dc.contributor.advisor | Παυλίδης, Γεώργιος | el_GR |
dc.contributor.author | Sevetlidis, Vasileios | en_US |
dc.contributor.author | Σεβετλίδης, Βασίλειος | el_GR |
dc.coverage.spatial | Ρόδος | el_GR |
dc.date.accessioned | 2020-02-21T11:23:47Z | |
dc.date.available | 2020-02-21T11:23:47Z | |
dc.date.issued | 2018-06-11 | |
dc.identifier.uri | http://hdl.handle.net/11610/19962 | |
dc.description.abstract | Treatment of spectral information is an essential tool for the examination of various cultural heritage materials. Raman Spectroscopy has become an everyday practice for compound identification due to its non-intrusive nature, but often it can be a complex operation. Spectral identification and analysis on artists' materials is being done with the aid of already existing spectral databases and spectrum matching algorithms. We demonstrate that with a machine learning method called Extremely Randomised Trees, we can learn a model in a supervised learning fashion, able to accurately match an entire-spectrum range into its respective mineral. Our approach was tested and was found to outperform the state-of-the-art methods on the corrected RRUFF dataset, while maintaining low computational complexity and inherently supporting parallelisation. | en_US |
dc.format.extent | 59 σ. | el_GR |
dc.language.iso | en | en_US |
dc.rights | Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 Διεθνές | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.subject | Raman spectroscopy | en_US |
dc.subject | machine learning | en_US |
dc.subject | mineral identification | en_US |
dc.subject | φασματοσκοπία Raman | el_GR |
dc.subject | εκμάθηση μηχανών | el_GR |
dc.subject | ορυκτολογική ταυτοποίηση | el_GR |
dc.subject.lcsh | Raman spectroscopy (URL: http://id.loc.gov/authorities/subjects/sh85111278) | en_US |
dc.subject.lcsh | Machine learning (URL: http://id.loc.gov/authorities/subjects/sh85079324) | en_US |
dc.subject.lcsh | Cultural property (URL: http://id.loc.gov/authorities/subjects/sh97000183) | en_US |
dc.title | A machine learning approach to analysis and classification of measurements in cultural heritage | en_US |
dcterms.accessRights | free | el_GR |
dcterms.rights | Πλήρες Κείμενο - Ελεύθερη Δημοσίευση | el_GR |
heal.type | masterThesis | el_GR |
heal.recordProvider | aegean | el_GR |
heal.committeeMemberName | Κουτσούδης, Ανέστης | el_GR |
heal.committeeMemberName | Βοσινάκης, Σπυρίδων | el_GR |
heal.committeeMemberName | Λυριτζής, Ιωάννης | el_GR |
heal.academicPublisher | Πανεπιστήμιο Αιγαίου - Σχολή Ανθρωπιστικών Επιστημών - Τμήμα Μεσογειακών Σπουδών | el_GR |
heal.academicPublisherID | aegean | el_GR |
heal.fullTextAvailability | true | el_GR |
dc.contributor.department | Εφαρμοσμένες Αρχαιολογικές Επιστήμες (Διατμηματικό) | el_GR |