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[TEPTAHYH (IN GREEK)

Ye mapoboo TNV OWA®pOTIK  gpyoacio  mopovotdleTor M dnmpovpyio
TPOYPAUUOTICTIKOV EPYOAEIOV Yoo TNV €milvon tov TPOPAUATOS OPOUOAOYNONG
oymuatov pe ypovikd mapdbvpa (Vehicle Routing Problem with Time Windows -
VRPTW). Ta gpyareia avtd Baciomroyv oty néBod0 YPApUIKOD TPOYPUUUATICHOD
Column Generation yi v €bpeon tov kotdTEPOoL Opiov (lower bound) tov
yorapopévov (relaxed) mpopfAnquotog kot otov akyopiBpo Branch and Bound ywo v
emitevén g PEATIOTNG axkepaio Avong Tov mpoPAnuatoc. H avdntuén g pebddov
éxel Paciotel oty dwdaktopikn epyacio tov Larsen (2001) ko t1g epyaocieg dAAwv
gpeuvnTadV ot omoiot £xovv acyoAndel pe 1o VRPTW. To cvykekpipévo epyareio Ba
ypnowonomBet and 10 gpyactpo Zvotudtov Zyedwopov Ioapoywyng xot
Agrtovpyidv tov tupatoc Mnyovikov Owovopiog ko Atoiknong (TMOA), tov
[Tovemomuiov Atyaiov, oto TAGICIO TOL EPELVNTIKOV TOV OVTIKEWLEVOL TOV
oyetileTon pe dapopec mopaAlayss TV TpoAnudTmy dpoporidynong oynuatwv. H
pébodog Column Generation omotelel pio evpémg ypnoytomorodpevn pébodo ta
tedevtaio ypovio Kor Ba pmopovoe vo ePappootel 6e TOAAG KOl SOPOPETIKA
wpofAnuata tov mediov e Emyepnoaxng Epgvvag mov pedetodviar 6tov ydpo tov
TMOA «o tov Iavemotnpiov Atryaiov.

To wpdPinpua VRPTW apdpa v gdpeon tov dpoporoyiov eAdylotov KOGTOUG Yo
€va 6TOLO OYNUATOV TTOV EEKIVOUV KO ETIGTPEPOVY GE Lot KON OmoBNK, [e oKOTO
va g&ummpetnoovy akplBdg pio eopd kdbe meAdtn amd éva cOvoro mehatdv. Ot
nmeldteg yopaktnpiCovtal amd v {\Tnom, tov xpovo £EVTNPETNONG KAl TO YPOVIKO
nmapdBvpo eEumnpétnong tovg (time windows). To kdBe dynuo €xel cvyKEKPLUEVN
yopntikdémrta (nepopiloviag tov apBpud TV TEAATOV Ol Omoiol Umopovv va
eumpemBovv amd Eva Oynua) kol yopaktnpiletor omd Eva péyioto xpdvo
dwdpounc. Ta ypovikd mapdBvpa kot 1 {nmon tov Kabe meddtn Bewpodvtal yvmotd
€K TOV TPOTEPMV.

H pébodog Column Generation ekpetadldedeTon TNV 10104TEPT OOUN TOV TEPLOPIGUDOV
oV mpoPAnuotoc (N omoia pmopel va amocvvtedel oe pkpdTEpO TPOPANAT) KO
elvar 10101TéPa OMOTEAEGUATIKY G€ TPOoPANpata, 6mov o apBpds TV HETAPANTOV
Eemepvagl KoTd TOAD TOV 0aplBud TOV TEPOPIGUOV (OM®G OTNV TEPITTMON TOV
VRPTW). Baoikd yapoktnpiotikd g pnebddov eivor 0t1, og avtifeon pe T1g Kowvég
peBOO0VG YPOUUIKOD TPOYPOUUOTIGUOD, OpYIKE LOVO [iol PIKPT Opdade LETAPANT®V
ovppetéxel oto mPOPANUA Kot otadlakd mpootifevion véeg petapintéc. H pébodog
owympileton og dvo mpoPAnuata to omoion cvvosovtal peTaEy Tovg, To Kupimg
[Tp6PAnua (Master Problem) kot 1o Yno-ITpopAnua (Sub-Problem).

Xmv mepintoon pog, 1o Kvupiog [IpopAnua poviedorombnke ¢ éva mpdfinua
Kotdtunong Xvvorov (Set Partitioning Problem) tov omoiov £€yovv yolopwOei
(relaxed) o1 mepropiopol axepardtntog TV petafintov. H eniAvon tov deEdybnke
pe v Revised Simplex pébodo, m omoia amotedel mapoaAloayn TOL KAOGGIKOV
aAyopiBuov Simplex, emtvyydvovtog pelwon TOL VTOAOYIGTIKOD YPOVOL KOl NG
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OTOUTOOUEVIIC  VTOAOYIOTIKNG  HVAUNG. Q¢ UETAPANTEC TOL  CLUYKEKPIUEVOL
TpoPAfHatog opiotnkay OAOKANPO povomdrtio (dpopoAdyla), o€ ovtiBeon pe v
KAaoowkn/ mAnprn poviehonoinomn tov VRPTW 6mov ot petafAntég tov mpoPAnpatog
aVTIOTOYOVV OTIS OKHEG Ol omoieg ouvvoéovv Tovg meAdtes. Ot petofAntég mov
CUUUETEXOVV GE aVTO TO MHOVTEAO &givor Ola ta mBava eQiktd Opopordywa. Ot
TEPLOPIGHOL TOV POVTEAOL apopolv Hovo To mANBog eEumnpétnong tov Kabe meAd
(kB meAdTNG eMTPEMETOL VO LOVO Pl OpaL Kot amd Eva dpoporoyto). H dwadwkacio
emiAvong apykomotgiton pe pio «ypryopn» Avorn 6mov kdbe dpopordylo cuvtifetan
and éva meddtn (apBudg opoporoyiowv icog pe apBud mehatwv). H gopeon tov
TOoVOV EPIKTOV Opoporoyiov mapéyetonr ond v enilvon tov Yrod-IlpoPfanuartoc,
pécm Tov omoiov o€ kAOe emavaAnyn tpootifevion kKavovpyla dpopoidyta.

To Ymo-IlpofAnua poviechomomOnke ¢ £€va mPOPANUO eAdIOTNG  SLOPOUNG
(Shortest Path Problem) pe emmiéov mepropiopos, ot omoiot apopodv T YPOVIKA
mapdOvpa Ko TV yopntikdtto Tov oynuatog (Elementary Shortest Path with Time
Windows ad Capacity Constraints). O 6pog elementary agopd tv amaydpgvon
onpovpyiag KOKA®V 6To Hovomdtio. Tov mpoPAnuotoc. Qg Koot kdbe akung tov
wpofAnuatog €xovv opiotel tpomomomuéva k6otn (modified costs) pe PBdon g
oKloong Twég (shadow prices) mov mopdyovior amd v Avorn tov Kupiog
[IpopAquotoc. Me tov Tpoémo avtd avamapdyovtor ta reduced cost coefficients tng
pefodov Simplex av 1 emiAvomn Tov TPOPANUATOG SEVEPYOVTOV LE TOV KAOGGIKO
tpomo. H emidvon tov Ymo-TIlpoPAnuoatog owelaybnke pécsm ypnong OvvopKov
TPOYPOUUOTICHOD, Omwg meptypdpetoan otnv gpyacioa tov Larsen (2001). Xnv
ovyKekpluévn gpyacio.  avtipetoniCetor to non-elementary mpoPfAinua, Omov
EMTPENMOVTOL KOKAOL GTO. OPOUOAGYO. Xe GALEG OVTIUETOTICELS TOV TPOPANUATOG,
Chabrier (2005), emAdetar to mpdPANU HE TNV HOPPYT| TOV TOPOVLGLALETOL TNV
mapovoo epyacia, OnAadn dev emrpémovrol kukiot. O adyopiBpog Poaciotnke otov
alyopiBpo tov Dijkstra (1959) 6mov ywo kéBe meidtn dnuovpysiton pio Topméio
(label), n omoia emionuaivel T0 KOGTOG TNG GLVIOUOTEPNS S1dPOUNG Yo TOV KAOE
neldtn. Ot emumAéov mepropiopol, Kabmg Kot 1 vVoapEn apvnTikod KOGTOVG GTIG AKUEG
Tov  7mpoPAquatog, amortobv TV onuovpyio. ovvletwv labels ta  omoia
yopaxtnpiovior amd to KOGTOG TNG GLVIOUOTEPNG OOPOUNG, TNV 0Opolcuévn
{\mon, tov aBpoicuévo xpovo Kot T OPOUOAOYI0 UEXPL TOV TEAATY] TOV OTTO10 apopd
10 k0B label. Eniong amatteiton va dtatnpodvrot tepiocdtepeg amd pio TOUTELEG Yo
KkéOe meldn KaBDS ta emmpdsbeta avTd YopaKTNPLOTIKA KaO1oToHV dVGKOAN TNV
avoyvopion kot v orndppyn tov labels «yoauning modmracy. H andppiyn tov
labels «yapmAng moldtnTOg» AmoTEAEL GNUAVTIKO TOPAYOVTO O 0T010¢ EMNPEALEL TOGO
TOV VTOAOYLOTIKO ¥pOVO €miAvong tov TPOPANUOTOS, OCO Kol TNV EMITEVEN TNG
Bédtiome Abong. H owdikacia avty Oevepyeiton péow kpurmpiov Kvplopyiog
(Dominance Rules) evog label oe éva dlho. Ta kpuriplo kvplapyiog to omoia
ypnoorombnkoy otnv moapovcoa epyacio £govv moapovciactel omd Tovg Larsen
(2001) ka1 Chabrier (2005).

Ta Prypata g cLVOMKNG HeBOOOV TOPOVGLALOVTOL GUVOTTIKE KOTOTEP®:




1. Ebdpeon mg apykng Avong yio to Kvpiwg IIpdfinua.
2. Emilvon tov Yno-IIpopAnpartog pe v péBodo Revised Simplex kot
TOPAY®OYN TOV GKIOOMV TIHOV TG KaAvTepnS Avong (lower bound).
3. YmoAoyiopdg tmv tpomonomuévey kootav (modified costs).
4. Emiivon tov Yno-IIpoPAnpatog
5. Ed&v vrépyovv dpopordyta pe apvnTtikd cuvoAlko k6otog (reduced cost),
€100YMYN TOV dpoporoyiov avt®v oto Kupimg IIpoPAnua kot emiotpor| 6to
frua 2. AAMDGC, av 0eV VTLAPYEL KAVEVO SPOLOAOYLO LE OPYNTIKO KOGTOG
ocuvéyelo oto Bnua 6.
6. Teppotiopodg g dwdwkasioc. H Abon tov tehevtaiov mpofAnuatoc eivor kot
N KaAVTEP.
H Aom mov mapdystal amd v mapondve pébodo amoteiel 1o katdtepo 0pto (lower
bound) tov mpoPAnuatog pg Kot Exovv yoropwbei (relaxed) otv mepropicuol
AKEPUOTNTOG TOV UETOPANTOV. ZTNV GLVEXEWN, 1 €VPECT] NG OKEPOLOG AVONMG
dtevepyeitor péow tov oaiyopibpuov Branch and Bound, péoa otov omoio €yet
evoopatmdel n pébodog Column Generation. Méow tov aAdyopiBpov avtod kot ebv M
Column Generation koataAn&el oe un oakepoaio. Avon onuovpyet 6vo véa Ymo-
[MpopApoata pe emmAéov mePLOPIGUOVE, Ol OTOIOL QPOPOLV TNV  EMAEYUEVN
petopint) SwkAadwong (branching). Xtnv ocvveyeio emidovior to véa YTo-
[TpofAnuata kot n dwadikacio avt) erxavarapfPavetar uéypt va Bpebel n kotdAinin
axképato AVoT).

H mepapatiky oepevvnon oeénydn péow tov mepopdtov tov Solomon (Solomon,
1987) ta omoia €govv dnovpynBel €dkd yio to TpoPAnua VRPTW. Xkomog tov
TEWPOUATOV NTOV 1 LEAETN TOV YOPOUKTINPIOTIKAOV TNG TPOTEWVOUEVNS HEBOJOV, TOL
peyéovg tov  mpoPAnupdtov  mov pmopodv  va  emivBoldv, kabhg Kot 1
amoteleopatikdéTto. TG Ta  mepdpota  emMKEVIPOONKAV otV HEAETN TOV
OLPOPETIKMOY  KOVOVOV Kuplopyiog oG kot emnpedlovy onuovtikd tdco Tov
VTOAOYIOTIKO ¥pOVO OG0 ko v emitevén PBértiotov Avcewv. o v delaymyn
npoPAnudtov  pe  pukpd  aplBud  mEAaTOV, Yo TO omoio. OEV  VTAPYOLV
ONUOGIOTOMUEVEG 01 PEATIOTEG AVGELC, KOl TOV EAEYYO TNG OMOTEAECUOTIKOTNTOG TNG
mpotevouevng  pebodov, ypnowomomnke  évag  €EAVIANTIKOC  aAyOoplOpog
(Athanasopoulos, 2008Db).

Q¢ Paocikd cvoumepdopaTa, GYETIKA pe TV TPOTEWVOUEVT HEBODO, avapépoviorl To
edng:

e H pébBoodog ywpig v ypnoomoinon kpumpiov kuplapyiog 6to Yno-
[MpoPAnua Tapovotdlet pkpdtepo ypdvo eTIAVONG CLYKPLTIKA LE TOV
eEAVTANTIKO aAyopOpo Kot emTuyydverl BEATIOTEG AVOELG.

e Ta kprmpla Kuprapyiog mov tpotddnkayv and tov Chabrier (2005)
BonBovv oy Pedtimon g taybnTag entivong Tov TpofAnUdToV,
eMTLYYAVOVTOG TAAL TNV BEATIOTN AVOT).

o Toa kprmpla kuprapyiog wov tpotddnkav amd tov Larsen (2001)
Bedtidvouv onuavtikd g TobTNTOS ETIALONG TOV TPOPANUATOV, OALY
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G€ OPICUEVEG TEPWTAOGELS 1| PEATIOTN ADoN dev emTvyydveTe G
ovvdvacpo pe v pébodo emilvong tov elementary Yzno-ITpopinuaroc.
o  Méow tov e&avTAntikov aiyopifuov kot g Column Generation ywpic
™V xpnoonoinon kpnpiov kuplapyiog, emAvdnkay tpofAnuata £wg 9
neAdteg. Méom g ypnong tov kprmpiov kuplapyiog tov Chabrier (2005)
emAVONKav TpoPfAnuata £wg 25 meddtec. [IpofAnuata tepiocotépmv
TeEAATOV ovEavay OpapaTikd Tov emBLUNTO VTOAOYIGTIKO YPOVO.
Avtifeta, péoco tov kprumpiov kuplapyiog tov Larsen (2001) emiredydnie
eniAvon tpofinudatov péypt kot 100 teratmv.
e Amnd ta 44 mpoPAnpata pe 25, 50 kou 100 weldteg, mov emAvOnKav pe v
pe Vv xpnon tov kptnpiov kuprapyiog tov Larsen (2001) ota 31
Bpétnke n BérTiot Aoon.
e Avrtiotorya, 1 dwdikacio E16ay®YNS TOAAATAGV GTNA®V (OpOLOLOYImV)
and kée Yo-IIpopinua oto Kuping [TpdfAnua mapovcioce onuaviikn
peimon tov vroroylotkov xpovov emilvong (nepiocodtepo omd 600%).
[evikdtepa, mapott 1 péBodoc amoterel pio onpoavtikn péBodo yw v akpipn
eniAvon tov VRPTW, mepetaipm €pguva yio v ONUovpyio TO OTOTEAECUATIKOV
Kprenpiov Kuplapyiog Kot TEYVIKGOV Tov B HEIMCOVY TOV OTOUTOVUEVO VITOAOYIGTIKO
xPOvo kot B dratnprocovv TV TodTNTO TNG TOPEXOUEVNS AVomG, Ba mpémel va
perenBovv kat va avamtuyfovv.

Vi



ABSTRACT

In this thesis we develop a toolkit to obtain efficient solutions for the Vehicle Routing
Problem with Time Windows and Capacity Constraints (VRPTW) This toolkit has
been based on the work of Larsen (2001) and Chabrier (2005) and has implemented
the following methods / algorithms proposed in these references:

e A Linear Programming Algorithm that uses the revised simplex method
e A Column Generation Technique for linear problems

e A Dynamic Labeling Algorithm for the Shortest Path Problem with additional
constraints.

e A Branch and Bound Algorithm to obtain integer solutions

These techniques are used in the following framework originally proposed by Larsen
(2001): To obtain a good lower bound, the integrality constraints are relaxed, and the
resulting general linear problem is divided in two separate problems; the Master
Problem and the Sub-problem. The first one is formulated as a Set Partitioning
Problem and it is solved through the revised simplex method. The dual (shadow)
prices produced by this problem are sent to the sub-problem. The latter is formulated
as an Elementary Shortest Path Problem with Time Windows and Capacity
Constraints (ESPPTWCC). It is solved through a dynamic labeling algorithm. The
sub-problem provides the necessary new columns (routes) to be inserted to the master
problem, which is then, solved again. The final solution obtained by this iterative
procedure is a good lower bound of the original integer problem. In order to obtain
integer solutions, the aforementioned methods have been incorporated in a branch and
bound scheme, which calls them iteratively to obtain the optimal (or a near optimal)
solution.

The unified Branch and Bound and Column Generation framework used is called
“Branch and Price via Column Generation”. The shadow prices produced by the
solution of the linear problem are considered to be a “weighting” factor of the
network arcs, and they affect the selection of the proposed routes (columns) by the
sub-problem. In the Column Generation technique not all the feasible routes have to
be known in advance since routes (columns) will be created from the solution
procedure. This is a strong advantage of the proposed method, which achieves an
efficient solution to large-scale problems within reasonable computational time.

The methods proposed by Larsen (2001) guarantee optimality for problems of
appropriate complexity. In large scale problems, however, the computational
complexity may be prohibitive. In these cases, key in obtaining the optimum is the
“intelligent” guidance of the column generation method in selecting the next
appropriate column to be inserted in the linear program. This aspect is further

vii
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analyzed in the present thesis, by testing two labeling techniques that “accelerate” the
solution of the ESPPTWCC problem.

All the related experiments were performed using the Solomon Benchmark problems
and compared against optimal solutions provided in the literature, and / or against an
exhaustive search algorithm. Analytical results for the behavior of the proposed
method, solution quality and computational complexity, are presented and discussed.

Keywords:  Vehicle Routing; Column Generation; Branch and Price; Elementary
Shortest Path Problem with Time Window and Capacity Constraints; Revised
Simplex
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CHAPTER 1 INTRODUCTION

Transportation and distribution of goods are important areas of the supply chain since
they affect the total cost of the product and the quality of customer service.
Transportation is also a main contributor to global pollution. Therefore, any
improvement on the time or distance covered by transportation vehicles will not only
reduce the cost of services provided, but it will also help decreasing CO, emissions
leading to more environmental friendly options and operations in transportation
services.




Chapter 1 Introduction

For many decades, optimization of transportation operations has been studied and
many techniques have been proposed. Currently the need for faster, more accurate and
scalable techniques easily applied to real world problems has been increased and has
gained the attention of the research community. Many problems in the field of
transportation have been studied with operations research methods, including the so
called vehicle routing problem (VRP) that attracted considerable attention. The VRP
includes the design of a set of minimum cost routes starting and ending at a depot for
a fleet of vehicles serving exactly once a set of customers with known demands and
service costs. These routes should be designed subject to several constraints, such as
the total time of travel (route length), or the maximum capacity of each vehicle.
Many variations on this classical problem exist using different restrictions constraints,
depending on problem under investigation.

The use of classical methods adopted from operations research in order to produce the
optimal solution, seems to be inefficient in terms of computational time, especially
when applied to medium-to-large-scale problems. Since many real world problems
involve several hundred customers served by a large fleet, exact methods are not
practical and, thus heuristics are used to obtain a good feasible solution in a timely
manner. Vehicle routing problems belong to class of NP-hard optimization problems,
in which computational time increases exponentially with the problems size.
Although heuristics can handle complex problems, there are no guarantees that they
will solve the problem optimally. Recently, several metaheuristics have also been put
forward to solve the VRP. In contrast to heuristic that terminate when they reach to a
local optimum, metaheuristics may search larger subsets of the solution space to find
better solutions (even the optimal one) within a reasonable and acceptable time
framework.

In the last twenty years, advanced exact optimization methods have been used
extensively to these problems, aiming at decomposing the main problem into many
smaller problems. Decomposition techniques like Lagrangian Relaxation or Column
Generation within a Branch and Bound framework deal with vehicle routing problems
and find the optimal solution in reasonable computation time by strengthening the
conventional OR tools in terms of searching the feasible space and, thus, decrease
considerably execution time.

In this work we are developing a toolkit that solves vehicle routing problems using
Column Generation algorithm to derive a lower bound for the VRP and a Branch and
Bound algorithm to obtain the optimal integer solution. The toolkit has been inspired
by the doctoral work of Larsen (2001) as well as resent related work of other
researchers and will be used by the Design, Operations & Production Systems Lab
(DeOPSys) of the Financial and Management Engineering (FME) Department of the
University of the Aegean, where several algorithms for problems of the VRP class
have been developed and studied. Additionally, the implemented algorithms were
based on the work of Athanasopoulos (2008b), which is conducted as part of his post-
graduate studies. This toolkit will be used to produce benchmark solutions and will
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validate the quality of the algorithms under investigation. Furthermore, Column
Generation is a sophisticated method, which could also be applied to other operations
research (OR) fields being studied in FME to yield optimal solutions within a variety
of constraints.

This thesis focuses on the Vehicle Routing Problem with Time Windows and
Capacity Constraints, in which the service at each location can take place only during
a given interval, called time window and total pickup or delivery loads must not
exceed the vehicles capacity. Vehicles are not allowed to arrive to a customer after the
end of the time window, while in case they arrive before the time window opens, the
service cannot start until the time window begins. The fleet of vehicles is
homogenous, meaning that all vehicles have the same capacity and all customers must
be served exactly once. The scope of our methodology is to produce the optimal
solution from the entire search space by examining the most fruitful regions only.

The methodology employed in this toolkit implement Larsen’s method and comprises
two parts: 1) initially the lower bound (linear solution) is obtained through a Column
Generation technique, and ii) the optimal integer solution of the problem is obtained
using a Branch and Bound scheme (B&B) with embedded the column generation
technique. This scheme is denoted as Branch and Price Column Generation. In the
first part, a linear solution is initially obtained from a portion of all possible routes.
The column generation technique determines if there are other routes to be included in
the solution that could further reduce the objective value. Using the dual variables of
the existing linear solution, a shortest path problem (with additional capacity and
time-window constraints) is solved in order to identify if there is any route that could
be included in the formulation. This step generates potential column(s) (routes) to be
inserted, and the resulting and extended linear problem is solved. This procedure is
continued until there are no additional routes that could reduce the objective function
value, and, therefore, the lower bound has been reached. The second step (in cases
where the lower bound is not integer) uses the linear solution produced the first step
as a lower bound, and through a branch and bound tree the optimal integer solution is
reached. Note that in every branch all steps of the first part (Column Generation) are
repeated.

The remainder of the thesis is structured as follows: Chapter 2 describes the basic
theoretical background and linear programming methods used, such as the Revised
Simplex Method and Column Generation techniques. This is followed by the
description of the Branch and Bound method and the most popular implementation
strategies. Several variations of the VRP are also been described regarding modeling
approaches, constraints and solution algorithms. Chapter 2 ends with the description
of the basic theory of the Shortest Path Problem (SPP), which is critical for the
implementation of the algorithm.

Chapter 3 presents the solution method of the VRP via Column Generation. It consists
of two parts, firstly, the description of the master problem and, secondly, the




Chapter 1 Introduction

description of the sub-problem, i.e. the Elementary Shortest Path Problem with Time
Windows and Capacity Constraints (ESPPTWCC) is presented. The method used for
the ESPPTWCC also incorporates key concepts of the dynamic labeling algorithm
proposed by Kohl (1995), Larsen (2001) and Chabrier (2005).

Chapter 4 describes the policies used, regarding the branch and bound framework
(that the column generation has been incorporated in), in order to find the optimal
integer solution for the VRPTW. Also, the unified structure of the column generation
within a branch and bound framework (branch and price) is presented.

Chapter 5 presents the description of the Solomon benchmark problems, which used
to test the efficiency of the proposed algorithm. Additionally, the results obtained
along with basic conclusions and findings are presented.

Finally, Chapter 6 presents the conclusions of the overall thesis and an evaluation of
the performance of the methods used, along with several directions for future
research.
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CHAPTER 2 THEORETICAL BACKGROUND

The present chapter overviews the theoretical background for the methods employed
in the VRPTW toolkit, that is, Column Generation algorithm and Branch and Bound
technique. The first part of the chapter is dedicated to the linear programming theory
that is related to Column Generation, including the Revised Simplex Method and the
basic concept of Column Generation. The second part presents the well-known
Branch and Bound method including its policies and characteristics. Finally, the
Vehicle Routing problem is presented, along its variants, characteristics and solution
methodologies.
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2.1 LINEAR PROGRAMMING THEORY

2.1.1 THE REVISED SIMPLEX METHOD PROCEDURE

Revised Simplex Method (RSM) is a modification of the well-known simplex
method. RSM is based on calculations, which are directly based on the inverse of the
basis matrix and the main characteristic of it, is that calculations are performed to a
part of the tableau. For example, if the number of constraints is much lower than the
number of variables (the A matrix has fewer rows than columns) only a small number
of columns will participate in the calculations to find the optimal solution. By this
method, several calculations are avoided resulting in a considerable decrease of
computation time and memory requirements.

As stated in Luenberger (1989) and Bradley (1977), Simplex method is expected to
solve linear problems (in optimality) in about m or 3/2m pivot operations, where m is
the number of constraints and n is the number of columns Thus, if the numbers of
rows is considerably smaller that the number of columns ( m << n) then, the
pivoting operations needed to reach an optimal solution will address a small number
of columns. In contrast, the traditional Simplex Method considers all elements of the
involved matrices in the relevant calculations, thus increasing complexity and time. In
many real-life problems, linear programming matrices have more columns than rows
and many coefficients are likely to be zero (sparse matrices). According to the
characteristics of the LP problems and the way the simplex method works, it can be
easily shown that a significant amount of redundant information is generated at each
step. Some references on RSM include the following [Luenberger, (1989); Bradley,
(1977)]. The following are based on these references.

Consider a minimization problem in the standard form:

minZ =C X (2.1)
s.t. AX=0b
X=0

where C (1 X n) is the cost vector, X(n X 1)is the variable vector, A(m X m)is the
coefficient table and b(m X 1) is the right hand side coefficients. In order to present
the revised simplex method, the above formulation should be rewritten in terms of the
basic and non-basic variables, where B represents a sub-matrix resulting from matrix
A, which corresponds to the basic variables (note that matrix B is defined always
based on the initial A matrix) and is of size (m X m). At this point we have A =
[B,D],X = (Xg,Xp), CT = (CE, C}) and the minimization problem becomes:

min Cyz Xg + Cp Xp (2.2)
s.t. BXB+DXD:b

The method of revised simplex can be described as follows:
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Step 1

Starting by a dummy initial feasible solution Xz = X, = 0, where Xy are m slack
variables (each one for every constraint). The inverse of the current basis B is given
by B! and the basic variables’ values can be calculated as:

Xz =B~ 'b (2.3)
Step 2
Next, the non basic variable (Xp;) to enter the basis should be calculated. Every

variable is associated with a column vector Dj from the initial D matrix. As in the

simplex procedure, the reduced cost coefficients r for each non basic variable are
computed from the following formula:

rp =nD; — Cp i (2.4)

Where 7 is a row vector containing all the shadow (or dual prices) of the current
solution and 7; is the cost coefficient of the variable X DjThe shadow prices produce a

vector of 1 X m elements (equal to the numbers of rows) and define the change in
optimal objective function value per unit increase of a corresponding right hand side
(RHS) coefficient and are given by:

m=Cy B! (2.5)

If all reduced cost coefficients are positive or equal to zero (r; = 0V j), then the
optimal solution has been obtained. Otherwise, the most negative element ( 7;) should
be selected and the corresponding variable enters the basis.

Step 3

If variable X, is selected to enter the basis with negative reduced cost coefficient 7,
then the representation of the column D, (coefficients’” column for variable Xp, in the

initial matrix D), that will enter the basis (as it will appear after all the pivoting

operated up to now) is given by:

Y. = B71D, (2.6)
Step 5

In this step, the variable to exit the basis must be defined. Firstly, the minimum ratio
rule is applied. The variable to exit the basis is selected by the following formula,
where y;, indicates the iS' element of column e, and b; the i5¢ element of RHS
column vector.
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b; 2.7
min - / yie > 0} e
Vie
The variable to exit from the basis is selected (variableXg,). In case there is no

solution, then the problem is unbounded and no feasible solution can be found.
Step 6

In the final step, variable X, is exchanged with variable X, (and the respective
columns in B are exchanged). The new basis B~1, the RHS b’ = B~1b and the current

solution z* = Cy b are calculated.

The iterations of the algorithm described above continue until an optimum is found or
until the problem comes to an infeasible end.

An analytical example of the revised simplex method is given in appendix A. Figure
2.1 below provides an illustrative flowchart of the revised simplex method.
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Problem Inputs c, A, b.

v

Find Initial Feasible Solution and compute
B'and b’ = B~1bh.

'

Calculate:
r, =nD; — Cp i

Compute Cg ,D, B

No

Optimal Solution
Found

Find the most negative element of r. Select
respective variable e to enter the basis.

\ 4

Rewrite coefficients’ column of variable e
in terms of the current basis.

Ye = B_lDe

A 4

Calculate

. b
u =min{— / y;, > 0}

e

v

u=null

Yes

No

Problem Unbounded

Calculate new Basis B, inverse B~ 1 and
RHS b’

Figure 2.1: Flowchart of the Revised Simplex Method
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2.1.2 DECOMPOSITION METHOD

Decomposition methods have proved a powerful tool for linear problems, where the
coefficients structure (constraints) presents a certain pattern. Figure 2.2 presents
several indicative patterns for which decomposition methods may be applied.

Independent Primal Dual
subsystems Block angular Block angular

=, = o

L]
o =

Bordered angular Block triangular Staircase

[] B
[l - i
[] L] i
L] IO

Figure 2.2: Several Constraints Structure (Bradley, 1977)

As stated in Bradley (1977), if a problem can be divided in x separate sub-problems
then the solution of each sub-problem will require(%)3 computations, and the full

3
problem will require x(%)3 = 1:—2 computations which are considerably smaller than

the computations of a full problem (m3).Additionally, the sub-problems can be solved
in parallel achieving better computational savings and the ability to solve smaller
problems has made this method as a very useful tool for large scale problems.
Decomposition method initially introduced by Dantzig and Wolfe (1960).

The primal block angular structure will be presented. In this structure, there are
several sub-problems, which are independent and can be solved separately, but there
exists a set of constraints, which “connects” all the sub-problems together. These
constraints are known as “coupling” constraints. The following are based on
Luenberger, (1989) and Bradley, (1977).

The standard linear programming structure of a linear problem is:

minZ=C X
s.t. AX =b (2.8)
X=0

where C (1 xXn),X(nx 1), A(m xm)and b(m X 1).

11
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If the above problem presents the block angular structure, then it can be expanded as
below:

mln C1 Xl + C2 Xz + "‘+ CN XN

Li Xy + L, X, + -+ Cy Xy = bo

A X, = b,
A, X, = b, (2.9)

ANXN = bN

As it can be seen, the sub-problems can be regarded as N independent linear
programming problems, which can be solved separately. Each sub-problem has the
standard linear form:

min Ci Xi
s.t. AXl
=

X =b (2.10)
Xi

o

The solution for each sub-problem will lie upon a specific extreme point of the
convex hull (of the sub-problem’s constraints). For that, a transformation of the above
formulation is proposed in order to reflect the extreme points of each sub-problem.
The master problem constraint coefficients are now the extreme points of the sub-
problems and its variables are the weight factors between the extreme points of each
sub-problem. Note that a solution to a sub-problem is not always feasible for the
master problem due to the linking constraints. This deficiency will be overcome by
weighting the extreme points (by the selected variables) and the solution may not lie
upon an extreme point of the sub-problems. The solution will be a combination of the
extreme points, which optimize the master problem and respecting all constraints.
Further references on the decomposition method and its principles are given in
Bradley (1997) and Luenberger (1984).

2.1.3 COLUMN GENERATION PROCEDURE

As described previously, decomposition methods exploit the special structure of the
constraints of some problem cases in order to provide a better solution in terms of
computational time. Nevertheless, if the number of variables (therefore the size of the
coefficient matrix A) is too large, it can still be prohibited to find the optimal solution.
Column generation, in association with decomposition methods, can overpass this
obstacle by simply generate coefficients columns only when needed by the
optimization procedure. Analytical review on column generation is given in Bradley
(1977), Desaulniers et al. (2005). In Figure 2.3 the grey part represents the variables
that are not necessary to find the optimal solution and CG will not.

12
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c*x
Min z=

A*x b
)
— o
Necessary Not Necessary Columns n =
2 T
Columns B
>
o

Figure 2.3: This figure represents a linear programming problem. The grey part contains
those variables that are not necessary to find the optimum and they could be discarded.

Lubbecke and Desrosiers (2005) provide a historical review of the column generation
along with many applications and research directions. Ford and Fulkerson (1958) are
being referenced as the initiators of the column generation idea. Dantzing and Wolfe
(1960) provided a strategy to deal with a linear program by splitting it into a master
and several sub-problems, where columns to the master problem will be added
continuously. Gilmore and Gomory (1961; 1963) presented the first practical
implementation by solving a cutting stock problem by column generation. This
problem, nowadays, consist of the most used example for column generation. In
Desaulniers et al. (2005) a theoretical background, as well as many applications on
column generation are presented.

Column generation deals with large scale linear programming problems. One of the
main characteristics of the method is that it succeeds in determining an optimal
solution without having to enumerate all variables of the problem. It is very efficient
with problems that contain a large number of variables (columns) and a relatively
small number of constraints (n >> m).

Generally, in Column Generation, the initial problem is called the Master Problem
(MP). From the MP the Restricted Master Problem (RMP) is produced by including
only a subset of the j variables, where 1 < j < n, and all other variables are reduced
to zero. So, initially, the RMP contains only those variables, as well as all the
constraints of the MP (related to these variables). Note that the variables included in
the RMP should result in a feasible solution. Finally, the next column (variable) to
enter the RMP is selected by solving a special optimization problem called the sub-
problem.

The steps of the method are presented below

13
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Step 1

Initially, we define a feasible RMP that includes only /] < n variables. All other
variables will be reduced to zero. RMP is usually produced from a heuristic
algorithm, or even, starting with dummy variables.

Step 2

RMP is being solved (by simplex or by revised simplex) and generates an optimal
solution regarding variables x; to x;. This solution is, also, feasible for the MP since

all constraints have been maintained. In this step, the shadow (dual) prices are

generated. Shadow prices (nij = cgB™1) represent the rate of change of the Objective
Function, by increasing the specific variable. In RSM, shadow prices are used to
define the next entering variable and to test whether the Optimal Solution has been
reached.

Step 3

The Sub-problem is being solved zg,;, = min{ };/%, nij a;j — cj}. Where ¢; are the cost

coefficients, nij are the shadow prices and a;; are the coefficients of A and the
variables of the sub-problem. In order to obtain feasible solutions from the sub-
problem, several constraints have to be included. These constraints represent the
region of feasible solutions and are based on the structural information of each sub-
problem

If zg,, < 0, then the current solution is optimal (without having to enumerate all a;;).

Else if zg,;, > 0, then the current solution is not optimal and the sub-problem will
provide all a;; for the specific variable j to enter the basis of the RMP.

Step 4

Add a new column to RMP. The new column to be added has been provided by Step
3, by calculating the current representation of the a;; provided based on the current
basis (y; = B_laj). Increase the variables of the RMP by 1 (J + 1).

Column generation and decomposition method can be regarded as similar methods. A
difference of column generation with decomposition methods is that in column
generation the sub-problem to be solved can be of any form (dynamic programming,
non linear, etc.) and not only linear programming. This characteristic makes column
generation a strong tool, which can be applied to several different operations research
problems. An analytical example of the column generation method is given in
Appendix A.

14
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2.2 BRANCH AND BOUND

Branch and Bound (B&B) technique has been used in order to provide integer
solution to linear programming problems. It is the most common technique for integer
programming. Over the years different aspects of dealing with B&B have been
proposed making the B&B technique more effective and problem specific.

The basic idea behind B&B is to divide the feasible solution space into subdivisions.
For each subdivision a new linear program can be solved by adding one additional
constraint. This constraint marks the subdivision’s space. The decision on the
subdivisions is based on the non integer variables of the solution. Each non integer
variable partitions the solution space into two subdivisions. This procedure is repeated
until an integer solution is obtained. In general, there exist several alternatives in
dividing the feasible region, and several different B&B tactics are proposed in the
literature. For analytical information on the B&B techniques and methodologies see
Lawler and Wood (1966), Lee and Mitchell (2001) and Chinneck (2003). The
following review is based on Lee and Mitchell (2001).

2.2.1 BRANCH AND BOUND TERMINOLOGY AND GENERAL DESCRIPTION

In order to describe the B&B method the following terminology is being used, in
general:

e A Node represents a solution obtained by the linear programming and it can be
cither integer, linear or infeasible; a Bud (or bud node) represents a solution
obtained, which is linecar and may be further expanded; and a Leaf (or leaf
node) is a solution obtained, either feasible or infeasible which cannot be
further expanded to other nodes. Nodes set comprise a superset of leaf and bud
nodes sets.

e Bounding function is the method used for finding the optimal objective value
in every node.

e Branching refers to the selection of the variable to branch (variable selection)
and to the creation of the successor nodes of a bud node (partitioning).

e Incumbent is the best integer solution found so far.
In order to formulate a complete B&B technique, the following policies are required:

e Variable selection policy refers to the selection of the variable to further
elaborate in the successor nodes of a bud node.

e Partitioning policy refers to the strategy the next branches will be created,
upon the selection of the variable policy.

e Node selection policy refers to the next node that will select and therefore
examined by the bounding function.

15
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¢ Finally, terminating rules of the process should be determined.

o0 Fathoming rule is the rule that stops the growing of a node (or branch),
thus, making it a leaf node.

o0 Terminate rule is the rule that terminates the whole process, regardless
whether a final solution has been obtained or not.

Figure 2.4 presents an example for the process of a B&B algorithm in an integer-
programming problem.

2.2.2 VARIABLE SELECTION POLICIES

Variable selection is one of the critical aspects of B&B, since it affects the running
time of the algorithm. Several approaches have been proposed by the researchers. The
most common variable selection policy (which is addressed it the current thesis) is the
Most/Least Infeasible Integer Variable (Danna, 2005). This policy selects the
variable, which is most fractional and is farthest/closest from/to an integral value, as
the branching variable. The selection of the farthest or the closest one is user-defined.
Other indicative policies are mentioned:

e Driebeck-Tomlin Penalties (Driebeck, 1966; Tomlin, 1971)
e Strong Branching (Applegate et al., 1995)

e Pseudo-Cost Estimate (Benichou et al., 1971)

e Pseudo -Shadow Prices (Land, 1979)

Solving VRPs with the B&B technique in order to obtain integer solutions, branching
policies (both partitioning and variable selection) are problem specific. Several
general B&B branching operations reported in the literature can be applied, depending
on the features of the problem.

16
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maxZ = 1*x; +1%*x,
2%x;+1%x, <6
4xx;+5xx, <20
X1,X; =0

X1, X, integers

Solution: z = 4,32
x; = 1,66
x, = 2,66

maxZ = 1*x; +1%*x,
2%x;+1%x, <6
4xx;+5%x, <20

x; <1

X1,X; =0

X1, X, integers

Solution: z = 4,2

maxZ = 1*x; +1x*x,
2xx;+1%xx,<6
4xx;+5%x, <20

Xy =2

X1,%; =0

X1, X, integers

Solution: z = 4

x; =1 X, =2
x, =3,2 X, =2
maxZ = 1*x; +1%*x, maxZ = 1*x; +1%*x,
2%x;+1%x, <6 2%x;+1%x, <6
4xx;+5%x, <20 4xx;+5%x, <20
x; <1 x; <1
X, =4 x; <3
X1,X, =0 X1,X, =20
X1, X, integers X1, X, integers
Solution: z = 4 Solution: z = 4
x;=0 x; =1
X, =4 X, =3

Optimal solution z = 4 for:
xX;=2and x, =2

x'1=0and x', = 4
x"'1=1and"x, =3

Figure 2.4: Example of the solution of an integer programming problem obtained with B&B

17



University of the Aegean Department of Financial and Management Engineering

2.2.3 PARTITIONING POLICIES

Partitioning is typically realized with the addition of linear constraints, that is, the
formation of new nodes on each division. Suppose x* is the optimal solution to the
relaxation of a branch and bound node. Common partitioning policies as overviewed
in Lee and Mitchell (2001) include:

Variable Dichotomy: If xJR is fractional, then two new nodes are created, one with the
simple bound x; < [x]RJ and the other one with the bound x; = [xﬂ , where
[-] denotes the ceiling value of a real number and |-] the floor value. If x; is restricted

to be binary, the branching reduces to fixing x; = 1 and x; = 0, respectively (Dakin
1965).

Generalized Upper Bound Dichotomy (GUB): If the constraint };e, x; = 1 is present
in the original integer program and x~,i € Q are fractional the Q can be partitioned
Q = Q1 U Q; such that };co x; = 0 and X;¢, X; = 1 respectively (Beale and Tomlin
1970).

Multiple branches for bounded integer variable: If xJR is fractional and x; €
{0, ..., 1}, then [ + 1 new nodes can be created, with x; = k for node k,k =0,...,L.
This idea was proposed in the first B&B algorithm by Land and Doig (1960).

2.2.4 NODE SELECTION POLICIES

Node selection policy refers to the selection of the next node of the B&B tree to be
solved. It consists of a critical policy, which strongly affects the computational time
of the algorithm. Many general and problem specific policies have been proposed in
the literature; the most common as described in Lee and Mitchell (2001) are presented
below.

Dept-First Search with Backtracking: This policy is as follows: Choose a successor
(child) node from the previous node as the next node to examine; if it is already
examined, choose another child node; if there is no child nodes unexamined, then,
choose the most recent unexplored node. This method examines in depth a certain
branch of the B&B tree and returns back to the closest unexplored node.

Best-Bound: This policy is as follows: Choose among all nodes the one that has the
best linear objective value; If a node has linear objective value less (greater) than the
incumbent do not expand further it. This policy minimizes the number of nodes
explored since a node with larger linear objective value than the incumbent will not be
examined because the corresponding integer value could never be less (higher) than
the linear value in case of a minimization (maximization) problem.

Sum of Integer Infeasibilities: This policy chooses the node with either maximum or
minimum sum of infeasibilities. The sum of infeasibilities (minimum case) at a node
is calculated as
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s=2min 1=/ 2.11)
j

Other known policies are Best-Estimate using Pseudo-Cost, Best-Estimate using
Pseudo -Shadow Prices and Best Projection.

2.2.5 BRANCH AND BOUND WITH COLUMN GENERATION

The column generation method embedded in a branch and bound framework is called
branch-and-price. Initially, Desrosiers, Soumis, and Desrochers (1984) were the first
to implement a branch and price method for solving the VRPTW problem (see
Chapter 3). An analytical presentation of the method is given in Barnhart et al.
(1998). Other references on column generation with integer programming include
Desrosiers et al. (1995), Soumis (1997), and Wilhelm (2001). Although it seems that
it is a straight forward implementation of the column generation technique into a
B&B framework several researchers have mentioned the difficulties that have been
raised (Johnson 1989, Barnhart et al. 1998).
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2.3 LINEAR PROGRAMMING METHODS FOR VRP

2.3.1 THE VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) is related to many distribution and
transportation problems. The supply chain costs until it reaches the end customer may
reach 20% of its total cost (Reimann et al., 2003). This significant cost consuming
service, led both academics and industry to optimize the operations in this area. The
VRP is a generalization of the classic Traveling Salesman Problem (TSP)
(Christofidis, 1979; Cornuejols and Nemhauser, 1978; Gendreau et al, 1997) and
consists of finding a set of routes to serve a number of geographically dispersed
customers at minimum cost. The VRP was introduced by Dantzing and Ramser
(1959), in which the authors proposed a mathematical programming formulation and
an algorithmic approach for a real-life problem for the delivery of gasoline to service
stations. At the present time, VRP is one of the most studied problems of Operations
Research, with many extensions and solution methods (Tatarakis 2007).

The objective of the VRP is to find a set of minimum cost routes for an available fleet
of vehicles starting and ending at a depot, in order to deliver goods to a set of
customers with known demand (Clarke and Wright, 1964; Golden & Assad, 1998;
Laporte and Osman, 1995). A very useful survey of significant research results in this
content is given by Toth & Vigo (2002).

According to Stewart and Golden (1983), a compact and convenient formulation for
the VRP can be written as follows:

Minimize Z z CijXijk
w0 (2.12)

zﬂix”k <Q k=12,..,m (2.13)
ij

Subject to

x = |xijx| € Sm (2.14)

where:

c;j = the cost of traveling from i to j

xX;jk = 1 if the vehicle k travels from i to j and x;;; = 0 otherwise

m = the number of available vehicles

Sm = the set of all feasible solutions in m-traveling salesman problem (m-TSP)
u, = the demand at location i

Q = the vehicle capacity
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From the above formulation it is clear that the VRP is an integer - programming
problem. It is also an NP-hard problem, and therefore, practical problem instances
cannot be optimally solved within reasonable time (see Toth and Vigo, 2002). Figure
2.5 present as network of customers along with the feasible routing solution.
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Figure 2.5: A solution example of the VRP

2.3.2 MODELING APPROACHES FOR THE VRP

According to Toth and Vigo (2002): “Three basic modeling approaches have been
proposed in the literature for the VRP. The models of the first type are known as
vehicle flow formulations and they use integer variables associated with each arc or
edge of the graph, which count the number of times the arc or edge is traversed by a
vehicle. These are the most frequently used models for the basic versions of the VRP;
they are particularly suited for cases in which a) the cost of the solution can be
expressed as the sum of the costs associated with the arcs, and b) the most relevant
constraints concern the direct transition between the customers within the route, so
they can be effectively modeled through an appropriate definition of the arc set and
the arc costs. On the other hand, vehicle flow models cannot be used to handle some
particular issues, such as in cases in which the cost of a solution depends on the
overall vertex sequence, or on type of the vehicle assigned to a particular route (Toth
and Vigo 2002). The second family of models is based on the so-called commodity
flow formulation. In this type of model, additional integer variables are associated
with the arcs or edges and represent the flow of commodities along the paths traveled
by the vehicles. Only recently these types have been used as the basis for the exact
solution of Capacitated VRP (CVRP).

The models of the third family have an exponential number of binary variables, each
associated with a different feasible circuit. The VRP is then formulated as a Set-
Partitioning Problem (SPP) seeking a collection of circuits that minimize cost,
serving each customer once and possibly satisfying additional constrains. A main
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advantage of this model is that allows for extremely general route costs (for modeling
cost that depend on the sequence of the arcs and/or the vehicle type). Moreover, the
additional side constraints do not need to take into account restrictions concerning
the feasibility of a single route. As a result, the constraints can often be replaced with
a compact set of inequalities. This produces a formulation, the linear relaxation of
which is typically much tighter than previous model types (Toth and Vigo 2002).”

2.3.3 BASIC PROBLEMS OF THE VRP CLASS

In this section, we will describe the most common VRP variants which respect to the
different types of constraints. We focus on three main variants of the VRP, the
Capacitated VRP, the VRP with Time Windows and the VRP with Pickup and
Delivery.

Capacitated VRP

The Capacitated VRP (CVRP) is almost similar to the simple VRP, since most of the
VRP models introduced to the literature contain capacity restrictions for the vehicles.
In the CVRP all demands from the customers are deterministic, known in advance and
cannot be split. All vehicles are identical and start from a main depot. The objective
is to minimize the total routing cost by serving all customers exactly once without
exceeding capacity constraints (Toth and Vigo 2002).

VRP with Time Windows

The VRP with Time Windows (VRPTW) is an extension of the CVRP, where in
addition to the capacity constraints, every customer i should be served in a specific,
predefined time interval (time window). The time window contains an early arrival
time a; and a late arrival time b;. The time interval [a;, b; ] is the time window, in
which the customer i should start being served. Travel time from customer i to
customer j, t;;, and service time for each customer, s;, are given (Toth and Vigo,
2002; Ahn and Shin, 1991; Atkinson, 1994). This class of vehicle routing problems is
studied in the present thesis and it will be further described in the following sections.

Other VRP variations are:

e VRP with Pickup and Delivery (Toth and Vigo, 2002; Daganzo and Hall,
1993)

e Distance Constrained VRP(Toth and Vigo, 2002)

e Multi-Depot VRP (Bianco et al., 1994; Carpaneto et al., 1989)

e Heterogeneous Capacitated VRP (Taillard, 1996)

e VRP with Backhauls (Toth and Vigo, 2002; Golden et al.1988 )

e Multi-Period VRP (Tan and Beasley, 1984; Christofides and Beasley, 1984)
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2.3.4 SOLUTION ALGORITHMS FOR THE VRP wiTH TIME WINDOWS

In this section we will describe solution methods for the VRP with Time Windows
(VRPTW) as described by Toth and Vigo (2002).

2.3.4.1 HEURISTIC APPROACHES

Heuristic approaches are typically used in practice (real-life problems) and focus on
finding a feasible solution until all customers are served and all constraints are
satisfied. Typically, heuristics approaches are problem-oriented and usually end to a
sub-optimal solution (Toth and Vigo, 2002). In this section we examine three different
classes of heuristics — route construction procedures, two phase algorithms and tour
improvement procedures. Interested readers should see Assad (1998), Christofides
(1979). Each one is described below:

Route Construction

Route construction algorithms gradually build a feasible solution while keeping an
eye on solution cost, but they do not contain an improvement phase. They are
typically divided into sequential and parallel methods. Sequential methods construct
one route at a time until all customers are included while parallel procedures are
characterized by the construction of a number of routes simultaneously. The routes
are either allowed to form freely or their number is fixed a priori (Clarke and Wright,
1964).

Two — phase algorithms

Two-phase heuristics are mainly divided in two classes: 1) Cluster-first, route-second
methods, where vertices (customers) are first organized into feasible clusters and then
a vehicle route is constructed for each of them and ii) Route-first, cluster-second
methods, where a tour is firstly built including all vertices and is then segmented into
feasible vehicle routes.

Route Improvement

Route improvement methods perform local searches for better neighborhood solutions
in order to improve a given initial one. This is usually achieved by edge or vertex
exchanges within or between the vehicle routes. The process terminates when the
current solution cannot be further improved (Toth and Vigo 2002).

2.3.4.2 METAHEURISTICS

Over the last few years, many authors have proposed new heuristic approaches, called
metaheuristics, for tackling the VRP. These perform a thorough exploration of the
solution space, the exploration of deteriorating, or, even, infeasible solutions during
the procedure. Their main advantage is that they do not terminate when a local
optimum is reached and they explore a larger sub-set of the solution space in order to
find a solution closer to the optimal one. Generally, metaheuristics could be classified
in three main categories: a) local search (simulated annealing, tabu search), b)
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population search (adaptive memory procedures, genetic search) and, c¢) learning
mechanisms (neural networks, ant colony systems) (Toth and Vigo 2002).

2.3.4.3 DECOMPOSITION APPROACHES

The main idea of the decomposition approaches is to exploit the special structure of
the VRPTW problems, which allows the problem to split to several sub-problems, or
to relax the constraints of the problem resulting in tighter lower bounds. This section
describes the two more popular decomposition techniques: Lagrangian Relaxation and
Column Generation. The interested reader could find more information in Huisman et
al. (2005). For column generation references see Chapter 3.

Lagrangian Relaxation

In Lagrange relaxation, several constraints are selected and relaxed. That is, the
selected constraints are added to the objective function followed by a penalty factor
(langrangian multiplier 1). The master problem consists of finding the values of the
langrangian multipliers, and the subproblem is a network flow problem with
additional constraints (the ones that have not been removed). See Kohl (1997),
Geoffrion (1974) and Fisher (1985).

Column Generation

As described in 2.1.2, the decomposition is based on two structures: a) the master
problem, which in VRPTW usually is formulated as set partitioning problem, and b)
the sub-problem, which in VRPTW is an elementary shortest path problem with time
windows and capacity constraints (ESPPTWCC); the two problems interact and the
required information is sent to each problem. ESPPTWCC uses modified costs based
on the real costs and the dual prices obtained from the master problem and the Master
Problem uses the new columns information to be added to the problem. The general
column generation method is presented in Chapter 2.1.3 and the VRPTW with
Column Generation is presented in Chapter 3.

Since the current work is based on column generation, the set partitioning problem
and the shortest path problem are overviewed next.

2.3.5 SET PARTITIONING MODEL

The set partitioning model was first proposed by Balinski and Quandt (1964). A direct
formulation of the master problem, used in column generation, for the vehicle routing
problem with time windows can be given through a set partitioning model. To
describe this model, let G be a directed graph, C be the set of customers and V' a set of
identical vehicles (Desrochers 1992; Toth and Vigo 2002). The variable x,. is defined
as:

. = {1, if the route r is used in the solution (2.15)
" 7 |0, otherwise
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and ¢, denotes the total cost of the route. As a result, the model has the following
form:

minz Cr Xy (2.16)
TER
Z S, x, =1 2.17)
TER
x- €{0,1} (2.18)

where R is the set of all feasible routes, and §;,- is 1 if the customer r is serviced by
route r and 0 otherwise.

Since enumerating all feasible routes is considered as a NP-hard problem, the column
generation approach starts from an initial solution that contains a small number of
feasible routes. Additional routes are added to the above formulation only when
needed. This is achieved by solving a sub-problem, in compliance with the above
master problem (see Section 2.4.3). Note that all the vehicle, time window and
capacity constraints are included in the sub-problem, and, therefore, the routes added
to the set partitioning formulation are all feasible.
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2.4 THE SHORTEST PATH PROBLEM

The Shortest Path Problem (SPP) refers to the problem of finding a path between a
start node (vertex) and an end node, in order to minimize the sum of the costs
(weights) of the traversed edges. In many methods, SPP is used as a sub-problem and
it is one of the most studied problems in graph theory. Cormen et al. (2003) present an
analytical review of several variants of the shortest path problems. This section
describes the single-source, single-destination shortest path problem and is based on
the aforementioned reference.

Consider a directed graph G (V,E), where V is the set of vertices and E the set of
edges in the graph. Each arc (i, j) is associated with a weight w. Each vertex (v) is
associated with a label A[v] (the sum of weights for the current shortest path to node v
from the initial node. It represents the upper bound of the shortest path). The shortest
path from a start vertex (s) to an end vertex (e) is denoted as 6 [s,e]. In Section
2.4.1 some core properties of the shortest path problem are given and in Section 2.4.2
the most known solutions algorithms are provided.

2.4.1 PROPERTIES OF THE SHORTEST PATH

Optimal substructure: Considering a shortest path §[u, v] from node u to node v,
then every path included in §[u, v] is also a shortest path. For example in Figure 2.5,
if the shortest path from node 1 to node 5 is[1,3,2,4,5] with cost 20, then the shortest
way to travel from node 3 to node 4 is [3,2,4] with cost 10.

Figure 2.5: Shortest path example

Triangle inequality in Shortest Paths: For every set of arcs (u, v,s) € E, where s is
the starting vertex, then the weight of the shortest path §[s, v] from s to v is less than
the weight of the shortest path &[s,u] plus the weight of the arc (u,v). That
is, 6[s,v] < S[s,u] + w(u,v).
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Figure 2.6: Representation of the triangle inequality property on
Shortest Paths

Upper Bound Property: For each vertex v € V, the value of A(v) cannot be less than
the total sum of weights of the shortest path §[s, v]. That is, A(v) = §[s, v]. If the
label of a vertex is assigned with the value A(v) = [s,v] then it will remain until the
solution process ends.

Convergence Property: Assume that a shortest path exists, which traverses vertices
u and v sequentially, that is s ~» u = v. If A(u) has been assigned to value s, u]
(meaning the shortest path from s to u has already found) prior to the update of label
A(v), then A(v) will be equal to §[s, v] (shortest) after the update.

No-path Property: If a path from s to v does not exist then A(v) = 6[s,v] = o .

2.4.2 SOLUTION ALGORITHMS

In this chapter, the two most known shortest path algorithms are presented. That is,
the Dijkstra’s algorithm (Dijkstra, 1959) and the Bellman-Ford algorithm (Bellman,
1958; Ford and Fulkerson, 1962)

Dijkstra’s algorithm:

Using Dijkstra’s algorithm the directed single-source shortest-path problem with non-
negative edge path weights is solved. Although it is a greedy algorithm that resembles
the breadth-first search it provides the shortest paths on the graph. The algorithm
starts at a source vertex s. A list T contains all the vertices h, for which the shortest
path from the starting vertex §[s, h] has been found. Vertices are added to T in order
of distance, i.e. first s, then the vertex closest to s, then the next closest, and so on.
The value A(g) of every vertex g not in T, which is connected to the vertices in T, is
updated based on the minimum cumulative weights. It can also be used for finding
costs of shortest paths from a single vertex to a single destination vertex by stopping
the algorithm once the shortest path to the destination vertex has been determined.

Bellman-Ford algorithm
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Bellman — Ford algorithm solves the directed single-source shortest-path problem. In
difference with Dijkstra’s algorithm it also finds shortest paths in graphs where
negative edge weights exist. Initially, the algorithm sets the label of the source vertex
to 0 and all other vertices to co. Then, for h — 1 iterations (h is the number of
vertices) it traverses the edges updating the labels [(u). Finally, negative weight
cycles are checked by the following equation:

l[v] > l[u] + wu,v) ,V(u,v) EE (2.19)

If such a negative cycle is present solution does not exist.

2.4.3 SHORTEST PATH WITH TIME WINDOWS AND CAPACITY
CONSTRAINTS

When vehicle routing problems are solved with column generation techniques, the
SPP with resource constraints (or other variants) can be used as the sub-problem. A
resource corresponds to a quantity, such as the time and the demand. In our approach,
these resources correspond to time windows and capacity constraints. The following
are based on Larsen (2001).

The mathematical formulation of the problem is:

( ESPPTWCC) minz Z CijXij (2.20)
{eN jen
st Dy xy < q (2.21)

icC  jeN
Zxoj =1 (2.22)
jen
inh_thj =0 VheC (2.23)
TN jen '
Z Ximet =1 (2.24)
ieN
;;x"' <Isl-1  vScN ,IS|=2 (2.25)
T K(l - xij) < s vVi,jEN (226)
a; < S < bi VieEN (227)

Constraint (2.21) is the capacity constraint of the route (the demand of the customers
assigned to each route should be less or equal to q); constraints (2.22), (2.24) are the
constraints ensuring that each route will start and finish to the depot; Constraint (2.23)
is the flow conservation constraints. Constraint (2.25) is the well known sub-tour
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elimination constraint. Constraints (2.26) and (2.27) ensure that every customer will
be served in its time window and, finally, constraint (2.28) forces variables x;; to be
binary.

The above problem is known as the Elementary Shortest Path with Time Windows
and Capacity Constraints (ESPPTWCC) since every customer can exist in a route
only one time (no repetitions are allowed). In order to overcome the computational
complexity of the aforementioned problem, the customers are allowed to be serviced
more than once in each route, by creating cycles. This type of problem is known as
the non-elementary SPPTWCC. In this formulation, a node may be visited more than
once, leading to cycles, for example a cycle of the form (i) — (j) — (i). Note that
cycling will terminate at a point where the time window or capacity constraint will be
met. Figure 2.7 presents an illustrative cycling example in a directed graph of five
nodes. In this example, a “cycle-path” 1-2-3-4-2-3-5 may occur, while in path 1-3-5
there is no cycle. Eliminating those cycles has been addressed in the literature by
several researchers, specifically the two-cycle elimination in the context of shortest
path algorithms was first presented by Houck et al. (1980) and Christofides, Mingozzi
and Toth (1981). Larsen (2001) uses the SPPTWCC problem as a sub-problem with a
two-cycle elimination technique.

Figure 2.7: Example of generated “cycle-paths”

Since the solution of the elementary problem was considered very difficult for
practical reasons, several researchers proposed different relaxations for the elementary
problem. Recently, Irnich and Villeneuve (2003) showed that by eliminating larger
cycles, the lower bound obtained by column generation process was drastically
improved. Furthermore, Feillet (2004) and Chabrier (2005) proposed the use of the
elementary shortest path problem with time windows and capacity constraints as the
sub-problem of the column generation process.

29



University of the Aegean Department of Financial and Management Engineering

CHAPTER 3 A GOOD LOWER BOUND FOR THE VRPTW
USING COLUMN GENERATION

In this chapter the implementation of the column generation method for the Vehicle
Routing Problem with Time Windows and Capacity Constraints will be described.
The mathematical programming framework used to produce the lower bound relies on
two basic concepts. The first concept is decomposition that transforms the original
model into a model that contains many columns and fewer rows, called master
problem, and the second concept is column generation. In order to solve the linear
relaxation of the extensive formulation one does not generate the entire model since
the latter is typically is very large - the number of variables often grows exponentially
with the size of the original problem. Instead, columns are generated dynamically
using a technique known as column generation. In this chapter the set partitioning
model, used as the master problem and the Elementary Shortest Path with Time
Windows and Capacity Constraints (ESPPTWC) used as the sub-problem are
analytically described. Finally, the dynamic programming algorithm for the
ESPPTWC is also described. The mathematical formulations and notations presented
in this chapter are based on Larsen (2001).
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The vehicle routing problem with time windows is defined by a directed graph G, a
set of customers C and a fleet of vehicles V. The fleet is assumed to be homogeneous,
meaning that all vehicles have the same capacity and cover the same distance in the
same time. The graph contains |C| + 2 vertices, where there are n customers plus the
two starting and ending positions of the vehicle. Let vertex 0 denote the starting
position of the vehicle and n + 1 be the ending position. Both starting and ending
positions correspond to the depot. The whole set of vertices 0,1, ...,n + 1 is denoted
as N =|C|+ 2. The set of arcs A represents the direct connections between all
vertices and the depot. Each arc(i, j), where i # j, has an associated cost ¢;; and a
time t;;. All vehicles have the same capacity q. Each customer i must be serviced
within a time window [a;, b;]. In case a vehicle arrives before the opening of that time
interval, it must wait until q; to start serving that customer (Kallehauge et al, 2005).
The variable s;, for each vertex i and each vehicle k denotes the time vehicle k starts
to service customer i. Two sets of decision variables participate in this model x and s.
For every arc (i,j), where i # j,i # n+ 1,j # 0 and each vehicle is defined as k.
x;j defined as:

o = {1, if vehicle k drives from vertex i to j
k=10, otherwise

A less compact formulation than the one in Section 2.3.1 is presented below:

min ZZZCU’C”’" (3.1)

KEV iEN jEN
iEN JEN '
Zdizxijk <gq VkevV (3.3)
iEC  jEN
> Zoj =1 wkev (34)
jen
z Xink = Z Xpjk =0 vhecvkev (3.5)
iEN jen
in,n+1 =1 vkev (3.6)
iEN
zzxtjk =ISI-1 vscn ,Is|=2vkev ()
iES JES
Sik+tij_ K(l—xijk) < Sjk Vl,]EN,Vk evV (38)
aiSSikal' VlEN,Vk eV (39)
Xijk € {0,1} Vi,jEN,Vk € V (3.10)
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Constraint (3.2) ensures that each customer is visited exactly once. Equation (3.3)
represents the capacity constraints and Egs. (3.4) and (3.6) state that each vehicle will
start and end at the depot. Constraint (3.5) is the flow conservation constraint.
Constraint (3.7) is the well known sub-tour elimination constraints. Constraint (3.8)
ensures that customer j cannot be serviced immediately after customer i if the s, + t;;
is more than s;, (K represents a large scalar). Equation (3.9) represents time window
constraints and (3.10) represents the binary conditions for the variables.

As described in Section 2.1.3, Column Generation deals with linear programming
problems. Specifically, the general idea of column generation is to use only a relevant
small number of columns in order to find the optimal solution out of a large set of
possible columns. This is achieved by dividing the process into two parts: the Master-
Problem (MP) and the Sub-Problem (SP). In the Set-Partitioning formulation of the
Master-Problem, as we will further describe in Section 3.2, each column represents
one feasible route and each constraint (row) represent one customer. The goal of the
Master-Problem is to find the minimal cost, as common methods do, given specific
feasible routes and to produce the shadow prices (one for every row) of the temporary
optimal solution to be used as input in the Sub-Problem. In our method, the SP is
modeled as the Elementary Shortest Path Problem with Time Windows and Capacity
Constraints (ESPPTWCC), where elementary means that each customer can appear at most
once in the shortest path. The traveling cost of every pair of customers and the depot is a
function of the actual cost and the shadow price of each customer. This cost will be
called the modified cost.

On the other hand, the Sub-Problem produces one or more routes to be added in the
Master-Problem. The Sub-Problem deals with all constraints of the problem; In the
case of VRPTWCC, time window and capacity constraints. The routes to be added in
the MP must satisfy all VRPTWCC constraints. The modified cost of each route to be
entered is selected to be the most negative one. If there is no route with negative
modified cost, the process terminates.

3.1 THE MASTER PROBLEM

A direct formulation of the Master problem of the VRPTW, under a column
generation framework, is usually the set partitioning problem. In this type of problem
each column corresponds to one route and each constraint corresponds to a customer
participation in the available routes. If the customer participates in the route, then the
coefficient of its row in the constraint matrix is 1 and 0 otherwise. Given variable x,.,
which is defined as below:

_ {1, if the route r is used in the solution (3.11)

x .
r 0, otherwise

and c¢,, which denotes the total cost route r , then the Master Problem is of the
following form:
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minz Cr Xy (3.12)
TER
z5ir x, =1 (3.13)
TER
x, € {0,1} (3.14)

where R is the set of all feasible routes, and ;- is 1 if the customer i is serviced by
route r and 0 otherwise.

Since the lower bound of the set partitioning problem is considered, constraint (3.14)
is eliminated and the linear relaxation of the above formulation is solved.

The above model, in the column generation approach, contains only the routes that
have been generated by the ESPPTWCC solution plus the initially given routes. Each
time the ESPPTWCC is being solved, new columns (routes) are being generated and
inserted in the set partitioning formulation.

The outcome will be a primal and a dual solution, which may or may not be integer.
In this case, the dual prices of the simplex multipliers are denoted as: m =
e, Ty, ..., T[|C|-

3.2 THE SUB-PROBLEM

The sub-problem is of significant importance due to its relation with the accuracy and
the speed of the provided solution and since it provides the next column(s) to enter the
basis of the master problem. As presented above, the set partitioning formulation of
the master problem does not consider the vehicle, capacity and time window
constraints. All these constraints are included in the sub-problem, and the generated
columns (routes) are all feasible routes. The sub-problem returns the column(s) with
the most negative reduced cost.

The sub-problem has been defined as an elementary shortest path problem with time
windows and capacity constraints (ESPPTWCC). Note that in Larsen (2001), the sub-
problem had been defined as a SPPTWCC where cycles (multiple visits to a single
node in a route were allowed). ESPPTWCC allows no cycles in the generated routes.
The cost of the arcs for the ESPPTWCC (denoted as modified cost) has been defined
from the actual cost (c;;) of the arcs and the shadow prices (7;) generated by the

master problem. The following type gives the modified costs:

6ij=cij_7Ti»Vi *0 (315)
Fori =0, ¢;j = ¢;; . The total cost (C,) of the generated column (route) I is defined
as the sum of the modified costs of the arcs participating in route r, that is:

A A 3.16
C‘r: Z Cij ( )

@@.jer
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Note that this cost is equal to the reduced cost that would have resulted from the
master problem if the route r was already present in the master problem, that is:

A A A
Cr = Z Cij = Z Cij_zﬂi=cr—7f5r (3-17)

(i,j)er (i,j)er ier
Where ¢, is the actual cost of route r, m is the shadow (dual) prices of the simplex

multipliers, and §,. is the route vector as denoted in Chapter 3.1.

Consequently, the result from the solution of the sub-problem will be one or more
paths (routes) with negative modified cost. These columns will be added to the master
problem and the master problem will be solved again. If there are no paths with
negative cost, generated from the sub-problem, the method terminates and the results
from the last master problem solution are kept. This solution is considered as a lower
bound (if it is not integer) for the VRPTW, and further investigation through a branch
and bound framework is required. In case the solution is integer the algorithm
terminates.

3.2.1 THE ALGORITHM

Dijkstra’s algorithm consists of the most used method to deal with the Shortest Path
Problem (SPP). In this method, a labeling technique is used for each node of the
network. Assume that there is a network of arcs and nodes, with non-negative edge
costs ¢;; and several geographically dispersed nodes (customers). Dijkstra algorithm
finds the path with the minimum total distance (based on the ¢;;’s) from a starting
node (s) to an ending node (f). The steps of the method are as follows: Initially, only
the starting node s is considered visited and all other nodes are considered unvisited.
All nodes (i) are associated with a label (L;), which is equal to 0 for i = s and equal
to oo for all other nodes. L; denotes the length of the shortest path (found so far) from
the starting node s to node i. At each iteration of the method the all the out-going arcs
(i,j) for every node i, which has been considered as a visited customer are checked.
For each j (reached from each visited node i) the value of the L; + ¢;; is calculated. If
this is less than the existing label L; at node j, then the latter is updated to L; = L; +
¢;j. Among all the unvisited nodes considered, the node with the minimum-length
label is selected and characterized as visited. This procedure is repeated until there are
no more unvisited nodes.

Dijkstra’s algorithm finds the optimal solution in networks with non-negative costs
only. Also, it cannot guarantee optimality to the addition of more constraints. In order
to solve the shortest path problem with additional constraints such as time window
and capacity constraints and use a network defined based on the modified costs,
which may be negative, an altered method, based on the labeling algorithm for the
SPPTWCC has been proposed by Larsen (2001).

The labeling algorithm is an extension of Dijkstra’s algorithm. In this method each
label is defined as c(i,t,d) where i is the vertex, t and d is the time and demand,
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respectively, based on the partial path up to nodei. ¢ denotes the total cost of each
label. The labeling algorithm selects the label with the minimum t (note that t is
always increasing over time) and expands it further to the nodes (say t) connected to
it (in the VRPTW case to all other nodes), taking under consideration the feasibility
constraints (time window, capacity), that is, the label c(i, t,d) can reach node j and
create a successor label ¢(j, t', d") if the following holds:

t+t, <b (3.18)
d+d; <q (3.19)

Note that the maximum route length has been set equal to the latest time window of
the depot, and therefore, equation (3.18) satisfies this constraint.

Initially, the only label present is the starting node (depot= 0) label. For each node j a
new label c(j,t',d") is generated. At this point, we cannot discard a previous assigned
label to node j as described in Dijkstra algorithm and, therefore, more than one label
may exist for each node. Including the new created labels, again the minimum ¢t label
is selected and the procedure is repeated. Note that, each time a label is selected to be
expanded to the nodes connected to it, it is discarded (deleted) from the labels list,
unless the label is associated with node n + 1. In the latter case these labels are
deleted and stored separately and represent the feasible paths. Note that discarding a
label does not mean that the associated node will not be checked again, since this
node can be reached from other nodes of the network and new labels associated to it,
will be created. The procedure ends when there are no other labels to be examined.
The labeling algorithm can be described by the dynamic program:

¢(0,0,0) = 0 (3.20)
C(j, t, d) = mini{fi]- + C(i,T’,D’)lT’+tij =TAD + di = D} (321)

Cycle Elimination

In the formulation presented by Larsen (2001) and Kohl (1995), the SPPTWCC
problem was solved as a sub-problem where cycles (i.e. visiting the same customer
more than once in the same path) were allowed in the generated paths. In order to
tackle this, a two-cycle elimination was proposed, which by keeps an extra component
(pred) in the label c(i,t,d,pred) . pred is the predecessor of node i. The
phenomenon of cycles in the paths generated from the shortest path problem solution
has been analyzed and described in Section 2.4.

In ESPPTWCC, which is the sub-problem solved in our formulation, cycles are not
allowed in the generated paths. This is tackled by keeping an extra component (path)
in the label c(i, t,d, path). path stores all the path information (visited nodes and
sequence) from the depot to node i. If label c(i, t, d, path) examines the creation of a
new label for node j [c(j,t’,d’, path)] and j exists in the path, then c(j, t',d’, path)
label is not created.
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Dominance Rules

In large scale problems the number of labels can be extremely increased, constituting
the solution procedure computationally and memory prohibitive. Many researchers
have tried to overcome this by recognizing and discarding labels (and therefore partial
paths), which can be considered as ‘low quality’ labels, before they reach the end
node. If a label (partial path) is discarded, then all its possible extensions will not be
examined. As “low quality” labels are considered the labels, which are expected to
not participate in any feasible route (up to node n + 1). An algorithm that recognizes
and discards these labels, will not affect the optimality of the ESPPTWCC solution,
but as it will be shown, it still remains computationally expensive. This procedure is
denoted as “Dominance Rules”.

Over the years different rules have been proposed, see Dumas (1986), Kohl (1995),
Larsen (2001) and Chabrier (2005). However, many of the proposed dominance
criteria do not ensure optimality because several “good” labels are discarded that may
lead to the optimal solutions. On the other hand, tighter rules speed up the solution
procedure because of the elimination of the generated labels.

Two different sets of dominance rules will be presented. The first one is a simplified
version of the dominance rules presented in Larsen (2001) aiming to the decrease of
the computational complexity and to the solution of large scale problems. Note that
these rules do not ensure optimality to all test-cases; the second set is based on the
dominance rules introduced in Chabrier (2005). Although these rules ensure
optimality, the computational complexity is higher than the aforementioned rules.

Simplified Dominance Rules (Larsen)
Assuming that there are two labels for the same node c(i,t1,d1,pathl) and

c(i,t2,d2,path2) with costs c; and c,, respectively. The first label dominates the
second one if and only if the following hold:

Cq < Cy (322)
t, <t (3.23)
d, <d, (3.24)

The second label can be discarded since, as it appears, any path from node i to the
depot will be always better (or equal) considering the pathl. Although this is true,
there are several other aspects that are not been taken under consideration and can
lead to suboptimal solutions.

The implementation in Larsen (2001) with the above dominance rules in parallel with
the relaxed shortest path problem (SPPTWCC) seems to perform better than with the
ESPPTWCC. This can be supported by the fact that the allowance of cycles in the
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generated routes allows more labels to be created and therefore more paths to be
extended to nodes that otherwise would have been eliminated.

Exact dominance rules

The simplified dominance rules in relation to the elementary-SPPTWCC do not
ensure optimality in all cases. As first introduced by Dumas (1986) and further
extended by Chambier (2005), extra rules should be included to ensure optimality.
Assuming, again pathl and path2 , the following rule is included to the
aforementioned rules:

pathl 2 path?2 (3.25)

This rule ensure that the c(i, t1,d1,pathl) label will dominate c(i,t2,d2, path2)
label only if pathl contains at least the same customers with path2. Adding this rule
more labels will be allowed to be created, but the algorithm is expected to converge to
an optimal solution. Several improvements, regarding the acceleration of these
dominance rules, introduced in Chambier (2005). In our formulation only the
aforementioned rule was considered without the acceleration techniques proposed.
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3.3 SOLUTION METHOD

In this chapter the unified method, including all the aforementioned procedures will
be described. As mentioned previously, the method begins with a feasible initial
solution. This solution can be generated using a heuristic algorithm or can be a
dummy feasible solution. In our case, the single-customer routes D —1 —D,D — 2 —
D, ...,D — C — D were selected, where D is the depot. By doing so, the constraints of
the master problem are immediately equal to the total constraints of the full problem
(if we knew all feasible routes). This procedure helps in avoiding several degeneracy
problems, and no redundant rows in the constraint matrix of the master problem will
be created.

The master problem (set partitioning) is solved using the Revised Simplex Method
(presented in Chapter 2.1.1). The Sub-Problem (ESPPTWCC) is solved using the
dynamic algorithm described in Section 3.2.2. This algorithm returns the feasible
route(s) with the most negative reduced cost for the current problem, if one exists.
The generated route(s) are added to the routes already in the master problem, and the
master problem is solved again. In our implementation we allow the ESSPPTWCC to
serve the master problem with multiple columns (specifically, with all generated
columns with negative reduced cost). The procedure continues until the ESPPTWCC
cannot produce any other columns (routes), with negative reduced cost, to enter the
master problem. The last solution of the master problem obtained is considered as the
final solution (lower bound obtained). The development of the algorithm is based on
Athanasopoulos (2008b). The basic steps of the proposed method are described
below:

1. Find an initial solution for the master problem (set partitioning problem).

2. Solve the master problem using the Revised Simplex Method and obtain the
shadow prices of the optimal solution.

3. Produce the modified costs, as described in Section 3.2 using equation (3.15).

4. Solve the sub-problem.

5. If there are generated route(s) with negative reduced cost, add these route(s) to
existing routes of the master problem and go to Step 2; Else, if there no routes
with negative reduced cost, go to Step 6.

6. Terminate procedure. The solution obtained from the last master problem is
the lower bound obtained.

Figure 3.1 presents the column generation method flowchart.
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Figure 3.1: Flowchart of column generation method for the VRP
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CHAPTER 4 THE OPTIMAL SOLUTION FOR THE VRPTW
USING BRANCH AND BOUND

This chapter presents the IP formulation applied to the Vehicle routing Problem with
Time windows and Capacity Constraints that consists of the Column Generation (CG)
algorithm presented in the previous chapter embedded within a Branch and Bound
(B&B) framework. Firstly, the methods and policies used for the VRPTW class
problems are presented and then, the policies applied on our algorithm will be
emphasized.
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4.1 SETTING UP THE BRANCH AND BOUND ALGORITHM

As described in Chapter 2.2, Branch and Bound is a case-sensitive algorithm and
should be adapted to the characteristics of the problem. In our case Column
Generation (CG) produces solutions, which is non-integer in general. B&B produces
extra restrictions dividing the search space into two parts in order to progressively
achieve integrality. A variety of policies and strategies can be applied to achieve the
best integer solution. If CG returns a fractional (non-integer) solution, two new
branches are created with extra conditions at each one and the linear solution returned
at that point is used as a lower bound, meaning that branch cannot return an integer
solution better than the lower bound. Each child is solved with Column Generation; if
an integer solution is obtained, then the current branch stops growing. The lowest
integer solution is set to be the General Upper Bound (GUB). If there is a node with
lower bound worse than GUB, this node is discarded.

4.1.1 TERMINOLOGY

This Section provides the terminology related to the branch and bound features and
characteristics, as described in Section 2.2, and defines the selected policies used in
our problem for each step of the algorithm.

Bounding function: The bounding function includes the mathematical
programming formulation used for the solution of the problem at each node.
Obviously, in our case, we use the Column Generation framework, as described in
Chapter 3.

Incumbent: As incumbent, we will consider the best integer solution found so far at a
certain step. This is the General Upper Bound (GUB).

Fathoming Rule: A bud node will be forced to stop expanding, if i) the solution is
worse than the GUB, ii) the solution is infeasible or iii) an integer solution has been
reached.

Terminate Rule: If there is no bud node left to examine, the whole process will be
terminated. This termination criterion has been chosen because it is directly linked
with the fathoming rule (i.e. the process will inevitably reach a state from which there
will be no more bud nodes left to be examined).

4.1.2 IMPLEMENTATION ISSUES

Following the guidelines presented in Chapter 2, our implementation of the branch-
and-bound algorithm consists of the following steps:

Step 1 (Lower bound): Solve the LP relaxation of the VRPTW

Step2  (Optimality check): If the solution provided from the above step is integer,
compare it with the current GUB (if exists) and go to Step 5, otherwise
continue to Step 3
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Step 3 (Variable Selection Policy): Choose the arc of the head node with the most
fractional part (see below) to be the basis for the newly created constraints.

Step 4  (Partitioning Policy): The head node is being divided in two children and an
additional constraint is added to each one of them, based on the arc selected in
the previous step.

Step 5 (Node Selection Policy): Choose the bud node with the minimum lower bound
from the entire tree. If there is no bud node left to be examined, or the lower
bound of the selected bud node is higher than GUB, then the optimal integer
solution has been achieved (current GUB). Otherwise, return to Step 1.

The basic policies used in the above methodology are further described below:
Variable Selection Policy

The Branching on Arcs policy is used for the selection of the variable, which will
determine the two sub-spaces to be created. In the proposed policy when a non-integer
solution is obtained by the set partitioning model (master problem), the most
fractional arc is selected as the branching variable. Since the variables of the master
problem are the routes and not the arcs connecting costumers, the following must be
performed: From the routes participating in the solution and their customer visiting
sequence, sum of the vehicle flows (defined as the values of the route variables) in
each one of the arcs participating in the solution. The arc (i, j) with the fractional
value closest to 0.5 in the linear solution obtained is chosen for branching (Danna,
2005).

Partitioning Policy

The policy used in this step dichotomizes the “father” node in the children. Suppose
that arc (i, j) is selected as branching variable. Then for the first branch (child node),
the vehicle can reach customer j only from customer i and from customer i can travel
only to customer j or back to the depot. For the second branch, movements from
customer i to j are strictly forbidden in any case. Note that these restrictions affect
only the sub-problem (ESPPTWCC) because the constraints are added only to this
formulation. In the set partitioning formulation of the VRPTW where variables
represent only routes and not arcs, routes that contain this arc are discarded.

Node Selection Policy

We have chosen to implement a best-bound node selection policy, where the node
with the best LP objective value among the entire tree is selected to be explored. This
policy provides a fast lower bound in terms of computational time and ensures that the
optimal solution will be found, compared to other popular policies.
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4.2 THE BRANCH AND BOUND PROCEDURE

This section provides a short overview of the Branch-and-Bound method applied on
the solution of the linear relaxation solution provided by the column generation
process. The root of the B&B tree is the initial column generation solution. And each
node (leaf) is a separate optimization problem based on the initial problem with the
addition of a specific constraint for the fractional variable.

A pseudo-code of the main branch-and-bound algorithm is shown in Figure 4.1. Since
the B&B procedure follows the linear relaxation of the main integer problem, the
main inputs for the B&B algorithm are the solution obtained by solving the linear
relaxation problem, i.e. the lower bound and the variables value (denoted as [b and X
respectively) and the original problem’s objective and constraints (denoted as
parentnode). The initial state of the procedure is to generate the branch-and-bound
tree. This is achieved by selecting the variable to be branched and partitioning the
parent node (original problem) into two new nodes. The functions that execute these
operations are italicized in Figure 4.1 due to their importance and are further
described in the remainder of this chapter.

Algorithm Branch&Bound(lb, X, parentnode)

// b :=lower bound obtained by linear relaxation
Initialize tree_list = ¢ // branch-and-bound tree
GUB = inf // General upper bound
(arc;j) = VariableSelection(X, parentnode)
(newnodes) = NodePartition(arc;j, parentnode)
tree_list = tree_list U newnodes
while (tree_list+ @) do

node = NodeSelection(tree_list)

(Ib”, X?, node) = Ipsolver(node)

ifT (solution := infeasible) or (Ib”> > GUB then)

node = @; // Delete node

else
if X° = iInteger then
GUB = Ib”
node = @
else
(arc;;) = VariableSelection(X”, node)
(newnodes) = NodePartition(arc;;, node)
tree list = tree_list Unewnodes
node = @
end if
end if

return

Figure 4.1. Branch-and-Bound procedure

In the main loop of the procedure, at each iteration the algorithm selects a leaf node
from the current tree (remaining nodes) and solves the corresponding linear problem.
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The node selection function chooses the node with the smaller lower bound so far to
be the next node to be examined (and solved). The selected node is then solved by the
previously well-explained column generation technique as a relaxed linear problem.
The result of this function has three main alternatives.

i. If the resulting solution is infeasible, or the current value of the sub-problem (lb")
is larger than the best current objective value of a known integer solution (GUB),
then no further examination on this node or its possible descendents will give a
better integer solution, and this node is safely dropped from the tree (fathoming).

ii. If the resulting solution of the current sub-problem satisfies the integrality
constraints and its objective value (lb") is lower than the best known integer
solution (GUB), then this value is set to be the current best known integer solution
of the entire tree.

iii.  The third alternative takes under consideration the alternative where none of the
above cases are met and this node needs further examination. In this case, two
new nodes are created according to certain criteria that will be described in detail
later, and added to the branch-and-bound tree as the children of the current node.
Then, this node is deleted from the remaining nodes of the tree to be examined.

With the end of the above functions, the algorithm chooses the next node to solve and
the same procedure is repeated until there are no more nodes to be examined in the
branch-and-bound tree.

The two functions mentioned above, that concern the branching strategy and consist
of the variable selection strategy (VariableSelection) and the partitioning policy
(NodePartition) are of major importance, since they identify the variable to be
branched and partition the parent node into two nodes. This selection affects strongly
the speed of the branch and bound solution.

The variable selection strategy adopted in our case is based on the branching on arcs.
This means that the arc (i, j) that will be branched has to be identified. The arc that
participates in the current solution with the most fractional part (i.e. the one closest
to 0.5) is detected. Every arc (i, ), of the routes k that participate in the solution X,
takes the corresponding value of the variable x;,. The values of the same arcs are
summed up and the arc with the most fractional part is then selected to be branched.
For example, in case of two routes {[0 —1—2—0],[0 — 1 — 0]} with x; = 0.5
and x, = 0.5, the arc (0,1) takes the value 1 and the rest of the arcs the value 0.5.
Consequently, the selected variable for branching is one of the arcs with value 0.5.
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Algorithm VariableSelection(X, parentnode)

Initialize nodelist ,, = 0
for k = 1 to all routes in parentnode do
for i =1 to n do
for j =1 to n do
if (i,j) exists in route k then
nodelist(1,J) = nodelist(i,j) + X,
end
end
end
end
nodelist = nodelist - 0.5
nodelist = abs(nodelist)
(arcij) = min(nodelist)

Figure 4.2: Variable Selection Policy

Figure 4.2 presents a pseudo-code for the variable selection function. After the
selection of the variable, the parent node is divided in two new nodes. This is operated
by the partitioning policy function, where an additional constraint is added to each
node. Given the selected arc from the variable selection policy, supposing (i, j), the
first node contains the inclusion of the selected arc in the solution, while in the second
node the same arc is excluded in any case. For the implementation of this policy in the
B&B procedure, these restrictions are incorporated to the cost matrix of the sub-
problem. The cost matrix of the parent node is transformed according to the
restrictions of each node. For the first case, all elements of row i and column j are set
to infinite, except the element j of row i and the element i of column j. For the second
case, only the element corresponding to (i, j) of the cost matrix is set to infinite. This
technique allows us to easily incorporate the new changes in the two nodes, since any
movement to j from any other node except i will be infeasible for the first case, and
obviously movements from i to j will be infeasible for the second case. The Branch
and bound method is summarized in Figure 4.3 below.
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CHAPTER 5 TEST CASES FOR THE VRPTW

In this chapter the method presented in Chapters 3 and 4 is tested using the well-
known Solomon benchmarks. Firstly the Solomon benchmark test cases are presented.
Subsequently we examine the limits of the method without using the dominance
criteria. In this case the optimal is always determined; however, computational times
are expensive preventing the solution of large scale problems. By adding a simplified
version of the dominance criteria of Larsen (2001) to the algorithm, it is shown that
computational complexity is reduced dramatically, but in many cases, especially in
particular node configuration the optimal in not reached. Finally, by adopting the
dominance criteria of Chabrier (2005) it is shown that an increased number of cases
are solved to optimality, but computational complexity (and times) are increased with
respect of the simplified Larsen criteria case.
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5.1THE SOLOMON’S BENCHMARK PROBLEMS

The Solomon’s problems (Solomon, 1987) are the most commonly used benchmark
data for testing heuristics and exact methods in vehicle routing problems. These
problems are based on a set of VRPTW problems by Christofides et al. (1979), and
have been further extended by adding time window and altered capacity constraints.
The Solomon are identified as [LNXX], where L refers to letters R, C and RC, N
refers to numbers 1 and 2, and XX refers to different test instances of the LN
problems.

The R, C and RC naming conventions refer to the three following types of customer
(nodes) allocation on the [0,1007]? space.

R problems: Problems where customers are uniform and randomly dispersed. An
example is presented in Figure 5.1.
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Figure 5.1: The R101 problem with 100 customers. The depot is
marked as a square.

C problems: In these problems all customers (nodes) appear strongly clustered, and
are, again, dispersed. An example is presented in Figure 5.2.

RC problems: The RC case comprises a hybrid dispersion of customers, with some
customers uniformly distributed, and others clustered. An example is
presented in Figure 5.3.
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Figure 5.2: The C101 problem with 100 customers. The depot is
marked as a square.

The (N =1 or 2) naming conventions are as follows:

N=1: The capacity of maximum route length constraints allow for up to 5 to 10
customers per route.

N=2: The capacity and maximum route length constraints allow for 30 or more
customers to e served by a single route.

Each one of the LN test sets (as described) above incudes 8 to 12 different problem
instances, with a total number of customers up to 100 customers. The problems can be
found in:

e http://web.cba.neu.edu/~msolomon/problems.htm

e http://www.idsia.ch/~luca/macs-vrptw/problems/welcome.htm
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Figure 5.3: The RC101 problem with 100 customers, where the
depot is marked as a square.

Distance and Travel Time Matrix Calculations

Since there is not a common approach for calculating the Distance and Travel Time
matrices among the academic community, the approach proposed by Kohl (1995), in
order to be consistent with the cost matrix calculations and able to compare our results
with the results obtained from Larsen (2001) and Kohl (1995) has been used. In this
approach, the distance between two nodes, (x;,y;) and (x;,y;), is calculated as

follows:

e Initially, the actual distance is derived from the well-known equation:

2 2
Cij = \/(xi —x) + i —v) G.D
e Additionaly, the value 0.1 is being added to each ¢;;, i # 0,j # n+1, in
order to preserve the triangular inequality (see Kohl, 1995)

e Then, by using the following equation ¢;; is rounded down to 1 demical digit.

10¢;;
., -0 52

where |-] denotes the floor value of the c;;.
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e Finally, ¢;; is multiplied by 10 in order to be represented as integer in the

final distance matrix.

Travel times are calculated by adding he service time, st; of each customer i to the
distance ¢;; of each arc (i, j), and the final travel time of each arc is derived as:

tij = Cij + Sti (53)

5.2 DESCRIPTION OF THE TEST BED

The method described in chapter 3 and 4 has been implemented in Matlab® 7
software, which allows multithreading computations. All tests were performed on a
2.00 GHz 8-core PC System running Windows XP", Note that the parallel use of
multiple processors was performed only at the linear programming part of the
algorithm (Master Problem) and not on the sub-problem. Some features of the Matlog
Toolbox (Kay, 2008) have been used for the implementation of the algorithms. The
initial solution given to all test cases was the “unit matrix” solution, where each route
contains only one customer (Depot — Customer — Depot). Note that our
implementation considers multiple column (with negative reduced cost) insertions in
the master problem, in every iteration (each time the sub-problem is called, it
generates more than one column which can improve the existing cost). Several tests
were performed in order to study the effectiveness and accuracy of the proposed
methods.

In section 5.3, the proposed algorithm without using dominance criteria (ND) is
compared to an exhaustive search algorithm (ESA) created for this specific purpose
(Athanasopoulos, 2008b). The ND method solves the ESPPTWCC without discarding
labels that are created in the nodes of the network. By this, all possible paths starting
and ending in the depot are explored and the labels and, therefore, paths with non-
negative modified cost are discarded only after the finalization of the ESPPTWCC.
The computational time and the final cost obtained by the two different methods are
compared.

In section 5.4, two versions of the proposed methods are compared: The ND method
(see above) and the column generation method with the simplified dominance criteria
(SD) [See Chapter 3.2]. The SD method appears to be very fast due to the elimination
of several labels. This elimination leaves a significant smaller number of labels to be
further explored, but in some cases by sacrificing optimality. Again, the
computational time and the final integer cost obtained are compared.

As stated above, the dominance criteria operated in the SD method do not always
reach the optimal solution. Section 5.5 presents results for these cases and compares
the SD method with a different dominance criteria method (CD). This method is
based in a simplified version of the dominance rules presented in Chambier (2005), in
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which more intelligent but time-consuming dominance criteria are proposed (See
Chapter 3.2). Again, the computational time and the final integer cost obtained are
compared.

In Section 5.6, the SD algorithm is tested in large integer problems (25 to 100
customers) from the Solomon Benchmarks, and analytical results for each test-case
are presented. The results obtained from the SD method are compared to the optimal
results from Larsen (2001) and Kohl (1995).

Finally, Section 5.7 summarizes the results obtained from the previous sections using
the column generation method with different dominance criteria, and the results
obtained from solving large scale (up to 100 customers) instances.

5.3 RESULTS OF METHOD WITHOUT DOMINANCE CRITERIA (ND)

In this section the results of column generation method without dominance criteria
(ND) against the results of the exhaustive search algorithm are presented. The
exhaustive search procedure is analyzed below.

Description of the Exhaustive algorithm

Scope of the exhaustive search algorithm is to produce optimal solutions to the test-
cases of the Solomon benchmarks. Since, the computational complexity of the ESA
method is high; it can only provide solutions to small instances. Thus, problems up to
9 customers have been solved. ESA, initially, produces all combinations of nodes that
form a route. The infeasible routes are then discarded, leaving all the feasible routes.
Then, the remaining feasible routes are transformed in their set partitioning
formulation. Finally the problem using LINPROG (the classical LP solver routine of
Matlab) is being solved. A brief overview of ESA is as follows:

1. Initially all possible routes from depot 0 to depot n + 1 are identified.

2. Feasibility criteria (time window, capacity, max route length) are applied to
each route and the infeasible routes are discarded.

3. The cost of all remaining feasible routes is being calculated.
The calculated costs and the set partitioning form of the feasible routes
construct a linear problem, which is solved to optimality.

Note that due to the size of the problems (up to 9 customers) and the respective time
window, capacity and maximum route length constraints of the Solomon test-cases,
all problems result in a single route.

Results Obtained

Table 5.1 presents indicative results of computational time and total cost for each
algorithm. (For the analytical results, see Appendix B)

e Columns “Cost” present the total cost (achieved without performing B&B
operations) for each method
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e Columns “Computational Time” present the computational time spend in
finding the lower bound

Table 5.1: ESA vs. ND method. Indicative Results.

ESA method ND method
Problem Customers Cost Time(sec) Cost Time(sec)
R101 5,00 115,60 0,02 115,60 0,02
6,00 156,70 0,10 156,70 0,01
7,00 157,50 0,53 157,50 0,02
8,00 195,90 3,56 195,90 0,02
9,00 217,30 26,78 217,30 0,04
Cc101 5,00 42,70 0,04 42,70 0,01
6,00 42,80 0,12 42,80 0,03
7,00 46,70 0,56 46,70 0,09
8,00 48,20 3,77 48,20 0,10
9,00 50,30 26,98 50,30 0,25
RC101 5,00 87,20 0,03 87,20 0,01
6,00 89,40 0,12 89,40 0,04
7,00 108,30 0,55 108,30 0,26
8,00 112,40 3,69 112,40 0,22
9,00 121,60 27,03 121,60 0,52

In all cases (Appendix B and Table 5.1) the optimal solution is obtained by the
Column Generation without dominance criteria (ND). Therefore, the column
generation method along with the algorithm for solving the ESPPTWCC without
dominance criteria leads to optimal solutions for the test-cases solved. Although the
ND method performs considerably better than the ESA method regarding the
computational time, it is still very slow and cannot provide solutions to problems of
more customers. Figure 5.4 shows the significant difference of the computational time
of the column generation against the ESA method for an indicative test-case.
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Figure 5.4 Computational time of problem R101, using the methods ESA and ND

5.4 RESULTS OF METHOD WITH SIMPLIFIED DOMINANCE CRITERIA (SD)

This section compares the column generation algorithm using the simplified Larsen
dominance rules (SD), described in Section 3.2, against the ND method. Indicative
results can be seen in Table 5.2 (for the analytical results, see Appendix B).

Table 5.2: ND vs. SD method. Indicative Results.

ND Method SD Method
Problem  Customers Cost Time(sec) Cost Time(sec)
R105 5,00 115,60 0,02 115,60 0,02
6,00 142,10 0,03 142,10 0,02
7,00 157,50 0,03 157,50 0,02
8,00 188,80 0,04 188,80 0,03
9,00 214,95 0,11 214,95 0,09
C105 5,00 42,70 0,02 42,70 0,01
6,00 42,80 0,03 42,80 0,03
7,00 46,70 0,05 46,70 0,03
8,00 48,20 0,20 48,20 0,07
9,00 50,30 0,25 50,30 0,06
RC105 5,00 82,80 0,03 82,80 0,03
6,00 87,70 0,08 87,70 0,06
7,00 93,50 0,36 93,50 0,15
8,00 99,60 2,53 100,90 0,41
9,00 109,60 10,33 109,60 0,69

Based on Table 5.2 and the analytical results (Appendix B), several instances solved
did not reach the optimal solution (as presented in the ND method results). After 120
tests (see Appendix B) in problems of five to nine customers of all three Solomon test
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cases, eleven non-optimal solutions identified. As discussed in Chapter 3.2, this
behavior relates to the dominance criteria used in SD method, in which several node
labels are discarded as dominated. Some of these dominated labels are the labels,
which would have led the algorithm to the optimal solution.

On the contrary, the computational time obtained from the SD method in comparison
to the ND method is significantly lower. Figure 5.5 presents an indicative example
(test-case RC105) where the computational time versus the customers of each
instance is presented.

Problem RC105

12

10

——SD
ND

Time(sec)
()]

No. of customers

Figure 5.5 Computational time of problem RC105, using the methods SD and ND

5.5 RESULTS OF METHOD WITH CHABRIER DOMINANCE CRITERIA (CD)

Section 5.5 presents the results obtained by the column generation using the
dominance criteria proposed in Chabrier (2005). Note that only the test-cases in which
the SD method could not converge to the optimal solution are presented in order to
show the improvement of the CD method (for analytical results see Appendix C).
Although, CD method leads to optimal solutions, it consumes a considerable amount
of computational time.

Table 5.3: CD vs. SD method. Indicative Results.

SD Method CD Method
Problem  Customers Cost Time(sec) Cost Time(sec)
R102 6 134,6 0,039 131,0 0,092
R103 6 134,6 0,039 131,0 0,091
R104 6 134,6 0,040 131,0 0,0912
Cc104 9 50,3 0,829 49,3 0,875
RC102 7 92,1 0,124 88,7 1,171

55



University of the Aegean Department of Financial and Management Engineering

SD Method CD Method
Problem Customers Cost Time(sec) Cost Time(sec)
RC102 8 94,8 0,333 93,5 0,734
RC103 7 92,1 0,124 88,7 1,157
RC103 8 94,8 0,333 93,5 0,734
RC104 9 100,2 0,509 96,6 1,68

The exact dominance rules proposed by Chabrier (2005) solve this problem optimally
but the solution procedure is much slower than the SD method. Chabrier (2005)
proposes two methods to accelerate the solution procedure, 1) by an exact approach,
and i1) a heuristic approach. Several results are presented, in which some instances are
solved for the first time.

Since the CD method leads to optimal solutions, the computational time of the method
is compared against the computational time of the exhaustive method (ESA). Figure
5.6 presents the computational time of the two methods for different customer
instances for an indicative problem (R101). Also, the computational time of ESA
method is presented to provide useful comparisons of the three different methods.
Analytical results regarding the comparison of the computational time of the SD and
CD methods for problems up to 20 customers are presented in Appendix C.
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Figure 5.6 Computational Time using methods ESA, CD and SD (R101 instances)

5.6 TESTING LARGE PROBLEMS

Obtaining solutions to larger problems (more than 10 customers) was feasible only
with the SD method. All other methods implemented were unable to handle larger
instances due to computational time. In this section, the results obtained using the SD
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method, for problems up to 100 customers from the Solomon test-cases, are
presented. Table 5.4 presents the results of a subset of the aforementioned test-cases.
Table 5.4 is structured as follows

e Initially the instances and the number of customers used are presented.

e Columns “Cost” present the lower bound cost obtained (without performing
B&B operations) and the final integer cost (with B&B operations). If these
two costs are equal, then the integer solution was found without performing
B&B operations. Signs (*) indicate cases in which our method (SD) was
unable to reach the best integer optimal solution reported in the literature
(Larsen, 2001). Note that the (+) sign indicates a different lower bound from
the results presented in Larsen (2001).

e Column “No. of Routes” presents the numbers of routes participating in the
final integer solution.

e Columns “B&B Tree” shows the total nodes (from the B&B tree) created and
the nodes explored by the algorithm. Note that these two columns differ, since
based on the Node Selection Policy, not all nodes have to be examined.

e Columns “Generated Columns” present the total columns created and
transferred to the master problem by the sub-problem at the initial node,
resulting in the lower bound (prior entering the B&B operation), and the
average number of columns generated in each B&B node explored.

e Columns “Computational Time” present the computational time spent in
finding the lower bound, the average time spend per B&B node and the total
cumulative time in finding the integer solution, respectively.
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Table 5.4: Results of the SD method for 25, 50 and 100 customers

Cost B&B Tree Generated Columns Computational Time
# of . Average . Average Optimal
Problem Customers  Lower Integ_er Routes Total Nodes First per B&B First per B&B Total Solution
Bound  Solution Nodes Explored Node Node
Node Node
R101 25 617,1 617,1 8 0 0 400 0 0,47 0 0,47 617,1
50 1044" 1044 12 0 0 1764 0 4,73 0 4,73 1044
100 1631,15 1637,7 20 24 16 7648 203 170,21 34,93 729,33 1637,7
R102 25 546,33 547,1 7 8 4 1906 55 2,94 0,65 5,56 547,1
50 909,00 909 11 0 0 7586 0 61,58 0 61,58 909
100 1467,7°  1467,7 18 0 0 13698 4003,58 4003,87 1466,6
R103 25 454,60 454,6 5 0 0 3656 0 11,00 0 10,80 454,6
50 769,29 772,9 9 18 10 15014 435 178,36 72,03 898,74 772,9
R104 25 416,90 416,9 4 0 0 5918 0 25,13 0 25,13 416,9
R105 25 530,5 530,5 6 0 0 952 0 1,45 0 1,49 530,5
50 898,47" 911,8" 9 76 40 3562 334 12,88 4,02 173,81 899,3
R106 25 4573 465,4 5 12 8 2742 125 7,89 1,53 19,62 465,4
R107 25 424.3" 4243 4 0 0 4636 0 19,87 0 19,87 4243
50 707,61° 7116 7 28 16 15306 188 218,54 75,09 1420,19 711,1
R108 25 397.27° 3973 4 4 2 6810 130 48,14 6,3 55,90 3973
R109 25 4413 4413 5 0 0 1792 0 3,41 0 3,40 4413
50 779,2" 790,7" 8 818 426 7524 280 112,79 0,44 370945 786,8
R110 25 440,45" 444,1 5 22 12 2994 95 9,50 1,6 28,62 444,1
R111 25 427,36" 428,8 4 8 4 3282 130 12,20 2,5 21,18 4288
R112 25 389,45" 393 4 24 12 4660 95 24,40 3,1 66,75 393
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Cost B&B Tree Generated Columns Computational Time
. Average . Average Optimal
Provem Customers  Lover e maes (o Mol P perage NS0 perege  Tow soton
P Node Node

RC101 25 4136 466,5 4 434 272 962 23 1,83 0,37 102,77 461,1
RC102 25 351,8 351,8 3 0 0 2164 0 6,30 0 6,30 351,8
RC103 25 33420 3342 3 0 0 3554 0 8,36 0 8,36 333,1
RC104 25 311,77 31,7 3 0 0 4196 0 18,98 0 18,99 306,6
RC105 25 419" 419 4 0 0 1418 0 4,88 0 4,88 4113
RC106 25 345,5" 345,5 3 0 0 1934 0 5.87 0 5.88 345,5
RC107 25 302,77 3027 3 0 0 3354 0 18,72 0 18,72 298,3
RC108 25 304,6°  304,6" 3 0 0 5010 0 18,46 0 18,45 294.4
C101 25 191,3 191,3 3 0 0 2580 0 4,93 0 4,94 191,3z
50 362,4 362,4 5 0 0 6154 0 31,26 0 31,25 362,4

C102 25 191,1 191,17 3 0 0 10382 0 41,48 0 41,48 190,3
50 362,4" 362,4° 5 0 0 23570 0 198,99 0 199,00 361,4

C103 25 190,3 190,3 3 0 0 13968 0 85,56 0 85,56 190,3
50 361,4 361,4 5 0 0 42144 0 764,69 0 764,75 3614

C104 25 186,9 186,9 3 0 0 17530 0 134,43 0 134,45 186,9
50 360,8" 360,8° 5 0 0 61212 0 2879,15 0  2879,36 358,0

C105 25 191,3 191,3 3 0 0 2806 0 5,94 0 5,94 191,3
50 362,4 362,4 5 0 0 8576 0 49,17 0 49,19 362,4

C106 25 191,3 191,3 3 0 0 2456 0 6,43 0 6,42 1913
50 362,4 362,4 5 0 0 8058 0 50,34 0 50,36 362,4

c1o07 25 191,3 191,3 3 0 0 4114 0 11,51 0 11,52 1913
50 362,4 362,4 5 0 0 11604 0 117,84 0 117,86 362,4

C108 25 191,3 191,3 3 0 0 6018 0 21,40 0 21,41 1913
50 362,4 362,4 5 0 0 16572 0 151,71 0 151,72 362,4
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The majority of the computational time is being spent in the first node (obtaining the
lower bound). This is shown in Table 5.5, where indicative analytical results for the
R106 - obtaining the lower bound are shown, presenting the total number of generated
columns, and the computational time spend for the master problem and the sub-
problem, respectively. Finally the aforementioned information for each B&B node is
presented. Note that, in the B&B nodes, the results are cumulative and are not
presented per iteration. The best integer solution obtained is highlighted in the table.

As it is observed, the initial given solution, which is the worst integer solution, forces
the algorithm to create a large number of columns, which is reduced drastically in the
next iterations. Using a heurist algorithm to obtain a good initial solution can
eliminate this phenomenon. Figure 5.7 presents an illustration of the cost obtained
after each iteration for an indicative case (R106 with 25 customers).

Table 5.5: Computational Time for R106 with 25 Customers.

Computational Time (sec) Columns
Iteration  Sub- Master Generated Total Cost
problem  Problem Total
Initial Solution 0 - 0,01 0,01 0 1244,60
First Node. 1 30.10 0,72 30,10 2248 485,15
Lower 2 0,57 0,06 0,63 262 468,90
Bound 3 0,52 0,06 0,57 88 457,30
Iterations 4 0,43 0,01 0,44 8 457,30
5 0,42 0,01 0,43 4 457,30
6 0,45 0,01 0,45 4 457,30
7 0,43 0,01 0,44 2 457,30
8 0,44 0,01 0,45 2 457,30
9 0,40 - 0,40 0 457,30
B&B Nodes 1 1,46 0,12 1,58 48 464,85
2 1,73 0,16 1,89 48 459,95
3 1,05 0,13 1,18 66 469,00
4 1,89 0,14 2,03 22 464,10
5 0,86 0,12 0,98 28 465,60
6 2,03 0,14 2,17 20 465,40
7 0,84 0,10 0,94 64 468,00
8 0,73 0,11 0,84 12 476,40
Total 44,29 1,87 45,52 2926
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Figure 5.7: Cost of R106 (25 customers)

Computational complexity increases with the number of customers. Figure 5.8
presents an indicative test-case. For this test-case, the computational time spent in
obtaining the lower bound by solving the linear program and the ESPPTWCC, along
with the total cumulative time is presented. It is clear that the increase is exponential.
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Figure 5.8: Computational time for problem R101 for customers 10 to 100 (SD method)
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Multiple Columns Generation vs. Single Column Generation

In order to strengthen the use of multiple columns generation from the sub-problem
against the generation of just a single column the following table presents indicative
results for the R101 to R107 test-cases by generating just a single column per sub-
problem iteration. The results obtained along with the difference in computational
time with the results of Table 5.4 are presented. The increase of the computational
time is tremendous in this case, since the single column generation forces the
algorithm to perform a large number of iterations (by solving the master problem and
the sub-problem repeatedly) in order to obtain the lower bound and the integer
solution.

Table 5.6: Results with single column generation and difference in computational
times against multiple column generation.

Generated

e g B&B Tree Columns Computational Time

2 S

§ % Total Nodes Initial Average/ First g\;eggg Total Difference

O  Nodes Explored Node B&B node Node Node (%)

R101 25 0 0 45 - 3,91 - 3,91 731,28
R102 25 4 4 75 7,25 35,80 2,65 46,41 734,64
R103 25 4 2 81 15,50 99,29 10,78 120,84 1018,93
R104 25 0 0 98 - 261,36 - 261,38 940,09
R105 25 0 0 65 - 14,04 - 14,05 842,75
R106 25 32 18 86 11,39 75,90 5,04 166,63 749,26
R107 25 0 0 82 - 143,13 - 143,14 620,38

5.7 CONCLUSIONS

Three different methods for dominance criteria were presented in Chapter 5. All
methods use column Generation as the main solution framework. From the results
obtained in the previous sections the following can be concluded:

e Although, the SD method is a fast method, with the ability to solve large problem
instances (up to 100 customers), it cannot always converge to the optimal solution
reported in the literature. In a total of 44 problems with 25, 50 and 100 customers
solved, only 13 did not converged to an optimal solution. This is mainly based in
the dominance criteria structure which eliminate several labels (therefore, possible
routes) from the solution of the ESSPPTW.

e The CD method performs better than the SD method since it achieves optimal
solutions to instances, for which the SD method was unable to converge. On the
other hand, the computational time consumed, even for small instances, was high
and larger instances (more than 25 customers) could not be solved.
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Both methods were able to solve larger instances from the exhaustive search
method (ESA) created.

In most cases, the larger portion of the computational time was consumed in the
parent node in order to find the lower bound of the problem. This observation can
be strengthened by the use of a dummy initial solution used by our methods. The
use of a better initial solution (through a heuristic algorithm) could have
minimized the computational time of the parent node.

Multiple columns against single column insertion dramatically reduced the
computational time of the process (more than 500%).

Another observation made is that in problems with a large number of B&B nodes
created (and explored), the cost difference between the lower bound and the
integer solution is usually larger than in the instances with less B&B nodes, and
the computational time higher, due to the number of B&B nodes that should be
explored.
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CHAPTER 6 Conclusions

In the present thesis, a Branch and Price via Column Generation toolkit for solving
the Vehicle Routing Problem with Time Windows (VRPTW) was developed. The
methods employed in this toolkit are able to provide optimal or efficient solutions to
the aforementioned problem. Specifically, the toolkit employs advanced linear and
integer programming (such as problem decomposition, column generation and branch
and bound) and advanced network flow (shortest path problem with additional
constraints) techniques. The overall method is based on Larsen (2001), where a
similar algorithm based on Shortest Path Problem with Time Windows and Capacity
Constraints (SPPTWCC), was implemented, and Chabrier (2005), where the solution
is provided through the elementary SPPTWCC. Column Generation is considered as
one of the most promising methods to provide exact solutions to VRPTW problems in
reasonable computational time.
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Method Description

The problem is decomposed into two (2) sub-problems: (a) The Master Problem deals
with the solution of a set partitioning problem where the routes to be included in the
final solution are selected. The only constraints that the Master Problem considers are
the allowance of each customer to be routed in only one route; (b) the sub-problem
works on the decomposed problem structure by providing the additional routes to be
included in the Master Problem. The two problems can be considered as two different
parts, which have to come in a common decision. The sub-problem generates feasible
routes and the Master problem decides which routes will be included in the final
solution and additionally provides the shadow prices to the sub-problem. The shadow
prices can be considered as the weights of the current solution upon all the other
undefined solutions to be provided by the sub-problem.

The sub-problem structure and solution implementation can be of any kind (linear
programming, dynamic programming, heuristics) and restrictions of all kinds can be
included making the whole method easy to be adjusted in the variations of the VRP
and problems of other fields. This characteristic provides a strong advantage of the
column generation method; that is, Column Generation easily adapts to several
different problems.

Analysis and Results

Since the VRPTW is an NP-hard problem, solution for large instances cannot be
obtained in rational computational time. This difficulty was tackled through two
different label dominance techniques, which applied to the sub-problem (Elementary
Shortest Path Problem with Time Windows and Capacity Constraints). The first one is
a simplified version of the dominance rules presented in Larsen (2001) for the non-
elementary SPPTWCC, where several “bad” labels are discarded based on the
dominance criteria before they are further extended. This technique reduces
effectively the number of total generated labels and therefore the complexity and
computational time. The second one is an extension of the latter based on Chabrier
(2005), where an additional rule is introduced compatible with the elementary
SPPTWCC. By this, several labels previously regarded as “bad” and discarded are
now examined. The latter leads to exact solutions but with considerable computational
time increase. The aforementioned techniques are compared against the same column
generation method without dominance criteria and an exhaustive search algorithm.

The related experiments were tested using the well-known Solomon test-cases, which
consist of the primal benchmarks for the academic researchers in the routing area. In
all test-cases solved, the results obtained were compared against optimal solutions
provided in the academic literature, or against the results from an exhaustive search
algorithm (of course for small scale problems). The analysis of dominance rules
showed that using no dominance (ND) or the CD dominance method may result in the
optimal solution but only for small test instances. On the other hand, the SD method
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was able to solve problems up to 100 customers but it could not always converge to
the optimal solution provided in the literature. Specifically:

e Using the SD method, 9 out of 120 tests (up to 9 customers) conducted were
not able to find the optimal solution; on the other hand the computational time
was 60% less than the CD method, and 79% less than the ND method (for the
8 and 9 customers test-cases).

e The ND and CD methods were able to converge to the optimal solutions for
small test-cases up to 10 and 25 customers, respectively.

e In large scale instances, the SD method converged to the optimal integer
solution for 31 out of 44 tests (up to 100 customers).

e The use of multiple columns generation from the sub-problem achieved a
reduction of more than 600% of the computational time.

From the experiments conducted, it is clear that the dominance criteria used affect
strongly both the computational time of the algorithm, as well as the solution quality.
The dominance criteria are strongly related to the sub-problem structure, that is, the
elementary or the non-elementary sub-problem can perform differently using different
dominance criteria.

Future Research

The main scope of developing a column generation toolkit was to utilize it in the
academic research conducted by the Design, Operations & Production Systems Lab
(DeOPSys) of the Financial and Management Engineering (FME) Department of the
University of the Aegean, where over the last years many heuristic algorithms for
problems of the VRP class have been developed.

This toolkit will be used to produce benchmark solutions for practical VRP class
problems that will be studied in DeOPSys and will validate the quality of the
algorithms to be produced. Two classes of such problems currently under
investigation concern multi-period problems, (Athanasopoulos and Minis 2008), and
dynamic vehicle routing problems (Ninikas et al., 2007),

Future work on the toolkit includes further strengthening by adding features, such as
acceleration techniques and different branching and bounding strategies. Further
investigation regarding the dominance criteria should be also conducted due to their
importance regarding the computational time and solution quality in different sub-
problem structures.
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Appendix A

APPENDIX A: EXAMPLES

REVISED SIMPLEX EXAMPLE

maxZ = 2x; + 5x;
1x; + 3x, < 12

Ix;, +1x, < 6
2x; + 1x, < 10
Initially we have:
1 3 12
A=|1 1]b=[6]c=[2 5]

2 1 10

1 0 0
B=|[0 1 0] cg =[000]

0 0 1

Solving the problem with Revised Simplex Method
Iteration 1%
Step 1°' — search for the variable to enter the basis

1 0 0

Y=cB'=[0 0 0][0 1 0]:[0 0 0]
00 1

Z]—C]=YP]—C]

Xy ™ Zl—C1=YP1_C1=[O 0 O]

xz_) ZZ_CZZYPZ_CZZ[O 0 0]

b RwW NP

r ={-2,-5}
We choose the most negative element of r, so X, will enter the basis.

Step 2"~ search for the variable to exit the basis

12
XB = B_lb = [6
10

1 0 O0][3 3
0 1011 - |y
0 0 1i11 1

U = min {X—Ija{( > 0} = min{4, 6,10} = 4
a
k

aj = B_lpj =
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So the variable to exit the basis isS; .

Step 3" — calculate the new basis

3 00 1/3 0 0

B=|1 1 0 ,soB‘1=[—1/3 1 0]

1 0 1 -1/3 0 1
X2 72[2

X = S27 4]anch=[5 0 0]
S3—16

End of first iteration, go back to step 1st.

Iteration 2™
Step 1°' — search for the variable to enter the basis

1/3 0 0
Y=cB =[5 0 0][—1/3 1 0]: [5/3 0 0]
~1/3 0 1

Z]—CJZYPJ—C]

1
X, = z,—¢ =YP,—c¢;, =[05/3 0 0][1]_2=_1/3
2

1
X3 ™ Z3_C3=YP3_C3=[5/3 0 0][0]—0=5/3
0
_ 1

We choose the most negative element of r, so X1 will enter the basis.

Step 2"~ search for the variable to exit the basis

4
XB — B_lb = [2
6.
1/3 0 0111 1/3
a’ = B‘le =|-1/3 1 0 [1] = [2/3]
-1/3 0 1112 5/3
. \XB . _
U = min Ay > 0 = min{12,3,3.6} = 3
a
k

So the variable to exit the basis isS,.
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Step 3" — calculate the new basis

3 1 0 1/2 -1/2 0
B=|1 1 0 ,soB‘lz[—l/Z 3/2 0]
1 2 1 ~1/2 5/2 1
X2 2 [3
)(B=x1—’3]anch=[5 2 0]
Sz~ 11

End of second iteration, go back to step 1st.

Iteration 3™
Step 1% — search for the variable to enter the basis

12 -1/2 0
Y=¢B =[5 2 0][—1/2 3/2 0]:[3/2 1/2 0]
12 5/2 1
zj— ¢ =YP—¢
01
SZ_)Z4_C4=YP4_C4_=[3/2 1/2 O] 1 _0=1/2
0]
1]
Sl_>Z3_C3=YP3_C3=[3/2 1/2 O] ol — 0=3/2
0]
13

All elements of r are positive or equal to zero (r; = 0) then we have already found the
optimal solution.

3
z=cgxp, =[5 2 0] [3]=21
1

X1 =3 xz = 3
End.
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COLUMN GENERATION EXAMPLE

maxZ = 2xq +4x, + 3x3

st
X1+ x+ x3 <12
X1 +3x, + 3x3 <24
3x1 + 6x, + 4x3 <90
X1,X9,X3 =0
Initially,
1 1 1 12
A=]|1 3 3] c=1[2 4 3] b=[24]
3 6 4 90
Iteration 1

Generate RMP

Starting with J=1 All other variables will be reduced to zero, initially:

1 12
A=|(1|lc=[2] b=|24
3 90
Hence, RMP is,
1
zl = maxz CiX;
j=1
st., 211'=1 ajxj = b (j=12,..,m)
X1 =0
Solving RMP

We are solving the RMP using the Revised Simplex Method and the optimal shadow
prices are being generated.

Hence,
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x, =12 s0,zopt = 2 xx; = 24

At the optimal solution we get,

1 0 0 1 12
nt=[2 0 0, B=(1 1 0|,A=10]|,c, =[200]and b = |12
3 0 1 0 54

Solving the Sub-problem

Solving the Sub-problem we find the entering column.

m

Zoyp = Max{c; — Z ni]aij }

1<jsn
j=1

So,

Zsup = 11151;35)%{0]' —[2 0 O0lay}

o
Ifi=l,z,=2-[2 0 o]|1[=0
3]
o
Ifi=2,z, =4—-[2 0 0]|3|=2
6]
1
Ifi=3,z,=3—-[2 0 0]|3|=1
4

Zgp = max{0,2,1} = 2
Hence, column entering RMP is for j=2.
Add new column to RMP

We should calculate the representation of this column, at the current iteration
(v = B‘laj) and increase the variables of the RMP by 1(J + 1).

Hence,
1 0 O 1 1

nt=[2 0 0], B=|1 1 0|,A=]0 31,¢c,=1[200],
3 0 1 0 6

12
b= [12] and ¢ = [0 4]
54
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Iteration 2
Solving RMP

We are solving the RMP using the Revised Simplex Method and the optimal shadow
prices are being generated.

Hence,
X, =6x, =6KatLs; = 36
So,

zopt =2%x; +4*x,+ 0*xs53 =36

1 1 0 1 0 6
m2=[1 1 0], B=|(1 3 0[,A=|0 1|,c,=1[240],b=|6|adnc=
3 6 1 0 0 36

Solving the Sub-problem

Solving the Sub-problem we find the entering column.

m

Zoup = max{cj - Z ni]aij }

1<jsn
i=1
Hence,

Zsup = fgj?‘sﬁ{cj —[1 1 0] [aij]}

Ifi=l,zz=2-[1 1 0]|1|=0

Ifi=2,z, =4—[1 1 0]

Ifi=3,z,=3—[1 1 0]

PR OwH WA
I
(e}

Arose t0 Zg,, < 0
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End
Optimal solution for the MP
X, =6x, =6and s; = 36
And,
zopt =2*x; +4*xx, + 0*s; =36

zotp = 36
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APPENDIX B: ANALYTICAL RESULTS FOR SMALL INSTANCES

Table B.1 presents results on selected test-cases from the Solomon benchmark
problems for five to nine customers. The computational time and the lower bound
obtained are shown for the methods ESA, ND, SD, CD.

Table B.1: Selected results for 5 to 9 customers.

ESA SD ND CD
Pro. Cust. Cost Time Cost Time Cost Time Cost Time
R101 5 115,60 0,02 115,60 0,02 115,60 0,02 115,6 0,031
6 156,70 0,10 156,70 0,01 156,70 0,02 156,7 0,032
7 157,50 0,53 157,50 0,02 157,50 0,03 157,5 0,031
8 195,90 3,56 195,90 0,02 195,90 0,02 1959 0,032
9 217,30 26,78 217,30 0,04 217,30 0,03 2173 0,032
R102 5 93,30 0,05 93,30 0,02 93,30 0,02 93,3 0,031
6 131,00 0,13 134,60 0,04 131,00 0,07 131 0,078
7 135,20 0,58 135,20 0,07 135,20 0,15 135,2 0,079
8 151,40 3,70 151,40 0,15 151,40 0,56 1514 0,344
9 178,00 27,17 178,00 0,13 178,00 0,87 178 0,546
R103 5 93,30 0,04 93,30 0,02 93,30 0,04 93,3 0,016
6 131,00 0,12 134,60 0,04 131,00 0,07 131 0,078
7 135,20 0,56 135,20 0,07 135,20 0,15 135,2 0,078
8 151,40 3,77 151,40 0,14 151,40 0,56 1514 0,36
9 178,00 27,17 178,00 0,14 178,00 0,86 178 0,532
R104 5 93,30 0,04 93,30 0,03 93,30 0,02 93,3 0,016
6 131,00 0,15 134,60 0,04 131,00 0,07 131 0,078
7 131,60 0,64 131,60 0,09 131,60 0,32 131,6 0,141
8 141,10 3,99 141,10 0,13 141,10 1,63 141,1 0,188
9 162,10 27,89 162,10 0,24 162,10 3,32 162,1 0,875
R105 5 115,60 0,03 115,60 0,02 115,60 0,02 115,6 0,016
6 93,30 0,03 93,30 0,03 93,30 0,02 142,1 0,016
7 119,80 0,15 119,80 0,06 119,80 0,08 157,5 0,485
8 135,20 0,61 135,20 0,09 135,20 0,22 188,8 0,063
9 151,40 3,81 151,40 0,17 151,40 0,86 65535 0,093
R106 5 93,30 0,05 93,30 0,02 93,30 0,02 93,3 0,031
6 131,00 0,13 134,60 0,04 131,00 0,07 119,8 0,062
7 135,20 0,58 135,20 0,07 135,20 0,15 135,2 0,109
8 151,40 3,70 151,40 0,15 151,40 0,56 1514 0,515
9 178,00 27,17 178,00 0,13 178,00 0,87 177,5 1,109
R107 5 93,30 0,03 93,30 0,03 93,30 0,02 93,3 0,015
6 119,80 0,14 119,80 0,05 119,80 0,08 119,8 0,078
7 135,20 0,60 135,20 0,09 135,20 0,21 135,2 0,109
8 151,40 3,89 151,40 0,17 151,40 0,87 1514 0,515
9 177,50 28,22 177,50 0,22 177,50 1,59 177,5 1,109
R108 5 93,30 0,03 93,30 0,02 93,30 0,02 93,3 0,016
6 119,80 0,13 119,80 0,05 119,80 0,07 119,8 0,078
7 120,40 0,71 120,40 0,12 120,40 0,38 1204 0,141
8 141,10 4,26 141,10 0,18 141,10 2,01 141,1 0,219
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ESA SD ND CD
Pro. Cust. Cost Time Cost Time Cost Time Cost  Time
9 162,10 30,36 162,10 0,36 162,10 5,95 162,1 1,422
C101 5 42,70 0,04 42,70 0,01 42,70 0,01 427 0,015
6 42,80 0,12 42,80 0,02 42,80 0,03 42,8 0,015
7 46,70 0,56 46,70 0,03 46,70 0,09 46,7 0,047
8 48,20 3,77 48,20 0,05 48,20 0,10 482 0,093
9 50,30 26,98 50,30 0,06 50,30 0,25 50,3 0,172
C102 5 42,70 0,03 42,70 0,02 42,70 0,02 42,7 0,031
6 42,80 0,16 42,80 0,06 42,80 0,13 42,8 0,078
7 46,50 0,71 46,50 0,14 46,50 0,45 46,5 0,297
8 47,20 4,97 47,20 0,30 47,20 5,73 472 0,625
9 49,30 48,18 50,30 0,60 49,30 139,12 493 1,86
C103 5 42,70 0,04 42,70 0,02 42,70 0,03 42,7 0,032
6 42,80 0,17 42,80 0,06 42,80 0,13 42,8 0,094
7 46,50 0,72 46,50 0,14 46,50 0,52 46,5 0,281
8 47,20 5,05 47,20 0,30 47,20 5,89 472 0,64
9 49,30 50,41 50,30 0,58 49,30 5,89 493 1,859
C104 5 42,70 0,04 42,70 0,02 42,70 0,03 42,7 0,031
6 42,80 0,18 42,80 0,07 42,80 0,14 42,8 0,078
7 46,50 0,97 46,50 0,31 46,50 1,41 46,5 0,5
8 47,20 11,40 47,20 0,37 47,20 46,35 472 0,875
9 49,30 190,19 50,30 0,79 49,30 1093,32 493 3,406
C105 5 42,70 0,03 42,70 0,01 42,70 0,02 42,7 0
6 42,80 0,11 42,80 0,03 42,80 0,03 42,8 0,031
7 46,70 0,53 46,70 0,03 46,70 0,05 46,7 0,047
8 48,20 4,24 48,20 0,07 48,20 0,20 482 0,11
9 50,30 29,70 50,30 0,06 50,30 0,25 50,3 0,172
C106 5 42,70 0,03 42,70 0,02 42,70 0,02 42,7 0,015
6 42,80 0,10 42,80 0,03 42,80 0,03 42,8 0,016
7 46,70 0,53 46,70 0,03 46,70 0,04 46,7 0,031
8 48,20 3,77 48,20 0,05 48,20 0,11 482 0,094
9 50,30 27,81 50,30 0,07 50,30 0,23 50,3 0,172
Cc107 5 42,70 0,03 42,70 0,03 42,70 0,02 42,7 0,016
6 42,80 0,11 42,80 0,02 42,80 0,03 42,8 0,032
7 46,70 0,71 46,70 0,04 46,70 0,07 46,7 0,063
8 48,20 3,83 48,20 0,07 48,20 0,14 48,2 0,11
9 50,30 29,19 50,30 0,09 50,30 0,32 50,3 0,157
C108 5 42,70 0,03 42,70 0,04 42,70 0,03 427 0,016
6 42,80 0,12 42,80 0,03 42,80 0,03 42,8 0,031
7 46,50 0,59 46,50 0,04 46,50 0,07 46,5 0,079
8 48,20 3,50 48,20 0,06 48,20 0,28 48,2 0,141
9 50,30 27,42 50,30 0,09 50,30 0,89 50,3 0,235
RC101 5 5,00 87,20 0,03 87,20 0,02 87,20 87,2 0,016
6 6,00 89,40 0,12 89,40 0,03 89,40 89,4 0,016
7 7,00 108,30 0,55 108,30 0,04 108,30 108,3 0,062
8 8,00 112,40 3,69 112,40 0,06 112,40 112,4 0,14
9 9,00 121,60 27,03 121,60 0,19 121,60 121,6 0,547
RC102 5 5,00 82,80 0,04 82,80 0,03 82,80 82,8 0,031
6 6,00 84,60 0,16 84,60 0,06 84,60 84,6 0,063
7 7,00 88,70 0,74 92,10 0,11 88,70 88,7 0,265
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ESA
Pro. Cust. Cost Time Cost Time Cost Time Cost  Time
8 8,00 93,50 5,44 94,80 0,29 93,50 94,8 0,734
9 9,00 100,00 50,56 100,00 0,46 100,00 100,2 1,281
RC103 5 5,00 82,80 0,04 82,80 0,02 82,80 82,8 0,031
6 6,00 84,60 0,16 84,60 0,06 84,60 84,6 0,062
7 7,00 88,70 0,74 92,10 0,12 88,70 88,7 0,265
8 8,00 93,50 5,39 94,80 0,30 93,50 94,8 0,734
9 9,00 100,00 50,20 100,00 0,43 100,00 100,2 1,281
RC104 5 5,00 82,80 0,05 82,80 0,03 82,80 82,8 0,031
6 6,00 84,60 0,16 84,60 0,07 84,60 84,6 0,062
7 7,00 88,70 0,81 88,70 0,20 88,70 88,7 0,156
8 8,00 93,50 6,48 93,50 0,24 93,50 93,5 0,5
9 9,00 96,60 117,10 100,20 0,51 96,60 96,6 1,688
RC105 5 5,00 82,80 0,04 82,80 0,03 82,80 82,8 0,032
6 6,00 87,70 0,18 87,70 0,06 87,70 89,4 0,11
7 7,00 93,50 0,67 93,50 0,15 93,50 93,5 0,313
8 8,00 99,60 4,35 100,90 0,41 99,60 104,8 0,86
9 9,00 109,60 29,61 109,60 0,69 109,60 109,6 1,235
RC106 5 5,00 82,80 0,03 82,80 0,03 82,80 82,8 0,032
6 6,00 89,40 0,12 89,40 0,03 89,40 89,4 0,032
7 7,00 103,20 0,59 103,20 0,12 103,20 103,2 0,172
8 8,00 107,30 3,89 107,30 0,15 107,30 107,3 0,328
9 9,00 108,30 27,66 108,30 0,40 108,30 108,3 1,188
RC107 5 5,00 82,80 0,03 82,80 0,03 82,80 82,8 0,031
6 6,00 84,60 0,12 84,60 0,05 84,60 89,4 0,032
7 7,00 88,70 0,62 88,70 0,10 88,70 88,7 0,156
8 8,00 93,50 3,99 93,50 0,15 93,50 93,5 0,25
9 9,00 98,60 31,05 98,60 0,27 98,60 98,6 0,891
RC108 5 5,00 82,80 0,04 82,80 0,03 82,80 82,8 0,016
6 6,00 84,60 0,15 84,60 0,07 84,60 86,9 0,156
7 7,00 88,70 0,96 91,00 0,11 88,70 88,7 0,391
8 8,00 93,50 7,33 95,80 0,48 93,50 93,5 1,078
9 9,00 96,60 124,47 100,40 0,90 96,60 96,6 3,36
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APPENDIX C: COMPARISON OF THE SD AND CD METHODS

Table C.1 presents results on selected test-cases from the Solomon benchmark for 5 to
25 customers. The testes where conducted using the SD and CD methods presented in
Chapter 5. The results for the SD methods are presented and the total computational
time is compared against the CD method.

Table C.1: Selected results of the SD and CD methods for 5 to 19 customers.

Cost Computational Time

Lower Integer #of  Generated First SD Difference

Pro. Cust. Bound  Solution Routes Columns Node Total Total %
R101 5 156,2 156,2 2 20 0,033 0,031 0,016 106%
7 195,2 195,2 3 28 0,030 0,031 0,031 -3%
9 241,2 241,2 4 52 0,053 0,047 0,031 72%
11 2974 2974 4 70 0,087 0,094 0,047 86%
13 312,8 312,8 4 96 0,138 0,14 0,078 77%
15 383,1 383,1 5 118 0,207 0,219 0,094 120%
17 431,9 431,9 6 162 0,283 0,281 0,141 100%
19 470,2 470,2 6 176 0,380 0,375 0,172 121%
R102 5 130,5 130,5 1 78 0,078 0,078 0,063 23%
7 150,7 150,7 1 288 0,326 0,328 0,11 196%
9 201,3 201,3 3 376 0,601 0,609 0,203 196%
11 260,2 260,5 3 504 1,311 1,609 0,594 121%
13 270,6 270,6 3 822 3,305 3,297 0,735 350%
15 326,1 326,1 4 810 3,728 3,735 0,86 333%
17 365,9 365,9 4 948 4,526 4,532 1,047 332%
19 421,3 424 6 1046 7,344 13,234 4,078 80%
R103 5 130,5 130,5 1 78 0,079 0,078 0,047 69%
7 150,7 150,7 1 288 0,327 0,328 0,11 197%
9 201,3 201,3 3 376 0,601 0,61 0,188 219%
11 260,2 260,5 3 504 1,313 1,61 0,578 127%
13 270,6 270,6 3 822 3,302 3,297 0,734 350%
15 326,1 326,1 4 914 4,761 4,765 0,984 384%
17 351,1 356,4 4 1384 12,832 21,297 5,453 135%
19 3542 360,8 5 2130 24,682 28,953 4,89 405%
R104 5 130,5 130,5 1 78 0,080 0,078 0,047 70%
7 140,4 140,4 1 210 0,180 0,172 0,094 91%
9 179,6 179,6 2 450 0,978 0,969 0,328 198%
11 216,7 216,7 2 838 4,473 4,485 0,906 394%
13 232,6 232,6 2 1348 8,378 8,375 1,563 436%
15 288.,4 288.,4 3 1550 13,049 13,047 2,468 429%
17 308,9 308,9 3 2446 38,939 38,953 5,359 627%
19 327,1444 329,1 3 3736 116,988 205,562 28,937 304%
R105 5 141,6 141,6 2 30 0,025 0,031 0,015 67%
7 188,1 188,1 3 76 0,063 0,062 0,047 34%
9 238,85 241,2 4 98 0,106 0,14 0,079 35%
11 285,8 286,5 3 150 0,203 0,391 0,203 0%
13 299,975 301,9 3 208 0,406 0,672 0,328 24%
15 353,8 3544 4 228 0,675 0,89 0,375 80%
17 390,7 390,7 4 318 0,889 0,891 0,281 216%
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Cost Computational Time

Lower Integer #of  Generated First SD Difference

Pro. Cust. Bound  Solution Routes Columns Node Total Total %
19 415 415 5 484 2,200 2,203 0,703 213%
R106 5 119,3 119,3 1 86 0,075 0,078 0,046 64%
7 150,7 150,7 1 296 0,479 0,469 0,156 207%
9 195 195 2 438 1,023 1,015 0,25 309%
11 2493 249,3 3 642 2,360 2,359 0,547 331%
13 258,2 258,2 3 928 5,088 5,094 0,937 443%
15 316,2 3193 4 970 5,848 14,204 4,219 39%
17 356,05 357,7 4 1368 12,902 17,719 3,797 240%
19 368475 380,7 5 1506 18,096 52,796 15,016 21%
R107 5 119,3 119,3 1 86 0,069 0,078 0,047 47%
7 150,7 150,7 1 296 0,481 0,484 0,156 208%
9 195 195 2 438 1,022 1,015 0,265 286%
11 2493 2493 3 642 2,363 2,359 0,547 332%
13 258,2 258,2 3 928 5,088 5,094 0,922 452%
15 311,3667 315,2 3 1100 7,528 11,594 2,938 156%
17 336,3 336,3 4 1654 17,894 17,89 2,328 669%
19 3394 339,4 4 2634 45,879 45875 5,703 704%
R108 5 119,3 119,3 1 86 0,068 0,078 0,047 45%
7 140,4 140,4 1 236 0,205 0,203 0,093 121%
9 179,6 179,6 2 500 1,210 1,219 0,344 252%
11 209,9 209,9 2 1010 6,518 6,516 1,047 523%
13 218,8 218,8 2 1552 12,726 12,735 1,891 573%
15 2717,7 2717,7 3 1562 15,797 15,797 2,469 540%
17 296,9 296.,9 3 2434 47,780 47,781 5,594 754%
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