιότητας των μεταβλητών. Η επίλυση του διεξάχθηκε 
με την Revised Simplex μέθοδο, η οποία αποτελεί παραλλαγή του κλασσικού 
αλγορίθμου Simplex, επιτυγχάνοντας μείωση του υπολογιστικού χρόνου και της 
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απαιτούμενης υπολογιστικής μνήμης. Ως μεταβλητές του συγκεκριμένου 
προβλήματος ορίστηκαν ολόκληρα μονοπάτια (δρομολόγια), σε αντίθεση με την 
κλασσική/ πλήρη μοντελοποίηση του VRPTW όπου οι μεταβλητές του προβλήματος 
αντιστοιχούν στις ακμές οι οποίες συνδέουν τους πελάτες. Οι μεταβλητές που 
συμμετέχουν σε αυτό το μοντέλο είναι όλα τα πιθανά εφικτά δρομολόγια. Οι 
περιορισμοί του μοντέλου αφορούν μόνο το πλήθος εξυπηρέτησης του κάθε πελάτη 
(κάθε πελάτης επιτρέπεται να μόνο μία φόρα και από ένα δρομολόγιο). Η διαδικασία 
επίλυσης αρχικοποιείται με μία «γρήγορη» λύση όπου κάθε δρομολόγιο συντίθεται 
από ένα πελάτη (αριθμός δρομολογίων ίσος με αριθμό πελατών). Η εύρεση των 
πιθανών εφικτών δρομολογίων παρέχεται από την επίλυση του Υπό-Προβλήματος, 
μέσω του οποίου σε κάθε επανάληψη προστίθενται καινούργια δρομολόγια. 

Το Υπό-Πρόβλημα μοντελοποιήθηκε ως ένα πρόβλημα ελάχιστης διαδρομής 
(Shortest Path Problem) με επιπλέον περιορισμούς, οι οποίοι αφορούν τα χρονικά 
παράθυρα και την χωρητικότητα του οχήματος (Elementary Shortest Path with Time 
Windows ad Capacity Constraints). Ο όρος elementary αφορά την απαγόρευση 
δημιουργίας κύκλων στα μονοπάτια του προβλήματος. Ως κόστη κάθε ακμής του 
προβλήματος έχουν οριστεί τροποποιημένα κόστη (modified costs) με βάση της 
σκιώδης τιμές (shadow prices) που παράγονται από την λύση του Κυρίως 
Προβλήματος. Με τον τρόπο αυτό αναπαράγονται τα reduced cost coefficients της 
μεθόδου Simplex αν η επίλυση του προβλήματος διενεργούταν με τον κλασσικό 
τρόπο. Η επίλυση του Υπό-Προβλήματος διεξάχθηκε μέσω χρήσης δυναμικού 
προγραμματισμού, όπως περιγράφεται στην εργασία του Larsen (2001). Στην 
συγκεκριμένη εργασία αντιμετωπίζεται το non-elementary πρόβλημα, όπου 
επιτρέπονται κύκλοι στα δρομολόγια. Σε άλλες αντιμετωπίσεις του προβλήματος, 
Chabrier (2005), επιλύεται το πρόβλημα με την μορφή που παρουσιάζεται στην 
παρούσα εργασία, δηλαδή δεν επιτρέπονται κύκλοι. Ο αλγόριθμος βασίστηκε στον 
αλγόριθμο του Dijkstra (1959) όπου για κάθε πελάτη δημιουργείται μία ταμπέλα 
(label), η οποία επισημαίνει το κόστος της συντομότερης διαδρομής για τον κάθε 
πελάτη. Οι επιπλέον περιορισμοί, καθώς και η ύπαρξη αρνητικού κόστους στις ακμές 
του προβλήματος, απαιτούν την δημιουργία σύνθετων labels τα οποία 
χαρακτηρίζονται από το κόστος της συντομότερης διαδρομής, την αθροισμένη 
ζήτηση, τον αθροισμένο χρόνο και το δρομολόγιο μέχρι τον πελάτη τον οποίο αφορά 
το κάθε label. Επίσης απαιτείται να διατηρούνται περισσότερες από μία ταμπέλες για 
κάθε πελάτη καθώς τα επιπρόσθετα αυτά χαρακτηριστικά καθιστούν δύσκολη την 
αναγνώριση και την απόρριψη των labels «χαμηλής ποιότητας». Η απόρριψη των 
labels «χαμηλής ποιότητας» αποτελεί σημαντικό παράγοντα ο οποίος επηρεάζει τόσο 
τον υπολογιστικό χρόνο επίλυσης του προβλήματος, όσο και την επίτευξη της 
βέλτιστης λύσης. Η διαδικασία αυτή διενεργείται μέσω κριτηρίων κυριαρχίας 
(Dominance Rules) ενός label σε ένα άλλο. Τα κριτήρια κυριαρχίας τα οποία 
χρησιμοποιήθηκαν στην παρούσα εργασία έχουν παρουσιαστεί από τους Larsen 
(2001) και Chabrier (2005).  

Τα βήματα της συνολικής μεθόδου παρουσιάζονται συνοπτικά κατωτέρω: 
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1. Εύρεση της αρχικής λύσης για το Κυρίως Πρόβλημα. 
2. Επίλυση του Υπό-Προβλήματος με την μέθοδο Revised Simplex και 

παράγωγη των σκιωδών τιμών της καλύτερης λύσης (lower bound). 
3. Υπολογισμός των τροποποιημένων κοστών (modified costs). 
4. Επίλυση του Υπό-Προβλήματος 
5. Εάν υπάρχουν δρομολόγια με αρνητικό συνολικό κόστος (reduced cost), 

εισαγωγή των δρομολογίων αυτών στο Κυρίως Πρόβλημα και επιστροφή στο 
βήμα 2. Αλλιώς, αν δεν υπάρχει κανένα δρομολόγιο με αρνητικό κόστος 
συνέχεια στο Βήμα 6. 

6. Τερματισμός της διαδικασίας. Η λύση του τελευταίου προβλήματος είναι και 
η καλύτερη. 

Η λύση που παράγεται από την παραπάνω μέθοδο αποτελεί το κατώτερο όριο (lower 
bound) του προβλήματος μιας και έχουν χαλαρωθεί (relaxed) οι περιορισμοί 
ακεραιότητας των μεταβλητών. Στην συνέχεια, η εύρεση της ακέραιας λύσης 
διενεργείται μέσω του αλγορίθμου Branch and Bound, μέσα στον οποίο έχει 
ενσωματωθεί η μέθοδος Column Generation. Μέσω του αλγορίθμου αυτού και εάν η 
Column Generation καταλήξει σε μη ακεραία λύση δημιουργεί δύο νέα Υπό-
Προβλήματα με επιπλέον περιορισμούς, οι οποίοι αφορούν την επιλεγμένη 
μεταβλητή διακλάδωσης (branching). Στην συνεχεία επιλύονται τα νέα Υπό-
Προβλήματα και η διαδικασία αυτή επαναλαμβάνεται μέχρι να βρεθεί η κατάλληλη 
ακέραια λύση. 

Η πειραματική διερεύνηση διεξήχθη μέσω των πειραμάτων του Solomon (Solomon, 
1987) τα οποία έχουν δημιουργηθεί ειδικά για το πρόβλημα VRPTW. Σκοπός των 
πειραμάτων ήταν η μελέτη των χαρακτηριστικών της προτεινόμενης μεθόδου, του 
μεγέθους των προβλημάτων που μπορούν να επιλυθούν, καθώς και η 
αποτελεσματικότητα της. Τα πειράματα επικεντρώθηκαν στην μελέτη των 
διαφορετικών κανόνων κυριαρχίας μιας και επηρεάζουν σημαντικά τόσο τον 
υπολογιστικό χρόνο όσο και την επίτευξη βέλτιστων λύσεων. Για την διεξαγωγή 
προβλημάτων με μικρό αριθμό πελατών, για τα οποία δεν υπάρχουν 
δημοσιοποιημένες οι βέλτιστες λύσεις, και τον έλεγχο της αποτελεσματικότητας της 
προτεινόμενης μεθόδου, χρησιμοποιήθηκε ένας εξαντλητικός αλγόριθμος 
(Athanasopoulos, 2008b). 

Ως βασικά συμπεράσματα, σχετικά με την προτεινομένη μέθοδο, αναφέρονται τα 
εξής:      

• Η μέθοδος χωρίς την χρησιμοποίηση κριτηρίων κυριαρχίας στο Υπό-
Πρόβλημα παρουσιάζει μικρότερο χρόνο επίλυσης συγκριτικά με τον 
εξαντλητικό αλγόριθμο και επιτυγχάνει βέλτιστες λύσεις.    

• Τα κριτήρια κυριαρχίας που προτάθηκαν από τον Chabrier (2005) 
βοηθούν στην βελτίωση της ταχύτητας επίλυσης των προβλημάτων, 
επιτυγχάνοντας πάλι την βέλτιστη λύση. 

• Τα κριτήρια κυριαρχίας που προτάθηκαν από τον Larsen (2001) 
βελτιώνουν σημαντικά  της ταχύτητας επίλυσης των προβλημάτων, αλλά 



University of the Aegean         Department of Financial and Management Engineering 

vi 
 

σε ορισμένες περιπτώσεις η βέλτιστη λύση δεν επιτυγχάνετε σε 
συνδυασμό με την μέθοδο επίλυσης του elementary Υπό-Προβλήματος. 

• Μέσω του εξαντλητικού αλγορίθμου και της Column Generation χωρίς 
την χρησιμοποίηση κριτηρίων κυριαρχίας, επιλύθηκαν προβλήματα έως 9 
πελάτες. Μέσω της χρήσης των κριτηρίων κυριαρχίας του Chabrier (2005) 
επιλύθηκαν προβλήματα έως 25 πελάτες. Προβλήματα περισσοτέρων 
πελατών αύξαναν δραματικά τον επιθυμητό υπολογιστικό χρόνο. 
Αντίθετα, μέσω των κριτηρίων κυριαρχίας του Larsen (2001) επιτεύχθηκε 
επίλυση προβλημάτων μέχρι και 100 πελατών. 

• Από τα 44 προβλήματα με 25, 50 και 100 πελάτες, που επιλύθηκαν με την 
με την χρήση των κριτηρίων κυριαρχίας του Larsen (2001) στα 31 
βρέθηκε η βέλτιστη λύση. 

• Αντίστοιχα, η διαδικασία εισαγωγής πολλαπλών στηλών (δρομολογίων) 
από κάθε Υπό-Πρόβλημα στο Κυρίως Πρόβλημα παρουσίασε σημαντική 
μείωση του υπολογιστικού χρόνου επίλυσης (περισσότερο από 600%). 

Γενικότερα, παρότι η μέθοδος αποτελεί μία σημαντική μέθοδο για την ακριβή 
επίλυση του VRPTW, περεταίρω έρευνα για την δημιουργία πιο αποτελεσματικών 
κριτηρίων κυριαρχίας και τεχνικών που θα μειώσουν τον απαιτούμενο υπολογιστικό 
χρόνο και θα διατηρήσουν την ποιότητα της παρεχόμενης λύσης, θα πρέπει να 
μελετηθούν και να αναπτυχθούν.  
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ABSTRACT  

In this thesis we develop a toolkit to obtain efficient solutions for the Vehicle Routing 
Problem with Time Windows and Capacity Constraints (VRPTW) This toolkit has  
been based on the work of Larsen (2001) and Chabrier (2005) and has implemented 
the following methods / algorithms proposed in these references:  

• A Linear Programming Algorithm that uses the revised simplex method 

• A Column Generation Technique for linear problems  

• A Dynamic Labeling Algorithm for the Shortest Path Problem with additional 
constraints. 

• A Branch and Bound Algorithm to obtain integer solutions  

These techniques are used in the following framework originally proposed by Larsen 
(2001):  To obtain a good lower bound, the integrality constraints are relaxed, and the 
resulting general linear problem is divided in two separate problems; the Master 
Problem and the Sub-problem. The first one is formulated as a Set Partitioning 
Problem and it is solved through the revised simplex method. The dual (shadow) 
prices produced by this problem are sent to the sub-problem. The latter is formulated 
as an Elementary Shortest Path Problem with Time Windows and Capacity 
Constraints (ESPPTWCC). It is solved through a dynamic labeling algorithm. The 
sub-problem provides the necessary new columns (routes) to be inserted to the master 
problem, which is then, solved again. The final solution obtained by this iterative 
procedure is a good lower bound of the original integer problem. In order to obtain 
integer solutions, the aforementioned methods have been incorporated in a branch and 
bound scheme, which calls them iteratively to obtain the optimal (or a near optimal) 
solution.  

The unified Branch and Bound and Column Generation framework used is called 
“Branch and Price via Column Generation”. The shadow prices produced by the 
solution of the linear problem are considered to be a “weighting” factor of the 
network arcs, and they affect the selection of the proposed routes (columns) by the 
sub-problem. In the Column Generation technique not all the feasible routes have to 
be known in advance since routes (columns) will be created from the solution 
procedure. This is a strong advantage of the proposed method, which achieves an 
efficient solution to large-scale problems within reasonable computational time.   

The methods proposed by Larsen (2001) guarantee optimality for problems of 
appropriate complexity. In large scale problems, however, the computational 
complexity may be prohibitive. In these cases, key in obtaining the optimum is the 
“intelligent” guidance of the column generation method in selecting the next 
appropriate column to be inserted in the linear program.  This aspect is further 
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analyzed in the present thesis, by testing two labeling techniques that “accelerate” the 
solution of the ESPPTWCC problem. 

All the related experiments were performed using the Solomon Benchmark problems 
and compared against optimal solutions provided in the literature, and / or against an 
exhaustive search algorithm. Analytical results for the behavior of the proposed 
method, solution quality and computational complexity, are presented and discussed. 

 

Keywords: Vehicle Routing; Column Generation; Branch and Price; Elementary 
Shortest Path Problem with Time Window and Capacity Constraints; Revised 
Simplex 
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CHAPTER 1 INTRODUCTION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Transportation and distribution of goods are important areas of the supply chain since 
they affect the total cost of the product and the quality of customer service. 
Transportation is also a main contributor to global pollution. Therefore, any 
improvement on the time or distance covered by transportation vehicles will not only 
reduce the cost of services provided, but it will also help decreasing  ܱܥଶ emissions 
leading to more environmental friendly options and operations in transportation 
services. 



Chapter 1 Introduction 
 

3 
 

For many decades, optimization of transportation operations has been studied and 
many techniques have been proposed. Currently the need for faster, more accurate and 
scalable techniques easily applied to real world problems has been increased and has 
gained the attention of the research community. Many problems in the field of 
transportation have been studied with operations research methods, including the so 
called vehicle routing problem (VRP) that attracted considerable attention. The VRP 
includes the design of a set of minimum cost routes starting and ending at a depot for 
a fleet of vehicles serving exactly once a set of customers with known demands and 
service costs. These routes should be designed subject to several constraints, such as 
the total time of travel (route length), or the maximum capacity of each vehicle.  
Many variations on this classical problem exist using different restrictions constraints, 
depending on problem under investigation. 

The use of classical methods adopted from operations research in order to produce the 
optimal solution, seems to be inefficient in terms of computational time, especially 
when applied to medium-to-large-scale problems. Since many real world problems 
involve several hundred customers served by a large fleet, exact methods are not 
practical and, thus heuristics are used to obtain a good feasible solution in a timely 
manner. Vehicle routing problems belong to class of NP-hard optimization problems, 
in which computational time increases exponentially with the problems size. 
Although heuristics can handle complex problems, there are no guarantees that they 
will solve the problem optimally. Recently, several metaheuristics have also been put 
forward to solve the VRP. In contrast to heuristic that terminate when they reach to a 
local optimum, metaheuristics may search larger subsets of the solution space to find 
better solutions (even the optimal one) within a reasonable and acceptable time 
framework. 

In the last twenty years, advanced exact optimization methods have been used 
extensively to these problems, aiming at decomposing the main problem into many 
smaller problems. Decomposition techniques like Lagrangian Relaxation or Column 
Generation within a Branch and Bound framework deal with vehicle routing problems 
and find the optimal solution in reasonable computation time by strengthening the 
conventional OR tools in terms of searching the feasible space and, thus, decrease 
considerably execution time. 

In this work we are developing a toolkit that solves vehicle routing problems using 
Column Generation algorithm to derive a lower bound for the VRP and a Branch and 
Bound algorithm to obtain the optimal integer solution. The toolkit has been inspired 
by the doctoral work of Larsen (2001) as well as resent related work of other 
researchers and will be used by the Design, Operations & Production Systems Lab 
(DeOPSys) of the Financial and Management Engineering (FME) Department of the 
University of the Aegean, where several algorithms for problems of the VRP class 
have been developed and studied. Additionally, the implemented algorithms were 
based on the work of Athanasopoulos (2008b), which is conducted as part of his post- 
graduate studies. This toolkit will be used to produce benchmark solutions and will 
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validate the quality of the algorithms under investigation. Furthermore, Column 
Generation is a sophisticated method, which could also be applied to other operations 
research (OR) fields being studied in FME to yield optimal solutions within a variety 
of constraints.  

This thesis focuses on the Vehicle Routing Problem with Time Windows and 
Capacity Constraints, in which the service at each location can take place only during 
a given interval, called time window and total pickup or delivery loads must not 
exceed the vehicles capacity. Vehicles are not allowed to arrive to a customer after the 
end of the time window, while in case they arrive before the time window opens, the 
service cannot start until the time window begins. The fleet of vehicles is 
homogenous, meaning that all vehicles have the same capacity and all customers must 
be served exactly once. The scope of our methodology is to produce the optimal 
solution from the entire search space by examining the most fruitful regions only. 

The methodology employed in this toolkit implement Larsen’s method and comprises 
two parts: i) initially the lower bound (linear solution) is obtained through a Column 
Generation technique, and ii) the optimal integer solution of the problem is obtained 
using a Branch and Bound scheme (B&B) with embedded the column generation 
technique. This scheme is denoted as Branch and Price Column Generation. In the 
first part, a linear solution is initially obtained from a portion of all possible routes. 
The column generation technique determines if there are other routes to be included in 
the solution that could further reduce the objective value. Using the dual variables of 
the existing linear solution, a shortest path problem (with additional capacity and 
time-window constraints) is solved in order to identify if there is any route that could 
be included in the formulation. This step generates potential column(s) (routes) to be 
inserted, and the resulting and extended linear problem is solved. This procedure is 
continued until there are no additional routes that could reduce the objective function 
value, and, therefore, the lower bound has been reached. The second step (in cases 
where the lower bound is not integer) uses the linear solution produced the first step 
as a lower bound, and through a branch and bound tree the optimal integer solution is 
reached. Note that in every branch all steps of the first part (Column Generation) are 
repeated.    

The remainder of the thesis is structured as follows: Chapter 2 describes the basic 
theoretical background and linear programming methods used, such as the Revised 
Simplex Method and Column Generation techniques. This is followed by the 
description of the Branch and Bound method and the most popular implementation 
strategies. Several variations of the VRP are also been described regarding modeling 
approaches, constraints and solution algorithms. Chapter 2 ends with the description 
of the basic theory of the Shortest Path Problem (SPP), which is critical for the 
implementation of the algorithm.  

Chapter 3 presents the solution method of the VRP via Column Generation. It consists 
of two parts, firstly, the description of the master problem and, secondly, the 
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description of the sub-problem, i.e. the Elementary Shortest Path Problem with Time 
Windows and Capacity Constraints (ESPPTWCC) is presented. The method used for 
the ESPPTWCC also incorporates key concepts of the dynamic labeling algorithm 
proposed by Kohl (1995), Larsen (2001) and Chabrier (2005).  

Chapter 4 describes the policies used, regarding the branch and bound framework 
(that the column generation has been incorporated in), in order to find the optimal 
integer solution for the VRPTW. Also, the unified structure of the column generation 
within a branch and bound framework (branch and price) is presented.  

Chapter 5 presents the description of the Solomon benchmark problems, which used 
to test the efficiency of the proposed algorithm. Additionally, the results obtained 
along with basic conclusions and findings are presented.  

Finally, Chapter 6 presents the conclusions of the overall thesis and an evaluation of 
the performance of the methods used, along with several directions for future 
research. 
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CHAPTER 2 THEORETICAL BACKGROUND 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The present chapter overviews the theoretical background for the methods employed 
in the VRPTW toolkit, that is, Column Generation algorithm and Branch and Bound 
technique. The first part of the chapter is dedicated to the linear programming theory 
that is related to Column Generation, including the Revised Simplex Method and the 
basic concept of Column Generation. The second part presents the well-known 
Branch and Bound method including its policies and characteristics. Finally, the 
Vehicle Routing problem is presented, along its variants, characteristics and solution 
methodologies.  
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2.1 LINEAR PROGRAMMING THEORY 

2.1.1 THE REVISED SIMPLEX METHOD PROCEDURE  
Revised Simplex Method (RSM) is a modification of the well-known simplex 
method. RSM is based on calculations, which are directly based on the inverse of the 
basis matrix and the main characteristic of it, is that calculations are performed to a 
part of the tableau. For example, if the number of constraints is much lower than the 
number of variables (the ܣ matrix has fewer rows than columns) only a small number 
of columns will participate in the calculations to find the optimal solution. By this 
method, several calculations are avoided resulting in a considerable decrease of 
computation time and memory requirements. 
 
As stated in Luenberger (1989) and Bradley (1977), Simplex method is expected to 
solve linear problems (in optimality) in about m or 3/2m pivot operations, where ݉ is 
the number of constraints and ݊ is the number of columns Thus, if the numbers of 
rows is considerably smaller that the number of columns (  ݉  ൏൏  ݊ ) then, the 
pivoting operations needed to reach an optimal solution will address a small number 
of columns. In contrast, the traditional Simplex Method considers all elements of the 
involved matrices in the relevant calculations, thus increasing complexity and time. In 
many real-life problems, linear programming matrices have more columns than rows 
and many coefficients are likely to be zero (sparse matrices). According to the 
characteristics of the LP problems and the way the simplex method works, it can be 
easily shown that a significant amount of redundant information is generated at each 
step. Some references on RSM include the following [Luenberger, (1989); Bradley, 
(1977)]. The following are based on these references. 
 
Consider a minimization problem in the standard form: 
 

minܼ ൌ ܥ ܺ
.ݏ            .ݐ ܺܣ ൌ ܾ 
                ܺ ൒ 0 

 

        (2.1)

 
where  ܥ ሺ1 ൈ ݊ሻ is the cost vector, ܺሺ݊ ൈ 1ሻis the variable vector, ܣሺ݉ ൈ݉ሻis the 
coefficient table and  ܾሺ݉ ൈ 1ሻ is the right hand side coefficients. In order to present 
the revised simplex method, the above formulation should be rewritten in terms of the 
basic and non-basic variables, where B represents a sub-matrix resulting from matrix 
A, which corresponds to the basic variables (note that matrix B is defined always 
based on the initial A matrix) and is of size ሺ݉ ൈ݉ሻ. At this point we have ܣ ൌ
ሾܤ, ,ሿܦ ܺ ൌ ሺܺ஻, ܺ஽ሻ, ்ܥ  ൌ ሺܥ஻்,  :஽்ሻ and the minimization problem becomesܥ
 

min ஻ܥ ܺ஻ ൅ ஽ܥ ܺ஽
.ݏ ஻ܺܤ  .ݐ ൅ ஽ܺܦ ൌ ܾ

ܺ஻, ܺ஽ ൒ 0 

(2.2)

 

The method of revised simplex can be described as follows: 
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Step 1  

Starting by a dummy initial feasible solution ܺ஻ ൌ ܺ஽ ൌ 0, where ܺ஻  are ݉  slack 
variables (each one for every constraint). The inverse of the current basis B is given 
by ିܤଵ  and the basic variables’ values can be calculated as:  

ܺ஻ ൌ  ଵܾ (2.3)ିܤ
Step 2 

Next, the non basic variable (ܺ஽௝ ) to enter the basis should be calculated. Every 
variable is associated with a column vector ܦ௝ from the initial D matrix.  As in the 
simplex procedure, the reduced cost coefficients ݎ for each non basic variable are 
computed from the following formula: 

௝ݎ ൌ ௝ܦߨ െ ஽ܥ ௝ (2.4) 
 

Where ߨ is a row vector containing all the shadow (or dual prices) of the current 
solution and ߨ௝ is the cost coefficient of the variable ܺ஽ೕThe shadow prices produce a 
vector of 1 ൈ ݉ elements (equal to the numbers of rows) and define the change in 
optimal objective function value per unit increase of a corresponding right hand side 
(RHS) coefficient and are given by: 

ߨ ൌ ஻ܥ  ଵ (2.5)ିܤ
 

If all reduced cost coefficients are positive or equal to zero (ݎ௝ ൒  then the ,(݆ ׊ 0
optimal solution has been obtained. Otherwise, the most negative element ( ݎ௝) should 
be selected and the corresponding variable enters the basis. 

Step 3 

If variable ܺ஽೐ is selected to enter the basis with negative reduced cost coefficient ݎ௘, 

then the representation of the column ܦ௘ (coefficients’ column for variable ܺ஽೐ in the 

initial matrix ܦ), that will enter the basis (as it will appear after all the pivoting 

operated up to now) is given by: 

௘ݕ ൌ  ௘ (2.6)ܦଵିܤ

Step 5 

In this step, the variable to exit the basis must be defined. Firstly, the minimum ratio 
rule is applied. The variable to exit the basis is selected by the following formula, 
where ݕ௜௘  indicates the ݅௦௧  element of column  ݁ , and ܾ௜  the ݅௦௧  element of RHS 
column vector. 
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min ሼ
ܾ௜
௜௘ݕ

/ ௜௘ݕ ൐ 0ሽ 
(2.7) 

The variable to exit from the basis is selected (variableܺ஻೐ ). In case there is no 
solution, then the problem is unbounded and no feasible solution can be found. 

Step 6 

In the final step, variable ܺ஻೐  is exchanged with variable ܺ஽೐  (and the respective 
columns in B are exchanged). The new basis ିܤଵ, the RHS ܾᇱ ൌ  ଵܾ and the currentିܤ
solution כݖ ൌ ஻ܥ ܾԢ  are calculated. 

The iterations of the algorithm described above continue until an optimum is found or 
until the problem comes to an infeasible end.  

An analytical example of the revised simplex method is given in appendix A. Figure 
2.1 below provides an illustrative flowchart of the revised simplex method. 
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Figure 2.1: Flowchart of the Revised Simplex Method 

Problem Inputs c, A, b. 

Find Initial Feasible Solution and compute 

B‐1 and ܾᇱ ൌ  .ଵܾିܤ

௝ݎ ൌ ௝ܦߨ െ ஽ܥ ௝  

Calculate:

௝ݎ ൒ 0  Optimal Solution 
Found 

Find the most negative element of r. Select 
respective variable e to enter the basis. 

No

Yes

௘ݕ ൌ ௘ܦଵିܤ  

Rewrite coefficients’ column of variable e
in terms of the current basis.                 

u ൌ min ሼ
ܾ௜
௜௘ݕ

/ ௜௘ݕ ൐ 0ሽ 

Calculate                                  

u= null  Problem Unbounded 
Yes

No

Calculate new Basis  ଵ andିܤ inverse ,ܤ
RHS ܾԢ 

Compute ܥ஻ , ,ܦ  ܤ
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2.1.2 DECOMPOSITION METHOD 
Decomposition methods have proved a powerful tool for linear problems, where the 
coefficients structure (constraints) presents a certain pattern. Figure 2.2 presents 
several indicative patterns for which decomposition methods may be applied. 

 

 

As stated in Bradley (1977), if a problem can be divided in ݔ separate sub-problems 
then the solution of each sub-problem will requireሺ௠

௫
ሻଷ computations, and the full 

problem will require ݔሺ௠
௫
ሻଷ ൌ ௠య

௫మ
  computations which are considerably smaller than 

the computations of a full problem (݉ଷ).Additionally, the sub-problems can be solved 
in parallel achieving better computational savings and the ability to solve smaller 
problems has made this method as a very useful tool for large scale problems. 
Decomposition method initially introduced by Dantzig and Wolfe (1960). 

The primal block angular structure will be presented. In this structure, there are 
several sub-problems, which are independent and can be solved separately, but there 
exists a set of constraints, which “connects” all the sub-problems together. These 
constraints are known as “coupling” constraints. The following are based on 
Luenberger, (1989) and Bradley, (1977). 

The standard linear programming structure of a linear problem is: 
 

min ܼ ൌ ܥ ܺ
.ݏ   .ݐ ܺܣ ൌ ܾ 
         ܺ ൒ 0

 
(2.8)

where  ܥ ሺ1 ൈ ݊ሻ, ܺሺ݊ ൈ 1ሻ, ܣሺ݉ ൈ݉ሻ and  ܾሺ݉ ൈ 1ሻ. 
  

 

Figure 2.2: Several Constraints Structure (Bradley, 1977) 



University of the Aegean         Department of Financial and Management Engineering 

12 
 

If the above problem presents the block angular structure, then it can be expanded as 
below: 

min   ଵܥ ଵܺ ൅ ܥଶ ܺଶ ൅ ൅ڮ ேܥ ܺே      
  ଵܮ ଵܺ ൅ ଶܮ ܺଶ ൅ ൅ڮ ேܥ ܺே =  ܾ଴   
  ଵܣ ଵܺ  =  ܾଵ   
  ଶܣ               ܺଶ                     =  ܾଶ  (2.9)
                                   ڰ    ڭ  
  ேܺேܣ =  ܾே   

 

 

As it can be seen, the sub-problems can be regarded as N independent linear 
programming problems, which can be solved separately. Each sub-problem has the 
standard linear form:  

   min ௜ܥ ௜ܺ
.ݏ     .ݐ ௜ܣ ௜ܺ ൌ ܾ 
       ௜ܺ ൒ 0 

 
(2.10)

The solution for each sub-problem will lie upon a specific extreme point of the 
convex hull (of the sub-problem’s constraints). For that, a transformation of the above 
formulation is proposed in order to reflect the extreme points of each sub-problem. 
The master problem constraint coefficients are now the extreme points of the sub-
problems and its variables are the weight factors between the extreme points of each 
sub-problem. Note that a solution to a sub-problem is not always feasible for the 
master problem due to the linking constraints. This deficiency will be overcome by 
weighting the extreme points (by the selected variables) and the solution may not lie 
upon an extreme point of the sub-problems. The solution will be a combination of the 
extreme points, which optimize the master problem and respecting all constraints. 
Further references on the decomposition method and its principles are given in 
Bradley (1997) and Luenberger (1984).  

2.1.3 COLUMN GENERATION PROCEDURE  
As described previously, decomposition methods exploit the special structure of the 
constraints of some problem cases in order to provide a better solution in terms of 
computational time. Nevertheless, if the number of variables (therefore the size of the 
coefficient matrix ܣ) is too large, it can still be prohibited to find the optimal solution. 
Column generation, in association with decomposition methods, can overpass this 
obstacle by simply generate coefficients columns only when needed by the 
optimization procedure. Analytical review on column generation is given in Bradley 
(1977), Desaulniers et al. (2005). In Figure 2.3 the grey part represents the variables 
that are not necessary to find the optimal solution and CG will not.   
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Lubbecke and Desrosiers (2005) provide a historical review of the column generation 
along with many applications and research directions. Ford and Fulkerson (1958) are 
being referenced as the initiators of the column generation idea. Dantzing and Wolfe 
(1960) provided a strategy to deal with a linear program by splitting it into a master 
and several sub-problems, where columns to the master problem will be added 
continuously. Gilmore and Gomory (1961; 1963) presented the first practical 
implementation by solving a cutting stock problem by column generation. This 
problem, nowadays, consist of the most used example for column generation. In 
Desaulniers et al. (2005) a theoretical background, as well as many applications on 
column generation are presented.   

Column generation deals with large scale linear programming problems. One of the 
main characteristics of the method is that it succeeds in determining an optimal 
solution without having to enumerate all variables of the problem. It is very efficient 
with problems that contain a large number of variables (columns) and a relatively 
small number of constraints (݊ ൐൐ ݉).  

Generally, in Column Generation, the initial problem is called the Master Problem 
(MP). From the MP the Restricted Master Problem (RMP) is produced by including 
only a subset of the j variables, where 1 ൑ ݆ ൑ ݊, and all other variables are reduced 
to zero. So, initially, the RMP contains only those variables, as well as all the 
constraints of the MP (related to these variables). Note that the variables included in 
the RMP should result in a feasible solution. Finally, the next column (variable) to 
enter the RMP is selected by solving a special optimization problem called the sub-
problem. 

The steps of the method are presented below 

 

 

Figure 2.3: This figure represents a linear programming problem. The grey part contains 
those variables that are not necessary to find the optimum and they could be discarded. 
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Step 1 

Initially, we define a feasible RMP that includes only ܬ ൑ ݊ variables. All other 
variables will be reduced to zero.  RMP is usually produced from a heuristic 
algorithm, or even, starting with dummy variables. 

Step 2 

RMP is being solved (by simplex or by revised simplex) and generates an optimal 
solution regarding variables ݔଵ ݔ ݋ݐ௝. This solution is, also, feasible for the MP since 
all constraints have been maintained. In this step, the shadow (dual) prices are 
generated. Shadow prices ሺߨ௜

௝ ൌ ܿ஻ିܤଵሻ represent the rate of change of the Objective 
Function, by increasing the specific variable. In RSM, shadow prices are used to 
define the next entering variable and to test whether the Optimal Solution has been 
reached.      

Step 3 

The Sub-problem is being solved ݖ௦௨௕ ൌ minሼ∑ ௜ߨ
௝ܽ௜௝ െ ௝ܿሽ௠

௜ୀଵ . Where ௝ܿ are the cost 

coefficients, ߨ௜
௝   are the shadow prices and ܽ௜௝  are the coefficients of A and the 

variables of the sub-problem. In order to obtain feasible solutions from the sub-
problem, several constraints have to be included. These constraints represent the 
region of feasible solutions and are based on the structural information of each sub-
problem  

If ݖ௦௨௕ ൑ 0, then the current solution is optimal (without having to enumerate all ܽ௜௝).  

Else if ݖ௦௨௕ ൐ 0, then the current solution is not optimal and the sub-problem will 
provide all ܽ௜௝ for the specific variable ݆ to enter the basis of the RMP.   

Step 4  

Add a new column to RMP. The new column to be added has been provided by Step 
3, by calculating the current representation of the ܽ௜௝ provided based on the current 
basis (ݕ௝ ൌ ଵିܤ ௝ܽ). Increase the variables of the RMP by 1 ሺJ ൅ 1). 

Column generation and decomposition method can be regarded as similar methods. A 
difference of column generation with decomposition methods is that in column 
generation the sub-problem to be solved can be of any form (dynamic programming, 
non linear, etc.) and not only linear programming. This characteristic makes column 
generation a strong tool, which can be applied to several different operations research 
problems. An analytical example of the column generation method is given in 
Appendix A. 

  



Chapter 2 Theoretical Background 
 

15 
 

2.2 BRANCH AND BOUND  
Branch and Bound (B&B) technique has been used in order to provide integer 
solution to linear programming problems. It is the most common technique for integer 
programming. Over the years different aspects of dealing with B&B have been 
proposed making the B&B technique more effective and problem specific.  

The basic idea behind B&B is to divide the feasible solution space into subdivisions. 
For each subdivision a new linear program can be solved by adding one additional 
constraint. This constraint marks the subdivision’s space.  The decision on the 
subdivisions is based on the non integer variables of the solution. Each non integer 
variable partitions the solution space into two subdivisions. This procedure is repeated 
until an integer solution is obtained. In general, there exist several alternatives in 
dividing the feasible region, and several different B&B tactics are proposed in the 
literature. For analytical information on the B&B techniques and methodologies see 
Lawler and Wood (1966), Lee and Mitchell (2001) and Chinneck (2003). The 
following review is based on Lee and Mitchell (2001). 

2.2.1 BRANCH AND BOUND TERMINOLOGY AND GENERAL DESCRIPTION 
In order to describe the B&B method the following terminology is being used, in 
general:  

• A Node represents a solution obtained by the linear programming and it can be 
either integer, linear or infeasible; a Bud (or bud node) represents a solution 
obtained, which is linear and may be further expanded; and a Leaf (or leaf 
node) is a solution obtained, either feasible or infeasible which cannot be 
further expanded to other nodes. Nodes set comprise a superset of leaf and bud 
nodes sets.  

• Bounding function is the method used for finding the optimal objective value 
in every node.  

• Branching refers to the selection of the variable to branch (variable selection) 
and to the creation of the successor nodes of a bud node (partitioning). 

• Incumbent is the best integer solution found so far. 

In order to formulate a complete B&B technique, the following policies are required: 

• Variable selection policy refers to the selection of the variable to further 
elaborate in the successor nodes of a bud node. 

• Partitioning policy refers to the strategy the next branches will be created, 
upon the selection of the variable policy.  

• Node selection policy refers to the next node that will select and therefore 
examined by the bounding function.  
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• Finally, terminating rules of the process should be determined.  

o Fathoming rule is the rule that stops the growing of a node (or branch), 
thus, making it a leaf node.  

o Terminate rule is the rule that terminates the whole process, regardless 
whether a final solution has been obtained or not.  

Figure 2.4 presents an example for the process of a B&B algorithm in an integer-
programming problem. 

2.2.2 VARIABLE SELECTION POLICIES 
Variable selection is one of the critical aspects of B&B, since it affects the running 
time of the algorithm. Several approaches have been proposed by the researchers. The 
most common variable selection policy (which is addressed it the current thesis) is the 
Most/Least Infeasible Integer Variable (Danna, 2005). This policy selects the 
variable, which is most fractional and is farthest/closest from/to an integral value, as 
the branching variable. The selection of the farthest or the closest one is user-defined. 
Other indicative policies are mentioned: 

• Driebeck-Tomlin Penalties (Driebeck, 1966; Tomlin, 1971) 
• Strong Branching (Applegate et al., 1995) 
• Pseudo-Cost Estimate (Benichou et al., 1971) 
• Pseudo -Shadow Prices (Land, 1979) 

Solving VRPs with the B&B technique in order to obtain integer solutions, branching 
policies (both partitioning and variable selection) are problem specific. Several 
general B&B branching operations reported in the literature can be applied, depending 
on the features of the problem.   
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Figure 2.4: Example of the solution of an integer programming problem obtained with B&B 

ܼݔܽ݉ ൌ 1 כ ଵݔ ൅ 1 כ ଶݔ
2 כ ଵݔ ൅ 1 כ ଶݔ ൑ 6
4 כ ଵݔ ൅ 5 כ ଶݔ ൑ 20 
,ଵݔ ଶݔ ൒ 0           
,ଵݔ  ݏݎ݁݃݁ݐ݊݅ ଶݔ

ଵݔ ൌ 1,66
ଶݔ ൌ 2,66 

Solution: ݖ ൌ 4,32 

ܼݔܽ݉ ൌ  1 כ ଵݔ ൅ 1 כ ଶݔ
2 כ ଵݔ ൅ 1 כ ଶݔ ൑ 6
4 כ ଵݔ ൅ 5 כ ଶݔ ൑ 20 
ଵݔ ൑ 1 
,ଵݔ ଶݔ ൒ 0           
,ଵݔ  ݏݎ݁݃݁ݐ݊݅ ଶݔ

ଵݔ ൌ 1 
ଶݔ ൌ 3,2 

Solution: ݖ ൌ 4,2 

ܼݔܽ݉ ൌ 1 כ ଵݔ ൅ 1 כ  ଶݔ
2 כ ଵݔ ൅ 1 כ ଶݔ ൑ 6
4 כ ଵݔ ൅ 5 כ ଶݔ ൑ 20 
ଵݔ ൒ 2 
,ଵݔ ଶݔ ൒ 0           
,ଵݔ  ݏݎ݁݃݁ݐ݊݅ ଶݔ

ଵݔ ൌ 2
ଶݔ ൌ 2 

Solution: ݖ ൌ 4 

ܼݔܽ݉ ൌ  1 כ ଵݔ ൅ 1 כ  ଶݔ
2 כ ଵݔ ൅ 1 כ ଶݔ ൑ 6 
4 כ ଵݔ ൅ 5 כ ଶݔ ൑ 20 
ଵݔ ൑ 1 
ଶݔ ൒ 4  
,ଵݔ ଶݔ ൒ 0           
,ଵݔ  ݏݎ݁݃݁ݐ݊݅ ଶݔ

ଵݔ ൌ 0
ଶݔ ൌ 4 

Solution: ݖ ൌ 4 

ܼݔܽ݉ ൌ 1 כ ଵݔ ൅ 1 כ ଶݔ
2 כ ଵݔ ൅ 1 כ ଶݔ ൑ 6
4 כ ଵݔ ൅ 5 כ ଶݔ ൑ 20 
ଵݔ ൑ 1 
ଶݔ ൑ 3 
,ଵݔ ଶݔ ൒ 0           
,ଵݔ  ݏݎ݁݃݁ݐ݊݅ ଶݔ

ଵݔ ൌ 1
ଶݔ ൌ 3 

Solution: ݖ ൌ 4 

Optimal solution ݖ ൌ  :ݎ݋݂ 4
ଶݔ ଵ=2 andݔ ൌ 2
Ԣଶݔ Ԣଵ=0 andݔ ൌ 4 
ଶݔԢԢଵ=1 and ԢԢݔ ൌ 3 
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2.2.3 PARTITIONING POLICIES  
Partitioning is typically realized with the addition of linear constraints, that is, the 
formation of new nodes on each division. Suppose ݔோ is the optimal solution to the 
relaxation of a branch and bound node. Common partitioning policies as overviewed 
in Lee and Mitchell (2001) include: 

Variable Dichotomy: If  ݔ௝ோ is fractional, then two new nodes are created, one with the 
simple bound ݔ௝ ൑   උݔ௝ோඏ  and the other one with the bound ௝ݔ  ൒   ඃݔ௝ோඇ , where 
 ௝ is restrictedݔ the floor value. If ۂ·ہ denotes the ceiling value of a real number and  ۀ·ڿ
to be binary, the branching reduces to fixing ݔ௝ ൌ 1 and ݔ௝ ൌ 0, respectively (Dakin 
1965).  

Generalized Upper Bound Dichotomy (GUB): If the constraint ∑ ொא௝௜ݔ ൌ 1 is present 
in the original integer program and  ݔ௜ோ, ݅  א ܳ are fractional the Q can be partitioned 
ܳ ൌ ܳଵ ׫ ܳଶ such that ∑ ொభא௝௜ݔ ൌ 0 and ∑ ொమא௝௜ݔ ൌ 1 respectively (Beale and Tomlin 
1970). 

Multiple branches for bounded integer variable:  If  ݔ௝ோ  is fractional and ௝ݔ    א
ሼ0, … , ݈ሽ, then ݈ ൅ 1 new nodes can be created, with ݔ௝ ൌ ݇ for node  ݇, ݇ ൌ 0,… , ݈. 
This idea was proposed in the first B&B algorithm by Land and Doig (1960). 

2.2.4 NODE SELECTION POLICIES 
Node selection policy refers to the selection of the next node of the B&B tree to be 
solved. It consists of a critical policy, which strongly affects the computational time 
of the algorithm. Many general and problem specific policies have been proposed in 
the literature; the most common as described in Lee and Mitchell (2001) are presented 
below. 

Dept-First Search with Backtracking: This policy is as follows: Choose a successor 
(child) node from the previous node as the next node to examine; if it is already 
examined, choose another child node; if there is no child nodes unexamined, then, 
choose the most recent unexplored node. This method examines in depth a certain 
branch of the B&B tree and returns back to the closest unexplored node.  

Best-Bound: This policy is as follows: Choose among all nodes the one that has the 
best linear objective value; If a node has linear objective value less (greater) than the 
incumbent do not expand further it. This policy minimizes the number of nodes 
explored since a node with larger linear objective value than the incumbent will not be 
examined because the corresponding integer value could never be less (higher) than 
the linear value in case of a minimization (maximization) problem. 

Sum of Integer Infeasibilities: This policy chooses the node with either maximum or 
minimum sum of infeasibilities. The sum of infeasibilities (minimum case) at a node 
is calculated as 
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ݏ ൌ෍min ሺ ௝݂, 1 െ ௝݂ሻ
௝

 (2.11)

 

Other known policies are Best-Estimate using Pseudo-Cost, Best-Estimate using 
Pseudo -Shadow Prices and Best Projection. 

2.2.5 BRANCH AND BOUND WITH COLUMN GENERATION 
The column generation method embedded in a branch and bound framework is called 
branch-and-price. Initially, Desrosiers, Soumis, and Desrochers (1984) were the first 
to implement a branch and price method for solving the VRPTW problem (see 
Chapter 3).  An analytical presentation of the method is given in Barnhart et al. 
(1998). Other references on column generation with integer programming include 
Desrosiers et al. (1995), Soumis (1997), and Wilhelm (2001). Although it seems that 
it is a straight forward implementation of the column generation technique into a 
B&B framework several researchers have mentioned the difficulties that have been 
raised (Johnson 1989, Barnhart et al. 1998).  
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2.3 LINEAR PROGRAMMING METHODS FOR VRP 

2.3.1 THE VEHICLE ROUTING PROBLEM  
The Vehicle Routing Problem (VRP) is related to many distribution and 
transportation problems. The supply chain costs until it reaches the end customer may 
reach 20% of its total cost (Reimann et al., 2003). This significant cost consuming 
service, led both academics and industry to optimize the operations in this area. The 
VRP is a generalization of the classic Traveling Salesman Problem (TSP) 
(Christofidis, 1979; Cornuejols and Nemhauser, 1978; Gendreau et al, 1997) and 
consists of finding a set of routes to serve a number of geographically dispersed 
customers at minimum cost. The VRP was introduced by Dantzing and Ramser 
(1959), in which the authors proposed a mathematical programming formulation and 
an algorithmic approach for a real-life problem for the delivery of gasoline to service 
stations. At the present time, VRP is one of the most studied problems of Operations 
Research, with many extensions and solution methods (Tatarakis 2007). 

The objective of the VRP is to find a set of minimum cost routes for an available fleet 
of vehicles starting and ending at a depot, in order to deliver goods to a set of 
customers with known demand (Clarke and Wright, 1964; Golden & Assad, 1998; 
Laporte and Osman, 1995). A very useful survey of significant research results in this 
content is given by Toth & Vigo (2002). 

According to Stewart and Golden (1983), a compact and convenient formulation for 
the VRP can be written as follows: 

௜௝௞ݔ෍෍ܿ௜௝ ݁ݖ݅݉݅݊݅ܯ
௜,௝௞

 
(2.12)

Subject to 

෍ߤ௜ݔ௜௝௞
௜,௝

൑ ܳ ݇ ൌ 1,2, … ,݉ (2.13)

ݔ ൌ උݔ௜௝௞ඏ א ܵ௠ (2.14)
where: 

ܿ௜௝    = the cost of traveling from ݅ to ݆ 

 ௜௝௞ = 0 otherwiseݔ ௜௝௞ = 1 if the vehicle ݇ travels from ݅ to ݆ andݔ

 ݉    = the number of available vehicles 

 ܵ௠   = the set of all feasible solutions in m-traveling salesman problem (m-TSP) 

 ݅ ఐ     = the demand at locationߤ  

  ܳ      = the vehicle capacity 
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From the above formulation it is clear that the VRP is an integer - programming 
problem. It is also an NP-hard problem, and therefore, practical problem instances 
cannot be optimally solved within reasonable time (see Toth and Vigo, 2002). Figure 
2.5 present as network of customers along with the feasible routing solution. 

 

 

2.3.2 MODELING APPROACHES FOR THE VRP 
According to Toth and Vigo (2002): “Three basic modeling approaches have been 
proposed in the literature for the VRP. The models of the first type are known as 
vehicle flow formulations and they use integer variables associated with each arc or 
edge of the graph, which count the number of times the arc or edge is traversed by a 
vehicle. These are the most frequently used models for the basic versions of the VRP; 
they are particularly suited for cases in which a) the cost of the solution can be 
expressed as the sum of the costs associated with the arcs, and b) the most relevant 
constraints concern the direct transition between the customers within the route, so 
they can be effectively modeled through an appropriate definition of the arc set and 
the arc costs. On the other hand, vehicle flow models cannot be used to handle some 
particular issues, such as in cases in which the cost of a solution depends on the 
overall vertex sequence, or on type of the vehicle assigned to a particular route (Toth 
and Vigo 2002). The second family of models is based on the so-called commodity 
flow formulation. In this type of model, additional integer variables are associated 
with the arcs or edges and represent the flow of commodities along the paths traveled 
by the vehicles. Only recently these types have been used as the basis for the exact 
solution of Capacitated VRP (CVRP). 

The models of the third family have an exponential number of binary variables, each 
associated with a different feasible circuit. The VRP is then formulated as a Set-
Partitioning Problem (SPP) seeking a collection of circuits that minimize cost, 
serving each customer once and possibly satisfying additional constrains. A main 

Figure 2.5: A solution example of the VRP 
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advantage of this model is that allows for extremely general route costs (for modeling 
cost that depend on the sequence of the arcs and/or the vehicle type). Moreover, the 
additional side constraints do not need to take into account restrictions concerning 
the feasibility of a single route. As a result, the constraints can often be replaced with 
a compact set of inequalities. This produces a formulation, the linear relaxation of 
which is typically much tighter than previous model types (Toth and Vigo 2002).” 

2.3.3 BASIC PROBLEMS OF THE VRP CLASS 

In this section, we will describe the most common VRP variants which respect to the 
different types of constraints. We focus on three main variants of the VRP, the 
Capacitated VRP, the VRP with Time Windows and the VRP with Pickup and 
Delivery.  

Capacitated VRP 

The Capacitated VRP (CVRP) is almost similar to the simple VRP, since most of the 
VRP models introduced to the literature contain capacity restrictions for the vehicles. 
In the CVRP all demands from the customers are deterministic, known in advance and 
cannot be split. All vehicles are identical and start from a main depot.  The objective 
is to minimize the total routing cost by serving all customers exactly once without 
exceeding capacity constraints (Toth and Vigo 2002).  

VRP with Time Windows 

The VRP with Time Windows (VRPTW) is an extension of the CVRP, where in 
addition to the capacity constraints, every customer ݅ should be served in a specific, 
predefined time interval (time window). The time window contains an early arrival 
time ܽ௜  and a late arrival time ܾ௜ . The time interval ሾܽ௜, ܾ௜ ሿ is the time window, in 
which the customer i should start being served. Travel time from customer ݅  to 
customer ݆, ݐ௜௝ , and service time for each customer, ݏ௜ , are given (Toth and Vigo, 
2002; Ahn and Shin, 1991; Atkinson, 1994). This class of vehicle routing problems is 
studied in the present thesis and it will be further described in the following sections. 

Other VRP variations are: 

• VRP with Pickup and Delivery (Toth and Vigo, 2002; Daganzo and Hall, 
1993) 

• Distance Constrained VRP(Toth and Vigo, 2002) 
• Multi-Depot VRP (Bianco et al., 1994; Carpaneto et al., 1989) 
• Heterogeneous Capacitated VRP (Taillard, 1996) 
• VRP with Backhauls (Toth and Vigo, 2002; Golden et al.1988 ) 
• Multi-Period VRP (Tan and Beasley, 1984; Christofides and Beasley, 1984)  
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2.3. 4 SOLUTION ALGORITHMS FOR THE VRP WITH TIME WINDOWS  

In this section we will describe solution methods for the VRP with Time Windows 
(VRPTW) as described by Toth and Vigo (2002).   

2.3.4.1 HEURISTIC APPROACHES 

Heuristic approaches are typically used in practice (real-life problems) and focus on 
finding a feasible solution until all customers are served and all constraints are 
satisfied. Typically, heuristics approaches are problem-oriented and usually end to a 
sub-optimal solution (Toth and Vigo, 2002). In this section we examine three different 
classes of heuristics – route construction procedures, two phase algorithms and tour 
improvement procedures. Interested readers should see Assad (1998), Christofides 
(1979). Each one is described below: 

Route Construction 

Route construction algorithms gradually build a feasible solution while keeping an 
eye on solution cost, but they do not contain an improvement phase. They are 
typically divided into sequential and parallel methods. Sequential methods construct 
one route at a time until all customers are included while parallel procedures are 
characterized by the construction of a number of routes simultaneously. The routes 
are either allowed to form freely or their number is fixed a priori (Clarke and Wright, 
1964). 

Two – phase algorithms 

Two-phase heuristics are mainly divided in two classes: i) Cluster-first, route-second 
methods, where vertices (customers) are first organized into feasible clusters and then 
a vehicle route is constructed for each of them and ii) Route-first, cluster-second 
methods, where a tour is firstly built including all vertices and is then segmented into 
feasible vehicle routes.  

Route Improvement 

Route improvement methods perform local searches for better neighborhood solutions 
in order to improve a given initial one. This is usually achieved by edge or vertex 
exchanges within or between the vehicle routes. The process terminates when the 
current solution cannot be further improved (Toth and Vigo 2002). 

2.3.4.2 METAHEURISTICS 
Over the last few years, many authors have proposed new heuristic approaches, called 
metaheuristics, for tackling the VRP. These perform a thorough exploration of the 
solution space, the exploration of deteriorating, or, even, infeasible solutions during 
the procedure. Their main advantage is that they do not terminate when a local 
optimum is reached and they explore a larger sub-set of the solution space in order to 
find a solution closer to the optimal one. Generally, metaheuristics could be classified 
in three main categories: a) local search (simulated annealing, tabu search), b) 
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population search (adaptive memory procedures, genetic search) and, c) learning 
mechanisms (neural networks, ant colony systems) (Toth and Vigo 2002).  

2.3.4.3 DECOMPOSITION APPROACHES 
The main idea of the decomposition approaches is to exploit the special structure of 
the VRPTW problems, which allows the problem to split to several sub-problems, or 
to relax the constraints of the problem resulting in tighter lower bounds. This section 
describes the two more popular decomposition techniques: Lagrangian Relaxation and 
Column Generation. The interested reader could find more information in Huisman et 
al. (2005). For column generation references see Chapter 3.  

Lagrangian Relaxation 

In Lagrange relaxation, several constraints are selected and relaxed. That is, the 
selected constraints are added to the objective function followed by a penalty factor 
(langrangian multiplier ߣ). The master problem consists of finding the values of the 
langrangian multipliers, and the subproblem is a network flow problem with 
additional constraints (the ones that have not been removed). See Kohl (1997), 
Geoffrion (1974) and Fisher (1985).  

Column Generation 

As described in 2.1.2, the decomposition is based on two structures: a) the master 
problem, which in VRPTW usually is formulated as set partitioning problem, and b) 
the sub-problem, which in VRPTW is an elementary shortest path problem with time 
windows and capacity constraints (ESPPTWCC); the two problems interact and the 
required information is sent to each problem. ESPPTWCC uses modified costs based 
on the real costs and the dual prices obtained from the master problem and the Master 
Problem uses the new columns information to be added to the problem. The general 
column generation method is presented in Chapter 2.1.3 and the VRPTW with 
Column Generation is presented in Chapter 3.  

Since the current work is based on column generation, the set partitioning problem 
and the shortest path problem are overviewed next.  

2.3.5 SET PARTITIONING MODEL 
The set partitioning model was first proposed by Balinski and Quandt (1964). A direct 
formulation of the master problem, used in column generation, for the vehicle routing 
problem with time windows can be given through a set partitioning model. To 
describe this model, let ܩ be a directed graph, ܥ be the set of customers and ܸ a set of 
identical vehicles (Desrochers 1992; Toth and Vigo 2002). The variable ݔ௥ is defined 
as:  

௥ݔ  ൌ ൜1, if the route ݎ is used in the solution 0, otherwise  (2.15)
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and ܿ௥ denotes the total cost of the route. As a result, the model has the following 
form: 

݉݅݊෍ܿ௥
௥אோ

 ௥ (2.16)ݔ

෍ߜ௜௥
௥אோ

௥ݔ ൌ 1 (2.17) 

௥ݔ א ሼ0,1ሽ (2.18) 

where ܴ is the set of all feasible routes, and ߜ௜௥ is 1 if the customer ݎ is serviced by 
route r and 0 otherwise. 

Since enumerating all feasible routes is considered as a NP-hard problem, the column 
generation approach starts from an initial solution that contains a small number of 
feasible routes. Additional routes are added to the above formulation only when 
needed. This is achieved by solving a sub-problem, in compliance with the above 
master problem (see Section 2.4.3). Note that all the vehicle, time window and 
capacity constraints are included in the sub-problem, and, therefore, the routes added 
to the set partitioning formulation are all feasible.   
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2.4 THE SHORTEST PATH PROBLEM 
The Shortest Path Problem (SPP) refers to the problem of finding a path between a 
start node (vertex) and an end node, in order to minimize the sum of the costs 
(weights) of the traversed edges. In many methods, SPP is used as a sub-problem and 
it is one of the most studied problems in graph theory. Cormen et al. (2003) present an 
analytical review of several variants of the shortest path problems. This section 
describes the single-source, single-destination shortest path problem and is based on 
the aforementioned reference. 

Consider a directed graph ܩ ሺܸ,  the set of ܧ ሻ, where ܸ is the set of vertices andܧ
edges in the graph. Each arc ሺ݅, ݆ሻ is associated with a weight ݓ. Each vertex ሺݒሻ is 
associated with a label ߣሾݒሿ (the sum of weights for the current shortest path to node ݒ 
from the initial node. It represents the upper bound of the shortest path). The shortest 
path from a start vertex ሺݏሻ to an end vertex ሺ݁ሻ is denoted as  ߜ ሾݏ, ݁ሿ. In Section 
2.4.1 some core properties of the shortest path problem are given and in Section 2.4.2 
the most known solutions algorithms are provided. 

2.4.1 PROPERTIES OF THE SHORTEST PATH 
Optimal substructure: Considering a shortest path ߜሾݑ,  ,ݒ to node ݑ ሿ from nodeݒ
then every path included in ߜሾݑ,  ,ሿ is also a shortest path. For example in Figure 2.5ݒ
if the shortest path from node 1 to node 5 isሾ1,3,2,4,5ሿ with cost 20, then the shortest 
way to travel from node 3 to node 4 is ሾ3,2,4ሿ with cost 10.    

 

 

Triangle inequality in Shortest Paths:  For every set of arcs ሺݑ, ,ݒ ሻݏ א  where s is ,ܧ
the starting vertex, then the weight of the shortest path ߜሾݏ,  is less than ݒ to ݏ ሿ  fromݒ
the weight of the shortest path ߜሾݏ, ሿݑ  plus the weight of the arc  ሺݑ, ሻݒ . That 
is, ߜሾݏ, ሿݒ ൑ ,ݏሾߜ  ሿݑ ൅ ,ݑሺݓ   .ሻݒ

Figure 2.5: Shortest path example
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Upper Bound Property: For each vertex ݒ ߳ ܸ, the value of ߣሺݒሻ cannot be less than 
the total sum of weights of the shortest path ߜሾݏ, ሻݒሺߣ  ,ሿ. That isݒ ൒ ,ݏሾߜ  ሿ. If theݒ
label of a vertex is assigned with the value ߣሺݒሻ ൌ ሾs, vሿ then it will remain until the 
solution process ends.  

Convergence Property: Assume that a shortest path exists, which traverses vertices 
ݑ  and ݒ  sequentially, that is ݏ է ݑ ՜ ݒ . If ߣሺݑሻ has been assigned to value ߜሾs, uሿ 
(meaning the shortest path from ݏ to ݑ has already found) prior to the update of label 
,ሾsߜ ሻ  will be equal toݒሺߣ ሻ, thenݒሺߣ vሿ (shortest) after the update.    

No-path Property: If a path from  ݒ ݋ݐ ݏ does not exist then ߣሺݒሻ ൌ ,ሾsߜ vሿ ൌ ∞  .  

2.4.2 SOLUTION ALGORITHMS 
In this chapter, the two most known shortest path algorithms are presented. That is, 
the Dijkstra’s algorithm (Dijkstra, 1959) and the Bellman-Ford algorithm (Bellman, 
1958; Ford and Fulkerson, 1962) 

Dijkstra’s algorithm:   

Using Dijkstra’s algorithm the directed single-source shortest-path problem with non-
negative edge path weights is solved. Although it is a greedy algorithm that resembles 
the breadth-first search it provides the shortest paths on the graph. The algorithm 
starts at a source vertex ݏ. A list  ܶ contains all the vertices ݄, for which the shortest 
path from the starting vertex ߜሾݏ, ݄ሿ has been found. Vertices are added to ܶ in order 
of distance, i.e. first ݏ, then the vertex closest to ݏ, then the next closest, and so on. 
The value ߣሺ݃ሻ of every vertex ݃ not in T, which is connected to the vertices in ܶ, is 
updated based on the minimum cumulative weights. It can also be used for finding 
costs of shortest paths from a single vertex to a single destination vertex by stopping 
the algorithm once the shortest path to the destination vertex has been determined.  

Bellman-Ford algorithm 

Figure 2.6: Representation of the triangle inequality property on 
Shortest Paths 

δሾs, vሿ

δሾs, u wሺu, vሻ

 ݏ

ݑ

 ݒ
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Bellman – Ford algorithm solves the directed single-source shortest-path problem. In 
difference with Dijkstra’s algorithm it also finds shortest paths in graphs where 
negative edge weights exist. Initially, the algorithm sets the label of the source vertex 
to 0 and all other vertices to ∞ . Then, for ݄ െ 1  iterations (݄  is the number of 
vertices) it traverses the edges updating the labels ݈ሺݑሻ . Finally, negative weight 
cycles are checked by the following equation:  

 If such a negative cycle is present solution does not exist.  

 

2.4.3 SHORTEST PATH WITH TIME WINDOWS AND CAPACITY 

CONSTRAINTS 
When vehicle routing problems are solved with column generation techniques, the 
SPP with resource constraints (or other variants) can be used as the sub-problem. A 
resource corresponds to a quantity, such as the time and the demand. In our approach, 
these resources correspond to time windows and capacity constraints. The following 
are based on Larsen (2001).  

The mathematical formulation of the problem is:  

( ESPPTWCC) min෍෍ܿ௜௝ݔ௜௝
௝אே௜אே

 
 
 

  
(2.20) 

.ݏ ௜௝ݔ෍݀௜෍ .ݐ
௝אே௜א஼

 
 
൑  ݍ

  
(2.21) 

  ෍ݔ଴௝
௝אே

  ൌ 1  (2.22) 

 
෍ ௜௛ݔ
  ௜אே

െ෍ݔ௛௝
௝אே

 
 
ൌ 0  

 
݄׊ א  ܥ

 
(2.23) 

 ෍ݔ௜,௡ାଵ
௜אே

  ൌ 1  (2.24)

 ෍෍ݔ௜௝
௝אௌ

 
௜אௌ

 
൑ |ܵ| െ ܵ׊ 1 ك ܰ , |ܵ| ൒ 2 (2.25) 

௜ݏ  ൅ ௜௝ݐ െ ൫1ܭ  െ ௜௝൯ ൑ݔ ௜ݏ ,݅׊  ݆ א ܰ (2.26) 

 ܽ௜ ൑ ௜ݏ ൑ ܾ௜  ݅׊ א ܰ (2.27) 

  ௜௝ݔ א ሼ0,1ሽ ,݅׊         ݆ א ܰ (2.28) 

Constraint (2.21) is the capacity constraint of the route (the demand of the customers 
assigned to each route should be less or equal to ݍ); constraints (2.22), (2.24) are the 
constraints ensuring that each route will start and finish to the depot; Constraint (2.23) 
is the flow conservation constraints. Constraint (2.25) is the well known sub-tour 

݈ሾݒሿ ൐ ݈ሾݑሿ ൅ ,ݑሺݓ ሻݒ , ,ݑሺ׊ ሻݒ א ܧ (2.19)
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elimination constraint. Constraints (2.26) and (2.27) ensure that every customer will 
be served in its time window and, finally, constraint (2.28) forces variables ݔ௜௝ to be 
binary.  

The above problem is known as the Elementary Shortest Path with Time Windows 
and Capacity Constraints (ESPPTWCC) since every customer can exist in a route 
only one time (no repetitions are allowed). In order to overcome the computational 
complexity of the aforementioned problem, the customers are allowed to be serviced 
more than once in each route, by creating cycles. This type of problem is known as 
the non-elementary SPPTWCC. In this formulation, a node may be visited more than 
once, leading to cycles, for example a cycle of the form ሺ݅ሻ െ ሺ݆ሻ െ ሺ݅ሻ. Note that 
cycling will terminate at a point where the time window or capacity constraint will be 
met. Figure 2.7 presents an illustrative cycling example in a directed graph of five 
nodes. In this example, a “cycle-path” 1-2-3-4-2-3-5 may occur, while in path 1-3-5 
there is no cycle. Eliminating those cycles has been addressed in the literature by 
several researchers, specifically the two-cycle elimination in the context of shortest 
path algorithms was first presented by Houck et al. (1980) and Christofides, Mingozzi 
and Toth (1981). Larsen (2001) uses the SPPTWCC problem as a sub-problem with a 
two-cycle elimination technique. 

 

 

Since the solution of the elementary problem was considered very difficult for 
practical reasons, several researchers proposed different relaxations for the elementary 
problem. Recently, Irnich and Villeneuve (2003) showed that by eliminating larger 
cycles, the lower bound obtained by column generation process was drastically 
improved. Furthermore, Feillet (2004) and Chabrier (2005) proposed the use of the 
elementary shortest path problem with time windows and capacity constraints as the 
sub-problem of the column generation process. 

Figure 2.7: Example of generated “cycle-paths” 
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CHAPTER 3 A GOOD LOWER BOUND FOR THE VRPTW 
 USING COLUMN GENERATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter the implementation of the column generation method for the Vehicle 
Routing Problem with Time Windows and Capacity Constraints will be described. 
The mathematical programming framework used to produce the lower bound relies on 
two basic concepts. The first concept is decomposition that transforms the original 
model into a model that contains many columns and fewer rows, called master 
problem, and the second concept is column generation. In order to solve the linear 
relaxation of the extensive formulation one does not generate the entire model since 
the latter is typically is very large - the number of variables often grows exponentially 
with the size of the original problem. Instead, columns are generated dynamically 
using a technique known as column generation. In this chapter the set partitioning 
model, used as the master problem and the Elementary Shortest Path with Time 
Windows and Capacity Constraints (ESPPTWC) used as the sub-problem are 
analytically described. Finally, the dynamic programming algorithm for the 
ESPPTWC is also described. The mathematical formulations and notations presented 
in this chapter are based on Larsen (2001). 
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 The vehicle routing problem with time windows is defined by a directed graph ܩ, a 
set of customers ܥ and a fleet of vehicles ܸ. The fleet is assumed to be homogeneous, 
meaning that all vehicles have the same capacity and cover the same distance in the 
same time. The graph contains  |ܥ| ൅ 2 vertices, where there are ݊ customers plus the 
two starting and ending positions of the vehicle. Let vertex 0 denote the starting 
position of the vehicle and ݊ ൅ 1 be the ending position. Both starting and ending 
positions correspond to the depot. The whole set of vertices 0,1,… , ݊ ൅ 1 is denoted 
as   ܰ ൌ |ܥ| ൅ 2  . The set of arcs ܣ   represents the direct connections between all 
vertices and the depot. Each arcሺ݅, ݆ሻ, where ݅ ് ݆, has an associated cost ܿ௜௝ and a 
time ݐ௜௝ . All vehicles have the same capacity ݍ. Each customer ݅ must be serviced 
within a time window ሾܽ௜, ܾ௜ሿ. In case a vehicle arrives before the opening of that time 
interval, it must wait until ܽ௜ to start serving that customer (Kallehauge et al, 2005). 
The variable ݏ௜௞ for each vertex ݅ and each vehicle ݇ denotes the time vehicle ݇ starts 
to service customer ݅. Two sets of decision variables participate in this model ݔ and ݏ. 
For every arc ሺ݅, ݆ሻ, where ݅ ് ݆, ݅ ് ݊ ൅ 1, ݆ ് 0 and each vehicle is defined as ݇.  
 :௜௝௞ defined asݔ

௜௝௞ݔ  ൌ ൜1, if vehicle ݇ drives from vertex ݅ to ݆ 0, otherwise                                                  

A less compact formulation than the one in Section 2.3.1 is presented below: 

 
݉݅݊ ෍෍෍ܿ௜௝

௝אே௜אே୩אV

 ௜௝௞ݔ
 
  

(3.1) 

s.t. ෍෍ݔ௜௝௞
௝אே௜אே

                  ൌ 1 
 
݅׊ א   ܥ

(3.2) 

 
෍݀௜
௜א஼

෍ݔ௜௝௞
௝אே

          ൑ ݇׊ ݍ א ܸ (3.3) 

 ෍ݔ଴௝௞
௝אே

                        ൌ ݇׊ 1 א ܸ (3.4) 

 ෍ ௜௛௞ݔ
  ௜אே

െ෍ݔ௛௝௞
௝אே

   ൌ ݄׊ 0 א ,ܥ ݇׊ א ܸ (3.5) 

 ෍ݔ௜,௡ାଵ    
௜אே

                 ൌ ݇׊ 1 א ܸ (3.6) 

 ෍෍ݔ௜௝௞
௝אௌ

                  ൑ |ܵ| െ 1
௜אௌ

ܵ׊  ك ܰ , |ܵ| ൒ 2,  ݇׊ א  ܸ  (3.7) 

௜௞ݏ  ൅ ௜௝ݐ െ ൫1ܭ  െ ௜௝௞൯ݔ ൑ ,݅׊ ௝௞ݏ ݆ א ܰ, ݇׊ א ܸ (3.8) 
 ܽ௜ ൑ ௜௞ݏ ൑ ܾ௜ ݅׊ א ܰ, ݇׊ א ܸ (3.9) 
௜௝௞ݔ  א ሼ0,1ሽ ݅׊, ݆ א ܰ, ݇׊ א ܸ (3.10) 
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Constraint (3.2) ensures that each customer is visited exactly once. Equation (3.3) 
represents the capacity constraints and Eqs. (3.4) and (3.6) state that each vehicle will 
start and end at the depot. Constraint (3.5) is the flow conservation constraint. 
Constraint (3.7) is the well known sub-tour elimination constraints. Constraint (3.8) 
ensures that customer ݆ cannot be serviced immediately after customer ݅ if the ݏ௜௞ ൅  ௜௝ݐ
is more than ݏ௝௞ (K represents a large scalar). Equation (3.9) represents time window 
constraints and (3.10) represents the binary conditions for the variables. 

As described in Section 2.1.3, Column Generation deals with linear programming 
problems. Specifically, the general idea of column generation is to use only a relevant 
small number of columns in order to find the optimal solution out of a large set of 
possible columns. This is achieved by dividing the process into two parts: the Master-
Problem (MP) and the Sub-Problem (SP). In the Set-Partitioning formulation of the 
Master-Problem, as we will further describe in Section 3.2, each column represents 
one feasible route and each constraint (row) represent one customer. The goal of the 
Master-Problem is to find the minimal cost, as common methods do, given specific 
feasible routes and to produce the shadow prices (one for every row) of the temporary 
optimal solution to be used as input in the Sub-Problem. In our method, the SP is 
modeled as the Elementary Shortest Path Problem with Time Windows and Capacity 
Constraints (ESPPTWCC), where elementary means that each customer can appear at most 
once in the shortest path. The traveling cost of every pair of customers and the depot is a 
function of the actual cost and the shadow price of each customer. This cost will be 
called the modified cost. 

On the other hand, the Sub-Problem produces one or more routes to be added in the 
Master-Problem. The Sub-Problem deals with all constraints of the problem; In the 
case of VRPTWCC, time window and capacity constraints. The routes to be added in 
the MP must satisfy all VRPTWCC constraints. The modified cost of each route to be 
entered is selected to be the most negative one. If there is no route with negative 
modified cost, the process terminates.  

3.1 THE MASTER PROBLEM 
A direct formulation of the Master problem of the VRPTW, under a column 
generation framework, is usually the set partitioning problem. In this type of problem 
each column corresponds to one route and each constraint corresponds to a customer 
participation in the available routes. If the customer participates in the route, then the 
coefficient of its row in the constraint matrix is 1 and 0 otherwise. Given variable ݔ௥, 
which is defined as below:  

௥ݔ ൌ ൜1, if the route ݎ is used in the solution0, otherwise
(3.11)

and ܿ௥ , which denotes the total cost route r , then the Master Problem is of the 
following form: 
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݉݅݊෍ܿ௥
௥אோ

௥ (3.12)ݔ

෍ߜ௜௥
௥אோ

௥ݔ ൌ 1 (3.13)

௥ݔ א  ሼ0,1ሽ (3.14)

where ܴ is the set of all feasible routes, and ߜ௜௥ is 1 if the customer ݅ is serviced by 
route ݎ and 0 otherwise. 

Since the lower bound of the set partitioning problem is considered, constraint (3.14) 
is eliminated and the linear relaxation of the above formulation is solved. 

The above model, in the column generation approach, contains only the routes that 
have been generated by the ESPPTWCC solution plus the initially given routes. Each 
time the ESPPTWCC is being solved, new columns (routes) are being generated and 
inserted in the set partitioning formulation.  

The outcome will be a primal and a dual solution, which may or may not be integer. 
In this case, the dual prices of the simplex multipliers are denoted as: ߨ  ൌ
,ଵߨ ,ଶߨ  … ,  .|஼|ߨ

3.2 THE SUB-PROBLEM 
The sub-problem is of significant importance due to its relation with the accuracy and 
the speed of the provided solution and since it provides the next column(s) to enter the 
basis of the master problem. As presented above, the set partitioning formulation of 
the master problem does not consider the vehicle, capacity and time window 
constraints. All these constraints are included in the sub-problem, and the generated 
columns (routes) are all feasible routes. The sub-problem returns the column(s) with 
the most negative reduced cost. 

The sub-problem has been defined as an elementary shortest path problem with time 
windows and capacity constraints (ESPPTWCC). Note that in Larsen (2001), the sub-
problem had been defined as a SPPTWCC where cycles (multiple visits to a single 
node in a route were allowed). ESPPTWCC allows no cycles in the generated routes. 
The cost of the arcs for the ESPPTWCC (denoted as modified cost) has been defined 
from the actual cost (ܿ௜௝) of the arcs and the shadow prices (ߨ௜) generated by the 
master problem. The following type gives the modified costs: 

ܿ̂௜௝ ൌ ܿ௜௝ െ ௜ߨ , ׊ ݅ ് 0 (3.15)
For ݅  ൌ 0, ܿ̂௜௝ ൌ ܿ௜௝ . The total cost (ܥመ௥) of the generated column (route) r  is defined 
as the sum of the modified costs of the arcs participating in route ݎ, that is: 

መ௥ܥ ൌ ෍ ܿ̂௜௝
ሺ௜,௝ሻא௥

 (3.16)
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Note that this cost is equal to the reduced cost that would have resulted from the 
master problem if the route ݎ was already present in the master problem, that is:  

መ௥ܥ ൌ ෍ ܿ̂௜௝
ሺ௜,௝ሻא௥

ൌ ෍ ܿ௜௝
ሺ௜,௝ሻא௥

െ ෍ߨ௜
௜א௥

ൌ ܿ௥ െ ௥ (3.17)ߜߨ

Where ܿ௥ is the actual cost of route ߨ ,ݎ is the shadow (dual) prices of the simplex 
multipliers, and ߜ௥ is the route vector as denoted in Chapter 3.1. 

Consequently, the result from the solution of the sub-problem will be one or more 
paths (routes) with negative modified cost. These columns will be added to the master 
problem and the master problem will be solved again. If there are no paths with 
negative cost, generated from the sub-problem, the method terminates and the results 
from the last master problem solution are kept. This solution is considered as a lower 
bound (if it is not integer) for the VRPTW, and further investigation through a branch 
and bound framework is required. In case the solution is integer the algorithm 
terminates. 

3.2.1 THE ALGORITHM 
Dijkstra’s algorithm consists of the most used method to deal with the Shortest Path 
Problem (SPP). In this method, a labeling technique is used for each node of the 
network. Assume that there is a network of arcs and nodes, with non-negative edge 
costs ܿ௜௝ and several geographically dispersed nodes (customers). Dijkstra algorithm 
finds the path with the minimum total distance (based on the ܿ௜௝’s) from a starting 
node ሺݏሻ to an ending node (݂). The steps of the method are as follows: Initially, only 
the starting node ݏ is considered visited and all other nodes are considered unvisited. 
All nodes (݅) are associated with a label (ܮ௜), which is equal to 0 for ݅ ൌ  and equal ݏ
to ∞ for all other nodes. ܮ௜ denotes the length of the shortest path (found so far) from 
the starting node ݏ to node ݅. At each iteration of the method the all the out-going arcs 
(݅, ݆) for every node ݅, which has been considered as a visited customer are checked. 
For each ݆ (reached from each visited node ݅) the value of the ܮ௜ ൅ ܿ௜௝ is calculated. If 
this is less than the existing label ܮ௜ at node ݆, then the latter is updated to ܮ௜ ൌ ௜ܮ ൅
ܿ௜௝ . Among all the unvisited nodes considered, the node with the minimum-length 
label is selected and characterized as visited. This procedure is repeated until there are 
no more unvisited nodes.  

Dijkstra’s algorithm finds the optimal solution in networks with non-negative costs 
only. Also, it cannot guarantee optimality to the addition of more constraints. In order 
to solve the shortest path problem with additional constraints such as time window 
and capacity constraints and use a network defined based on the modified costs, 
which may be negative, an altered method, based on the labeling algorithm for the 
SPPTWCC has been proposed by Larsen (2001).  

The labeling algorithm is an extension of Dijkstra’s algorithm. In this method each 
label is defined as ܿሺ݅, ,ݐ ݀ሻ where ݅ is the vertex, ݐ and ݀ is the time and demand, 
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respectively, based on the partial path up to node݅. ܿ denotes the total cost of each 
label. The labeling algorithm selects the label with the minimum ݐ  (note that t is 
always increasing over time) and expands it further to the nodes (say ݐ) connected to 
it (in the VRPTW case to all other nodes), taking under consideration the feasibility 
constraints (time window, capacity), that is, the label ܿሺ݅, ,ݐ ݀ሻ can reach node ݆ and 
create a successor label ܿሺ݆, ,Ԣݐ ݀Ԣሻ if the following holds: 

ݐ ൅ ௜௝ݐ ൑ ௝ܾ (3.18)
݀ ൅ ௝݀ ൑ (3.19)  ݍ

 
Note that the maximum route length has been set equal to the latest time window of 
the depot, and therefore, equation (3.18) satisfies this constraint. 

Initially, the only label present is the starting node (depotൌ 0) label. For each node ݆ a 
new label ܿሺ݆, ,Ԣݐ ݀Ԣሻ is generated. At this point, we cannot discard a previous assigned 
label to node ݆ as described in Dijkstra algorithm and, therefore, more than one label 
may exist for each node. Including the new created labels, again the minimum ݐ label 
is selected and the procedure is repeated. Note that, each time a label is selected to be 
expanded to the nodes connected to it, it is discarded (deleted) from the labels list, 
unless the label is associated with node ݊ ൅ 1. In the latter case these labels are 
deleted and stored separately and represent the feasible paths. Note that discarding a 
label does not mean that the associated node will not be checked again, since this 
node can be reached from other nodes of the network and new labels associated to it, 
will be created. The procedure ends when there are no other labels to be examined. 
The labeling algorithm can be described by the dynamic program: 

ܿሺ0,0,0ሻ ൌ 0  (3.20)
ܿሺ݆, ,ݐ ݀ሻ ൌ min௜൛ܿ̂௜௝ ൅ ܿሺ݅, ܶᇱ, ௜௝ݐᇱሻหܶԢ൅ܦ ൌ ܶ ר ᇱܦ ൅ ݀௜ ൌ ሽ  (3.21)ܦ
 
Cycle Elimination 
 
In the formulation presented by Larsen (2001) and Kohl (1995), the SPPTWCC 
problem was solved as a sub-problem where cycles (i.e. visiting the same customer 
more than once in the same path) were allowed in the generated paths.  In order to 
tackle this, a two-cycle elimination was proposed, which by keeps an extra component 
ሺ݀݁ݎ݌ሻ  in the label  ܿሺ݅, ,ݐ ݀, ሻ݀݁ݎ݌ ݀݁ݎ݌ .  is the predecessor of node  ݅ . The 
phenomenon of cycles in the paths generated from the shortest path problem solution 
has been analyzed and described in Section 2.4.  

In ESPPTWCC, which is the sub-problem solved in our formulation, cycles are not 
allowed in the generated paths. This is tackled by keeping an extra component ሺ݄ݐܽ݌ሻ 
in the label ܿሺ݅, ,ݐ ݀,  stores all the path information (visited nodes and ݄ݐܽ݌ .ሻ݄ݐܽ݌
sequence) from the depot to node ݅. If label ܿሺ݅, ,ݐ ݀,  ሻ examines the creation of a݄ݐܽ݌
new label for node ݆ ሾܿሺ݆, ,ᇱݐ ݀ᇱ, ,then ܿሺ݆ ,݄ݐܽ݌ ሻሿ and ݆ exists in the݄ݐܽ݌ ,ᇱݐ ݀ᇱ,  ሻ݄ݐܽ݌
label is not created. 
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Dominance Rules   
  
In large scale problems the number of labels can be extremely increased, constituting 
the solution procedure computationally and memory prohibitive. Many researchers 
have tried to overcome this by recognizing and discarding labels (and therefore partial 
paths), which can be considered as ‘low quality’ labels, before they reach the end 
node. If a label (partial path) is discarded, then all its possible extensions will not be 
examined. As “low quality” labels are considered the labels, which are expected to 
not participate in any feasible route (up to node ݊ ൅ 1). An algorithm that recognizes 
and discards these labels, will not affect the optimality of the ESPPTWCC solution, 
but as it will be shown, it still remains computationally expensive. This procedure is 
denoted as “Dominance Rules”.  

Over the years different rules have been proposed, see Dumas (1986), Kohl (1995), 
Larsen (2001) and Chabrier (2005). However, many of the proposed dominance 
criteria do not ensure optimality because several “good” labels are discarded that may 
lead to the optimal solutions. On the other hand, tighter rules speed up the solution 
procedure because of the elimination of the generated labels. 

Two different sets of dominance rules will be presented. The first one is a simplified 
version of the dominance rules presented in Larsen (2001) aiming to the decrease of 
the computational complexity and to the solution of large scale problems. Note that 
these rules do not ensure optimality to all test-cases; the second set is based on the 
dominance rules introduced in Chabrier (2005). Although these rules ensure 
optimality, the computational complexity is higher than the aforementioned rules.  

 
Simplified Dominance Rules (Larsen) 
Assuming that there are two labels for the same node ܿሺ݅, ,1ݐ ݀1, 1ሻ݄ݐܽ݌  and 
ܿሺ݅, ,2ݐ ݀2, 2ሻ with costs ܿଵ݄ݐܽ݌  and ܿଶ , respectively. The first label dominates the 
second one if and only if the following hold: 

 
ܿଵ ൑ ܿଶ (3.22)
ଵݐ ൑ ଶݐ (3.23)
݀ଵ ൑ ݀ଶ (3.24)

 
The second label can be discarded since, as it appears, any path from node ݅ to the 
depot will be always better (or equal) considering the 1݄ݐܽ݌. Although this is true, 
there are several other aspects that are not been taken under consideration and can 
lead to suboptimal solutions. 

The implementation in Larsen (2001) with the above dominance rules in parallel with 
the relaxed shortest path problem (SPPTWCC) seems to perform better than with the 
ESPPTWCC. This can be supported by the fact that the allowance of cycles in the 
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generated routes allows more labels to be created and therefore more paths to be 
extended to nodes that otherwise would have been eliminated.  

Exact dominance rules  
 
The simplified dominance rules in relation to the elementary-SPPTWCC do not 
ensure optimality in all cases. As first introduced by Dumas (1986) and further 
extended by Chambier (2005), extra rules should be included to ensure optimality. 
Assuming, again 1݄ݐܽ݌  and 2݄ݐܽ݌   , the following rule is included to the 
aforementioned rules:  
 

 1݄ݐܽ݌ ل 2݄ݐܽ݌ (3.25)
 
This rule ensure that the ܿሺ݅, ,1ݐ ݀1, ,1ሻ label will dominate ܿሺ݄݅ݐܽ݌ ,2ݐ ݀2,  2ሻ݄ݐܽ݌
label only if 1݄ݐܽ݌ contains at least the same customers with 2݄ݐܽ݌. Adding this rule 
more labels will be allowed to be created, but the algorithm is expected to converge to 
an optimal solution. Several improvements, regarding the acceleration of these 
dominance rules, introduced in Chambier (2005). In our formulation only the 
aforementioned rule was considered without the acceleration techniques proposed.  
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3.3 SOLUTION METHOD 
In this chapter the unified method, including all the aforementioned procedures will 
be described. As mentioned previously, the method begins with a feasible initial 
solution. This solution can be generated using a heuristic algorithm or can be a 
dummy feasible solution. In our case, the single-customer routes ܦ െ 1 െ ܦ,ܦ െ 2 െ
…,ܦ , ܦ െ ܥ െ  is the depot. By doing so, the constraints of ܦ were selected, where ܦ
the master problem are immediately equal to the total constraints of the full problem 
(if we knew all feasible routes). This procedure helps in avoiding several degeneracy 
problems, and no redundant rows in the constraint matrix of the master problem will 
be created. 

The master problem (set partitioning) is solved using the Revised Simplex Method 
(presented in Chapter 2.1.1). The Sub-Problem (ESPPTWCC) is solved using the 
dynamic algorithm described in Section 3.2.2. This algorithm returns the feasible 
route(s) with the most negative reduced cost for the current problem, if one exists. 
The generated route(s) are added to the routes already in the master problem, and the 
master problem is solved again. In our implementation we allow the ESSPPTWCC to 
serve the master problem with multiple columns (specifically, with all generated 
columns with negative reduced cost). The procedure continues until the ESPPTWCC 
cannot produce any other columns (routes), with negative reduced cost, to enter the 
master problem. The last solution of the master problem obtained is considered as the 
final solution (lower bound obtained). The development of the algorithm is based on 
Athanasopoulos (2008b). The basic steps of the proposed method are described 
below: 

1. Find an initial solution for the master problem (set partitioning problem).   
2. Solve the master problem using the Revised Simplex Method and obtain the 

shadow prices of the optimal solution. 
3. Produce the modified costs, as described in Section 3.2 using equation (3.15). 
4. Solve the sub-problem. 
5. If there are generated route(s) with negative reduced cost, add these route(s) to 

existing routes of the master problem and go to Step 2; Else, if there no routes 
with negative reduced cost, go to Step 6. 

6. Terminate procedure. The solution obtained from the last master problem is 
the lower bound obtained.  

Figure 3.1 presents the column generation method flowchart. 
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Figure 3.1: Flowchart of column generation method for the VRP 
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CHAPTER 4 THE OPTIMAL SOLUTION FOR THE VRPTW 
 USING BRANCH AND BOUND 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the IP formulation applied to the Vehicle routing Problem with 
Time windows and Capacity Constraints that consists of the Column Generation (CG) 
algorithm presented in the previous chapter embedded within a Branch and Bound 
(B&B) framework. Firstly, the methods and policies used for the VRPTW class 
problems are presented and then, the policies applied on our algorithm will be 
emphasized.   
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4.1 SETTING UP THE BRANCH AND BOUND ALGORITHM 
As described in Chapter 2.2, Branch and Bound is a case-sensitive algorithm and 
should be adapted to the characteristics of the problem. In our case Column 
Generation (CG) produces solutions, which is non-integer in general. B&B produces 
extra restrictions dividing the search space into two parts in order to progressively 
achieve integrality. A variety of policies and strategies can be applied to achieve the 
best integer solution. If CG returns a fractional (non-integer) solution, two new 
branches are created with extra conditions at each one and the linear solution returned 
at that point is used as a lower bound, meaning that branch cannot return an integer 
solution better than the lower bound. Each child is solved with Column Generation; if 
an integer solution is obtained, then the current branch stops growing. The lowest 
integer solution is set to be the General Upper Bound (GUB). If there is a node with 
lower bound worse than GUB, this node is discarded. 

4.1.1 TERMINOLOGY 
This Section provides the terminology related to the branch and bound features and 
characteristics, as described in Section 2.2, and defines the selected policies used in 
our problem for each step of the algorithm.  

Bounding function: The bounding function includes the mathematical 
programming formulation used for the solution of the problem at each node. 
Obviously, in our case, we use the Column Generation framework, as described in 
Chapter 3.  

Incumbent: As incumbent, we will consider the best integer solution found so far at a 
certain step. This is the General Upper Bound (GUB). 

Fathoming Rule: A bud node will be forced to stop expanding, if i) the solution is 
worse than the GUB, ii) the solution is infeasible or iii) an integer solution has been 
reached. 

Terminate Rule: If there is no bud node left to examine, the whole process will be 
terminated. This termination criterion has been chosen because it is directly linked 
with the fathoming rule (i.e. the process will inevitably reach a state from which there 
will be no more bud nodes left to be examined).  

4.1.2 IMPLEMENTATION ISSUES 
Following the guidelines presented in Chapter 2, our implementation of the branch-
and-bound algorithm consists of the following steps: 

Step 1  (Lower bound): Solve the LP relaxation of the VRPTW 

Step 2  (Optimality check): If the solution provided from the above step is integer, 
compare it with the current GUB (if exists) and go to Step 5, otherwise 
continue to Step 3 
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Step 3 (Variable Selection Policy): Choose the arc of the head node with the most 
fractional part (see below) to be the basis for the newly created constraints. 

Step 4  (Partitioning Policy): The head node is being divided in two children and an 
additional constraint is added to each one of them, based on the arc selected in 
the previous step. 

Step 5 (Node Selection Policy): Choose the bud node with the minimum lower bound 
from the entire tree. If there is no bud node left to be examined, or the lower 
bound of the selected bud node is higher than GUB, then the optimal integer 
solution has been achieved (current GUB). Otherwise, return to Step 1.  

 
The basic policies used in the above methodology are further described below:  

Variable Selection Policy 

The Branching on Arcs policy is used for the selection of the variable, which will 
determine the two sub-spaces to be created. In the proposed policy when a non-integer 
solution is obtained by the set partitioning model (master problem), the most 
fractional arc is selected as the branching variable. Since the variables of the master 
problem are the routes and not the arcs connecting costumers, the following must be 
performed: From the routes participating in the solution and their customer visiting 
sequence, sum of the vehicle flows (defined as the values of the route variables) in 
each one of the arcs participating in the solution. The arc ሺ݅, ݆ሻ with the fractional 
value closest to 0.5 in the linear solution obtained is chosen for branching (Danna, 
2005).  

Partitioning Policy 

The policy used in this step dichotomizes the “father” node in the children. Suppose 
that arc ሺ݅, ݆ሻ is selected as branching variable. Then for the first branch (child node), 
the vehicle can reach customer ݆ only from customer ݅ and from customer ݅ can travel 
only to customer ݆ or back to the depot. For the second branch, movements from 
customer ݅ to ݆ are strictly forbidden in any case. Note that these restrictions affect 
only the sub-problem (ESPPTWCC) because the constraints are added only to this 
formulation. In the set partitioning formulation of the VRPTW where variables 
represent only routes and not arcs, routes that contain this arc are discarded.  

Node Selection Policy 

We have chosen to implement a best-bound node selection policy, where the node 
with the best LP objective value among the entire tree is selected to be explored. This 
policy provides a fast lower bound in terms of computational time and ensures that the 
optimal solution will be found, compared to other popular policies.  
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4.2 THE BRANCH AND BOUND PROCEDURE 
This section provides a short overview of the Branch-and-Bound method applied on 
the solution of the linear relaxation solution provided by the column generation 
process. The root of the B&B tree is the initial column generation solution. And each 
node (leaf) is a separate optimization problem based on the initial problem with the 
addition of a specific constraint for the fractional variable.  

A pseudo-code of the main branch-and-bound algorithm is shown in Figure 4.1. Since 
the B&B procedure follows the linear relaxation of the main integer problem, the 
main inputs for the B&B algorithm are the solution obtained by solving the linear 
relaxation problem, i.e. the lower bound and the variables value (denoted as ݈ܾ and ܺ 
respectively) and the original problem’s objective and constraints (denoted as 
parentnode). The initial state of the procedure is to generate the branch-and-bound 
tree. This is achieved by selecting the variable to be branched and partitioning the 
parent node (original problem) into two new nodes. The functions that execute these 
operations are italicized in Figure 4.1 due to their importance and are further 
described in the remainder of this chapter.  

Algorithm Branch&Bound(lb, X, parentnode) 

// ݈ܾ  ൌ lower bound obtained by linear relaxation׷
Initialize tree_list = ׎     // branch-and-bound tree 

GUB = ݂݅݊         // General upper bound 
  VariableSelection(X, parentnode) = (௜௝ܿݎܽ)

(newnodes) = NodePartition(ܽܿݎ௜௝, parentnode) 
tree_list = tree_list ׫ newnodes  
while (tree_list ്  do (׎ 
 node = NodeSelection(tree_list)  
 (lb’, X’, node) = lpsolver(node) 
 if (solution ؔ infeasible) or (lb’ > GUB then) 
  node = ׎; // Delete node 
 else 
  if X’ ؔ integer then 
   GUB = lb’ 
   node = ׎ 
  else  

 VariableSelection(X’, node) = (௜௝ܿݎܽ)

   (newnodes) = NodePartition(ܽܿݎ௜௝, node) 
   tree_list = tree_list ׫ newnodes  
   node = ׎ 
  end if 
 end if 
return 

 
In the main loop of the procedure, at each iteration the algorithm selects a leaf node 
from the current tree (remaining nodes) and solves the corresponding linear problem. 

Figure 4.1. Branch-and-Bound procedure
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The node selection function chooses the node with the smaller lower bound so far to 
be the next node to be examined (and solved). The selected node is then solved by the 
previously well-explained column generation technique as a relaxed linear problem. 
The result of this function has three main alternatives. 

i. If the resulting solution is infeasible, or the current value of the sub-problem (݈ܾԢ) 
is larger than the best current objective value of a known integer solution (ܤܷܩ), 
then no further examination on this node or its possible descendents will give a 
better integer solution, and this node is safely dropped from the tree (fathoming).  

ii. If the resulting solution of the current sub-problem satisfies the integrality 
constraints and its objective value (݈ܾԢ) is lower than the best known integer 
solution (ܤܷܩ), then this value is set to be the current best known integer solution 
of the entire tree.  

iii. The third alternative takes under consideration the alternative where none of the 
above cases are met and this node needs further examination. In this case, two 
new nodes are created according to certain criteria that will be described in detail 
later, and added to the branch-and-bound tree as the children of the current node. 
Then, this node is deleted from the remaining nodes of the tree to be examined. 

With the end of the above functions, the algorithm chooses the next node to solve and 
the same procedure is repeated until there are no more nodes to be examined in the 
branch-and-bound tree.  

The two functions mentioned above, that concern the branching strategy and consist 
of the variable selection strategy (ܸܽ݊݋݅ݐ݈݈ܾܿ݁݁ܵ݁ܽ݅ݎ) and the partitioning policy 
 are of major importance, since they identify the variable to be (݊݋݅ݐ݅ݐݎܽܲ݁݀݋ܰ)
branched and partition the parent node into two nodes. This selection affects strongly 
the speed of the branch and bound solution.  

The variable selection strategy adopted in our case is based on the branching on arcs. 
This means that the arc ሺ݅, ݆ሻ that will be branched has to be identified. The arc that 
participates in the current solution with the most fractional part (i.e. the one closest 
to 0.5) is detected. Every arc ሺ݅, ݆ሻ௞ of the routes ݇ that participate in the solution ܺ, 
takes the corresponding value of the variable ݔ௞ . The values of the same arcs are 
summed up and the arc with the most fractional part is then selected to be branched. 
For example, in case of two routes ሼሾ0 െ 1 െ 2 െ 0ሿ, ሾ0 െ 1 െ 0ሿሽ  with ݔଵ ൌ 0.5 
and ݔଶ ൌ 0.5, the arc ሺ0,1ሻ takes the value 1 and the rest of the arcs the value 0.5. 
Consequently, the selected variable for branching is one of the arcs with value 0.5. 
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Algorithm VariableSelection(X, parentnode) 

Initialize ݊݊ݔ݊ ݐݏ݈݅݁݀݋ ൌ   ׎ 
for k = 1 to all routes in parentnode do 
 for i = 1 to n do 
  for j = 1 to n do 

   if ሺ݅, ݆ሻ exists in route ݇ then 
,ሺiݐݏ݈݅݁݀݋݊ = (i,j)ݐݏ݈݅݁݀݋݊     jሻ ൅ ܺ௞ 
   end 
  end 
 end 
end 

 0.5 - ݐݏ݈݅݁݀݋݊ = ݐݏ݈݅݁݀݋݊
 (ݐݏ݈݅݁݀݋݊)abs = ݐݏ݈݅݁݀݋݊
ሺܽܿݎ௜௝ሻ = min(݊ݐݏ݈݅݁݀݋) 

 
Figure 4.2 presents a pseudo-code for the variable selection function. After the 
selection of the variable, the parent node is divided in two new nodes. This is operated 
by the partitioning policy function, where an additional constraint is added to each 
node. Given the selected arc from the variable selection policy, supposing ሺ݅, ݆ሻ, the 
first node contains the inclusion of the selected arc in the solution, while in the second 
node the same arc is excluded in any case. For the implementation of this policy in the 
B&B procedure, these restrictions are incorporated to the cost matrix of the sub-
problem. The cost matrix of the parent node is transformed according to the 
restrictions of each node. For the first case, all elements of row ݅ and column ݆ are set 
to infinite, except the element ݆ of row ݅ and the element ݅ of column ݆. For the second 
case, only the element corresponding to ሺ݅, ݆ሻ of the cost matrix is set to infinite. This 
technique allows us to easily incorporate the new changes in the two nodes, since any 
movement to ݆ from any other node except ݅ will be infeasible for the first case, and 
obviously movements from ݅ to ݆ will be infeasible for the second case. The Branch 
and bound method is summarized in Figure 4.3 below. 

Figure 4.2: Variable Selection Policy
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Figure 4.3: Diagram of the Branch and price algorithm  
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CHAPTER 5 TEST CASES FOR THE VRPTW 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter the method presented in Chapters 3 and 4 is tested using the well-
known Solomon benchmarks. Firstly the Solomon benchmark test cases are presented. 
Subsequently we examine the limits of the method without using the dominance 
criteria. In this case the optimal is always determined; however, computational times 
are expensive preventing the solution of large scale problems. By adding a simplified 
version of the dominance criteria of Larsen (2001) to the algorithm, it is shown that 
computational complexity is reduced dramatically, but in many cases, especially in 
particular node configuration the optimal in not reached. Finally, by adopting the 
dominance criteria of Chabrier (2005) it is shown that an increased number of cases 
are solved to optimality, but computational complexity (and times) are increased with 
respect of the simplified Larsen criteria case.  
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5.1THE SOLOMON’S BENCHMARK PROBLEMS 
The Solomon’s problems (Solomon, 1987) are the most commonly used benchmark 
data for testing heuristics and exact methods in vehicle routing problems. These 
problems are based on a set of VRPTW problems by Christofides et al. (1979), and 
have been further extended by adding time window and altered capacity constraints. 
The Solomon are identified as [LNXX], where L refers to letters R, C and RC,  N 
refers to numbers 1 and 2, and XX refers to different test instances of the LN 
problems. 

The R, C and RC naming conventions refer to the three following types of customer 
(nodes) allocation on the [0,100]2 space.  

R problems: Problems where customers are uniform and randomly dispersed. An 
example is presented in Figure 5.1.  

 

 

C problems: In these problems all customers (nodes) appear strongly clustered, and 
are, again, dispersed. An example is presented in Figure 5.2. 

RC problems: The RC case comprises a hybrid dispersion of customers, with some 
customers uniformly distributed, and others clustered. An example is 
presented in Figure 5.3. 

Figure 5.1: The R101 problem with 100 customers. The depot is 
marked as a square. 
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The (N = 1 or 2) naming conventions are as follows:  

N=1: The capacity of maximum route length constraints allow for up to 5 to 10 
customers per route.  

N=2: The capacity and maximum route length constraints allow for 30 or more 
customers to e served by a single route.  

Each one of the LN test sets (as described) above incudes 8 to 12 different problem 
instances, with a total number of customers up to 100 customers. The problems can be 
found in: 

•  http://web.cba.neu.edu/~msolomon/problems.htm 

•  http://www.idsia.ch/~luca/macs-vrptw/problems/welcome.htm 

Figure 5.2: The C101 problem with 100 customers. The depot is 
marked as a square. 
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Distance and Travel Time Matrix Calculations 

Since there is not a common approach for calculating the Distance and Travel Time 
matrices among the academic community, the approach proposed by Kohl (1995), in 
order to be consistent with the cost matrix calculations and able to compare our results 
with the results obtained from Larsen (2001) and Kohl (1995) has been used. In this 
approach, the distance between two nodes, ሺݔ௜, ௜ሻݕ   and ሺݔ௝, ௝ሻݕ , is calculated as 
follows:  

• Initially, the actual distance is derived from the well-known equation: 

 ܿ௜௝ ൌ ට൫ݔ௜ െ ௝൯ݔ
ଶ ൅ ൫ݕ௜ െ ௝൯ݕ

ଶ
 (5.1) 

• Additionaly, the value 0.1 is being added to each ܿ௜௝, ݅ ് 0, ݆ ് ݊ ൅ 1, in 
order to preserve the triangular inequality (see Kohl, 1995) 

• Then, by using the following equation ܿ௜௝ is rounded down to 1 demical digit. 

 ܿ௜௝ ൌ
උ10ܿ௜௝ඏ
10  (5.2) 

   
where ۂ·ہ denotes the floor value of the ܿ௜௝. 

Figure 5.3: The RC101 problem with 100 customers, where the 
depot is marked as a square.
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• Finally, ܿ௜௝  is multiplied by 10 in order to be represented as integer in the 
final distance matrix. 

Travel times are calculated by adding he service time, ݐݏ௜ of each customer ݅ to the 
distance ܿ௜௝ of each arc ሺ݅, ݆ሻ, and the final travel time of each arc is derived as:  

௜௝ݐ  ൌ ܿ௜௝ ൅  ௜ (5.3)ݐݏ
 

5.2 DESCRIPTION OF THE TEST BED  
The method described in chapter 3 and 4 has been implemented in Matlab® 7 
software, which allows multithreading computations. All tests were performed on a 
2.00 GHz 8-core PC System running Windows XP®, Note that the parallel use of 
multiple processors was performed only at the linear programming part of the 
algorithm (Master Problem) and not on the sub-problem. Some features of the Matlog 
Toolbox (Kay, 2008) have been used for the implementation of the algorithms. The 
initial solution given to all test cases was the “unit matrix” solution, where each route 
contains only one customer (Depot – Customer – Depot). Note that our 
implementation considers multiple column (with negative reduced cost) insertions in 
the master problem, in every iteration (each time the sub-problem is called, it 
generates more than one column which can improve the existing cost). Several tests 
were performed in order to study the effectiveness and accuracy of the proposed 
methods.  

In section 5.3, the proposed algorithm without using dominance criteria (ND) is 
compared to an exhaustive search algorithm (ESA) created for this specific purpose 
(Athanasopoulos, 2008b). The ND method solves the ESPPTWCC without discarding 
labels that are created in the nodes of the network. By this, all possible paths starting 
and ending in the depot are explored and the labels and, therefore, paths with non-
negative modified cost are discarded only after the finalization of the ESPPTWCC. 
The computational time and the final cost obtained by the two different methods are 
compared.  

In section 5.4, two versions of the proposed methods are compared: The ND method 
(see above) and the column generation method with the simplified dominance criteria 
(SD) [See Chapter 3.2]. The SD method appears to be very fast due to the elimination 
of several labels. This elimination leaves a significant smaller number of labels to be 
further explored, but in some cases by sacrificing optimality. Again, the 
computational time and the final integer cost obtained are compared.  

As stated above, the dominance criteria operated in the SD method do not always 
reach the optimal solution. Section 5.5 presents results for these cases and compares 
the SD method with a different dominance criteria method (CD). This method is 
based in a simplified version of the dominance rules presented in Chambier (2005), in 
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which more intelligent but time-consuming dominance criteria are proposed (See 
Chapter 3.2). Again, the computational time and the final integer cost obtained are 
compared. 

In Section 5.6, the SD algorithm is tested in large integer problems (25 to 100 
customers) from the Solomon Benchmarks, and analytical results for each test-case 
are presented. The results obtained from the SD method are compared to the optimal 
results from Larsen (2001) and Kohl (1995).    

Finally, Section 5.7 summarizes the results obtained from the previous sections using 
the column generation method with different dominance criteria, and the results 
obtained from solving large scale (up to 100 customers) instances.  

5.3 RESULTS OF METHOD WITHOUT DOMINANCE CRITERIA (ND) 
In this section the results of column generation method without dominance criteria 
(ND) against the results of the exhaustive search algorithm are presented. The 
exhaustive search procedure is analyzed below.   

Description of the Exhaustive algorithm 

Scope of the exhaustive search algorithm is to produce optimal solutions to the test-
cases of the Solomon benchmarks. Since, the computational complexity of the ESA 
method is high; it can only provide solutions to small instances. Thus, problems up to 
9 customers have been solved. ESA, initially, produces all combinations of nodes that 
form a route. The infeasible routes are then discarded, leaving all the feasible routes. 
Then, the remaining feasible routes are transformed in their set partitioning 
formulation. Finally the problem using LINPROG (the classical LP solver routine of 
Matlab) is being solved.  A brief overview of ESA is as follows: 

1. Initially all possible routes from depot 0 to depot ݊ ൅ 1 are identified. 
2. Feasibility criteria (time window, capacity, max route length) are applied to 

each route and the infeasible routes are discarded.  
3. The cost of all remaining feasible routes is being calculated. 
4. The calculated costs and the set partitioning form of the feasible routes 

construct a linear problem, which is solved to optimality.  

Note that due to the size of the problems (up to 9 customers) and the respective time 
window, capacity and maximum route length constraints of the Solomon test-cases, 
all problems result in a single route.  

Results Obtained 

Table 5.1 presents indicative results of computational time and total cost for each 
algorithm. (For the analytical results, see Appendix B) 

• Columns “Cost” present the total cost (achieved without performing B&B 
operations) for each method 
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• Columns “Computational Time” present the computational time spend in 
finding the lower bound 

Table 5.1: ESA vs. ND method. Indicative Results. 

    ESA method  ND method 
Problem  Customers  Cost  Time(sec)  Cost  Time(sec) 
R101  5,00  115,60  0,02  115,60  0,02 

  6,00  156,70  0,10  156,70  0,01 
  7,00  157,50  0,53  157,50  0,02 
  8,00  195,90  3,56  195,90  0,02 
  9,00  217,30  26,78  217,30  0,04 

C101  5,00  42,70  0,04  42,70  0,01 
  6,00  42,80  0,12  42,80  0,03 
  7,00  46,70  0,56  46,70  0,09 
  8,00  48,20  3,77  48,20  0,10 
  9,00  50,30  26,98  50,30  0,25 

RC101  5,00  87,20  0,03  87,20  0,01 
  6,00  89,40  0,12  89,40  0,04 
  7,00  108,30  0,55  108,30  0,26 
  8,00  112,40  3,69  112,40  0,22 
  9,00  121,60  27,03  121,60  0,52 

 

In all cases (Appendix B and Table 5.1) the optimal solution is obtained by the 
Column Generation without dominance criteria (ND). Therefore, the column 
generation method along with the algorithm for solving the ESPPTWCC without 
dominance criteria leads to optimal solutions for the test-cases solved. Although the 
ND method performs considerably better than the ESA method regarding the 
computational time, it is still very slow and cannot provide solutions to problems of 
more customers. Figure 5.4 shows the significant difference of the computational time 
of the column generation against the ESA method for an indicative test-case. 
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5.4 RESULTS OF METHOD WITH SIMPLIFIED DOMINANCE CRITERIA (SD)  
This section compares the column generation algorithm using the simplified Larsen 
dominance rules (SD), described in Section 3.2, against the ND method. Indicative 
results can be seen in Table 5.2 (for the analytical results, see Appendix B). 

Table 5.2: ND vs. SD method. Indicative Results. 

    ND Method  SD Method 
Problem  Customers  Cost  Time(sec)  Cost  Time(sec) 
R105  5,00  115,60  0,02  115,60  0,02 

  6,00  142,10  0,03  142,10  0,02 
  7,00  157,50  0,03  157,50  0,02 
  8,00  188,80  0,04  188,80  0,03 
  9,00  214,95  0,11  214,95  0,09 

C105  5,00  42,70  0,02  42,70  0,01 
  6,00  42,80  0,03  42,80  0,03 
  7,00  46,70  0,05  46,70  0,03 
  8,00  48,20  0,20  48,20  0,07 
  9,00  50,30  0,25  50,30  0,06 

RC105  5,00  82,80  0,03  82,80  0,03 
  6,00  87,70  0,08  87,70  0,06 
  7,00  93,50  0,36  93,50  0,15 
  8,00  99,60  2,53  100,90  0,41 
  9,00  109,60  10,33  109,60  0,69 

 

Based on Table 5.2 and the analytical results (Appendix B), several instances solved 
did not reach the optimal solution (as presented in the ND method results). After 120 
tests (see Appendix B) in problems of five to nine customers of all three Solomon test 
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Figure 5.4 Computational time of problem R101, using the methods ESA and ND 
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cases, eleven non-optimal solutions identified. As discussed in Chapter 3.2, this 
behavior relates to the dominance criteria used in SD method, in which several node 
labels are discarded as dominated. Some of these dominated labels are the labels, 
which would have led the algorithm to the optimal solution.  

On the contrary, the computational time obtained from the SD method in comparison 
to the ND method is significantly lower. Figure 5.5 presents an indicative example 
(test-case RC105) where the computational time versus the customers of each 
instance is presented.  

 

 

5.5 RESULTS OF METHOD WITH CHABRIER DOMINANCE CRITERIA (CD) 
Section 5.5 presents the results obtained by the column generation using the 
dominance criteria proposed in Chabrier (2005). Note that only the test-cases in which 
the SD method could not converge to the optimal solution are presented in order to 
show the improvement of the CD method (for analytical results see Appendix C). 
Although, CD method leads to optimal solutions, it consumes a considerable amount 
of computational time.   

Table 5.3: CD vs. SD method. Indicative Results. 

    SD Method   CD Method 
Problem  Customers  Cost  Time(sec)  Cost  Time(sec) 
R102  6  134,6  0,039  131,0  0,092 
R103  6  134,6  0,039  131,0  0,091 
R104  6  134,6  0,040  131,0  0,0912 
C104  9  50,3  0,829  49,3  0,875 
RC102  7  92,1  0,124  88,7  1,171 
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Figure 5.5 Computational time of problem RC105, using the methods SD and ND 
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    SD Method   CD Method 
Problem  Customers  Cost  Time(sec)  Cost  Time(sec) 
RC102  8  94,8  0,333  93,5  0,734 
RC103  7  92,1  0,124  88,7  1,157 
RC103  8  94,8  0,333  93,5  0,734 
RC104  9  100,2  0,509  96,6  1,68 

 

The exact dominance rules proposed by Chabrier (2005) solve this problem optimally 
but the solution procedure is much slower than the SD method. Chabrier (2005) 
proposes two methods to accelerate the solution procedure, i) by an exact approach, 
and ii) a heuristic approach. Several results are presented, in which some instances are 
solved for the first time.   

Since the CD method leads to optimal solutions, the computational time of the method 
is compared against the computational time of the exhaustive method (ESA). Figure 
5.6 presents the computational time of the two methods for different customer 
instances for an indicative problem (R101). Also, the computational time of ESA 
method is presented to provide useful comparisons of the three different methods. 
Analytical results regarding the comparison of the computational time of the SD and 
CD methods for problems up to 20 customers are presented in Appendix C. 

 

 

5.6 TESTING LARGE PROBLEMS 

Obtaining solutions to larger problems (more than 10 customers) was feasible only 
with the SD method. All other methods implemented were unable to handle larger 
instances due to computational time. In this section, the results obtained using the SD 
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method, for problems up to 100 customers from the Solomon test-cases, are 
presented. Table 5.4 presents the results of a subset of the aforementioned test-cases. 
Table 5.4 is structured as follows 

• Initially the instances and the number of customers used are presented. 
• Columns “Cost” present the lower bound cost obtained (without performing 

B&B operations) and the final integer cost (with B&B operations). If these 
two costs are equal, then the integer solution was found without performing 
B&B operations. Signs (*) indicate cases in which our method (SD) was 
unable to reach the best integer optimal solution reported in the literature 
(Larsen, 2001). Note that the (+) sign indicates a different lower bound from 
the results presented in Larsen (2001). 

• Column “No. of Routes” presents the numbers of routes participating in the 
final integer solution. 

• Columns “B&B Tree” shows the total nodes (from the B&B tree) created and 
the nodes explored by the algorithm. Note that these two columns differ, since 
based on the Node Selection Policy, not all nodes have to be examined. 

• Columns “Generated Columns” present the total columns created and 
transferred to the master problem by the sub-problem at the initial node, 
resulting in the lower bound (prior entering the B&B operation), and the 
average number of columns generated in each B&B node explored. 

• Columns “Computational Time” present the computational time spent in 
finding the lower bound, the average time spend per B&B node and the total 
cumulative time in finding the integer solution, respectively.  
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Table 5.4: Results of the SD method for 25, 50 and 100 customers 

Problem Customers 

Cost 
# of 

Routes 

B&B Tree Generated Columns Computational Time 
Optimal 
Solution Lower 

Bound 
Integer 
Solution 

Total 
Nodes 

Nodes 
Explored

First 
Node 

Average 
per B&B 

Node 

First 
Node 

Average 
per B&B 

Node 
Total 

R101 25 617,1 617,1 8 0 0 400 0 0,47 0 0,47 617,1 
 50 1044+ 1044 12 0 0 1764 0 4,73 0 4,73 1044 
 100 1631,15 1637,7 20 24 16 7648 203 170,21 34,93 729,33 1637,7 

R102 25 546,33 547,1 7 8 4 1906 55 2,94 0,65 5,56 547,1 
 50 909,00 909 11 0 0 7586 0 61,58 0 61,58 909 
 100 1467,7+ 1467,7* 18 0 0 13698  4003,58  4003,87 1466,6 

R103 25 454,60 454,6 5 0 0 3656 0 11,00 0 10,80 454,6 
 50 769,29 772,9 9 18 10 15014 435 178,36 72,03 898,74 772,9 

R104 25 416,90 416,9 4 0 0 5918 0 25,13 0 25,13 416,9 
R105 25 530,5 530,5 6 0 0 952 0 1,45 0 1,49 530,5 

 50 898,47+ 911,8* 9 76 40 3562 334 12,88 4,02 173,81 899,3 
R106 25 457,3 465,4 5 12 8 2742 125 7,89 1,53 19,62 465,4 
R107 25 424,3+ 424,3 4 0 0 4636 0 19,87 0 19,87 424,3 

 50 707,61+ 711,6* 7 28 16 15306 188  218,54 75,09 1420,19 711,1 
R108 25 397.27+ 397,3 4 4 2 6810 130 48,14 6,3 55,90 397,3 
R109 25 441,3 441,3 5 0 0 1792 0 3,41 0 3,40 441,3 

 50 779,2+ 790,7* 8 818 426 7524 280 112,79 0,44 3709,45 786,8 
R110 25 440,45+ 444,1 5 22 12 2994 95 9,50 1,6 28,62 444,1 
R111 25 427,36+ 428,8 4 8 4 3282 130 12,20 2,5 21,18 428,8 
R112 25 389,45+ 393 4 24 12 4660 95 24,40 3,1 66,75 393 
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Problem Customers 

Cost 
# of 

Routes 

B&B Tree Generated Columns Computational Time 
Optimal 
Solution Lower 

Bound 
Integer 
Solution 

Total 
Nodes 

Nodes 
Explored

First 
Node 

Average 
per B&B 

Node 

First 
Node 

Average 
per B&B 

Node 
Total 

RC101 25 413,6+ 466,5* 4 434 272 962 23 1,83 0,37 102,77 461,1 
RC102 25 351,8 351,8 3 0 0 2164 0 6,30 0 6,30 351,8 
RC103 25 334,2+ 334,2* 3 0 0 3554 0 8,36 0 8,36 333,1 
RC104 25 311,7+ 311,7* 3 0 0 4196 0 18,98 0 18,99 306,6 
RC105 25 419+ 419* 4 0 0 1418 0 4,88 0 4,88 411,3 
RC106 25 345,5+ 345,5 3 0 0 1934 0 5,87 0 5,88 345,5 
RC107 25 302,7+ 302,7* 3 0 0 3354 0 18,72 0 18,72 298,3 
RC108 25 304,6+ 304,6* 3 0 0 5010 0 18,46 0 18,45 294,4 

C101 25 191,3 191,3 3 0 0 2580 0 4,93 0 4,94 191,3z 

 50 362,4 362,4 5 0 0 6154 0 31,26 0 31,25 362,4 
C102 25 191,1 191,1* 3 0 0 10382 0 41,48 0 41,48 190,3 

 50 362,4+ 362,4* 5 0 0 23570 0 198,99 0 199,00 361,4 
C103 25 190,3 190,3 3 0 0 13968 0 85,56 0 85,56 190,3 

 50 361,4 361,4 5 0 0 42144 0 764,69 0 764,75 361,4 

C104 25 186,9 186,9 3 0 0 17530 0 134,43 0 134,45 186,9 

 50 360,8+ 360,8* 5 0 0 61212 0 2879,15 0 2879,36 358,0 

C105 25 191,3 191,3 3 0 0 2806 0 5,94 0 5,94 191,3 
 50 362,4 362,4 5 0 0 8576 0 49,17 0 49,19 362,4 

C106 25 191,3 191,3 3 0 0 2456 0 6,43 0 6,42 191,3 
 50 362,4 362,4 5 0 0 8058 0 50,34 0 50,36 362,4 

C107 25 191,3 191,3 3 0 0 4114 0 11,51 0 11,52 191,3 
 50 362,4 362,4 5 0 0 11604 0 117,84 0 117,86 362,4 

C108 25 191,3 191,3 3 0 0 6018 0 21,40 0 21,41 191,3 
 50 362,4 362,4 5 0 0 16572 0 151,71 0 151,72 362,4 
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The majority of the computational time is being spent in the first node (obtaining the 
lower bound). This is shown in Table 5.5, where indicative analytical results for the 
R106 - obtaining the lower bound are shown, presenting the total number of generated 
columns, and the computational time spend for the master problem and the sub-
problem, respectively. Finally the aforementioned information for each B&B node is 
presented. Note that, in the B&B nodes, the results are cumulative and are not 
presented per iteration. The best integer solution obtained is highlighted in the table. 

As it is observed, the initial given solution, which is the worst integer solution, forces 
the algorithm to create a large number of columns, which is reduced drastically in the 
next iterations. Using a heurist algorithm to obtain a good initial solution can 
eliminate this phenomenon. Figure 5.7 presents an illustration of the cost obtained 
after each iteration for an indicative case (R106 with 25 customers). 

Table 5.5: Computational Time for R106 with 25 Customers. 

 
Iteration 

Computational Time (sec) Columns  
Generated Total Cost 

  
Sub- 

problem 
Master  

Problem Total 
    
Initial Solution  
First Node. 
Lower  
Bound 
Iterations 

0 - 0,01    0,01 0 1244,60 
1 30.10 0,72 30,10 2248 485,15 
2 0,57 0,06 0,63 262 468,90 
3 0,52 0,06 0,57 88 457,30 
4 0,43 0,01 0,44 8 457,30 
5 0,42 0,01 0,43 4 457,30 
6 0,45 0,01 0,45 4 457,30 
7 0,43 0,01 0,44 2 457,30 
8 0,44 0,01 0,45 2 457,30 
9 0,40 - 0,40 0 457,30 

B&B Nodes 1 1,46 0,12 1,58 48 464,85 
 2 1,73 0,16 1,89 48 459,95 
 3 1,05 0,13 1,18 66 469,00 
 4 1,89 0,14 2,03 22 464,10 
 5 0,86 0,12 0,98 28 465,60 
 6 2,03 0,14 2,17 20 465,40 
 7 0,84 0,10 0,94 64 468,00 
 8       0,73 0,11     0,84 12     476,40 
 Total 44,29 1,87 45,52 2926  



Chapter 5 Test Cases Results 
 

61 
 

 

 

Computational complexity increases with the number of customers. Figure 5.8 
presents an indicative test-case. For this test-case, the computational time spent in 
obtaining the lower bound by solving the linear program and the ESPPTWCC, along 
with the total cumulative time is presented. It is clear that the increase is exponential.  
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Figure 5.8: Computational time for problem R101 for customers 10 to 100 (SD method) 

Figure 5.7: Cost of R106 (25 customers) 
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Multiple Columns Generation vs. Single Column Generation 

In order to strengthen the use of multiple columns generation from the sub-problem 
against the generation of just a single column the following table presents indicative 
results for the R101 to R107 test-cases by generating just a single column per sub-
problem iteration. The results obtained along with the difference in computational 
time with the results of Table 5.4 are presented. The increase of the computational 
time is tremendous in this case, since the single column generation forces the 
algorithm to perform a large number of iterations (by solving the master problem and 
the sub-problem repeatedly) in order to obtain the lower bound and the integer 
solution. 

Table 5.6: Results with single column generation and difference in computational 
times against multiple column generation. 

Pr
ob

le
m

 

C
us

to
m

er
s B&B Tree Generated 

Columns Computational Time 

Total 
Nodes 

Nodes 
Explored 

Initial 
Node 

Average/ 
B&B node

First 
Node 

Average 
per B&B 

Node 
Total Difference 

 (%) 

R101 25 0 0 45 - 3,91 - 3,91 731,28
R102 25 4 4 75 7,25 35,80 2,65 46,41 734,64
R103 25 4 2 81 15,50 99,29 10,78 120,84 1018,93
R104 25 0 0 98 - 261,36 - 261,38 940,09
R105 25 0 0 65 - 14,04 - 14,05 842,75
R106 25 32 18 86 11,39 75,90 5,04 166,63 749,26
R107 25 0 0 82 - 143,13 - 143,14 620,38

 

5.7 CONCLUSIONS 
Three different methods for dominance criteria were presented in Chapter 5. All 
methods use column Generation as the main solution framework. From the results 
obtained in the previous sections the following can be concluded: 

• Although, the SD method is a fast method, with the ability to solve large problem 
instances (up to 100 customers), it cannot always converge to the optimal solution 
reported in the literature. In a total of 44 problems with 25, 50 and 100 customers 
solved, only 13 did not converged to an optimal solution. This is mainly based in 
the dominance criteria structure which eliminate several labels (therefore, possible 
routes) from the solution of the ESSPPTW.  

• The CD method performs better than the SD method since it achieves optimal 
solutions to instances, for which the SD method was unable to converge. On the 
other hand, the computational time consumed, even for small instances, was high 
and larger instances (more than 25 customers) could not be solved.  
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• Both methods were able to solve larger instances from the exhaustive search 
method (ESA) created.  

• In most cases, the larger portion of the computational time was consumed in the 
parent node in order to find the lower bound of the problem. This observation can 
be strengthened by the use of a dummy initial solution used by our methods. The 
use of a better initial solution (through a heuristic algorithm) could have 
minimized the computational time of the parent node.  

• Multiple columns against single column insertion dramatically reduced the 
computational time of the process (more than 500%).  

• Another observation made is that in problems with a large number of B&B nodes 
created (and explored), the cost difference between the lower bound and the 
integer solution is usually larger than in the instances with less B&B nodes, and 
the computational time higher, due to the number of B&B nodes that should be 
explored.  
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CHAPTER 6 Conclusions  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the present thesis, a Branch and Price via Column Generation toolkit for solving 
the Vehicle Routing Problem with Time Windows (VRPTW) was developed. The 
methods employed in this toolkit are able to provide optimal or efficient solutions to 
the aforementioned problem. Specifically, the toolkit employs advanced linear and 
integer programming (such as problem decomposition, column generation and branch 
and bound) and advanced network flow (shortest path problem with additional 
constraints) techniques. The overall method is based on Larsen (2001), where a 
similar algorithm based on Shortest Path Problem with Time Windows and Capacity 
Constraints (SPPTWCC), was implemented, and Chabrier (2005), where the solution 
is provided through the elementary SPPTWCC. Column Generation is considered as 
one of the most promising methods to provide exact solutions to VRPTW problems in 
reasonable computational time.   
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Method Description 

The problem is decomposed into two (2) sub-problems: (a) The Master Problem deals 
with the solution of a set partitioning problem where the routes to be included in the 
final solution are selected. The only constraints that the Master Problem considers are 
the allowance of each customer to be routed in only one route; (b) the sub-problem 
works on the decomposed problem structure by providing the additional routes to be 
included in the Master Problem. The two problems can be considered as two different 
parts, which have to come in a common decision. The sub-problem generates feasible 
routes and the Master problem decides which routes will be included in the final 
solution and additionally provides the shadow prices to the sub-problem. The shadow 
prices can be considered as the weights of the current solution upon all the other 
undefined solutions to be provided by the sub-problem.  

The sub-problem structure and solution implementation can be of any kind (linear 
programming, dynamic programming, heuristics) and restrictions of all kinds can be 
included making the whole method easy to be adjusted in the variations of the VRP 
and problems of other fields. This characteristic provides a strong advantage of the 
column generation method; that is, Column Generation easily adapts to several 
different problems. 

Analysis and Results 

Since the VRPTW is an NP-hard problem, solution for large instances cannot be 
obtained in rational computational time. This difficulty was tackled through two 
different label dominance techniques, which applied to the sub-problem (Elementary 
Shortest Path Problem with Time Windows and Capacity Constraints). The first one is 
a simplified version of the dominance rules presented in Larsen (2001) for the non-
elementary SPPTWCC, where several “bad” labels are discarded based on the 
dominance criteria before they are further extended. This technique reduces 
effectively the number of total generated labels and therefore the complexity and 
computational time. The second one is an extension of the latter based on Chabrier 
(2005), where an additional rule is introduced compatible with the elementary 
SPPTWCC. By this, several labels previously regarded as “bad” and discarded are 
now examined. The latter leads to exact solutions but with considerable computational 
time increase. The aforementioned techniques are compared against the same column 
generation method without dominance criteria and an exhaustive search algorithm.  

The related experiments were tested using the well-known Solomon test-cases, which 
consist of the primal benchmarks for the academic researchers in the routing area. In 
all test-cases solved, the results obtained were compared against optimal solutions 
provided in the academic literature, or against the results from an exhaustive search 
algorithm (of course for small scale problems).  The analysis of dominance rules 
showed that using no dominance (ND) or the CD dominance method may result in the 
optimal solution but only for small test instances. On the other hand, the SD method 
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was able to solve problems up to 100 customers but it could not always converge to 
the optimal solution provided in the literature. Specifically:  

• Using the SD method, 9 out of 120 tests (up to 9 customers) conducted were 
not able to find the optimal solution; on the other hand the computational time 
was 60% less than the CD method, and 79% less than the ND method (for the 
8 and 9 customers test-cases).  

• The ND and CD methods were able to converge to the optimal solutions for 
small test-cases up to 10 and 25 customers, respectively.  

• In large scale instances, the SD method converged to the optimal integer 
solution for 31 out of 44 tests (up to 100 customers).  

• The use of multiple columns generation from the sub-problem achieved a 
reduction of more than 600% of the computational time. 

From the experiments conducted, it is clear that the dominance criteria used affect 
strongly both the computational time of the algorithm, as well as the solution quality. 
The dominance criteria are strongly related to the sub-problem structure, that is, the 
elementary or the non-elementary sub-problem can perform differently using different 
dominance criteria.  

Future Research 

The main scope of developing a column generation toolkit was to utilize it in the 
academic research conducted by the Design, Operations & Production Systems Lab 
(DeOPSys) of the Financial and Management Engineering (FME) Department of the 
University of the Aegean, where over the last years many heuristic algorithms for 
problems of the VRP class have been developed. 

This toolkit will be used to produce benchmark solutions for practical VRP class 
problems that will be studied in DeOPSys and will validate the quality of the 
algorithms to be produced. Two classes of such problems currently under 
investigation concern multi-period problems, (Athanasopoulos and Minis 2008), and 
dynamic vehicle routing problems (Ninikas et al., 2007),   

Future work on the toolkit includes further strengthening by adding features, such as 
acceleration techniques and different branching and bounding strategies. Further 
investigation regarding the dominance criteria should be also conducted due to their 
importance regarding the computational time and solution quality in different sub-
problem structures.  
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APPENDIX A: EXAMPLES 

REVISED SIMPLEX EXAMPLE 
 

maxܼ ൌ ଵݔ2 ൅  ଶݔ5 
ଵݔ1 ൅  3ݔଶ    ൑     12
ଵݔ1 ൅  1ݔଶ    ൑       6
ଵݔ2 ൅  1ݔଶ    ൑     10

 

Initially we have: 

ܣ ൌ ൥
1 3
1 1
2 1

൩   ܾ ൌ ൥
12
6
10
൩  ܿ ൌ ሾ2 5ሿ 

 

߀ ൌ ൥
1 0 0
0 1 0
0 0 1

൩  ܿ஻ ൌ ሾ0 0 0ሿ 

 
 
Solving the problem with Revised Simplex Method 
Iteration 1st   
Step 1st – search for the variable to enter the basis 
 

ߓ ൌ ఉܿି߀ଵ ൌ ሾ0 0 0ሿ ൥
1 0 0
0 1 0
0 0 1

൩ ൌ   ሾ0 0 0ሿ 

 
௝ݖ െ ௝ܿ ൌ ܻ ௝ܲ െ ௝ܿ 

 

ଵݔ ՜    ଵݖ െ ܿଵ ൌ ܻ ଵܲ െ ܿଵ ൌ ሾ0 0 0ሿ ൥
1
1
2
൩ െ 2 ൌ െ2 

 

ଶݔ ՜ ଶݖ   െ ܿଶ ൌ ܻ ଶܲ െ ܿଶ ൌ ሾ0 0 0ሿ ൥
3
1
1
൩ െ 5 ൌ െ5 

ݎ ൌ ሼെ2,െ5ሽ 
We choose the most negative element of r, so Χ2 will enter the basis. 
 
Step 2nd – search for the variable to exit the basis 

߯஻ ൌ ଵܾିܤ ൌ ൥
12
6
10
൩ 

 

ܽ௝ ൌ ଵିܤ ௝ܲ ൌ ൥
1 0 0
0 1 0
0 0 1

൩ ൥
3
1
1
൩ ൌ ൥

3
1
1
൩ 

 

ܷ ൌ min ൝
߯஻
ܽ௞
௝ , ܽ௞

௝ ൐ 0ൡ ൌ minሼ4, 6, 10ሽ ൌ 4 
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So the variable to exit the basis is ଵܵ. 
 
Step 3rd – calculate the new basis 
 

߀ ൌ ൥
3 0 0
1 1 0
1 0 1

൩  , ଵି߀ ݋ݏ ൌ ൥
1/3 0 0
െ1/3 1 0
െ1/3 0 1

൩ 

߯௯ ൌ  
߯ଶ ՜
ܵଶ ՜
ܵଷ ՜

൥
 2
4
6
൩ ܽ݊݀ ܿ஻ ൌ ሾ5  0 0ሿ 

 
End of first iteration, go back to step 1st. 
 
Iteration 2nd  
Step 1st – search for the variable to enter the basis 
 
 

ߓ ൌ ఉܿି߀ଵ ൌ ሾ5 0 0ሿ ൥
1/3 0 0
െ1/3 1 0
െ1/3 0 1

൩ ൌ   ሾ5/3 0 0ሿ 

 
௝ݖ െ ௝ܿ ൌ ܻ ௝ܲ െ ௝ܿ 

 

ଵݔ ՜   ଵݖ െ ܿଵ ൌ ܻ ଵܲ െ ܿଵ ൌ ሾ05/3 0 0ሿ ൥
1
1
2
൩ െ 2 ൌ െ1/3 

 

ଷݔ ՜    ଷݖ െ ܿଷ ൌ ܻ ଷܲ െ ܿଷ ൌ ሾ5/3 0 0ሿ ൥
1
0
0
൩ െ  0 ൌ 5/3 

ݎ ൌ ሼെ
1
3 ,

5
3ሽ 

 
We choose the most negative element of r, so Χ1 will enter the basis. 
 
Step 2nd – search for the variable to exit the basis 
 

߯஻ ൌ ଵܾିܤ ൌ ൥
4
2
6
൩ 

 

ܽ௝ ൌ ଵିܤ ௝ܲ ൌ ൥
1/3 0 0
െ1/3 1 0
െ1/3 0 1

൩ ൥
1
1
2
൩ ൌ ൥

1/3
2/3
5/3

൩ 

 

ܷ ൌ min ൝
߯஻
ܽ௞
௝ , ܽ௞

௝ ൐ 0ൡ ൌ minሼ12, 3, 3.6ሽ ൌ 3 

 
So the variable to exit the basis isܵଶ. 
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Step 3rd – calculate the new basis 
 
 

߀ ൌ ൥
3 1 0
1 1 0
1 2 1

൩  , ଵି߀ ݋ݏ ൌ ൥
1/2 െ1/2 0
െ1/2 3/2 0
െ1/2 5/2 1

൩ 

߯௯ ൌ  
߯ଶ ՜
ଵݔ ՜
ܵଷ ՜

൥
3
3
1
൩  ܽ݊݀ ܿ஻ ൌ ሾ5  2 0ሿ 

 
End of second iteration, go back to step 1st. 
Iteration 3rd   
Step 1st – search for the variable to enter the basis 
 

ߓ ൌ ఉܿି߀ଵ ൌ ሾ5 2 0ሿ ൥
1/2 െ1/2 0
െ1/2 3/2 0
െ1/2 5/2 1

൩ ൌ   ሾ3/2 1/2 0ሿ 

 
௝ݖ െ ௝ܿ ൌ ܻ ௝ܲ െ ௝ܿ 

ܵଶ ՜ ସݖ െ ܿସ ൌ ܻ ସܲ െ ܿସ ൌ ሾ3/2 1/2 0ሿ ൥
0
1
0
൩ െ 0 ൌ 1/2 

 

ଵܵ ՜ ଷݖ െ ܿଷ ൌ ܻ ଷܲ െ ܿଷ ൌ ሾ3/2 1/2 0ሿ ൥
1
0
0
൩ െ  0 ൌ 3/2 

ݎ ൌ ሼ
1
2 ,
3
2ሽ 

 
All elements of r are positive or equal to zero (ݎ௝ ൒ 0 ) then we have already found the 
optimal solution. 

ݖ ൌ ܿ஻ݔ௕ ൌ   ሾ5 2 0ሿ ൥
3
3
1
൩ ൌ 21 

 
ଵݔ ൌ ଶݔ  3 ൌ 3 

End. 
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COLUMN GENERATION EXAMPLE  
 

maxܼ ൌ ଵݔ2   ൅ ଶݔ4 ൅  ଷݔ3 

 

st , 

ଵݔ  ൅  ݔଶ ൅    ݔଷ  ൑ 12 

ଵݔ ൅ ଶݔ3 ൅ ଷݔ3    ൑ 24 

ଵݔ3 ൅ ଶݔ6 ൅ ଷݔ4    ൑ 90 

,ଵݔ ,ଶݔ ଷݔ  ൒ 0 

Initially, 

޿ ൌ ൥
1 1 1
1 3 3
3 6 4

൩  ܿ ൌ ሾ2   4   3ሿ   ܾ ൌ ൥
12
24
90
൩ 

Iteration 1 

Generate RMP 

Starting with J=1 All other variables will be reduced to zero, initially:  

޿ ൌ ൥
1
1
3
൩  ܿ ൌ ሾ2ሿ   ܾ ൌ ൥

12
24
90
൩ 

Hence, RMP is, 

ଵݖ ൌ ෍ݔܽ݉ ௝ܿݔ௝

ଵ

௝ୀଵ

 

st.,           ∑ ܽ௜௝ݔ௝ ൌ ܾ  ሺ݆ ൌ 1,2,… ,݉ሻଵ
௝ୀଵ  

ଵݔ ൒ 0  

 

Solving RMP 

We are solving the RMP using the Revised Simplex Method and the optimal shadow 
prices are being generated. 

 Hence, 
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ଵݔ ൌ ,݋ݏ 12 ݐ݌݋ݖ ൌ 2 כ ଵݔ ൌ 24 

 At the optimal solution we get, 

ଵߨ   ൌ ሾ2 0 0ሿ, ܤ ൌ ൥
1 0 0
1 1 0
3 0 1

൩ , ޿ ൌ ൥
1
0
0
൩ , ܿ௕ ൌ ሾ2 0 0ሿܽ݊݀ ܾ ൌ ൥

12
12
54
൩  

Solving the Sub-problem 

Solving the Sub-problem we find the entering column. 

௦௨௕ݖ ൌ max
ଵஸ௝ஸ௡

ሼ ௝ܿ െ෍ ߨ௜
௝ܽ௜௝ ሽ

௠

௝ୀଵ

 

So,  

௦௨௕ݖ ൌ max
ଵஸ௝ஸ௡

ሼ ௝ܿ െ ሾ2 0 0ሿܽ௜௝ሽ 

If j=1, ݖଵ ൌ 2 െ ሾ2 0 0ሿ ൥
1
1
3
൩ ൌ 0  

If j=2, ݖଵ ൌ 4 െ ሾ2 0 0ሿ ൥
1
3
6
൩ ൌ 2  

If j=3 , ݖଵ ൌ 3 െ ሾ2 0 0ሿ ൥
1
3
4
൩ ൌ 1 

௦௨௕ݖ ൌ maxሼ0,2,1ሽ ൌ 2 

Hence, column entering RMP is for j=2. 

Add new column to RMP 

We should calculate the representation of this column, at the current iteration 
௝ݕ) ൌ ଵିܤ ௝ܽ) and increase the variables of the RMP by 1ሺJ ൅ 1). 

Hence, 

ଵߨ   ൌ ሾ2 0 0ሿ, ܤ ൌ ൥
1 0 0
1 1 0
3 0 1

൩ , ޿ ൌ ൥
1
0
0
     
1
3
6
 ൩ , ܿ௕ ൌ ሾ2 0 0ሿ , 

ܾ ൌ ൥
12
12
54
൩  ܽ݊݀ ܿ ൌ ሾ0  4ሿ  
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Iteration 2 

Solving RMP 

We are solving the RMP using the Revised Simplex Method and the optimal shadow 
prices are being generated. 

 Hence, 

ଵݔ ൌ ଶݔ 6 ൌ ଷݏ ߡߙߢ 6 ൌ 36  

So, 

ݐ݌݋ݖ ൌ 2 כ ଵݔ ൅ 4 כ ଶݔ ൅  0 כ ଷݏ ൌ 36 

ଶߨ  ൌ ሾ1 1 0ሿ, ܤ ൌ ൥
1 1 0
1 3 0
3 6 1

൩ , ޿ ൌ ൥
1
0
0
     
0
1
0
 ൩ , ܿ௕ ൌ ሾ2 4 0ሿ , ܾ ൌ ൥

6
6
36
൩  ܽ݀݊ ܿ ൌ

ሾ0  0ሿ   

 

Solving the Sub-problem 

Solving the Sub-problem we find the entering column. 

௦௨௕ݖ ൌ max
ଵஸ௝ஸ௡

ሼ ௝ܿ െ෍ ߨ௜
௝ܽ௜௝ ሽ

௠

௜ୀଵ

 

Hence,  

௦௨௕ݖ ൌ max
ଵஸ௝ஸ௡

ሼ ௝ܿ െ ሾ1 1 0ሿൣܽ௜௝൧ሽ 

If j=1, ݖଵ ൌ 2 െ ሾ1 1 0ሿ ൥
1
1
3
൩ ൌ 0  

If j=2, ݖଵ ൌ 4 െ ሾ1 1 0ሿ ൥
1
3
6
൩ ൌ 0  

If j=3, ݖଵ ൌ 3 െ ሾ1 1 0ሿ ൥
1
3
4
൩ ൌ െ1 

Arose to ݖ௦௨௕ ൑ 0 
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End 

Optimal solution for the MP  

ଵݔ ൌ ଶݔ 6 ൌ ଷݏ ݀݊ܽ 6 ൌ 36  

And, 

ݐ݌݋ݖ ൌ 2 כ ଵݔ ൅ 4 כ ଶݔ ൅  0 כ ଷݏ ൌ 36  

݌ݐ݋ݖ ൌ 36 
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APPENDIX B: ANALYTICAL RESULTS FOR SMALL INSTANCES 
 

Table B.1 presents results on selected test-cases from the Solomon benchmark 
problems for five to nine customers. The computational time and the lower bound 
obtained are shown for the methods ESA, ND, SD, CD.  

Table B.1: Selected results for 5 to 9 customers.   

 ESA SD ND CD 
Pro. Cust. Cost Time Cost Time Cost Time Cost Time 
R101 5 115,60 0,02 115,60 0,02 115,60 0,02 115,6 0,031 

 6 156,70 0,10 156,70 0,01 156,70 0,02 156,7 0,032 
 7 157,50 0,53 157,50 0,02 157,50 0,03 157,5 0,031 
 8 195,90 3,56 195,90 0,02 195,90 0,02 195,9 0,032 
 9 217,30 26,78 217,30 0,04 217,30 0,03 217,3 0,032 

R102 5 93,30 0,05 93,30 0,02 93,30 0,02 93,3 0,031 
 6 131,00 0,13 134,60 0,04 131,00 0,07 131 0,078 
 7 135,20 0,58 135,20 0,07 135,20 0,15 135,2 0,079 
 8 151,40 3,70 151,40 0,15 151,40 0,56 151,4 0,344 
 9 178,00 27,17 178,00 0,13 178,00 0,87 178 0,546 

R103 5 93,30 0,04 93,30 0,02 93,30 0,04 93,3 0,016 
 6 131,00 0,12 134,60 0,04 131,00 0,07 131 0,078 
 7 135,20 0,56 135,20 0,07 135,20 0,15 135,2 0,078 
 8 151,40 3,77 151,40 0,14 151,40 0,56 151,4 0,36 
 9 178,00 27,17 178,00 0,14 178,00 0,86 178 0,532 

R104 5 93,30 0,04 93,30 0,03 93,30 0,02 93,3 0,016 
 6 131,00 0,15 134,60 0,04 131,00 0,07 131 0,078 
 7 131,60 0,64 131,60 0,09 131,60 0,32 131,6 0,141 
 8 141,10 3,99 141,10 0,13 141,10 1,63 141,1 0,188 
 9 162,10 27,89 162,10 0,24 162,10 3,32 162,1 0,875 

R105 5 115,60 0,03 115,60 0,02 115,60 0,02 115,6 0,016 
 6 93,30 0,03 93,30 0,03 93,30 0,02 142,1 0,016 
 7 119,80 0,15 119,80 0,06 119,80 0,08 157,5 0,485 
 8 135,20 0,61 135,20 0,09 135,20 0,22 188,8 0,063 
 9 151,40 3,81 151,40 0,17 151,40 0,86 65535 0,093 

R106 5 93,30 0,05 93,30 0,02 93,30 0,02 93,3 0,031 
 6 131,00 0,13 134,60 0,04 131,00 0,07 119,8 0,062 
 7 135,20 0,58 135,20 0,07 135,20 0,15 135,2 0,109 
 8 151,40 3,70 151,40 0,15 151,40 0,56 151,4 0,515 
 9 178,00 27,17 178,00 0,13 178,00 0,87 177,5 1,109 

R107 5 93,30 0,03 93,30 0,03 93,30 0,02 93,3 0,015 
 6 119,80 0,14 119,80 0,05 119,80 0,08 119,8 0,078 
 7 135,20 0,60 135,20 0,09 135,20 0,21 135,2 0,109 
 8 151,40 3,89 151,40 0,17 151,40 0,87 151,4 0,515 
 9 177,50 28,22 177,50 0,22 177,50 1,59 177,5 1,109 

R108 5 93,30 0,03 93,30 0,02 93,30 0,02 93,3 0,016 
 6 119,80 0,13 119,80 0,05 119,80 0,07 119,8 0,078 
 7 120,40 0,71 120,40 0,12 120,40 0,38 120,4 0,141 
 8 141,10 4,26 141,10 0,18 141,10 2,01 141,1 0,219 
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 ESA SD ND CD 
Pro. Cust. Cost Time Cost Time Cost Time Cost Time 

 9 162,10 30,36 162,10 0,36 162,10 5,95 162,1 1,422 
C101 5 42,70 0,04 42,70 0,01 42,70 0,01 42,7 0,015 

 6 42,80 0,12 42,80 0,02 42,80 0,03 42,8 0,015 
 7 46,70 0,56 46,70 0,03 46,70 0,09 46,7 0,047 
 8 48,20 3,77 48,20 0,05 48,20 0,10 48,2 0,093 
 9 50,30 26,98 50,30 0,06 50,30 0,25 50,3 0,172 

C102 5 42,70 0,03 42,70 0,02 42,70 0,02 42,7 0,031 
 6 42,80 0,16 42,80 0,06 42,80 0,13 42,8 0,078 
 7 46,50 0,71 46,50 0,14 46,50 0,45 46,5 0,297 
 8 47,20 4,97 47,20 0,30 47,20 5,73 47,2 0,625 
 9 49,30 48,18 50,30 0,60 49,30 139,12 49,3 1,86 

C103 5 42,70 0,04 42,70 0,02 42,70 0,03 42,7 0,032 
 6 42,80 0,17 42,80 0,06 42,80 0,13 42,8 0,094 
 7 46,50 0,72 46,50 0,14 46,50 0,52 46,5 0,281 
 8 47,20 5,05 47,20 0,30 47,20 5,89 47,2 0,64 
 9 49,30 50,41 50,30 0,58 49,30 5,89 49,3 1,859 

C104 5 42,70 0,04 42,70 0,02 42,70 0,03 42,7 0,031 
 6 42,80 0,18 42,80 0,07 42,80 0,14 42,8 0,078 
 7 46,50 0,97 46,50 0,31 46,50 1,41 46,5 0,5 
 8 47,20 11,40 47,20 0,37 47,20 46,35 47,2 0,875 
 9 49,30 190,19 50,30 0,79 49,30 1093,32 49,3 3,406 

C105 5 42,70 0,03 42,70 0,01 42,70 0,02 42,7 0 
 6 42,80 0,11 42,80 0,03 42,80 0,03 42,8 0,031 
 7 46,70 0,53 46,70 0,03 46,70 0,05 46,7 0,047 
 8 48,20 4,24 48,20 0,07 48,20 0,20 48,2 0,11 
 9 50,30 29,70 50,30 0,06 50,30 0,25 50,3 0,172 

C106 5 42,70 0,03 42,70 0,02 42,70 0,02 42,7 0,015 
 6 42,80 0,10 42,80 0,03 42,80 0,03 42,8 0,016 
 7 46,70 0,53 46,70 0,03 46,70 0,04 46,7 0,031 
 8 48,20 3,77 48,20 0,05 48,20 0,11 48,2 0,094 
 9 50,30 27,81 50,30 0,07 50,30 0,23 50,3 0,172 

C107 5 42,70 0,03 42,70 0,03 42,70 0,02 42,7 0,016 
 6 42,80 0,11 42,80 0,02 42,80 0,03 42,8 0,032 
 7 46,70 0,71 46,70 0,04 46,70 0,07 46,7 0,063 
 8 48,20 3,83 48,20 0,07 48,20 0,14 48,2 0,11 
 9 50,30 29,19 50,30 0,09 50,30 0,32 50,3 0,157 

C108 5 42,70 0,03 42,70 0,04 42,70 0,03 42,7 0,016 
 6 42,80 0,12 42,80 0,03 42,80 0,03 42,8 0,031 
 7 46,50 0,59 46,50 0,04 46,50 0,07 46,5 0,079 
 8 48,20 3,50 48,20 0,06 48,20 0,28 48,2 0,141 
 9 50,30 27,42 50,30 0,09 50,30 0,89 50,3 0,235 

RC101 5 5,00 87,20 0,03 87,20 0,02 87,20 87,2 0,016 
 6 6,00 89,40 0,12 89,40 0,03 89,40 89,4 0,016 
 7 7,00 108,30 0,55 108,30 0,04 108,30 108,3 0,062 
 8 8,00 112,40 3,69 112,40 0,06 112,40 112,4 0,14 
 9 9,00 121,60 27,03 121,60 0,19 121,60 121,6 0,547 

RC102 5 5,00 82,80 0,04 82,80 0,03 82,80 82,8 0,031 
 6 6,00 84,60 0,16 84,60 0,06 84,60 84,6 0,063 
 7 7,00 88,70 0,74 92,10 0,11 88,70 88,7 0,265 
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 ESA SD ND CD 
Pro. Cust. Cost Time Cost Time Cost Time Cost Time 

 8 8,00 93,50 5,44 94,80 0,29 93,50 94,8 0,734 
 9 9,00 100,00 50,56 100,00 0,46 100,00 100,2 1,281 

RC103 5 5,00 82,80 0,04 82,80 0,02 82,80 82,8 0,031 
 6 6,00 84,60 0,16 84,60 0,06 84,60 84,6 0,062 
 7 7,00 88,70 0,74 92,10 0,12 88,70 88,7 0,265 
 8 8,00 93,50 5,39 94,80 0,30 93,50 94,8 0,734 
 9 9,00 100,00 50,20 100,00 0,43 100,00 100,2 1,281 

RC104 5 5,00 82,80 0,05 82,80 0,03 82,80 82,8 0,031 
 6 6,00 84,60 0,16 84,60 0,07 84,60 84,6 0,062 
 7 7,00 88,70 0,81 88,70 0,20 88,70 88,7 0,156 
 8 8,00 93,50 6,48 93,50 0,24 93,50 93,5 0,5 
 9 9,00 96,60 117,10 100,20 0,51 96,60 96,6 1,688 

RC105 5 5,00 82,80 0,04 82,80 0,03 82,80 82,8 0,032 
 6 6,00 87,70 0,18 87,70 0,06 87,70 89,4 0,11 
 7 7,00 93,50 0,67 93,50 0,15 93,50 93,5 0,313 
 8 8,00 99,60 4,35 100,90 0,41 99,60 104,8 0,86 
 9 9,00 109,60 29,61 109,60 0,69 109,60 109,6 1,235 

RC106 5 5,00 82,80 0,03 82,80 0,03 82,80 82,8 0,032 
 6 6,00 89,40 0,12 89,40 0,03 89,40 89,4 0,032 
 7 7,00 103,20 0,59 103,20 0,12 103,20 103,2 0,172 
 8 8,00 107,30 3,89 107,30 0,15 107,30 107,3 0,328 
 9 9,00 108,30 27,66 108,30 0,40 108,30 108,3 1,188 

RC107 5 5,00 82,80 0,03 82,80 0,03 82,80 82,8 0,031 
 6 6,00 84,60 0,12 84,60 0,05 84,60 89,4 0,032 
 7 7,00 88,70 0,62 88,70 0,10 88,70 88,7 0,156 
 8 8,00 93,50 3,99 93,50 0,15 93,50 93,5 0,25 
 9 9,00 98,60 31,05 98,60 0,27 98,60 98,6 0,891 

RC108 5 5,00 82,80 0,04 82,80 0,03 82,80 82,8 0,016 
 6 6,00 84,60 0,15 84,60 0,07 84,60 86,9 0,156 
 7 7,00 88,70 0,96 91,00 0,11 88,70 88,7 0,391 
 8 8,00 93,50 7,33 95,80 0,48 93,50 93,5 1,078 
 9 9,00 96,60 124,47 100,40 0,90 96,60 96,6 3,36 
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APPENDIX C: COMPARISON OF THE SD AND CD METHODS 

 

Table C.1 presents results on selected test-cases from the Solomon benchmark for 5 to 
25 customers. The testes where conducted using the SD and CD methods presented in 
Chapter 5. The results for the SD methods are presented and the total computational 
time is compared against the CD method.  

Table C.1: Selected results of the SD and CD methods for 5 to 19 customers. 

Pro. Cust. 

Cost  Computational Time 

Lower Integer 
Solution 

# of 
Routes 

Generated 
Columns 

First 
Node Total 

SD 
Total 

Difference 
% Bound 

R101 5 156,2 156,2 2 20 0,033 0,031 0,016 106% 
7 195,2 195,2 3 28 0,030 0,031 0,031 -3% 
9 241,2 241,2 4 52 0,053 0,047 0,031 72% 

11 297,4 297,4 4 70 0,087 0,094 0,047 86% 
13 312,8 312,8 4 96 0,138 0,14 0,078 77% 
15 383,1 383,1 5 118 0,207 0,219 0,094 120% 
17 431,9 431,9 6 162 0,283 0,281 0,141 100% 

  19 470,2 470,2 6 176 0,380 0,375 0,172 121% 
R102 5 130,5 130,5 1 78 0,078 0,078 0,063 23% 

7 150,7 150,7 1 288 0,326 0,328 0,11 196% 
9 201,3 201,3 3 376 0,601 0,609 0,203 196% 

11 260,2 260,5 3 504 1,311 1,609 0,594 121% 
13 270,6 270,6 3 822 3,305 3,297 0,735 350% 
15 326,1 326,1 4 810 3,728 3,735 0,86 333% 

  17 365,9 365,9 4 948 4,526 4,532 1,047 332% 
19 421,3 424 6 1046 7,344 13,234 4,078 80% 

R103 5 130,5 130,5 1 78 0,079 0,078 0,047 69% 
7 150,7 150,7 1 288 0,327 0,328 0,11 197% 
9 201,3 201,3 3 376 0,601 0,61 0,188 219% 

11 260,2 260,5 3 504 1,313 1,61 0,578 127% 
13 270,6 270,6 3 822 3,302 3,297 0,734 350% 
15 326,1 326,1 4 914 4,761 4,765 0,984 384% 
17 351,1 356,4 4 1384 12,832 21,297 5,453 135% 

  19 354,2 360,8 5 2130 24,682 28,953 4,89 405% 
R104 5 130,5 130,5 1 78 0,080 0,078 0,047 70% 

7 140,4 140,4 1 210 0,180 0,172 0,094 91% 
9 179,6 179,6 2 450 0,978 0,969 0,328 198% 

11 216,7 216,7 2 838 4,473 4,485 0,906 394% 
13 232,6 232,6 2 1348 8,378 8,375 1,563 436% 
15 288,4 288,4 3 1550 13,049 13,047 2,468 429% 
17 308,9 308,9 3 2446 38,939 38,953 5,359 627% 

  19 327,1444 329,1 3 3736 116,988 205,562 28,937 304% 
R105 5 141,6 141,6 2 30 0,025 0,031 0,015 67% 

7 188,1 188,1 3 76 0,063 0,062 0,047 34% 
9 238,85 241,2 4 98 0,106 0,14 0,079 35% 

11 285,8 286,5 3 150 0,203 0,391 0,203 0% 
13 299,975 301,9 3 208 0,406 0,672 0,328 24% 
15 353,8 354,4 4 228 0,675 0,89 0,375 80% 
17 390,7 390,7 4 318 0,889 0,891 0,281 216% 
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Pro. Cust. 

Cost  Computational Time 

Lower Integer 
Solution 

# of 
Routes 

Generated 
Columns 

First 
Node Total 

SD 
Total 

Difference 
% Bound 

  19 415 415 5 484 2,200 2,203 0,703 213% 
R106 5 119,3 119,3 1 86 0,075 0,078 0,046 64% 

7 150,7 150,7 1 296 0,479 0,469 0,156 207% 
9 195 195 2 438 1,023 1,015 0,25 309% 

11 249,3 249,3 3 642 2,360 2,359 0,547 331% 
13 258,2 258,2 3 928 5,088 5,094 0,937 443% 
15 316,2 319,3 4 970 5,848 14,204 4,219 39% 
17 356,05 357,7 4 1368 12,902 17,719 3,797 240% 

  19 368,475 380,7 5 1506 18,096 52,796 15,016 21% 
R107 5 119,3 119,3 1 86 0,069 0,078 0,047 47% 

7 150,7 150,7 1 296 0,481 0,484 0,156 208% 
9 195 195 2 438 1,022 1,015 0,265 286% 

11 249,3 249,3 3 642 2,363 2,359 0,547 332% 
13 258,2 258,2 3 928 5,088 5,094 0,922 452% 
15 311,3667 315,2 3 1100 7,528 11,594 2,938 156% 
17 336,3 336,3 4 1654 17,894 17,89 2,328 669% 

  19 339,4 339,4 4 2634 45,879 45,875 5,703 704% 
R108 5 119,3 119,3 1 86 0,068 0,078 0,047 45% 

7 140,4 140,4 1 236 0,205 0,203 0,093 121% 
9 179,6 179,6 2 500 1,210 1,219 0,344 252% 

11 209,9 209,9 2 1010 6,518 6,516 1,047 523% 
13 218,8 218,8 2 1552 12,726 12,735 1,891 573% 
15 277,7 277,7 3 1562 15,797 15,797 2,469 540% 
17 296,9 296,9 3 2434 47,780 47,781 5,594 754% 

 


