dc.contributor.advisor | Σταματάτος, Ευστάθιος | el_GR |
dc.contributor.author | Γαλάνης, Νικόλαος | el_GR |
dc.coverage.spatial | Σάμος | el_GR |
dc.date.accessioned | 2024-01-10T08:16:44Z | |
dc.date.available | 2024-01-10T08:16:44Z | |
dc.date.issued | 2023-05-09 | |
dc.identifier.uri | http://hdl.handle.net/11610/25928 | |
dc.description.abstract | Η παρούσα εργασία διερευνά την ενσωμάτωση των σύγχρονων τεχνικών του artificial intelligence (AI), συγκεκριμένα της βαθιάς μάθησης και των νευρωνικών δικτύων, με μοντέλα ταξινόμησης κειμένων αλλά και εξηγήσιμα μοντέλα. Το επίκεντρο αυτής της έρευνας είναι η ανάπτυξη ενός μοντέλου που όχι μόνο επιτυγχάνει υψηλή ακρίβεια σε εργασίες ταξινόμησης κειμένου αλλά και παρέχει ερμηνεύσιμες επεξηγήσεις για τις προβλέψεις του. Η προτεινόμενη προσέγγιση κάνει χρήση ενός προ-εκπαιδευμένου μοντέλου βαθιάς μάθησης, το BERT, το οποίο έχει ρυθμιστεί λεπτομερός (fine-tuned) σε ένα μεγάλο σύνολο δεδομένων ταξινόμησης κειμένου. Στη συνέχεια θα ενσωματώσουμε δύο επεξηγήσιμα μοντέλα ΤΝ, τo LIME και το SHAP, στο λεπτομερώς ρυθμισμένο μοντέλο BERT για να παρέχoυν επεξηγήσεις για τις προβλέψεις του. Ακόμη θα διεξαχθούν πειράματα εστιάζοντας στην σύγκριση των δύο αυτών μοντέλων επεξηγηματικότητας και στην εύρεση του καταλληλότερου. Τα αποτελέσματα καταδεικνύουν ότι οι προτεινόμενες προσεγγίσεις παρέχουν ερμηνεύσιμες εξηγήσεις για τις προβλέψεις τους, καθιστώντας τες πολλά υποσχόμενες λύσεις για προβλήματα ταξινόμησης κειμένου στον πραγματικό κόσμο. | el_GR |
dc.format.extent | 119 σ. | el_GR |
dc.language.iso | el_GR | el_GR |
dc.rights | Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 Διεθνές | |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.subject | deep learning | en_US |
dc.subject | explainability | en_US |
dc.subject | text classification | en_US |
dc.subject | βαθιά μάθηση | el_GR |
dc.subject | επεξηγηματικά μοντέλα | el_GR |
dc.subject | ταξινόμηση κειμένου | el_GR |
dc.subject.lcsh | Artificial intelligence | en_US |
dc.subject.lcsh | Machine learning | en_US |
dc.subject.lcsh | Neural networks (Computer science) | en_US |
dc.subject.lcsh | Text processing (Computer science) | en_US |
dc.title | Επεξηγηματική βαθιά μάθηση σε εφαρμογές ταξινόμησης κειμένου | el_GR |
dcterms.accessRights | free | el_GR |
dcterms.rights | Πλήρες Κείμενο - Ελεύθερη Δημοσίευση | el_GR |
heal.type | bachelorThesis | el_GR |
heal.recordProvider | aegean | el_GR |
heal.committeeMemberName | Καβαλλιεράτου, Εργίνα | el_GR |
heal.committeeMemberName | Κωστούλας, Θεόδωρος | el_GR |
heal.academicPublisher | Πανεπιστήμιο Αιγαίου - Πολυτεχνική Σχολή - Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων | el_GR |
heal.academicPublisherID | aegean | el_GR |
heal.fullTextAvailability | true | el_GR |