Show simple item record

dc.contributor.advisorHatjispyros, Spyridonen_US
dc.contributor.advisorΧατζησπύρος, Σπυρίδωνel_GR
dc.contributor.authorKaloudis, Konstantinosen_US
dc.contributor.authorΚαλούδης, Κωνσταντίνοςel_GR
dc.coverage.spatialΣάμοςel_GR
dc.date.accessioned2021-06-23T07:41:21Z
dc.date.available2021-06-23T07:41:21Z
dc.date.issued2019-04-08
dc.identifier.urihttp://hdl.handle.net/11610/21791
dc.description.abstractΗ παρούσα διατριβή αφορά τη διάδραση μεταξύ Μπεϋζιανής στατιστικής και μη γραμμικών δυναμικών συστημάτων. Ειδικότερα, ο βασικός στόχος της διατριβής είναι η ανάπτυξη νέων μεθόδων Markov Chain Monte Carlo (MCMC) με εφαρμογές στο ευρύτερο πεδίο της μη γραμμικής δυναμικής. Το κίνητρο για την ανάπτυξη τέτοιων μεθόδων, αφορά την διάκριση της διαδικασίας μοντελοποίησης σε δύο βασικά διαδραστικά μέρη: το αιτιοκρατικό (ντετερμινιστικό) μέρος και τη στοχαστική διαδικασία θορύβου. Μέσω μιας τέτοιου είδους μοντελοποίησης, επιτυγχάνεται η σύλληψη μιας ευρείας συλλογής φαινομένων, αξιοποιώντας την πολυπλοκότητα της δυναμικής συμπεριφοράς λόγω του μη γραμμικού μέρους και τα νέα χαρακτηριστικά που αναδεικνύονται λόγω της εμπλοκής των στοχαστικών διαταραχών. Οι προτεινόμενες στατιστικές μέθοδοι είναι μη παραμετρικές και βασίζονται στη χρήση τυχαίων μέτρων πιθανότητας με γεωμετρικά βάρη (Geometric stick breaking process (GSB)) ως εκ των προτέρων κατανομές στο χώρο των μέτρων πιθανότητας. Μια σημαντική πτυχή των προτεινόμενων μεθόδων είναι η επίτευξη της χαλάρωσης μιας πολύ συχνής υπόθεσης στη βιβλιογραφία: της κανονικότητας της διαδικασίας θορύβου. Στα δύο πρώτα Κεφάλαια γίνεται αναφορά σε βασικές έννοιες της Μπεϋζιανής στατιστικής και της θεωρίας των δυναμικών συστημάτων. Στο Κεφάλαιο 3 κατασκεύαζουμε ένα μη παραμετρικό Μπεϋζιανό μοντέλο κατάλληλο για αναδόμηση των δυναμικών εξισώσεων και πρόγνωση μελλοντικών τιμών από παρατηρηθείσες χρονοσειρές μολυσμένες με προσθετικό δυναμικό θόρυβο: το μοντέλο geometric stick-breaking reconstruction (GSBR). Το GSBR μοντέλο βασίζεται στο τυχαίο μέτρο με γεωμετρικά βάρη (GSB), ενώ γίνεται επίσης παρουσίαση του αντίστοιχου μοντέλου Dirichlet process reconstruction (DPR) βασισμένου στο τυχαίο μέτρο DP, καθώς και η μεταξύ τους σύγκριση. Η μεθοδολογία επεκτείνεται ώστε να γίνει εφικτή η μοντελοποίηση χρησιμοποιώντας αυθαίρετο πεπερασμένο πλήθος όρων χρονικών υστερήσεων (lags), καθώς και στην πολυδιάστατη περίπτωση μέσω της άπειρης μίξης πολυδιάστατων κανονικών πυρήνων με άγνωστους πίνακες αποκρίσεων, χρησιμοποιώντας ως μέτρο μίξης το τυχαίο μέτρο GSB και μέτρο βάσης (base measure) μια κατανομή Wishart. Στο Κεφάλαιο 4, προτείνεται μια μη παραμετρική Μπεϋζιανή μεθοδολογία βασιζόμενη επίσης στο τυχαίο μέτρο GSB, με σκοπό τη μείωση δυναμικού θορύβου σε διαθέσιμα δεδομένα μη γραμμικών χρονοσειρών με προσθετικό θορυβο. Το μοντέλο Dynamic Noise Reduction Replicator (DNRR) επιτυγχάνει μεγάλη ακρίβεια στην αναδόμηση των δυναμικών εξισώσεων, ώστε να αναπαράγει την υποκείμενη δυναμική σε περιβάλλον ασθενέστερου δυναμικού θορύβου. Μέσω της εφαρμογής του DNRR είναι δυνατή η σύνδεση των περιοχών υψηλών αποκλίσεων από τον ντετερμινισμό με τις περιοχές των πρωταρχικών ομοκλινικών εφαπτομενικοτήτων του υποκείμενου ντετερμινιστικού συστήματος. Συσχετίζοντας τα στοχαστικά δυναμικά συστήματα με τα αντίστοιχα ντετερμινιστικά τους μέρη, στο Κεφάλαιο 5 παρουσιάζεται μία επέκταση του μοντέλου GSBR, με σκοπό τη στοχαστική προσέγγιση της ολικής ευσταθούς πολλαπλότητας (global stable manifold), με χρήση μεθόδου MCMC. Ειδικότερα, γίνεται παρουσίαση του οπισθοδρομικού (backward) GSBR μοντέλου BGSBR, μέσω του οποίου επιτυγχάνεται πρόβλεψη σε αντεστραμμένο χρόνο. Με κατάλληλες πολλαπλές εφαρμογές του BGSBR χρησιμοποιώντας υποσύνολα των διαθέσιμων δεδομένων, δείχνουμε ότι η ένωση των στηριγμάτων των περιθώριων κατανομών για τις διάφορες αρχικές συνθήκες παρέχουν μια στοχαστική προσέγγιση της ευσταθούς πολλαπλότητας του υποκείμενου ντετερμινιστικού συστήματος. Η μεθοδολογία είναι εφαρμόσιμη τόσο σε αντιστρέψιμες όσο και σε μη αντιστρέψιμες απεικονίσεις. Στο Κεφάλαιο 6 γίνεται σύνοψη των αποτελεσμάτων των προηγούμενων Κεφαλαίων και αναφορά σε θέματα για μελλοντική έρευνα, τα οποία προέκυψαν κατά τη διάρκεια εκπόνησης της παρούσας Διατριβής.el_GR
dc.format.extent184 σ.el_GR
dc.language.isoenen_US
dc.rightsCC0 1.0 Παγκόσμια*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectμη παραμετρική μπεϋζιανή στατιστικήel_GR
dc.subjectτυχαία μέτρα γεωμετρικών βαρώνel_GR
dc.subjectστοχαστικά δυναμικά συστήματαel_GR
dc.subjectBayesian nonparametricsen_US
dc.subjectgeometric weights priorsen_US
dc.subjectrandom dynamical systemsen_US
dc.subjectmarkov chain monte carloen_US
dc.subject.lcshMarkov processesen_US
dc.subject.lcshMonte Carlo methoden_US
dc.subject.lcshRandom dynamical systemsen_US
dc.subject.lcshBayesian statistical decision theoryen_US
dc.subject.lcshNonparametric statisticsen_US
dc.titleBayesian methods and estimation of nonlinear dynamical systemsen_US
dcterms.accessRightsfreeel_GR
dcterms.rightsΠλήρες Κείμενο - Ελεύθερη Δημοσίευσηel_GR
heal.typedoctoralThesisel_GR
heal.recordProvideraegeanel_GR
heal.sponsor"ΥΠΑΤΙΑ": Πρόγραμμα Υποτροφιών Υποψηφίων Διδακτόρων Πανεπιστημίου Αιγαίου.el_GR
heal.committeeMemberNameNikoleris, Theodorosen_US
heal.committeeMemberNameYannacopoulos, Athanasiosen_US
heal.committeeMemberNameHalidias, Nikolaosen_US
heal.committeeMemberNameKarakasidis, Theodorosen_US
heal.committeeMemberNameTsimikas, Johnen_US
heal.committeeMemberNameVakeroudis, Stavrosen_US
heal.academicPublisherΠανεπιστήμιο Αιγαίου - Σχολή Θετικών Επιστημών - Τμήμα Σ.Α.Χ.Μ.el_GR
heal.academicPublisherIDaegeanel_GR
heal.fullTextAvailabilitytrueel_GR
dc.contributor.departmentΣτατιστική και Αναλογιστικά - Χρηματοοικονομικά Μαθηματικάel_GR


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Παγκόσμια
Except where otherwise noted, this item's license is described as CC0 1.0 Παγκόσμια